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Abstract: The usual way to reveal properties of an unknown quantum state, given many

copies of a system in that state, is to perform measurements of different observables and to

analyze the measurement results statistically. Here we show that the unknown quantum

state can play an active role in its own analysis. In particular, given multiple copies

of a quantum system with density matrix ρ, then it is possible to perform the unitary

transformation e−iρt. As a result, one can create quantum coherence among different copies

of the system to perform quantum principal component analysis, revealing the eigenvectors

corresponding to the large eigenvalues of the unknown state in time exponentially faster

than any existing algorithm.

Quantum tomography is the process of discovering features of an unknown quantum

state ρ [1-2]. Quantum tomography is a widely used tool with important practical applica-

tions in communication systems such as optical channels, precision measurement devices

such as atomic clocks, and quantum computation. The basic assumption of quantum to-

mography is that one is given multiple copies of ρ in a d-dimensional Hilbert space, for

example, states of atoms in an atomic clock or inputs and outputs of a quantum channel.

A variety of measurement techniques allow one to extract desired features of the state.

For example, recent developments have shown quantum compressive sensing can give sig-
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nificant advantages for determining the unknown state or dynamics of a quantum system,

particularly when that state or dynamics can be represented by sparse or low-rank matri-

ces [3-5]. In conventional state tomography techniques, the state plays a passive role: it is

there to be measured. This paper shows that the state can play an active role in its own

measurement. In particular, we show that multiple copies of the state ρ can be used to

implement the unitary operator e−iρt: that is, the state functions as an energy operator

or Hamiltonian, generating transformations on other states. First, we use this density ma-

trix exponentiation to show how to exponentiate non-sparse matrices in time O(log d), an

exponential speed-up over existing algorithms. Next, we show that density matrix expo-

nentiation can provide significant advantages for quantum tomography: the density matrix

plays an active role in revealing its own features. Principal component analysis (PCA) is

a method for analyzing a positive semi-definite Hermitian matrix by decomposing it in

terms of the eigenvectors corresponding to the matrices largest eigenvalues [6-7]. Prin-

cipal component analysis is commonly used to analyze the covariance matrix of sampled

random vectors. We use the fact that any positive semi-definite Hermitian matrix – such

as a density matrix – can be represented in Gram form and thus as a covariance matrix

of a set of vectors. Quantum principal component analysis (qPCA) uses multiple copies

of an unknown density matrix to construct the eigenvectors corresponding to the large

eigenvalues of the state (the principal components) in time O(log d), also an exponential

speed-up over existing algorithms. Finally, we show how quantum principal component

analysis can provide novel methods of state discrimination and cluster assignment.

Suppose that one is presented with n copies of ρ. A simple trick allows one to apply

the unitary transformation e−iρt to any density matrix σ up to nth order in t. Note that

trP e−iS∆tρ⊗ σ eiS∆t = (cos2 ∆t)σ + (sin2 ∆t)ρ− i sin∆t[ρ, σ]

= σ − i∆t[ρ, σ] +O(∆t2).
(1)

Here trP is the partial trace over the first variable and S is the swap operator. S is a

sparse matrix and so e−iS∆t can be performed efficiently [6-9]. Repeated application of (1)

with n copies of ρ allows one to construct e−iρn∆tσ eiρn∆t. Comparison with the Suzuki-

Trotter theory of quantum simulation [8-11] shows that to simulate e−iρt to accuracy ǫ

requires n = O(t2ǫ−1|ρ−σ|2) ≤ O(t2ǫ−1) steps, where t = n∆t and | | is the sup norm. So
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simply performing repeated infinitesimal swap operations on ρ⊗ σ allows us to construct

the unitary operator e−iρt. The quantum matrix inversion techniques of [12] then allow us

to use multiple copies of a density matrix ρ to implement e−ig(ρ) efficiently for any simply

computable function g(x).

As a first application of density matrix exponentiation, we show how to exponentiate

low-rank positive non-sparse d-dimensional Hamiltonians in time O(log d). Existing meth-

ods using the higher order Suzuki-Trotter expansion [8-11] require time O(d log d) to expo-

nentiate non-sparse Hamiltonians. We want to construct e−iXt for non-sparse positive X ,

where the sum of the eigenvalues of X = 1. Write X = A†A, where A has columns ~aj , not

necessarily normalized to 1. In quantum-mechanical form, A =
∑

i |~ai||ai〉〈ei|, where |ei〉 is
an orthonormal basis, and the |ai〉 are normalized to 1. Assume that we have quantum ac-

cess to the columns |ai〉 of A and to their norms |~ai|. That is, we have a quantum computer

or quantum random access memory (qRAM) [13-15] that takes |i〉|0〉|0〉 → |i〉|ai〉||~ai|〉.
Quantum access to vectors and norms allows us to construct the state

∑
i |~ai||ei〉|ai〉 [19]:

the density matrix for the first register is exactly X . Using n = O(t2ǫ−1) copies of X

allows us to implement e−iXt to accuracy ǫ in time O(n log d).

Note that density matrix exponentiation is most effective when some of the eigenvalues

of ρ are large. If all the eigenvalues are of size O(1/d) then we require time t = O(d)

to generate a transformation that rotates the input state σ to an orthogonal state. By

contrast, if the density matrix matrix is dominated by a few large eigenvalues – that

is, when the matrix is well represented by its principal components – then the method

works well (the accuracy will be analyzed below). In this case, there exists a subspace

of dimension R << d such that the projection of ρ onto this subspace is close to ρ:

‖ρ − PρP‖1 ≤ ǫ, where P is the projector onto the subspace. When the matrix is of low

rank, the projection is exact. Current techniques for matrix exponentiation are efficient

when the matrix to be exponentiated is sparse [9-10]. The construction here shows that

non-sparse but low-rank matrices can also be exponentiated efficiently.

Density matrix exponentiation now allows us to apply the quantum phase algorithm to

find the eigenvectors and eigenvalues of an unknown density matrix. If we have n copies of

ρ, use the ability to apply e−iρt to perform the quantum phase algorithm [1]. In particular,
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the quantum phase algorithm uses conditional applications of e−iρt for varying times t to

take any initial state |ψ〉|0〉 to
∑

i ψi|χi〉|r̃i〉, where |χi〉 are the eigenvectors of ρ and

r̃i are estimates of the corresponding eigenvalues. Using the improved phase-estimation

techniques of [12] yields the eigenvectors and eigenvalues to accuracy ǫ by applying the

quantum phase algorithm for time t = O(ǫ−1), and so requires n = O(1/ǫ3) copies of the

state ρ. Using ρ itself as the initial state, the quantum phase algorithm yields the state

∑

i

ri|χi〉〈χi| ⊗ |r̃i〉〈r̃i|. (2)

Sampling from this state allows us to reveal features of the eigenvectors and eigenvalues

of ρ.

As above, quantum self-tomography is particularly useful when ρ can be decomposed

accurately into its principal components. For example, if the rank R of ρ is small, only R

eigenvectors and eigenvalues are represented in the eigenvector/eigenvalue decomposition

(2), and the average size of ri is 1/R. Using mn copies of ρ we obtain m copies of the

decomposition (2), where the i’th eigenvector/eigenvalue appears rim times. The features

of the i’th eigenstate can then be determined by measuring the expectation value 〈χi|M |χi〉
of the eigenvector with eigenvalue ri for arbitrary HermitianM . Note that we are no longer

restricted to evaluating only expectation values of sparse matrices. As long as the trace

of ρ is dominated by a few large eigenvalues, then quantum self-tomography can be used

to perform principal component analysis on the unknown density matrix ρ. For example,

suppose that the density matrix corresponds to the covariance matrix of a set of data

vectors |ai〉 that can be generated in quantum parallel using the oracle above. Quantum

principal component analysis then allows us to find and to work with the directions in the

data space that have the largest variance.

State self-tomography can be extended to quantum process self-tomography by using

the Choi-Jamiolkowski state (1/d)
∑

ij |i〉〈j| ⊗ S(|i〉〈j|) for a completely positive map S
[16]. For quantum channel tomography, for example, the Choi-Jamiolkowski state is ob-

tained by sending half of a fully entangled quantum state down the channel. Quantum

principal component analysis then be used to construct the eigenvectors corresponding

to the dominant eigenvalues of this state: the resulting spectral decomposition in turn

4



encapsulates many of the most important properties of the channel [17].

Comparing quantum self-tomography to quantum compressive sensing [3-5], we see

that self-tomography holds several advantages in terms of scaling. Self-tomography is not

confined to sparse matrices; most importantly, self-tomography reveals eigenvectors and

eigenvalues in time O(R log d) compared with O(Rd logd) for compressive tomography [3].

Of course, quantum self-tomography cannot reveal all the d2 entries of ρ in time R log d:

but it can present the eigenvectors of ρ in quantum form so that their properties can be

tested.

Quantum self-tomography shows that the density matrix exponentiation presented

here is time-optimal. One might think, in analogy to the use of higher order terms in

the Suzuki-Trotter expansion for exponentiation of sparse matrices [8-11], that could be

possible to reduce the number of copies required to perform density matrix exponentiation

to accuracy ǫ over time t to O(t/ǫ). If one could do this, however, the self-tomography

algorithm just given would allow us to find the eigenvalues of an unknown density matrix

to accuracy ǫ = O(1/n) using n copies of the matrix. Even if the eigenbasis of the

density matrix is known, however, sampling n copies of the density matrix only allows

one to determine the eigenvalues of the matrix to accuracy O(1/
√
n) [17]. Quantum self-

tomography can be compared to group representation based methods for estimating the

spectrum of a density matrix [18] (with the difference that quantum self-tomography also

reveals the eigenvectors).

Quantum principal component analysis can also be useful in state discrimination and

assignment. For example, suppose that we can sample from two sets of m states, the

first set {|φi〉} characterized by a density matrix ρ = (1/m)
∑

i |φi〉〈φi|, and the second

set {|ψi〉} characterized by a density matrix σ = (1/m)
∑

i |ψi〉〈ψi|. Now we are given

a new state |χ〉. Our job is to assign the state to one set or the other. Density matrix

exponentiation and quantum phase estimation then allow us to decompose |χ〉 in terms of

the eigenvectors and eigenvalues of the ρ− σ:

|χ〉|0〉 →
∑

j

χj |ξj〉|xj〉, (3)

where |ξj〉 are the eigenvectors of ρ−σ and xj are the corresponding eigenvalues. Measure
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the eigenvalue register, and assign |χ〉 to the first set if the eigenvalue is positive and to

the second set if it is negative. If |χ〉 is selected from one of the two sets, this procedure is

simply minimum error state discrimination [1], but with a bonus. The magnitude of the

measured eigenvalue is a measure of the confidence of the set assignment measurement:

larger magnitude eigenvalues correspond to higher confidence in the assignment, and mag-

nitude 1 correponds to certainty – in this case |ξ〉 is orthogonal to all the members of one

of the sets. If |χ〉 is some other vector, then the method provides a method for supervised

learning and cluster assignment [6-7, 19]: the two sets are training sets and the vector is

assigned to the set of vectors to which it is more similar.

Discussion: Density matrix exponentiation represents a powerful tool for analyzing the

properties of unknown density matrices. The ability to use n copies of ρ to apply the

unitary operator e−iρt allows us to exponentiate non-sparse d-dimensional matrices to

accuracy ǫ = O(1/
√
n) in time O(log d), and to perform quantum self-tomography to

construct the eigenvectors and eigenvalues of ρ in time O(R log d). In such quantum self

analysis, the density matrix becomes an active participant in the task of revealing its

hidden features.

Like quantum matrix inversion [12], quantum principal component analysis maps a

classical procedure that takes time polynomial in the dimension of a system to a quantum

procedure that takes time polynomial in the logarithm of the dimension. This exponential

compression means that quantum principal component analysis can only reveal a fraction of

the full information required to describe the system. That particular fraction of information

can be very useful, however, as the ability of density matrix inversion to reconstruct its

principal components shows.

We anticipate that quantum principal componetn can play a key role in a variety of

quantum algorithms and measurement applications. As the example of quantum cluster

assignment shows, quantum self analysis could be useful for speeding up to machine learn-

ing problems such as clustering and pattern recognition [6-7, 19]. The ability to identify the

largest eigenvalues of a matrix together with the corresponding eigenvectors is potentially

useful for the representation and analysis of large amounts of high-dimensional data.
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