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Physics-Based Learning Models for Ship Hydrodynamics

G.D. Weymoutha, Dick K.P. Yuea

aMassachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, USA

Abstract

We present the concepts of physics-based learning models (PBLM) and their relevance
and application to the field of ship hydrodynamics. The utility of physics-based learning is
motivated by contrasting generic learning models (GLM) for regression predictions which
do not presume any knowledge of the system other than the training data provided, with
methods such as semi-empirical models which incorporate physical-insights along with
data-fitting. PBLM provides a framework wherein intermediate models (IM), which
capture (some) physical aspects of the problem, are incorporated into modern GLM
tools to substantially improve the predictions of the latter, minimizing the reliance on
costly experimental measurements or high-resolution high-fidelity numerical solutions.
To illustrate the versatility and efficacy of PBLM, we present three wave-ship interaction
problems: (i) at speed waterline profiles, (ii) ship motions in head seas, and (iii) three-
dimensional breaking bow waves. PBLM is shown to be robust and produce error rates
at or below the uncertainty in the generated data, at a small fraction of the expense of
high-resolution numerical predictions.

Keywords: Computers in Design, Hull Form Hydrodynamics, Seakeeping, Machine
Learning, CFD

1. Introduction

The state of the art in computational fluid dynamics (CFD) has advanced rapidly
in the last decades, complementing advances in whole field quantitative experimental
measurements. Advanced numerical methods and high performance computing capabili-
ties have produced high fidelity simulations of ship hydrodynamics such as time domain
predictions of the motions and flow around a fully appended ship, resolving details of
the breaking bow and stern waves and the underlying turbulent flow (e.g. Weymouth
et al., 2007; Carrica et al., 2007). Such first-principle physics-based tools achieve accu-
racy through minimization of numerical and user errors. Despite increases in computing
resources, these methods are still extremely computationally expensive (requiring hun-
dreds of millions of grid points and hundreds of thousands of CPU hours), and generally
still depend on highly educated and experienced users. As such, they are still mainly
appropriate only for final stages of the design process.
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Learning-based models offer an attractive alternative to first-principle physics-based
simulations. Such models can be extremely fast, with design evaluations often requiring
less than a second on personal computers. In contrast to first-principle methods, learning
models require an available set of example (or training) data, which we denote by: {yi|xi}
for i = 1 . . . n, where y is the dependant variable to be estimated (e.g., drag, heave motion,
etc) and x is the vector of independent variables (e.g., ship speed, incident wave frequency,
...). This data is typically obtained from experiments or high-fidelity simulations. The
learning model seeks to approximate the unknown function f from which the example
data are generated: y = f(x) + ε, where ε is the random error in the measured/example
data. The learning model fG approximating f :

fG(x|c) ≈ f(x) (1)

is ‘trained’ by optimizing internal coefficients, c, to minimize error on the training data.
The predictive error of the model is then tested on points held out of the training set.

In this work, we will use the name generic learning model (GLM) for models fG which
approximate the unknown function f using no system-specific information other than the
training set. There is a vast literature for GLMs, from basic least-squares polynomials
fits to splines to non-linear multi-layer neural networks. A common limitation of all
GLMs is that they can only make accurate test predictions when available training data
completely maps out the test space. Regions of the design space with few example data
have a high risk of prediction errors, and filling in the gaps requires costly experiments
or computations. In addition, more complex physical systems typically necessitate more
elaborate GLMs which must be trained with correspondingly larger sets of examples
(Evgeniou et al., 2000). This can also lead to over-fitting; defined as when an overly
flexible GLM is used to reduce the training error, only to find poor generalization to the
unseen test data (Vapnik, 1995; Burges, 1998; Girosi et al., 1995). Utilizing techniques
such as cross validation (Golub et al., 1979) and regularization can help minimize over-
fitting (and will be exploited herein) but they do not address the systemic concern: a
generic learning model does not know anything about the system other than the data it
is provided.

This deficiency in GLMs is a well established historical problem and significant effort
has been dedicated to the task of relieving the data dependence of such regression models
through the addition of some level of ‘physical insight’. As an example, consider the
scaling of the resistance of a ship proposed in Froude (1955). In modern terminology,
Froude’s insight was that a ship’s resistance is a function of the Reynolds number Re
and the Froude number Fr and that these factors act independently. In other words, the
total resistance coefficient CT can be approximated by an additive model

CT = f(Re, Fr,xgeo) ≈ Cr(Fr,xgeo) + Cf (Re)

where Cf , the friction coefficient is assumed to be a function only of Re, and Cr, the
residuary resistance coefficient is a function only of Fr (and the ship geometry represented
by input geometry parameters xgeo). The decomposition of the Re dependence is a
physical insight which enables the friction model to be determined independently using
flat plate data, thereby allowing data from Fr-scale model tests to be used in predictions
of full-scale ship resistance.
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The 1957 ITTC semi-empirical model for the friction coefficient Cf is another example
of a data-based model incorporating physical insights obtained from turbulent flat-plate
boundary layer (Granville, 1977):

Cf (Re|c) =
c1

(logRe− c2)2
. (2)

In (2), c = {c1, c2}T are the internal model coefficients, and setting c1 ≈ 2 and c2 ≈ 0.075
result in model predictions which agree with the experimental resistance data taken from
a fully submerged flat plate to within 9% over a wide range in the input (Re = 105 ∼
1010). In comparison, a generic model function fG in polynomial form with the same
number of free parameters

fG(Re|c) = c1 + c2Re

and a least-squares fit leaves regions of the data with more than 20% error. The simple
semi-empirical model (2) illustrates how physics-based insights in a learning (regression)
model can greatly increase predictive accuracy without increasing the number of free
parameters.

Extending this general approach to predict the behavior of systems which are too
complex to be modeled by an analytic semi-empirical model is an active research topic.
Successful examples in the naval architecture literature are the ONR ship and submarine
maneuvering prediction models of Hess et al. (2006); Faller et al. (2005, 2006). Unlike
time-domain unsteady CFD ship motions predictions (such as Weymouth et al. (2005);
Carrica et al. (2007)), these models feed pre-computed steady-state force predictions
(along with other system variables such as relative speed and bearing) into a recursive
neural network learning model to generate predictions of the resulting ship motions in
real-time. Such research illustrates that a combination of a GLM (the recursive neu-
ral network) and a simplified physics-based model (the steady-state force predictions)
with high-fidelity data can produce useful design tools. The ONR learning model has a
complex structure which has been specially designed for maneuvering predictions. The
question we seek to answer is whether there is a general framework for such ideas that
can be applied to a variety of ship hydrodynamics and ocean engineering problems, tak-
ing advantage of physics-based insights that might be obtained from preliminary design
tools such as potential flow models.

In this work we develop a general approach for physics-based learning models (PBLM)
which extends historical approaches such as analytic semi-empirical models and expands
upon modern developments such as the ONR maneuvering predictions. The key idea
behind PBLM is the robust incorporation of one or more physics-based intermediate
models (IM) within a GLM. Rather than increasing the complexity of fG to improve
the fit, PBLM complements a simple GLM with expanded basis functions constructed
from fast and robust physics-based IM(s). By complementing the GLM and the training
data with physical behaviors (and constraints) inherent in the IM, we demonstrate that
PBLM obtains significantly improved accuracy while reducing data dependence and the
risk of over-fitting.

We develop our PBLM function fP from three primary components: a training data
set {y|x}; a generic learning model (GLM) defined by fG ; and a physics-based inter-
mediate model (IM) defined by fI . (While the methodology easily generalizes to the
use of more than one IM, for clarity and simplicity we assume hereafter only one IM.).
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The PBLM framework applies to many simple and robust GLMs, but to illustrate the
power of PBLM, we use regularized non-parametric GLMs, which are explained in §2.1,
after covering some fundamental topics in machine learning. In §2.2, our method for
constructing fP from these components is developed using a simple example of the tran-
sient development of a body in resonant motion. To demonstrate the usefulness and
performance of PBLM to realistic ship hydrodynamics applications, we apply this new
framework to three wave-ship interaction problems: (i) at speed waterline elevation pro-
files over a range of Froude numbers (§3.1), (ii) pitch and heave response of a ship with
forward speed (§3.2), and (iii) breaking bow wave characteristic predictions for variable
ship speed and breadth (§3.3). The first two cases utilize the Wigley hull and are chosen
because of their multi-dimensional input space and the wealth of classical experimental
data for this canonical hull form. The last case introduces geometry dependence, non-
linear wave mechanics, and uses computational sources for both the training data and
the physics-based intermediate model. In all cases, we show that the PBLM approach
achieves accuracy levels equivalent to high-fidelity experimental or CFD predictions, are
significantly less data dependant than generic learning models, and have very small over-
all prediction costs.

There are many other branches of numerics which are related to the current work
including the field of data assimilation using ensemble Kalman filtering (Kalman, 1960;
Evensen, 2003) and the field of multi-level optimization methods such as Approxima-
tion and Model Management Optimization (AMMO: Alexandrov et al. (1998, 2001)).
The ensemble Kalman Filter (enKF) is widely used in many fields such as climate and
weather forecasting which rely on simplified models. AMMO is used to in many types
of engineering optimization problems where evaluating approximate objective functions
leads to great computational saving.

The current work is influenced by these methods and others which use multiple levels
of information to develop predictions, but the problem we have set out for ourselves is
distinct. The the enKF is used to recursively filter data using large ensembles of simple
forecasting models with randomized parameters. On the other hand, AMMO is utilized
to establish trust regions for the approximate objective function to ensure convergence to
the optimum of the true objective function. In contrast, the goal of the PBLM is to use an
intermediate model with no free parameters to help generalize a small set of high fidelity
examples to achieve accurate predictions across the input space. This could be seen as
the sparse-data sparse-model limit of the filtering problem, or as an optimization problem
which requires accurate predictions of the full response space. With these distinctions
in mind, our development in the following section focuses on the literature of machine
learning from labelled data as it is most directly applicable to our problem setting.

2. Methodology

To support the development of our PBLM approach, we first present some key con-
cepts in machine learning. Consider a physical problem wherein we are given n data
points {yi|xi} for i = 1 . . . n generated by the unknown function f . The simplest generic
model of this function would be a weighted sum of the inputs x, ie

fG(x|c) = xT c (3)
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which is linear in the inputs and the parameters c. The model parameters are optimized
to minimize an error metric H(fG) such as the sum of squared error over the n points in
the training set:

H(fG) = ||yi − fG(xi)||2 =

n∑
i=1

[yi − fG(xi)]
2
.

Unfortunately, a linear superposition of the input parameters (3) rarely provides an
adequate fit to the data describing complex engineering systems. This can be improved
by expanding the degrees of freedom using a parametric model

fG(x|c) = γ(x)T c (4)

where γ(x) are a vector of generic basis functions, such as a polynomial basis (1, x, x2, . . .)T .
While the form of (4) is simple, it still leaves the complex matter of defining the basis
set γ. Using a low-dimensional basis with too few degrees of freedom will not help the
fit, and least-squares fitting of high-dimensional basis are prone to over-fitting and can
become numerically unstable.

Our main contribution to methodology is to introduce a physically motivated basis
via a physics-based intermediate model (IM) to increase accuracy without over-fitting.
This PBLM formulation is developed in §2.2, but first we consider a generic learning
model solution, non-parametric regularized learning.

2.1. Generic learning models using non-parametric regularization

We introduce two generic machine learning approaches to help reduce training error
without over-fitting; non-parametric regression and regularization. We discuss these
methods because they introduce concepts such as effective degrees of freedom, and form
the basis of the GLMs used in our PBLM approach.

Non-parametric regression methods such as splines and kernel interpolation ensure a
good fit to the training data by generating a generic basis function for each data point.
Typically non-parametric methods use a generic learning function of the form

fG(x|c) =

n∑
i=1

ciG(x− xi) =

n∑
i=1

ciγi(x) (5)

where G is a symmetric kernel function which is used to generate a generic basis functions
γi for every data point xi. Unlike a polynomial basis, these kernels are localized, e.g.,
a Gaussian kernel G(x) = exp(||x||2/σ), limiting the influence of each basis function to
a subregion of the input space. This enables the non-parametric model to accurately fit
the training data from a wide variety of systems. However, non-parametric models have
up to n degrees of freedom which makes them very prone to over-fitting.

Regularization (also known as ridge regression) reduces over-fitting by introducing a
‘statistical-insight’ into the GLM, namely: smooth predictions tend to generalize better
to unseen data. To regularize a GLM, the parameters are optimized by minimizing a
regularized error metric:

H(fG) = (1− λ)||yi − fG(xi)||2 + λJ(fG), (6)
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where the regularization function J(fG) is a term which penalizes the higher derivatives
of fG and λ is the regularization constant bounded by 0 ≤ λ < 1. The effect of regularized
learning is a reduction in the effective degrees of freedom, eDOF, of the GLM, given by

eDOF =

n∑
i=1

(1− λ)d2i
(1− λ)d2i + λ

(7)

where di are the eigenvalues of the linear system used to minimize Eq. 6.
The parameter λ determines the trade-off between data-fit and model smoothness.

Setting λ = 0 results in an unconstrained least squares model with eDOF=n. This
model would be flexible, but would over-fit the n training data points. When λ→ 1, the
function fG is constrained to be linear, with eDOF→ 0. This model would be robust,
but is not likely to predict the system behaviour accurately. An intermediate value of
λ is determined automatically as in Golub et al. (1979) by minimizing the generalized
cross validation error on the training set in an attempt to balance the desire for high
eDOF to fit the training data and the desire for low eDOF to smooth fG and improve
generalization.

We use three well-established versions of regularized non-parametric regression in our
applications below: thin plate regression splines (Wood, 2003, 2008), gaussian regulariza-
tion networks (Girosi et al., 1995; Burges, 1998), and support vector machines (Vapnik,
1995; Evgeniou et al., 2000; Scholkopf et al., 2000). In all cases, the regularized problem
is more numerically stable than least-squares and has a unique solution for the optimum
parameters, unlike non-linear methods such as neural networks. However, the model
performance is still dependant on the amount of training data and is highly sensitive to
the chosen value of λ (and any parameters in the kernel function G).

2.2. Physics-Based Learning Models

The regularized non-parametric GLMs presented in the preceding section are flexible
and offer a level of protection from over-fitting but they are still generic methods and
cannot make reliable predictions in data-sparse regions of the input space. We will reduce
this data dependence not by fine-tuning parameters or adopting more complex GLMs
but by enhancing these robust learning tools with physics-based information from an
intermediate model fI . Additionally, instead of trying to develop a new learning approach
for each new system, we develop a general PBLM approach wherein the physics-based
learning model fP is of the form

fP(x) = fG(x,ρ(x)), (8)

augmenting a simple GLM with a physics-based basis ρ to reduce data-dependence and
increase accuracy.

To illustrate the basic ideas and efficacy of PBLM, consider a simple model problem
of the transient startup from rest of the resonant harmonic motions, say corresponding
to initial development of the resonant response of a floating body in regular waves. For
simplicity, we assume the true motion is given by

f(t) = α tanh(βt) sin(ωt+ φ) (9)
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(a) Data-based GLM (b) IM and additive model (c) PBLM

Figure 1: PBLM example for the transient startup of harmonic motion. In all figures — is the true
system function f and • are the n=15 randomly sampled values of f with Gaussian noise of σ=10%.
In figure (a), − · − is the optimized Gaussian regularization network GLM fit. In figure (b), the true
function f is compared to −− the simple IM fI (11), and · · · the predictions of the additive model fA
(12). In figure (c) — is the prediction of PBLM (13) using the phase-shifted basis ρ. The PBLM results
are more than twice as accurate than either the GLM or the additive model, despite the small training
sample and the fact that the IM has 32% error.

where β is the startup time scale, ω is the frequency of the regular incident wave, and φ
phase difference between the response and the wave; and that we have a limited sample
of experimental data of this system

yi = f(ti) +N (σ), i = 1 . . . n, (10)

at n randomly sampled times, ti, where the N term is a zero-mean Gaussian noise in the
data (see Fig. 1).

The first approach is to fit (10) with a GLM. In this case, linear and parametric
GLMs give universally inadequate predictions because of the high frequency and variance
in the system response. Non-parametric GLM results are highly dependant on the form
of the kernel G, the regularization parameter λ, and the exact data sample provided.
Fig. 1(a) shows the predictions of an optimized Gaussian regularization network GLM.
The result are representative of a well-tuned model, with the fit being better in regions
with more data and worse in region with less, with an overall RMS error of 20%. The
predictions, however, are not robust, with high sensitivity to changes in the training data
and parameter values.

To improve the performance of the GLM for this sparsely sampled system, we intro-
duce a simple IM which captures merely the physics-based expectation that (a) in steady
state, the response should be harmonic with frequency ω; and (b) the initial resonant
response grows linearly in time. Without additional knowledge of the motion amplitude
or phase, or the time required to reach steady state, we construct an IM simply as, say,

fI(t) = t sin(ωt). (11)

This function, after appropriate scaling, is plotted in Fig. 1(b) and while qualitative
similarity to the true response, it has a quantitative root-mean square error (RMSE) of
over 30%.
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While (11) has low predictive accuracy, it encapsulates additional knowledge of our
system and can be used to improve the GLM prediction by supplementing the data with
this information. In this simple example, we could parametrize fI , turning it into a
semi-empirical model. However, this approach does not apply to general intermediate
models. The simplest way to use the IM as a ‘black-box’ is to treat the difference between
fI and the data as a nuisance variable and fit that error with a GLM. Taking this idea
one step further, we can use a linear additive model (Schölkopf and Smola, 2001; Wood,
2008)

fA(t|c) = fI(t)cρ + fG(t|cγ) (12)

which linearly weights the IM predictions with GLM predictions to obtain the best overall
fit to the data. The additive model is an improvement over the nuisance model because
the physics-based coefficient cρ is determined simultaneously with the generic coefficients
cγ . The nuisance and additive models incorporate information from intermediate models
in a general way, but they will only improve upon a GLM when the IM is a very good
predictor of the system. Fig. 1(b) shows that the additive model predictions for this
example system are only marginally better than the GLM results, with the RMSE near
16%. Additionally, the performance is still highly dependant on the details of the GLM
and the exact data sampled.

While the additive model is a step in the right direction, it is too reliant on the GLM
and the accuracy of the function fI . Our solution is to expand the physics-based degrees
of freedom into a representative basis using a Taylor expansion of fI (to provide gradient
information). This gives the learning model more information about the form of fI and
more flexibility in constructing a physics-based solution before relying on the generic basis
γ. Development and evaluation of an exact Taylor expansion for general IMs would be
a significant expense. However, one of the central advantages of shifting our information
burden from the data to the IM is that the IM can be evaluated anywhere very quickly,
not just at the x points where the data is available. Therefore, we can establish properties
of the IM, such as the local derivatives, using a finite difference approximation

ρ(x) =

(
fI(x),

fI(x+ ∆x)− fI(x−∆x)

2∆x
,
fI(x+ ∆x)− 2fI(x) + fI(x−∆x)

∆x2
. . .

)T
.

where the points x±∆x are not required to be in the set of points x for which we have
training data. Through linear combinations, the finite difference is equivalent to

ρ(x) = (fI(x), fI(x + ∆x), fI(x−∆x))T . (13)

This phase-shifted physical basis is equivalent to the derivative basis in the limit of ∆x→
0, is easily computable using the intermediate model fI , and enables the generation of
robust and accurate PBLMs. In cases where phase-shifting either left or right of a data
point moves past a physical boundary (such as zero speed) the offending term is simply
left out and the implied derivative reverts to a one-sided first-order approximation.

We develop two simple and robust methods of including the phase-shifted physical
basis ρ in our PBLM. First, we can construct a parametric additive model

fP(x|c) = ρ(x)T cρ + fG(x|cγ) (14)
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which complements the generic basis γ with the physical basis ρ. A non-parametric
version of the form of (5) can also be constructed using ρ to complement the input
space, i.e.,

fP(x|c) = fG(z|c) =

n∑
i=1

ciG(ρ(x)− ρ(xi))G(x− xi) (15)

where z ≡ (xT ,ρ(x)T )T . This weighted kernel formulation introduces physical-relevance
into the PBLM while utilizing the advantages of localized non-parametric regression.
The predictions using Eq. 15 are shown in Fig. 1(c). The accuracy is excellent, with
an RMSE of 8%, lower than the noise in the data and less than half of the GLM error.
Additionally, this performance level is robust to changes in the details of the GLM and
the training sample.

This simple one dimensional example turns out to be quite representative of the later
results for realistic complex problems. Furthermore, our PBLM construction above is
completely general, requiring no adjustment or modifications to produce predictions for
real ocean engineering systems with multidimensional input spaces, as illustrated in the
later applications in §3.

We have developed both (14) and (15) to demonstrate that physics-based learning is
a general concept which may be used in different specific machine learning models. The
parametric form of (14) is simpler, and more familiar to anyone who has used a linear
solver. The non-parametric form of (15) is more flexible, but it requires a bit of addi-
tional machinery to implement. Additionally, different types of learning problems may
dictate different model structures. Parametric models can be more readily interpreted by
examining how the basis functions have been weighted, whereas problems with Runge’s
phenomenon may be avoided using a non-parametric approach. We will use (14) in our
first example in §3.1 and (15) is used in our examples in §3.2 and 3.3.

Before moving to the applications, we remark on the desired attributes of the IM
used to construct the physical basis ρ. As in the example above, the ideal fI should be
efficient, stable, robust, provide good descriptions or approximations of (some aspects of)
the system, and does not itself depend on free parameters or require new system-specific
learning or user artistry. Note that the inclusion of an intermediate model function fI
which is a poor approximation of the system, while not ideal, is also not catastrophic.
An inaccurate IM will be poorly correlated to the training data, and will be ignored by
the learning machine (given no weighting) meaning the PBLM will simply preform as a
GLM. An illustration of this is shown in the example in §3.2. A more serious constraint
is that the IM prediction be noise free. As the IM is used to construct a basis, any noise
in fI would propagate up to fP giving undesirable noisy final predictions. Practically,
this can almost always be achieved by filtering away background noise in the IMs before
using them in a PBLM as demonstrated in the last example problem of §3.3.

3. Applications

To illustrate the application and performance of the PBLM method developed above,
we consider in this section three ship hydrodynamics applications involving the prediction
of (i) the waterline profiles on a ship over a range of Froude numbers, (ii) the heave and
pitch responses of a ship advancing in regular seas, and (iii) the breaking bow waves for
a ship of varying forward speed and beam-to-length ratio.
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Figure 2: Waterline elevation profile data and predictions for the Wigley hull over six Froude numbers.
Symbols denote the experimental measurements: • are the training data, ◦ are the test data, and 4
are extrapolation points outside the training data. Lines denote the prediction methods: −− is the
potential flow IM prediction, −·− is the GLM prediction (using thin plate regression spline), and — the
PBLM prediction. PBLM obtains significantly increased accuracy away from training data, interpolating
accurately to the unseen Froude numbers, and extrapolating to recover physically reasonable predictions
for the bow and stern elevations.

3.1. Waterline Predictions for the Wigley Hull

We consider the predictions of the waterline on a Wigley hull over a broad range of
Froude numbers. These classical experiments have served as benchmark data for many
numerical methods including advanced potential flow and Navier-Stokes simulations.
Even for this case of steady flow and relatively smooth profiles, a generic learning model
trained using experimental data set has large errors in data-sparse regions and makes non-
physical predictions. We demonstrate that by complementing the GLM with a simple
linear potential flow intermediate model, PBLM achieves excellent predictive accuracy
across the input space, even at untrained Froude numbers.

The data used for training and testing our models comes from the experimental
measurements of Shearer and Cross (1965) which reports the at-speed waterline profile for
a fixed sinkage and trim Wigley hull. From this source we select data for the normalized
waterline elevation ηU2/g over six Fr speeds and 21 2x/L section positions. These
waterline profile measurement points are plotted in Fig. 2, showing the dependence of
the profiles on Froude number.

For the GLM, we use thin plate regression splines of Wood (2003), a regularized
multi-dimensional spline method. We train this generic learning model to predict the
waterline profile over the two-dimensional input vector by minimizing the regularized
error (Eq. 6) over the training set {y = ηU2/g |x = (Fr, 2x/L)T }. A third of the
profile points were included in the training data except for two intermediate Froude
numbers (Fr=0.266, 0.32 in Fig. 2) which were completely held out to test the model’s
ability to generalize to unseen speeds. The held out points within the convex hull of the
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IM (potential flow) GLM PBLM

Test set RMSE 0.193 0.201 0.085
Total RMSE 0.187 0.177 0.078

eDOF 0 21.2 5.0

Table 1: RMSE and effective degrees of freedom (eDOF, Eq.(7)) for the prediction of the Wigley hull
waterline elevation. The RMSE, scaled by the maximum response ηU2/g = 0.187, are given for the test
set as well as for the total (including the error on the training, test, and extrapolation points) compared
to tank measurements. The GLM is the thin plate regression spline, and the IM is simple potential flow
with reflection free-surface boundary condition. The RMSE of the IM and GLM are comparable (close
to 20%), while the PBLM incorporating these (using the phased-shifted physics-based basis with only 5
effective degrees of freedom) is able to reduce the test and total errors but a significant factor.

training data make up the test set, used to determine the generalized accuracy of the
GLM predictions. Predictions of the elevation near the bow and stern are extrapolations
outside the training data, making these especially difficult for the GLM. With the model
trained, the GLM predicts the wave elevation at every point in the parameter space using
trivial computational effort. Considering the sparsity of the supplied training data set,
the thin plate regression spline GLM performs fairly well as summarized in Tab. 1. The
test RMSE is around 20% of the maximum waterline elevation measurement. However,
as expected of any generic learning model, the error increases for predictions far from the
training data, for example in the unseen Froude numbers. The extrapolated predictions
for the leading and trailing edge wave heights are also non-physical, missing the low
initial wave height on the bow and failing to predict the run up at the stern.

For the intermediate model we use a first-order potential flow panel method and a
reflection (double-hull) boundary condition for the free surface as in the classical approach
of Hess and Smith (1964). This simple model is chosen for the speed and robustness of the
IM predictions, rather than their accuracy. All of the potential flow numerical parameters
(related to the panelization, inversion etc.) are fixed to avoid propagation of learning
capacity to the PBLM. The waterline predictions using this IM are plotted in in Fig. 2.
As summarized in Tab. 1, these predictions have an RMSE similar to the GLM, around
20%.

For the PBLM, we construct the phase shifted basis ρ of Eq. 13 using the potential
flow IM. The basis is incorporated into the GLM through the simple additive model of
Eq. 14 and retrained on the training data. The predictions for the PBLM are shown as
the red solid line in Fig. 2 and summarized in Tab. 1. The addition of ρ has reduced the
error on the test data by 58% and the figure shows the accuracy is much less dependent
on the proximity of the training data. The figure also shows that the predictions of the
trailing edge height are excellent despite these points being extrapolations beyond the
training data. The leading edge profile heights are generally over-predicted, but always
physically realistic.

The effective degrees of freedom (eDOF) of GLM versus PBLM are given in Tab. 1
quantifying the decreased data dependence of the PBLM. The potential flow model has
no adjustable degrees of freedom (eDOF=0) and the GLM has effectively 21 degrees of
freedom after regularization. As there are only 28 points in the training set, the GLM is
only weakly regularized, which translates to higher data dependence. In contrast, PBLM
has very little data dependence, using only 5 degrees of freedom to fit the data more than
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(a) (b)

Figure 3: Convergence study on the dependence of the test RMSE (a) and eDOF (b) on the number
of training points for the GLM (•) and PBLM (N). The RMSE is scaled by the maximum response
ηU2/g = 0.187 and the potential flow RMSE is shown for reference (−− ). The training sets were
selected using systematic reduction, and in all cases the Fr=0.266,0.32 data have been held out. Note
that the PBLM is essentially converged using 12 training data points (3 points per speed), and at this
level outperforms the GLM using 84 points.

twice as accurately.
A systematic study further quantifies the dependence on the number of training points

and is presented in Fig. 3. For this study, the number of waterline points used in the
training set was systematically reduced using a ‘point-skipping’ approach; starting with
all 21 point in each profile, then using every other point, and eventually ending up with
only the points at 2x/L = −1, 0, 1 in the training data. The points in each coarse set are
contained in all the finer sets, as in a nested quadrature. In all cases the Fr=0.266,0.32
data have been held out of the training set. The results in Fig. 3 show that the GLM
response is completely dependent on the number of training points, making steady gains
in accuracy with increased data (and increased eDOF). In contrast, with as few as 12
training points the PBLM solution has essentially converged on the solution shown in
Fig. 2 with RMSE≈8.5%, which is more accurate than the GLM solution using all 84
available waterline points. Only with the full set of points does the PBLM relax it’s
regularization and increase from 5 to 22 degrees of freedom to more closely fit the data,
achieving 6.4% test RMSE. These results quantify that the addition of the physics-based
basis ρ is remarkably effective at shifting the learning dependence from the expensive
data measurements to the inexpensive intermediate model.

3.2. Pitch and Heave Motions Predictions

We next consider the prediction of the heave and pitch response amplitude operators
(RAO) for the Wigley hull in head seas. As in the previous example, this problem
has been used for the validation of many numerical prediction methods including the
unsteady-RANS CFD predictions of Weymouth et al. (2007). The RANS predictions
were found to be quite accurate with RMSE levels of around 2.5%, but each (Fr, λ/L)
evaluation took O(104) CPU hours. We show that by incorporating a simple linear
potential flow IM into a standard GLM we achieve a similar level of accuracy over the
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Heave IM (LAMP-I) GLM PBLM

Test set RMSE 0.047 0.042 0.025
Total RMSE 0.054 0.027 0.016

eDOF 0 16.4 10.3

Pitch IM(LAMP-I) GLM PBLM
Test set RMSE 0.131 0.079 0.029

Total RMSE 0.141 0.053 0.030
eDOF 0 13.0 7.8

Table 2: Prediction errors for the test set and the total RMSE (which includes the error on the test
and training points) and the effective degrees of freedom (eDOF) for the Wigley hull pitch and heave
tests. The root mean square errors are scaled by the maximum response for each test (Y3/a = 3.54,
Y5L/2πa = 2.0). The PBLM demonstrates error levels below 3% (equivalent to the error level of time
domain Navier-Stokes simulations) using simple linear models and extremely sparse training data.

complete input space as Weymouth et al. (2007) using a fraction of a second of computing
time. We also find that the PBLM predictions are robust to changes in the training data.

The data for this problem is taken from the experimental measurements of Journee
(1992) for the Wigley hull I and wave amplitude a/L ≈ 0.005. For this example we use
data for the normalized heave (Y3/a) and pitch (Y5L/2πa) response over three Fr speeds
and ∼11 λ/L head sea wavelengths. The data is denoted by the point symbols in Fig. 4
showing substantial variations in the RAO peak frequency and height with changing
Froude number, reflecting the complex wave-ship-flow interactions at play.

For this example, we choose the Gaussian regularization network GLM which is stud-
ied extensively in machine learning (e.g. Evgeniou et al., 2000). This GLM is trained on
the training set, and compared against the test data in Fig. 4 and quantified in Table 2.
The GLM predictions are generally good, but as before, the performance deteriorates in
data sparse regions, for example near λ/L = 1.5 ∼ 2.0 for Fr=0.3.

For the physics-based IM we use the linear version of the Large Amplitude Motion
Prediction (LAMP-I) program (Lin and Yue, 1990), a time-domain three-dimensional
potential flow panel method. The choice of LAMP-I as IM is based on the speed
and stability of the linear potential-flow code. As in the previous application, all the
model/computational parameters in LAMP-I are fixed, and the resulting predictions are
shown in Fig. 4. As seen in the figure and in Table 2, the LAMP-I heave predictions are
fairly accurate with RMSE=5.4% of the maximum response amplitude. However, the
pitch accuracy is lower, particularly for the high speed case.

For the PBLM, we construct the phase shifted basis ρ of Eq. 13 using LAMP-I as the
IM. The basis is incorporated into the GLM through the weighted model of Eq. 15 and
retrained on the training data. The PBLM results are shown in Fig. 4 and the RMSE and
eDOF summarized in Table 2. PBLM using a simple linear IM and 20 training points
produce predictions with error levels below 3%, matching the performance of the time-
domain RANS predictions of Weymouth et al. (2007). Moreover, the PBLM achieves this
using only 10 degrees of freedom as opposed to the 16 degrees of freedom used by the
GLM, whose predictions have around twice the error. Note that the inaccuracy of the
IM in the high speed pitch case is not propagated to the PBLM response. As discussed
in the introduction, an inaccurate IM is simply ignored by the learning model and the
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(a) Heave

(b) Pitch

Figure 4: Heave and pitch response amplitude operators for the Wigley hull over a range of incident
wavelengths and ship Froude numbers. Symbols denote the experimental measurements: • are the
training data, ◦ are the test data. Line denote the prediction methods being compared: −·− is the GLM
(using Gaussian regularization network); −− is the IM (using LAMP-I); — is the PBLM incorporating
the IM in the GLM. The PBLM shows significantly increased accuracy away from training data, and
correctly ignores the inaccurate LAMP-I pitch predictions for Fr = 0.4.
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Training points GLM PBLM

Ideal Training Set 20 0.042 0.025
No peak data 17 0.128 0.028

No Fr = 0.3 data 14 0.131 0.027

Table 3: Dependence of the Test RMSE on the training data set for the Wigley hull heave RAO pre-
dictions. The PBLM demonstrates a robust error level, < 3% despite the removal of critical training
data.

resulted PBLM error matches that of the GLM in this region. Of more concern is the
large variance in the IM for this test case which has caused some waviness in the PBLM.
Low-pass filtering the IM prediction alleviates the waviness in the PBLM prediction but
does not significantly change the error levels.

To explicitly demonstrate the data-dependence of the GLM predictions and the im-
provement in the PBLM approach, we repeat the heave predictions with two modified
training sets. We note that our training set for the heave case is nearly ideal, spanning all
three Froude numbers and includes all of the response peaks. While this yields accurate
predictions, the situation is somewhat artificial. To evaluate the robustness of the differ-
ent predictions with more limited training data, we show in Fig. 5 and Tab. 3 results for
the same problem but now withholding from the training set: (a) peak response values;
and (b) data for the intermediate Froude number. In case (a), seemingly crucial data
is omitted; while in case (b), the total number of training points is reduced to only 14.
In both cases, the PBLM performance is nearly unchanged with RMSE below 3%. In
contrast, the GLM performance is substantially degraded with more than three times the
error. It is possible that a more specialized GLM could be more appropriate for these
extremely sparse data sets. However, the introduction of the IM and the physics-based
basis ρ has eliminated the need for a more advanced learning method in these data-sparse
cases.

3.3. Predictions of Breaking Bow Waves

Finally, we consider the prediction of the nonlinear bow waves of a theoretical hull
form based on the 5415 with a sharp bow. This example is motivated by the desire to
apply fast 2D+T modeling to the prediction of breaking bow waves and to demonstrate
the ability of PBLM methods on a design-stage problem with no available experimental
data.

The data for training and testing the learning models is obtained in this case from
full-3D high-fidelity CFD simulations using the cartesian-grid Boundary Data Immersion
Method (Weymouth and Yue, 2011) coupled with a conservative Volume of Fluid method
(Weymouth and Yue, 2010). Simulations are run over three B/L slenderness values and

three F2D = Fr
√

B
L speeds. This scaling ensures that the speeds span the range of

different types of bow wave generation for each slenderness value. The low speed gives of
a non-breaking bow wave, the intermediate speed gives a gentle spilling breaker, and the
high speed produces a plunging breaker. As an example, the ship hull and the 3D CFD
simulation prediction for the high speed, high thickness result is shown in Fig. 6. The
simulations are processed to extract the height of the wave crest as a function of relative
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(a) No peak training data

(b) No Fr = 0.3 training data

Figure 5: Heave RAO predictions for the Wigley hull using a reduced training set. The symbols and
lines designations are as in Fig. 4. Relative to Fig. 4, the training set is reduced by (a) removing the
peak response points; and (b) omitting all Fr = 0.3 data. In both cases, the PBLM prediction maintains
its accuracy despite the removal of data; while the GLM performance is significantly affected.
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(a) Test geometry station lines (b) 3D simulation F2D = 0.262,B/L = 0.12

Figure 6: Geometry and sample 3D simulation for the bow wave test case. The geometry section lines
(a) are based on a 5415 hull modified to have a very fine entrance angle. The full 3D CFD simulation (b)
shows the hull in grey and the free surface colored by elevation. For this case (F2D = 0.262,B/L = 0.12)
there is a large plunging breaker at the bow.

position down the length of the bow (x/L). The data is shown as the symbols in Fig. 8
where it can be seen that the extraction function introduces a level of background noise.

For the GLM in this case, we use the Support Vector Machine Regression (Vapnik,
1995). The training data supplied to the GLM include the high and low speed data, with
the intermediate speed data withheld for testing. The GLM predictions are shown in
Fig. 8 and summarized by B/L-value in Tab. 4. As with the other GLMs, Support Vector
Machine Regression shows good ability to fit the training data and correctly ignores the
noise. However its generalization to the unseen Froude number test data is fairly poor,
especially for the largest B/L. In order for a generic learning model to make accurate
predictions for this case, many more 3D simulations would need to be run across the
range of F2D, at a significant increase of overall computational cost.

For the physics-based IM, we use a Cartesian-grid 2D+T model. The 2D+T approach
is formally based on slender body theory assuming that changes in the longitudinal
direction are small compared to changes in the transverse directions (e.g. Fontaine and
Cointe, 1997; Fontaine and Tulin, 2001; Weymouth et al., 2006). In this approach, the
2D+T representation of the ship geometry is that of a 2D flexible wavemaker, whose
instantaneous profile matches the section lines of the 3D hull. The successive 2D waves
generated by this wave-maker correspond to the divergent waves of the 3D ship in the
limit of high ship speed and slenderness. As there is no longitudinal length or velocity
in the wavemaker flow, the 2D+T ‘speed’ is set through the time T = L/U it takes for
the wavemaker to trace the sectional shape of the vessel. Thus the appropriate non-

dimensional scaling is F2D =
√

B
gT 2 . Although theoretically only valid for a slender

ship moving at high speed, approximating the actual three-dimensional flow by a two-
dimensional, time evolving flow reduces the computational cost by orders of magnitude,
making it attractive for use as the IM in a PBLM.

The 2D+T fI predictions are obtained using the same Cartesian-grid method and
over the same F2D values as in the 3D tests. While essentially the same code, the 2D+T
predictions are complete in around a minute each on a desktop, as opposed to the 3D
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(a) 2D+T waterfall plot (b) Wave crest height

Figure 7: 2D+T results for the high speed case F2D = 0.262. (a) Waterfall plot generated by overlaying
the predicted free-surface elevations at different times, shifted vertically for ease of viewing. (b) The
extracted wave crest heights, with symbols for the raw data and the dashed line for the smoothed IM
prediction used in ρ.

2D+T GLM PBLM
B/L = 0.03 0.043 0.106 0.031
B/L = 0.06 0.081 0.098 0.055
B/L = 0.12 0.191 0.302 0.112

Table 4: RMSE, scaled by the maximum response of η/(BF2D) = 2.11, on the test set for the breaking
wave crest elevation predictions (for the high speed F2D = 0.191 case). Despite higher error in the
2D+T IM at greater B/L, PBLM outperforms GLM on the test data.

runs which take O(104) CPU hours at a high performance computing facility. The result
for the high speed case is shown in Fig. 7(a). The 2D+T model predicts a plunging
breaking wave for the high speed test, the same as the 3D CFD prediction. To quantify
the comparison, we extract the location of the wave crest as shown in Fig. 7(b). This
the extraction introduces noise into the 2D+T results. As noted in the introduction, it
is important to remove this noise with a low-pass filter to avoid the noise propagating up
to the PBLM predictions. The final IM prediction is shown (as dashed lines) in Fig. 7(b)
and Fig. 8. Note that the 2D+T prediction has no dependence on B/L (the curves are
the same for each column of Fig. 8) and are only accurate for the slender high speed
ship, as summarized in Tab. 4.

For the PBLM, we construct ρ using Eq. 13 with the 2D+T IM, incorporating the
basis into the GLM using the weighted model Eq. 15, and retrained on the training
data. The resulting PBLM predictions are plotted in Fig. 8 and summarized for different
B/L in Tab. 4. The results show that the trained PBLM makes excellent quantitative
predictions for B/L = 0.03 where the 2D+T model gives a good estimate of the waves at
all speeds. As the ship thickness increases so does the error in the 2D+T predictions, but
the 2D+T IM still provides information on the dependence of the bow waves on Froude
number. Complementing this information with the high and low Froude number data at
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Figure 8: Data and predictions for the wave crest elevation of breaking bow waves at a function of
2D Froude number (F2D) and ship thickness (B/L). Symbols denote measured values from the 3D
Cartesian-grid CFD: • are the training data, ◦ are the test data. Lines denote the prediction methods:
−− is the 2D+T IM prediction; −·− the GLM prediction; and — the PBLM prediction. PBLM enables
predictions across the Froude number range with higher accuracy than the GLM even for larger B/L
values.
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each B/L enables the PBLM to reduce the GLM errors by more than 60% on the thickest
hull. Thus, using PBLM with the fast 2D+T IM, we are able to generalize relatively
few 3D data points across the Froude number range to generate reliable predictions that
may be used, in this case, to evaluate the effect of ship geometry and speed on nonlinear
breaking bow waves, at low computational cost.

4. Discussion and Conclusions

We present a general method for constructing physics-based learning models (PBLM)
which incorporate a physics-based basis to increase predictive accuracy and decrease
training data dependence. The method requires the use of a generic learning model
(GLM), a fast physics-based intermediate model (IM), and a small set of high-quality
experimental or computational training data from the physical system. We demonstrate
the effectiveness of PBLM for three different ship hydrodynamics problems. To highlight
the generality and versatility of the new approach, we used different sources for the train-
ing data (from experiments and computations), different generic learning models, and
different intermediate models in these applications. In each case, PBLM obtains greatly
improved prediction accuracy and robustness over GLM, and is orders of magnitude
faster than high-fidelity CFD.

In these examples we have presented only the most basic PBLM approach, using
only one source of data and a single IM in each case. PBLM is directly applicable to
combinations of different data (say experiments plus CFD) and multiple intermediate
models (numerical, analytic or empirical). For example, the addition of an IM which
described the variation in B/L for the bow wave predictions of §3.3 would enable even
higher accuracy predictions across the design space. Additionally, we have only presented
one method of generating the physical basis ρ. Techniques to establish a complete
orthogonal basis, such as PCA, and use this in a PBLM framework are currently in
development.

Increased performance demands on naval and marine platforms have led to modern
designs that require very large numbers of design evaluations. This requirement is met
by tank and field experiments and high-fidelity simulations, which are expensive; com-
plemented by approximate design and simulation tools, which do not capture all aspects
of the problems or to sufficient accuracy. The proposed PBLM provides a general and
powerful framework which combines the strength of these separate approaches to obtain
significantly more useful predictions than either in isolation. This efficacy of PBLM in-
creases the value of both high-fidelity expensive data and approximate fast tools and
should prove useful in all stages of modern analysis and design.
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