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Abstract

The fundamental issues in any discussion of a proposed system architecture must
involve the relative quality of the architecture when compared to other proposals and
the architecture’s ability to satisfy the needs and abilities of the customer, the system
environment and the system developer. While the latter issue can often be easily
addressed through standard system architecture methods, the former comparative
issue can often be quite difficult due to some of the uncertainty and ambiguity in
the relative merit of system architecture factors. In large government-funded space
system architectures, which often span years of development/production and cost
tens of billions of dollars, this difficulty is especially apparent and highlights the need
for an effective method for comparative evaluation.

This thesis research has developed a unique tool by which comparisons of system
architectures can be made. This technique, which is a fuzzy set extension of the
Axiomatic Design method, has the ability to incorporate and capture both technical
and non-technical parameters that are vital to the comparison process. This tool
is effectively applied to architectural proposals for the human exploration of Mars.
As supporting objectives, the research examines the structure of advanced technology
developments, explores the affects of the government budgetary process and comments
on the government /contractor managerial relationship as they pertain to space system
architectures.

Thesis Supervisor: Edward Crawley
Title: Professor of Aerospace Engineering
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Chapter 1

Introduction

The space age was introduced with some important words from the U. S. Senate:

Space is presented at this junction, as a frontier. It is a dimension, not
a force, a dimension enlarging the sweep and scope of all our established
activities to the measurement of infinity - as the frontier of the American
West enlarged the potential of the colonies to the limits of a continent.

For any frontier, as Americans know from their national history, the
imperative is exploration, not control. Only by exploration - by pioneering
the unknown, by venturing the uncertain — can the promise of any frontier

be realized. This must now be our imperative for the space frontier.

“Venturing the uncertain” is a phrase that best captures the role of the space systems
architect. The space frontier has presented engineers and scientists alike with new
challenges to conventional ideas. While most design is actually redesign, the space
systems that have been developed to date and that will be developed in the future
innovate on the architectural level. Space systems are somewhat unique in this regard.
Yet, their uniqueness is not limited to their technical nature. The way in which the
technological process interacts with society and the way macro-engineering tasks have

revolutionized the management of engineering developments is a marvel in itself.



At the core of these multi-billion dollar efforts, an architecture — a structure —
of a system can often be the determining factor as to the program’s success or fail-
ure. Space Station Freedom, the Strategic Defense Initiative (SDI) and the Space
Exploration Initiative (SEI) are just a few high profile examples where architectural
decisions resulted in a program not even reaching initial deployment. These and
other examples illustrate the consequences of selecting poor architectures. Yet, it is
essential to recognize that the fundamental character of both successes and failures
of space system architectures do not lie solely within the technical parameters of the
endeavor. Management of these very large and complex systems demands special
and constant attention. Government-sponsored space systems have unique aspects
in that the procuring entity is not the design or manufacturing organization. The
government-contractor relationship, the public perception of the program and the
Congressional view of the program also play integral, if not fundamental, parts in
the system architecture. All of these technical and non-technical parameters must be
considered when system architectures are created, or more importantly, when they

are evaluated.

1.1 Background on System Architecture

System architecture, as an academic pursuit, is relatively new activity, yet system ar-
chitects and their principles have existed since engineering projects have been around
[Alexander 1964]. The great wonders of the ancient world had system architects
who answered a customer’s needs while effectively structuring his/her project to deal
with changing environmental conditions and the engineering/management challenges
[Hauck 1989, Ortloff 1988, Reid 1997]. These system architects arose from the tute-
lage of previous masters and who were schooled in thejr “arts.” That system of ap-
prenticeship lasted for generations and, to a lesser extent, still exists today when
engineers of exceptional talent train their subordinates in a particular field. This
method of producing good system architectures has faded due to the rapid expansion

of technologies that have generated specialized disciplines, a utilitarian culture that
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produces a more mobile workforce, and a fast-moving social environment that has
produced an ever-increasing need for better product architectures. Additional meth-
ods of system architecture have arisen over the years. In Eberhardt Rechtin’s book
“System Architecting: Creating and Building Complex Systems [Rechtin 1991],” the
author introduces four broad categories of system architecting. These methods are
presented so that a case can be made that one of the methods, the so-called heuris-
tic method, is a particularly effective one. The four system architecture processes

presented in Rechtin’s book include:

Normative or Pronouncement - This technique is based on the “school” of

ideas that a recognized expert developed over the course of his/her career.
It is a judgmental, experiential approach to system architecting and leads
to a evaluatior of the “goodness” of an architecture based on some set of
rules. The pronouncement method is generally best applied by immediate
subordinates of the founder of the school of thought. It can be an efficient
method, but often is not easily generalized or accurately carried out by

someone other than an immediate successor of the recognized expert.

Rational or Procedural- The pronouncement method’s problem with gen-

eralization is not found in the procedural method. In fact, the procedural
method’s central tenet is the rational abstraction of a system architecture
problem. Procedural methods aim to develop a general framework that is
comprehensive enough for easy mapping of specific problems and, then, to
use that abstraction to mechanically solve the system architecture prob-
lem. The forward and backward chaining of logic is one of the method’s
strengths, yet this positive feature can also be one of its weaknesses. The
procedural approach can occasionally be faced with a logical situation that
does not fully close. In this case, the procedural method breaks down due

to its lack of direction on how to creatively bridge this logical gap.

Argumentative - The argumentative process is the system architecting ap-

proach that engineers have probably experienced most often. This method
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relies on intuition and brainstorming to generate a set of ideas that wiil
eventually coalesce into a preferred system architecture. Clearly, this
method can be very creative, but its critics would argue that ic does not
ensure a complete coverage of the trade space, nor does it methodically

evaluate the value of one solution versus another.

Heuristics- A heuristic approach tc system architecting is Rechtin’s method
of choice. Heuristics rely on the shared wisdom of a field and the use of
contextual facts. An example of a common designer’s heuristic is “keep it
simple, stupid.” This example illustrates the prescriptive form of heuris-
tics. Descriptive heuristics, such as “a model is not reality,” also have a
place in this approach. While this generalized lessons learned approach
has powerful application to certain fields, the truths that they promote
as fact may not be valid outside a particular context. Furthermore, much
like the argumentative method, heuristics often may not have the ana-
lytical underpinning that one would like to see in a system architecting

approach.

Since each of these architecting methods have certain weaknesses, it may be possible
to improve upon them to produce a new method of system architecting. However,
before this can be attempted, the features of a system architect’s process need to be
clearly identified. A list of properties associated with the system architecting process
is provided below along with their definitions and a citation. (It should be noted that
numerous citations are available, but only one is given per property for reasons of

clarity).

A system architect needs to able to abstract! his/her problem. A good
system architecting process should give direction on how to manipulate

a problem in a functional space. This movement may be accomplished,

1«Architecting generally begins with generating an abstract or paper description - a model - of
the system and its environment.” pg. 4 of Rechtin's text.
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for example, through the use of specifications, projections or statements

about assumptions.

System architecting processes should alse be capable of reducing? a prob-
lem to a manageable size. A system architect’s role is to deal with com-
plexity. In that role, a method is needed to reduce the number of variables

and partition/aggregate the problem.

Synthesis® is also a property needed in a system architecting method. It
requires that a combination of variables be brought together into some
harmony. A synthetic process may also permit the prioritization of prob-

lem variables.

An intuitive, creative!, aspect is also a valued property of a system archi-
tecting process. This option-seeking character of a good system architect
may be one of his/her most powerful capabilities and is often mentioned

as the “genius” quality of renowned architects.

The most visible role of the system architect is his/her interaction® with
the development community. A good architecting process should provide
some guidelines on how one should interact with all the technical and

non-technical interfaces that exist throughout a program’s lifetime.

An often overlooked characteristic of the architect is the way one maintains®
or “keeps the faith” during a project. Any system architecture method
should be able to direct the activities of a system architect in the pro-
cess of sustaining the integrity of a project’s structure through its full

completion.

2“The architect’s problem is to reduce this complexity to a manageable degree...” pg. 13 of

Rechtin’s text.

3“More recently, architects began to appreciate that still better architectures might be based on
complete submission of the individual parts to the purpose or function of the whole.” pg. 12 of

Rechtin’s text.

4“Without question, the architect’s greatest impact comes during concept formulation and pre-

liminary design. It is a time of great creativity.” pg. 14 of Rechtin’s text.
5“Architecting is working for a client and with a builder...” pg. 13 of Rechtin’s text.

6“Toward the end of the project, architecting is also certifying completion and satisfactory oper-

aiion of the system.” pg. 13 of Rechtin’s text.
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Property/Method |[N|R{A|H!R+A |R+H|[N+H | A+H
abstract -+ 1418 + + - T
reduce +|S|-1|+ - + + S
synthesize + |+ -]+ S + + S
create -S| +48S + S - +
interact S{S|+|+ + + n T
maintain SI+!S |+ S + + ¥

Table 1.1: Pugh Analysis of Architecting Methods

These properties have been identified so that innovations associated with the basic

four system architecting methods could be evaluated using Pugh’s method.

A table illustrating the results of analysis is found in Table 1.1. The notation in
the table is as follows: N = normative (pronouncement), R = rational (procedural),
A = argumentative, and H = heuristic. The titles of columns the pluses indicate a
combination of approaches. For example, R+H represents a technique that combines
both rational and heuristic approaches. In the evaluation of each system architecting
process, a “+” sign was used to indicate that this process added value in this category,
“S” represents that the process was neutral or the “same” on this factor, and a “-”
sign indicates that the process actually hindered the best performance in that factor.
For this analysis, most of the combinations including the normative method were
explicitly omitted due to the lack of representative system architectures that copy
well for space systems. The real power of the normative method is when it is used for
an evolutionary development. In this case, it inherently contains a procedural aspect
(since a similar system has been developed before) and also contains the other features
of reduction, abstraction, interfacing and maintenance. Its true shortfall is that it does
not provide any option-seeking guidance nor does it effectively result in a synthetic
realization of the system architecting process. While all of these attributes are clearly
valuable, the evolutionary approach, again, requires a very similar predecessor project

which, in the general case, is not readily available.
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In returning to the Pugh analysis, it can be seen that the combination of the
rational approach and the heuristic methods results in the best system architecting
technique. Higher order combinatiors of methods do not produce better approaches.
This latter conclusion is beneficial since it is not exactly clear how and when these
combinations would be implemented. It is not very surprising, based on experience,
that no single method is the clear winner. This outcome may be the result of a
couple of factors. Rational methods, by definition, do not have contextual informa-
tion embedded in them. This deficiency strips away the years of experience and the
strides of some of the experts of the field from contributing to a system architecture.
Furthermore, the ability to provide much direction on the interaction of the system
architect with his/her specific environment also appears to be a significant shortcom-
ing of the rational method. It is felt that rational methods may be most valuable
when a problem is well understood and does not require a major new examination.
Heuristics, on the other hand, are almost orthogonal in their capabilities. Heuristics
provide the architect with the collected wisdom of the industry and offer descriptive
and prescriptive commentary on a given architecture. In a combination, the rational
methods make up in quantitative and evaluative abilities for the deficiencies in those

areas experienced in the more qualitative ideas of the heuristics method.

In summary, each of the architecting processes have their merits and weakness.
However, for large, government-sponsored space systems, some methods stand out.
Normative methods are not applicable to comparative system architectures because,
too often in large space systems, the environment and the technology move faster
than the standards. Participative methods are also not applicable because the stake-
holders are inaccessible (e.g., Congress, taxpayers) and are not knowledgeable in the
technical areas. Heuristics are applicable, but are generally, due to their largely de-
scriptive nature, more valuable in the development of the architecture rather than
making an equitable comparison. The remaining technique, the rational approach, is
valuable and applicable in comparative system architecture for one essential reason:
the ability to make unambiguous, fair comparisons on a set of agreed-to factors in a

rapid and iterative fashion. A combined method of an established rational method
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and industry-specific prescriptive heuristics could prove to be an important tool for

system architecture studies.

1.2 Previous Work in Rational Methods

The problem of a comparative system architecture analysis, when examined from
within a rational context, is essentially the evaluation of a multivariate objective
function. Previous work in this area has mostly focused on attempts to automate
the basic design process, and has paid less attention to the higher order problems of
system architecture. Yet, the progress that has been made in system design can be

applied to comparative system architecture studies.

The simplest method for evaluating a multivariate design problem is to simply
enumerate all the possibilities and evaluate each one. In this scenario, which is
similar to a grid search in optimization theory, a set of combinations of attributes is
defined which span the trade space. Zwicky’s morphological problem solving method
is a good example of this technique [Zwicky 1948]. A derivative of Zwicky’s basic
approach is found in Pugh’s method (Pugh 1991] that develops a series of variants
by combining the most attractive design combinations found through a simple rating
system. Quality Functional Deployment (QFD) can be seen in the same light as tlese
other two scoring methods [Portanova 1990, Hauser 1988, Hill 1991). QFD develops
a relationship matrix and correlation matrix that relates, typically, customer needs
to technical requirements. A ranking of customer needs and some benchmarking
against known similar products permits the evaluation of various designs which satisfy
technical requirements in dissimilar ways. Additional features and applications of
QFD permit its use in process design, quality control and even in the definition of

Statements of Work for contractor execution of government-sponsored efforts.

A step above the brute force methods of exploring the entirety of the trade space
is a more systematic use of discrete function evaluation using a select set of points.

The Taguchi method of Design of Experiments utilizes orthogonal arrays to discover
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the effect of a particular variable on the overall design when all the other variables are
changed [Taguchi 1984, Taguchi 1987, Brown 1992]. Through the careful application
of the Taguchi method, one can examine the effects of all the variables in the problem
while minimizing the number of analyses. Discrete optimization algorithms also selec-
tively move through a multi-dimensional space through the use of search directions.
The simplex method [Ellis 1962] is the most common of these methods. It develops
its search directions through the evaluation of a set of N+1 vertices (where N is the
number of variables in the problem), calculates the centroid of the figure formed by
joining those vertices and then evaluates points that lie on a line orthogonal to the
centroidal plane. The simplex method’s next search continues by evaluating a new
set of vertices about that new, more optimal point. The simplex method, like other
discrete optimization algorithms, can often be fooled by the location of local minima

or by the lack of clear search directions in very flat multi-dimensional surfaces.

While the above methods have dealt largely in the realm of engineering variables,
two other methods, Multiattribute Utility Theory (MAUT) and Analytic Hierarchy
Process (AHP), function largely on the perception and evaluations made by either
the customer or a set of experts that evaluate the design choices that are presented
during each step of the analysis. MAUT [Shtub 1994, Dyer 1976, Feinberg 1985,
Keeney 1976] bases its analysis on the assessment of an individual or set of individuals
evaluations (“utility”) of a situation with a fixed set of attributes. After a utility
function has been determined, then a probability tree is constructed to examine all
the possible outcomes that are available to the decision maker. By searching the
tree for the path of maximum utility, one can find the best design solution. AHP
[Shtub 1994, Bard 1986, Belton 1984, Saaty 1986] also begins with a hierarchy of
objectives similar to the decision tree seen in MAUT. Yet, in AHP, priority weights
and pairwise comparisons of objectives using a 9-point scale of relative importance
are made at one level of the hierarchy and are then flowed up to the next level. This
process continues until a clear design alternative is produced at, the highest level of
the hierarchy. Obviously, each of these methods is only as good as the utility function

that is derived, the priority weights established and the pairwise comparisons that
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are solicited.

Suh’s Axiomatic Design [Suh 1990] stands apart from the other rational (or “pro-
cedural”) methods of design. It begins simply with two axioms (i.e., the independence
of functional requirements must be maintained and the information content must be
minimized) and proceeds to develop a set of theorems that cover the design process
from its inception in a set of customer needs to product delivery through the proper
selection of process variables. Axiomatic Design not only provides a method by which
designs can be evaluated, but also prescribes (through its axioms and theorems) di-
rections for possible design solutions. Furthermore, through its use of functional
requirements and design parameters, it has proven to be sufficiently general as to be
able to design organizations and human systems as well as the more tangible and
analytic engineering problems. Recent work [Suh 1995] has seen this method applied

to large and complex systems with some success.

1.3 Organization of the Thesis

Immanuel Kant, the great 18th century philosopher, theorized that the mind is not
designed to give us uninterpreted knowledge of the world, but always examines the
world through a certain perspective or bias. In the system architecting process, this
view of thinking is useful in that it highlights the pattern recognition aspects of
architecting (i.e., structuring). In Rechtin’s view, heuristics are the collected wisdom
of experts who have recognized patterns for success or failure in the architecting
process. However, the above analysis of an architect’s abilities demonstrates the
dangers of a given perspective producing a certain tunnel vision. Hence, there is a
need for structured approaches to apply these collected pieces of wisdom. Axiomatic
Design (AD) is structured application of heuristics. In its most basic form, AD applies
two heuristics in the form of its axioms. (It should be noted that Suh’s axioms can
be found in several of Rechtin’s heuristics, and, in this sense, show the intersection of

the two approaches). When applied to non-technical functions, a wider application
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of heuristics can also be brought to bear.

This thesis will extend the application of the principles of Suh’s Axiomatic De-
sign to the specific problem of comparative system architecture analysis for large,
government-sponsored space systems. These types of engineering programs have some
special characteristics that can and should be addressed. Specifically, this thesis will

cover.

Chapter 2 - Axiomatic Design and Its Fuzzy Set Extension

Axiomatic Design is a deceptively simple design tool that uses a structuring step and
a measurement of uncertainty to evaluate a proposed design. In the case of system ar-
chitecture, the linguistic uncertainty in defining system structure and the uncertainty
in design parameters require a possibilistic approach to the definition of architectural
variables. Fuzzy set theory is introduced to provide a rigorous mathematical basis
for the inclusion of these types of variables and to handle uncertainty types that are

more general than is currently encompassed in the Axiomatic Design framework.

Chapter 3 - Factors in Space System Architectures

This chapter develops conjectures that large, government-sponsored space systems
have architectures that are determined solely by their political, managerial and tech-
nical factors. To understand these factors from within the technique developed in
Chapter 2, a set of guidelines are developed for architectural comparisons in the
areas of government funding cycle effects, government/contractor interactions, man-
agement structure best practices and technology selection (the latter being a natural

outcome of Axiom 2).

Chapter 4 - Architectures for Human Exploration of Mars

This generic framework is applied to a specific problem facing the Exploration Office
at NASA’s Johnson Space Center. This architectural problem is whether a lunar
mission is necessary to support human exploration of Mars or whether the best ar-
chitecture focuses all of its resources on a mission exclusively designed for Mars. This

problem can be traced back to the von Braun designs of the late 1960s, through the
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Space Exploration Initiative, and to the current discussions concerning the Draft Ref-
erence Mission iterations. With the supporting information from Chapters 2 and 3,
several conclusions can be offered concerning the relative merits of these very different

architectures.
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Chapter 2

Axiomatic Design and a Fuzzy Set

Extension

The architecting process, as previously mentioned, is a form of design that involves
a number of technical and non-technical parameters. Axiomatic Design is capable of
handling both of these types of parameters. However, in its current form, some types
of design decisions are not adequately addressed by the AD process. An extension of

this process can be achieved through the application of fuzzy set theory.

This chapter will review the basics of axiomatic design and its applicability to
system architecture, thoroughly discuss the fuzzy set extension of axiomatic design

and examine this extension in terms of the system architecture problem.

2.1 Axiomatic Design

Design techniques are centered around methods of how the implementation of a design
concept satisfies the prescribed requirements for the design. Suh [Suh 1990] describes
this process as allocating the “how we want to achieve something” to the “what we
want to achieve.” In order to evaluate designs, Suh introduces axioms that provide

the designer with design direction and a measure of preferences between competiting
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Attributes

{CA}

Figure 2-1: Axiomatic Design Domains

designs. Essentially, the Axiomatic Design (AD) process is a two-step process that
corresponds to the two axioms. The first axiom details the “proper” relationship in
domain mappings. The second axiom describes the characteristic of a design that
makes it preferred to other design solutions. These axioms and their implementation

are described in detail in the discussion below.

2.1.1 Basic Description of Axiomatic Design

In very specific terms, the AD process specifies four domains: the customer domain,
the functional domain, the physical domain and the process domain. Each one of
the adjacent domains represent a “what/how” pair. For example, a hierarchy of
functional requirements (“what”), under decomposition, has a correspondence to a
set of design parameters (“how”) that describe the design. This mapping between

domains is illustrated in Figure 2-1.

It should be noted that the mapping is conducted between hierarchical trees.
These trees are successively formed through a “zig-zagging” process by which the
designer moves from function to form and back again. This movement, between
so-called “characteristic vectors” represented by the letters CA, FR, DP and PV,
reflect the tension between form and function that is universally found in all design
methods. The general nature of these domains can be seen by the entries in Table

2.1 [Suh 1997]. Furthermore, the domains are described below:

Customer Domain: The customer domain contains the description of the customer
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Domain Customer Functional Physical Process PVs
/ Character | CAs FRs DPs
Vectors
Materials Desired Required Micro- Processes
performance properties structure
Software Attributes of | Output spec. | Input Subroutines,
the software of the program | variables, algo- | machine code,
codes rithms, mod- | compilers,
ules or code modules
Organization | Customer Functions of | Prograins or | People  and
satisfaction the : offices other resources
organization that can sup-
port the
programs
Systems Attributes Functional re- | Machines, Resources (hu-
desired of the | quirements of | components or | man, financial,
overall system | the system sub- materials,
components etc.)

Table 2.1: Contents of Domains for Various Applications

needs and the environment that surrounds the design process. Conjoint analyses, mar-
ket surveys, discussions with the stakeholders, and popular accounts of technology
visionaries may all be sources for this type of information. Additional information
from government regulations, social trend analyses and reviews of competing prod-
ucts are also needed to fully understand the environment in which the customer are
deriving their needs. These attributes, however, must be hierarchically arranged and

suitable for mapping to their functional counterparts.

Functional Domain: In order to fully capture customer attributes in a design, they
must be converted into functional requirements that can be imposed upon a design
(FRs). These functional requirements need to contain specific metrics that describe
the performance objectives of the design. Furthermore, by definition, a function must
contain an action verb which indicates the required form of operation. Unlike the CA
domain, FRs don’t reside solely in the functional domain. No design is free of con-

straints (C), and the FRs and the design constraints are tightly bound together.
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Constraints describe the boundaries for the domain of acceptable solutions. “Input”
constraints are created as part of the design specifications. “System” constraints are
those boundaries that are imposed by the system in which the design must function.
An example of an input constraint might be the total weight of the design. Like-
wise, an example of a system constraint might be a volume constraint on a part that
is required for the operation of a larger machine. The distinction between a func-
tional requirement and a constraint is subtle, but an important part of the functional

domain.

Functional requirements also have three very important characteristics. First, they
are the minimum set of requirements that are needed to satisfy the objectives of the
design process. Excess requirements will result in unnecessary redundancy or overly
complicated designs that waste resources. Secondly, the functional requirements must
be independent. This condition is actually definitional, but should be explicitly stated
so that the designer can be rigorous in the pursuit of accurate and sufficient functional
requirements. Finally, functional requirements must be defined in a solution neutral
environment. This last characteristic is often the hardest one for a designer to produce
due to his/her background in the design field. However, if a solution neutral set of
functional requirements are created, the designer’s creativity will not be hampered

by known and common design solutions.

Physical Domain: The AD process continues by developing the most common

mapping: the correspondence between functions and physical realizations of those

functions. In this instance, the “design equation” is stated in the form:

{FR} = [A]{DF} (2.1)

where,

A;j = O(FR;)[0(DF;)

This equation provides a mathematical insight into the coupling that may or may

not exist in the design. By coupling, it is meant that one functional requirement is
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satisfied in the design by more than one design, or mathematically,
Ai; #0 for ¢ # j and not triangular.

Suh also introduces the term “decoupled” to describe the condition where the design

matrix, A, can be made lower triangular.

A simple example of a functional requirement/design parameter pair might be:

F R, =Deliver liquid at a flow rate of ¢) = 5 ml/s,

DP, = The pump speed on the fluid pump W.

By going through all the functional requirements and relating design parameters to
them according to some conceptual or detailed design, one can apply the subsequently

described axioms of AD to find a better design or evaluate competiting designs.

Process Domain: The final domain, the process domain, describes the manufac-
turing or production methods needed to develop the design. Clearly, one can not
produce a design without considering its ramifications on production methods. The

framework in the process domain is similar to the design equation:

{DP} = [B]{PV} (2.2)

where,

Bi; = 9(DP)/[3(PV;)

Again, the concepts of uncoupled (i.e., a diagonal matrix), decoupled and coupled

designs becomes important when evaluating the design of a manufacturing process.

An example of a design parameter/process variable pair might be:

D P, =Density of plastic cylinder, p,

PV| = Pressure applied during formation P.

It should be noted that the design matrix A and the process matrix B can be multi-
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plied to produce a relationship between the functional requirements and the process
variables. While each equation can and should be developed separately, it is valuable
to note this relationship since the structure of the resultant matrix, C, as a coupled,

decoupled or uncoupled matrix has important implications.

With the definitions of design domains complete, the explicit definition of the

design axioms can now be stated.

Axiom 1 - The Independence Ariom
“Maintain the independence of FRs.
Axiom 2 - The Information Aziom

“Minimize the information content of the design.”

Axioms, by definition, are fundamental truths upon whirh logical constructs can be
formed. Axioms are also without counterexamples or exceptions. So, Suh’s axioms
require no derivation or proof. However, they do require some explanation and dis-

cussion.

The first axiom’s implications have been alluded to in the discussion of the design
and process equations. The independence of the F Rs is achieved when an uncoupled
design matrix can be found. It is also achieved when a decoupled design is found due
to the fact that one can set one functional requirement for one design parameter and
then work through the rest of the functional requirements by individually establishing
their settings as well. A common misconception about this functional independence
is that physical integration is forbidden by this axiom. This is not the case. If both
functional requirements can be met by individual and distinct physical parameters,
then a physically integrated design might be a preferred design when examined under

the information axiom, a set of constraints or the process equation.

In short, in order for a design to be considered “good” under the Independence
Axiom, the design must be decoupled or uncoupled. Coupled designs are not appro-

priate designs in the AD framework.

Once the implications of the Independence Axiom are understood, the question
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Figure 2-2: Graphical Depiction of Information Content

immediately arises as to how decoupled and uncoupled designs can be selected. The
Information Axiom is the answer to this question. The “minimization” of the “in-
formation content” is an abstract definition, but a powerful one. Suh goes on to
explain this concept in terms of design tolerances, system ranges and the probability

of achieving the F'R. The mathematical descriptions are generally the most clear:

Information = I = log,(1/p) 2.3)

where p is the probability of achieving the functional requirement. Alternatively, p
can be defined as

p = tolerance/range

or,

p = common fraction/system output distribution

where the “common fraction” and “system output distribution™ can be seen in Figure

2-2.

The common fraction represents the likelihood of achieving the desired output
using the proposed system. A larger common fraction would increase the probability

of success of meeting each individual FR. From this definition, some intuitively
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obvious methods of choosing a better design become clear. A better design can be
found by either choosinug a system which increases the overlap with our design range

or expand the design range (i.e., specify a larger tolerance).

The Information Axiom applies to the entire design. In other words, the informa-

tion content of the entire design must be lower than any competiting design.

Itotal = z:‘:llogg(l/p) (24)

The information content of the design should not be confused with the complexity
of the design, but rather the probability of the design achieving its performance
objectives. Designs with higher probabilities of success will have lower information

contents.

2.1.2 Usage of Axiomatic Design for Systems

For AD to be useful in constructing system architectures, one must understand, in a
very specific sense, what a system is. AD, up to this point, has been discussed solely
in terms of its application to the design of discrete, “small” items. Unfortunately, the

space industry does not deploy “small” items. It deploys “systems.”

A system is a collection of a number of parts that interact to perform a

function or functions.

Systems also come in several different types. An open system is one in which the
environment is sufficiently fluid to cause regular changes in the constituents of the
system. A flexible system is a system that must respond to changing functional
requirements. A large system, according to Suh, is one that has a large number of
functional requirements at the highest level of its hierarchy. It should be noted that
large systems are not necessarily physically large or complex in terms of the number
of parts it contains. Large, in this definition, simply means that it must do a great

many different functions. Examples of these systems are found in Table 2.2. For
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Types of Systems Examples
Open The Internet, high employee-turnover companies,
personal computer industry
Closed Project teams, disposable cameras, calculators
Fixed Power converters, beverage cans, review teams
 Flexible Phone switching systems, public education sys-
tems, hospitals
Small Microwave ovens, photocopiers, maid services
Large The Space Shuttle system, the Dept. of Defense

Table 2.2: Examples of System Types

this discussion, the space systems of interest are large, flexible, closed systems. The
class of flexible systems that are most commonly found in aerospace systems are those
that have mission modes. These systems are represented, in AD context, by the set

of equations (for example):

t=0, {FRs}, = {FR1, FR3, FR5, FRT}
t=t, {FRs}, = {FR2, FRA, FR5, F R} (2.5)
t =t {FRs}, = {FR3, FRT, F RS, I'R9}

As in the design of small systems, a set of DPs must be found for each set of F'Rs and
their subsequent hierarchies. For a flexible system, however, DPs need to be found
for each of the FRs found in each mission mode. The same AD process applies here
and Axiom 1 must be satisfied through the judicious selection of DPs. A knowledge
base of DPs is always implied in the design process and certain design options are
available to the designer via experience, research, analogy or sheer creativity. This

knowledge base or database can be notated as:

FR1 $ (DPla,DP1b,...,DPlm)
FR2 § (DP2a,DP2b,...,DP2n) (2.6)
$
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FRn § (DPna,DPnb,...,DP2p)

where the § denotes the satisfaction of an FR by a DP.

What are the implications of the selection of DPs on the flexibility and physical
integration of the system? A system that is very flexible contains a sufficient variety of
DPs that allow it to respond to a large set of different mission modes. Object-oriented
programming (OOP) has this concept of flexibility at its center. OOP develops a set
of DPs (objects) that can be used whenever a new functional requirement enters the
system. Yet, a separate set of DPs for each set of F Rs in each mission mode becomes
prohibitively large and expensive for most systems. In fact, the Information Axiom
demands some “physical integration” of these DPs while retaining the independence
required by the Independence Aziom. By physical integration, it is meant that the
system (whether hardware or software) has multiple functions satisfied in the same
physical location. The software world, again, contains a good example. A subrou-
tine that has many of the same algorithms may satisfy many functions through the
use of different input flags. It is said to be physically integrated and functionally

independent since or.e “chunk” of the design satisfies many functions.

A series of design matrices does not provide the designer the type of visual insight
that is often the most valuable. Visualization of data in data rich environments is
a common tool of system architecture (e.g design structure matrices, N? diagrams,
etc.). Axiomatic Design’s version of the visualization of an architecture is the module-
junction diagrams. A module is defined as the row of the design matrix that yields an
F R when the appropriate DPs are selected. A junction is the type of combinations
of DPs required to achieve an FR. As previously discussed, there are 3 types of com-
binations: uncoupled, decoupled and coupled. Figure 2-3 shows the corresponding

graphical representations of these combinations.

To illustrate this flow diagram method, the following design equations are offered.

FR1 X C DP1
FR2 0 X )| DP2
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Figure 2-3: Types of junctions

[ FR11 ] 'x 0 o o][pP11]
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| FR22| |0 X ||DP2

The design equations indicate that the design satisfies the Independence Axiom due
to its seleciion of DPs that only provide decoupled or uncoupled solutions. Figure
2-4 shows how easily it is to see the difference in the decoupled and uncoupled rela-
tionships between modules. This quick visual representation serves many purposes.
The lowest level modules (often called “leaves”) can be readily traced to their impact
on higher level functions. This capability is useful for providing insight into the effect
of engineering change orders on higher level functions (see [Nordlund 1996] and for
understanding the potential location of failures when performing a detailed failure
analysis. The diagrams are also very useful in understanding the interactions within
the architecture and the potential for organizational or technical problems within the
system. Finally, the module-junction diagrams provide the system architect a visual

understanding into the level of decomposition that was needed to represent the sys-
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tem. As specified by Suh, a system does not require further decomposition when the
lowest level F'R requires no further decomposition. In a top-level system architecture,
that lowest level may be a system itself. For example, an interplanetary spacecraft
may end its top-level architecture discussion with a F R of “provide spacecraft com-
munication and tracking at X data rate and for Y periods” by merely specifying the
DP of “the Deep Space Network allocation to this spacecraft” due to its rich and

successful history of supporting interplanetary vehicles.

FR top

Figure 2-4: Example of a Module-Junction Diagram

2.2 Fuzzy Extension of Axiomatic Design

In Antonsson ef. al. [Antonsson 1996], the uncertainty present in performing any
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