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Abstract

In this thesis, we develop practical solution methods for a supply chain optimization
problem: a multi-echelon, uncapacitated, time-expanded network of distribution cen-
ters and stores, for which we seek the shipping schedule that minimizes total inventory,
backlogging, and shipping costs, assuming deterministic, time-varying demand over a
fixed time horizon for a single product. Because of fixed ordering and shipping costs,
this concave cost network flow problem is in a class of NP-hard network design prob-
lems. We develop mathematical programming formulations, heuristic algorithms, and
enhanced algorithms using approximate dynamic programming (ADP). We achieve a
strong mixed integer programming (MIP) formulation, and fast, reliable algorithms,
which can be extended to problems with multiple products.

Beginning with a lot-size based formulation, we strengthen the formulation in
steps to develop one which is a variation of a node-arc formulation for the network
design problem. In addition, we present a path-flow formulation for the single product
case and an enhanced network design formulation for the multiple product case.

The basic algorithm we develop uses a dynamic lot-size model with backlogging
together with a greedy procedure that emulates inventory pull systems. Four re-
lated algorithms perform local searches of the basic algorithm’s solution or explore
alternative solutions using pricing schemes, including a Lagrangian-based heuristic.

We show how approximate dynamic programming can be used to solve this sup-
ply chain optimization problem as a dynamic control problem using any of the five
algorithms. In addition to improving all the algorithms, the ADP enhancement turns
the simplest algorithm into one comparable to the more complex ones.

Our computational results illustrate that our enhanced network design formula-
tion almost always produces integral solutions and can be used to solve problems of
moderate size (3 distribution centers, 30 stores, 30 periods). Our heuristic methods,
particularly those enhanced by ADP methods, produce near optimal solutions for
truly large scale problems.
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Chapter 1

Introduction

As businesses worldwide face intense competition in an age of instant communication,
there has been increasing emphasis on reducing costs in their supply chains. The costs
involved are huge. In the United States alone, inventories cost over $1 trillion per
year; logistics account for 30% of the cost of goods sold; and the third-party logistics
outsourcing business has grown to $50 billion per year. This has recently generated
a considerable effort in research activity in operations research and related fields,
combining new methodologies with the established theories of inventory, distribution,
and preduction planning.

This thesis focuses on a common type of supply chain optimization problem en-
countered in managing a distribution network, providing a theoretical context, prac-
tical algorithms, computational examples, and a discussion of implementation issues.
Although there are many interesting theoretical aspecis to this computationally com-
plex problem, the emphasis throughout will be on near optimal, efficient algorithms
that are practical to implement.

‘The remainder of this chapter gives a general introduction to the type of supply
chain optimization problem we are interested in along with a review of the relevant

literature.



1.1 Supply Chain Optimization

This section describes supply chain optimization in general and introduces the specific

problem we are interested in.

The General Problem

The total supply chain for an enterprise consists of all aspects of the supply, produc-
tion, and distribution of products from raw material acquisition to manufacturing to
the delivery of finished goods to the retail customers.

The objective in supply chain optimization is to minimize the total supply chain
costs while meeting customer demand within a target level of customer service.

The major cost areas affected by supply chain decisions are:
1. Inventory Holding Costs.
2. Inventory Shortage Costs (backorders, lost sales).

3. Transportation Costs (shipping or freight).

Supply chain optimization models are concerned with two major decision cate-
gories: design and contro!.

Design decisions involve the structure of the supply chain:

1. Whether to have a distribution center (DC).
2. Facility location of a DC or warehouse.
3. Choice of transportation modes.

4. Sourcing of suppliers.

Control decisions attempt to develop an optimal policy for moving goods over

time through a supply chain network:

1. Inventory policy: when to order and how much to order.
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2. What transportation mode to use.
3. Vehicle routing.

4. Inventory routing.

The trends of the last decade have been to reduce costs in portions of the sup-
ply chain by pushing inventory management back on the suppliers, employing lean
manufacturing and just-in-time (JIT) inventory practices, and contracting out to
third-party logistics providers while seeking to maintain high levels of customer ser-
vice. These simultaneous goals are often in conflict. Achieving minimal inventory
may require more frequent shipments. Reducing freight or improving demand fill
rates may increase inventory levels.

Many businesses, large retailers in particular, have converted from the traditional
“Push” system (building to inventory to meet forecasted demand) to a “Pull” system,
where sales generate replenishment orders. In this new method, customer demand
at the retail end pulls products through the supply chain all the way back from the
supply source.

Technology has played a major role in the development of inventory pull sys-
tems and other just-in-time techniques. Corporate information systems are now able
to generate replenishment orders at any point in the supply chain instantly, using
real-time inventory and shipping information plus purchasing information which is
constantly updated by customer transactions. We will use the idea of a Pull system
to construct an algorithm in Chapter 3.

Although attempts are often made to optimize portions of the supply chain, pos-
sibly in conflict with global optimization goals, it would probably be infeasible to
attempt a global solution for any large-scale enterprise. A more realistic approach
would be to find the right sub-division of the problem, perhaps into areas of supply,
production, and distribution.

In this study we will focus on a distribution problem: the shipments and posi-

tioning of inventory in a multi-echelon (or multi-level) distribution network over time
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that will meet demand while minimizing the total distribution costs that are affected

by those decisions.

The Specific Problem

Suppose we have a multi-echelon distribution network where goods move from fac-
tories to distribution centers or warehouses and from there to stores. If we had a
perfect forecast of demand over a finite time horizon, we would like to find the op-
timal movement of products through the network that would minimize total system
costs. When would we ship, and when would we carry inventory?

For our problem, we will assume deterministic, time-varying demand. There are
some limitations and benefits to modeling demand this way. A stochastic demand
model would be more realistic. However, these models often assume stationarity,
which is not applicable because many products have a relatively short life cycle,
follow irregular seasonal demand patterns, or are influenced by promotions.

The benefit of the deterministic, time-varying approach is in budgeting and plan-
ning. If we can solve this type of problem quickly, then we could simulate various
scenarios and analyze the results. We could also analyze a company’s supply chain
cost performance by finding what the optimal or near-optimal solution would be given
the historical demand.

The distribution network will have a general, layered structure with the iayers
being factories, distribution centers, warehouses, and stores. At times, we will restrict
it to have two echelons or levels, where the first echelon is from DC’s to stores, and
the second echelon is from the factory to the DC’s. We will also at times restrict the
network structure to be arborescent - a node can have at most one source - which is
realistic for many but not all distribution problems. The arborescent networks will
allow us to separate larger problems into sub-problems.

Our models will seek to minimize total system costs, which are composed of inven-
tory holding costs, backorder penalty costs, and the costs of shipping. The holding
and penalty costs can be modeled as linear functions of excess inventory or shortages.

If shipping costs were linear, the optimization problem would be easy to solve. Un-
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Figure 1-1: Skipping Cost Functions

Fixed-plus-Variable Piecewise Linear

Cost Cost

Shipment Quantity Shipment Quantity

fortunately, they are not, which results in the most important complication we have
with this problem.

Shipping costs are concave because there is a fixed cost (for ordering, setup, etc.)
in addition to variable costs. LTL (less-than-truckload) shipping models formulate
the concave shipping costs as a concave, piecewise linear function that is based on
the typical volume discounts offered by freight companies. For our purposes, we will
use a fixed-plus-variable approximation for these costs (see Figure 1-1).

There are several benefits of using a fixed-plus-variable freight cost.

e Since the total variable costs are unaffected by a solution (ultimately, all the
demand has to be shipped at some time), we can treat these costs as constant

and ignore them (Zangwill [41]).

e This approach is much simpler than the LTL models with the piecewise linear

costs while still providing a good approximation of the shipping costs.

e A fixed cost is useful if the model is applied to factory production (in which

case the fixed cost is the setup cost for production).

e A more subtle benefit is that for a model with daily time increments, having a
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fixed cost component can avoid sclutions where there are shipments every day,
no matter how small. This allows us to use small time increments and forces

the model to determine when to ship.

Following the literature, we will formulate and solve single product models. Mul-
tiple product models provide more complexity than benefit because of the usual high
correlation of demand among products (Lee and Nahmias [20]). Some of the formu-
lations and algorithms we develop may be extended to the multiple product case.

In modeling this distribution problem, we can choose whether to assume unca-
pacitated inventory storage and shipping or to apply limits. The uncapacitated case
is a common assumption in network design and concave cost network flow models.

Another common research practice has been to assume fixed lead times or even to
ignore lead times. Models and algorithms are usually developed with zero lead times
and put into practice by a simple translation of the demand periods. Of course, an
extension of the model to include choices of shipping modes would require explicit
incorporation of lead times.

To summarize, we will try to find the optimal daily or weekly shipment schedule
of a single product over a multi-echelon distribution network, for a fixed time horizon,
assuming unlimited capacity, fixed shipping costs, linear inventory and shortage costs,

zero lead times, and deterministic, time-varying demand.

1.2 Literature Review

The research literature that is relevant to our particular supply chain optimization
problem can be found in the emerging supply chain literature and in the extensive
body of literature in distribution-inventory theory, production planning, network de-
sign, and related theory. The following discussion is organized into these general

categories:
1. Literature that is specific to supply chain management and optimization.

2. Multi-echelon distribution and inventory theory.
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3. Dynamic lot-size models that are used for production planning.
4. Concave cost network flow models.
5. Network design models.

6. Neuro-dynamic programming.

Supply Chain Specific Literature

Insight into the general business problems of supply chain management can be found
in many recent articles and books in the business literature (Poirier and Reiter [27];
Davis [9]; Lee and Billington [18]).

The survey by Thomas and Griffin [34] categorizes the relevant OR literature into
strategic planning models and operational planning models. They separate strategic
planning models into mixed integer program (MIP) and non-MIP model groups, and
they group operational planning models into three major components of the supply

chain:

1. Buyer-vendor coordination.
2. Production-distribution coordination.

3. Inventory-distribution coordination.

An influential paper by Geoffrion and Graves [16] for the models and case studies
that use MIP’s employs Bender's decomposition in a model that includes DC selection
(using binary forcing variables) in a case study for Hunt-Wesson. Other case studies
have used this MIP and decomposition approach because these models tend to have
embedded networks. (Also see the Ault Foods case (28], and the Libbey-Owens-Ford
case (22].)

The best example of using a MIP for a supply chain design problem is a case study
for DEC (Arntzen et al [2]). In this model, the objective function is a combination
of costs and total time (length of supply chain). This model and others like it follow

the Geoffrion and Graves model using indicator variables that are forcing constraints
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for what plants and DCs to open or close. This model also includes bills-of-materials,
tariffs, and duties.

Some interesting non-MIP strategic planning models that use stochastic demand
can be found in Cohen and Lee [8]. This is an integrated production and distribution
system, where the authors decompose the problem into material control, production,
inventory, and distribution. Another example is the Lee and Billington [19] article on
the Hewlett-Packard supply chain, one of many articles on HP in the literature.

Thomas and Griffin [34] conclude that the most popular supply chain models are
MIP’s with underlying network structures that lead to decomposition. They point
out that many models use linear transportation cost functions which are not realistic;
and that the literature is sparse in models at the operational level, which are mostly
stochastic models that have the previously mentioned problems with assumptions
about stationarity.

Aside from the afore-mentisned, there is not much to be found in the operations
research literature that is specific to supply chains. To probe deeper into the issues
and problems of specific aspects of supply chain optimization, we can refer to the vast

literature in inventory and distribution theory, production planning, and logistics.

Multi-echelon Distribution

As discussed in Federgruen [12], the only known exact solution to the problem of
an optimal multi-echelon distribution policy is by Clark and Scarf [7]. This result is
limited to serial networks where the setup costs are zero except for outside orders.
Clark and Scarf provide a method for decomposing a serial distribution network’s
optimal policy problem into single location problems. They prove that local optimal
policies are together globally optimal. This model has these restrictions: the network
must be in series, and the only fixed ordering or shipment costs occur with shipments
to the first facility in the series. An instance where this model is useful is with military
supply depots. The solution decomposition method involves a recursion where the
s-type policy is found for the lowest echelon, the s-type policy for the next higher

echelon is determined, based on the additional penalty costs for inadequate shipments
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to the next lower echelon (given its s-type policy), and so on until the highest echelon
is reached, which can have either an s-type policy or (s, S)-type policy if there is a
fixed ordering cost. (In an s-type policy, if the inventory z at the end of a period is
less than a threshold s, we order the quantity, s — z, to bring inventory up to s. In
an (s, S)-type policy, where s < S, if the ending inventory z is less than s, we order
S —z. (s,S) policies are used when there is a fixed ordering cost, which is justified
only when inventory falls below s.)

For a discussion of s-type policies and (s, S) policies, their use in the context
of general inventory theory under the category of periodic review single location
stochastic demand models, and how they are computed, refer to Lee and Nahmias
[20], Nahmias [23], Bertsekas [4]. Scarf [30] proved the optimality of (s, S) policies.

Clark and Scarf discuss the problem with extending their result to networks that
are not serial. This is because the penalty function for having inadequate inventory
at a supply facility which ships to more than one location cannot be determined if
there is an inventory imbalance at those locations.

Research in the area of multi-echelon distribution policies under uncertainty re-
lated to Clark and Scarf has been extended by Federgruen and Zipkin [13], and others.

For the deterministic distribution problem we are interested in, if we have a series
network, we can use the Clark and Scarf result if we can find the s and (s, S) policies.
For deterministic demand, (s, S) policies can be found using a dynamic lot-size model

with backlogging, which we will discuss next.

Dynamic Lot-Size Models

The single location inventory replenishment problem for deterministic time-varying
demand is equivalent to the dynamic lot-size problem used in production planning.
For a general discussion of these models, see Ahuja et al [1] and Lee and Nahmias
(20].

Wagner-Whitin [38] formulated the dynamic lot-size problem for fixed setup (or-
dering) costs and deterministic, time-varying demand, without backlogging, and

solved it with dynamic programming. Because of the computational efforts required
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to solve large models, the Silver-Meal heuristic was developed (Lee and Nahmias [20]),
although the Wagner-Whitin algorithm poses no computational difficulty today.

Wagner and Whitin showed that these lot-size models have a feature that is known
in the literature as “exact requirements.” This means that any optimal solution must
have these characteristics: in any time period, if we ship, we only ship an integral
sum of demand requirements for a contiguous sequence of periods. We only order if
inventory is zero. Because of fixed setup costs, it is sub-optimal to pay unnecessary
holding or penalty costs by shipping fractional orders. As a result, at any point in
time, the inventory level and the shipments in process are either zero or a sum of
demands. They incorporated this important feature into a dynamic programming
algorithm.

Zangwill [39] extended the dynamic lot-size problem to include the case of back-
logging, solving it with a DP algorithm. With backlogging, in a generalization of the
Wagner-Whitin model, we only order if inventory is less than or equal to zero. The
author develops a proof that a concave cost function for this model is minimum at
an extreme point of the feasible region.

Zangwill [40],[41] extended the concave cost, backlogging model to a multi-echelon
(single source, multiple location) network and provided a dynamic network represen-
tation of the single location problem, giving a more intuitive explanation of the exact
requirements result. This paper is often referenced for the proof that concave cost
functions on a network are minimum at extreme points (also see Ahuja et al [1]).
Zangwill provided more DP algorithms for multiple echelons with special structures
such as parallel and serial networks,

Veinott [37] formulated the Wagner-Whitin and Zangwill models as Leontief sub-

stitution models and provided additional DP algorithms for this class of problems.

Concave Cost Network Flows

With its characterization of optimal solutions at extreme points, Zangwill’s paper was
the beginning of the minimum concave cost network flow literature. Algorithms that

search the extreme points for optimal solutions are thus either exponential in time
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or are polynomial only for special cases. Fer example, Zangwill’s DP algorithm for a
single source network with multiple stores is exponential in the number of stores.

Soland [32] developed a branch and bound algorithm using linear approximations
as lower bounds of the concave cost function in a facility location model. Gallo
and Sodini [15] developed a vertex-following heuristic that finds a local minimum.
Florian and Robillard [14] developed an enumerative search technique for extreme
point solutions.

Further research in the Wagner-Whitin and Zangwill models was done by Erickson
et al [10], who proposed a send-and-split DP algorithm which solves minimum concave
cost network problems in polynomial time for networks which have a special structure.

Balakrishnan and Graves [3] developed a Lagrangian-based heuristic that uses
dual ascent and sub-gradient optimization to solve a piecewise linear concave cost
network flow problem. This model is applicable to the LTL shipping problem among
others.

Chan et al [6] applied the Balakrishnan and Graves method for an LTL problem
using a time-extended network with shipping and inventory links. Other research in
LTL models has been done by Powell and Sheffi [29] who solve it as a network design
problem.

Although the distribution problem we are interested in is a minimum concave
cost network flow, we are more particularly interested in a special sub-class of these

problems: fixed charge network design models which we will discuss next.

Network Design

Magnanti and Wong [21] provide a comprehensive survey of the research in network
design. Ahuja et al [1] give an introduction to this problem, which is that of solving
a multi-commodity flow problem, while at the same time specifying the arcs to use
in a network in which some of the arcs have a fixed cost.

Using the dynamic network representation described in Chapter 2, the multi-
echelon distribution network can be represented as a network design problem, where

the commodities are the demands for each store and time period and the fixed cost
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arcs are the shipping arcs. In this context, the exact requirements feature is more
obvious. It would be sub-optimal to split the path of a commodity’s flow from the
factory source to the final node at a particular store and time period. Each demand
commodity is satisfied by a single path over the shipping links and inventory links.

This class of problems has been shown to be NP-hard (Johnson, Lenstra, Rinnooy
Kan [17]). Van Roy and Wolsey [36] have developed a framework for formulating valid
inequalities for the fixed charge network problem. Pochet and Wolsey [26] apply these
results to develop strong LP formulations for the dynamic lot-size problem, which is
also a network design problem. Pochet and Wolsey provide a tighter alternative
formulation using a facility location formulation that is also given in Nemhauser and
Wolsey [25].

Research in aigorithms and in the polyhedral structure of these models has resulted
in the expected: strong formulations require an exponential number of constraints,
DP algorithms perform in exponential time in the worst case, and special cases which

can be solved quickly by DP can also be tightly formulated.

Neuro-dynamic Programming

Some motivation for the use of approximate dynamic programming in Chapter 4 was
provided by the case study by Van Roy et al [35] using neuro-dynamic programming
(see Bertsekas and Tsitsiklis [5]), which compares the results of using NDP to a two

echelon s-type heuristic from Nahrnias and Smith [24].

1.3 Contributions of the Thesis

For this thesis, we developed:

1. Mathematical programming formulations.
2. Heuristic algorithms.

3. Approximate dynamic programming algorithms.
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The results that contribute to advancing the state-of-the-art in this field are:

1. Stronger formulations.
2. Fast, reliable algorithms for single product models.

3. Extensions of the formulations and algorithms for models that have multiple

products.

1.4 Structure of the Thesis

The remainder of this thesis is structured as follows. Chapter 2 presents a mathe-
matical programming approach to this problem. It starts with an initial formulation
that is standard in the research literature and develops tighter but more complex
formulations. Chapter 3 describes a family of algorithms that are motivated by the
idea of Inventory Pull systems. Chapter 4 shows how we can use approximate dy-
namic programming (ADP) to obtain better solutions for the algorithms in Chapter
3. Chapter 5 compares the computational results of each approach: mathematical
programming, heuristic algorithms, and ADP algorithms. Chapter 6 summarizes
the conclusions, insights, and implementation issues for these formulations and algo-
rithms. The C program code for the algorithms and the model generators is included

in the Appendix.
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Chapter 2

Mathematical Programming

Formulations

One approach to solving the type of supply chain optimization problem described
in Chapter 1 is to use mathematical programming. In this chapter, we will present
formulations of the problem as a mixed integer program, starting with an initial
formulation of a type that is commonly described in the literature. We will then
develop more complex but tighter formulations. We will formulate the problem for
a general, layered network. For the algorithms in Chapter 3 and the computations
in Chapter 4, we will assume the network topology to be arborescent, meaning that
every node has at most one predecessor node. See Figures 2-1 and 2-2, respectively,
for examples of arborescent and non-arborescent networks. We will describe each

formulation in a separate section after we first describe the problem in more detail.

2.1 Problem definition

In this section, we will define the terminology, the timing aspects, and details of the
costs involved, and we will explain how this problem can be represented by a dynamic

network.
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Figure 2-1: Arborescent Network

Store A

DC 1 Store B

Factory! Store C
DC 2 Store D

Store E

Terminology

There are three types of location nodes in the distribution network - factories, distri-
bution centers (DC’s) (or warehouses), and stores.

Factories ship but do not receive; stores receive but do not ship; DC’s receive from
factories and ship to stores. Factories have no inventory but are infinite sources for
the DC’s and stores.

Inventory at the stores can be positive or negative. If inventory is positive, this
is excess inventory, for which there is a holding cost. If inventory is negative, this is
a shortage of inventory requiring a backorder to meet demand, for which there is a
backorder or penalty cost.

An echelon refers to the level of shipments in the network. In a two-echelon
network, the first echelon is from the DC to the stores involving what we will call the
“DC-to-stores” sub-problem, and the second echelon is from the factory to the DC'’s

involving the “Factory-to-DC"” sub-problem.
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Factory

We will sometimes use the term “lots” when discussing the demand at a store for

Figure 2-2: Non-arborescent Network

Store A

DC 1

Store B

Store C

DC 2

Store D

a particular time period.

Timing of shipments and inventory

The standard practice in inventory theory literature is to use beginning inventory

in formulations instead of ending inventory, although holding and penalty costs are

functions of ending inventory.

At any non-factory location, in time period ¢, this is what happens:

Store E

1. Add the shipment received to the beginning inventory.

2. Subtract the demand if this is a store.
3. Subtract the shipments to the stores if this is a DC.

4. The remaining ending inventory is the beginning inventory for the next period

(t+1).
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The time horizon for inventory-related costs is from ¢ = 1 to t = T, whereas the
time horizon for inventory movements is from ¢t = 0 to ¢ = T'—1. The initial inventory

is at time 0, and the final inventory is at time 7.

Costs

Inventory holding costs are applied to positive ending inventory. These are typically
inventory carrying costs such as capital cost of inventory and warehousing,.

Shortage or backorder penalty costs are applied to negative ending inventory. This
can be the cost of backordering or a penalty for lost sales.

A fixed shipping cost is incurred whenever there is a shipment. As previously
mentioned, we can ignore variable shipping costs. In our model, we can allow any of
these costs to vary by time or by location.

In general, the holding costs are less than the penalty costs, and the fixed ship-
ping costs are substantial enough to force the model occasionally to incur holding or
penalty costs. Also, we can typically expect inventory holding costs at stores to ex-
ceed those at distribution centers, and the fixed shipping costs to the DC’s to exceed

those to the stores.

Dynamic Network

The flow of goods from factories to distribution centers to stores can be represented
by a network, which we will call the physical network. To represent the flow of goods
from location to locaticn over time, we add the dimension of time to the network
to create a dynamic network or time-expanded neiwork. Each node in the dynamic
network then references a location and a point in time (day, week, etc.) and can be
denoted by (i, t).

There are two types of arcs in this dynamic network - shipping links and inven-
tory links. Shipments from one location-time to another flow over a shipping link.
Inventory from one location-time to the next flow over inventory links. There are two
types of these - positive and negative - depending on whether inventory is carried

over to the next period or is backordered from the next period. Shipping arcs may
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Figure 2-3: Dynamic Network

l = zi
uf &
:L—ZII t:l
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be denoted as (i, j,t) for shipments from location 7 to location j, leaving ¢ at time ¢.

uV &

Figure 2-3 displays a section of a dynamic network. The shipping and inventory arcs

are labeled with the variables that are used in the formulation we will describe next.

2.2 Formulation 1

Our initial formulation for a general network is a combination of a network flow model
and a commonly used mixed integer program formulation for a dynamic lot-size model
(see Shapiro [31]). This formulation uses decision variables that control shipping and
inventory by specifying how much to ship and how much to keep in inventory at each
location and each point in time.

We are given a time-expanded dynamic network (N, A) over a fixed time horizon

t=0,...,T, where:
1. Ny is the factory node set.
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2. Ny is the DC node set.

3. N, is the retail store node set.

4. (¢,7,t) € A leaves node ¢ at time ¢ to go to node j.

5. dJ is the demand at retail node j at time ¢.

6. hJ is the inventory holding cost per unit at node j at time ?.

7. p',' is the backorder penalty cost per unit at node j at time ¢.

8. fijt is the fixed cost for ordering or shipping between nodes 7 and j at time ¢.

Furthermore, M; is the total downstream demand at node j over all time periods:

T-1
M;= Y Y df where D;= descendants of j.
keD; t=0

The decision variables are as follows:

1. It is the excess inventory at node j at time ¢.

2. £l is the inventory shortage (that is backlogged) at node j at time ¢.

3. z] is the net beginning inventory (= =3t — zJ7).

4. u;j; is the quantity shipped along shipping arc (4, j, t).

5. zij is a binary indicator variable that decides if we ship from i to j at time t.

The formulation is as follows:

T . . . . T_l
minimize Z Z (h':l]ﬂ- +p{1‘,’_) + Z Z f,-,-tziﬂ (2.1)
t=1jgN, t=0 (i,j,t)eA
subject to o=+ Y w-—d, Vj € N,, (2:2)
(i.J.t)EA
vt=0,...,T -1,
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g .
SQa=Ti+ L Uii— X Ujkey
(i.J.t)eA (J,kt)EA

uije < Mjzije,

Vi € N, (2.3)
Vt=0,...,T -1,
V(i,j.t) €A, (24)

Vt=0,...,T—-1,
o) =3 =0, Vj ¢ Ny, (2.5)
o=zt -z, Vi €N, (2.6)
vt=0,...,T,
ot i~ >0, Vj € N, U Ny,
vi=6,...,T,
uije > 0, V(i.5,t) € A,
Vt=0,...,T -1,
zije € {0,1}, V(i,j,t) € A,
vt=0,...,T-1.

The three components of the objective function (2.1) are the inventory holding
cost, the backorder penalty cost, and the fixed ordering or shipment costs.

The constraints (2.2) and (2.3) control the balance of flow at the stores in meeting
demand, and at the distribution centers in meeting the stores’ replenishment needs.
Constraint (2.4) is a forcing constraint - a shipment can only hzappen if the corre-
sponding binary shipping variable is 1. This forces the model to incur the fixed cost
of shipping. Constraint (2.5) causes the model to start and end with zero inventories.
Constraint (2.6) decomposes z] into positive and negative components. For n nodes
in an arborescent network, we have 4(n — 1)T variables and 2(n — 1)T constraints.

If we load this formulation and the data for a given problem directly into an
optimization package, we will discover that it has a very weak LP relaxation. This is
because of the weak bound in the forcing constraint (2.4) which causes a large gap
between the integer solution and the LP lower bound. As a result, a branch-and-

bound procedure is impractical for ail but the smallest problems. As an example, a
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problem with one factory, one DC, 10 stores, and 10 time periods had an optimal MIP
solution of 4885 but an LP solution of 600. This large gap rendered it impractical to

solve with this formulation. This motivated the search for a tighter formulation.

2.3 Formulation 2

Formulation 1 uses decision variables for each time period for the shipments between
locations and the inventory at each location. The weak forcing constraint bound,
however, causes a large gap between the LP relaxation and the optimal solution. The
single location lot-size formulation, which our initial formulation is based on, can be
improved by a variation of a facility location formulation (Pochet and Wolsey([26]
and Nemhauser and Wolsey [25]) with the result that the LP relaxation is integral.
The formulation we present in this section is an extension of this method. For this
formulation, we will assume there are two echelons.

In Formulation 2, we have the same demands and cost parameters as in Formula-

tion 1, but the new decision variables are as follows:

1. qﬁ,u is the quantity shipped from DC j to store k at time s for the purpose of

meeting that store’s demand in period t.

2. qf]-, is the quantity shipped from the factory i to DC j at time s to meet that
DC’s demand in period ¢ - i.e., the total demand requirement imposed by the

stores on that DC in period t.

3. z;j is the binary indicator variable for whether we ship from location i to loca-

tion j at time ¢.

In addition, we will let P(z) be the set of immediate predecessors of node i - more
specifically, P(:) = {j € N : (4,1,t) € A,Vt}. Similarly, we will let F(7) be the set of
immediate followers of node i - i.e., F(i) = {j € N : (3,5,t) € A, Vt}.

Formulation 2 is as follows:
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minimize 5. 3 {Tf

T-1t-1
fikezipe + Z(hf +---+ hf_l)Q}ka+

keN4UN, jeP(k) \ t=0 t=1 s=0
T-2 T-1 k kYt
Y X (Pt P ks (2.7)
t=0 s=t+1

subject to
JEP(k) s=0
L Y gi= X
ieP(j) r=0 keF(j)

t k
qjks S dt zjk.ﬂ

T-1
Z Z q;'ks = df?

T-1 )
> Qjks»

T-1
@i, <( T T db)zs,

keF(j) r=0

q:Js 2> 01

Zije € {0, 1},

Vk € N, Vt=0,...,T-1. (2.8)

Vj€ Ny, Vs=0,...,T—1, (2.9

Vk € N,,Vj € P(k), (2.10)
Vs,t=0,...,T -1,
Vj € N4, Vi € P(j), (2.11)

Vs,t=0,...,T -1,
Vt=0,...,T -1,Y(s,3,8) € A,
v(i,j5,t) € A.

The objective function (2.7) has a similar fixed shipping cost as before, but the

inventory holding costs and the backorder penalty costs are applied to the q;,u vari-

ables according to whether s < t (holding) or s > t (backorder penalty). If s = ¢,

then there is no holding or penalty cost.

The new formulation gives us balance of flow and the forcing constraints required

for the fixed shipping costs:

1. Constraint (2.8) ensures that the shipments to the stores meet the store de-

mands.

2. Constraint (2.9) maintains flow balance at each DC.

3. Constraint (2.10) is a forcing constraint whereby g}, is positive only if zjx, = 1

in which case we incur the fixed shipment cost to the store.
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4. Constraint (2.11) is a forcing constraint for shipments from the factory to each
DC.

By adding another time dimension to the model, we make a significant increase in
its size. If there are m arcs and n nodes in the physical network, Formulation 2 has
mT? + mT variables and mT? + (n — 1)T constraints. However, we achieve a much
tighter bound in (2.10) because the ¢}, variables enable us to use df as a coefficient
instead of the total demand, Mj. This gives us a tighter LP relaxation, which enables
us to use Formulation 2 to solve larger problems than Formulation 1. In the example
given for Formulation 1, where the LP solution was 600 and the MIP solution was
4885, Formulation 2 has an LP solution of 4023. We benefit from the fact that the
g;x, variables carry more information for the model.

However, in constraint (2.11), we have to use the DC'’s total downstream demand
as the coefficient in the forcing constraints. This gives us a similar problem as before,
which causes performance limitations as we increase the problem size. This prompts

us to consider improving this formulation further, which we will discuss next.

2.4 Formulation 3

In Formulation 2, the decision variables q;-k, control shipments from node j to node
k at time s that will meet demand at node k at time ¢. This enables us to have tight
forcing bounds from the DC’s to the stores, but not from the factory to the DC’s.
In this section, we will enhance this formulation further by using decision variables
to control how much is shipped along every arc (3, j, s) that is destined to satisfy the
demand at store k at time ¢. If we do this, we also have to balance the flow of the
store demand-specific inventory at each DC.

For this new Formulation 3, we have a general network with two or more echelons
and an unrestricted number of DC’s and warehouses that move goods from the factory

to the stores. The decision variables are now:

1. qu‘, is the quantity shipped along arc (7, j, s) to meet the demand at store k at

time t.
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2. zjs is the forcing variable for arc (i, j, s).

3. a:f: is the inventory at node j (DC or warehouse) at time s that will go to store

k to satisfy demand at time ¢.

Formulation 3 is as follows:

T-1T-1
minimize Y. fizige+ Y 3 3. O hizk+
(ig.s)eA k€N, jEN4 s=0 t=0

T-1¢t-1 T-2 T-1
IS {Z S+ +hE D+ Y Y (Pf+n+---+Pf)Q."£,}

keN, ieP(k) | t=1 s=0 t=0 s=t+1

T-1
subject to Y > gk =df, Vk € N,,
i€P(k) 3=0
Vt=0,. T-1,
S S gt = gk Vke N
jeFuys=0 2° Y *
Vi e Nj,

V¢=0,...,T -1,
g, < dfzjs, vt=0,...,T -1,

Vk € N;,

V(i,j,s) € A,

ot + ie!ZJ:(j) o, =z, + ieg(j)qf,-‘,, Vs,t =0,...,T—1
Vk € N,
Vj € Ny,
zht = =8 = 0, vt=0,...,T -1,
Vk € N,
Vj € Ny,
g, 255 2 0, Vk € N,

Y(i,j,8) € A,
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(2.17)



VE=0,...,T -1,
Zijt € {01 1}7 V(Z,J,t) € A

The constraints are similar in purpose to those in Formulation 2:

1. Constraints (2.13) and (2.14) ensure that the shipments meet the demands.
2. Constraint (2.15) is the forcing constraint for each arc.
3. Constraint (2.16) maintains flow balance at each DC or warehouse.

4. Constraint (2.17) sets the initial and final inventories to zero.

As the complexity of the network increases, we increase the number of variables
and constraints by incremental orders of T?, depending on the number of echelons
and shipping arcs. For example, even if our network is arborescent, we will have
(2E — 1)KT? variables and constraints, where E is the number of echelons and K is
the number of stores. To reduce the size of large problems, we could limit the number
of time periods for backlogging and for ordering in advance.

As expected, this formulation is very tight. In the example we discussed for
Formulations 1 and 2, the LP relaxation for Formulation 3 had an integral optimal
solution of 4885. In the test results that will be presented in Chapter 5, the LP

relaxation of this formulation yielded integral solutions in 5 out of 6 test problems.

2.5 Formulation 4

Formulation 3 is similar to a network design arc-flow formulation that uses multi-
commodity flows (where a commodity in our case is a “lot” or the demand for a store
for a time period). It uses a disaggregated forcing constraint, which is tighter than
an aggregated forcing constraint (Magnanti and Wong [21]). Following a common
practice used with multi-commodity flow problems, we could convert from a node-

arc formulation to a path-flow formulation as a way to solve large problems. In this
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section, we will describe how this could be done, although this formulation was not
implemented as part of this research.

Each lot (k,t) - that is, the demand at store k at time ¢ - is shipped from the
factory to the store over a path p of shipping arcs and inventory arcs in the dynamic
network. We will define Py, to be the set of possible paths for a lot (k,t).

In place of the shipping variables qu‘, and the inventory variables x;?:, we will use
instead a path flow variable y:,“ for the flow over path p that is destined to meet the
demand at store k at time . We will use the same binary forcing variable z;;;. We

will assume we have the same cost parameters as before and that we have a way of

computing the cost of a path, ¢, based on the inventory arcs in the path.

b p’
Formulation 4 is as follows:
T-1
minimize ) Yoyt Y fhezie (2.18)
kEN, t=0 pePy, (i.J,t)EA

subject to >yt =4df, Vk € N, (2.19)

PE Py,

Vt=0,...,T -1,

> y:‘ < dfz.-j,, Vk € N,, (220)

PEPi(i.s)EP
v(i,j,5) € A,

Vt=0,...,T -1,

ykt > 0, Vk € N,
Vp € Py,
Vt=0,...,T -1,
zije € {0,1}, V(s,5,t) € A.

The objective function (2.18) has the inventory costs and the fixed shipping costs.
Constraint (2.19) ensures that the demands are met, and constraint (2.20) is the
forcing constraint for each shipping arc. A flow balance constraint is not required
when we use path-flow variables.

Our new formulation has much fewer constraints but a huge number of variables,
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now that we have added one for each possible path in the network. We could consider
using column generation as a solution approach. To do this, we could start with an
initial set of paths that we could obtain from a heuristic algorithm, and then use a

shortest path algorithm to “price out” paths in P in the sub-network for each store

k and each time period ¢.

2.6 Formulation 5

In this section, we will extend Formulation 3 to the case where there are multiple
products. In this situation, we are interested in controlling the shipments and inven-
tories of more than one product. We wiil assume the products are shipped together
and that a shipment of one or more products incurs only one fixed cost. Otherwise we
would have separate single-product sub-problems. Except for the shipping variables,
zij, we will add a super-script for product v to the data and the decision variables
which were used in Formulation 3. We will assume there are V' products.

The cost parameters and data in the multiple problem are:

1. fiji is the fixed cost for shipping on arc (2, j, t).
2. hY’ is the holding cost for product v at location j at time ¢.
3. pY7 is the penalty cost for product v at location j at time ¢.

4. d}’j is the demand for product v at location j at time ¢.
The decision variables are as follows:

1. q,'-’}‘,‘ is the quantity shipped along arc (3, j, s) to meet the demand for product

v at store k at time .
2. 2, is the forcing variable for arc (3, 7, s).

3. z¥¥ is the inventory of product v at node j (DC or warehouse) at time s that

will go to store k to satisfy demand at time ¢.

35



Formulation 5 is as follows:

T-1T-

v
minimize Y fijszijs+ 3, O Rz

(ij,s)EA v=1kEN, jJEN, s=0 t=0

._-
.—

v T—1t-1 T-2 T-1
) ) {ZZ(h:k'*' Wi+ Y P+

v=1keN, ieP(k) | t=1 5=0 t=0 s=t+1

T-
subject to Y Z gt = dvF, Vk € N,,
i€eP(k) s=0

Yv=1,...
Vt=0,...

) aR = dyF, Vk € N,,
JEF(i) s=0

Yv=1,...

Vi € Nf,

Vt=0,...

q;ktsdu zz].n Vt=0,

Vk € N,,

Yv=1,...
v(i,j,s) €

i+ T gft=o + gk, Vs t=0,...

i€P(j) i€F(5)

Vk € N;,

Yv=1,...

Vi € Ny,
%t =zt =0, vVt =0,.

Vk € N,,

V.;' € Nda
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(2.23)
WV,
’T - la
T—1, (2.24)
WV,
A,
T —1,(2.25)
WV,
LT—1, (2.26)
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g, vkt > 0, VL € N,,

V(i,j,s) € A,
vi=0,...,T -1,

zijt € {01 1}’ V(i1j7t) € A.

The constraints are the same as those in Formulation 3 except for the added
product dimension. In this new formulation, we multiply the number of variables and
constraints in Formulation 3 by a factor of V', the number of products.

In summary, the mathematical programming approach requires tighter formula-
tions which greatly increase the numbers of variables and constraints in the model.
To solve medium-to-large scale problems, an alternative is to develop heuristic algo-

rithms, which is the subject of the next chapter.

37



Chapter 3

Algorithms

As we saw in Chapter 2, if we use mathematical programming, our distribution prob-
lem requires many variables and constraints, which results in computer memory and
execution time problems. Another approach is to develop heuristic algorithms which
will provide near optimal solutions quickly without severe memory requirements.

In this chapter, we will present a family of algorithms that are motivated by the
Inventory Pull system that was mentioned in Chapter 1. We will start by giving a
dynamic lot-size algorithm that is used for all these algorithms. We will then describe
the Pull algorithm and four variations that use this algorithm as an initial solution.

The computational test results for these algorithms are presented in Chapter 5.

3.1 Single Location Dynamic Lot-Size Algorithm

The family of algorithms that are described in this chapter use a single location
dynamic lot-size algorithm, which we present in this section, that is based on Zangwill
[39] and Veinott [37). We will allow retail stores to make the decision to backlog
unfilled demand. To avoid complications, we will not allow DC’s and warehouses to
make a decision to backlog. The reason for doing this is to avoid situations where a
store chooses to order in advance to avoid the backorder penalty, but would still have
to backorder if the DC chooses to backorder the order from the store.

We assume, similar to a production planning model, that a facility orders and
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receives shipments u; from a supplier to meet demand d; in time periods ; — 1,....T

(which we wil] yse in this section instead of ; — 0,...,T- 1). Any unsatisfied demand

has a holding cost, and a shortage incurs a Penalty cost.
The single location dynamic lot-size algorithm is based on a key result by Zangwil
[39], that is also described by Lee ang Nahmias [20), which we state without proof in

the following theorem,

Theorem 1 Ap optimal productipn (shipping) schedule {ui},7 = L...,T for the
dynamic lot-size model with backlogging satisfies the “Erqct Requirements” Property,

which means there €Tists a sequence of integers, {Si},i= 0,....,T where
0=SoSSxS-"_<_ST=T-
such that:
u; =0 Z:f S'_.l = S,',
otherwise
S
Uu; = Z dj, V2'=1,...,T.

J=148;,

S; is the number of periods for which the total demangd requirement has beep
received as of period ;. If Si > i, we are ordering in advance. If Si < i, we are

backordering.



Si > S;_1. _‘

To accomplish this, we can represent the S;’s in a network (see Figure 3-1) and
use dynamic programming, for example, to find the optimal sequence as the shortest
path. Using the terminology of dynamic programming, the stage of the system is i
and the state is S;. The nodes in the network representation of this system are labeled
(1, S;). We have nodes (i,S;)foralli=1,...,T—1and all Si=0,...,T, in addition
to the initial nodes (0, 0) and the terminal node (T, T). For cases where backlogging

is not permitted, we can only have nodes where i < S;. Arcs connect node (2, S;) to

node (i + 1, S;) for all S; < S;.

Figure 3-1: (¢, S;) Network for T = 3
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For every (i, S;), we define the inventory position, I(z, S;) as

S; i
> dy— ¥ di, if S;>0,
1(1, S‘) — k=1 k=1

- d, if S =0.
k=1

The inventory position is thus the net inventory as calculated by the cumulative
demand received minus the cumulative demand at that time.
If h is the inventory holding cost and p is the backorder penalty cost, then the

cost of the inventory position C(7, S;) is
C(i, Si) = h(I1(3,5:))* - p(1(3, S:)) "

If f is the fixed shipment cost, then we define the arc cost from (¢, S;) to (i+1, Sk)

in the following way:

C(i + I,Sk), if Sp=2_5;,

Cost from (#,S5;) to (i+1,5)=
f+C(E+1,S), if Sg> 8.

The optimal {S;} sequence is therefore the shortest path from the starting node
(0,0) to the final destination, (T,T) using these arc costs. The shortest path was
solved by dynamic programming for this implementation. Some comments about the

computer program (see the DP function in Appendix B):

1. The inventory positions and costs for the 7% nodes are calculated before the

execution of the shortest path algorithm.

2. All inventory positions and costs can be calculated in a time of O(T?) using an

outside loop of T time periods and an inside loop of T time periods.

3. The arc costs are calculated on an as-needed basis, which implies that the arc

costs do not need to be stored.
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3.2 The Basic Pull Algorithm

In this section, we will introduce the Basic Pull algorithm, which will serve as the
foundation for all the other algorithms to be described in this chapter and the next.
We will explain the motivation for this algorith.n, the steps involved, the limitations
of the algorithm, and how it works using a small example.

If our network only consists of one store which receives shipments from one fac-
tory, then we can solve this problem by using the dynamic lot-size algorithm with
backlogging. We can also solve for networks with one factory, no DC’s, and multiple
stores by solving separate lot-size sub-problems. The first level of complication arises
when we have a factory shipping to a DC which ships to one or more stores (see

Figure 3-2 below).

Figure 3-2:" Two echelon model

Store 1

Factory D.C.

Store 2

If we extend the idea of decomposing the problem into individual lot-size problems,
we get the following “Pull” algorithm, which we will describe for the two-echelon, one

DC case.

1. For each store k, obtain the optimal shipment schedule from the DC to the

store, {u¥}T=!, by solving that store’s dynamic lot-size model with backlogging

that meets the demand, {d¥}7!.

2. Accumulate the DC-to-stores shipments by time period to get the replenishment
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requirements at the DC:

3. Use {r;} ! as the DC’s demand from the factory and solve the factory-to-DC
dynamic lot-size model without backlogging to get the shipment schedule from

the factory to the DC.

This algorithm follows the Just-In-Time method where the stores “pull” the de-
mand through the network. It is “greedy” from the stores’ perspective. The algorithm
can be extended to more than two echelons by continuing the process of pulling from
the next echelon upstream in the same way. We can use the Pull algorithm for non-
arborescent. networks by having each location pull only from one preferred supply
location. This method would have obvious limitations, but it could provide a good
starting point for an algorithm.

The Pull algorithm is sub-optimal when the DC-to-store replenishment require-
ment vector © = (ry,...,rr_;) requires shipments from the factory to the DC which
make the total system costs sub-optimal. The solution is optimal for each store but
there are excessive costs at the second echelon (from the factory to the DC). If the
Pull algorithm could find the right » , we would get the optimal solution.

As mentioned in the previous section and also in Chapter 1, optimal solutions for
problems of this type have the Exact Requirements property whereby shipments are
always either zero or a sum of downstream demands. We could start with the vector
r that the Pull algorithm generates and try to modify it, while maintaining the Exact
Requirements feature, in order to improve the solution. This is the motivation for
the next four algorithms we will discuss. The first two look for ways to shift the DC-
to-stores shipment schedule in such a way that the resulting = gives a better solution.
The last two try to influence the DC-to-stores schedules by applying penalty prices.
All four algorithms start with the Pull algorithm.
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Example

We will illustrate the algorithms with a simple example of a two-echelon network
with one factory, one DC, and two stores. We will use a holding cost of $2 per
unit and a backorder penalty cost of $5 per unit at each location. The fixed cost of
shipping is $150 from the factory to the DC and $50 from the DC to the stores. The
demand requirement is (15,15,10,10,5) for Store 1 and (5,10,15,20,25) for Store 2 for
time periods 0,1,2,3,4. The quantities and dollars in this example were chosen for the
purpose of illustrating the different features of the algorithms.

Table 3.1 displays the result of the Pull algorithm for this example. The row and
column entries are self-explanatory. The costs are displayed next to the quantities
involved - e.g., for store 2, at time period 1 an inventory of -5 is a shortage that is
backordered, costing $25; at time period 2, an inventory of 15 has a holding cost of
$30; and at time period 3, the shipment of 20 from the DC has a fixed cost of $50.
As an example of the transition from one time period to the next, at the DC we start
with a beginning inventory of 0, receive 60 from the factory, ship a total of 30 to
the two stores, resulting in a beginning inventory of 30 at time period 1. The row,
“Shipments to Stores” is the previously mentioned r vector.

Since the Pull algorithm optimizes each store’s shipment schedule, then $170 and
$205 are the minimum achievable costs for the stores. However the DC is forced to
incur extra costs to satisfy the accumulated shipments to the stores of (30,30,25,20,25)
because the stores’ shipment schedules of (30,0,25,0,0) and (0,30,0,20,25) are not
synchronized. The optimal solution is given in Table 3.2. The store costs in the
optimal solution are a total of $175 higher than in the Pull algorithm solution, but
the timing of the shipments cost the DC $350 less for a net decrease of $175. The
algorithms which will be described next will attempt to balance the shipments in the
solution to the Pull algorithm in a way that will cost the stores more but result in

significant savings for the DC.
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Table 3.1: Basic Pull Algorithm

0 1 2 3 4 Total

DC
Beginning Inventory/$ | 0/0 |30/60| 0/0 |45/90 |25/50| 200
Ship: Factory to DC/$ | 60/150 | 0/0 | 70/150 | 0/0 | 0/0 | 300
Shipments to Stores 30 30 25 20 25
DC Total $ 150 60 150 90 50 500
Store 1
Beginning Inventory/$ | 0/0 |15/30| 0/0 |15/30| 5/10 70
Ship: DC to Store/$ 30/50 | 0/0 | 25/50 | 0/0 0/0 100
Demand 15 15 10 10 5
Store 1 Total § 50 30 50 30 10 170
Store 2
Beginning Inventory/$ | 0/0 | -5/25| 15/30 | 0/0 | 0/0 55
Ship: DC to Store/$ 0/0 |30/50 | 0/0 |20/50|25/50| 150
Demand 5 10 15 20 25
Store 2 Total $ 0 75 30 50 50 205
Grand Total $ 200 165 230 170 110 875

Table 3.2: Optimal Solution

0 1 2 3 4 Total
DC
Beginning Inventory/$ [ 0/0| 0/0 0/0 0/0 | 0/0 0
Ship: Factory to DC/$ | 0/0 | 130/150 | 0/0 0/0 | 0/0 150
Shiprents to Stores 0 130 0 0 0
DC Total $ 0 150 0 0 0 150
Store 1
Beginning Inventory/$ | 0/0 | -15/75 | 25/50 | 15/30 | 5/10 165
Ship: DC to Store/$ 0/0 | 55/50 0/0 0/0 0/0 50
Demand 15 15 10 10 5
Store 1 Total $ 0 125 50 30 10 215
Store 2
Beginning Inventory/$ | 0/0 | -5/25 |60/120 | 45/90 | 25/50 | 285
Ship: DC to Store/$ | 0/0| 75/50 0/0 0/0 | 0/0 50
Demand 5 10 15 20 25
Store 2 Total $ 0 75 120 90 30 335
Grand Total $ 0 350 170 120 60 700
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3.3 Single Shift Algorithm

The algorithm we will discuss in this section makes lot-by-lot adjustments to the DC-
to-store shipment schedules (recalling that a lot is the demand at a store at a given

time period). These are the steps in the Single Shift algorithm:

1. Perform the Pull algorithm.
2. Do the following for each store and each time period:

(a) Find the earliest time period and the latest time period that this lot can

be shipped as an alternative to its current scheduled shipment time.

(b) For each time period from the earliest to the latest alternative shipping
periods, calculate a trial solution by assuming the shipment for this lot
has been shifted to this period, recalculating the costs for this store, and

executing the factory-to-DC portion of the Pull algorithm.
(c) Keep the lower bound for these trial solutions.

(d) If the lower bound is less than the current solution, replace the current

solution with it.

See Table 3.3 to see how this algorithm improves upon the Basic Pull algorithm.
The schedule for Store 1 is unchanged, but the lots for Store 2 have been shifted: 15
from period 1 to 2 and 25 from period 4 to 3. This increases Store 2’s total cost from
$205 to $225, but the new replenishment requirement for the DC of (30,15,40,45,0)
allows the DC'’s total cost to drop from $500 to $420 for a net decrease of $60.

3.4 Multiple Shift Algorithm

A limitation with the Single Shift algorithm is that extra fixed costs would be required
for many alternative schedules for which we only look at shipping individual lots

earlier or later. For some cases, we may want to improve the solution by shifting
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Table 3.3: Single Shift Algorithm

0 1 2 3 4 Total

DC

Beginning Inventory/$ [ 0/0 |15/30{ 0/0 |45/90| 0/0 120

Ship: Factory to DC/$ | 45/150 | 0/0 |85/150| 0/0 | 0/0 300

Shipments to Stores 30 15 40 45 0

DC Total $ 150 30 150 90 0 420

Store 1

Beginning Inventory/$ | 0/0 |15/30| 0/0 | 15/30| 5/10 70

Ship: DC to Store/$ | 30/50 | 0/0 | 25/50 | 0/0 | 0/0 | 100

Demand 15 15 10 10 5

Store 1 Total $ 50 30 50 30 10 170
[ Store 2

Beginning Inventory/$ | 0/0 |-5/25| 0/0 0/0 |25/50 75

Ship: DC to Store/$ 0/0 |15/50 | 15/50 | 45/50 | 0/0 | 150

Demand ) 10 15 20 25

Store 2 Total $ 0 75 50 50 50 225

Grand Total $ 200 135 250 170 60 815

entire shipments which may consist of multiple lots, which is the method we describe

in this section.

The steps in the Multiple Shift algorithm are as follows:

1. Perform the Pull algorithm.

2. For each store, do the following steps for each time period for which there is a

scheduled shipment:

(a) Recalculate the store’s cost and execute the factory-to-DC portion of the

Pull algorithm, assuming the entire shipment to the store has been shifted

either one period earlier or one period later.

(b) Keep the lower bound for these trial solutions.

(c) If the lower bound is less than the current solution, replace the current

solution with it.

Table 3.4 is a display of the results of this algorithm for our two store example.

Store 2 stays unchanged from the the Pull solution. For Store 1, the entire shipment
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Table 3.4: Multiple Shift Algorithm

0 1 2 3 4 Total
DC
Beginning Inventory/$ { 0/0 | 30/60| 0/0 0/0 |25/50 | 110
Ship: Factory to DC/$ | 60/150 | 0/0 | 0/0 |70/150 | 0/0 | 300
Shipments to Stores 30 30 0 45 25
DC Total $ 150 60 0 150 o0 410
Store 1
Beginning Inventory/$ | 0/0 |15/30| 0/0 |-10/50 | 5/10 90
Ship: DC to Store/$ | 30/50 | 0/0 | 0/0 | 25/50 | 0/0 | 100
Demand 15 15 10 10 5
Store 1 Total $ 50 30 0 100 10 190
Store 2
Beginning Inventory/$ | 0/0 | -5/25|15/30| 0/0 0/0 55
Ship: DC to Store/$ 0/0 |30/50( 0/0 [ 20/50 |25/50 | 150
Demand 5 10 15 20 25
Store 2 Total $ 0 75 30 50 50 205
Grand Total § 200 165 30 300 110 805

of 25 gets shifted from time period 2 to 3. As a result, Store 1’s total cost goes from
$170 to $190, but the new replenishment requirement of (30,30,0,45,25) at. the DC
lowers the DC's costs from $500 to $410 for a net savings of $70.

3.5 Pricing Algorithm

The two preceding algorithms look for ways to adjust the DC’s replenishment require-
ments vector r from the DC-to-store end by shifting either lots or entire shipments.
The algorithm which we discuss in this section looks at potentially beneficial shifts
at the Factory-to-DC end and uses that information in a simple pricing mechanism
to influenre the shipment schedules f. m the DC to the stores.

The steps in th. Pricing algorithm are as follows:

1. Perform the Pull algorithm.

2. For each time period in which there is a shipment from the factory to the DC,

do the following:
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(a) Execute the factory-to-DC sub-problem, assuming the entire shipment to

the DC has been shifted either one period earlier or one period later.
(b) Keep the lower bound for these trial sub-problem solutions.

(c) If the lower bound is less than the current solution for the factory-to-DC

sub-problem, then do the following:

i. Calculate the potential savings per unit at the DC and use this as a
price premium for shipments to the stores in the time period that had

the lower bound.
ii. Execute the Pull algorithm, using this price premium.
ili. Recalculate the cost of this solution without the prices.

iv. If the new solution is less than the current solution, replace the current

solution with it.

In this algorithm, the stores propose a schedule to the DC. The DC sees if a shift
in this schedule would be less costly from its perspective; then it uses premium pricing
to try to influence the stores to change their schedules. Another alternative would
be to use discounts or a combination of premium and discounts. In the next section,
we will present a mathematical programming approach to pricing, but first we will
discuss the results for our two store example.

For the example, after the initial Pull solution (iteration 1), this pricing algorithm
executed two more iterations before terminating. The results of these iterations are
displayed in Table 3.5 and Table 3.6. The initial Pull solution resulted in a re-
plenishment vector of (30,30,25,20,25). This algorithm found that from the DC’s
perspective, it would be better to shift 25 from time period 2 to 3 - i.e., the DC
would prefer (30,30,0,45,25) and so it placed a premium price on time period 2. As a
result, neither store ordered and received shipments in period 2.

After iteration 2, the replenishment vector was (15,55,0,35,25). The DC preferred
a shift of the 55 units from period 1 to period 0 and thus priced period 1 at a premium.
The result is in Table 3.6. Since no other improving results could be found, this was

the final solution.
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Table 3.5: Pricing Algorithm - Second Iteration

0 1 2 3 4 Total
DC
Beginning Inventory/$ | 0/0 | 55/110 | 0/0 0/0 |25/50 | 160
Ship: Factory to DC/$ | 70/150 | 0/0 0/0 | 60/150 | 0/0 300
Shipments to Stores 15 55 0 35 25
DC Total § 150 110 0 150 50 460
Store 1
Beginning Inventory/$ | 0/0 0/0 |10/20| o0/0 | 5/10 30
Ship: DC to Store/$ | 15/50 | 25/50 | 0/0 | 15/50 | 0/0 | 150
Demand 15 15 10 10 5
Store 1 Total § 50 50 20 50 10 180
Store 2
Beginning Inventory/$ { 0/0 -5/25 | 15/30| 0/0 0/0 55
Ship: DC to Store/$ 0/0 | 30/50 [ 0/0 | 20/50 (25/50 { 150
Demand 5 10 15 20 25
Store 2 Total $ 0 75 30 50 50 205
Grand Total § 200 235 50 250 110 845

Table 3.6: Pricing Algorithm - Final Iteration

0 1 2 3 4 Total
DC
Beginning Inventory/$ | 0/0 0/0 | 0/0 0/0 |25/50 50
Ship: Factory to DC/$ | 70/150 [ 0/0 | 0/0 |60/150 | 0/0 300
Shipments to Stores 70 0 0 35 25
DC Total $ 150 0 0 150 50 350
Store 1
Beginning Inventory/$ | 0/0 | 25/50|10/20| 0/0 | 5/10 80
Ship: DC to Store/$ | 40/50 | 0/0 | 0/0 | 15/50 | 0/0 | 100
Demand 15 15 10 10 5
Store 1 Total § 50 50 20 50 10 180
Store 2
Beginning Inventory/$ [ 0/0 | 25/50|15/30| 0/0 0/0 80
Ship: DC to Store/$ 30/50 | 0/0 0/0 | 20/50 |25/50 | 150
Demand ) 10 15 20 25
Store 2 Total $ 50 50 30 50 50 230
Grand Total § 250 100 50 250 110 760
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3.6 Lagrangian-based Pull Algorithm

In this section, we will discuss another pricing-oriented algorithm that starts with
the Basic Pull solution. Since we will describe this algorithm for the case of an
arborescent, two-echelon model, we will begin by restating Formulation 1. In doing
so, we can use a simpler indexing scheme by replacing arc indices with node indices.
To avoid confusion, we will try to use i for a DC, j for a store (or for a node in
general), and k for the factory. As defined in the previous chapter, F(¢) is the set
of immediate follower nodes of node i. And, i = pred(j) means that node i is the

immediate predecessor of node j.

T . - . . T_l . -
minimize Y Y (Mzl* +pln7)+ Y Y 4 (3.1)
t=1j¢N; t=0 j¢N;
subject to =2 +uf —d, Vj € N,, (3.2)
i = pred(j),
vt=0,...,T -1,
i, =i+ uf -1, Vi € Ny, (3.3)
k = pred(i),
vt=0,...,T -1,
T-1 . T-1
7‘: = > X d{, (= A’[,) Vi € Ny, (34)
t=0 JEF(i) t=0
ri= ¥ uf Vi € Ny, (3.5)
JEF(i)

Vt=0,...,T -1,
u:j < szii1 V(Z,], t) € A: (36)
Vt=0,...,T—1,

oy =1 =0, Vj ¢ Ny, (3.7)
o=t -z, Vj € N, (3.8)
vi=0,...,T,
=it 5" >0, Vj € N, U Ny,

o1



vt=0,...,T,

i >0, Vi € Ny,
Vt=0,...,T -1,
uf >0, V(3,5,t) € 4,
Vt=0,...,T -1,
z €{0,1}, V(3,j,t) € A,

Vt=0,..., T -1.

The major difference between this formulation and Formulation 1 is the introduc-
tion of a decision variable r} and the linking constraints (3.5).
If we relax the linking constraint (3.5), using A} as the dual multipliers for DC i

at time ¢, we add the following terms to the objective function:
MY uf —r}) where A is sign free.
i
In so doing, this problem splits into these sub-problems:

1. Individual DC-to-store sub-problems for each store.

2. Factory-to-DC sub-problem.

The individual DC-to-store sub-problem for store j is:

minimize z’[‘:(h{:r:}+ + p',’rl—) + Tz_:l(ft’z{ + A:uij) i = pred(j)
subject to - 1{+, =.’L‘¢"+'l:-{j0— &, i = pred(j),vt =0,...,T — 1,
u:jSsz{, ¢ = pred(j5),vt=0,...,T -1,
=1} =0,
o=t -2, vt=0,...,T,
ot 2™ >0, vt=0,...,T,
uf >0, i = pred(j),Vt =0,...,T -1,
z € {0,1}, vt=0,...,T-1.
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As mentioned before, this sub-problem can be solved by the algorithm for the
dynamic lot-size model with backlogging.

The Factory-to-DC sub-problem for DC ¢ is:

T T-1 T-1
minimize Y (hiz;* +piziT) + Y fizi — D Airg
t=1 t=0 =0
subject to T, =T +uf -1}, k = pred(i),vt =0,...,T ~ 1,
T-1 . T=1
Y= 3 Y d (= M),
t=0 JEF(i) t=0
ri >0, Vt=0,...,T -1,
ukl < Mz}, k = pred(:),Vt =0,...,T -1,

N
Ty =z =0,

=it — 2l Vt=0,...,T,
it zi- >0, vt=0,...,T,
uFt >0, k = pred(:),Vt =0,...,T — 1,
2 € {0,1}, vt=0,...,T 1.

This sub-problem has a trivial solution where we ship all of M; from the factory
to the DC in the time period which has the maximum )i. By doing so, we only incur
the fixed shipping cost once, the inventory costs are zero, and the A - based costs are
minimized.

The Lagrangian relaxation can be solved by using the method by Everett [11]
which is described in Appendix A. This method is folded into the solution method
for the Lagrangian-based heuristic, which we describe next, in which the Lagrangian
multipliers used in solving the relaxation are used as additional prices in the algorithm.

These are the steps in the algorithm:

1. Start with an initial set of A - multipliers.

2. Perform the following steps either in a loop with a counter or until the multi-

pliers converge within a tolerance limit.
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Table 3.7: Lagrangian Pull Algorithm

0 1 2 3 4 Total
DC
Beginning Inventory/$ | 0/0 0/0 0/0 0/0 | 0/0 0
Ship: Factory to DC/$ | 45/150 | 0/0 |85/150 | 0/0 | 0/0 300
Shipments to Stores 45 0 85 0 0
DC Total $ 150 0 150 0 0 300
Store 1
Beginning Inventory/$ | 0/0 |15/30 | 0/0 |15/30| 5/10 70
Ship: DC to Store/$ | 30/50 | 0/0 | 25/50 | 0/0 | 0/0 | 100
Demand 15 15 10 10 5
Store 1 Total $ 50 30 50 30 10 170
Store 2
Beginning Inventory/$ | 0/0 |10/20| 0/0 |45/90|25/50 | 160
Ship: DC to Store/$ | 15/50 | 0/0 | 60/50 | 0/0 | 0/0 | 100
Demand 5 10 15 20 25
Store 2 Total $ 50 20 o0 90 50 260
Grand Total $ 250 o0 250 120 60 730

(a) Execute the Pull algorithm with the shipment quantities multiplied by the

A prices.
{(b) Perform each store’s individual sub-problem as described above.
(c) Perform the DC’s sub-problem.

(d) The total obtained for the stores plus the DC is then the solution value

for the Lagrangian relaxation with these As.

(e) Save the lower bound for the Pull algorithm and the upper bound for the

relaxation.

(f) Update the As using the Everett method and repeat at step 3.

The results of applying the Lagrangian Pull algorithm to the two store example
are given in Table 3.7. The algorithm achieved the best result - $730 as compared to
the optimal $700 - of all the algorithms in this chapter. When compared to the initial
Pull solution, it can be seen that Store 1 is unchanged, but the shipments to Store
2 have been shifted, at Store 2’s expense, to line up with the shipments to Store 1,

which greatly benefits the DC.
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Chapter 4

An Approximate Dynamic

Programming Approach

In this chapter, we will represent the supply chain optimization problem as a dynamic
optimization problem which can be solved by dynamic programming. *¥e will then
explain how apprcximate dynamic programming (ADP), using any heuristic algo-
rithm, gives a practical method for finding solutions that also enhances the heuristic.
Finally, we will describe how this method was implemented for the algorithms that

were discussed in Chapter 3, using the Pull algorithm as a specific example.

4.1 Dynamic Programming Approach

In this section, we will define our supply chain distribution problem as a discrete-
time dynamic system that can be solved as an optimal control problem using dy-
namic programming. For consistency, we will use the same notation that we used for
Formulation 1 in Chapter 2. An abbreviated review follows:

We are given a time-expanded dynamic network (N, A), over a fixed time horizon

t=0,...,T, where:
1. Ny is the factory node set.
2. Nj is the DC node set.

95



el

N, is the retail store node set.

NS

. (%,7,t) € A leaves node i at tin.e t to go to node j.

D

. dJ is the demand at retail node j at time ¢.

[=2]

. ki is the inventory holding cost per unit at node j at time ¢.

~

. p,’ is the backorder penalty cost per unit at node j at time ¢.

co

. fije is the fixed cost for ordering or shipping between nodes ¢ and j at time ¢.

At any time t, the state of the system is represented by the state vector, &, = (z}),
where z is the net beginning inventory at location j at time ¢, which could be negative
if there is a backorder. The initial system state is , = (0, ..., 0).

The decision (or control) vector at time t is u; = (u;j;), where u;j; is the non-
negative quantity shipped along shipping arc (3, j, t).

Related to u, is the vector, z, = (2ij), where z;j, is a binary indicaior variable for

shipping from 2 to j at time ¢. More specifically,

1, if Uije > 0,
O, if Uije = 0.

Zijt =

The system state x, evolves from time ¢ to time ¢ + 1 according to the following

state transition function:

| 4 N uy—dl, if jeN,,
rt]+l = ; (i,4,t)EA . . (41)
T+ Y Ui— 2 Ujke, if J € Ng.
(i4,t)eA (7K t)EA

We will denote Eq. (4.1) by x4y, = fi(ze, wy).

For a given state x, , the cost incurred by the control, 1, , is:

gl w) = Y (Mt +plzi )+ Y fijezige,

JENy (igt)eA

where z{* = max(0,z]) and zJ~ = — min(0, z).
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Comparing this function g(-,-) to the objective function for Formulation 1, we
can see that the optimization problem is to find the optimal value:
T
J*(@o) = min Y _ g, us).
t=0
The dynamic programming algorithm (see e.g., Bertsekas [4]) gives the optimal

solution, J*(x,) = Jo(x,) where Jy is the last step in the following recursion from

T-1,...,0:

Ji(z) = g:izr})[gt(mt, w,) + Jenr (fo(mey wi))],

where Jr(zr) = 0.
Using the cost-to-go function values Jy(x,), from this recursion, the optimal se-
quence of control decisions, {w,},t=0,...,T — 1, starting with , = (0,...,0), can

be obtained by performing the following iteration from t = 0,...,7 — 1:

u, = arg miny,>0)[9:(Tey ue) + Jop1 (fole, we))]- (4.2)
If we simplify this expression by defining
Qu(Tey ue) = gu(@ey u) + Jepr (oo, we)),

then the iteration (4.2) becomes:

U; = arg min(ueo)[Qt(a:t, ut)], (43)

which we will use in the next section.

4.2 Approximate Dynamic Programming

Executing the dynamic programming algorithm described in the previous section
would of course be impractical given the dimensionality of the state space. In this
section, we will show how we can substitute a heuristic solution in the iteration (4.3)

to create an approximate dynamic programming (ADP) algorithm. The motivation
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for this substitution is that even though it may be impossible to determine the exact
cost-to-go function values for J;(x;) in Eq. (4.2), we can approximate the values of
Q:(x¢y uy) in Eq. (4.3) with solutions which can be quickly obtained from a heuristic
algorithm.

To enable this substitution in the iteration (4.3), we will define QF (x;, u,) to be
the value of heuristic algorithm H given system state x; and control u, .

The ADP algorithm then becomes the following iteration from ¢t =0,...,T — 1:

u; = arg min(utzo)[QtH(wt, ut)] (44)

Although this alleviates the complication of evaluating the cost-to-go function,
we are still faced with executing this approximation algorithm over all u, > 0. To
limit the search of possible values of u, , one method we used is to vary the binary
vector z, that controls when and where shipping occurs, in a pre-specified way. If
we have a physical network with m arcs, then at each stage ¢t we would need to run
the heuristic algorithm 2™ times to find the best z, . For the purpose of efficiency,
the general ADP algorithm that was implemented simplified the search for z; in the

following way:

1. Start with all z;;, = 0 for all (z, 7, t).

2. For every time period t = 0,...,T — 1, and for every shipping arc (¢, j,t), do
the following:

(a) Execute the heuristic algorithm H with z;; = 1, thus forcing a shipment

to occur along this arc. Let Q¥ be this solution value.

(b) Execute the heuristic algorithm H with z;;; = 0, thus restricting any ship-

ment from occurring along this arc. Let Qff be this solution value.

(c) Set zije = arg min(Qf, Qf).

The above is an example of various ways to implement an ADP algorithm. Another

way to think about this procedure is as an enhancement of the heuristic algorithm
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that is employed in the approximation. In the next section, we will discuss how the

algorithms we introduced in Chapter 3 were enhanced by the ADP method.

4.3 ADP for the Pull algorithm family

In this section, we will show how the ADP version of the Basic Pull algorithm was
implemented, how it performs, and how the ADP enhancement was implemented for

the other algorithms. These are the steps involved for the Basic Pull algorithm:

1. Start with a current solution in which nothing has been pre-set.
2. For each time period and for each store, do the following:

(a) Force a shipment to occur from the DC to the store at this time, execute

the Pull algorithm using the current solition, and save this trial result.

(b) Prevent a shipment from the DC to the store at this time, execute the Pull

algorithm using the current solution, and save this trial result.

(c) Select the option - forcing (1) or preventing (0) - that results in the mini-

mum of these two trial solutions to be pre-set in the current solution.

The results of applying the ADP version of the Pull algorithm to the simple
example we used in Chapter 3 are displayed in the three tables below. For store 1 at
time 0, this algorithm started with the same result as the Pull solution, which is in
Table 4.1. In Table 4.2, after forcing the shipment from the DC to Store 2 at time 0,
Store 2's total cost goes from $205 to $210, but this enables the DC’s cost to decrease
from 3500 to $400. The total cost of $780 stays as the minimum for several more
iterations until the algorithm achieves its lowest bound by preventing a shipment to
Store 2 at time period 4. It turns out that the final solution, which is displayed in
Table 4.3, is the same as the solution given by the Lagrangian Pull algorithm.

In this example, we executed the ADP Pull algorithm for all time periods and
store shipments. We could also have controlled the shipments from the factory to the

DC. Because this algorithm is monotonically decreasing, then for large problems we
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Table 4.1: ADP Pull - First Iteration

0 1 2 3 4 Total
DC
Beginning Inventory/$ | 0/0 |30/60| 0/0 |45/90|25/50 | 200
Ship: Factory to DC/$ | 60/150 | 0/0 | 70/150{ 0/0 0/0 300
Shipments to Stores 30 30 25 20 25
DC Total $ 150 60 150 90 o0 200
Store 1
Beginning Inventory/$ | 0/0 |[15/30| 0/0 | 15/30| 5/10 70
Ship: DC to Store/$ | 30/50 | 0/0 | 25/50 | 0/0 | 0/0 | 100
Demand 15 15 10 10 5
Store 1 Total $ o0 30 o0 30 10 170
Store 2
Beginning Inventory/$ | 0/0 |-5/25 | 15/30 | 0/0 | 0/0 55
Ship: DC to Store/$ 0/0 |30/50| 0/0 |20/50 25/50| 150
Demand 5 10 15 20 25
Store 2 Total $ 0 75 30 o0 o0 205
Grand Total $ 200 165 230 170 110 875

- Table 4.2: ADP Pull - Second Iteration

0 1 2 3 4 Total
DC
Beginning Inventory/$ | 0/0 0/0 0/0 | 25/50|25/50 | 100
Ship: Factory to DC/$ | 45/150 | 0/0 |85/150| 0/0 | 0/0 | 300
Shipments to Stores 45 0 60 0 25
DC Total $ 150 0 150 50 50 400
Store 1
Beginning Inventory/$ { 0/0 |15/30( 0/0 |15/30| 5/10 70
Ship: DC to Store/$ 30/50 | G/O0 | 25/50 | 0/0 | 0/0 100
Demand 15 15 10 10 5
Store 1 Total $ 50 30 50 30 10 170
Store 2
Beginning Inventory/$ { 0/0 |10/20( 0/0 |20/40| 0/0 60
Ship: DC to Store/$ | 15/50 | 0/0 | 35/50 | 0/0 |25/50 | 150
Demand ) 10 15 20 25
Store 2 Total $ 50 20 o0 40 60 210
Grand Total $ 250 50 250 120 110 780
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Table 4.3: ADP Pull - Final Iteration

0 1 2 3 4 Total
DC
Beginning Inventory/$ | 0/0 0/0 0/0 0/0 | 0/0 0
Ship: Factory to DC/$ | 45/150 | 0/0 | 85/150 | 0/0 | 0/0 300
Shipments to Stores 45 0 85 0 0
DC Total $ 150 0 150 0 0 300
Store 1
Beginning Inventory/$ | 0/0 | 15/30| 0/0 |15/30| 5/10 70
Ship: DC to Store/$ | 30/50 | 0/0 | 25/50 | 0/0 | 0/0 | 100
Demand 15 15 10 10 )
Store 1 Total $ o0 30 o0 30 10 170
Store 2
Beginning Inventory/$ | 0/0 | 10/20| 0/0 |45/90]|25/50| 160
Ship: DC to Store/$ | 15/50 | 0/0 | 60/50 | 0/0 | 0/0 | 100
Demand 5 10 15 20 25
Store 2 Total $ 50 20 50 90 50 260
Grand Total § 250 50 250 120 60 730

may want to save computer time by stopping the program and using the last solution
it has found.

The ADP versions of the other four algorithms - Single Shift, Multiple Shift,
Pricing, and Lagrangian Pull - use the same generic structure as described above for
the basic Pull algorithm. The algorithms that shift lots or multiple-lot shipments are
straight-forward to implement this way because they are monotonically decreasing.
However, because of the pricing schemes used by the latter two algorithms, we have
to save the lowest bound solution during the execution of the ADP version.

The dramatic improvement that we saw in the simple example where a non-ADP
Pull solution of $870 went down to $730 in the ADP version ($700 is the optimal),
continued to occur in other tests. As we will see in the next chapter on computational
results, the ADP version improved the results of all the algorithms and enhanced the

Basic Pull algorithm significantly.
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Chapter 5

Computational Results

In this chapter, we will describe how the formulations, algorithms, and ADP versions
of the algorithms have been implemented and how well they perform. We will give an
overview of the computer environment, the program architecture, and the test data,
and we will tabulate the results of each algorithm. Although the focus was more
on results than on speed, we found that other than the size constraints imposed by
the tighter MIP formulations, problems on the scale of three DC's, 10-30 stores, and

10-30 time periods did not require an exceptional amount of computer power.

5.1 Computer Environment and Program Archi-
tecture

In this section, we describe how the formulations and algorithms were implemented
on the computer.

The mixed integer programs were run on a Sun SPARCstation 20 model 60, using
the C-plex optimization package, version 5.0. The algorithms were run on the same
Sun workstation and also on a Dell Pentium 90 MHz computer where they were devel-
oped. As mentioned above, it was not necessary to use more power than was available
on these two modest platforms. The algorithms were written in C, using C++-style

comments. They were compiled by Visual C++ and the gnu C++ compiler.
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There are eight C programs, all of which read the problem data from a common
data file. This data file has the number of nodes, arcs, stores, time periods, the
cost parameters, and the demands over time for all the stores. All eight programs
use a common function to read the problem data and prepare the data structures in
memory that describe the network, costs, and demand schedule. See Appendix B for
a partial listing of the source code and a sample data file.

There are three programs which generate mixed integer programming models for
Formulations 1, 2, and 3, respectively. These programs generate LP formatted files
that are input to C-plex. These files contain algebraic descriptions of the MIPs which
were useful for testing the formulations. For larger problems, it would be necessary
to load a problem’s data - the A matrix, the cost coefficients, the right hand side,
etc. - directly into memory to be solved by C-plex.

There is a program for each of the five algorithms:

1. The Basic Pull algorithm.
2. The Single Shift algorithm.
3. The Multiple Shift algorithm.

4. The Pricing algorithm.

(4]

. The Lagrangian Pull algorithm.

Each of these programs has an option to run the ADP version as described in the
previous chapter. As an example of the general structure of these five programs, this

is how the Basic Pull program works:

1. Load the problem data.

2. If the ADP option has been selected, control the program by iterating by time
period and by store, setting the binary variables accordingly, and doing the

following:

3. Run the single location DP algorithm for each store.
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4. Accumulate the replenishment demands on the DC’s.
5. Run the same DP algorithm, but without backlogging, for each DC.

6. Accumulate the total inventory, penalty, and shipping costs, and display the

total cost.

7. If we are running the ADP version, the program continues to the next store or

time period.

5.2 Computational Results

In this section, we will describe the test data used and the results of the computations
for each of the algorithms. The optimal solutions were achieved by executing the
mixed integer program using Formulation 3. As mentioned in Chapter 2, the LP
relaxation of Formulation 3 resulted in an integral optimal solution for all but one of
these test problems. Also, as previously mentioned, because of the large gap between
the integer solution and the LP relaxation, Formulations 1 and 2 result in branch-
and-bound searches that are practical only for small problems.

We used 6 test data sets for an arborescent network with two echelons, multiple
(up to 3) DC’s, as many as 10 stores per DC, and 10-30 time periods. The largest
had 3 DC'’s, 30 stores, and 30 time periods.

The demands for each store were generated randomly from a uniform distribution
or were given a varying demand pattern where stores could have increasing, decreas-
ing, constant, or alternating demands. The costs applied were such that inventory
costs were less than penalty costs, DC inventory costs were less than store inventory
costs, and fixed shipping costs to the DC’s were less than the costs to the stores.
The fixed shipping costs were large enough to avoid situations where it would be
econormical to ship every time.

If we have an arborescent network, which means every node has at most one
predecessor node, then because we are assuming unlimited capacity at the factory,

we can sub-divide a problem with several DC’s into separate single DC networks
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(consisting of the factory, the DC, and the stores that receive shipments from that
DC). We did not need to do this for the algorithms but did so for the MIP Formulation
3 because of the size of the model. Using the Sun SPARCstation, the largest MIP
that could be loaded into memory and solved was for one DC, 10 stores, and 30
time periods, although the solution time was usually less than 3 minutes. A larger
workstation could load and solve a larger problem, but eventually we would run into
size limitations.

At the core of the algorithms is the single location lot-size algorithm. Since the
execution time for this DP algorithm is O(T?), an initial concern was to find out how
big a problem the simplest program (Basic Pull) could handle. A test of a one DC, 5
store problem with 300 time periods ran in about one minute. Since we can specify
a very detailed demand pattern with this many time periods, we could easily apply
the Basic Pull algorithm to large problems.

As mentioned above, instead of analyzing the computation time, the main interest
in the computational experiments was to compare the results of the algorithms. Table
5.1 contains the results of the algorithms and the optimal solutions using Forinulation
3. Most of these test runs for the algorithms ran in less than one or two minutes.
The only exceptions were the ADP versions of the Single Shift, Multiple Shift, and
Lagrangian Pull algorithms, which took two hours or longer to run to completion for
all but the first data set. For these three programs, execution was halted after six
hours for test problems 4, 5, and 6.

For test problem 6, the solution of the LP relaxation for Formulation 3 was 37,659,
which is very close to the integral optimal solution of 37,669. For the other five test
problems, the LP relaxation for Formulation 3 was integral. As expected, the local
search algorithms - Single Shift and Multiple Shift - make some improvements to the
Basic Pull solution. The other two algorithms, which use a pricing mechanism, achieve
even better results. These latter two, the Pricing algorithm and the Lagrangian Pull
algorithm, are able to explore a wider region of solutions, although the Lagrangian
Pull algorithm was unable to improve upon the Basic Pull solution for the last two test

problems. With a couple of exceptions for the pricing-oriented heuristics, the ADP
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versions improve upon the results for each algorithm. Interestingly, the most dramatic
improvement is with the Basic Pull algorithm. This makes the ADP version of the
the Basic Pull algorithm an attractive choice for implementation because it achieves
good results, it is simple, and it runs much faster than the ADP versions of the other
algorithms.

To summarize, our results illustrate:

1. Formulation 3 is very strong. It almost always produces integral solutions and
can be used to solve problems of a moderate size (3 DC'’s, 30 stores, 30 time

periods).

2. All the heuristic algorithms produce near optimal solutions for large scale prob-

lems.

3. The Lagrangian Pull heuristic performed the best in most cases, followed by
the Pricing algorithm, showing that pricing mechanisms yield better solutions

than local search techniques.

4. The ADP enhancement enables a simple algorithm like the Basic Pull to achieve

solutions that are comparable to the best heuristic.
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Table 5.1: Computational Results

Test Problem 1 2 3 4 5 6
DC'’s 1 1 3 3 3 3
Stores 10 10 30 30 30 30
Time Periods 10 20 20 30 30 30

Formulation 1
- Variables
- Constraints

462 902 2706 | 4026 | 4026 | 4026
264 484 1452 | 2112 | 2112 | 2112

Formulation 2
- Variables
- Constraints

1210 | 4620 | 13,860 | 30,690 | 30,690 | 30,690
1210 | 4620 | 13,860 | 30,690 | 30,690 | 30,690

Formulation 3
- Variables
- Constraints

3110 | 12,220 | 36,660 | 81,990 | 81,990 { 81,990
3200 | 12,400 | 37,200 | 82,800 | 82,800 | 82,800

Optimal

4,550 | 8,960 | 26,880 | 40,098 | 37,616 | 37,669

Basic Pull
- with ADP

4,885 | 9,744 | 29,232 | 43,413 | 39,216 | 39,344
4,646 | 9,530 | 28,815 | 42,870 | 38,525 | 38,753

Single Shift
- with ADP

4814 | 9,673 | 29,019 | 43,398 | 39,131 | 39,230
4,596 | 9,306 | 28,747 | 43,308 | 39,100 | 39,167

Multiple Shift
- with ADP

4831 | 9,674 | 29,022 | 43,245 | 39,040 | 39,101
4,596 | 9,386 | 28,803 | 43,065 | 38,982 | 39,010

Pricing
- with ADP

4716 | 9,564 | 29,052 | 42,128 | 37,951 | 37,929
4,716 | 9,461 | 28,407 | 42,045 | 37,951 | 37,929

Lagrangian Pull

- with ADP

4615 | 9,339 | 28,281 | 43,242 | 39,216 | 39,344
4,615 | 9,250 | 28,281 | 43,161 | 38,997 | 39,255
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Chapter 6

Concluding Remarks

In this chapter, we summarize the findings of this research effort, discuss implementa-
tion issues, and point out areas for further study. To develop practical solution meth-
ods for a challenging supply chain optimization problem, we have used mathematical
programming, dynamic programming, and an approximate dynamic programming
(ADP) technique for enhancing algorithms. The main results that we have achieved

are:

1. A strong mixed integer programming formulation.
2. Good, practical algorithms, especially those that use a pricing mechanism.
3. The ADP enhancement can greatly improve a simple algorithm.

4. The formulations and algorithms can be extended to problems with multiple

products.

Formulating this problem as a mixed integer program requires very many vari-
ables and constraints in order to solve a problem of any significant size. Applying
Formulation 3 for medium-to-large scale problems would necessitate limiting the tirne
frame for backorders and advance orders. As computer power increases, this type of
formulation will become more viable. Formulation 4 could be explored further as a

solution method.
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The dynamic programming-based algorithms run efficiently and in tests yielded
near-optimal solutions. The local search algorithms, which shift individual lots or
multiple lot shipments, provide better solutions than the Basic Pull algorithm, but
the best performing aigorithms were those that used a pricing scheme. Further en-
hancements are certainly possible in this area.

The ADP enhancement, which can be applied to any heuristic algorithm, had
the greatest impact on the Basic Pull algorithm. This method enables us to convert
a sirﬁple algorithm into one that performs nearly as well as a much more complex
algorithm.

In keeping with the original purpose regarding implementation, the algorithms
are reasonably efficient and would not be difficult to integrate with existing data
bases and programs. Applying these algorithms would involve some modifications to
account for lead times and non-zero initial and final inventories.

There are several issues to be addressed if we extend the formulations and algo-
rithms to handle multiple products. Formulation 5 for multiple products was dis-
cussed at the end of Chapter 2. A small test of this formulation indicates that it
performs as well as Formulation 3, which it is based on. To develop multiple product
algorithms would require modifying the single location, dynamic lot-size algorithm
to accommodate multiple products. This could be done by extending the state space
definition of section 3.1, but we would then face the problem of increased dimension-
ality.

We have assumed throughout that demand is deterministic, thereby focusing on
the complexities of a general distribution network with fixed shipping costs. Future
research to solve this problem for the case of stochastic demand would obviously be

of great value.
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Appendix A

Everett’s Method

The Lagrangian relaxation used in the Lagrangian-based algorithm described in Chap-
ter 3 employs a method by Everett [11] for updating the Lagrangian multipliers. To
implement the Everett method, a slight modification was made to the method which
is described in detail by Stock-Patterson [33], and is given in an abbreviated form
here. The modification was to apply the method to equality constraints instead of
inequality constraints.

Let A¥ be the value of the Lagrangian multiplier for the jth constraint: a/z* = b;,

where z* is the solution at the kth iteration.

If ajz* > b; then M+ = Ak 4 6%,

If a

1,k . k+1 _ \k _ sk
;L7 < bj then Aj = A} — 67,

where the parameters 6} are updated by:

If (a}z® — b;)(afz*~" — b;) > 0, then &t = ¢6F,
If (afz* — bj)(a;a:k" —b;) <0, then 5_;.‘“ = 625;-‘,
If (a}z* — bj)(a;-a:"‘1 —b;) =0, then 6;‘“ = 6;-‘.

In general, ¢, > 1 and €; < 1; the actual values that were used were 1.5 and 0.3,

respectively.
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Appendix B

Program Source Code

This appendix contains the C program source code (with C++ style comments) to .
perform the Basic Pull algorithm with the ADP enhancement option and to generate
the Cplex .LP file for Formulation 3. It also contains a description of the input data
file that the programs use.
The eight programs in their entirety are too lengthy for their codes to be printed

here. These programs are:

1. Formulation 1 generator.
2. Formulation 2 generator.
3. Formulation 3 generator.
4. Basic Pull algorithm.

5. Single Shift algorithm.
6. Multiple Shift algorithm.
7. Pricing algorithm.

8. Lagrangian Pull algorithm.
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B.1 Basic Pull Algorithm

This section contains the program source code for the Basic Pull algorithm. The
programs for the other four algorithms use the same functions that are in this program
but have the added features that are described in Chapter 3. The ADP function is

the same for all five algorithms.

//*#**#*#*##****#*****t*******t*##******#t**##**********##*

// pull.cpp Basic Pull Algorithm
// To run: pull filename(.dat assumed) switch(-a or -h)

#include <stdio.h>
#include <stdlib.h>

#include <string.h>

void adp(void);

void driver(void);

void loadup(FILE *fp);

void dp(bool backlog,double fixcost,long node);
void pullstore(void);

void pulldc(void);

void cleardp(void);

void showpull(void);

#define MAXNODES 50
#define MAXARCS 100
#define MAXTIME 110
#define MAXLINE 80

long NODES, ARCS, STORES, TIMES;
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struct Node { long NId;
double NHolding;
double NPenalty;
long NBeglnvy;
long NFinInvy;
long NType;
long NSource; // source node id or zero if factory
double NPullMinCost;
long NPullShipQty[MAXTIME];
long NPullDemand [MAXTIME] ;
long NPullShipments;
int ZSet [MAXTIME] ;
int ZPolicy[MAXTIME] ;
long NTotDemand;
long NDemand [MAXTIME]; };

struct Arc { long AId;
long NFrom;
long NTo;
long ADelay;
double AFixCost;
double AVarCost; };

struct StateNode {long SInventory;
double SInvyCost;
double SCost2Go;
long SState2Go;};

struct Node NodeTable [MAXNODES];
struct Arc ArcTable[MAXARCS];
struct StateNode SS[MAXTIME] [MAXTIME];
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bool backlog = true;

double totpullmin; /* global */

[/ FehkkkEkknkkRRkERkEkk MAIN PROGRAM e o e o o o o g o o e o ok ko

irt main(int argc,char *argv([])
{

FILE * fp;

char * pchar;

char probname [MAXLINE];

char filename [MAXLINE];

int namelen = 0;

if (argc<3)
{
printf("Usage: PULL filename switch(-a,-h)\n");
exit(1);
}

pchar = argv[1];

for (int ctr=0;*pchar != ’\O’;ctr++,pchar++,namelen++)

probname[ctr] = #pchar;

probname [namelen] = ’\0’;

printf ("Problem: %s\n",probname);

strcpy(filename,probname) ;

strcat (filename,".dat");
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if ((fp=fopen(filename,"r"))==NULL)
{
printf("Can’t open problem data file\n");
exit (2);
}
loadup(fp);

if (strcmp(argv(2],"-a")==0)
adp();
else

driver();

fclose(fp);

return C;

}

J/  EEEEkkkk ok kR kR Rk ADP FUNCTION e o o a0 ok o o ook ok ok

void adp(void)
{
long node,t;

double solution_0,solution_1;

for (t=0;t<TIMES;t++)

{
for (node=0;node<NODES;node++)
{

if (NodeTable[node] .NType != 3) continue; // stores

NodeTable[node] .ZSet[t] = 1;
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NodeTable [node] .ZPolicy[t]

driver();

solution_O0 = totpullmin;

NodeTable [node] .ZPolicy[t]

driver();

solution_1 = totpullmin;

NodeTable [node] .ZPolicy[t]

0; // Try O path

1; // Try 1 path

(solution_0 < solution_1) ? 0 : 1;

printf("node %d time %d Sol_0 %f Sol_1 %i\z".

node,t,solution_0,solution_1);

[/ Rk Rk

void driver(void)
{

cleardp();
pullstore();
pulldc();

// showpull();

}

[/ R kKK CLEARDP FUNCTION

void cleardp(void)

{
long k,t;

for (k=0;k<NODES;k++)
{
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NodeTable [k] .NPullMinCost = 0.0;
NodeTable [k] .NPullShipments = 0;

for (t=0;t<TIMES;t++)
{
NodeTable (k] .NPullShipQty[t] = 0;
NodeTable [k] .NPullDemand[t] = 0;

// *exxxxxxxxxxxkx  PULLSTORE FUNCTION e ok o ko Ok ok o ok ok

void pullstore(void)

{
double fixcost,varcost,invycost;
long stage,state,rnode,invyin,invyout,shipqty,source;

long nextstate,shipments,beginvy,inventory;

// For each retail node, execute DP to get shipment schedule

for (rnode=0;rnode<NODES;rnode++)

{
if (NodeTable[rnode] .NType i= 3) continue; // retail=3

int rncdeid = NodeTable[rnode] .NId;

source = NodeTable[rnode] .NSource;

for (int jarc=0;jarc<ARCS;jarc++)
{
if (ArcTable[jarc].NTo==rnodeid)
{
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fixcost = ArcTable[jarc].AFixCost;
varcost = ArcTable[jarc].AVarCost;
}
}

// set up inventory costs at each stage and state

invyout = 0;

for (stage=1;stage<TIMES;stage++)
{
invyout += NodeTable[rnode] .NDemand([stage-1];

invyin = 0;

for (state=0;state<=TIMES;state++)
{
if (state > 0)
invyin += NodeTable[rnode] .NDemand[state-1];
beginvy = NodeTable[rnode] .NBegInvy;
inventory = beginvy + invyin - invyout;
invycost = (inventory >= 0)7?
(inventory * NodeTable([rnode].NHolding) :
(-inventory * NodeTable[rnode] .NPenalty);
SS[stage] [state] .SInventory = inventory;
SS(stagel [state] .SInvyCost = invycost;

}
}

dp(backlog,fixcost,rnode) ; // execute DP with backlog

// At the conclusion, cost to go at (0,0) is optimal

NodeTable [rnode] .NPullMinCost = SS[0] [0] .SCost2Go;
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// Save the resulting shipping schedule for this store.

/* S-Sequence code - used in Single and Multiple shift algs.

/* S(0)=0,...,S(TIMES)=TIMES =/

long node2go = 0;

for (stage=0;stage<=TIMES-1;stage++)

{
NodeTable [rnodel .NSequence [stage]

node2go;

node2go =

SS[stagel [node2go] .SState2Go;

}
NodeTable [rnode] .NSequence [TIMES]

TIMES;
/* END of S-Sequence code */

shipments = O;
stage = 0;

state = 0;

while(state<=TIMES-1)
{

nextstate = SS[stage] [state].SState2Go;

shipqty = 0;
if (nextstate != state)
{

for (int s=state;s<nextstate;s++)

{
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shipqty += NodeTable[rnode] .NDemand[s] ;
/* In shift algs.*/ NodeTable[rnode] .NSchedRec[s] = stage;
}
shipments++;
NodeTable [rnode] .NPullShipQty [stagel=shipqty;
// accumulate shipqty as pull demand at the source DC
if (source)
NodeTable [source-1] .NPullDemand [stage]
+= shipqty;
state = nextstate;
}
stage++;
}
NodeTable [rnode] .NPullShipments = shipments;
}

return;

// *xxxsxxxxxsxssxkxx  PULLDC FUNCTION o e o o Ok R koo

void pulldc(void)

{

double fixcost,varcost,invycost;

long stage,state,dcnode,invyin,invyout,shipqty;

long nextstate,shipments,beginvy,inventory;

totpullmin=0.0; // this is global

// For each DC node, execute DP to get shipment schedule

// but do not allow backlogging.

for (dcnode=0;dcnode<NODES;dcnode++)
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if (NodeTable[dcnode] .NType != 2) continue; // DC=2

int dcnodeid = NodeTable[dcnode] .NId;

for (int jarc=0;jarc<ARCS;jarc++)

{
if (ArcTable[jarc].NTo==dcnodeid)
{
fixcost = ArcTable[jarc].AFixCost;
varcost = ArcTable[jarc].AVarCost;
}
}

for (int t=0; t<TIMES; t++)

NodeTable [dcnode] .NPullShipQty[t] = O;

// set up inventory costs at each stage and state

invyout = 0;

for (stage=1;stage<TIMES;stage++)

{
invyout += NodeTable[dcnode].NPullDemand[stage-1];

invyin = 0;

for (state=0;state<=TIMES;state++)
{
if (state > 0)
invyin += NodeTable[dcnode] .NPullDemand[state-1];
beginvy = NodeTable[dcnode] .NBegInvy;

inventory = beginvy + invyin - invyout;
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invycost = (inventory >= 0)7?
(inventory * NodeTable[dcnode] .NHolding) :
(-inventory * NodeTable[dcnode].NPenalty) ;
SS[stage] [state] .SInventory = inventory;

SS[stage] [state] .SInvyCost = invycost;

dp(!backlog,fixcost,dcnode); // execute DP without backlog

// At the conclusion, cost to go at (0,0) is optimal

NodeTable [dcnode] .NPullMinCost = SS[0] [0] .SCost2Go;

// Save the resulting shipping schedule for this DC

shipments = 0;

0;
0;

stage

state

while(state<=TIMES-1)

{
nextstate = SS[stage] [state] .SState2Go;
shipqty = 0;
if (nextstate != state)
' {

for (int s=state;s<nextstate;s++)

shipqty += NodeTable[dcnode] .NPullDemand[s];

shipments++;
NodeTable [dcnode] .NPullShipQty[stage]l=shipqty;

state = nextstate;
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}

stage++;
}
NodeTable[dcnode] . NPullShipments = shipments;
}

for (int k=0;k<NODES;k++)
totpullmin += NodeTable([k].NPullMinCost;

printf ("Pull - Total Min Cost = %f\n",totpullmin);

return;

// LIS 2T TR L L L DP FUNCTION K K O KR K

void dp(bool backlog,double fixcost,long node)
{
double mincost,arccost,cost;

long timelimit,stage,state,nextstate,node2go,startstate,begstate;

SS[0][0] .SCost2Go = 0;
SS[0] [0] .SState2Go

0;
SS[TIMES] [TIMES] .SInventory = 0;
SS[TIMES] [TIMES] .SInvyCost = O;
SS[TIMES] [TIMES] .SCost2Go = 0;
SS[TIMES] [TIMES] .SState2Go = 0;

// Backward DP algorithm, where node = (stage,state)
// The initial node is (0,0) Final node=(TIMES,TIMES)

for (stage=TIMES-1;stage>=0;stage--)
{
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if (stage==0)

timelimit = O;

else

timelimit = TIMES;

if (backlog)

begstate = 0;

else

begstate = stage;

for (state=begstate;state<=timelimit;state++)

{

mincost = 99999999;
if (stage==TIMES-1)
startstate = TIMES;
else
if (!'backlog &t state==begstate)
startstate = state + 1;
else
startstate = state;
for (nextstate=startstate;nextstate<=TIMES;nextstate++)
{
if (nextstate==state)
arccost = SS[stage+1] [nextstate].SInvyCost;
else
arccost = fixcost + SS[stage+1] [nextstate].SInvyCost;

cost = arccost + SS[stage+1] [nextstate] .SCost2Go;

if (NodeTable([node] .ZSet [stage])
{
if ((NodeTable[node].ZPolicy[stage]==1) &&

(nextstate==state)) // must ship

84



cost = 999999999,
if ((NodeTable[node].ZPolicy[stage]==0) &&
(nextstate!=state)) // can not ship

cost = 999999999;

if (cost < mincost)
{

mincost = cost;

node2go = nextstate;

}
SS[stage] [state] .SCost2Go = mincost;

SS[stage] [state] .SState2Go = node2go;

}

// At the conclusion, cost to go at (0,0) is optimal

return;

}

// w*exxverrnpsnsrnrnnn SHOWPULL FUNCTION ekssasdonsonssorhk

void showpull(void)

{
long k,t;

for (k=0;k<NCDES;k++)
{
printf("NodeId %d Pull Min Cost %f Shipments %d\n",
NodeTable[k] .NId,
NodeTable [k] .NPullMinCost,



NodeTable [k] . NPuliShipments) ;

for (t=0;t<TIMES;t++)
printf("t %d ShipQty %d\n",t,NodeTable[k].NPullShipQty[t]);

V7R T T R T LOADUP FUNCTION 00 o o o o o o o

void loadup(FILE *£fp)

{

long j,k,nodeid,beginvy,fininvy,fromnode,tonode;

long delay,t,nfrom,nto,source,holding,penalty,fixcost;
long begndx,endndx,tdemand,varcost;

long d[10];

char line[MAXLINE];

// Read numbers of nodes, arcs, stores, and times

fscanf (fp,"%80s",line);

if (fscanf(fp,"’d %d %d %d",%NODES,&ARCS,&STORES,&TIMES) !=4)
{
printf ("Expecting numbers of nodes,arcs,stores,
times on first record\n");
exit (3);
}

// Read in node info
// assume nodes are labeled 1,2,...,n

// and will be stored in 0,1,...,n-1
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fscanf (fp,"%80s",1line);

for (k=0; k<NODES; k++)
{
if (fscanf(fp,"/d %d %d %d %d",&nodeid,&holding,&penalty,
&beginvy,&fininvy) != 5)
{ printf("Expecting node,holding,penalty,
beginvy,fininvy\n");

exit (4);

if ((nodeid < 1) || (nodeid > NODES))
{ printf("Node is out of bounds\n");
exit (5);
}
NodeTable[k] .NId = nodeid;
NodeTable [k] .NHolding
NodeTable [k] .NPenalty

holding/100.0;

penalty/100.0;
NodeTable [k] .NBegInvy

beginvy;

NodeTable [k] .NFinInvy = fininvy;
NodeTable [k] .NPullMinCost = O;
NodeTable[k] .NPullShipments = 0;
NodeTable [k] .NSource = 0;

for (j=0;j<TIMES;j++)
{
NodeTable [k] .NDemand[j] = O;
NodeTable[k] .NPullShipQty[j] = 0O;
NodeTable[k].ZSet[j] = 0;
NodeTable[k] .ZPolicy[j]l = 0;
}
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// Read in arc info

fscanf (fp,"%80s",line);

for (k=0;k<ARCS;k++)
{
if (fscanf(fp,"%d %d %4 %d %d",&fromnode,&tonode,
&delay,&fixcost,&varcost) !=5)
{
printf("Expecting from,to,delay,fixed,variable\n");
exit(6);
}
ArcTable[k] .AId = k+1;
ArcTable[k] .NFrom = fromnode;
ArcTable[k] .NTo = tonode;
ArcTable[k] .ADelay = delay;
ArcTable[k] .AFixCost

fixcost/100.0;
ArcTable[k] .AVarCest

varcost/100.0;
ArcTable [k] .pNFrom = NULL;
ArcTable[k] .pNTo = NULL;

NodeTable[tonode~1] .NSource = fromnode;

// Read in store demand in groups of 10

fscanf (fp,"%80s",line);

for (k=0;k<STORES;k++)
{ for (t=0;t<TIMES;t+=10)
{
if (fscanf(fp,"/d /d %d %d %d %d %d %d %d %d %d %d %d",

88



&nodeid, &begndx,&endndx,&d[0] ,&d (1] ,&d[2],&d[3],
&d (4] ,&d([5],&d[6],&d[7],&d[8],&d[9]) !'= 13)
{printf ("Expecting node,time,demand\n");
exit(7);
}
for (j=begndx;j<=endndx;j++)
{
NodeTable [nodeid-1] .NDemand[j] = d[j-t];
// accumulate up the tree
source = NodeTable[nodeid-1] .NSource;
wvhile (source)
{
NodeTable [source-1] .NDemand[j] += d[j-t];

source = NodeTable[source-1] .NSource;

// calculate total demand

for (k=0;k<NODES;k++)

{

tdemand = 0;

for (t=0;t<TIMES;t++)

tdemand += NodeTable[k] .NDemand[t];
NodeTable[k] .NTotDemand = tdemand;
}

/* Figure out the types of each node:

1 == factory
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N
L}

DC or warehouse

3 = retail store
*/
for (k=0;k<NODES;k++)
{
nfrom =0;
nto = 0;
for (j=0;j<ARCS;j++)
{
if (ArcTable([j].NFrom == NodeTable[k].NId) nfrom++;
if (ArcTable[j].NTo == NodeTable[k].NId) nto++;
}
if ((nfrom == 0) & (nto == 0))
{ printf("Nfrom and Nto equal O\n");
exit(9);
}
if ((nfrom ==0) && (nto > 0)) NodeTable[k].NType = 3;
if ((nfrom > 0) && (nto > 0)) NodeTable([k].NType = 2;
if ((nfrom > 0) && (nto ==0)) NodeTable([k].NType = 1;
}
return;
}

B.2 Formulation 3 Generator

This section contains the program source code that is unique to the Formulation 3

Generator. The Loadup function is the same one used in the Basic Pull program

listed above.

//#*###**####t*##*#*t###**#*#i**##**‘#**#*****l#**#****#**#
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// form3.cpp Formulation 3 Generator

// To run: form3 filename(.dat assumed)

// Creates a .LP file for Cplex.

#include <stdio.h>
#include <stdlib.h>

#include <string.h>

void loadup(FILE *£fp);
void writelp(FILE *fplp);

#define MAXNODES 50
#define MAXARCS 100
#define MAXTIME 60
#define MAXLINE 80

long NODES, ARCS, STORES, TIMES;

struct Node { long NId;
double NHolding;
double NPenalty;
long NBeglnvy;
long NFinlnvy;
long NType;
long NSource;
double NPullMinCost;
long NPullShipQty[MAXTIME];
long NPullDemand [MAXTIME];
long NPullShipments;

long NTotDemand;
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long NDemand [MAXTIME]; };

struct Arc { long AId;
long NFrom;
long NTo;
long ADelay;
double AFixCost;
double AVarCost; };

struct Node NodeTable [MAXNODES] ;
struct Arc ArcTable[MAXARCS];

[/ HeEssssnsenasnnnkn MAIN PROGRAM

int main(int argc,char *argv(])
{

FILE = fp,fplp,fpord;

char * pchar;

char probname [MAXLINE];

char filename [MAXLINE];

int namelen = O0;

if (argc<2)
{

printf("Usage: %s FILE\n","form3");

exit(1);
}
pchar = argv([1];

A2 R 2 2 Y] L)

for (int ctr=0;*pchar != ’\0’;ctr++,pchar++,namelen++)

probname[ctr] = *pchar;
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probname [namelen] = ’\0’;
printf("Problem: %s\n",probname);
strcpy(filename,probname) ;

strcat(filename,".dat”);

if ((fp=fopen(filename,"r"))==NULL)
{
printf("Can’'t open problem data file\n");
exit(2);
}
strcpy(filename,probname) ;

strcat(filename,".1lp");

if ((fplp=fopen(filename,"w"))==NULL)
{

printf("Can’t open LP file\n");
exit(2);

}

loadup(fp);

writelp(£fplp);

fclose(fp);

fclose(fplp);

return 0;

¥

[/  wEbeEREmkmkk kiR WRITELP FUNCTION o o o o o oo o ok ok

void writelp(FILE *fplp)
{
long t,i,j,k,nodeid,fromnode,tonode,demand;

double holding,penalty,holdcost,pencost,afixcost,avarcost;
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// Objective function

fprintf(fplp,"Minimize\n");

for (k=0;k<ARCS;k++)
{
fromnode = ArcTable([k] .NFrom;
tonode = ArcTable[k].NTo;
ArcTable[k] .AFixCost;
ArcTable[k] .AVarCost;

afixcost

avarcost

for (t=0;t<TIMES;t++)
{
fprintf (fplp,"+%0.2£2%02d_%02d_%02d"
afixcost,fromnode,tonode,t);

if (((t%5)==4) || (t==TIMES-1)) fprintf(fplp,"\n");

/* now for the q variables */

for (k=0;k<NODES;k++)
{
if (NodeTable[k].NType != 3) continue;

nodeid = NodeTable[k].NId;

holdcost

NodeTable [k] .NHolding;

pencost NodeTable [k] .NPenalty;

for (t=0;t<TIMES;t++)
{
if (£ > 0)
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for (i=0;i<=t;i++)
{
holding = (t-i)*holdcost;
fprintf (£plp,"+%0.2£q%02d_%02d_%02d",
holding,nodeid,i,t);
if (((i%5)==4) || (i==TIMES-1)) fprintf(fplp,"\n");

}
if (t < TIMES-1)
{
for (i=t+1;i<TIMES;i++)
{
penalty = (i-t)*pencost;
fprintf (£plp,"+%0.2fq%02d_%02d_%02d",
penalty,nodeid,i,t);
if (((i%5)==4) || (i==TIMES-1)) fprintf(fplp,"\n");

}
for (t=0;t<TIMES;t++)
{
for (i=0;i<TIMES;i++)
{
fprintf (fplp,"+%0.2£x%02d_%02d_%02d",
holdcost,nodeid,i,t);

if (((i%5)==4)||(i==TIMES-1)) fprintf (fplp,"\n");

// Constraints -- meet store demand - 1st echelon.
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fprintf (fplp,"Subject to\n");

for (k=0;k<NODES;k++)

{
if (NodeTable[k].NType != 3) continue;
nodeid = NodeTable([k].NId;
for (t=0;t<TIMES;t++)
{
demand = NodeTable [k] .NDemand[t];
fprintf (fplp,"d’%02d_%02d: ",nodeid,t);
for (i=0;i<TIMES;i++)
{
fprintf (fplp,"+q%02d_%02d_%02d" ,nodeid,i,t);
if (((i%5)==4) || (i==TIMES-1)) fprintf(fplp,"\n");
}
fprintf (fplp,"=/d\n" ,demand) ;
}
}
// Constraints -- meet store demand - 2nd echelon

for (k=0;k<NODES;k++)
{
if (NodeTable([k].NType != 3) continue;

nodeid = NodeTable (k] .NId;
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for (t=0;t<TIMES;t++)

{
demand = HodeTable[k].NDemand[t];

fprintf(fplp,"d2%02d_%02d: ",nodeid,t);

for (i=0;i<TIMES;i++)
{
fprintf (fplp,"+y’%02d_%02d_%02d" ,nodeid,i,t);
if (((i%5)==4) || (i==TIMES-1)) fprintf(fplp,"\n");

fprintf (fplp,"=%d\n" ,demand) ;

// Constraints - fixed charge forcing - stores

for (j=0;j<ARCS;j++)
{
fromnode = ArcTable[j].NFrom;
tonode = ArcTable[j].NTo;
if (NodeTable[tonode-1].NType!=3) cortinue;

for (t=0;t<TIMES;t++)

{
demand = NodeTable[tonode-1] .NDemand([t];

for (i=0;i<TIMES;i++)
{
fprintf (fplp,"£%02d%02d%02d: %dz%02d_%02d_%02d-
q7%02d_%02d_%02d>=0\n" , tonode, i, t,

demand, fromnode,tonode,i,tonode,i,t);
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if (((i%5)==4) || (i==TIMES-1)) fprintf(fplp,"\n");

// Constraints - fixed charge forcing - 2nd echelon

for (j=0;j<ARCS;j++)

{
fromnode = ArcTable[j].NFrom;
tonude = ArcTable[j].NTo;

if (NodeTable[tonode-1] .NType!=3) continue;

for (t=0;t<TIMES;t++)
{
demand = NodeTable[tonode-1] .NDemand[t];

for (i=0;i<.IMES;i++)
{
fprintf (fplp, "£2%02d7%02d%02d: %dz%02d_%02d_%02d-
y402d_%02d_%02d>=0\n",tonode,1i,t,
demand,1,fromnode,i,tonod=2,i,t);

if (((i%5)==4) || (i==TIMES-1)) fprintf(fplp,"\n");

// Balance of flow at DC inventory nodes

for (k=0; k<NODES; k++)
{
:f (NodeTable[k].NType != 3) continue;

98



nodeid = NodeTable[k] .NId;

for (t=0;t<TIMES;t++)
{
for (i=0;i<TIMES;i++)
{
fprintf (fplp,"db%02d%02d%02d: ",k,i,t);

if (i==0)

{
fprintf (£plp, "+x%02d_%02d_%02d" ,nodeid,i+1,t);
fprintf (fplp,"-y%02d_%02d_%02d+q%02d_%02d_%024",

nodeid,i,t,nodeid,i,t);
if ((i>0)&&(i<TIMES-1))
fprintf (fplp ,"+x%02d_Y%02d_%02d~-x%024_%024_%024",
nodeid,i+1,t,nodeid,i,t);
fprintf (£plp, "-y%02d_%02d_%02d+q%02d_%02d_%02d",
nodeid,i,t,nodeid,i,t);
if (i==TIMES-1)
fprintf (£plp,"-x%02d_%02d_%02d" ,nodeid, i,t);
fprintf (fplp,"-y%02d_%02d_%02d+q%02d_%02d_%02d",

nodeid,i,t,nodeid,i,t);

fprintf(fplp," = O\n");
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// Binaries - formerly Bounds and Integer variables

fprintf (fplp,"Binaries\n");

for (j=0;j<ARCS;j++)

{
fromnode = ArcTable[j].NFrom;
tonode - ArcTable(j].NTo;
for (t=0;t<TIMES;t++)
{
fprintf (fplp,"2%02d_%02d_%02d ",fromnode,tonode,t);
if (((t%5)==4) || (t==TIMES-1)) fprintf(fplp,"\n");
}
}
fprintf (fplp,"End\n");

B.3 Input Data File

The input data file follows this format:

1. A line of text is required as a header record that separates each group of data

records.
2. The data records consist of numbers separated by blanks.

3. Nodes are number sequentially starting at 1.

4. The first data record has the number of nodes, arcs, stores, and time periods.

5. The second group of data records has for each node, the holding cost, the penaity

cost, and the initial and final inventory (which are usually set to zero). The
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cost fields assume a two-digit decimal.

6. The third group of data records has for each arc, the from-node, the to-node,
the lead time (which we set to zero), the fixed shipping cost, and the variable

shipping cost (ignored).

7. The fourth group of data records has the demand data in sets of ten time
periods: the store node number, the starting time period, and the ending time

period, followed by ten demand numbers.

The following is the input data file for test problem 1:

Nodes-Arcs-Stores-Periods

12 11 10 10
Node-Holding-Cost-Penalty-cost-Initial-invy-Final-invy
1 000 000 0 O

200 1000 0 O

300 500
300 500
300 500

300 500
300 500
300 500
10 300 500 0 O

© 0O N O 0 s W N

0
0
0
300 500 O
o
o
0

o O O ©o © ©o o

11 300 500 0 O

12 300 500 0 O
Node-from-Node-To-Time-delay-Fixed-cost-Variable-cost
1 2 0 10000 000

2 3 0 5000 000

2 4 0 5000 000

2 5 0 5000 000

2 6 0 5000 000
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2 7 0 5000 000

2 8 0 5000 000

2 9 0 5000 000

2 10 0 5000 000
2 11 0 5000 000
2 12 0 5000 000
Store-node-start-time-end-time-10-demands-zero-£ill
3 010 10 10 10 10 10 10 10 10 10 10

4 010 6 7 8 9 10 11 12 13 14 15

5 01015 14 1312 1110 9 8 7 6
6 010 515 515 515 5

7 010 8 1012 8 10 12 8

8 010 51015 510 15 5 10 15 10
9 010 8 9101112 8 9

15 5 15
12 12 10

10 11 12
10 0 10 12 11 10 9 8 12 11 10 9 8
11010 8 910 11 12 12 11 10 9 8
12 010 51015 10 5 10 15 10 5 10
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