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ABSTRACT 

 

 

Malaria transmission in West Africa is closely tied to climate, as rain fed water pools provide 

breeding habitat for the anopheles mosquito vector, and temperature affects the mosquito’s 

ability to spread disease.  This thesis presents a framework of highly detailed, spatially explicit 

mechanistic modelling to explore the relationships between the environment and malaria in the 

current and future climate of West Africa.  A mechanistic model of human immunity was 

incorporated into an existing agent-based model of malaria transmission, allowing us to move 

beyond entomological measures such as mosquito density and vectorial capacity to analyzing the 

prevalence of the malaria parasite within human populations.  The result is a novel modelling 

tool that mechanistically simulates all of the key processes linking environment to malaria 

transmission. 

 

Simulations were conducted across climate zones in West Africa, linking temperature and 

rainfall to entomological and epidemiological variables with a focus on nonlinearities due to 

threshold effects and interannual variability.  Comparisons to observations from the region 

confirmed that the model provides a reasonable representation of the entomological and 

epidemiological conditions in this region. 

 

While current generation climate models agree that mean temperatures in West Africa will likely 

increase by 2 to 4
o 

C in the future by the end of the 21
st
 century, they disagree on the magnitude 

and the direction of the change in rainfall.  We analyzed the performance of CMIP5 climate 

models in simulating West African rainfall and temperature before selecting the most credible 

predictions of future climate.  We used these predictions to simulate the expected change in 

malaria transmission in sensitive regions of West Africa.  We found that the western subregion 

of West Africa is likely to become drier in the coming decades.  The warmer temperatures will 

shorten mosquito life spans, and the drying will limit mosquito reproduction.  As a result, we 

expect malaria transmission in this region to decrease.  However, the eastern half of the region is 

expected to become wetter.  In some areas, the positive effects of increased rainfall on mosquito 



reproduction may surpass the negative effects of high temperatures on mosquito longevity, 

leading to a small net increase in environmental suitability for malaria transmission.   
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1 Introduction 

1.1 Motivation 

Malaria is one of the world’s greatest public health challenges, with an estimated 3.2 billion 

people at risk of infection.  In 2013, an estimated 198 million people were infected, leading to 

nearly 600,000 deaths (World Health Organization, 2014).  90% of these deaths occur in Sub-

Saharan Africa, mostly in children under 5 years old.  In addition to malaria’s mortality and 

morbidity, the disease negatively impacts development in numerous ways including medical 

expenditures, lost wages and productivity, school absenteeism, discouragement of investment 

(Sachs & Malaney, 2002).  This thesis focuses on West Africa, the region that currently has the 

highest rates of malaria deaths in the world (World Health Organization, 2014).    

Malaria is a disease caused by the Plasmodium parasite and  spread by Anopheles mosquitoes.   

In many areas affected by malaria, transmission is closely tied to climate, particularly to rainfall 

and temperature.  In most of West Africa, malaria transmission occurs primarily in the wet 

season when rain-fed water pools form and serve as mosquito breeding sites.  Temperatures 

affect the mosquito’s ability to transmit the disease.  The timing and severity of seasonal malaria 

outbreaks can vary year to year in response to interannual climate variability (M. Thomson et al., 

2006).   

Despite the severity of the global malaria burden, there is much about the disease that remains 

unknown.  Vector-borne diseases in the United States are monitored and controlled through an 

extensive network of vector surveillance and clinical reporting.  High-quality meteorological 

data facilitates analyses linking environment to disease transmission.  By contrast, the West 
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African countries affected by malaria have very limited data on the environmental and 

entomological drivers of malaria.  Clinical data on infections, cases and deaths are improving but 

generally remain insufficient to assess trends (World Health Organization, 2014).  Some of these 

gaps in data and knowledge can be addressed by mechanistic modelling.  Using inputs of 

environmental data observed on the ground or by satellites, we can model expected hydrology 

(location, depth and persistence of water pools), entomology (mosquito population size, human 

biting rate, mosquito lifespan), and malaria transmission (infectious bites, new cases, disease 

prevalence).   

In this thesis, we use a framework of highly detailed, spatially explicit mechanistic modeling to 

explore the relationships between the environment and malaria.  The first goal of this work is to 

first establish relationships between environmental variables and indices of malaria transmission 

in the current climate. We consider the role of acquired immunity in shaping the response of 

malaria prevalence rates within a population, especially in the face of interannual variability.  

The second goal of this thesis is to predict the effect of climate change on malaria transmission 

in West Africa.  We analyze the performance of the current generation of global climate models 

in simulating West African climate before selecting the most credible predictions of future 

climate.  We use these predictions to simulate the change in malaria transmission regions of 

West Africa where the disease is most sensitive to changes in environmental conditions. 
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1.2 Literature review 

1.2.1 Current distribution of malaria in West Africa 

The spatial distribution of global malaria risk is shown in Figure 1.1 (Gething et al., 2011).   

With an estimated 333 million people at risk of infection, West Africa has the highest rates of 

malaria infections and deaths in the world.  In 10 of the 17 West African nations, prevalence 

rates were estimated to be over 20% (World Health Organization, 2014).  The number of malaria 

cases per year estimated by the Malaria Atlas Project is shown in Figure 1.2 (Hay et al., 2010). 

 

Figure 1.1 Malaria endemicity in 2010 estimated by the Malaria Atlas Project (Gething et al. 

2011). 



 

 

Figure 1.2 Estimated number of malaria cases per year.  From Hay et al. 2010.

 

The climate of West Africa features strong north

resulting in a range of climatic zones, as shown in 

estimates from Figure 1.1 to the climate zones, we see that malaria prevalence generall

increases from north to south, with no malaria in the Sahara and increasing through the Sahelian, 

Sudano-Sahelian and Sudanian zones.  The climate in the Guinean zone is highly suitable for 

malaria transmission, but some areas in this zone  have

climate suggests due to malaria control activities over the past decade 

Organization, 2014).  Mosquito populations and therefore malaria transmis
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Estimated number of malaria cases per year.  From Hay et al. 2010. 

The climate of West Africa features strong north-south gradients in rainfall and temperature, 

resulting in a range of climatic zones, as shown in Figure 1.3.  Comparing the prevalence 

to the climate zones, we see that malaria prevalence generall

increases from north to south, with no malaria in the Sahara and increasing through the Sahelian, 

Sahelian and Sudanian zones.  The climate in the Guinean zone is highly suitable for 

malaria transmission, but some areas in this zone  have prevalence levels that are lower than the 

climate suggests due to malaria control activities over the past decade (World Health 

.  Mosquito populations and therefore malaria transmission rates in the 

 

south gradients in rainfall and temperature, 

Comparing the prevalence 

to the climate zones, we see that malaria prevalence generally 

increases from north to south, with no malaria in the Sahara and increasing through the Sahelian, 

Sahelian and Sudanian zones.  The climate in the Guinean zone is highly suitable for 

prevalence levels that are lower than the 

(World Health 

sion rates in the 
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Sahelian and Sudano-Sahelian zones follow the seasonal monsoon cycle.  Transmission is 

interrupted during the dry season.  The northern limit of malaria transmission varies from year to 

year, and the people living in this boundary area are especially vulnerable to infection as they 

lack immunity to the disease (Mouchet et al., 2008). 

 

Figure 1.3 Climatological Zones of West Africa (FAO, 1998).  The solid lines indicate annual 

average millimeters of rainfall.  The white area above the 250 mm rainfall line is the Saharan 

zone. 

 

1.2.2 Relationships between environmental variables and malaria transmission 

The schematic shown in Figure 1.4 illustrates the relationship between climate, mosquito 

populations, and ultimately measures of malaria transmission.  The squares are processes in the 

mosquito population and the pentagons are processes in the human population.  These processes 
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are summarized here, and described in further detail below.  Large scale climate processes, 

whether natural or influenced by greenhouse gas emissions, lead to distinct rainfall and 

temperature patterns.  The rainfall forms water pools that allow the Anopheles mosquito vectors 

to reproduce and temperature influences the mosquito lifespan.  These processes in turn 

determine the mosquito population size.  Temperature also determines the duration of the 

parasite extrinsic incubation period (EIP) within the mosquito mid-gut.  The mosquito population 

size and the EIP are reflected in the vectorial capacity, which is a measure of the environmental 

potential for disease transmission.  Vectorial capacity drives the basic reproduction number (R0), 

another measure of disease transmission, and the entomological inoculation rate (EIR), which is 

the number of infectious bites each human receives.  The EIR is also affected by the level of 

immunity in the population and the parasite prevalence level in the population; these three 

quantities are strongly interrelated. 

The connection between rainfall and malaria transmission has been observed for nearly a century 

(M. C. Thomson et al., 1996).  However, the relationship between rainfall and malaria 

transmission is highly nonlinear.  Mosquitoes of the Anopheles gambiae complex, the primary 

malaria vector in Africa, breed in small, temporary pools of standing water.  Increased rainfall 

often means that there are increased breeding sites available to female mosquitoes, which leads 

to an increased mosquito population, and thus malaria transmission.  However, this is not always 

the case; excess rainfall can flood the small pools and disrupt developing larvae.  A decrease in 

rainfall can also increase breeding habitats by slowing flowing water, as observed when pools 

formed along a river bed in Sri Lanka during a prolonged drought (Wijesundera Mde, 1988). 
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Figure 1.4 Schematic of the processes linking greenhouse gas emissions to malaria transmission 
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The temporal pattern of rainfall within the rainy season also plays an important role in mosquito 

abundance (Bomblies, 2012).  In the Sahel, water pools are quickly emptied by 

evapotranspiration and infiltration.  Water pools become productive breeding sites only if they 

persist for the duration of the aquatic stage of juvenile mosquitoes.   

Temperature affects malaria transmission through mosquito longevity and the parasite’s extrinsic 

incubation period.  Mosquito survival is a function of temperature, with high temperatures 

increasing mortality by stressing the mosquitoes, and low temperatures limiting mosquito 

activity (W. Martens et al., 1995).  The extrinsic incubation period (EIP), which is the number of 

days Plasmodium falciparum requires within the mosquito in order to be transmitted to humans 

increases with temperature.  Malaria transmission can only occur when mosquito survival is long 

enough to allow development of sporozoites.  At low temperatures, the long extrinsic incubation 

period far exceeds the expected lifespan of mosquitoes, thus prohibiting disease transmission.   

 

1.2.3 Defining measures of malaria transmission 

There are a number of measures of malaria transmission that will be used throughout this thesis: 

vectorial capacity, basic reproduction number, entomological inoculation rate and prevalence.  

The quantities are defined here, and the relationships between them are outlined in Figure 1.4. 
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1.2.3.1 Vectorial capacity 

The effects of rainfall and temperature are quantified through by the vectorial capacity (VC), 

which is a measure of environmental suitability for malaria transmission. Vectorial capacity is 

defined as the average number of infectious bites per person originating from a single case of 

malaria if all vectors biting the original case were to become infected (Garrett-Jones & Grab, 

1964).  We compute VC using the following set of equations: 

 �� = ���� (1.1) 

 

where m is the number of female mosquitoes per human, a is the average number of bites taken 

by each mosquito per day, and D is the expected duration of infective life of the mosquito.   

D is defined as the number of days an average mosquito will be infective and is a function of 

temperature, maximized at 28
o
C.  D is given by the following equation: 

 � = �	
�/−ln	(�) (1.2) 

   

where p is the daily survival probability of the mosquito, and EIP is the extrinsic incubation 

period, defined as the number of days Plasmodium falciparum must be present within the 

mosquito before it can be transmitted to humans. 

The survival of mosquitoes is given by: 
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 p(T) = exp � −1−4.4 + 1.31T − 0.03T�� 
(1.3) 

where T is the daily average air temperature in degrees Celsius (W. J. Martens, 1997).  This 

function gives maximum longevity in the range of 20 to 25
o
C, and severe mortality at 

temperatures below 10
o
C and above 35

o
C.      

EIP is given by: 

 EIP = 111/(T − 16) (1.4) 

 

where T is daily average air temperature in degrees Celsius (Detinova, 1962).  Malaria 

transmission can only occur when mosquito lifespan exceeds the EIP.   

Assuming the biting rate and mosquito density remain constant, inserting the temperature 

dependent values of p and EIP into the equation for vectorial capacity show that peak 

transmission occurs around 28
o
C.  It follows that an increase in temperatures would be favorable 

for malaria transmission in areas where average temperatures were below 28
o
C, and unfavorable 

for transmission in areas above 28
o
C. 

Temperature may also affect the vectorial capacity by changing the biting rate a and mosquito 

density m.  Increasing temperature decreases the duration of the larval stage of Anopheles 

mosquitoes (Jepson WF, Moutia A, Courtois C., 1947), which could increase the proportion of 

larvae surviving to adulthood, thus increasing the mosquito density m.  Anophelines have also 
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been reported to digest blood faster at higher temperatures, which would reduce the time 

between meals, thus increasing the biting rate a (Gillies, 1953). 

1.2.3.2 Basic reproduction number 

Another useful measure of disease transmission is the basic reproduction number R0.  This is 

defined as the total number of secondary infections resulting from a single case of malaria, 

assuming an entirely susceptible population.  This can be thought of as the daily vectorial 

capacity integrated over the course of an infection, multiplied by the probability the parasite is 

transmitted: 

 

 R$ = % VC(t) ∗ b ∗ c,-.
/0$

 

(1.5) 

 

The average length of disease in days is len, VC(t) is the vectorial capacity on day t, b is the 

probability a human with no immunity is infected when bitten by an infectious mosquito, and c is 

the probability a mosquito is infected when it bites an infected human.   

In order for a disease to spread, R0 must be greater than one.  This means that on average, each 

infected person will infect more than one other person.  If the R0 is less than one, the disease will 

die out. 

VC and R0 are useful quantities for this study because they reflect only the environmental 

potential for malaria transmission.  R0 reflects a maximum value of disease spread.  In practice, it 
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is almost impossible to measure R0 in the field.  If it were possible to track every case of malaria, 

we would find an effective reproductive number, Reff, which is lower than R0.  In areas of intense 

transmission, Reff is moderated by the limited number of susceptible individuals in the 

population, as well as acquired immunity to disease.  However, areas with very low levels of 

malaria, such as the border between suitable and unsuitable climate or in a population where the 

disease is near elimination, Reff  approaches R0 (Macdonald, 1956).  This means that R0 is most 

accurate when it is close to its threshold value of 1, making it a powerful tool to determine 

whether malaria will spread. 

1.2.3.3 Entomological inoculation rate 

The entomological inoculation rate, EIR, is defined as the number of infectious bites per person 

per unit time.  This is a measure of both entomology and immunology; it depends on the 

vectorial capacity as well as the background prevalence level within a population.  This index of 

transmission is frequently measured in the field.  The biting rate is calculated either through 

human landing catches or household spraying.  A sample of mosquitoes is then tested to find the 

proportion of bites that would have been infectious. 

1.2.3.4 Prevalence 

Malaria prevalence, or parasite rate, is defined as the proportion of a population that is infected 

with malaria at a given time.  This is a straightforward measure that can easily be measured by 

testing blood samples from a subset of the population.  Malaria prevalence is frequently reported 

for children aged 2-10 years old. 
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1.2.3.5 Immunity index 

In this thesis, we refer to a quantity called the immunity index.  This is a quantity we use in our 

model to indicate the level of acquired immunity in an individual, and is described in depth in 

Chapter 3.  This index is a simplification of the very complex human immune response to 

malaria.  However, we find it useful to discuss when analyzing our results as it provides a 

measure of both an individual’s past exposure to disease, as well as his susceptibility to future 

disease.   

1.2.4 Characterization of acquired human immunity to malaria 

Naturally acquired immunity to malaria plays an important role in the transmission of the 

disease, but in many ways is still poorly understood.  Acquired immunity to Plasmodium 

falciparum malaria develops in three stages.  The first stage is protection from severe disease, 

and can develop in as few as one or two infections (Gupta et al., 1999).  The second stage is 

immunity to the clinical symptoms of malaria, and develops over the first years of childhood.  

The third stage is a partial protection against parasitization, and develops around adolescence.  

All three stages of immunity depend on constant transmission.  When transmission decreases, 

immunity weakens (Schofield & Grau, 2005).  While all three stages of immunity are important 

to the epidemiology of malaria, for the purposes of modelling disease transmission, we are only 

concerned with the immunity that protects against parasitization.  This immunity potentially 

affects transmission by reducing the proportion of infectious mosquito bites that result in 

infection, decreasing the duration of disease and decreasing the infectivity of humans to 

mosquitoes.   
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Immune responses to the pre-erythrocytic stages have been shown to be effective at preventing 

blood-stage infection, forming the basis of the most advanced malaria vaccine to date (Agnandji 

et al., 2011).  Naturally occurring immunity is not believed to confer full protective immunity, 

and is often neglected in models of disease transmission (Smith, Maire et al., 2006).  However, 

adults become infected at lower rates than children, implying that immunity does provide a 

partial protection against infection (Bekessy et al., 1976; Hoffman et al., 1987).   

Immunity decreases parasite levels in the bloodstream, and may lead to shorter duration of 

infection (Molineaux & Gramiccia, 1980).  In a longitudinal study of recovery rates in Nigeria, 

the duration of disease in infants (625 days) was 10 times as high as in >44 year (52 days) olds, 

suggesting that acquired immunity increases the rate of disease clearance (Bekessy et al., 1976).  

Others argue that there is little evidence to support this theory, assuming instead that immunity 

decreases the length of patent disease, without changing the length of subpatent infection (Maire 

et al., 2006). 

Gametocyte density has been correlated with the ability to infect mosquitoes, and there is 

evidence that infectivity to mosquitoes decreases with age (Bonnet et al., 2003; Drakeley et al., 

2006; Githeko et al., 1992).    However other studies show no correlation, leading to a belief that 

beyond a bottom threshold of gametocyte density required for transmission of the parasite to 

mosquitoes, increased densities do not necessarily lead to enhanced transmission (Drakeley et 

al., 2006).  A study of infectivity to mosquitoes in a highly endemic African village found that 

<5, 5-15, and >15 year old age groups contributed equally to the malaria reservoir, indicating 

that people continue to be infectious despite having low levels of parasitaemia (Muirhead-

Thomson, 1957).  It has also been suggested that acquired immunity may decrease the infectivity 

of gametocytes (Buckling & Read, 2001; Drakeley et al., 2006). 
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Beier et al. (1999) measured the relationship between the entomological inoculation rate (EIR) 

and malaria prevalence at 31 sites of varying transmission intensity across Africa.  EIR is defined 

as the number of infectious bites on a person per unit time, and is a standard measure of malaria 

transmission. They noted a non-linear relationship between malaria prevalence and EIR.  At low 

levels of EIR (<100 bites/person/year), prevalence was highly sensitive to EIR.  However at high 

EIR (200-1000 bites/person/year), prevalence leveled at around 80% and was not sensitive to 

increasing EIR.  These findings suggest that the saturation of malaria prevalence around 80% 

rather than 100% in areas of high EIR can be explained in part by the protective effects of 

acquired immunity.    

Several seemingly paradoxical cases of increased mosquito abundances associated with lower 

human parasite prevalence have been reported (e.g. (Diuk-Wasser et al., 2004; Gupta et al., 

1999; Snow et al., 1997).  These results have been attributed to several potential causes, but it is 

thought that human immunity may play a significant role in explaining these observations. In 

Mali, Diuk-Wasser et al. (2004) noted a decrease in malaria prevalence in villages with intensive 

irrigation and higher mosquito abundance. They suggested intraspecific competition of subadult 

mosquitoes for limited nutrients as an explanation as adult mosquitoes would be smaller, shorter-

lived, and thus the vectorial capacity would be depressed.  However increased levels of acquired 

immunity may have played a role in lowering the population prevalence in many of these 

observations. 

1.2.5 Modeling immunity to malaria 

Previous malaria models have incorporated acquired immunity.  Dietz et al. (1974) developed a 

model that tracks temporal variation in malaria infections and the immunity level of populations 
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in northern Nigeria. That model has a compartmental structure and assumes perfect mixing, and 

was successfully used for vector control decision making during the Garki project, an extensive 

malaria control field campaign in the 1970s (Molineaux & Gramiccia, 1980).  Many similar 

models with a compartmental structure exist with varying levels of complexity and assumptions 

regarding the mechanisms of immunity, for example Aron et al. (1988), Yang (2000), Filipe et 

al. (2007) Chiyaka et al. (2007), Águas et al. (2008) and Chitnis et al. (2008).  Despite 

substantial differences in model structures, each of the models above have been parameterized in 

order to matched observed prevalence data.  

Several recent models include individual-based humans.  Smith and colleagues (Smith, Killeen et 

al., 2006; Smith et al., 2008) have developed an extensive stochastic individual-based model 

driven by the entomological inoculation rate (EIR), the number of infectious bites received by 

each human per unit time.  This model includes modules for pre-erythrocytic immunity that 

decreases the frequency of infection (Smith et al., 2006), and parasite regulating immunity at the 

blood stage that decreases the infectiousness of humans to vectors (Maire et al., 2006; Ross et 

al., 2006).  Similarly, individuals in a model developed by Griffin et al. (2010) are infected 

according to the EIR derived from a corresponding compartmental model.  This model includes 

representation for clinical immunity and infection-blocking immunity that developed based on 

the number of infectious bites received, as well as a parasite regulating immunity that is 

dependent on the individual’s age.  Gu et al. (2005) developed an agent-based model of humans 

and female mosquitoes to simulate the transmission of malaria incorporating human immunity 

for a population on the coast of Kenya. 
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1.2.6 Modelling studies predicting the malaria response to climate change 

The effect of climate change on malaria transmission has been the subject of research and intense 

debate since the mid-1990s.  The expansion of malaria into areas where transmission is currently 

limited is of significant concern, as people in these areas will be especially vulnerable to illness 

due to their lack of acquired immunity to the disease.  This issue has been addressed using both 

biological/mechanistic models and statistical models (Parham & Michael, 2009; Rogers & 

Randolph, 2000).  Early studies reported predictions of wide-spread increase in malaria 

transmission, including into Australia, Europe and the United States, with up to 300 million 

additional people at risk (P. Martens et al., 1999; W. Martens et al., 1995; Martin & Lefebvre, 

1995; Tanser et al., 2003).  However, more recent studies estimating the global impact of climate 

change on malaria transmission seem to suggest a shift in distribution rather than a large net 

increase (Lafferty, 2009; Parham & Michael, 2009; C. J. Thomas et al., 2004).    In its 4
th

 

Assessment Report, the Intergovernmental Panel on Climate Change (IPCC) states that the local 

and global impacts of climate change on malaria are uncertain, and warrant further research 

(Confalonieri et al., 2007). 

While the relationships between temperature and malaria transmission are relatively well 

understood, modelling methods that have been used up to now to estimate the effect of climate 

change on malaria transmission are limited in their characterization of rainfall.  They generally 

rely on rules for minimum threshold values, such as 80 mm rainfall per month for a number of 

consecutive months as used in the MARA/ARMA and MIASMA studies, with some models 

including an upper threshold, above which additional rainfall is expected to wash out breeding 

sites (Parham & Michael, 2009).  However the processes by which rainfall is diverted into pools 

suitable for breeding is strongly dependent on the frequency, intensity and duration of rainfall 
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events, as well as site-specific topographical features, soil characteristics, and vegetation cover.  

This shortcoming is frequently mentioned by the authors and reviewers of such studies 

(McMichael et al., 2006; Parham & Michael, 2009; Van Lieshout et al., 2004).  The IPCC 

emphasizes the importance of localized determinants of malaria transmission and notes the 

difficulty in making generalizations across settings (Confalonieri et al., 2007).  .   

1.2.6.1 Biological Models of Malaria Transmission  

Biological or mechanistic models relate environmental variables to malaria transmission based 

on known relationships.  These models are often used to map areas climatically suitable for 

malaria transmission (P. Martens et al., 1999; Tanser et al., 2003; C. J. Thomas et al., 2004).  

The advantage of such models is that they give a clear understanding of how environmental 

variables drive changes in malaria transmission, and can account for feedback process and non-

linear relationships involved in disease transmission (Parham & Michael, 2009).  A limitation of 

this approach is that in order to be credible, they must be properly parameterized, which requires 

a significant amount of knowledge of the Plasmodium, mosquito, and human biology.  

In an early study, Martin and Lefebvre (1995) used a climate suitability model called the Malaria 

Potential Occurrence Zone (MOZ) to estimate how the global potential for malaria transmission 

would respond to a changing climate.  MOZ classified areas as having no malaria, seasonal 

potential transmission or perennial potential transmission based on a minimum and maximum 

temperature thresholds and a minimum moisture requirement.  MOZ was applied to climatic 

output from 5 general circulation models (GCMs), and changes from baseline results were 

analyzed.  All five scenarios resulted in an increase of areas with seasonal potential transmission, 
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as the seasonal zones expanded into both currently malaria-free zones and areas currently 

designated as having perennial transmission potential. 

MIASMA (Modelling framework for the health Impact ASsessment of Man-induced 

Atmosphere changes)  (W. Martens, 1998) is an integrated assessment model developed in order 

to assess health impacts from global climate change and ozone depletion and has been used in a 

number of studies (Lindsay & Martens, 1998; P. Martens et al., 1999; W. Martens et al., 1995; 

Van Lieshout et al., 2004).  The malaria component of the model incorporates climate change by 

calculating the biological effect of increased temperature on mosquito mortality, mosquito biting 

rate, and parasite development, and by limiting malaria transmission to areas where daily 

precipitation is greater than 1.5 mm.  The model also considers population growth, and its 

primary output is population living in areas climatically suitable for malaria transmission (P. 

Martens et al., 1999).  Based on climate predictions from GCMs, an early version of the model 

predicted that the temperature in 2100 would lead to a widespread increase in malaria risk, most 

notably in borders of currently endemic malaria areas, with the epidemic potential increasing by 

a factor of two in tropical areas, and by a factor of over 100 in temperate regions.  They inferred 

that areas where Anopheles mosquitoes exist but malaria is not currently transmitted, such as 

Australia, the United States and Southern Europe would be at risk for malaria epidemics (W. 

Martens et al., 1995), and the African highlands emerged as an area of special concern (Lindsay 

& Martens, 1998).  A modified version of this model (P. Martens et al., 1999) was used with 

climate predictions from HadCM2 and HadCM3 GCMs to estimate future populations at risk.  

Potential transmission increased in temperate zones.  By 2080, the number of people at risk for 

malaria was expected to increase by 260-320 million for P. falciparum and 100-200 million for 

P. vivax.  A subsequent study used results from MIASMA and further classified countries based 
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on their adaptive capacity to malaria in order to produce a more meaningful estimate of the 

number people with increased risk of disease (Van Lieshout et al., 2004).  Adaptive capacity was 

assigned based on countries’ current vulnerability and malaria control status as determined by 

expert judgment and climate scenarios were obtained by downscaling output from four emissions 

scenarios of the HadCM3 GCM.  In countries classified as vulnerable, the number of additional 

people at risk in 2080 ranged from 90-200 million, with the greatest increases occurring in Africa 

and Asia.  Climate change was predicted to have little effect in the least developed countries 

where transmission is already highly favorable (Van Lieshout et al., 2004).   

Another climate suitability model was developed by Tanser at al. (2003).  In order to be 

considered suitable for stable malaria transmission, each point had to have at least one month 

with rainfall of at least 80mm, and a minimum yearly temperature 5
o
C.  In areas fitting these 

criteria, months were deemed suitable if the 3-month moving average temperature was at least 

19.5
o
C plus the standard deviation of mean monthly temperature, and the 3-month moving 

average rainfall was at least 60mm.  The model was applied over Africa using climate 

projections for 2100 using low emissions, medium-high emissions, and high emissions scenarios 

with the HadCM3 GCM.  Population data from 1995 were overlaid on the resulting suitability 

maps in order to estimate the number of person-months at risk.  They estimated an increase of 

16-28% person-months at risk for stable transmission, due to a 5-7% increase in suitable area, 

and a 28-42% increase in person-months at risk due to a lengthened transmission season in areas 

where transmission already occurs.  The change in disease distribution was mostly altitudinal, 

with little latitudinal change.   Ethiopia, Zimbabwe and South Africa were projected to double in 

person-months of exposure due to increased suitability in the highlands and lengthened 

transmission seasons, while transmission was expected to decrease in countries in West Africa, 
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Namibia and Mozambique, due to a decrease in precipitation.  A response to this paper described 

the study as “ill informed and misleading”, arguing that the thresholds developed using only 15 

African locations do not capture the spatial variability of disease, that the model’s 63% 

sensitivity is insufficient to make predictions, and that the measure of person-months is not 

appropriate for measuring increases in transmission (Reiter et al., 2004). 

The MARA/ARMA (Mapping malaria risk in Africa/ Atlas du risque de la malaria en Afrique) 

(Craig et al., 1999) classifies areas in Africa on a gradient of climatic suitability for stable 

malaria transmission from 0 (unsuitable) to 1 (highly suitable), based on mean temperature and 

rainfall.  Temperatures outside of the 18-40
o
C range are considered unsuitable for transmission, 

while temperatures between 22-32
o
C are considered suitable.  Temperatures between 18-22

o
C 

and 32-40
o
C are assigned a value of suitability based on a sigmoidal fuzzy membership curve.  

Similarly, areas with average monthly rainfall of 0 mm were unsuitable, 80 mm or greater were 

suitable, and values in between received a value between 0 and 1.  Suitable rainfall and 

temperature conditions must coincide, and span five consecutive months, or three in North 

Africa where high temperatures allow rapid development of mosquito populations, in order to 

enable stable malaria transmission.  Thus the minimum of the temperature and rainfall values 

was calculated for each point for each month, and the annual suitability index was defined as the 

highest value spanning five (or three in north Africa) consecutive months.  The resulting map 

had good agreement with historical maps in southern Africa, Kenya and Tanzania.  This model 

was applied to examine the effects of climate change on stable malaria transmission areas in 

Africa over the 2020s, 2050s, and 2080s (C. J. Thomas et al., 2004).  Climate projections at 0.5
o
 

resolution were taken from the second generation Hadley Center coupled model (HadCM2) 

medium-high scenario ensemble mean.  Projections for the 2020s showed declines in 
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transmission values in parts of Madagascar and southern East Africa, and only a small increase 

in highland malaria in northern South Africa.  The length of transmission season increased in 

parts of South Africa and Namibia due to reductions in frost, but decreased in northern Botswana 

and Mozambique due to decreased rainfall.  Transmission suitability decreased in the western 

Sahel due to increased temperatures. Changes in highland malaria were modest through the 

2050s, but became more pronounced in many areas by the 2080s.   

In another biological modeling exercise, Parham and Michael (2009) described the probability 

distribution of the number of mosquitoes as a Poisson distribution with mean	1 ÷ 3, where λ, the 

adult mosquito emergence rate, is a function of temperature and rainfall, while µ, the mosquito 

death rate, is a function of temperature.  Rainfall was incorporated into the mosquito emergence 

rate through a non-linear model relating egg survival probability to rainfall.  Mosquito death 

rates were based on the formulations of Martens (1998).  The dynamics of malaria invasion to a 

naive population were explored, and a temperature window of 32-33
o
C was identified optimal 

for the spread of malaria.  The model was used with predictions from the HadCM3 GCM to 

estimate the response of malaria to climate change by 2080.  They found that rainfall patterns are 

the main driver of malaria endemicity, invasion and extinction, while temperature dominates in 

transmission rates and disease spread, given that rainfall is sufficient to sustain a mosquito 

population. 

The importance of diurnal temperature fluctuations to the extrinsic incubation period of malaria 

was examined by Paaijmans et al. (2009).  Rather than using the Detinova equation for extrinsic 

incubation time (Detinova, 1962), Paaijmans et al. used a nonlinear thermodynamic model, 

which determined cumulative parasite development over 30 minute intervals.  They found that 

when mean temperature is greater than 21
o
C, diurnal temperature fluctuations slow parasite 
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development, while at mean temperatures less than 21
o
C, diurnal fluctuations increase the rate of 

development.  The implications of these findings are that studies using only the mean 

temperature underestimate the risk of transmission in low-temperature environments, and 

overestimate the risk in warm environments.  These findings are important when considering 

climate change, as changes in diurnal temperature ranges may add to the effects of rising mean 

temperatures. 

Bomblies and Eltahir (2010) used HYDREMATS to investigate the malaria response to climate 

shifts in the Sahel.  The model was set up over Banizoumbou village in Niger, and was forced 

with climatological data (temperature, precipitation, wind speed and direction, relative humidity 

and radiation) representing two historically realistic climate change scenarios.  In the first 

scenario, temperatures increased while rainfall decreased, while in the second, temperatures 

decreased and rainfall increased.  The cooler, wetter scenario resulted in a significantly higher 

mosquito density; however this increase in mosquito populations did not translate directly into an 

increase in malaria transmission, as the cooler temperatures extended the EIP, limiting 

transmission.  This study highlighted the importance in considering the joint effects of rainfall 

and temperature in modeling malaria transmission.  They also showed that temporal patterns of 

rainfall distribution are important in determining the mosquito response to climate.   

1.2.6.2 Statistical Models of Malaria Transmission 

Statistical models find associations between environmental factors and field observations of a 

metric of malaria transmission, and then use these relationships to estimate transmission under 

new climatic conditions.  This type of model does not consider the causal relationships between 

environmental variables and transmission.  While this approach limits the understanding of the 
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system, it allows a wider range of variables, and does not require estimation of unknown 

parameters.  

 One statistical model mapped current P. falciparum areas using maximum likelihood methods 

with nine variables: the monthly mean, maximum and minimum of temperature, precipitation, 

and saturation vapor pressure (Rogers & Randolph, 2000).  Compared to actual malaria 

distribution, the resulting map was 76% accurate.  When the model was applied to predictions 

from the HadCM2 medium-high and high scenarios for 2050, few changes were observed.  

Suitable habitats extended into the southern United States, Turkey, Turkmenistan, Uzbekistan, 

and habitats within Brazil and China expanded.  An estimated 23 million additional people were 

estimated to be exposed under the medium-high scenario, while high temperatures under the high 

scenario resulted in 25 million fewer people exposed. 

Peterson (2009) applied an ecological niche model to predict future distribution of two major 

malaria vectors, Anopheles gambiae sensu strictu and Anopheles arabiensis, in Africa.  The 

ecological niche model was created by finding non-random associations between known points 

of vector occurrence and environmental data which included annual mean temperature, mean 

monthly maximum and minimum temperature, annual precipitation, and topographic data, and 

interpolating them to unsampled regions based on geographical information systems (GIS) 

environmental data.  Future Anopheles distributions were predicted by applying changes in 

climate as predicted by HadCM3 and the Canadian Center GCM (CGCM1) to current climate, 

and using the ecological niche model to calculate suitable areas.  West Africa was expected to 

become less suitable for both species, while regions in eastern and southern Africa were 

expected to become more suitable.    Currently, over 30 million people live in areas that are 

expected to become more suitable for A. gambiae, and 14 million in areas becoming more 
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suitable for A. arabiensis.  Areas that are expected to become less suitable for vectors currently 

have a population of 78-111 million for A. gambiae and 135-171 million for A. arabiensis.  In a 

similar study, Tonnang et al. (2010) predicted that the boundaries of Anopheles mosquitoes in 

Africa would shift southward and eastward. 

Gething et al. (2010) put previous estimates of the effects of climate change into perspective by 

comparing them to historical changes in R0.  A historical map of malaria endemicity in 1900 

(Lysenko & Semashko, 1968) was compared to a map of P. falciparum endemicity in 2007 

created by using 8,938 parasite rate surveys and applying a geostatistical model to create a 

continuous surface of malaria transmission (Hay et al., 2009).  The difference between the two 

maps showed that global malaria transmission has decreased substantially, both in geographic 

range and endemicity.   Since this decrease in malaria occurred despite observed increases in 

global temperature, the authors argue that over the past century, non-climatic factors such as 

disease control, economic development and urbanization were more important than climate in 

defining the range and intensity of malaria transmission.  The decrease in transmission was 

quantified in terms of the basic reproductive number, R0.  They found that over the earth’s 

surface, 75% of the area experienced a decrease in R0 of over an order of magnitude, and 12% by 

less than an order of magnitude.  By comparison, the most dramatic estimates of increased 

transmission due to climate change (Lindsay & Martens, 1998; P. Martens et al., 1999) would 

lead to an increase of R0 by a factor of three.   They also calculated that the application of key 

intervention measures such as drug treatment, insecticide treated bednets and larvicide could 

decrease R0 by an order of magnitude, suggesting that the effective use of such measures could 

counteract any increase in transmission due to climate change. 
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1.2.7 Skill of GCMs in modelling current and past West African Climate 

The Intergovernmental Panel on Climate Change (IPCC) reports that the coupled ocean-

atmosphere general circulation models (also global climate models; GCMs) used for the 4
th

 

Assessment Report (AR4) have systematic errors in modelling African climate (Christensen et 

al., 2007).  The 5
th

 IPCC Assessment Report (AR5) focuses on a newer generation of climate 

models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) (Taylor et 

al., 2012).  These include coupled ocean-atmosphere GCMs as well as more complex earth 

system models (ESMs) that simulate biogeochemical processes in addition to climate physics.  

The CMIP5 models were found to simulate global climate more accurately than the AR4 models, 

but they continue to exhibit biases in the monsoon location and intensity (Flato et al., 2013). 

Cook and Vizy (2006) assessed the ability of the 18 AR4 GCMs to simulate the climatology of 

the West African monsoon system.  Models were judged based on their ability to reproduce a 

number of important characteristics of the monsoon system.  The first requirement was the 

placement of the intertropical convergence zone (ITCZ) over the African continent during 

northern-latitude summer.  Eight of the models incorrectly place the ICTZ and its associated 

rainfall over the Gulf of Guinea rather than over land, and were eliminated from further analysis.  

Another criterion that was assessed was the models’ ability to simulate the precipitation dipole 

anomaly currently observed between the Guinea coast and the Sahel, which is considered to be a 

prominent mode of interannual variability in the monsoon system, and has been linked to sea 

surface temperature anomalies in the Gulf of Guinea.  Of the remaining 10 models, 6 were able 

to reasonably recreate the dipole.  Based on their analyses, GFDL_0, GISS_EH, 

MIROC(medres) and MRI were selected as the models that best represent climate processes in 

West Africa.   
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Hoerling et al. (2006) used ensembles of GCMs to investigate the mechanisms behind the 

drought observed in the Sahel in the late twentieth century, and assessed the ability of ocean-

atmosphere coupled GCMs to simulate this observed drying.  By forcing GCMs with observed 

sea surface temperatures, they were able to simulate the drought, and thus concluded that the 

decrease in rainfall was driven by an increased difference in temperature between the North and 

South tropical Atlantic Ocean.  However of 18 AR4 coupled model simulations, only two, both 

from the Geophysical Fluid Dynamics Laboratory, were able to simulate the drying.  This 

indicates limitations in the ability of current ocean-atmosphere GCMs to accurately simulate 

patterns of sea surface temperatures relevant to rainfall in the Sahel. 

Mariotti et al. (2011) compared current and future precipitation and temperature over the African 

continent simulated by the ECHAM5 global model to projections for the regional climate model 

RegCM3 driven by ECHAM5 boundary conditions.  The temperature biases of both models were 

of similar magnitude compared to observations.  Precipitation bias patterns differed between the 

two models, and the regional model did not provide a systematic improvement over the global 

model.  The patterns of temperature change by the late 21
st
 century were similar in the two 

models.  However, the precipitation signals differed in West Africa.  En Nino-Southern 

Oscillation (ENSO) sea surface temperature anomalies in the equatorial Pacific and local 

changes in soil moisture were both found to contribute to the precipitation change signal.  The 

precipitation response to soil moisture than stronger in the regional model than in the global 

model, and the different representations of soil-moisture feedbacks played a larger role in 

explaining the difference between the two projections than the differences in response to ENSO 

anomalies. 
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Giannini et al. (2013) proposed a mechanism to explain projected changes in precipitation as 

well as differences in predictions between models.  Warmer tropical sea surface temperatures 

increase the temperature threshold required for convection, leading to dry conditions similar to 

those of an El Nino year.  However, the subtropical North Atlantic Ocean can provide the 

moisture required for convection if the warming there exceeds warming of the global tropical 

oceans.  Differences in precipitation signals between models can be attributed to differences in 

relative warming between these two ocean areas. 

 

1.2.8 GCM projections of future West African Climate  

The median temperature increase predicted by AR4 GCMs increase between 3
o
C and 4

o 
C across 

Africa, with good agreement between models (Christensen et al., 2007).  However precipitation 

responses are much more uncertain, with highly contradictory results between models 

(Christensen et al., 2007).  In an analysis of climate simulations from the AR4 models, 14 out of 

18 predicted an increase in rainfall over the Sahel throughout the first half of the 21
st
 century, 

which is consistent with simulated changes in the relevant SSTs (Hoerling et al., 2006).   

Of the four models deemed by Cook and Vizy (2006) to give reasonable representations of 

current climate, three were used to simulate changes in the West African Monsoon in the 21
st
 

century.  The first, GFDL_0, simulated significant drying in the Sahel beginning around 2050, 

followed by drying along the Guinean Coast by the end of the century.  By contrast, MIROC 

(medres) showed drying on the Guinea coast, accompanied by increased precipitation in the 

Sahel.  The MRI model showed the least change in precipitation, with an increase in frequency 
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of dry years in the Sahel, and a small increase in precipitation on the Guinean coast (Cook & 

Vizy, 2006). 

The newer CMIP5 models continue to show a spread in predicted precipitation over the Sahel 

(Roehrig et al., 2013).  This has been interpreted as the result of differences in the atmospheric 

circulation changes between models (Collins et al., 2013). 

 

1.3 Thesis structure 

Chapter 2 provides a description of HYDREMATS, the model used in this thesis.  Improvements 

in the model’s representation of mosquito survival are discussed, as are improvements in model 

efficiency.  Improvements to the model’s representation of human immunity to malaria are 

described in Chapter 3. 

Chapter 4 is a first-order assessment of climate change impacts on malaria transmission in West 

Africa.  Projected changes in temperature and rainfall from 19 GCMs were screened for a best 

case and worst case scenario in terms of malaria transmission.  Changes in vectorial capacity 

were simulated for 5 ecoclimate zones.  We determined that even under the worst case climate 

scenario, we did not expect to see a major increase in malaria in West Africa. 

Chapter 5 presents modelling of current malaria transmission.  We identify the parts of West 

Africa where malaria infection rates are most sensitive to changes in vectorial capacity.  We then 

simulated malaria transmission for 12 locations within the sensitive region.  Simulated 

entomology and parasite prevalence were compared to observational data. 
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Chapter 6 provides a more refined analysis of the initial assessment of climate change.  The skill 

of GCMs was assessed in order to select the most credible projections of future climate.  These 

projections were applied to the locations studied in Chapter 5 in order to assess the impact of 

climate change on malaria transmission. 
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2 Model Description and Improvements 

The work presented in this thesis uses the Hydrology, Entomology and Malaria Transmission 

Simulator (HYDREMATS), a mechanistic model of malaria transmission developed to simulate 

village-scale responses of malaria transmission to interannual climate variability in semi-arid 

desert fringe environments such as the Sahel.  In this chapter, I describe the model, as well as 

work conducted as part of this thesis to improve the model in two areas: increased model 

efficiency and the incorporation of the effects of relative humidity on mosquito survival.  

Improvements were also made to the immunity component of the model; these are described 

separately in Chapter 3. 

2.1 Model description 

The development of HYDREMATS is described in detail in Bomblies et al. (Bomblies et al., 

2008). In brief, the model is a physics-based hydrology model coupled with an individual based 

entomology model that is run at a spatial resolution on the order of 10 meters and a temporal 

resolution of around 1 hour.  The hydrology component explicitly represents water pools 

available as breeding sites to anopheline mosquitoes by simulating the flow of water into 

topographical low points and water loss due to evaporation and infiltration.  The temperature of 

each water pool is computed by solving a system of energy balance and heat transfer equations 

(Bomblies et al., 2008). 

HYDREMATS can be separated into three components, shown in Figure 2.1: the hydrology 

component which explicitly represents pooled water available to anopheles mosquitoes as 

breeding sites, the entomology component, which simulates the location and status of individual 
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mosquitoes, and the immunology component, described in Chapter 3, which simulates malaria 

infections within humans and the effects of acquired immunity to disease. 

The hydrology component of HYDREMATS is based on the land surface scheme LSX of 

Pollard and Thompson (1995).  The model simulates momentum, energy and water fluxes within 

its vertical column of the atmosphere, six soil layers and two vegetation layers. Vegetation type 

and soil characteristics are required as model inputs, and strongly influence soil moisture and 

runoff in the model.    Thicknesses and permeabilities of vertical soil layers are assigned to 

represent the soil structure observed in the Sahel, including the thin layer of low-permeability 

crust commonly observed in areas with sparse vegetation (Bomblies et al., 2008).   

Rainfall at each grid cell is partitioned between runoff and infiltration, based on a Hortonian 

runoff process governed by hydraulic conductivity and porosity of the soil.  Unsaturated zone 

hydraulic conductivity is calculated as a function of soil moisture following Campbell’s 

equation.  Uptake of soil water from evapotranspiration is calculated based on climatic variables.  

Infiltration through the unsaturated zone is calculated using an implicit Richard’s equation solver 

(Bomblies et al., 2008).  Richard’s equation is described by: 

 45(6, 8)48 = 	 446 9:;(5) 4<(5, 6)46 + :;(5)= (2.1) 

 where  θ = soil moisture [cm
3
 cm

-3
] 

 Ku(θ) = unsaturated hydraulic conductivity [m sec
-1

] 

 < (θ,z) = head value [m] 

 z = elevation [m] 

 



 

 

Figure 2.1 Schematic of HYDREMATS.  This schematic diagram lists the major processes and key 

parameters represented by the Hydrology, Entomology and Immunology components of 

HYDREMATS.  The arrows represent information that is passed f

next 
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Schematic of HYDREMATS.  This schematic diagram lists the major processes and key 

parameters represented by the Hydrology, Entomology and Immunology components of 

HYDREMATS.  The arrows represent information that is passed from one component to the 

Schematic of HYDREMATS.  This schematic diagram lists the major processes and key 

parameters represented by the Hydrology, Entomology and Immunology components of 

rom one component to the 
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Overland flow is modeled using a finite difference solution of a diffusion wave approximation to 

the St. Venant equations following the formulation of Lal (1998).  Flow velocity is represented 

by Manning’s equation as a function of friction slope, flow depth, and the distributed roughness 

parameter n, which is derived from soil characteristics and vegetation type.  The overland flow 

process is of critical importance for the modeling of water pool formation (Bomblies et al., 

2008).  The overland flow process is described in greater detail in Section 2.2.1. 

The meteorological inputs required by the model are temperature, relative humidity, wind speed 

and direction, incoming solar radiation, and rainfall.  These variables are assumed to be uniform 

over the model domain in the simulations conducted in this thesis.  Distributed rasters of 

vegetation, soil type, and topography are required at the grid resolution specified by the user.  

The hydrology component of HYDREMATS generates a grid of water depths and temperatures 

for each grid cell, for each timestep.  These grids serve as the inputs for the entomology 

component of the model (Bomblies et al., 2008). 

The entomology component of HYDREMATS includes the aquatic and adult stages of the 

mosquito life cycle.  Human agents are immobile, and are assigned to village residences, as 

malaria transmission in this region occurs primarily at night when humans are indoors (Service, 

1993).  Mosquito agents have a probabilistic response to their environment based on a prescribed 

set of rules governing dispersal and discrete events including development of larval stages, 

feeding, egg-laying and death.  The model tracks the location, infective status and reproductive 

status of each female mosquito through time.  The malaria parasite is transmitted when a 

mosquito bites an infected human, and takes a second bloodmeal from an uninfected human 

(Bomblies et al., 2008). 
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In addition to the water pool inputs supplied by the hydrology component of the model, the 

entomology component requires air temperature, humidity, wind speed and wind direction.  Air 

temperature and relative humidity influence mosquito behavior and survival, while wind speed 

and direction influence mosquito flight, both by physical displacement by wind, and by attracting 

mosquitoes to upwind blood sources.  The location of village residences is required in order to 

assign the location of human agents (Bomblies et al., 2008). 

Each simulated female mosquito ready to oviposit begins to seek water.  At each time step, she 

finds herself a new grid point.  The probability that she will deposit her eggs at that point is 

called the probability of utilization, and is a function of the depth of water at that point, as shown 

in Figure 2.2.  The probability of utilization is highest between parameter values breedmin and 

breedcon, reflecting the mosquito’s preference for shallow water pools.  The probability 

decreases linearly from breedcon to breedmax, which is the maximum pool depth considered 

suitable for Anopheles breeding.  Mosquito eggs hatch and advance through four stages of larval 

development at rates dependent on water temperature, nutrient competition and predation given 

by Depinay et al. (2004).  Surviving larvae pupate and emerge as adult mosquitoes.  The duration 

of the aquatic stage of Anopheles gambiae mosquitoes ranges from roughly 8 to 24 days, 

depending on temperature (Depinay et al., 2004).  All aquatic stage mosquitoes in a pool that 

dries up are killed, emphasizing the importance of pool persistence for mosquito breeding 

(Bomblies et al., 2008). 
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Figure 2.2 Probability of pool utilization 

 

Adult female mosquitoes follow a cycle of seeking human bloodmeals, feeding, resting, and 

ovipositing for the duration of their lifespan (Figure 2.3).  Mosquito flight velocity is assigned as 

a weighted random walk corrected for attraction to human agents and wind influence.  Each 

human agent contributes to a plume of carbon dioxide that attracts downwind mosquitoes.  The 

effective flight velocity, which incorporates resting time and direction changes within the model 

time-step, is assumed to follow a normal distribution with mean 15 m/hr and variance 25 m/hr.  

Mortality of adult mosquitoes is a function of daily average temperature, described in Equation 

1.3, with no survival above a daily average temperature of 41
o
C.  The model outputs for each 

time step includes the number of live adult mosquitoes, their location and infective status, and 

the prevalence of malaria infections in humans (Bomblies et al., 2008). 



 

 

Figure 2.3 Adult mosquito simulation flow.  During each timestep, the model updates each 

individual mosquito as she progresses through her life cycle.  Mosquito attributes are updated 

as they interact with the environment

of malaria: Model development and application to a Sahelian village,” by Bomblies A, Duchemin 

JB, Eltahir EAB. 2008. Water Resour Res 44. 

 

2.1.1 Mosquito species 

While previous studies using HYDREMATS focuse

mosquitoes, in this thesis we assume that the model also reasonably simulates 

funestus, another important vector in the wetter parts of West Africa.  The primary difference 
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Adult mosquito simulation flow.  During each timestep, the model updates each 

individual mosquito as she progresses through her life cycle.  Mosquito attributes are updated 

as they interact with the environment and human agents.  Reprinted from “Hydrolo

of malaria: Model development and application to a Sahelian village,” by Bomblies A, Duchemin 

JB, Eltahir EAB. 2008. Water Resour Res 44.  

While previous studies using HYDREMATS focused on Anopheles gambiae sensu lato 

assume that the model also reasonably simulates Anopheles 

, another important vector in the wetter parts of West Africa.  The primary difference 

 

Adult mosquito simulation flow.  During each timestep, the model updates each 

individual mosquito as she progresses through her life cycle.  Mosquito attributes are updated 

and human agents.  Reprinted from “Hydrolo Hydrology 

of malaria: Model development and application to a Sahelian village,” by Bomblies A, Duchemin 

Anopheles gambiae sensu lato 

Anopheles 

, another important vector in the wetter parts of West Africa.  The primary difference 
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between the two types of mosquitoes is their breeding preference; members of the A. gambiae 

complex breed in small, temporary pools, while A. funestus breeds in larger and more persistent 

water bodies.  Both types of pools are modelled in HYDREMATS and made available to 

mosquito agents.  Although we do not currently distinguish between species of Anopheles 

mosquitoes, we can assume that smaller pools will be colonized primarily by A. gambiae while 

A. funestus will dominate at larger pools.  The entomological parameters of the model are tuned 

using data for A. gambiae, as this complex has been studied much more extensively (Coetzee & 

Fontenille, 2004).  However, we do not expect parameter values specific to A. funestus to be 

significantly different as the two types of mosquitoes have similar adult survival and dispersal 

behavior (Midega et al., 2007) and are both primarily nocturnal, endophagic, and anthrophilic 

(Horsfall, 1943). 

2.2 Improving model efficiency 

2.2.1 Decreasing timestep of overland flow model 

Overland flow is modeled using a finite difference solution of a diffusion wave approximation to 

the St. Venant equations following the formulation of Lal (1998).  Flow velocity is represented 

by Manning’s equation as a function of friction slope, flow depth, and the distributed roughness 

parameter n, which is derived from soil characteristics and vegetation type.  The overland flow 

process is of critical importance for the modeling of water pool formation (Bomblies et al., 

2008).   

The continuity equation for shallow flow is: 
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 4ℎ48 + 4(ℎ?)4@ + 4(ℎA)4B − C + D + EF = 0 
(2.2) 

 

where u and v are the flow velocities in the x and y directions, respectively, h is the water depth, 

P is precipitation, I is infiltration, and ET is evapotranspiration.  

The momentum equations for the x and y directions are approximated as: 

 
fxS

x

H
−=

∂

∂
 (2.3) 

 
fyS

y

H
−=

∂

∂
 

(2.4) 

Where Sfx and Sfy are the friction slopes in the x and y directions, respectively, and H is the water 

depth h plus a reference elevation z.   

A rearrangement of Manning’s equation gives flow velocities as (Lal, 1998): 

 ? = − ℎ�/G
HIJKL	 4M4@ = −:ℎ 4M4@  (2.5) 

 A = − ℎ�/G
HIJKL	 4M4B = −:ℎ 4M4B  

(2.6) 

   



 

62 

 

Where n is the Manning’s roughness coefficient which determines resistance to overland flow 

and : = NO/P
QIRS	 is analogous to the diffusivity coefficient in the heat diffusion equation, so that the 

governing equation can be rewritten as:        

 4M48 = 44@ �: 4M4@� + 44B �: 4M4B� (2.7) 

   

This equation is solved using the alternate-direction implicit (ADI) method described by Lal 

(1998). 

The numerical stability parameter, ξ, for the diffusion equation is: 

 T = :U(∆@)W� +	(∆B)W�X∆8 (2.8) 

A stability analysis for overland flow on a relatively smooth plane with constant slope found the 

ADI method to become unstable for values of ξ>5 (Morita & Chie Yen, 2000).  The topography 

used in our simulation is more complex than the smooth plane used in the analysis.  The 

formulation of K causes it to become very large in within pools of water, where the slope in 

water level between adjacent grid cells is close to zero.  We take the conservative stability 

criterion used for explicit numerical methods, ξ≤0.5.  While the traditional approach is to use this 

criterion to limit the model timestep, the large values of K within water pools lead to 

prohibitively small timesteps.  Furthermore, for the purposes of modelling mosquito habitat, we 

are more interested in the location and persistence of water pools than the exact dynamics of 



 

63 

 

water between grid cells within a given pool.  Therefore, we impose an upper limit of K, which 

allows for a larger timestep while maintaining numerical stability.   

Simulations were conducted, imposing upper limits on K of 5 m
2
/s , 2.5 m

2
/s and 0.25 m

2
/s, 

corresponding with a timestep of 5 seconds, 10 seconds, and 100 seconds, respectively.  These 

results are compared to a simulation where K is unconstrained, and the timestep ranges from 1 

second to 0.05 seconds depending on maximum water depth.  A comparison of various 

hydrologic outputs as well as the resulting mosquito populations showed that this approximation 

had only a small impact on the simulation.  The normalized root mean square error (NRMSE) 

and the correlation coefficient (CC) of total infiltration, surface area of pools, volume of pools, 

and number of mosquitoes simulated over the model domain between the simulation with 

unconstrained K and simulations with upper limits on K are shown in Table 2.1.  Based on these 

results, a maximum value of K=2.5 m
2
/s was selected in order to maintain accuracy while 

increasing computational efficiency.  During wet conditions, this results in a 200 fold decrease in 

the number of timesteps required by the overland flow module of HYDREMATS. 
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Table 2.1 Effect of limiting coefficient K on important model outputs. 

 Kmax=5 Kmax=2.5 Kmax=0.25 

Timestep 5 seconds 10 seconds 100 seconds 

Infiltration    

NRMSE 0.9% 1.0% 1.5% 

CC 99.1% 99.0% 97.8% 

    

Surface Area  of pools    

NRMSE 0.4% 1.2% 1.6% 

CC 99.9% 99.1% 98.6% 

    

Volume of pools    

NRMSE 3.4% 4.7% 13.1% 

CC 99.7% 99.5% 97.9% 

    

Number of mosquitoes    

NRMSE 1.9% 3.3% 3.6% 

CC 99.9% 99.9% 99.6% 

 

2.2.2 Decreasing model storage requirements 

The hydrology component of HYDREMATS provides output information for every simulated 

hour.  This includes the water depth and water temperature for each grid cell, which are used by 

the entomology component of the model as maps of larval sites.  For a 2.5 x 2.5 km model 
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domain size, the memory requirements of the water depth and temperature output files are 

roughly 7.2 GB per simulated year.  The model was modified such that when there are no water 

pools in the model domain, the hydrology component does not output pool information.  At each 

time step, the entomology component then checks whether a pool output file exists; if not, the 

model assigns the pool depth for each grid cell as 0 mm.  This greatly reduces the hard disk 

space required by the model, particularly during multi-year simulations in areas with long dry 

seasons. 

2.2.3 Parallelization of entomology model 

The entomology component of HYDREMATS updates the status of each adult mosquito at every 

hourly timestep.  The processes considered at each timestep include flight, water-seeking, 

ovipositing, meal-seeking, biting, and disease transmission (Figure 2.3).  Previously, the model 

cycled through the decision processes for every mosquito one at a time.  However, adult 

mosquitoes simulated independently from one another, making this an ideal task for parallel 

computing.  The entomology component of the model was converted from Fortran 77 to Fortan 

90.  The model code was then modified to allow the adult mosquito processes to be calculated in 

parallel using the OpenMP framework (Dagum & Menon, 1998).  This allows the total number 

of adult mosquitoes to be divided among multiple processors.  At the end of the parallel segment, 

the eggs laid in each grid cell on each thread are consolidated and the remainder of the 

entomology component runs in serial. 
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2.3 Incorporating the effects of humidity on mosquito survival 

Low levels of relative humidity are known to decrease the lifespan of mosquitoes.  However, 

HYDREMATS, like most current models of malaria transmission, did not account for the effects 

of relative humidity on mosquito survival.  In the Sahel, where relative humidity drops to levels 

<20% for several months of the year, we expect relative humidity to play a significant role in 

shaping the seasonal profile of mosquito populations.  Here, we present a new formulation for 

Anopheles gambiae sensu lato (s.l.) mosquito survival as a function of temperature and relative 

humidity and investigate the effect of humidity on simulated mosquito populations.  Using 

existing observations on relationships between temperature, relative humidity and mosquito 

longevity, we developed a new equation for mosquito survival as a function of temperature and 

relative humidity.  We apply this equation to the environmental data for two villages from the 

Sahel region of Africa and conduct numerical simulations of mosquito populations using 

HYDREMATS. 

2.3.1 Background 

2.3.1.1 Effects of humidity on mosquito longevity 

Mosquitoes, like all insects, have a limited range of tolerable temperature and humidity 

(Wigglesworth, 1939).  The high surface area to volume ratio of mosquitoes makes them 

especially sensitive to desiccation at low humidity levels. 

Gaaboub et al. (1971) compared the survival of groups of female Anopheles pharoensis 

mosquitoes at 20
o
, 26

o
 and 30

o
C and found little difference in longevity between 50% and 90% 

relative humidity (RH) conditions at a given temperature.  Bayoh and Lindsay (Bayoh, 2001) 
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measured the longevity of An. gambiae sensu stricto (s.s.) at 40%, 60%, 80% and 100% RH at 

5
o
C intervals from 5

o
C to 40

o
C.  Under the assumption that daily probability of survival is 

independent of mosquito age, there was little difference in survival between 60-100% RH, but 

survival was slightly reduced at 40% RH.   

Molecular biology techniques applied to An. gambiae s.s. held at 42% RH (Liu et al., 2011) and 

30% RH (Wang et al., 2011) found the mosquitoes had undergone physiologic responses to 

desiccation stress, decreasing their water loss.  Mosquitoes held without food or water survived 

for an average of 15.6 hours at 30% RH compared to 26.2 hours at 70% RH (Wang et al., 2011). 

Recent studies on mosquito desiccation showed that extremely low levels of RH are fatal to 

mosquitoes when maintained for periods on the order of hours.  These studies placed mosquitoes 

in vials without access to food or water and added a desiccant to reduce RH levels that are 

generally kept at <10% RH but not exactly specified.  Several such studies found that no An. 

gambiae s.s. or An. arabiensis females survived for an entire day at <10% RH (Fouet et al., 

2012; Gray & Bradley, 2005) or <20% RH (Liu et al., 2011).  In a similar study, a small number 

of mosquitoes survived up to 30 hours at <10% RH, and acclimation to hot and dry conditions 

was shown to increase desiccation resistance (Gray et al., 2009).  However, in another study 

using the offspring of field captured mosquitoes held at <10% RH, 15% of S form An. gambiae 

s.s. and 23% of M form An. gambiae s.s. females survived for over 1 day, with 2 out of 30 M 

form individuals surviving for over 2 days (Lee et al., 2009), suggesting that wild mosquitoes in 

arid regions may have higher desiccation resistance than laboratory colonies.   
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In summary, An. gambiae longevity does not appear to be substantially affected by relative 

humidity at ranges greater than 40%, but RH <10% is fatal, usually within hours.  There is very 

little information on mosquito longevity in the range 10-40% RH.   

 

2.3.1.2 Mosquito survival in malaria models 

Many mechanistic models of malaria transmission, including HYDREMATS, use the Martens 

equation for survival as a function of temperature (Craig et al., 1999; Ermert et al., 2011; W. 

Martens et al., 1995; Parham & Michael, 2009): 

  
 

 p(T) = exp � −1−4.4 + 1.31T − 0.03T�� 
(2.9) 

 

where T is the daily average air temperature in degrees Celsius.  This function gives maximum 

longevity in the range of 20-25
o
C, and severe mortality at temperatures below 10

o
C and above 

35
o
C.  This curve, shown in Figure 2.7, was formed based on three data points (W. J. Martens, 

1997). 

The experiments relating survival to temperature conducted by Bayoh (2001) led to the 

development of two new formulations of survival probability of Anopheles gambiae to 

temperature, one by Ermert et al. (2011) and another by Mordecai et al. (2013), shown in Figure 
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2.7.  The accuracy of these two formulations and the Martens equation were recently evaluated 

by Lunde et al. (2013).   

Relative humidity has recently been incorporated into several models.  Parham et al. (2012) 

developed a survival curve based on Bayoh’s survival data (Bayoh, 2001).  The Liverpool 

Malaria Model accounts for humidity by subtracting 10% from the daily probability of survival 

when 10 day accumulated rainfall is below 10mm (Ermert et al., 2011).  Lunde et al. (2013) use 

Bayoh’s survival data by fitting a survival curve for each measured value of RH (40%, 60%, 

80% and 100%), further adjusted by mosquito size and age.  While these formulations for 

mosquito survival rates are improvements on previous formulations that considered only 

temperature, they do not reliably capture the effect of very low values of relative humidity 

(<40% RH) such as those observed during the dry season in the Sahel on mosquito survival.  

Here, we propose a new equation for mosquito survival incorporating current knowledge on the 

effects of relative humidity and temperature on survival. 

2.3.1.3 Field observations 

We investigated the effects of relative humidity on simulated mosquito population dynamics in 

two villages in Niger, West Africa.  These two villages, Banizoumbou (13.53
o 

N, 2.66
 o 

E) and 

Zindarou (13.43
o 

N, 2.92
o 

E), have been the subject of extensive field activities and numerical 

model simulations using HYDREMATS (Bomblies et al., 2008; Bomblies et al., 2009).  The two 

villages are approximately 30 km apart, and there is little difference in climate between the two.  

Climate data for 2006 are shown in Figure 2.4.  The rainy season in the region is dictated by the 

migration of the West African Monsoon.  From approximately November through April, 

Harmattan winds from the Northeast bring dry air from the Sahara desert.  From May through 
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October, the monsoon brings moist air from the Southwest (Sultan & Janicot, 2003).  This shift 

in wind direction as measured in Banizoumbou and Zindarou in 2006 is shown in the upper left 

panel of Figure 2.4, where positive values of the meridional wind speed indicate wind blowing 

from the south, while negative values indicate wind blowing from the north.  The moist air from 

the south leads to high relative humidity and rainfall as shown in the lower left and upper right 

panels of Figure 2.4, respectively. 

 

Figure 2.4 Climate in Banizoumbou and Zindarou.  Ground observations of daily average 

meridional wind speed, daily total rainfall, and daily averages of relative humidity and 

temperature are shown for Banizoumbou (red) and Zindarou (blue) for the year 2006. Positive 

values (above the yellow line) indicate wind blowing from the south while negative values 

(below the yellow line) indicate wind from the north. 
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Despite similarities in climate, the two villages differ in their water availability.  Banizoumbou is 

a typical Sahelian village with a deep water table (~25 meters), and surface water pools quickly 

dry up at the end of the rainy season.  In contrast, Zindarou is located in the floodplain of an 

abandoned river system and is thus at a lower elevation (water table depth ~2.5 meters), allowing 

the groundwater to penetrate the land surface.  This surface expression of ground water produces 

a wetter environment than is typically found in the Sahel allowing for high levels of mosquito 

breeding.  The water pools in Zindarou persist for several months beyond the end of the rainy 

season, potentially extending the mosquito breeding season.  Hydrological simulations of the two 

villages reflected this difference in pool availability, shown in Figure 2.5. 

Mosquito collections were conducted as described in Bomblies et al. (2008) and Bomblies et al. 

(2009).  Six CDC light traps were deployed overnight in each village once a month from 

December – May (dry season), and weekly from June – November (wet season).  Female 

Anopheles gambiae s.l. and Anopheles funestus specimens, the important malaria vectors in this 

region, were identified by microscopy and counted.  As shown in Figure 2.6, the observed 

number of anophelines followed a distinct seasonal cycle, increasing after the onset of monsoon 

rains in June, peaking in September, and returning to low levels by late October.  No An. 

funestus were found in Banizoumbou, but a small number were found in Zindarou.  The 

anopheline population in Zindarou did not persist beyond the end of the rainy season despite the 

continued availability of water pools for breeding.  Bomblies et al. (2009) hypothesized that the 

observed drop in mosquito population, despite continued availability of breeding sites was due to 

the lack of nutrient availability for larvae, as the decline in population coincided with the end of 
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millet pollination.  Here, we investigate whether the seasonal drop in humidity at the end of the 

rainy season could play a role in limiting mosquito populations.   

 

 

Figure 2.5 Simulated water pools as a fraction of total surface area in Banizoumbou (top) and 

Zindarou (bottom) in 2006.  The dotted line from Jan – May in Zindarou indicates the 

assumption that permanent pools simulated in December persist through the dry season. 
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Figure 2.6 Mosquitoes captured by CDC light traps in Banizoumbou (top) and Zindarou (bottom) 

in 2006. 

 

2.3.2 Development of new survival equation 

2.3.2.1 Anopheline survival as a function of temperature 

We based our formulation of anopheline survival on an existing relationship between 

temperature and survival, p(T).  In developing our equation for anopheline, we use the Martens 

equation (W. J. Martens, 1997) described above for p(T).  However, this equation can be 
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substituted by an alternative formulation for anopheline survival as a function of temperature.  

Two alternative equations have recently been developed using new survival data (Bayoh, 2001), 

which we will refer to as Bayoh-Ermert (Ermert et al., 2011) and Bayoh-Mordecai (Mordecai et 

al., 2013).  The Martens curve and the two alternative curves are shown in Figure 2.7.  These 

equations were recently evaluated by Lunde et al. (2013). 

We make the assumption that the survival equation, p(T), accurately describes Anopheles 

gambiae survival at high and moderate levels of relative humidity.   

 

Figure 2.7 Three options for daily probability of survival, p(T). 
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2.3.2.2 Adding the effect of relative humidity 

We then add the effect of relative humidity by multiplying the survival by a relative humidity 

stress factor S.  The humidity stress factor was developed using the observations reviewed in the 

previous section, and listed in Table 2.2.  As we summarized in the previous section, there are 

some data reported for mosquito survival at RH values ≥40% and < 10%.  We assume that 

mosquitoes feel no humidity stress at daily average relative humidity greater than or equal to 

some value RHS (S=0), and are stressed to the point of being unable to survive an entire day at 

critical daily average relative humidity RHC (S=1).  In the absence of data measuring mosquito 

longevity at relative humidity between 10% and 40%, we assume S decreases linearly from 1 at 

RHC to 0 at RHS. 
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Table 2.2 Observations of mosquito longevity used for development of the relative humidity 

stress factor 

Species Temperature RH Reference 

An. pharoensis 20
o
C-30

o
C 50%, 90% Gaaboub et al., 1971 

An. gambiae s.s. 5
o
C -40

o
C 40-100% Bayoh, 2001 

An. gambiae s.s. 28
o
C <20%,42% Liu et al., 2011 

An. gambiae s.s. 27
o
C 30%, 70% Wang et al., 2011 

An. gambiae s.s. 28
o
C <10% Gray and Bradley, 2005 

An. arabiensis 28
o
C <10% Gray and Bradley, 2005 

An. gambiae s.s. 27
o
C <10% Gray et al., 2009 

An. gambiae s.s. 26
o
C 5% Fouet et al., 2012 

An. gambiae s.s. 28
o
C <10% Lee et al., 2009 
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The stress factor is then defined as follows: 

 

J =
YZ
[ 1			,															\M < \M^\MR − \M\MR − \M^ 	 			,								\M^ ≤ \M ≤ \MR

0			,														\M > \MR
a (2.10) 

The new equation for An. gambiae survival is given by: 

 p(T, RH) = p(T) × (1 − S) (2.11) 

This assumes that temperature and relative humidity act independently on mosquito survival.   

Mosquito survival as a function of temperature and RH are shown for RHS=42% and RHC=5% is 

shown in Figure 2.8.  RHS was set at 42% RH in order to reflect a decrease in longevity observed 

by Bayoh (Bayoh, 2001) at 40% RH compared to values ≥ 60% RH, and evidence that 

mosquitoes at 42% RH showed physiological signs of stress (Liu et al., 2011).  RHC was set at 

5% as several of the desiccation studies found that RH<10% killed all mosquitoes in one day 

(Fouet et al., 2012; Gray & Bradley, 2005).  While most of the experiments conducted to date 

relating mosquito survival to relative humidity and temperature focused on An. gambiae s.s., we 

make the assumption that our model is valid for the An. gambiae s.l. complex.  However, 

parameter values can be adjusted to reflect regional or species-specific differences in tolerance to 

arid conditions, or based on improved knowledge on mosquito longevity at RH <40%. 
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Figure 2.8 Martens survival equation (left), RH stress index (center) and daily survival 

probability of mosquitoes using the newly developed formula (right). 

 

The first panel of Figure 2.8 shows the Martens survival curve, which is a function of 

temperature only.  The second panel shows the RH stress factor calculated above.  The third 

panel of Figure 2.8 shows the new equation for mosquito survival as a function of temperature 

and relative humidity. 

The average lifespan of a mosquito can be calculated from the daily probability of survival: 

Lifespan=1/-ln(p).   

Figure 2.9 shows a comparison of average lifespan using the Martens, Ermert Liverpool Malaria 

Model (dry season) and Parham equations and the new equation developed here when RH is held 

constant at 10%.  At moderate temperatures (15-30
0
C), only the new equation reflects the lethal 

effects of extremely low RH observed in desiccation studies (Fouet et al., 2012; Gray & Bradley, 

2005; Gray et al., 2009; Lee et al., 2009).   
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Figure 2.9 Average lifespan at 10% RH using various equations for mosquito survival. 

 

We do not explicitly consider the possibility of aestivation, by which mosquitoes survive for 

long periods during the dry season.  This mechanism for survival has been observed in several 

instances in An. gambiae in the Sahel (Lehmann et al., 2010; Omer & Cloudsley-Thompson, 

1970), but is still not well understood. 

2.3.3 Testing new survival equation 

We tested the impact of the new survival equation by conducting a simulation using 

HYDREMATS for Banizoumbou and Zindarou using field observations on temperature, wind, 

relative humidity, and rainfall for the year 2006.  For each village, we conducted one simulation 

using the original Martens equation for mosquito longevity as a function of temperature only, 
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and 3 simulations using the new equation incorporating temperature and relative humidity using 

RHS=42%, 40% and 35%, all at RHC=5%.  We also conducted a simulation for each village with 

RHS=42% and RHC=0%.   

2.3.4 Results  

The daily probability of mosquito survival calculated using the Martens equation and the new 

equation incorporating relative humidity are shown for each village in Figure 2.10.  When 

mosquito survival depended only on temperature, as shown in the blue line of Figure 2.10, there 

was little seasonal variation in the probability of survival, which ranged between 0.78 and 0.90, 

reaching a minimum between April and July.  This figure shows that temperature cannot explain 

the observed decrease in mosquito population at the end of the wet season.  When relative 

humidity was included in the calculation of mosquito survival, we observed a highly seasonal 

pattern.  During most of the wet season, relative humidity is high and therefore does not 

contribute to mosquito mortality.  However, during the dry season, RH significantly reduces 

mosquito survival to values as low as 0.03 in late-March and early-April where relative humidity 

falls below 10%.  The value of RHS determines the extent of RH related mortality.   
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Figure 2.10 Daily probability of survival of mosquitoes using temperature and relative humidity 

data from Banizoumbou and Zindarou 

 

Figure 2.11 compares the daily probability of survival as a function of temperature and relative 

humidity, p(T,RH), using the three different equations for p(T) discussed in Section 2.3.2.1 and 

adjusted for relative humidity using parameters RHS=42% and RHC=5%.  In the temperature 

range observed in Banizoumbou and Zindarou (20-35
o
C), the three p(T) curves give similar 

survival probabilities, so there is little difference in the calculated p(T,RH).  The Bayoh-Ermert 
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equation leads to higher survival during the wet season, but the effects of relative humidity 

remain largely unchanged. 

 

 

Figure 2.11 Daily probability of survival as a function of temperature and relative humidity, 

p(T,RH) using three different formulations for p(T). 

 

The size of the mosquito population in each simulation is shown in Figure 2.12.  In 

Banizoumbou (Figure 2.12, top panel), mosquito population levels were closely tied to rainfall.  
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There was little persistence of water pools beyond the end of the rainy season.  Since the 

decrease in rainfall precedes the decrease in humidity, the addition of a stress factor at low levels 

of RH had minimal effect on mosquito populations.  By contrast in Zindarou, where water pools 

persist for several months after the end of the rainy season, the size of the mosquito population 

was not limited by water availability.  Temperature was also not a limiting factor at the end of 

the rainy season; in the simulation using the Martens equation for mosquito survival as a 

function of temperature, the mosquito population remained at high levels for the duration of the 

simulation (Figure 2.12, bottom panel, blue line).  However, the incorporation of relative 

humidity into mosquito survival dramatically reduced the number of mosquitoes, beginning in 

late-October when the RH plummets.  The choice of RHS affected the results.  In the simulations 

using RHS=40% and 42%, the mosquito populations dropped dramatically starting on October 

29
th

.  When RHS was set to 35%, there was no change in mosquito populations until November 

4
th

, and the drop was somewhat more gradual than in the in the simulations with higher RHS.  

There was little difference between simulations with RHC=5% and RHC=0% (see Figure 2.13). 

The incorporation of relative humidity into simulations of mosquito populations substantially 

decreases mosquito longevity.  In cases such as Zindarou where breeding sites are available 

beyond the end of the wet season, the drop in relative humidity could explain, at least in part, the 

rapid decline of the mosquito population in field observations.  However, the timing of the 

decline of mosquitoes in the simulation (late October) occurred approximately four weeks after 

the decrease in captured mosquitoes (late September/early October), indicating that other factors 

likely played a role in limiting mosquito numbers.   
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Figure 2.12 Simulated mosquitoes in Banizoumbou (top) and Zindarou (bottom) using the 

differing values of RHS.  Mosquitoes captured by light traps are shown by the dashed line. 
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Figure 2.13 Sensitivity of results to critical value of RH 

 

2.3.5 Discussion 

The adverse effects of low humidity on mosquito longevity have been known for decades 

(Mayne, 1930).  Here, we have taken a commonly used equation for mosquito survival as a 

function of temperature and added the effects of relative humidity.  While other researchers have 

incorporated humidity into their models (Ermert et al., 2011; Lunde et al., 2013; Parham et al., 

2012), our equation is unique in that it reflects the fatal effect of the extremely low values of 
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relative humidity that are observed during the dry season in the Sahel.  Using evidence from 

mosquito survival studies, we assumed that relative humidity does not affect survival rates at 

high and moderate values of RH, but at a value RHS (~42% RH), survival decreases until a 

critical value RHC (~5% RH) where it is assumed that no individual can survive for longer than 

24 hours.  In the two villages of the Sahel described here, daily averages of relative humidity 

remained below 30% for the majority of the dry season.   

The primary mode of variability in mosquito populations in these villages features two distinct 

seasons; a wet season with a high population of mosquitoes and relatively high malaria 

transmission (July-November) and a dry season with a low population of mosquitoes and low 

malaria transmission (December – June).  When we simulate mosquito populations using 

HYDREMATS parameterized with the Martens survival equation, it reproduces this mode of 

variability in Banizoumbou, where mosquito breeding sites were not available beyond the wet 

season, but it fails to reproduce the same mode in Zindarou, where breeding sites persist into the 

dry season.  However, when we incorporate the constraints on survival due to humidity 

developed here into HYDREMATS, the model reproduces this observed mode of variability in 

both villages. 

While the equation for mosquito survival developed here improved the model’s ability to 

simulate the observed seasonal pattern of mosquitoes in Zindarou, the timing of the decline of 

captured mosquitoes preceded the drop in relative humidity by approximately 4 weeks, 

indicating that other factors must be playing a role in the mosquito decline.  Other potential 

factors involved in this decline in mosquitoes could include a lack of nutrient availability for 

larvae and establishment of predator populations in the long-lasting water pools, which can be 

represented in HYDREMATS but were not included in the simulations for this study.  Bomblies 
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et al. (2009) noted that the decline in mosquito population corresponded with the harvest of 

millet crops and hypothesized that aquatic stage mosquitoes may have depended on the 

availability of millet pollen.  While anopheline larvae were found in the persistent water pools, it 

is possible that these pools become less attractive as breeding sites as the rainy season 

progresses, perhaps due to increased vegetation, turbidity or predator activity.  Another possible 

explanation for the decline in mosquito captures could be the triggering of aestivation, where 

mosquitoes retreat to sheltered locations and cease regular activities, leading to a decrease in 

captured mosquitoes despite the continued presence of water pools. 

In addition to the dramatic reduction in the mosquito population simulated in Zindarou as a result 

of low RH, mosquito longevity in individual mosquitoes plays an important role in malaria 

transmission dynamics.  In order to transmit the parasite, a mosquito must survive long enough 

to bite an infected person, surpass the extrinsic incubation period of the parasite, roughly 6-10 

days in warm climates (Detinova, 1962), and then bite a second (uninfected) person.  This 

amplifies the effect of shortened lifespan, such that even a small decrease in lifespan can have a 

very significant effect on malaria transmission (Macdonald, 1956). 

2.4 Conclusions 

In this chapter, we describe improvements made to HYDREMATS in two areas: model 

efficiency, and mosquito survival.  The efficiency improvements to HYDREMATS were critical 

for conducting multi-year simulations.  The result is a much faster model that requires less hard 

disk space, and takes advantage of modern parallel computing platforms. 

We proposed a new equation to describe mosquito survival as a function of temperature and 

relative humidity. We demonstrated that relative humidity can play a significant role in mosquito 
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survival and malaria transmission dynamics.  In the Sahel, where dry season RH regularly drops 

to levels known to significantly decrease mosquito longevity, relative humidity can be as 

important as temperature and rainfall in determining the environmental suitability for mosquitoes 

and malaria transmission.  The primary mode of variability in mosquito populations in these 

villages features two distinct seasons; a wet season with a high population of mosquitoes and 

relatively high malaria transmission and a dry season with a low population of mosquitoes and 

low malaria transmission.  We showed that when we simulate mosquito populations using 

HYDREMATS parameterized with the Martens survival equation, it fails to reproduce the same 

mode in Zindarou, where breeding sites persist into the dry season.  However, when we 

incorporate the constraints on survival due to humidity developed here into HYDREMATS, the 

model reproduces this observed mode of variability in both villages.  Future modeling work 

should therefore account for these effects of relative humidity. 
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3 Extension of HYDREMATS to incorporate human 

immunological processes 

3.1 Introduction 

Individuals continuously exposed to malaria gradually acquire immunity that protects from 

severe disease and high levels of parasitization.  Acquired immunity has been incorporated into 

numerous models of malaria transmission of varying levels of complexity.  Most of these models 

require prescribing inputs of mosquito biting rates or other entomological or epidemiological 

information.  Here, we present a model with a novel structure that uses environmental controls of 

mosquito population dynamics to simulate the mosquito biting rates, malaria prevalence as well 

as variability in protective immunity of the population.  Findings from this chapter have been 

published in the journal Parasites & Vectors (Yamana et al., 2013). 

A simple model of acquired immunity to malaria is presented and tested within the framework of 

the Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS), a coupled 

hydrology and agent-based entomology model.  This immunity model builds on the structure 

presented by Bomblies (2009).  The combined model uses environmental data including rainfall, 

temperature, and topography to simulate malaria prevalence and level of acquired immunity in 

the human population.  Simulated individual mosquitoes interact with their environment, become 

infected and transmit infection as they encounter humans and take blood meals. The model is 

used to demonstrate the effect of acquired immunity on malaria prevalence in two Niger villages 

that are hydrologically and entomologically very different.  Simulations are conducted for the 
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year 2006 and compared to malaria prevalence observations collected from the two villages 

between December 2005 and February 2007. 

3.2 Study location 

Located only 30 km apart (see map, Figure 3.1), Banizoumbou and Zindarou are subject to the 

same general climate, shown in Figure 2.4, yet exhibit very different mosquito abundance.  This 

difference in mosquito abundance has been shown to be the result of varying hydrological 

conditions between the two villages (Bomblies et al., 2009).  Regional average annual rainfall in 

this region of Niger is approximately 500mm and occurs exclusively during the summer 

monsoon (June – September), during which local mosquito populations increase significantly. 

Banizoumbou is typical of the Sahel, in that it is arid, has deep groundwater and has very little 

pooled water outside of the summer monsoon season. During the summer rainy season, water 

pools formed from rainfall runoff provide breeding habitiat for Anopheles mosquitoes.  Zindarou, 

on the other hand, has shallow groundwater (depth to water table is ~1m) because it is located in 

a relic river channel known as the Dallol Bosso.  The Zindarou villagers dig shallow garden 

wells to access water for their vegetable gardens, which exposes a large water surface area to 

continuous, perennial mosquito breeding. The pooling of rainfall during the summer rains is also 

exacerbated by the shallow groundwater, because infiltration causes the shallow groundwater 

table to rise, creating extensive surface expressions of groundwater (Bomblies, 2009).  Not 

surprisingly, this leads to very high mosquito abundance. Figure 3.2 presents field observations 

of mosquito abundance in the two villages, showing significantly more mosquitoes in Zindarou 

than Banizoumbou for both 2005 and 2006. 
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Figure 3.1 Location of the studied villages Banizoumbou and Zindarou, Niger. The right panel 

depicts topography within the HAPEX-Sahel square degree, the subject of an intensive 

international hydrology and climatology research project that took place from 1991 until 1993. 

The Niger River is seen in the bottom left of the domain, and the “Dallol Bosso” relict river basin 

is seen on the right. (From Bomblies et al., 2009) 
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Figure 3.2 Modeled and observed Anopheles gambiae mosquito abundance in Banizoumbou 

and Zindarou. Mosquito abundance is very different in the two similarly sized villages, because 

of local hydrological differences. This is evident in the light trap captures (markers with dashed 

lines) and the simulation results (solid lines). (From Bomblies et al., 2009) 

 

The hydrological differences between Banizoumbou and Zindarou and the associated differences 

in mosquito abundance as measured by CDC light trap captures were simulated by Bomblies et 

al. (2009) using the highly detailed coupled hydrology and entomology numerical model 

HYDREMATS (Hydrology, Entomology and Malaria Transmission Simulator) (Figure 3.2).    

Here, we use HYDREMATS to investigate the levels of malaria prevalence in the two villages.  

We do this by extending HYDREMATS to include a representation of transmission of the 
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malaria parasite between humans and mosquitoes.  An important aspect to malaria transmission 

is the semi-protective immunity to disease that is acquired as humans are exposed to infectious 

mosquito bites.  The resulting immunity exerts a moderating effect on malaria transmission, and 

is expected to be a significant factor in shaping malaria propagation through the human/mosquito 

transmission cycle by a negative feedback mechanism. It follows that for accurate model 

representation of linkages between environmental variability and malaria prevalence, effects of 

human immunity must be considered.  

3.3 Development of immunology component of HYDREMATS 

The hydrology and entomology components of HYDREMATS were developed by Bomblies et 

al. (Bomblies et al., 2008) as an agent-based model in which individual mosquitoes interact with 

their immediate environment.  The model tracks the infection status in mosquitoes and humans.  

Malaria can be transmitted when a human is bitten by a sporozoite-infected mosquito.  

Mosquitoes become exposed to the parasite by biting infected humans.  After ingesting a 

parasite, a mosquito becomes infectious after an extrinsic incubation period (EIP) of 111 degree-

days above 16 degrees C (Detinova, 1962).  At this point, the mosquitoes are able to transmit a 

new infection to the next human bloodmeal host, completing one cycle of transmission. If animal 

hosts are chosen for a bloodmeal instead of humans, no transmission occurs.  Infections in 

mosquitoes persist for the remainder of the mosquito’s lifespan, while human individuals clear 

the parasite at rate r, described below. 

 A simple model of malaria infections and human immunity was presented in Bomblies (2009).  

In this chapter, the immunology component of HYDREMATS (Figure 3.4) is extended to 
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provide a more detailed representation of malaria infections and acquired immunity within 

humans.   

Since many details of immunity and malaria transmission remain unknown and thus are difficult 

to parameterize, we present a model with minimal parameters.  Whenever possible, parameter 

values are taken from literature presented in Chapter 1.  Where no exact value was given, we 

assumed parameter values that are deemed reasonable guesses.  Of course, model results will 

depend on choice of parameters, and a perfect fit and parameterization is not a goal of this study.  

Rather, we seek to reproduce general observed trends with a simple model to help understand the 

effect of immunity in high resolution agent-based models and inform future malaria modeling 

efforts of such nature.   

3.3.1 Previous formulation of acquired immunity 

The representation human immunity developed Bomblies (2009) model aimed for simplicity.  

Human immunity is represented by the variable imm, which varies from 0 (immunologically 

naïve) to 1 (fully developed immunity).  Each day, the immunity (imm) of any human agent that 

has received at least one infectious bite during the previous 24 hours is raised by parameter s, 

regardless of that human agent’s infected status, up to a maximum of 1.  In this formulation, s is 

set at 0.2.  Immunity is then lost at 0.1% per day.  These parameters were chosen based on the 

malaria prevalence observations made in Banizoumbou (Figure 3.5).  

Each time a human agent is subjected to an infectious bite, the probability of infection is: 

        

 e = 1 − f�� (3.1) 
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A uniform random number is generated and compared to b to determine if the human agent has 

acquired the parasite from the infectious bite.   

The duration of each malaria infection in humans is exponentially distributed with rate 

parameter, r, set to 0.0031, corresponding to a mean duration of infection of 320 days.   

With this formulation, the variety of mechanisms of immune response to malaria infection are 

conveniently lumped together into one “immunity” process represented by a single variable imm, 

ignoring the exact details of the multitude of individual processes involved in the immune 

system.  

3.3.2 New formulation of acquired immunity 

The variation of immunity model developed in this chapter builds on the previous model, adding 

a more detailed representation of immunity mechanisms and parameter values that are more 

consistent with published data.  The addition of immunity mechanisms adds a number of 

parameters.  Whenever possible, parameter values are taken from literature. 

As in the previous formulation, human immunity for each human individual is represented in 

HYDREMATS the index imm, which varies from 0 (immunologically naïve) to 1 (fully 

developed immunity).  Each day, the immunity (imm) of any human individual that has received 

at least one infectious bite during the previous 24 hours is raised by parameter s, regardless of 

that human individual’s infected status, up to a maximum of 1.  The parameter s was reduced to 

1/60 per infectious bite, reflecting the slow build up of immunity to parasitaemia through 

childhood and adolescence (Langhorne et al., 2008).   Immunity is lost at a rate of 0.019% per 
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day, corresponding to a half- life of ten years, reflecting the protective effects of immunity on the 

order of decades in the absence of exposure (Struik & Riley, 2004). 

Each time a human individual is subjected to an infectious bite, the probability of infection is 

given by: 

 e = (e�fH − e��@) ∗ f�� + e��@ (3.2) 

 

where bmax and bmin are parameters reflecting the probability of infection with no immunity 

and full immunity, respectively.   

A recent compilation of observed values of b gave a range between 0.01 and 0.49 (Ermert et al., 

2011).  We reflect this range by setting bmax=0.5 and bmin=0.05.  The non-zero value of bmin 

allows even fully immune individuals to contribute to the disease reservoir (Muirhead-Thomson, 

1957).   

In the previous formulation, the duration of a simulated human malaria infection was 

independent of an individual’s immunity level. Here, the disease clearance rate was modified 

such that the duration of disease shortens as immunity increases.  The duration of each infection 

is exponentially distributed with rate parameter, r, set to  

 g = (g��@ − g�fH) ∗ f�� + g�fH (3.3) 

 

The value for rmin is set to 1/220 days
-1

, which is consistent with the mean duration of infection 

found in immunologically naïve adults infected with malaria (Jeffery & Eyles, 1954).  As we 

could not find a published estimate for rmax, we assume that full immunity doubles the clearance 
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rate and set rmax to 1/110 days
-1

.  The recovery rate is also affected by superinfection, the state 

of an individual having two or more concurrent malaria infections, following the assumption 

made by Macdonald (1950) and Dietz et al. (1974) that multiple infections can occur 

simultaneously and the duration of each infection is not affected by the presence of other 

infections.  Thus each infection within a human is tracked separately and must be cleared 

independently at rate r.   

We did not include an effect of immunity on the probability that a mosquito is infected when 

biting an infected human, due to the high uncertainty regarding the effect of acquired immunity 

on human infectivity to mosquitoes.  However, this could easily be modified in the model, 

should more definitive information come to light. 

HYDREMATS was modified so that each human in the village population is assigned an age, 

distributed according to local demographics as shown in Figure 3.3 (Niger. Bureau Central du 

Recensement & Niger. Ministère de l'Economie et des Finances. Sécretariat Général, 2005).  The 

initial immunity level is proportional to an individual’s initial age, reflecting the accumulation of 

immunity over time.   Humans age as the model progresses, and at each time step, they are 

subjected to a probability of death equivalent to 0.0436/year.  In order to maintain a constant 

population size, a new child is born into the model population each time a human dies. 
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Figure 3.3 Population pyramid for Niger 

 

Figure 3.4 shows a schematic of the malaria transmission model within HYDREMATS.  Solid 

arrows represent the progress of individual human and mosquito individuals through infectious 

states, and dashed arrows indicate the transmission of malaria parasites through mosquito bites.  

The parameters for the immunity model are listed in Table 3.1.  The sensitivity of disease 

prevalence to parameter values was assessed by perturbing each parameter by 10% and 

observing the effect on mean annual prevalence after 10 years of simulation in Banizoumbou.   
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Figure 3.4 Schematic of the immunology component of HYDREMATS.  HYDREMATS models 

individual mosquito human and mosquito agents.  The solid arrows represent processes as 

individual agents become infected, dashed lines indicate the movement of malaria parasite 

through mosquito bites 

 

With this formulation, malaria prevalence depends on resistance acquired over several years of 
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regarding the role of immunity in malaria transmission.  It allows the effects of immunity on 

malaria transmission to be incorpo

This formulation allows simulated prevalence to be compared to observed prevalence while 

maintaining spatial structure. 

 

99 

Schematic of the immunology component of HYDREMATS.  HYDREMATS models 
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Table 3.1 Parameters for immunology component of HYDREMATS 

 Previous model New model Percent change in prevalence 

when parameter value in new 

model decreased by 10%  

Minimum disease clearance 

rate parameter 

rmin 

1/320 days 1/220 days +35% 

Maximum disease clearance 

rate parameter 

rmax 

1/320 days 1/110 days +5% 

Rate of acquiring immunity 

 

s 

0.2 per infectious 

bite 

0.017 per 

infectious bite 

-4% 

Maximum probability a 

human is infected when bitten 

by infectious mosquito 

bmax 

n/a  0.5 +1% 

Minimum probability a 

human is infected when bitten 

by infectious mosquito 

bmin 

n/a  0.05 0% 

Rate of immunity loss 0.1%  per day 

without 

infectious bite 

0.019% per day 

without infectious 

bite 

+6% 
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3.4 Simulations 

To assess the importance of the difference in immunity between the two villages Banizoumbou 

and Zindarou, we first conduct a simulation for each village where the immunity level for each 

individual is static, remaining at 0.2 for the duration of the simulation.  Climate forcing from 

2006, recorded at the each village’s meteorological station, was repeated twenty times in order to 

achieve a steady state in malaria prevalence and immunity.  We then conducted a twenty year 

simulation in each village using the dynamic immunity model described above, where 

individuals acquire immunity as they accumulate infectious bites and lose immunity in the 

absence of inoculations.   

3.5  Field observations of malaria prevalence 

Field measurements of malaria prevalence were made in Zindarou and Banizoumbou between 

December 2005 and February 2007 by Jean-Bernard Duchemin and colleagues at Centre de 

Recherche Médicale et Sanitaire (Yamana et al., 2013).  The populations of Zindarou and 

Banizoumbou are roughly 500 and 1000, respectively, of which approximately 20% are under 

the age of 5 (Niger. Bureau Central du Recensement & Niger. Ministère de l'Economie et des 

Finances. Sécretariat Général, 2005).  Bimonthly blood samples were taken from approximately 

25 children aged one to five years old in each village.  Resulting blood smears were analyzed 

microscopically for parasite presence.  Children with observed or reported fever were sent to a 

local health clinic for treatment in accordance to national malaria treatment guidelines.  Ethical 

clearance was obtained from the National Ethics Committee of Niger. 
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3.6 Results and Discussion 

This study has simulated malaria transmission in two villages, Banizoumbou and Zindarou, 

Niger, which are subject to nearly identical climatic conditions, but are hydrologically very 

different.  Mosquito captures in both villages during the 2006 rainy season show that abundance 

in Zindarou is approximately ten times that of Banizoumbou, and other years have shown the 

same order-of-magnitude difference in light trap captures (Bomblies et al., 2008).  However, the 

prevalence measured in the two villages was not significantly different, despite the order of 

magnitude difference in mosquito abundance.  For the period February 2004 – December 2006, 

average prevalence was 0.54, 95% CI [0.50, 0.58] in Banizoumbou and 0.56, 95% CI [0.51, 

0.61] in Zindarou. Bimonthly prevalence for the year 2006 is shown for both villages in Figure 

3.5.  The much higher vector population of Zindarou corresponds to very similar prevalence to 

that of Banizoumbou.  This surprising result suggests that acquired immunity resists the malaria 

parasite within the human population, and that the high inoculation rate in Zindarou boosts 

immunity such that prevalence is moderated. Our simple immunity model captured this 

moderating effect, as shown by comparison of model results to prevalence as determined by 

blood smears in village children.   
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Figure 3.5 Observed prevalence in Banizoumbou (red) and Zindarou (blue), for the period 

December 2005 – February 2007.  Error bars indicate 95% confidence intervals for each 

estimate. 

 

We conducted two simulations for each village; one with static immunity where each person’s 

immunity is set at a constant level of 0.2 throughout the simulation, and one with dynamic 

immunity where an individual’s immunity level responds to infectious bites.  Figure 3.6 shows 

the simulated prevalence in the static immunity simulation for the overall population (left panel) 

as well as for children under five (right panel).  As expected, the increased mosquito activity in 

Zindarou led to higher rates of malaria transmission than in Banizoumbou, and as a result, the 

prevalence levels in Zindarou are much higher than in Banizoumbou.  In both villages, there is a 
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strong seasonal signal in simulated prevalence, consistent with increased biting during the 

summer monsoon period, which peaks in mid-August in southern Niger.  Because this simulation 

assigns the same immunity level to all human individuals regardless of their age, there is little 

difference in simulated prevalence between children and adults.  The most notable difference is 

the lower minimum prevalence in children than in adults in both villages.  This is the <5 age 

group and includes the continuous birth of malaria-free humans.  Children born during the dry 

season are likely to remain free of infection until the following transmission season, thus 

lowering the average prevalence of this age group. 

 

Figure 3.6 Simulated malaria prevalence using static immunity model. Banizoumbou is shown in 

red, and Zindarou is shown in blue. The left panel shows overall prevalence for all age groups, 

and the right panel shows prevalence for children under 5. In this simulation, 2006 climate 

forcing was repeated twenty times. The time step is years, and the cycle is annual. The peaks of 

each cycle correspond to late August. 
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In contrast to the static immunity simulations, the dynamic immunity model results in higher 

immunity levels in Zindarou than in Banizoumbou as a result of the greater mosquito population 

in Zindarou.  The resulting simulated malaria prevalence for each village is shown in the left 

panel of Figure 3.7.  Here, the difference in prevalence between the two villages is dramatically 

reduced.  Banizoumbou has relatively low prevalence for the duration of the simulation.  

Zindarou initially has higher levels of prevalence, until the increased transmission raises 

population immunity and prevalence rates begin to decrease.  The mean immunity levels in the 

two villages are shown in Figure 3.8.  Mean immunity in both villages begins at 0.2, as 

individuals are given an initial value of a consistent with their age.  In Banizoumbou, the mean 

immunity level decreases slightly to an equilibrium value between 0.16 and 0.18, while in 

Zindarou the level increases in response to greater numbers of infectious bites.   

 

Figure 3.7 Simulated malaria prevalence using dynamic immunity model. Banizoumbou is 

shown in red, and Zindarou is shown in blue. The left panel shows overall prevalence for all age 

groups, and the right panel shows prevalence for children under 5. In this simulation, 2006 
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climate forcing was repeated twenty times. The time step is years, and the cycle is annual. The 

peaks of each cycle correspond to late August. 

 

 

Figure 3.8 Simulated mean immunity level using the dynamic immunity model in Banizoumbou 

(red) and Zindarou (blue). In the simulations using static immunity, the immunity in both 

villages remained at 0.2 (green line) for the duration of the simulation. 

 

We can also compare the malaria prevalence in children under five years old, shown in the right 

panel of Figure 3.7.  In this age group, we see greater differences in prevalence between the two 

villages.  In Banizoumbou malaria prevalence in the <5 year old group is very similar to 

prevalence in adults, as even adults do not have very high levels of immunity.  In contrast, the 

higher inoculation rate in Zindarou leads to higher immunity in adults, so the prevalence in <5 

year olds is higher than the general population.   
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The simulated prevalence levels in Zindarou were between 20% and 70%, which is consistent 

with the field observations of prevalence.  However, the simulations in Banizoumbou 

underestimated prevalence, ranging from 8% in the dry season to 30% at the peak of the malaria 

season.  As a result, our simulations show higher prevalence in Zindarou than in Banizoumbou, 

while field observations do now show a significant difference in prevalence between the two 

villages.  Despite not perfectly replicating the observed prevalence in the two villages, our 

simulations support the hypothesis that acquired immunity to malaria dampens the difference in 

prevalence between the two villages that may have been expected given the difference in 

mosquito populations.  In the static immunity simulations, the mean annual prevalence was 59 

percentage points higher in Zindarou than in Banizoumbou.  In the dynamic immunity 

simulation, the difference in prevalence between the two villages drops to 22 percentage points. 

The improved ability of the model to simulate observed prevalence compared to prevalence 

without immunity underscores the importance of the negative feedback associated with 

immunity in the linkage of environmental variability and malaria.  However, there are several 

factors that may be contributing to the difference between simulated and observed prevalence.  

One possible source of error is the parameterization of the entomology model.  While the model 

properly reproduces relative differences observed in mosquitoes captured by light traps in each 

village (Bomblies et al., 2009), it is not possible to compare the number of simulated mosquitoes 

to total mosquito population in the village.  It is possible that both villages have more mosquitoes 

than are simulated under current parameterization.  Another possible source of error is the 

parameterization of the immunity model.  In our sensitivity analysis, we found that the model 

was most sensitive to disease clearance rate in people with no immunity (rmin).  A longer mean 

duration of infection would lead to higher prevalence in both villages, especially in 
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Banizoumbou, where the lower immunity rates mean that the recovery rate is closer to rmin than 

in Zindarou, where higher immunity rates increase the recovery rate.  While the parameter rmin 

was set to 1/220 day
-1

 based on data from immunologically naïve adults (Jeffery & Eyles, 1954), 

it is certainly possible that the clearance rate is different in the study population.  For example, 

one study estimated the mean duration of infection in children 1-4 years old to be 625 days 

(Bekessy et al., 1976).  A third possible source of error is the sampling of village children for the 

prevalence data.  Children testing positive for malaria at each bi-weekly sampling were treated 

with anti-malarial drugs.  Because there were twice as many children in Banizoumbou compared 

to Zindarou, it was more likely for a child selected for testing in Zindarou to have been tested 

and treated in the past.  Also, the relatively small sample size leads to a wide variance in 

prevalence estimates. 

The model sensitivity analysis indicated greatest sensitivity to the value of rmin, with a 35% 

increase in prevalence when the minimum recovery rate was decreased by 10%.  The duration of 

infection is important in sustaining malaria transmission in areas with low and highly seasonal 

transmission (Gu & Novak, 2005).  Long infections carry the parasite over from one 

transmission season to the next.  The sensitivity analysis showed low sensitivity to other 

parameter values, with no perturbation leading to more than 6% change in mean prevalence.  

Results of the sensitivity analysis are shown in Figure 3.9 and Table 3.1. 
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Figure 3.9 Sensitivity of model results to parameter values. Each parameter was decreased by 

10%. Prevalence in Banizoumbou after 10 years of simulation under original parameterization 

(blue) and perturbed parameter (green) are shown. 

 

The combined model we presented here, which includes a simple representation of acquired 

immunity, completes a mechanistic modeling linkage between hydrological variability and 

village-scale malaria dynamics. While malaria models incorporating immunity are not new, the 

presented model has a novel structure that allows the spatially- and temporally-varying 

environmental controls of mosquito population dynamics to determine prevalence as well as 

variability in protective immunity of the population.  This is the only model to our knowledge 
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that provides an explicit link from environmental inputs to malaria prevalence through modelling 

hydrological, entomological and immunological processes. 

While the simulation of overall village prevalence shown in this study could have been achieved 

using one of the many existing compartmental models of malaria transmission (Águas et al., 

2008; Aron, 1988; Chitnis et al., 2008; Chiyaka et al., 2007; Dietz et al., 1974; Filipe et al., 

2007; Yang, 2000) driven by the time-series of mosquito biting rates simulated by 

HYDREMATS, we developed an individual-based model in order to provide a framework for 

using spatially-explicit individual based models to link environmental variability to malaria 

transmission in human populations, with the ultimate goal of simulating the impact of 

environmental changes (changes in regional climate, climate variability and land use) on malaria 

transmission in human populations at the village scale. By maintaining the spatial relationships 

between larval habitat and human population, we can simulate the effects of heterogeneous 

biting rates within communities (Kreuels et al., 2008; Machault et al., 2011). It also allows better 

environmental management by targeting water pools; pooled water some distance from a village 

will host far fewer subadult mosquitoes than pooled water close to the village or within the 

village itself because the proximity of pools to human hosts makes them much more easily 

accessible to ovipositing female mosquitoes and hence more likely to be utilized for breeding.  

By tracking the past exposure of each individual human, the individual-based approach provides 

a more realistic representation of the processes of malaria transmission than compartmental 

models.   

The moderating effect of immunity on malaria prevalence has been shown by others.  Dietz et al. 

(Dietz et al., 1974) compared two Nigerian villages and found that despite significant differences 

in vectorial capacity there were only modest differences in malaria prevalence.  This information 
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was used in developing the immunity and superinfection aspects of their malaria transmission 

model.  An entomological and parasitological survey in The Gambia found a negative correlation 

between vector abundance and malaria prevalence, suggesting substantial differences in 

immunity between neighboring villages (C. Thomas & Lindsay, 2000).  Macdonald (Macdonald, 

1955) also emphasized the importance of acquired immunity in regulating malaria transmission 

in the context of field observations and modeling results, and cautioned against incomplete anti-

malaria interventions that weaken a population’s immunity, an effect that is now called rebound 

malaria and has been observed following interventions (Menendez et al., 1997; Mockenhaupt et 

al., 2007; Trape et al., 2011).  Our results are consistent with observations that large differences 

in EIR do not necessarily lead to changes in prevalence (Beier et al., 1999).   

When simulating malaria transmission in a village, it is useful to report simulated malaria 

prevalence as this is a common metric for field observations that can be compared with 

simulation results.  However, our study shows that the acquired immunity level maybe a more 

useful metric in assessing the vulnerability of a village to malaria epidemics resulting from 

climate variability.  In Zindarou, higher levels of mosquito populations led to more inoculations 

and higher immunity levels compared to Banizoumbou.  If this region were to experience 

anomalously wet climate conditions that increases mosquito populations in both villages, we 

would expect a smaller increase in prevalence in Zindarou than in Banizoumbou, due to 

differences in the immunity level.  

Acquired immunity is expected to play important role in shaping the effects of climate change on 

malaria transmission.  If a population’s immunity level is at an equilibrium value due to the 

vectorial capacity allowed by the current climate, changes in climate would disrupt this 

equilibrium until a new equilibrium is reached.  This is especially of concern in areas where 
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vectorial capacity and EIR is currently low and as a result the population’s immunity is weak; 

increased EIR could lead to major increases in malaria prevalence in these vulnerable 

populations. 

3.7 Conclusion 

A simple representation of malaria transmission and the acquired immunity to malaria was 

developed and embedded in an agent-based model of host-vector-parasite interactions 

surrounding two villages in Niger, allowing us to simulate prevalence in the two villages, and to 

observe the effects of acquired immunity.  Although the simulated prevalence does not exactly 

match observations, it does show how acquired immunity dampens the effect of increased biting.  

Without the effects of immunity, Zindarou would have much higher prevalence than 

Banizoumbou.  However, when we include the effect of immunity, prevalence in Zindarou 

significantly decreases and approaches Banizoumbou levels.  This moderating effect of acquired 

immunity is consistent with field observations showing similar levels of malaria prevalence 

between the villages despite the observed differences in hydrological conditions and vector 

abundance.   The modeling results suggest that the risk of malaria transmission in the community 

depends in part on the level of acquired immunity, which is determined by the hydrologically 

driven mosquito abundance over previous years.  Higher levels of exposure to infectious bites in 

wet Zindarou leads to higher levels of immunity, providing villagers with greater protection from 

malaria epidemics associated with climate anomalies such as unusually wet years than those in 

dry Banizoumbou.
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4 Projected Impacts of Climate Change on Environmental 

Suitability for Malaria Transmission in West Africa 

4.1 Introduction 

The response of malaria transmission to climate change has been the subject of research and 

intense debate since the mid-1990s, and has been investigated using both biological/mechanistic 

models and statistical models (Parham & Michael, 2009; Rogers & Randolph, 2000).  While 

early studies reported predictions of a wide-spread increase in malaria transmission (P. Martens 

et al., 1999; W. Martens et al., 1995; Martin & Lefebvre, 1995; Tanser et al., 2003), more recent 

studies suggest a shift in distribution rather than a large net increase (Ermert et al., 2012; 

Lafferty, 2009; C. J. Thomas et al., 2004).    

Previous studies on this topic in West Africa have been limited by the relatively crude 

representation of processes dependent on rainfall in malaria models, as well as the great 

uncertainty in climate change projections in this region.  While the relationships between 

temperature and malaria transmission are relatively well understood, modelling methods that 

have been used up to now to estimate the effect of climate change on malaria transmission are 

limited in their ability to address the effects of changes in rainfall.  The primary malaria vectors 

in Africa, Anopheles gambiae sensu lato and Anopheles funestus, breed primarily in pools of 

water formed from rainfall.  Few malaria models attempt to model the causal relationships 

between rainfall and mosquito breeding sites, relying instead on rules for minimum threshold 

values of rainfall required for malaria transmission to occur (Craig et al., 1999; P. Martens et al., 

1999), with some models including an upper threshold of rainfall above which additional rainfall 
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is assumed to decrease mosquito density (Parham & Michael, 2009).  Shaman et al. (2002) and 

Porphyre et al. (2005) use hydrological models link rainfall to the abundance of Culex and Aedes 

mosquitoes, which breed in floodwaters and serve as the primary vectors for several arboviruses.  

Montosi et al. (2012) use an ecohydrological model as well as a simplified linear model to 

calculate soil water content, which is then used to model malaria incidence.  The processes by 

which rainfall is diverted into pools suitable for anopheles breeding are strongly dependent on 

the frequency, intensity and duration of rainfall events, as well as site-specific topographical 

features, soil characteristics and vegetation cover.  The persistence of these pools depend on 

evaporation and infiltration rates; pools that dry out before adult mosquitoes emerge from eggs 

are not viable breeding sites.   

Here, we bridge the gap between rainfall and corresponding mosquito abundances using the 

Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS) (Bomblies et al., 

2008).  By mechanistically translating rainfall into water pools, we are able to simulate the 

effects of projected changes in climate on malaria transmission in West Africa. In addition, we 

address the high uncertainty of climate predictions in this region by estimating the impact of 

changes in rainfall over the full range predicted by current climate models.   

4.2 Methods 

4.2.1 Study area 

The climate of West Africa is distinctively characterized by strong north to south gradients in 

both temperature and rainfall, shown in Figure 4.1 A-B.  The climate is highly seasonal, 

dominated by the West African monsoon.  We focus on the region bounded by 4
o
N and 21.5

o
N, 

and 18
o
W and 16

o
E, which we divide into 5 sub-regions (Zones 1 through 5 in Figure 4.1), 



 

115 

 

corresponding roughly to the following ecoclimate zones, respectively: Sahelo-Sahara, Sahel, 

Soudan, Soudano-Guinean, and Guinea Coast (Nicholson, 1993).  

 

Figure 4.1  Baseline climate and malaria transmission conditions in West Africa.  Zones 1-5 

correspond roughly to the following ecoclimate zones, respectively: Sahelo-Sahara, Sahel, 

Soudan, Soudano-Guinean, and Guinea Coast (Nicholson, 1993). (A) mean annual rainfall in 

mm/year from CRU, 1980-1999 (Mitchell & Jones, 2005). (B) mean surface air temperature 

during the wet season from CRU, 1980-1999 (Mitchell & Jones, 2005).  (C) Mean parasite rate in 

children aged 2-10 in 2007 estimated by Malaria Atlas Project (Hay et al., 2009). White areas 

over land indicate unstable malaria transmission, and the grey area in Zone 1 indicates no 

malaria risk.  
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The baseline period for this study was 1980-1999, in keeping with the Intergovernmental Panel 

on Climate Change’s Fourth Assessment Report (IPCC AR4) (Solomon et al., 2007).  The mean 

annual rainfall and wet-season temperature for each Zone were calculated for the baseline period 

using standard climate data from Climatic Research Unit time-series version 3.1 (CRU) data 

(Mitchell & Jones, 2005) and are shown in Table 4.1. 

Table 4.1: Characteristics of the study zones. 

 
Ecoclimate 

zone
1 

Annual rainfall 

1980-1999 (mm)
2 

Mean wet season 

temperature    

1980-1999 (
o
C)

2 

Malaria transmission 

class 2007
3 

Zone 1 Sahelo-Sahara 52 32.2 Unstable  

Zone 2 Sahel 223 31.3 Unstable / moderate stable  

Zone 3 Soudan 715 28.9 Moderate / intense 

Zone 4 Soudano-Guinea 1286 26.8 Moderate / intense 

Zone 5 Guinea Coast 1743 25.7 Intense 

1
(Nicholson, 1993) 

2
(Mitchell & Jones, 2005)  

3
Malaria endemicity class based on criteria outlined in (Hay et al. 2008) and calculated from 

mean parasite rate in children aged 2-10 in 2007 estimated by Malaria Atlas Project (Hay et al., 

2009) 
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We focus on this region because of its significant malaria burden.  The spatial distribution of 

parasite rate in children aged 2 to 10 in 2007 estimated by the Malaria Atlas Project (Hay et al., 

2009) indicates that malaria burden increases roughly from north to south (Figure 4.1 C). Using 

the malaria endemicity classification proposed by Hay et al. (2008), Zone 1 experiences unstable 

transmission, Zone 2 is divided roughly equally between unstable and moderate stable 

transmission, Zone 3 is a mixture of moderate and intense stable transmission, and Zones 4 and 5 

are primarily areas of intense transmission (Table 4.1).  Malaria transmission in regions where 

transmission is classified as unstable is especially sensitive to effects of climate on vectorial 

capacity because human populations in these areas have little or no acquired immunity, and the 

infrastructure for malaria control is likely to be limited. 

4.2.2 Design of numerical simulations: Baseline climate 

The first step in estimating the potential impacts of climate change on environmental suitability 

for malaria transmission was to establish vectorial capacity under baseline conditions using 

HYDREMATS and current climate data.  HYDREMATS is a fine resolution model that runs on 

the village scale.   While this resolution allows us to simulate the details of mosquito breeding 

and malaria transmission, its high computational cost precludes the simulation of large 

geographic areas.  However, West Africa is well known for its pronounced north-south climate 

gradient (Figure 4.1), whereas climate conditions are relatively constant moving from east to 

west (Eltahir & Gong, 1996; Nicholson, 1993).  We therefore approximated the VC for each 

Zone by simulating conditions for a single hypothetical village with climate conditions that are 

representative of that Zone.  We conducted a seven-year simulation at each of the five 

representative locations under baseline climate conditions. 
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4.2.2.1 Data used for current climate simulations 

Environmental data sources used in the current climate simulations are summarized in  

Table 4.2. The CRU data set and other monthly precipitation data available for 1980-1999, the 

baseline period, are of insufficient temporal resolution to be used with HYDREMATS, which 

requires as an input a rainfall series with an hourly resolution.  To represent the role of fine scale 

variability of rainfall in the process of formation of breeding pools, we therefore disaggregated 

the CRU data into an hourly rainfall time series. 

The spatio-temporal dissagregation of rainfall for hydrological applications is a well researched 

problem, and is often done using various statistical models parameterized by assumed or 

observed characteristics of finer scale rainfall events (Bo et al., 1994; Mackay et al., 2001; 

Margulis & Entekhabi, 2001; Segond et al., 2007).  Here, we take advantage of high resolution 

satellite observations of rainfall from the Climate Prediction Center Morphing Technique 

(CMORPH) data set, which gives ~8km resolution rainfall data every 30 minutes (Joyce et al., 

2004).  After applying the bias-correction described in Yamana and Eltahir (2011), we use the 

hourly rainfall observations from CMORPH data at each village to disaggregate baseline CRU 

rainfall into realistic storm events.  A bias correction factor was calculated for each location by 

comparing annual averages of University of East Anglia’s CRU TS 3.1 high resolution gridded 

data set (Mitchell & Jones, 2005) to the corresponding CMORPH data, between 2003-2009, 

which is the period during which the two data sets overlap. 

The hourly rainfall series were calculated using the following correction: 
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 \�fH(8, @, B) = �hi\CMjkl(8, @, B) 	∗ 	 �\m�$$GW�$$n	(@, B)	�hi\CM�$$GW�$$n(@, B) (4.1) 

	
where CRU2003-2009(x,y) and CMORPH2003-2009 (x,y) are the mean annual rainfall from CRU and 

CMORPH respectively between 2003-2009 for each grid cell.  The result is an hourly rainfall 

time series with mean annual rainfall equal to long-term observations from CRU, and patterns of 

hourly rainfall observations from CMORPH. 

Temperature, wind speed, wind direction, and radiation data were taken from the ERA Interim 

data set (Dee et al., 2011) for the grid cell containing each village being simulated; we assume 

uniform conditions within the 0.75 degree ERA grid cell.  ERA Interim data were adjusted for 

HYDREMATS as follows.  Wind speed was brought from 10 m to 2 m using the logarithmic 

wind profile for neutral atmospheric conditions (De Bruin & Moore, 1985): 

 ?(6) = ?∗
o ln �6 − p6$ � (4.2) 

Where u(z) is the horizontal wind velocity at height z above ground, u
*
 is the friction velocity, k 

is Von Karmen’s constant (≈0.41), d is the zero plane displacement height and z0 is the 

roughness length.  Assuming the dominant vegetation surrounding villages is cropland with 

height of approximately 1.5 meters, d is approximately 1.1 meters and z0 is around 0.15 meters.  

The friction velocity is approximated using the wind speed at 10 meters given by ERA Interim: 

 ?∗ = ?q$o
ln r10 − p6$ s 

(4.3) 
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Table 4.2 Summary of data sources 

 Data source Spatial resolution Temporal 

resolution 

Reference 

Baseline Climatology     

temperature CRU TS 3.1 0.5 x 0.5 degree 1 month Mitchell and 

Jones, 2005 

rainfall CRU TS 3.1 0.5 x 0.5 degree 1 month Mitchell and 

Jones, 2005 

Meteorological Inputs 

for HYDREMATS 

Simulation 

    

precipitation CMORPH ~8km 30 min Joyce et al., 2004 

temperature ERA-Interim .75 x .75 degree 3 hour Dee et al., 2011 

wind speed ERA-Interim .75 x .75 degree 3 hour Dee et al., 2011 

wind direction ERA-Interim .75 x .75 degree 3 hour Dee et al., 2011 

surface radiation ERA-Interim .75 x .75 degree 3 hour Dee et al., 2011 

Other HYDREMATS 

inputs 

    

soil type HWSD ~1km  FAO, 2009 

vegetation UMD landcover 1km  Hansen et al., 

2000 

topography Computed from Envisat 

synthetic aperture radar 

and ground survey 

10 m  Toutin and Gray, 

2000; Bomblies et 

al. 2008 

household locations Quickbird image 0.6 m  Bomblies et al. 

2008 

Climate predictions     

Rainfall and 

temperature 

anomalies 2080-2099 

Various climate models 

(See Table 2) from IPCC 

AR4 emissions scenario 

A1B 

Range from 1.4 x 1.4 

degree to 3.9 x 3.9 

degree  

1 month IPCC, 2011 
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Wind and radiation data were linearly extrapolated from the 3-hour resolution provided by ERA 

to the 1-hour resolution required by HYDREMATS.   

A comparison of the diurnal temperature cycles given by ERA Interim and ground observations 

at three locations across ecoclimate zones in our study region (Banizoumbou, Niger; Agoufou, 

Mali; and Djougou, Benin) indicated that while the reanalysis data gave good estimates of the 

daily mean temperature, the diurnal range was underestimated.  The regression coefficients 

below were calculated using the diurnal temperature ranges of the three ground stations over one 

year and applied to daily ERA temperature ranges: 

 Rcorrected = RERA × 1.03 + 5.25C° (4.4) 

The maximum and minimum daily temperatures were then computed as the daily temperature 

mean from ERA plus or minus the corrected range divided by two.  The hourly temperature was 

calculated assuming a sinusoidal curve during daylight hours and an exponential decrease 

between sunset and sunrise, as described in Paaijmans et al.(2009) 

The dominant vegetation type at each location was obtained from the University of Maryland 

Land Cover Classification (Hansen et al., 2000).  Soil properties were taken from the 

Harmonized World Soil Database (Nachtergaele & Batjes, 2012).  A thin layer of low-

permeability soil is included in the model to account for soil crusting that occurs throughout 

West Africa under cultivated conditions (Morin, 1993).  Water pools are lined with a clayey soil 

that slows infiltration (Desconnets et al., 1997).  We assumed typical topographical conditions 

and household locations as observed in Banizoumbou, Niger (Bomblies et al. 2008) that were 

held constant among Zones. 
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4.2.3 Design of numerical simulations: Future climate 

After establishing baseline conditions, we repeated the simulations using future climate 

projections as inputs to HYDREMATS.  We considered the entire range of predictions from the 

19 General Circulation Models (GCMs) contributing to the A1B emissions scenario of the 

IPCC’s 4
th

 Assessment report (Solomon et al., 2007).  This scenario describes a future 

characterized by rapid economic growth, decreased heterogeneity among nations through 

increased interactions, capacity building and cooperation, and a balance between fossil fuel and 

alternative energy sources (Solomon et al., 2007).  The models differ greatly in their predictions 

of future climate in West Africa.  This disagreement implies that at least some of the GCMs are 

substantially flawed in their representation of the climate in this region (Christensen et al., 2007; 

Cook & Vizy, 2006). Therefore, we conducted a preliminary analysis to identify the GCMs that 

would maximize and minimize vectorial capacity in each Zone during 2080-2099, under the 

assumption that the true outcome will fall within the bounds set by these extreme scenarios.  As 

discussed in detail in Section 4.3.1, we determined that the GCMs resulting in the wettest and 

driest climate projections would produce the maximum and minimum estimates of vectorial 

capacity (VC, given by Equation 1.1), respectively. 

We conducted four simulations of future VC for each Zone.  First, to highlight the impact of 

changes in rainfall, we simulated the predicted changes in rainfall only, while keeping baseline 

values of temperature and all other variables.  Two 7-year simulations were conducted for each 

region, one using the driest outcome predicted by the models and one using the wettest outcome 

(referred to as dry and wet simulations, respectively).  Next, to assess the combined impact of 

increased temperature and changing rainfall, we repeated the simulations with predicted 



 

123 

 

temperature increases included in addition to changes in precipitation (dry-hot and wet-warm 

simulations, respectively). 

4.2.3.1 Data used for future climate simulations 

Projected changes in rainfall and temperature between the baseline period (1980-1999) and the 

future (2080-2099) are provided by the GCM outputs.  We assume that climate change will take 

the form of shifts in the north-south rainfall gradient, consistent with historical changes in 

rainfall regimes in this region (Bomblies & Eltahir, 2010; Irizarry-Ortiz et al., 2003).  The 2080-

2099 precipitation time series were created by selecting a location directly north (for decreased 

rainfall scenarios) or south (for increased rainfall scenarios) of the representative village in each 

zone where the current rainfall is equal to the annual rainfall predicted by a GCM for 2080-2099, 

and disaggregating using CMORPH.  For example, the village selected to represent Zone 2 is 

located at 15.05N, 8.33E, where the baseline rainfall is 259 mm/year.  Applying the predicted 

changes from the GCMs, the dry scenario should have an average rainfall of 53 mm/year and the 

wet scenario should have an average rainfall of 366 mm/year.  The rainfall time series for the wet 

scenario comes from a location south of our village, at 14.25N, 8.33E where current rainfall 

averages approximately 366 mm/year.  Rainfall inputs for the dry scenario come from a location 

north of our village at 19.25N, 8.33E where current rainfall averages 54 mm/year.  We again 

disaggregate the coarse resolution rainfall data by applying the hourly patterns of rainfall 

observed by CMORPH.    

The increase in temperature for each zone was represented by adding the mean wet-season 

temperature increase of the GCM grid cell containing each village to each hourly data point used 

in the simulation of baseline climate.  The remaining model inputs were not changed.   
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4.3 Results 

4.3.1 Analysis of climate predictions from GCMs  

Before conducting our numerical simulations, we analyzed GCM outputs to identify the 

predictions that would maximize and minimize VC. The uncertainty for predicted rainfall is 

much greater than for predicted temperature; while all of the models predict a temperature 

increase between 2 and 6
o
C, the predicted changes in rainfall differ in even their sign, and range 

from a decline of 400% to an increase of 260% (Figure 4.2).  The wide range of possible rainfall 

outcomes underscores the importance of considering changes in rainfall when assessing future 

climates. 

 

Figure 4.2 Predicted changes in temperature and rainfall, zonally averaged for each model.  

Each blue line is the zonally averaged change in temperature (left) and rainfall (right) predicted 

between the baseline period (1980-1999) and 2080-2099 by a single SRES A1B GCM, averaged 

zonally over land points between 18
o
W and 16

o
E. 
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Figure 4.3 GCM predictions for changes in temperature, precipitation, and expectation of 

infective life.  Each point represents the change in temperature and precipitation (A), or the 

change in the expectation of infective life (D, in days) and precipitation (B), predicted by each 

IPCC AR4 GCM.   

 

The mean change in temperature and precipitation predicted by each GCM is shown in Figure 

4.3 A.  In Zones 1-3, which are currently drier and warmer than is optimal for malaria 

transmission, the conditions that would maximize VC would be the wettest and coolest 

prediction, whereas the driest and hottest prediction would minimize VC.  In these regions, 

increases in precipitation are associated with less warming, as a wetter climate would lead to 

more evaporative cooling, counteracting some of the warming caused by greenhouse gasses.  

Similarly, decreases in precipitation are associated with greater warming.  This association is less 

pronounced in Zones 4 and 5 as the relative change in precipitation is much smaller, thus 
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decreasing the impact of the change in evaporative cooling.  The changes in the expectation of 

infective life, D, calculated from the predicted changes in temperature from each GCM are 

shown in Figure 4.3 A.  In Zones 1 and 2, the wettest prediction also has the smallest decrease in 

D, and the driest prediction corresponds to the greatest decrease in D.  In Zones 3, 4 and 5, we 

assume that the wettest and driest predictions will result in the highest and lowest predictions for 

vectorial capacity, respectively, as the percent change in precipitation between predictions varies 

more than the percent change in D caused by increased temperature.  The projected changes in 

rainfall and temperature corresponding to the two extreme future climate change scenarios for 

each zone are summarized in Table 4.3.  We did not investigate the accuracy of the climate 

models, but instead selected the most extreme predictions of climate change assuming that 

resulting simulations would indicate the upper and lower bounds of potential changes in vectorial 

capacity. 
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Table 4.3 Changes predicted between 1980-1999 and 2080-2099 by the wettest and driest 

GCMs for each zone. 

 Wettest prediction Driest prediction 

Zone  GCM
1 

Change in 

rainfall 

(mm)  

Increase in rainy 

season 

temperature (
o
C) 

GCM Change in 

rainfall 

(mm)  

Increase in rainy 

season 

temperature (
o
C) 

1 NCAR  83 2.3 GFDL/NOAA  -105 5.6 

2 NCAR  107 2.6 GFDL/NOAA  -206 5.2 

3 ECHAM + 

HOPEG  

178 3.2 GFDL/NOAA  -254 4.3 

4 ECHAM + 

HOPEG  

214 3.1 GFDL/NOAA  -212 3.6 

5 NASA/GISS 

E-H  

295 2.8 University of 

Tokyo – MIROC 

med-res  

-227 2.8 

1
(Solomon et al., 2007) 

4.3.2 Simulation results using HYDREMATS 

The results of the simulations were analyzed in terms of the components of the equation for 

vectorial capacity.  Projections of weekly average values over the representative seven-year 

simulation are shown in Figure 4.4 for simulations that accounted for changing rainfall only, and 

in Figure 4.5 for the simulations changing rainfall and temperature.  Figure 4.6 shows the 

estimated percent change in D, m, and VC averaged over the length of the simulation for each 

zone. 
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4.3.2.1 Expected duration of mosquito infectivity 

In the case of changing rainfall only, D, the estimated duration of mosquito infectivity, does not 

change, as it depends only on temperature.  When we also simulate rising temperatures, D 

increases in Zones 4 and 5 because the temperature in these areas at baseline (1980-1999) is 

below the optimal temperature for transmission (Figure 4.5, column 1).  The relative changes in 

D in Zones 1, 2 and 3 are highly seasonal (Figure 4.5).  During the rainy summer months when 

malaria transmission can occur, the simulated temperature exceeds optimal levels for mosquito 

survival, resulting in a decrease in D and VC.  

4.3.2.2 Mosquito density 

In general, our simulations predict that increased rainfall will lead to more mosquitoes, although 

the magnitude of the change varies by region (Figure 4.4).  Relative to baseline values, the 

greatest predicted increase in m, the number of female mosquitoes per human, occurs in Zone 1, 

where increased rainfall leads to greater persistence of water pools, and in Zone 4, where the 

earlier onset of the rainy season leads to higher peak values of mosquito populations.  When 

rainfall is predicted to decrease, mosquito populations in all five zones decrease substantially 

from baseline values, particularly in Zones 1 and 2, which become too dry to sustain mosquito 

life, and Zone 3. 

  



 

129 

 

 

Figure 4.4 Simulated effect of changing rainfall predictions on D, m, and VC.  Weekly average 

values based on simulations for D (the duration of infective life, column 1, in days), m 

(mosquito density, column 2, the number of mosquitoes per human), and VC (vectorial 

capacity, column 3, the average number of human inoculations of a parasite originating from a 

single case of malaria if all vectors biting the original case became infected) as a result of 

changes in rainfall only, from Zone 1 (top row) through Zone 5 (bottom row).  Simulation-based 

estimates at baseline (1980-1999) and for 2080-2099 according to the wet and dry climate 

change scenarios for each zone are shown in blue, green, and red, respectively.  D does not 

change between simulations because temperature is held constant. 
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Figure 4.5 Simulated effect of changing rainfall and temperature predictions on D, m, and VC. 

Infective life (D, in days), mosquito density (m, the number of female mosquitoes per human), 

and vectorial capacity (VC), from Zone 1 (top row) through Zone 5 (bottom row). Weekly 

averages for baseline simulations (1980–1999) are shown in blue, and weekly averages based 

on wet-warm and dry-hot simulations for 2080–2099 are shown in green and red, respectively.   
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In many cases, the changes in m from baseline values predicted by simulations where only 

rainfall was changed (Figure 4.4) and simulations where both rainfall and temperature were 

changed (Figure 4.5) is small, as m depends primarily on rainfall.  The potential impact of rising 

temperatures on mosquito density is more apparent in Figure 4.6, where we see that with 

increased rainfall and warming (wet-warm simulation), the overall effect on Zones 1, 4 and 5 is 

an increase in m; however in Zones 2 and 3, there is a net decrease in m.  With warming and 

decreased rainfall (dry-hot simulation), high temperatures in Zones 1-3 amplify the estimated 

effect of decreased rainfall, further decreasing m.  In Zones 4 and 5, the high temperatures reduce 

the estimated effect of decreased rainfall, leading to a smaller net reduction in m. 

We use HYDREMATS to calculate the mosquito density, m, which is a function of the number 

of humans and the total number of mosquitoes.  In general, the mosquito population in the 

village can be described by three different variables: total number of real mosquitoes in the 

village, total number of simulated mosquitoes in the model, and sampled real mosquitoes in 

discrete locations captured by light traps.  It is not possible to observe the total number of real 

mosquitoes in the village in order to compare it with the total number of simulated mosquitoes. 

However, HYDREMATS has been shown to simulate a total number of mosquitoes that mimics 

the relative differences observed in mosquitoes captured by light traps between wet and dry years 

(Bomblies et al. 2008) and under different hydrological conditions (Bomblies et al. 2009). 

We hold the number of humans and the configuration of residences constant among villages now 

and in the future, an assumption that affects m.  This assumption allows us to isolate the impact 

of climate change on vectorial capacity while neglecting the potential impacts of the human 

population variability and change in space and time. 
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4.3.2.3 Vectorial capacity 

As with the density of mosquitoes, in many cases accounting for changes in temperature, in 

addition to precipitation (i.e., in the wet-warm and dry-hot simulations, Figure 4.5) had a 

relatively small impact on VC (Figure 4.4), which highlights the importance of rainfall in 

assessing future VC.  In the wet-warm scenario (Figure 4.6 top panel), there is an overall increase 

in VC in Zones 1, 4, and 5. In contrast, there is little change in VC from baseline in Zones 2 and 3 

because the positive effect of increased rainfall on mosquito density is offset by negative effects 

of higher temperatures on both density and the duration of infectivity.  In the dry-hot simulations 

(Figure 4.6 bottom panel), VC is reduced to zero in Zones 1 and 2 and substantially decreased in 

Zone 3, whereas there is a small increase in VC in Zones 4 and 5 because the positive effect of 

warmer temperatures outweighs the decrease in breeding sites with reduced precipitation.  

However, in almost all cases, the estimated percent change in m, which depends primarily on 

rainfall, is greater than the percent change in D, which depends on temperature only, thus adding 

further support for the importance of rainfall. 
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Figure 4.6  Summary of changes to expectation of infective life, mosquito density, and vectorial 

capacity averaged over 7-year simulations.  Wet-warm (top) and dry-hot (bottom) scenarios in 

climatic zones 1 through 5 (Sahelo-Saharan to Guinea Coast, respectively). Note the 

abbreviated vertical axis in the top figure. 

 

4.3.2.4 Simulation results using alternate extrinsic incubation period 

In calculating the extrinsic incubation period (EIP), the lag time between when the mosquito 

ingests malaria gametocytes and when it becomes infectious to humans, we use Equation 1.4 

developed by Detinova (1962).  We also simulated the effects of climate change using an 

alternate formulation for EIP developed by Paaijmans et al. (2009).   Simulations using the 



 

 

alternate EIP generally had lower 

being most pronounced in the hottest regions (Zones 1 and 2). While the magnitudes of the 

values are lowered, the relative changes between the baseline climate and future climate 

similar to those based on the main analyses.

 

Figure 4.7 Summary of changes to D, m, and VC using the alternate EIP.

vectorial capacity over 7-year simulations for the wet

change scenarios for climatic zones 1 through 5 (Sahelo

using the Paaijmans (2009) equation for 
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lower D, and thus lower VC, throughout West Africa, with the effect 

being most pronounced in the hottest regions (Zones 1 and 2). While the magnitudes of the 

relative changes between the baseline climate and future climate 

ain analyses. 

Summary of changes to D, m, and VC using the alternate EIP.  Mean changes

year simulations for the wet-warm (top) and dry-hot (bottom) 

for climatic zones 1 through 5 (Sahelo-Saharan to Guinea Coast respectively) 

equation for EIP. Note the abbreviated vertical axis in the top figure.

throughout West Africa, with the effect 

being most pronounced in the hottest regions (Zones 1 and 2). While the magnitudes of the 

relative changes between the baseline climate and future climate were 

 

Mean changes in 

hot (bottom) climate 

Saharan to Guinea Coast respectively) 

. Note the abbreviated vertical axis in the top figure. 
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When we average the changes over the seven-year simulation period, shown in Figure 4.7, the 

results are again very similar to our original findings.  The main differences are in the dry-hot 

scenarios in Zones 4 and 5; while the warming leads to slight increases in vectorial capacity 

using Detinova equation for EIP, there is a slight decrease in VC using the Paaijmans equation. 

 

4.4 Discussion 

We simulated the effects of projected changes in climate on malaria transmission in West Africa 

over a range of scenarios predicted by current climate models, and found that the potential 

impact of changes in rainfall patterns on malaria transmission may be as great as or greater than 

the potential impact of rising temperatures.  However, our findings should be interpreted in light 

of model assumptions and limitations. We do not consider changes in extreme weather events, 

which would have an impact on the hydrology and water pool availability of the region.  We also 

do not account for possible shifts in mosquito species, changes to vegetation that may occur as a 

result of climate change, or changes in non-environmental factors that will influence malaria 

transmission in this region, such as malaria control activities, access to health care, improved 

housing structures, migration, and changes in population density and land use.  Our study was 

limited to rural settings where the primary mosquito breeding sites are formed from rainwater.  

The model was developed and tested in the semi-arid climate characteristic of Zones 1-3; it is 

possible that it does not fully represent some of the hydrological processes of the wetter Zones 4-

5.  Although we present results for an ensemble of future climate projections from AR4 GCMs, 

these projections represent the extremes of possible changes in rainfall and temperature and are 

not necessarily the most likely projections of future climate.  In Chapter 6, we evaluate the 
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accuracy of each GCM for simulating past and current climate in the region to determine which 

predictions are the most plausible.  

Our simulations suggest that changes in rainfall have a significant impact on mosquito 

populations and vectorial capacity in West Africa, particularly in the northern areas where 

breeding sites (water pools) currently are a limiting factor.  Additionally, by comparing the 

predicted effect of changing rainfall alone to the combined effects of changing rainfall and 

increasing temperature, we demonstrated that temperature also plays an important role in 

determining the mosquito density and thereby influencing vectorial capacity.  Our results stress 

the need to include rainfall in studies linking climate change and malaria.  We also highlight the 

difficulty in making predictions of future environmental suitability for malaria in this region, as 

the GCMs differ greatly in their rainfall predictions.  This also is a problem for projecting other 

impacts of climate change in Africa, for example, on water supplies (De Wit & Stankiewicz, 

2006) and food security (Lobell & Burke, 2008).  All research involving the impacts of changing 

rainfall in Africa should therefore take care in selecting appropriate rainfall predictions. 

In the arid and semi-arid regions represented by Zones 1, 2 and 3, our simulations suggest that 

rising temperatures will move environmental conditions towards, and in some cases beyond, the 

upper limits tolerated by the Anopheles mosquito.  However, if rainfall increases, the increased 

availability of breeding sites will tend to raise VC, somewhat offsetting decreases in VC due to 

increasing temperatures.  Under the wettest future climate predicted by an IPCC climate model, 

our simulations suggest that the fringes of the Sahara desert will experience a small increase in 

VC despite extremely hot temperatures.  However, in the Sahel region, the predicted impact of 

warming temperature dominates, and a decrease in VC is predicted even under the wettest future 

climate scenario. 
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Our simulations predict that the wetter and cooler Soudano-Guinean and Guinea Coast regions 

(Zones 4 and 5) will experience an increase in VC as a result of warming temperatures, 

regardless of changes in rainfall.  The driest scenarios would lead to only a slight and seasonal 

increase in VC, while the wettest scenarios could lead to doubling or tripling of VC.  However, 

malaria transmission in these zones is already classified as intense and stable, and thus, these 

areas would be less sensitive to changes in mosquito ecology and vectorial capacity than areas 

where malaria transmission is unstable (Hay et al., 2009).  Children living in such areas 

experience many malaria infections in their first years of life, and quickly develop immunity to 

severe disease (Gupta et al., 1999).  Therefore, malaria incidence in these areas is likely to be 

limited primarily by the number of susceptible individuals within the population, rather than 

inoculation intensity or vectorial capacity. Consequently, even tripling VC would not necessarily 

lead to a significantly higher burden of malaria (Reiter, 2008). 

By contrast, Zones 1, 2 and 3 represent areas where malaria is unstable, or seasonally stable with 

lower intensity, and are therefore more sensitive to changes in VC.  Even under the wettest 

conditions predicted by GCMs, our simulations predict that VC will decrease in Zones 2 and 3, 

while simulations of the hottest and driest scenarios predict the near elimination of mosquito 

populations in these zones due to a lack of breeding areas and intolerably hot temperatures.  

Although a 40% increase in VC is predicted in Zone 1 under the wet-warm scenario, vectorial 

capacity would still be too small to sustain malaria transmission in this zone.  

4.5 Conclusions 

Our simulations suggest that changes in rainfall will be important in shaping the impact of 

climate change on malaria transmission, and therefore must be considered in order to accurately 



 

138 

 

project the environmental suitability for malaria transmission in future climates.  The 

disagreement among GCM projections for changes in rainfall makes the future of vectorial 

capacity in West Africa highly uncertain.  However, despite this uncertainty, our analysis 

suggests that we should not expect increases in malaria transmission due to climate change in 

areas where transmission is currently unstable or stable at low levels.  In addition, although we 

predict a significant increase in vectorial capacity in the two southern zones of our study area, we 

do not necessarily expect increases in malaria cases, as these areas already have intense stable 

transmission and are therefore relatively insensitive to changes in vectorial capacity.  

In Chapter 6, we analyze the skill of current climate models and select climate projections based 

on model performance in West Africa, with a focus on regions that we have determined a priori 

to be sensitive to changes in vectorial capacity.  Additionally, in Chapter 6 we use the 

immunology component of HYDREMATS to link changes in climate and vectorial capacity to 

changes in malaria incidence. 
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5 Simulating malaria transmission in the current climate of 

West Africa 

5.1 Introduction 

In this chapter, we simulate the relationship between current environment and malaria 

transmission, assuming no malaria control, at twelve locations across West Africa.  Because 

HYDREMATS was originally developed and calibrated to simulate conditions specific to the 

semi-arid climate of southwestern Niger (Bomblies et al., 2008), we compare simulated variables 

to a number of data sources from wetter and drier locations to determine whether the model can 

accurately simulate malaria transmission in these settings.   

Most malaria models rely on assumptions of equilibrium states.  However, we show that the 

climate, entomology, and malaria transmission dynamics vary substantially from year to year.  

The climate in our study area is highly seasonal, and mosquito populations and malaria 

transmission are mostly limited to the wet season.  Mosquito populations are depleted during the 

winter dry season and must be reestablished at the beginning of each wet season.  As a result, 

vectorial capacity and the basic reproduction number in any year depend primarily on the climate 

of that year.  In contrast, variables relating to the malaria parasite including the entomological 

inoculation rate, disease prevalence and human immunity level depend on conditions in previous 

years as well.  Untreated malaria infections clear slowly, and can carry over from one 

transmission season to the next.  The EIR depends not only on the mosquito biting rate, but also 

on the background prevalence level.  Human immunity to malaria, which affects disease 

transmission and clearance rates, depends on past exposure to the disease, integrating the 
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infectious bites over a person’s lifetime.  Periodic epidemics associated with higher than average 

rainfall may maintain a reservoir of parasite within the population in an area where the disease 

would have otherwise died out.  The malaria indices are therefore dependent on the assigned 

initial conditions, and incorporate information from previous years.   

Given these challenges, the assumption of equilibrium conditions greatly simplifies the dynamics 

of transmission.  We consider the role of interannual variability by comparing the results of an 

equilibrium simulation, where the climate of a single year is repeated until the system reaches a 

steady state, to multiyear simulations forced by observed time series of environmental data. 

Simulation results are pooled and general relationships between the environment and important 

indices of malaria transmission are developed. 

5.2 Identifying regions where malaria prevalence is sensitive to changes in 

vectorial capacity 

The relationships between vectorial capacity and malaria prevalence are nonlinear.  At very low 

levels of vectorial capacity corresponding to basic reproduction number (R0, the number of 

secondary infections generated from a single initial infection in a fully susceptible population, 

see section 1.2.3.2) values less than 1, changes in environmental suitability do not affect malaria 

prevalence rates because the values are still too low to allow transmission.  At very high levels of 

vectorial capacity, or R0 values in the tens or hundreds, prevalence is again less sensitive to 

changes in environmental suitability because inoculation rates are already very high, and rate of 

disease transmission is limited more by the number of susceptible individuals and other factors 

such as acquired immunity to malaria, than by vector populations.  However, when R0 is close to 
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one, disease transmission can be limited by the environmental factors affecting the vector 

populations and the parasite development rate.  At these levels, malaria prevalence is most 

susceptible to changes in vectorial capacity.  These are the areas that are most likely to 

experience a change in malaria transmission dynamics as a result of climate change. 

Gething et al. (2011) related R0 to prevalence using equilibrium properties of a simple malaria 

transmission model: 

 

\$ = (1 − Pr)W∝ − 11 − (1 − Pr)qv∝ �1+∝∝ � (1 + S ∗ c ∗ (1 − (1 − Pr)qv∝)) 

where Pr is prevalence, α is a measure of heterogeneity in biting rates between humans, S is the 

expected number of human bites per mosquito lifetime, and c is the probability that a mosquito 

acquires the parasite after biting an infected person. 

If we rearrange and differentiate this equation for 
w�jx(yz)yz

 we obtain the curve shown by the black 

line in Figure 5.1.  We can then qualitatively divide the curve into sensitivity levels.  An order of 

magnitude of change in R0 in the high sensitivity region, whether due to climate change, malaria 

control, or regular interannual variability, will lead to the greatest change in prevalence, while an 

order of magnitude change in R0 in the low sensitivity region will have less impact on 

prevalence. 



 

 

Figure 5.1 Derivative of prevalence with respect to fractio

 

If we know R0 at a location, we can use this relationship to estimate the sensitivity of that 

location to increases in malaria prevalence due to changes in environmental conditions.  While 

little data on R0 currently exists, we can use spatial estimates of the reproductive number from 

the Malaria Atlas Project, shown in 

Project’s estimates were created by applying the equation shown above to prevalence estimates.  
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ative of prevalence with respect to fractional change in R0.  

at a location, we can use this relationship to estimate the sensitivity of that 

location to increases in malaria prevalence due to changes in environmental conditions.  While 

currently exists, we can use spatial estimates of the reproductive number from 

the Malaria Atlas Project, shown in Figure 5.2 (Gething et al., 2011).  The Malaria Atlas 

Project’s estimates were created by applying the equation shown above to prevalence estimates.  

 

at a location, we can use this relationship to estimate the sensitivity of that 

location to increases in malaria prevalence due to changes in environmental conditions.  While 

currently exists, we can use spatial estimates of the reproductive number from 

.  The Malaria Atlas 

Project’s estimates were created by applying the equation shown above to prevalence estimates.   
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Figure 5.2 Sensitivity to changes in environmental suitability for malaria transmission.  Labeled 

points indicate the sites selected for our experiments. 

It should be noted that because most areas with malaria have some form of malaria control, the 

prevalence estimates are often lower than they would have been under natural equilibrium 

conditions.  As a result, the estimates of the basic reproductive number are lower than true the 

R0, which is a function of environmental and entomological conditions, independent of control. A 

further limitation of estimating R0 using prevalence data is that malaria is found only in locations 

with R0 greater than 1.  This method therefore cannot estimate R0 values less than one.  However, 

we can infer that the fringes of the current malaria transmission have values of R0 slightly below 

one, and are therefore especially sensitive to changes in environmental conditions that could 

push R0 over the threshold value of one and allow transmission to occur. 
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5.3 Design of numerical experiments 

5.3.1 Simulation of baseline conditions at 12 locations 

We selected 12 locations from areas in the high and medium sensitivity zones identified in 

Figure 5.2.  For each location, we conducted a 15-year simulation, driven by environmental data 

from 1998 to 2012.  The relatively long simulation length allowed us to explore some of the 

effects of interannual variability, particularly through the complex feedback processes between 

entomological inoculation rates (EIR, see section 1.2.3.3), acquired immunity to malaria, and 

disease prevalence.  While a longer time period would have been preferable, we were limited by 

the availability of environmental data with sufficient temporal resolution.  The mean weekly 

rainfall and temperature during this period is shown in Figure 5.3.  Rainfall increases from north 

to south, both in the amount of rainfall per week and the number of weeks with rainfall.  Wet 

season temperatures decrease from north to south.   



 

 

Figure 5.3 Mean weekly rainfall in millimeters

Celsius (red line, right axis) in the 12 study locations

south (bottom right corner).  

Environmental data sources used in the current climate simulations are summarized in 

We used high-resolution satellite observations of rainfall from the Climate Prediction Center 

Morphing Technique (CMORPH) Version 1.0 data set, which gives ~8km resolution rainfall data 

every 30 minutes (Joyce et al., 2004)

one the most skilled satellite rainfall products currently available 

CMORPH data is created by combining images from multiple passive microwave sensors, and 

interpolating them forward and backward in space and time based on cloud advection vectors 

calculated from geostationary infrared sensors 
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Mean weekly rainfall in millimeters (blue bars, left axis) and temperature

) in the 12 study locations, arranged from north (upper left corner) to 

Environmental data sources used in the current climate simulations are summarized in 

resolution satellite observations of rainfall from the Climate Prediction Center 

Morphing Technique (CMORPH) Version 1.0 data set, which gives ~8km resolution rainfall data 

, 2004), and has been found in multiple comparison studies to be 

one the most skilled satellite rainfall products currently available (Serrat‐Capdevila

CMORPH data is created by combining images from multiple passive microwave sensors, and 

interpolating them forward and backward in space and time based on cloud advection vectors 

calculated from geostationary infrared sensors (Joyce et al., 2004). 

 

and temperature in degrees 

, arranged from north (upper left corner) to 

Environmental data sources used in the current climate simulations are summarized in Table 5.1.  

resolution satellite observations of rainfall from the Climate Prediction Center 

Morphing Technique (CMORPH) Version 1.0 data set, which gives ~8km resolution rainfall data 

, and has been found in multiple comparison studies to be 

Capdevila et al., 2014).  

CMORPH data is created by combining images from multiple passive microwave sensors, and 

interpolating them forward and backward in space and time based on cloud advection vectors 
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Like most satellite products, CMORPH is known to have a positive bias compared to rain gauge 

data in West Africa, primarily due to overestimation of high-intensity rainfall (Gosset et al., 

2013).  However, after a simple bias-correction, CMORPH can be used as in input to 

HYDREMATS to reasonably simulate water pools and mosquito populations (Yamana & 

Eltahir, 2011). 

While Yamana & Eltahir (2011) used a single bias-correction factor for all rainfall estimates 

regardless of intensity, here we used a probability matching technique (Wolff et al., 2005) so that 

the cumulative distribution function (CDF) of corrected hourly CMORPH data matched that of 

the ground observations.  This method, described in Appendix A, is preferable to applying a 

single correction factor because the bias differs by rainfall intensity.  Variations of the 

probability matching technique have recently been used to correct biases in CMORPH using rain 

gauge data (De Vera & Terra, 2012; Guilloteau et al., 2014).  

 Table 5.1summarizes the data inputs for HYDREMATS.  Temperature, wind speed, wind 

direction, and radiation data were taken from the ERA Interim data set (Dee et al., 2011) for the 

grid cell containing each village being simulated; we assume uniform conditions within the 0.75 

degree ERA grid cell.  ERA Interim data were adjusted for HYDREMATS as follows.  Wind 

speed data were converted from 10 m to 2 m elevation using the logarithmic profile described by 

Equations 4.2 and 4.3.  ERA-Interim data were linearly extrapolated from the 3-hour resolution 

to the 1-hour resolution required by HYDREMATS. 

The dominant vegetation type at each location was obtained from the University of Maryland 

Land Cover Classification (Hansen et al., 2000).  Soil properties were taken from the 

Harmonized World Soil Database (Nachtergaele & Batjes, 2012).  A thin layer of low-
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permeability soil is included in the model to account for soil crusting that occurs throughout 

West Africa under cultivated conditions (Morin, 1993).  Because this study focuses on climate 

variables, we assumed typical topographical conditions and household locations as observed in 

Banizoumbou, Niger (Bomblies et al. 2008) that were held constant between locations. 

The model’s initial conditions for malaria prevalence levels were based on the Malaria Atlas 

Project (MAP; see Section 5.4.1.3) estimate for each location.  Simulated humans are randomly 

infected at the beginning of each simulation to match the MAP estimate. Locations where MAP 

estimated no malaria prevalence were initialized as 5% prevalence.  In order to maintain a 

background level of malaria parasite in the simulated population, the model simulates imported 

cases at a rate of 0.1% of the population per month.  Each human’s immunity level was 

initialized based on estimated EIR and the human’s age.  Using the MAP prevalence level, we 

estimated the EIR for each location.  The immunity model assumes that roughly 60 infectious 

bites are required to confer full immunity.   We used the EIR to estimate the number of years 

required to collect 60 inoculations, and then scaled the initial immunity according to age.  For 

example in a location with EIR of 5 infections bites per year, full immunity is expected at age 12.  

A newborn is assigned an initial immunity of zero, a six-year old has initial immunity of 0.5, and 

everyone aged twelve or older has initial immunity of 1.   
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Table 5.1 Summary of data sources 

 Data source Spatial 

resolution 

Temporal 

resolution 

Reference 

Baseline Climatology     

temperature CRU TS 3.21 0.5 x 0.5 

degree 

1 month Mitchell and Jones, 

2005 

rainfall CRU TS 3.21 0.5 x 0.5 

degree 

1 month Mitchell and Jones, 

2005 

Meteorological Inputs for 

HYDREMATS Simulation 

    

precipitation CMORPH version 1.0 ~8km 30 min Joyce et al., 2004 

temperature ERA-Interim .75 x .75 

degree 

3 hour Dee et al., 2011 

wind speed ERA-Interim .75 x .75 

degree 

3 hour Dee et al., 2011 

wind direction ERA-Interim .75 x .75 

degree 

3 hour Dee et al., 2011 

surface radiation ERA-Interim .75 x .75 

degree 

3 hour Dee et al., 2011 

Other model inputs     

soil type HWSD ~1km  FAO, 2009 

vegetation UMD landcover 1km  Hansen et al., 2000 

topography Computed from Envisat 

synthetic aperture radar and 

ground survey 

10 m  Toutin and Gray, 

2000; Bomblies et al. 

2008 

household locations Quickbird image 0.6 m  Bomblies et al. 2008 
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5.3.2 Simulating equilibrium relationships between climate and malaria transmission 

In order to explore the basic relationships between climate and various measures of disease 

transmission without the complication of interannual variability, we simulated equilibrium 

conditions by repeating environmental inputs from a single year until the system reached a 

steady state.  After calculating the mean annual vectorial capacity for the 15-year simulations at 

each of the twelve locations described in 5.3.1, we selected the year closest to the mean to serve 

as our equilibrium year.   

In addition to simulating the mean year at each of the twelve sites, we conducted additional 

equilibrium simulations by repeating meteorological inputs for years resulting in R0 values 

spanning from 0 to nearly 400, for a total of 33 equilibrium systems.  The majority of these 

additional simulations (13) used meterological inputs for other years from sites N3, MA5 and 

NA1.  These locations were selected because they covered a wide range of R0 values that were 

not sampled by the mean year equilibrium simulations. 

The environmental conditions of the twelve sites in our study area produced a maximum R0 of 

271. In order to test the immunity component of HYDREMATS functioned at higher 

transmission levels, we examined seasonal mosquito populations at higher levels than would 

have been found in our study area.  Three simulations were conducted using environmental input 

from wetter locations, corresponding to Zones 4 and 5 from the experiment in Chapter 4.  In 

another set of experiments, we artificially increased mosquito populations by manipulating 

environmental inputs from the year leading to the highest simulated R0 in our original baseline 

simulations, site NA1 in 2001.  Two of these experiments used modified the rainfall inputs from 

NA1, year 2001, to extend the rainy season by two weeks and four weeks, leading to a longer 



 

150 

 

period of mosquito breeding and thus higher R0 and EIR.  Another four experiments used 

hydrology output from the original NA1 year 2001 simulation, but altered the entomology 

component such that additional mosquitoes were added to the simulation, increasing the total 

number of mosquitoes by a factor of 1.2 to 4.  These simulations with artificial rainfall or 

mosquito populations were used only as tests of the immunity component of the model. 

5.3.3 Simulating malaria transmission at varying levels of rainfall and temperature 

Our initial simulation of twelve baseline locations gave us relationships between annual rainfall 

and temperature and the corresponding entomological and immunological values.  In order to 

further explore these relationships, we performed additional realizations at each location using 

hypothetical combinations of annual rainfall and temperature inputs for a total of roughly 1600 

realizations.  These additional simulations used northward and southward shifts in the rainfall 

gradient like those described Section 4.2.3.1.  Temperature inputs were altered by adding 

between 0 and 6 degrees Celsius to the hourly time series used in the baseline conditions.  The 

magnitudes of rainfall and temperature changes came from changes in climate predicted by 

CMIP5 climate models for the twelve baseline locations, as described in Section 6.4.1.   We 

simulated temperature and rainfall combinations predicted by three climate models: CCSM4, 

MPI-ESM-MR and BNU-ESM, for two time periods: 2030-2060 and 2070-2100.  In addition to 

these simulations, we used additional realizations where the change in temperature was from  

climate projections for the period 2030-2060 and the change in rainfall came from climate 

projections for the period 2070-2100.  These simulations were the result of an error in pairing the 

temperature and rainfall predictions, but we include them here as realizations of plausible climate 

combinations.  
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Each of these additional simulations ran for 15 years at one of the twelve baseline locations.  

Figure 5.4 shows the combinations of rainfall and wet-season temperature that were simulated.   

 

Figure 5.4 Annual rainfall and wet-season temperature used for simulations.  Each point 

represents one year of simulation. The shaded areas are rainfall and temperature combinations 

in increments of 50 mm and 2 degrees Celsius with one or more simulations.  The black points 

represent individual simulated years. 
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5.4 Results 

5.4.1 Comparison of simulated variables to observational data 

HYDREMATS has previously been shown to accurately represent observed hydrology and 

entomology in two villages in Southern Niger (Bomblies et al., 2008; Bomblies et al., 2009).  

Here, we compare simulated results to a number of additional data sources: 

1. Hydrology, entomology and malaria prevalence from Banizoumbou and Zindarou, Niger 

2. Entomology and malaria prevalence from Garki, Nigeria 

3. Malaria prevalence estimates from the Malaria Atlas Project 

4. The relationship between the entomological inoculation rate and prevalence from across 

Africa 

5.4.1.1 Comparison to data from Banizoumbou and Zindarou, Niger 

HYDREMATS was developed and calibrated through extensive data collection from 2005 

through 2010 in two neighboring villages in Niger, shown on the map in Figure 3.1.  Data 

sampling locations in one of the villages, Banizoumbou, are shown in Figure 5.5.  Environmental 

data collected included one-hour resolution meteorological variables, spatially distributed soil, 

vegetation and topography values, and time-varying measurements of soil moisture, and the 

depths and temperatures of selected recurring water pools.  Entomological variables collected 

included adult mosquitoes captured in CDC light traps and mosquito larva collected using a 

standard dipping method (Bomblies et al., 2008; Bomblies et al., 2009).  In addition, malaria 

prevalence data were collected, as described at length in Chapter 3 (Yamana et al., 2013).  
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Figure 5.5 Data sampling locations in Banizoumbou, Niger.  Reprinted from Bomblies et al., 

2008. 

The hydrology component of HYDREMATS was rigorously compared to field observations in 

Bomblies et al. (2008).  Figure 5.6 shows that the model very closely reproduced volumetric 

water content measured in a millet field in Banizoumbou, Niger.  Figure 5.7 shows the close 

relationship between simulated and observed water depths at three water pools known to be 

productive breeding sites.   
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Figure 5.6 Field observations (red) and simulations (blue) of volumetric water content 

measured in Banizoumbou, Niger.  Reprinted from Bomblies et al., 2008. 
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Figure 5.7 Observed and simulated water depths at three pools in Banizoumbou, Niger.  

Reprinted from Bomblies et al. 2008. 

Figure 3.2 compared simulated to captured adult mosquitoes in 2005 and 2006 in Banizoumbou 

and Zindarou.  HYDREMATS accurately simulated both the seasonality of mosquito 

populations, and the relative differences between the two villages.  Malaria prevalence data were 

shown in Figure 3.5, and compared to simulation results shown in Figure 3.7.  While the 

mosquito density was an order of magnitude higher in Zindarou than in Banizoumbou, the two 

villages had similar malaria prevalence levels (Yamana et al., 2013).  In Chapter 3, we were able 

to reproduce this effect using the improved immunity component of the model. 
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Comparison to data from the Garki Project 

The Garki Project was a major effort to study malaria transmission and control by the World 

Health Organization and the Government of Nigeria from 1969 to 1976.  The study location 

corresponds with site NA1 shown in Figure 5.2.   The goals of the project were to study the 

epidemiology of malaria transmission in the Sudan Savanna climate zone, test intervention 

methods, and develop a model of disease transmission (Molineaux & Gramiccia, 1980).  The 

study included four tiers of villages, shown in Figure 5.8.  Malaria control interventions were 

applied to the inner villages.  Villages outside of the intervention zone were monitored as non-

intervention comparison locations.  Mosquitoes were captured every 5 weeks during the dry 

season and every 2 weeks during the wet season using human landing catches.  Human bait 

collectors were stationed at indoor and outdoor locations for the duration of the night and 

collected mosquitoes attempting a blood meal.  Mosquitoes were also captured using pyrethrum 

spray collections and light traps.  Captured mosquitoes were counted and analyzed in order to 

estimate the mosquito biting rate, EIR, mosquito age, and the sporozoite rate (proportion of 

mosquitoes infected by the plasmodium parasite).  Age-specific malaria prevalence was 

measured for selected villages every 10 weeks using standard blood smear methods.  

Seroimmunological surveys were conducted every 6 months to test for the presence of antibodies 

to Plasmodium falciparum and other forms of the malaria parasite within the human population. 
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Figure 5.8 Location of the Garki Project. Reprinted from Molineaux & Gramiccia, 1980. 

The following is a comparison between data collected from villages outside of the intervention 

area and corresponding variables simulated by HYDREMATS in our 15-year baseline 

simulation.  Because the high-resolution environmental data sources required for HYDREMATS 

simulations did not overlap the Garki Project time period, we compare the results to the range of 

values simulated in our 15-year simulation.  We are therefore more interested in reproducing 

general characteristics and timing of the seasonal cycle rather than specific values. 



 

 

Figure 5.9 Mosquito biting rate in Kwaru, Nigeria, one of the non

villages in the Garki project.  Colored lines show captured mosquitoes for 3 consecutive years.  

Grey lines show simulation results.

Figure 5.9 shows simulated and observed mosquito bites per person night from Kwaru, a non

intervention comparison village in the Garki district in linear scale on the left and log scale on 

the right.  The mosquito biting rate differs from the entomological inoculation rate (EIR) in that 

it counts all bites, while EIR counts infectious bites.  EIR is frequently estimated by multiplying 

the biting rate by proportion of captured mosquitoes testing positive 

Observations are shown in the colored lines, and the results of our multiyear simulations are 

shown in the grey dashed lines.  Our simulations capture the main features of the biting cycle, 

with biting concentrated between day 200
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Mosquito biting rate in Kwaru, Nigeria, one of the non-intervention comparison 

es in the Garki project.  Colored lines show captured mosquitoes for 3 consecutive years.  

Grey lines show simulation results. 

shows simulated and observed mosquito bites per person night from Kwaru, a non

intervention comparison village in the Garki district in linear scale on the left and log scale on 

he mosquito biting rate differs from the entomological inoculation rate (EIR) in that 

it counts all bites, while EIR counts infectious bites.  EIR is frequently estimated by multiplying 

the biting rate by proportion of captured mosquitoes testing positive for malaria sporozoites.  

Observations are shown in the colored lines, and the results of our multiyear simulations are 

shown in the grey dashed lines.  Our simulations capture the main features of the biting cycle, 

with biting concentrated between day 200 and day 300.  
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he mosquito biting rate differs from the entomological inoculation rate (EIR) in that 

it counts all bites, while EIR counts infectious bites.  EIR is frequently estimated by multiplying 

for malaria sporozoites.  

Observations are shown in the colored lines, and the results of our multiyear simulations are 

shown in the grey dashed lines.  Our simulations capture the main features of the biting cycle, 
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Figure 5.10 shows prevalence by age for a cross-section of the population in the non-intervention 

villages at the end of rainy season.  The observations, in red, show a characteristic age profile of 

malaria prevalence.  Young children become infected at high rates until they begin to develop 

partial immunity to disease.  This explains the sharp decrease in prevalence between the first few 

years of life and early adolescence.  While the exact shape and magnitude of the prevalence 

profile varies by year and by location, HYDREMATS succeeds in simulating the basic 

characteristics of the age profile. In this simulation, children appear to develop immunity several 

years faster than the observed population. 

 

Figure 5.10 Malaria prevalence by age group 
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Finally, Figure 5.11 shows observed malaria prevalence in two non-intervention villages over 

five years.  Simulated prevalence from our equilibrium simulation is shown in bright red for all 

ages and dark red for children aged 2-10.  Again, while the specific prevalence value varies from 

year to year, HYDREMATS correctly simulates the timing of the seasonal cycle.  The 

magnitudes of the simulated prevalence appear to be reasonable. 

 

Figure 5.11 Prevalence in observed and simulated prevalence in the Garki district 
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5.4.1.2 Comparison to Beier data 

Beier et al. compiled paired data from 31 locations across Africa and developed a relationship 

between the entomological inoculation rate (EIR), and malaria prevalence (Beier et al., 1999).  

These paired data points originated from multiple countries including Kenya, Ethiopia, Tanzania, 

Republic of Congo, Burkina Faso, and Senegal, spanning a wide range of climate zones.  The 

paired data points were selected by conducting a literature search with the following inclusion 

criteria: entomological data collected over at least one year with a minimum of monthly 

sampling over the transmission season, standard methods for estimating mosquito densities and 

sporozoite rates, and no vector control interventions.  Inclusion criteria for the prevalence data 

included use of standard blood smear techniques and reporting by time period and age group.  In 

instances where the original malaria prevalence data were reported for multiple time periods and 

age groups, the single highest prevalence value was selected.  The analysis showed a linear 

relationship between prevalence and the logarithm of annual EIR.  This log-linear relationship 

persisted when data were stratified by ecological zone as well as between east and west Africa, 

indicating that this is a fundamental relationship and independent of climate.  These data 

therefore provide a test for the human immunity and malaria transmission component of 

HYDREMATS, which has been less extensively tested against observations than the hydrology 

and entomology components. 

Since Beier et al. used the maximum prevalence value sampled over multiple age groups and 

time periods, we compared the data to the maximum simulated prevalence for the 2 to 10 year 

age group from our equilibrium simulations, shown in Figure 5.12.  HYDREMATS was able to 

reproduce the observed linear relationship between EIR and peak malaria prevalence.  There is 

very good agreement between our simulation results and observational data for a wide range of 
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epidemiological conditions, from 0 to over 300 infectious bites per person per year.   

 

 

Figure 5.12 Observed (pink) and simulated (black) relationship between EIR and malaria 

prevalence 
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5.4.1.3 Comparison to data from the Malaria Atlas Project 

The Malaria Atlas Project (MAP) is an effort based at University of Oxford to produce maps 

showing global estimates of various measures of malaria risk.  MAP compiles and maintains a 

database of routine malaria prevalence surveys.  The current maps use over 22,000 geo-

referenced data points of malaria prevalence measured between 1985 and 2010 from across the 

85 malaria endemic nations.  Survey data that meet inclusion criteria are standardized to the 2 to 

10 year old age group (Gething et al., 2011).  

Temperature and aridity masks were used to predict the limits of stable malaria.  The aridity 

mask was formed by excluding areas classified as bare ground by the GlobCover land-cover 

classification product (Bicheron et al., 2008), a remote sensing product derived from data 

collected by the European Space Agency’s Environmental Satellite (ENVISAT), for the period 

between December 2004 and June 2006.  The temperature masks excludes regions where low 

temperatures cause the extrinsic incubation period to exceed mosquito lifespan (Gething et al., 

2011). 

 Within the predicted limits of stable malaria transmission, these prevalence data are mapped to a 

global surface at a 5 km x 5km resolution using Bayesian inference and geospatial modeling 

(Gething et al., 2011).  The MAP estimate of malaria prevalence in children aged 2 to 10 years is 

shown as the colored surface in Figure 5.13.  The overlaying circles show the prevalence during 

the peak malaria transmission season simulated by HYDREMATS in the equilibrium 

simulations. 
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Figure 5.13 Malaria prevalence estimated by Malaria Atlas Project (colored surface) and 

simulated by HYDREMATS (circles) 

  

Figure 5.14 compares simulated peak prevalence to the MAP estimate, with results of the 

equilibrium simulation on the right, and the mean of the multiyear simulation on the left.  For the 

majority of the twelve locations, simulated results matched well with the MAP estimate.  One 

outlier in the equilibrium results is the point S1, located in Senegal.  This could be explained in 

part by Senegal’s malaria control activities, which cause observed prevalence to be substantially 

lower than what would have been expected given the environmental conditions.  Our simulations 

did not account for varying levels of malaria control between locations.  Interannual variability is 
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likely playing a role as well, as is discussed in Section 5.4.5; the MAP estimates do not address 

seasonal and interannual variability in response to climate variability.  Another discrepancy 

between simulations and MAP estimates are the three locations (N1, N2 and M3) where 

simulated prevalence was 0%, while MAP estimates levels between 10 and 30%.  There are 

several additional explanations for this discrepancy.  One is that in the sparsely population 

regions northern Niger and Mali, there are very few observations of malaria prevalence.  In these 

regions, MAP estimates rely on statistical techniques using environmental covariates including 

rainfall, temperature, land cover, and rural versus urban classification.  We therefore have less 

confidence in MAP estimates at high latitudes.  Another explanation for the discrepancy is that 

while the equilibrium simulation had R0 less than one leading to elimination of the parasite, all 

three of these locations had at least some years with R0 greater than one.  Transmission is 

therefore possible in these locations if the parasite is present in the population during years with 

R0 greater than one.  A third possibility for the discrepancy is that these locations may have had 

some form of permanent water source not accounted for in our simulations that could serve as 

mosquito breeding habitat in the absence of rain-fed water pools.  This is likely to be true of M3, 

which lies on the banks of a tributary to the Niger River. 
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Figure 5.14 Simulated prevalence compared to MAP estimate.  Error bars on for the multiyear 

simulation represent one standard deviation from the mean. 

5.4.2 Classifying sites by levels of Ro and malaria transmission 

The multiyear simulations showed high levels of interannual variability in R0.  As discussed in 

Chapter 1, R0 is a significant measure of malaria transmission because it has a critical value of 1, 

below which malaria transmission is not sustained.  Malaria transmission in villages where R0 is 

always less than one would be limited to cases imported from outside the village.  Villages 

where R0 is always greater than 1 consistently have malaria transmission during the rainy season.  

Villages where R0 is greater than 1 for some years and less than 1 during other years have 

epidemics of varying frequency and intensity.   
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Simulation results are summarized in Figure 5.15.  Areas that had low suitability for malaria 

transmission include Sites M1 and M2 Northern Mali and N1 in Niger, where R0 was less than 1 

for most or all years.  Simulated prevalence levels and EIR in these locations fell to near zero.   

Areas with moderate transmission potential include S1, M3, M4, N2 and N3.  These areas had 

many years with R0 spanning the sensitive area between 1 and 10, as well as occasional years 

with R0 < 1 and R0 > 10.  Some of these sites could experience epidemics when conditions were 

suitable, but also had years with low transmission.  Sites M5, M6 and M7 in southern Mali and 

site NA1 in northern Nigeria had R0 greater than 10 for almost all years.  These locations had the 

highest prevalence levels.  Figure 5.16 shows the sites by transmission category and Figure 5.17 

shows daily values of R0, EIR, peak prevalence in children aged 2-10, and mean population level 

immunity index for a representative location in each of the three transmission categories. 
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Figure 5.15 Summary of annual R0, EIR and peak prevalence for each location.  The three 

columns of subplots correspond to  low (left column), medium (middle column), and high (right 

column) transmission potential categories.  The center dot in each boxplot indicates the median 

value over the 15 year simulation, the extent of the solid box corresponds to the limits of the 

25
th

 through 75
th

 percentile values, and the solid lines (whiskers) extend to include roughly 99% 

of values if the data were normally distributed.  Data points outside of the whiskers are 

considered outliers, and are denoted by open circles. 
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Figure 5.16 Malaria transmission category 
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Figure 5.17 Daily values of R0, EIR, prevalence and immunity in a low (blue), moderate (green), 

and high (orange) R0 setting 
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5.4.3 Plotting results in rainfall-temperature space 

The results of the 1575 simulated years were summarized in terms of annual rainfall, mean 

temperature between July-September (TJAS), R0, annual EIR, peak prevalence in children aged 2-

10, and the mean immunity level in the population.  The results were plotted as points in rainfall-

temperature space, shown in Figure 5.18 to Figure 5.21.  Each point represents the results from a 

single simulated year.  The x-axis shows TJAS, and the y-axis is annual rainfall.  We see from the 

smooth color gradient in Figure 5.18 that R0 closely follows temperature and rainfall; it was 

highest during wet and cool years (upper left quadrant) and lowest for hot and dry years (lower 

right quadrant).  Malaria transmission can only be sustained at values of R0 greater than one, 

corresponding to the red shaded points.  In our simulations, R0 was less than one for all years 

with TJAS greater than 35.6 
o
C or rainfall less than 168 mm. 

The entomological inoculation rate depends on both the vectorial capacity and the prevalence 

rate within the population.  As a result, the EIR scatter plot shown in Figure 5.19 is closely 

related to the scatter plot for R0. 

Figure 5.20 shows the mean level of the immunity index within the simulated population for 

each point, and Figure 5.21 shows the peak prevalence level in children aged 2-10 year.  We see 

a general pattern of high prevalence and high immunity under cool and wet conditions, and low 

prevalence and low immunity under hot and dry conditions. For nearly half of the points, climate 

suitability for malaria transmission was low, leading to prevalence levels below 10 percent.  

These two figures show more variability between years with similar climate than the R0 and EIR 

maps show, reflecting the more complex dynamics of malaria infections within the human 

population.  
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Figure 5.18 Simulated log10 R0 plotted as points in rainfall-temperature space.  Each point 

represents the results of one year’s simulation with annual average temperature indicated on 

the y-axis and average temperature from July through September on the x-axis. 
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Figure 5.19 Simulated log EIR plotted as points in rainfall-temperature space.  Each point 

represents the results of one year’s simulation with annual average temperature indicated on 

the y-axis and average temperature from July through September on the x-axis. 
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Figure 5.20 Simulated population mean immunity index plotted as points in rainfall-

temperature space.  Each point represents the results of one year’s simulation with annual 

average temperature indicated on the y-axis and average temperature from July through 

September on the x-axis. 
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Figure 5.21 Simulated peak prevalence in children aged 2 to 10 plotted as points in rainfall-

temperature space.  Each point represents the results of one year’s simulation with annual 

average temperature indicated on the y-axis and average temperature from July through 

September on the x-axis. 

 

Interannual variability in climate and malaria transmission indices can be visualized by plotting 

results for a single location in rainfall-temperature space and observing the spread between years. 

For example, the figures below show the four transmission indices in rainfall-temperature space 

for three locations: a low transmission site (Figure 5.22), a moderate transmission site (Figure 

5.23), and a high transmission site (Figure 5.24).  Each point summarizes one year of the 

multiyear simulation for that location. 
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Figure 5.22 Malaria transmission indices for multiyear simulation at M3, a low transmission site 
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Figure 5.23 Malaria transmission indices at N3, a moderate transmission site 
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Figure 5.24 Malaria transmission indices at M6, a high transmission site 

 

5.4.4 Establishing general relationships between climate and malaria transmission 

indices 

The results shown in the previous section were used to fit linear regression models to predict R0, 

EIR, immunity level and peak prevalence based on annual rainfall and July-September mean 

temperature.  All four indices of malaria transmission were correlated with annual rainfall and 

TJAS, as well as with each other.  The r-squared values are listed in Table 5.2. 
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Table 5.2 R-squared values for annual rainfall, TJAS and indices of malaria transmission 

 

Annual 

rainfall TJAS log10 (R0) log10 (EIR) Pr 2-10 Imm 

Annual 

rainfall 1.00 0.51 0.72 0.81 0.62 0.68 

TJAS 0.51 1.00 0.67 0.64 0.52 0.42 

log10 

(R0) 0.72 0.67 1.00 0.87 0.51 0.53 

log10 

(EIR) 0.81 0.64 0.87 1.00 0.70 0.81 

Pr 2-10 0.62 0.52 0.51 0.70 1.00 0.65 

Imm 0.68 0.42 0.53 0.81 0.65 1.00 

 

Because annual rainfall and TJAS are correlated (r
2 

= .51), it not possible to attribute variability 

in the transmission indices to rainfall independently of temperature, or vice versa; the Sahara is 

unsuitable for malaria transmission because it is both too hot and too dry. An analysis of the 

semipartial correlation between variables is shown in Figure 5.25.  Covarying rainfall and 

temperature together accounted for between 42 and 47% of the variance in each of the four 

indices.  After removing the common variance between rainfall and TJAS, residualized rainfall 
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explained an additional 15-30% of variance in the malaria indices, and residualized temperature 

explained an additional 1-7% of variance.  The remaining 19-34% of variance was due to factors 

other than rainfall and TJAS.   The r-squared value is highest for R0 because this quantity 

depends on conditions of a given year, with little carry-over from one year to the next.  Because 

EIR is very closely related to R0, it is also strongly dependent on rainfall and temperature.  

However, prevalence and acquired immunity to malaria incorporate information about conditions 

in past years as well, as is discussed in greater detail in sections 5.1 and 5.5.  As a result, these 

variables have a lower r-squared than EIR and R0.  

 

Figure 5.25 Contributions of rainfall and temperature to variability in malaria transmission 

indices 

 

We developed a linear regression model for each of the malaria transmission indices.  Annual 

rainfall was broken into segments that accounted for threshold effects and other nonlinearities 

between rainfall and predictor variables.  For R0, the slope of the least-squares regression line 
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was greater for annual rainfall values less than 690 mm than it was for higher values.  In years 

with rainfall less than 690mm, mosquitoes were constrained by the availability and persistence of 

breeding sites.  Additional rainfall made it more likely that a water pool will last long enough for 

larvae to emerge as adults, thus increasing R0.  In years with heavy rainfall, mosquitoes had 

many water pools available for breeding, so the abundance was less sensitive to increases in 

rainfall.   Excess rainfall can lead to pools that are too deep for Anopheles mosquitoes, which 

prefer to breed in shallow areas.  Mosquito numbers are also regulated by the carrying capacity 

of breeding sites in years with ample rainfall.   

The relationship between rainfall and EIR had two distinct segments.  Rainfall was linearly 

correlated to the logarithm of EIR for annual rainfall up to 950 mm.  Beyond this threshold, the 

two were no longer correlated, both because of the waning influence of rainfall on mosquito 

numbers at high rainfall, and also because prevalence did not increase with rainfall beyond this 

point. 

The influence of rainfall on prevalence and the immunity index had three distinct segments.  For 

rainfall values less than 415 mm per year, environmental and entomological conditions were 

generally insufficient to sustain transmission, resulting in near-zero values of EIR.  There was a 

loose linear relationship between rainfall and malaria indices for annual totals between 415 mm 

and 950 mm.  There was almost no correlation between rainfall greater than 950 mm and malaria 

transmission, due to the finite number of susceptible individuals, the upper limit of acquiring 

immunity, and the decreased sensitivity of mosquitoes to high levels of rainfall. 

The coefficients and R-squared values for these regression models are listed in Table 5.3, in the 

form  f(TJAS,rain)=a+b*TJAS+c*rain.  Regression lines are shown in Appendix B. 
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Table 5.3 Coefficients and statistics of regression model.  Regression models take the form of 

f(TJAS,rain)=a+b*TJAS+c*rain 

 breakpoint a b c R-squared 

for segment 

R-

squared 

overall 

RMSE 

log10 R0 rain < 690 4.00E+00 -1.66E-01 3.76E-03 0.72 0.85 0.41 

rain > 690 3.03E+00 -7.71E-02 1.20E-03 0.44 

log10 EIR rain < 950 1.77E+00 -1.38E-01 3.51E-03 0.75 0.80 0.55 

rain > 950 1.18E+00 -9.60E-03 2.25E-04 0.00 

prevalence rain < 415 1.52E+01 -4.32E-01 1.24E-02 0.06 0.75 16.52 

415<rain<950 6.66E+01 -3.17E+00 1.06E-01 0.48 

rain > 950 3.60E+01 1.42E+00 4.48E-04 0.02 

immunity 

index 

rain < 415 7.31E-01 -1.84E-02 2.53E-05 0.24 0.74 0.16 

415<rain<950 1.89E+00 -6.33E-02 7.25E-04 0.53 

rain > 950 1.16E+00 -1.81E-02 1.38E-04 0.05 

 

The regression models were used to create scatter plots similar to those shown in Figure 5.18 to 

Figure 5.21.  The figures below compare the scatter plots simulated by HYDREMATS to the 

scatter plots from our regression models. 
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Figure 5.26 R0 as a function of rainfall and temperature simulated by HYDREMATS (left) and the 

regression model (right) 

 

 

Figure 5.27 EIR as a function of rainfall and temperature simulated by HYDREMATS (left) and 

the regression model (right) 
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Figure 5.28 Immunity index as a function of rainfall and temperature simulated by HYDREMATS 

(left) and the regression model (right) 

 

 

Figure 5.29 Malaria prevalence as a function of rainfall and temperature simulated by 

HYDREMATS (left) and the regression model (right) 
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These regression models can be used to estimate R0, EIR, prevalence and the immunity index 

using annual rainfall and temperature data from historical climate observations or predictions 

from climate models. 

5.4.5 Comparison between equilibrium and multiyear simulations 

 

Figure 5.30 Comparison of results from the equilibrium year to the mean of the multiyear 

simulation.  The solid line shows the y=x line for reference. 

The previous results emphasize the extent of interannual variability in our simulations.  Figure 

5.30 shows how the equilibrium result compares to the mean of the multiyear simulation for each 

of the four malaria transmission indices.  The equilibrium R0 matches well with the multiyear by 
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design; the equilibrium year was selected on the basis of having R0 closest to the 15 year mean.  

The equilibrium immunity was close to the interannual mean immunity.  This was expected, as 

the slow-varying immunity index effectively incorporates information from all 15-years, making 

it less susceptible to short term fluctuations.   For three locations, S1, M5 and NA1, the 

equilibrium prevalence was significantly higher than the mean of the multiyear simulation.  This 

may be an example of the complexity of interannual variability in malaria transmission 

dynamics.   

 

As an example, results from the multiyear simulation of the most obvious outlier, S1, is shown in 

Figure 5.31.  As shown in the top plot, annual rainfall varied between 250 and 570 mm. During 

dry years, mosquito populations were limited, R0 is very low and very little malaria transmission 

occurred.  As a result, prevalence fell to very low levels, and human immunity began to wane.  In 

the final four years of the simulation, a succession of wet years with R0 values between 20 and 

80 led to epidemics where the parasite spread to nearly half of the population.  It is interesting to 

note that highest prevalence occurred in year 14, where R0 was 22.  Years 4 and 8 also had R0 

values of 22, but resulted in minimal disease transmission because the parasite rate was very low.  

The equilibrium simulation used climate input from year 7 of the multiyear simulation, with an 

R0 value of 20, and stabilized with a peak prevalence value of 58%.  Similar figures are 

presented for the other 11 sites in Appendix C.   
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Figure 5.31 Interannual dynamics for site S1 multiyear simulation 

 

5.5 Discussion 

This chapter comprises of several major sections.  This first was a comparison of simulated data 

to observations.  While the model had been compared extensively to field data from 

Banizoumbou and Zindarou, two neighboring villages in southwestern Niger (Bomblies et al., 

2008; Bomblies et al., 2009; Yamana et al., 2013), it had not been tested outside of this region.  

By comparing HYDREMATS to entomological and epidemiological data from various sources 
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across multiple climate zones of West Africa, we increased our confidence in the model’s ability 

to simulate malaria conditions in these areas.  In particular, the results shown in Figure 5.12 

serve as an important test of the immunity component of HYDREMATS.  Like the hydrology 

and entomology components, the immunity component was parameterized using published 

estimates and fitting conditions from Banizoumbou and Niger (Yamana et al., 2013).  This result 

shows that the disease transmission model is able to simulate the feedbacks between 

inoculations, immunity and infections for a wide range of malaria transmission levels.  These 

feedbacks are highly nonlinear, and are still not fully understood (Langhorne et al., 2008).  A 

recent paper tested the ability of five well known malaria transmission models to reproduce this 

relationship (Wallace et al., 2014).  The results of that comparison found that half of the models 

failed this basic test.  While it is certainly possible to reproduce observed results for the wrong 

reasons, the similarity between our simulated results and observations, as well as our process-

oriented modeling approach, suggest that HYDREMATS has a reasonable representation of the 

main processes linking the environmental, entomological, and immunological aspects of malaria 

transmission. 

Our multiyear simulations highlighted the interannual variability in malaria transmission.  This 

variability is not captured in estimates that give only a mean value of malaria transmission 

indices.  Our simulations showed that R0 routinely varied by as much as one or two orders of 

magnitude from year to year.  In areas with very high or very low levels of R0, these variations 

may be less important.  However in the moderate transmission areas around the Sahel where R0 

is close to the threshold value of 1, these differences can make the difference between no malaria 

transmission and epidemics where more than half of the population is infected.  The effects of 

these epidemics are exacerbated by the low levels of immunity within these populations, leading 
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to higher rates of severe forms of disease.  In the context of climate change, we should focus on 

these locations where prevalence is most sensitive to changes in R0. 

The framework of analyzing malaria transmission indices as points on a rainfall-TJAS scatter 

plot developed in section 5.4.3 allows us to visualize interannual variability in climate and the 

corresponding variability in transmission indices by observing the spread between points for a 

single location.  It also shows variability between years with similar climates by comparing 

adjacent points.  While the annual entomological indices were closely related to corresponding 

annual rainfall and temperature, the immunological indices showed much greater variability.  

This is because the human immune system has a memory of past malaria exposure.  The 

immunity index, a simplified measure we use to represent the level of acquired immunity in a 

population, operates on the timescale of years; human agents slowly build immunity with each 

infectious bite received over their lifetime.  Outliers on the immunity scatter plot may represent 

years where the climate is more or less favorable for malaria transmission than usual.  For 

example, a high-immunity point in the dry and hot portion of the scatter plot in Figure 5.20 could 

indicate a population with higher levels of immunity than would be expected for that climate due 

to high EIR in previous years. 

Prevalence rates are influenced by entomological conditions and immunity levels in the human 

population, as well as the recent history of malaria within the population.  While the 

entomological indices generally do not carry over from one wet season to the next, the malaria 

parasite in untreated humans can persist over the dry season and spread to new individuals when 

the mosquito population reestablishes itself the following wet season.  As a result, malaria 

prevalence for a given year also reflects conditions of the previous year.  Even given identical 

climate and entomological conditions and identical populations, the parasite rate can differ based 



 

190 

 

on the background parasite rate.  For example, our simulations of the low transmission sites 

showed several examples of years where R0 was greater than one but did not result in an 

epidemic.  Even though there were many mosquitoes, the malaria parasite was only present in a 

small number of people, making it unlikely that the mosquitoes would pick up the infection.  If 

more people were carrying the parasite at the beginning of the transmission season, it would have 

been much more likely that mosquitoes would have been infected early in the wet season and the 

disease would have spread. 

The statistical analysis of our simulated results described in Section 5.4.4 show the strong 

influence of rainfall and temperature in determining various aspects of the malaria transmission 

cycle.  These two variables alone accounted for 85% of the variability in R0 between our 

simulations.  The remaining 15% variability is likely due to the timing of rainfall within a wet 

season, soil and vegetation properties that influence infiltration and evaporation rates, other 

environmental inputs such as wind and humidity, and mosquito population dynamics.  

Unexplained variability in prevalence is likely due to complex interannual dynamics of the 

parasite within the human population discussed earlier in this chapter. It is important to note that 

there are many other factors that influence the malaria transmission that were not included in this 

study.  We assumed constant microtopography, population size and age structure, and village 

layout in all of our simulations.  Varying these factors would add variability to village scale R0 

which would be passed on to the other indices of transmission.  Our focus is on the 

environmental determinants of malaria transmission.  As such, we do not simulate varying levels 

of malaria control, which would certainly add significant variability to prevalence, EIR and the 

immunity index.  Despite these caveats, the regression model we developed here provides a 

useful tool to estimate each of these indices of malaria transmission. The framework of plotting 
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years as points on a temperature-rainfall scatter plot developed here provide a useful way to 

visualize interannual variability at a single location as a cloud of points reflecting different 

rainfall and temperature conditions.  It is also a useful way to visualize variability between points 

with similar mean climate, which helps to understand the uncertainty in estimates using these 

variables. 

In the final section of this chapter, differences between the average transmission indices over the 

15-year simulations were compared to the indices from our equilibrium simulations, where a 

year with mean climate conditions was repeated until a steady state was achieved.  By studying 

the interannual dynamics at S1, a moderate transmission site where R0 was less than one for 

about a quarter of the simulated years but as 80 other years, we noticed the importance of initial 

prevalence rates.  Three years with nearly identical values of R0 led to drastically different 

outcomes, primarily due to the availability of the parasite within the population.  The example of 

S1 also provides a cautionary tale for communities facing the prospect of malaria elimination.  

After a decade with almost no malaria infections, a succession of favorable years combined with 

waning immunity led to a rapid and drastic resurgence of disease. 

5.6 Conclusions 

In this chapter, we examined the malaria transmission dynamics at 12 West African locations 

across a range of climate zones, with a focus on areas where we expected malaria prevalence to 

be sensitive to changes in environmental conditions.  We demonstrated that HYDREMATS is 

able to produce a reasonable representation of entomological and epidemiological conditions 

throughout our study area.  We classified our 12 sites as having high, moderate or low 

transmission potential based on their levels of R0. 
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We developed a framework of presenting results as scatter plots in rainfall-temperature space.  

This provides a convenient way to visualize interannual variability at a given location as a cloud 

within the rainfall-temperature space, and to assess the range of results that can occur under 

similar climate conditions. 

We developed a regression models to estimate R0, EIR, prevalence and immunity using annual 

rainfall and mean temperature between July-September that explained 74-85% of the variability 

in our simulated results.   

Finally, we emphasized both the extent and the importance of interannual variability.  We 

showed that R0 can vary by several orders of magnitude at a single site, leading to very different 

potential malaria outcomes.  As a result, single estimates of malaria transmission indices, 

whether based on mean conditions or coinciding with a field campaign, miss important details in 

describing malaria transmission dynamics. 
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6 Predicting the impacts of climate change on malaria 

transmission in West Africa 

6.1 Introduction 

Current trends in climate point towards a warmer future with altered rainfall.  As these changes 

become increasingly likely, there has been significant interest in assessing the impacts of climate 

change on human aspects such as public health.  If we understand the relationships between 

climate and disease, we can project these relationships into different climate scenarios and make 

comparisons between the old and new conditions.  This type of study has become more common 

(for example, those reviewed in (Lafferty, 2009; Rohr et al., 2011)).  While many of these 

studies are usually very deliberate in developing and tuning their models of disease transmission, 

there is often less attention given to the selection of climate projections.  Frequently, they use 

climate projections from one or two general circulation models (GCMs), with no explanation of 

how the GCMs were selected (Moore et al., 2012; Parham & Michael, 2009; Peterson, 2009; 

Rogers & Randolph, 2000; Tanser et al., 2003).  The choice of climate projections is an 

important aspect of climate change studies, particularly in Africa, where there is substantial 

disagreement between GCMs (Roehrig et al., 2013).  In this chapter, we test the skill of climate 

models in their representation of historical climate variables most relevant to malaria 

transmission in West Africa.  We then use the most credible climate predictions to predict the 

future of malaria transmission in this region. 
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6.2 Assessing skill of current climate models 

We examined historical temperature and rainfall data simulated by 23 GCMs and ESMs from the 

Coupled Model Intercomparison Project Phase 5 (CMIP5) (Taylor et al., 2012).  We examined at 

least one GCM from each institution that had model output available in the Earth Systems Grid 

Federation data portal (http://dev.esg.anl.gov) as of August 2012.  In cases where an institution 

provided multiple models or different versions of the same model, we selected the model with 

highest resolution, and the model that appeared to be featured most prominently in that 

institution’s website.  The models analyzed are listed in Table 6.1.  The main features of the 

climate models are described in the IPCC Assessment Report 5, Working Group 1, Chapter 9 

(Flato et al., 2013). 

In order to assess the skill of each model, we compared output from the models’ CMIP5 

historical simulations (Taylor et al., 2012) to data from the Climatic Research Unit Time-Series 

Version 3.21 (CRU TS 3.21).  The CMIP5 family of historical simulations runs from 1850 to 

2005, forced by observed concentrations of greenhouse gasses.   

The variables of interest were temperature and rainfall, as these are the variables most relevant to 

malaria transmission, and are required as inputs for HYDREMATS, our malaria transmission 

model.  We defined the region of interest, West Africa, as the area bounded by 18
o
W to 16

o
E, 

and 11
o
N and 21.5

o
N.  This area was further divided into three zones corresponding roughly to 

the Sahelo-Sahara (Zone 1: 18
o
N-21.5

o
N), Sahel (Zone 2: 14.5

o
N-18

o
N), and Soudan (Zone 3: 

11
o
N-14.5

o
N) ecoclimate zones (Nicholson, 1993). 

To test the ability of the models to reproduce the seasonal climate in this region, we calculated 

the average monthly rainfall and temperature from 1930-2005 using CRU TS 3.21, shown in 
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Figure 6.1 and Figure 6.2.  We then compared the observed seasonal cycles to simulated average 

monthly rainfall and temperature from each of the 21 climate models.  The models were ranked 

from best to worst based on the sum of squared errors (SSE) of average monthly rainfall and 

temperature. 

 

Figure 6.1 Historical monthly rainfall for Zones 1, 2 and 3 



 

196 

 

 

Figure 6.2 Historical monthly temperature for Zones 1, 2 and 3. 

 

The SSE was computed for each model in each of six measurements: average monthly rainfall in 

Zones 1-3 and average monthly temperature in Zones 1-3.  For each of six measures, the models 

were ranked from best to worst using the SSEs.  We then assigned 1 point to the top six models 

for each measure, and subtracted 1 point for the bottom six models. 

 

The highest scoring models were BNU-ESM (6 points), MIROC5 (5 points), MPI-ESM-MR (4 

points), CANESM2 (3 points) and CCSM4 (3 points). 
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Figure 6.3 Monthly rainfall and temperature from CRU (black line), the six best models (blue), 

and the six worst models (pink) 
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Table 6.1 Performance of CMIP5 Climate Models 

Model Name Rainfall Score Temperature Score Total 

Zone 1 Zone 2 Zone 3 Zone 1 Zone 2 Zone 3 

BNU-ESM 1 1 1 1 1 1 6 

MIROC5 1 1   1 1 1 5 

MPI-ESM-MR   1   1 1 1   4 

CANESM2       1 1 1 3 

CCSM4 1 1 1       3 

FGOALS-g2 -1 1   1 1   2 

CESM1-CAM5    1 1       2 

MIROC-ESM-CHEM             1 1 

FIO-ESM   1           1 

BCC-CSM1-1           1 1 

CNRM-CM5 -1 1 1       1 

CSIRO-Mk3-6-0   -1 -1   1 1 1 1 

CMCC-CM             0 

GFDL-CM3             0 

GISS-E2-H           -1 -1 

HadGEM2-AO       -1     -1 

ACCESS   -1 -1       -2 

MRI-CGCM3     -1 -1   -1   -3 

EC-EARTH -1   1 -1 -1 -1 -3 

IPSL-CM5A-MR         -1 -1 -1 -3 

GFDL-ESM2M -1 -1 -1       -3 

inmcm4   1   -1 -1 -1 -1 -3 

HadGEM2-CC   -1 -1 -1 -1 -1 -5 
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We then examined mean annual rainfall from 1930 to 2005 for each of the top five models to see 

whether they reproduced the spatial characteristics of observed rainfall (Figure 6.4).  

Specifically, we were interested in whether the models could reproduce the observed gradient in 

rainfall travelling from north to south, while remaining relatively constant from east to west.  We 

looked for the maxima along the Guinean coast.  While MIROC5 performed well in the area 

used for our initial analysis, we eliminated this model because it greatly overestimated rainfall in 

the southern half of West Africa.  We also eliminated CanESM because its rainfall extended too 

far north into the Sahara desert, and its isohyets peaked between 5
o
W and 5

o
E, unlike the roughly 

latitudinal isohyets in the observations. 
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Figure 6.4 Observed and simulated mean annual rainfall over West Africa 1930-2005 
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Figure 6.5 Observed and simulated mean temperature over West Africa 1930-2005 



 

 

Based on this analysis, we determined that the following models had the best

the environmental variables related to malaria transmission in West Africa: BNU

and MPI-ESM-MR.  However, a final literature review found that BNU

simulating the global atmospheric water balance, lead

false latent cooling (Mariotti et al.

consideration. 

As a final test, we examined the coefficient of variation 

shown in Figure 6.6.  The very high values of the CV in the northernmost latitudes are due to 

near-zero value of mean rainfall in the denominator of the CV.  Both models reproduce the 

general spatial patterns in the observed CV.  CCSM4 underestimates the CV between 14

degrees N, while MPI-ESM-MR overestimates the CV north of 16 degrees N.  As neither model 

appeared to be unreasonable in its representation of interannual variability, we proceeded with to 

use both models for our simulations of future malaria transmission.

Figure 6.6 Coefficient of variation in 

MPI-ESM-MR and box C shows CCSM4.White areas indicate CV values greater than 1.
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Based on this analysis, we determined that the following models had the best representation of 

the environmental variables related to malaria transmission in West Africa: BNU

However, a final literature review found that BNU-ESM had a large error in 

simulating the global atmospheric water balance, leading to a ghost source of precipitation and 

et al., 2011).  As a result, we eliminated BNU-ESM from further 

As a final test, we examined the coefficient of variation (CV) in CRU and the final two models, 

.  The very high values of the CV in the northernmost latitudes are due to 

mean rainfall in the denominator of the CV.  Both models reproduce the 

general spatial patterns in the observed CV.  CCSM4 underestimates the CV between 14

MR overestimates the CV north of 16 degrees N.  As neither model 

d to be unreasonable in its representation of interannual variability, we proceeded with to 

use both models for our simulations of future malaria transmission. 

variation in historical rainfall.  Box A shows observations, box B shows 

MR and box C shows CCSM4.White areas indicate CV values greater than 1.

representation of 

the environmental variables related to malaria transmission in West Africa: BNU-ESM, CCSM4, 

ESM had a large error in 

ing to a ghost source of precipitation and 

ESM from further 

(CV) in CRU and the final two models, 

.  The very high values of the CV in the northernmost latitudes are due to 

mean rainfall in the denominator of the CV.  Both models reproduce the 

general spatial patterns in the observed CV.  CCSM4 underestimates the CV between 14-16 

MR overestimates the CV north of 16 degrees N.  As neither model 

d to be unreasonable in its representation of interannual variability, we proceeded with to 

 

historical rainfall.  Box A shows observations, box B shows 

MR and box C shows CCSM4.White areas indicate CV values greater than 1. 
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6.3 Climate predictions for West Africa 

We obtained monthly rainfall and temperature output for our selected climate models from the 

RCP 8.5 scenario, which represents a future with high greenhouse gas concentration levels, 

resulting in an increased radiative forcing of 8.5 W/m
2
 by 2100 relative to preindustrial levels 

(Taylor et al., 2012).  We computed monthly and annual average rainfall and mean temperature 

between July and September (JAS; the peak malaria transmission season) over the short-term 

(2030-2060) and long-term (2070-2100), and compared to current values (1975-2005).  Predicted 

changes in rainfall are shown in Figure 6.7 and predicted changes in temperature are shown in 

Figure 6.8.  Both models show a general pattern of drying in the western portion of our study 

area, and wetting in the eastern and southern areas.  This pattern of rainfall change is consistent 

with 75% of CMIP5 models analyzed by Roehrig et al. (2013). 

The overall precipitation signal is stronger in CCSM4 than in MPI-ESM-MR.  As a result, the 

average of the two models more closely resembles the pattern predicted by CCSM4.  

Temperatures generally increase more in the west than in the east.  MPI-ESM-MR predicts JAS 

temperature increases between 0.8 and 2.9
o
C by 2030-2060, and between 2.0 and 5.9

o
C in 2070-

2100, while CCSM4 predicts slightly less warming, between 0.5 and 2.8
o
C in 2030-2060, and 

between 1.2 and 5.5
o
C by 2070-2100. 
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Figure 6.7 Predicted change in rainfall as a percentage of 1970-2000 mean rainfall.  Boxes A and 

D show CCSM4, boxes B and E show MPI-ESM-MR, and the average between the two models is 

shown in boxes C and F.  A-C show changes in the period 2030-2060, and D-F shows 2070-2100. 

 

A B C

E FD
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Figure 6.8 Predicted increase in JAS temperature compared to 1970-2000, in degrees Celsius. 

Boxes A and D show CCSM4, boxes B and E show MPI-ESM-MR, and the average between the 

two models is shown in boxes C and F.  A-C show changes in the period 2030-2060, and D-F 

shows 2070-2100.  The green points show the 12 study sites.  

  

A B C

E FD
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6.4 Simulating malaria transmission in future climates 

6.4.1 Experiment design 

In Chapter 5, we simulated malaria transmission in the current climate at 12 locations in West 

Africa where we anticipated the malaria prevalence level in the population would be sensitive to 

changes in the basic reproduction number (R0).  Using projections of rainfall and temperature 

from the two top-performing climate models, we simulate malaria transmission in the short-term 

(2030-2060) and in the long-term (2070-2100) for each of the 12 locations.  Each simulation 

spanned 15 years. 

As in Yamana et al. (2013), we assume that climate change will take the form of shifts in the 

north-south rainfall gradient, consistent with historical changes in rainfall regimes in this region 

(Bomblies & Eltahir, 2010; Irizarry-Ortiz et al., 2003).  The short-term and long-term 

precipitation time series were created by selecting a location directly north (for decreased 

rainfall) or south (for increased rainfall) of each site, where the current rainfall is equal to the 

short-term and long-term predictions of annual rainfall.  We again disaggregate the coarse 

resolution rainfall data by applying the hourly patterns of rainfall observed by CMORPH.  The 

hourly temperature inputs were obtained by adding the predicted short-term and long-term 

changes in temperature for each month to the baseline temperature time series. 
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Figure 6.9 Site location. Colors show the transmission category of each site determined in 

Chapter 5.  The background image shows population density data from the AfriPop database.  

6.5 Results 

The future climate for the 12 study sites varied by location; predicted changes in rainfall and JAS 

temperature are shown for CCSM4 in Figure 6.10 and for MPI-ESM-MR in Figure 6.11.  The 

combination of warmer and drier conditions in the western portion of the study area is expected 

to cause the three sites in southwestern Mali and the site in Senegal to become less suitable for 

malaria transmission.  However locations in Niger, Nigeria, and northern Mali are predicted to 
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have an increase in rainfall, which could increase vectorial capacity by providing mosquitoes 

with more water pools for breeding.   

 

Figure 6.10 Changes in rainfall (top) and temperature (bottom) predicted by CCSM4 at the 12 

study locations. 
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Figure 6.11 Changes in rainfall (top) and temperature (bottom) predicted by MPI-ESM-MR at 

the 12 study locations. 

 

In Chapter 5, we classified our 12 sites according to the number of years with environmental 

conditions leading to R0 levels: low transmission sites (R0 <1 more than half of the time), 

moderate transmission sites (R0>1 more than half of the time, but always less than 10) and high 

transmission (R0 almost always > 10).  The location of these sites and their transmission 

categories are shown in Figure 6.9.  We expect climate change to have the greatest impact in the 

moderate transmission sites.  These areas are currently bordering the threshold of climate 

suitability to malaria, with possible occurrence of epidemics during some but not all years.  

Small changes in climate suitability could be enough to push the system above or below the 
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R0=1 threshold, resulting in relatively large changes in malaria prevalence, should an epidemic 

occur.  The sites with no current malaria transmission have R0 values far below one; they would 

require several orders of magnitude increase in R0 before malaria transmission is possible.  High 

transmission sites already have well established malaria, and are less sensitive to changes in R0. 

 

6.5.1 Low or moderate transmission sites with increasing rainfall 

Temperatures in M1 and M2 in northern Mali and N1 in northern Niger approached the limits of 

mosquito survival.  Despite increases in rainfall, the overall effect was a decrease in R0, and 

these sites remained unsuitable for malaria transmission.  In N2 and N3, the effects of rainfall 

and temperature are of similar magnitude, roughly balancing each other.  In our simulations, R0 

and prevalence in N2 increased in the short term, but by 2070-2100, conditions decreased and 

approached current levels.  In N3, there was a small net decrease in R0, which led to a decline in 

prevalence.  Future rainfall predicted by CCSM4 and simulated R0 and prevalence for low to 

moderate transmission sites with increasing rainfall are shown in Figure 6.12.  The 

corresponding results using climate projections from MPI-ESM-MR are shown in Figure 6.13. 

 

6.5.2 Low or moderate transmission with decreasing rainfall 

Both climate models predicted a substantial decrease in rainfall for site M4 in western Mali and 

S1 in Senegal.  Because both of these locations had R0 values close to the threshold in the current 

climate, the decrease in rainfall led to a higher proportion of years with R0<1.  The result was a 

significant decrease in malaria prevalence.  The change in rainfall was much smaller at M3, with 

both models predicting a small increase in the short term followed by a small decrease in the 
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long term climate.  By 2070-2100, R0 was below 1 for all years, making M3 unsuitable for 

malaria transmission.  There was little effect on prevalence because current transmission was 

near zero despite occasional years with R0 greater than 1.  Results of these simulations are 

summarized in Figure 6.14 for CCSM4 and Figure 6.15 for MPI-ESM-MR. 

 

6.5.3 High transmission sites 

The four high transmission sites had the smallest relative changes in rainfall.  Both models 

predicted that by 2070-2100, rainfall would decrease by 10-20% in M5, M6 and M7 and increase 

by less than 20% in NA1.  These changes were small compared to current interannual variability 

and did not lead to notable change in any of the malaria transmission indices.  Results are 

summarized in Figure 6.16 and Figure 6.17. 

  



 

212 

 

 

Figure 6.12 Summary of results using climate projections from CCSM4 for low and moderate 

transmission sites with increasing rainfall.  Each location is represented by a set of three box 

plots of annual values for current climate (left), short term climate (center) and long term 

climate (right) simulations.  The center dot  of each boxplot indicates the median value over the 

15 year simulation, the extent of the solid box corresponds to the limits of the 25
th

 through 75
th

 

percentile values, and the solid lines (whiskers) extend to include roughly 99% of values if the 

data were normally distributed.  Data points outside of the whiskers are considered outliers, 

and are denoted by open circles. 



 

213 

 

 

Figure 6.13 Summary of results using climate projections from MPI-ESM-MR for low and 

moderate transmission sites with increasing rainfall.  Same as Figure 6.12 but for simulations 

using climate projections from MPI-ESM-MR. 
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Figure 6.14 Summary of results using climate projections from CCSM4 for low and moderate 

transmission sites with decreasing rainfall.  Same as Figure 6.12 but for sites with decreasing 

rainfall. 
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Figure 6.15 Summary of results using climate projections from MPI-ESM-MR for low and 

moderate transmission sites with decreasing rainfall.  Same as Figure 6.14 but for simulations 

using climate projections from MPI-ESM-MR. 
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Figure 6.16 Summary of results using climate projections from CCSM4 for high transmission 

sites. Same as Figure 6.12 but for high transmission sites. 
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Figure 6.17 Summary of results using climate projections from MPI-ESM-MR for high 

transmission sites. Same as Figure 6.16 but for simulations using climate projections from MPI-

ESM-MR. 
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The results of this experiment found several types of responses to climate change based on 

current suitability and predicted changes in climate, summarized in  

Table 6.2.  These categories are shown in Figure 6.18 and Figure 6.19. 

 

Table 6.2 Responses of environmental suitability for malaria transmission to climate change 

Response 

category 

Current 

transmission 

classification 

Sites Change in 

rainfall 

Change in suitability 

A Low M1, M2, N1 Increase Remains unsuitable 

B Moderate N2, N3 Increase Possible increase 

C  Moderate M4, S1 Decrease Large decrease 

D Low M3 Little change Decrease 

E High M5, M6, M7 Decrease Little change 

F High NA1 Increase Little change 
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Figure 6.18 Study area response categories and long term percent change in rainfall averaged 

between MPI-ESM-MR and CCSM4. 
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Figure 6.19 Study area response categories and long term temperature change averaged 

between MPI-ESM-MR and CCSM4 

 

Changes in mean rainfall, log10(R0), and prevalence were compared to the standard deviation of 

the 15-year simulation of current conditions.  The results of this analysis are shown in Table 6.3.  

With the exception of N1, S1 and M4, changes in rainfall were smaller than the standard 

deviation of current conditions.   In the 2070-2100 simulations, future climate projections from 

both CCSM4 and MPI-ESM-MR led to a decrease of mean log10(R0) greater than the standard 

deviation of current conditions for sites in response category C and D, as well as site M1.  The 

relatively warmer and drier projections from MPI-ESM-MR also led to a significant reduction in 

log10(R0) in all Category A and B sites, as well as M5.  Changes in malaria prevalence were 

smaller than the standard deviation of current conditions, with an exception of a significant 

increase at N2 and a decrease at M4.   



 

221 

 

 

Table 6.3 Changes in rainfall, log10(R0) and prevalence compared to standard deviation in 

simulation of current climate.. Positive change greater than the standard deviation of current 

conditions are assigned a value of 1, negative changes greater than the standard deviation are 

shown as -1, and changes smaller than the standard deviation are shown as 0. 

 

 

Simulation results can be visualized as points on the rainfall-temperature scatter plots developed 

in Chapter 5.  An example is shown for site M4 in Figure 6.20, the location with the most 

dramatic change in R0 and prevalence.  The images on the left show the spread of temperature 

and rainfall in the current climate, and the corresponding values of R0 and prevalence.  The 

center and right hand boxes show how the cloud of points moves to the left in response to 

increasing temperatures, and upwards in response to decreasing rainfall.  As a result, R0 goes 

from being greater than one for all years to being less than one for more than half of the years by 

2070-2100.  As a result, prevalence rates fall from the 40-60% range to the 0-20% range.  

Corresponding figures for the all twelve sites are shown in Appendix D. 

Site Response 

CCSM MPI CCSM MPI CCSM MPI CCSM MPI CCSM MPI CCSM MPI

M1 A 0 0 0 0 0 0 -1 -1 0 0 0 0

M2 A 0 0 0 0 0 0 0 -1 0 0 0 0

N1 A 0 0 1 0 0 -1 0 -1 0 0 0 0

N2 B 0 0 0 0 0 0 0 -1 1 1 1 1

N3 B 0 0 0 0 0 -1 0 -1 0 0 0 0

S1 C 0 0 0 -1 0 -1 -1 -1 0 0 0 0

M4 C 0 0 -1 -1 0 0 -1 -1 0 -1 -1 -1

M3 D 0 0 0 0 0 0 -1 -1 0 0 0 0

M5 E 0 0 0 0 0 0 0 -1 0 0 0 0

M6 E 0 0 0 0 0 0 0 0 0 0 0 0

M7 E 0 0 0 0 0 0 0 0 0 0 0 0

NA1 F 0 0 0 0 0 0 0 0 0 0 0 0

Rainfall Log10 (R0) Prevalence in ages 2-10

2030-2060 2070-2100 2030-2060 2070-2100 2030-2060 2070-2100
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Figure 6.20 Annual R0 and prevalence for M4.  The top row shows log10 (R0) and the bottom 

row shows prevalence in children aged 2-10.  Current conditions are shown on the left, short 

term conditions in the center, and long term conditions on the right.  Closed circles are results 

from the simulation using CCSM4 climate predictions and open circles used MPI-ESM-MR 

predictions. 
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6.6 Discussion 

Our analysis of climate models demonstrated the CMIP5 models continue to vary in their ability 

to simulate current climate in West Africa, a fact often neglected in studies of climate change 

impacts.  This emphasizes the importance of selecting an appropriate model for predicting 

results.  Despite the wide spread in climate predictions discussed Chapter 4, the two models that 

ranked highest in our screening had similar predictions for the future climate.   

In simulating future malaria conditions, we emphasize that this study considered only the 

environmental aspects of malaria transmission and climate change.  We did not include malaria 

control interventions or housing improvements, which can have a very large impact on malaria 

transmission dynamics.  We neglect population growth, migration and urbanization.  We also do 

not consider the extreme effects of climate change, such as changes in frequency of droughts and 

floods. 

The northernmost locations (categories A and D), where current temperatures are already close 

to the upper limits of mosquito survival, became less suitable for malaria transmission even 

when rainfall increased.  The southernmost locations (categories E and F) where climate is 

currently highly suitable for transmission were least sensitive to changes in climate.  

Temperatures became warmer but remained within the mosquito’s survival limits.  Changes in 

rainfall were modest, and we found in Chapter 5 that malaria transmission indices were less 

sensitive to climate in these wetter regions.  As a result, there was little change in malaria 

transmission in these locations. 

Category C saw the most dramatic changes.  In the current climate, we simulated moderate 

malaria transmission in these locations.  R0 was above 1 for most years, but within the range that 

is still sensitive to changes in climate.  The increase in temperature and decrease in precipitation 



 

224 

 

both contributed to decreases in mosquito populations and R0.  As a result, malaria transmission 

decreased. 

Finally, Category B represents the most critical scenario.  Detailed results of mosquito density, 

R0 and malaria prevalence at N2 and N3, the two sites in this category, are shown in Figure 

6.21and Figure 6.22, respectively.  In the current climate, these locations have modest malaria 

transmission.  Immunity levels are relatively low, and transmission varies greatly from year to 

year.  In our simulations, we found that the effects of rainfall and temperature were of similar 

magnitude, leading to uncertainty in the change in R0.  Site N3 generally had R0 greater than 1 

during all three simulation periods, and there was little change in the 15-year mean of R0.  Site 

N3 had a  more pronounced increase in R0, particularly in the 2030-2060 simulation.  However 

conditions remained highly unstable in all three time periods.  The increase in mean prevalence 

at N2 was the result of a single epidemic in each of the future simulations that boosted 

prevalence levels for the following one or two years.  Because R0 at N2 is close to the threshold 

value, malaria transmission is very unstable and epidemics of the size observed in the short term 

climate simulation could have occurred under current conditions.  Our simulation length of 15 

years may be insufficient to determine whether the frequency of such epidemics will increase in 

the future.  Small differences in the climate predictions or in the malaria model used could tip the 

balance in favor of malaria transmission leading to dangerous increase in disease transmission.  

Because of these uncertainties and potentially harmful changes, we recommend that this area be 

monitored as a potential hotspot for increase in malaria transmission due to climate change. 
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Figure 6.21 Detailed simulation results for Site N2 in current (blue), short term future (green), 

and long term future(2070-2100) climates using projections from CCSM4.  The top figure shows 

weekly mosquito density.  The middle figure shows annual log10(R0).  The bottom figure shows 

weekly malaria prevalence in children aged 2-10. 
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Figure 6.22 Detailed simulation results for Site N3 in current (blue), short term future (green), 

and long term future(2070-2100) climates using projections from CCSM4.  The top figure shows 

weekly mosquito density.  The middle figure shows annual log10(R0).  The bottom figure shows 

weekly malaria prevalence in children aged 2-10. 
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6.7 Conclusions 

The analysis of climate models presented here was an important advancement over previous 

work analyzing malaria and climate change, as there are still major differences in the ability of 

CMIP5 models in simulating the climate of West Africa.  We identified two models CCSM4 and 

MPI-ESM-MR as being the most credible in this region.  Climate predictions from these two 

models showed drier conditions in the western portion of our study area and wetter conditions in 

the east.  These changes in rainfall combined with warmer temperatures are expected to affect 

environmental suitability for malaria transmission in some parts of our study area.  The northern 

and southern extents of our study area are not expected to change significantly, as the north 

remains unsuitable and the south remains highly suitable.  However, we identified two areas 

where significant changes can occur.  The first is the low to moderate transmission areas in the 

western portion of our study area, including Senegal and western Mali, where we expect malaria 

transmission to decrease.  The second area is in the eastern Sahel where rainfall is likely to 

increase.  Although our simulations predicted little change in this region, we recommend further 

monitoring of this region. 
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7 Conclusions 

7.1 Summary of results 

The goal of this thesis was to improve understanding of the relationships between environment, 

entomology, and malaria transmission in the current and future climates of West Africa.  This 

was done using HYDREMATS, a highly detailed mechanistic modelling tool.  Chapters 2 and 3 

described improvements made to HYDREMATS.  Improvements to the model’s efficiency 

described in Chapter 2 were essential in enabling the long term simulations in Chapters 4 

through 6, capturing far more information about each location’s malaria transmission dynamics 

than would have been possible in a simulation of only two or three years.  Improvements to the 

representation of the human population in HYDREMATS allowed a more realistic simulation of 

the complex interactions between previous exposure, immunity and malaria prevalence.    

Chapter 4 described a first-order approximation to the impacts of climate change on malaria 

transmission in West Africa.  This chapter highlighted the high uncertainty in GCM predictions 

of future climate in this region and showed expected changes in malaria transmission under the 

best and worst case scenarios.  Despite the uncertainties in climate predictions, we found that 

even the worst case scenario in terms of increased suitability for malaria transmission was not 

expected to lead to significant increases in disease prevalence.  A separation of the effects of 

rainfall and temperature in shaping the response of vectorial capacity to climate change 

emphasized the value of a hydrologic modelling tool in studies of climate change impacts. 

Chapter 5 presented a detailed study of current entomological and epidemiological conditions 

across West Africa.  Comparison of model results to observational data showed the validity of 
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HYDREMATS across a range of ecoclimate zones.  The interannual variability of the basic 

reproduction number and malaria transmission was examined, and locations were classified 

based on the level of these indices over a 15-year period.  As the computational requirements of 

HYDREMATS remain prohibitive for the simulation of entire countries or continents, linear 

regression models were developed to relate rainfall and temperature to key malaria indices.  

These models were able to explain 74-85% of variability in simulated results and provide a tool 

that can be used to estimate malaria transmission in current or future climate, perhaps narrowing 

down wide areas into critical zones to simulate in greater detail.  

Chapter 6 described predictions of the effects of climate change on malaria transmission in West 

Africa.  Based on an evaluation of current climate models, two models, CCSM4 and MPI-ESM-

MR were identified as being the most credible in simulating the current and future climate of 

West Africa.  Projections from these models indicate that the western half of the Sahel is 

expected to become drier while the eastern half is expected to become wetter.  Wet season 

temperatures are expected to increase by 2.5 to 5.7
o
C by 2070-2100.  The northern area of West 

Africa was expected to remain unsuitable for malaria transmission regardless of future rainfall 

due to temperatures exceeding mosquito tolerance.  Changes in climate did not lead to significant 

changes in malaria prevalence in the high transmission areas in the southern portion of West 

Africa.  Drier and hotter conditions in the moderate transmission areas in the western Sahel were 

expected to decrease malaria transmission.  In the eastern Sahel, the positive effects of increasing 

rainfall on vectorial capacity were of similar magnitude of the negative effects of increasing 

temperature, leading to uncertainty in future malaria transmission.  As a result, we recommend 

continued monitoring in the eastern Sahel. 
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7.2 Major contributions 

This thesis contributed to the development of the HYDREMATS modelling tool in three key 

areas: 

The effects of humidity on mosquito survival placed an important constraint on vector 

populations and malaria transmission during the dry season.  This was shown to improve 

simulation of the seasonality in areas where hydrological conditions allow potential mosquito 

breeding sites to persist into the dry season. 

The improvement of the immunity component in HYDREMATS allowed us to move beyond 

entomological measures such as mosquito density and vectorial capacity to analyzing the 

prevalence of the malaria parasite within human populations.  The result is a novel modelling 

tool that mechanistically simulates all of the key processes linking environment to malaria 

transmission. 

A comparison of simulation results to observational data of entomological and epidemiological 

variables across West Africa established the ability of HYDREMATS to simulate malaria 

transmission dynamics across a range of ecoclimate zones.  This, combined with the 

methodology developed here of incorporating data from satellites, reanalysis models and 

archived datasets as model inputs, greatly increases the significance of HYDREMATS, as it 

allows simulation under a far wider range of conditions than was previously possible. 
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The enhanced version of HYDREMATS was applied to improve understanding of the impact of 

natural interannual variability of climate on the dynamics of malaria transmission in the current 

climate of West Africa.   

Areas where populations are at greatest risk of increased malaria transmission due changes in 

environmental conditions were identified.  These areas include the northern extent of malaria 

transmission in the Sahel, where the current climate leads to basic reproduction number close to 

the threshold that would allow the disease to spread.  

Linear regression models were developed in order to predict key malaria transmission indices 

using historical or predicted data of annual rainfall and mean wet season temperature. 

Finally, this work improved on previous understanding of the impacts of climate change on 

malaria transmission in West Africa. 

Climate models were screened for their ability to simulate climate in West Africa, resulting in a 

best estimate of future climate in this region.  This is the first time to our knowledge that a study 

of climate change impacts on malaria tested the credibility of a climate model before using its 

projections to predict impacts on disease transmission. 

The framework of mechanistic modelling to translate changes in rainfall and temperature due to 

increased greenhouse gas emissions into changes in mosquito density, vectorial capacity and 

malaria transmission is an improvement over previous work that had relatively crude 

representations of rainfall. 
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7.3 Recommendations for future work 

7.3.1 Further investigations of human immunity 

The improved human immunity component of HYDREMATS presents numerous opportunities 

for future work.  An important application of HYDREMATS is its potential to provide a priori 

assessments of malaria control interventions.  The hydrology and entomology components of the 

model alone can be used to determine the effect of vector control operations, such as application 

of larvicide or use of mosquito nets, on vector populations. The immunology component of the 

model enables the extension of these predictions to the effect of interventions on malaria 

prevalence.  This is especially important given the nonlinearities between vectorial capacity and 

malaria transmission.  Even large scale mosquito control efforts may have little effect if they fail 

to drive the basic reproduction number below one.  Malaria control activities targeted at the 

human population, such as vaccination or case detection and treatment, can be evaluated in 

conjunction with vector control and environmental management initiatives. 

The improved modelling tool can be used to explore interesting questions relating to the long 

lasting memory of acquired immunity to malaria.  An issue that has been important in the 

historical context of malaria control has been the interruption of malaria interventions due to 

diminished political incentive or financial resources.  In these cases, a sudden increase in 

vectorial capacity in a population with reduced immunity to the disease can cause a dangerous 

resurgence of malaria.  HYDREMATS can be used to predict and mitigate such resurgences.  

Future improvements to the immunity model include simulating parasite densities with human 

agents over the course of an infection.  The parasite density may affect the probability the 

disease is passed to mosquitoes during bloodmeals.  We do not currently differentiate between 
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symptomatic and asymptomatic disease, or provide estimates on severe forms of disease.  

Inclusion of this aspect would be useful in determining the burden of disease in a population. 

 

7.3.2 Extending predictions of climate change impacts on malaria transmission 

We showed that malaria prevalence is most vulnerable in areas where current environmental 

conditions lead to basic reproduction numbers close to the threshold value.  While we are able to 

approximate the location of these areas, it was not possible based on this analysis to specify the 

exact areas.  Recent advances in computational resources and the improvements to model 

efficiency greatly increased the number of simulations that could be conducted.  However, we 

were still limited to selecting representative villages in various climate zones.  An improved 

future study would cover greater spatial areas to better delineate this sensitive region.  We found 

a delicate balance between increase in mosquito populations due to higher rainfall and decrease 

in vectorial capacity due to exceedingly high temperatures.  It is possible that there are parts of 

the eastern Sahel where the effects of rainfall dominate.  A larger scale simulation would identify 

these areas. 

While this study was careful in selecting the most credible general circulation models to drive 

our estimates of climate impacts, there are still known biases in the entire ensemble of CMIP5 

GCMs.  As these climate models improve, the assessment of impact on malaria transmission 

should be updated.  In downscaling model predictions of future rainfall, we made the assumption 

that changes in precipitation would take the form of climate shifts so that future precipitation in a 

given location will resemble current conditions directly to the north (for drier conditions) or 

south (for wetter conditions).  However it is possible that climate change will alter the temporal 
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pattern of precipitation.  This can have significant implications for mosquito populations as it 

would affect pool persistence and the length of the breeding season.  Future work should 

therefore include an analysis of changes to the temporal pattern of future rainfall.    
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Appendix A Bias-correction for CMORPH rainfall 

 

Like most satellite rainfall products, CMORPH is known to have a positive bias compared to rain 

gauge data in West Africa, primarily due to overestimation of high-intensity rainfall (Gosset et 

al., 2013).  However, after a simple bias-correction, CMORPH can be used as in input to 

HYDREMATS to reasonably simulate water pools and mosquito populations (Yamana & 

Eltahir, 2011). 

While Yamana & Eltahir (2011) used a single bias-correction factor for all rainfall estimates 

regardless of intensity, here we used a probability matching technique (Wolff et al., 2005) so that 

the cumulative distribution function (CDF) of corrected hourly CMORPH data matched that of 

the ground observations.  This method is preferable to applying a single correction factor 

because the bias differs by rainfall intensity.  Variations of the probability matching technique 

have recently been used to correct biases in CMORPH using rain gauge data (De Vera & Terra, 

2012; Guilloteau et al., 2014).   

Ground observations measured by Institut de Recherche pour le Développement of Niger, Mali, 

and Benin were obtained through the African Monsoon and Multidisciplinary Analyses 

(AMMA) database for the time period 2006 through 2008 and pooled together.  The five 

locations were: Banizoumbou and Zindarou in Niger, Agoufou and Bamba in Mali, and Djougou 

in Benin.  Hourly rainfall data measured by ground rain gauges from five West African locations 

were paired with corresponding hourly CMORPH rainfall data.  The cumulative density 

functions (CDF) of rainfall intensity for the two datasets are shown in Figure A.1.  The pair of 
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CDFs were used to create a look-up table, Table A.1, such that raw CMORPH hourly rainfall 

values are multiplied by a bias correction factor (BCF) to obtain the correct CDF. 

 

��������		
��
� = ������	�� × ���(������	��) 

 

 

Figure A.1 Cumulative density function of non-zero rainfall values from ground observations 

(blue) and CMORPH estimates (green) 
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Hourly CMORPH data were extracted for our 12 sites for the 15-year time period 1998 through 

2012, and corrected using Table A.1.  While hourly rainfall measurements from meteorological 

stations were not available for these locations, comparison with annual rainfall data from CRU, 

shown in Figure A.2, shows that the correction method greatly improved the accuracy of total 

annual rainfall.   

 

 

Figure A.2 Annual rainfall at each location from CRU (blue), raw CMORPH (green), and bias-

corrected CMORPH (red). 
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Table A.1 Bias-correction factor for 

CMORPH rainfall 

Rainfall intensity 

[mm/hr] 

BCF 

0.0 to 0.5 0.00 

0.6 to 0.6 0.03 

0.7 to 0.7 0.23 

0.8 to 0.8 0.25 

0.9 to 0.9 0.27 

1.0 to 1.0 0.27 

1.1 to 1.1 0.29 

1.2 to 1.2 0.33 

1.3 to 1.3 0.31 

1.4 to 1.4 0.34 

1.5 to 1.5 0.33 

1.6 to 1.6 0.31 

1.7 to 1.7 0.33 

1.8 to 1.8 0.36 

1.9 to 1.9 0.39 

2.0 to 2.0 0.38 

2.1 to 2.1 0.40 

2.2 to 2.2 0.45 

2.3 to 2.3 0.43 

2.4 to 2.4 0.42 

2.5 to 2.5 0.46 

2.6 to 2.6 0.45 

2.7 to 2.7 0.46 

2.8 to 2.8 0.45 

2.9 to 2.9 0.47 

3.0 to 3.0 0.49 

3.1 to 3.1 0.48 

3.2 to 3.2 0.49 

3.3 to 3.3 0.50 

3.4 to 3.4 0.51 

3.5 to 3.5 0.50 

3.6 to 3.7 0.53 

3.8 to 3.8 0.53 

3.9 to 3.9 0.53 

4.0 to 4.0 0.55 

4.1 to 4.2 0.55 

4.3 to 4.3 0.57 

4.4 to 4.4 0.57 

4.5 to 4.6 0.57 

4.7 to 4.7 0.59 

4.8 to 4.8 0.60 

4.9 to 5.1 0.60 

5.2 to 5.3 0.60 

5.4 to 5.6 0.61 

5.7 to 5.9 0.62 

6.0 to 6.2 0.62 

6.3 to 6.4 0.62 

6.5 to 6.7 0.61 

6.8 to 6.9 0.62 

7.0 to 7.2 0.64 

7.3 to 7.7 0.65 

7.8 to 8.0 0.67 

8.1 to 8.4 0.69 

8.5 to 8.8 0.71 

8.9 to 9.5 0.74 

9.6 to 10.1 0.79 

10.2 to 11.0 0.79 

11.1 to 11.5 0.81 

11.6 to 12.4 0.86 

12.5 to 13.6 0.88 

13.7 to 15.1 0.87 

15.2 to 17.2 0.88 

17.3 to 19.7 0.90 

19.8 to 23.4 0.94 

23.5 to Inf 1.10 
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Appendix B Regression relationships for variables in 

Chapter 5 

 

Figure B.1 Annual rainfall versus annual log10(R0) 

Regression equation in the form f(x)=a*x+b 

x a b 

rain<690 4.64E-03 -1.65E+00 

rain>690 1.46E-03 5.44E-01 

 

RMSE: 0.13 

 R
2
: 0.79 
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Figure B.2 Annual rainfall versus annual Log10(EIR)  

Regression equation in the form f(x)=a*x+b 

x a b 

rain<950 4.34E-03 -2.98E+00 

rain>950 1.79E-04 9.61E-01 

 

RMSE: 0.13 

R
2
: 0.76 
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Figure B.3 Annual rainfall versus annual peak malaria prevalence in children ages 2-10 

 

Regression equation in the form f(x)=a*x+b 

x a b 

rain < 415 1.37E-02 5.50E-01 

415<rain<950 1.31E-01 -4.67E+01 

rain > 950 -1.21E-03 7.86E+01 

 

RMSE: 0.17 

R
2
: 0.72 
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Figure B.4 Annual rainfall versus annual mean population immunity index 

 

Regression equation in the form f(x)=a*x+b 

x a b 

rain < 415 2.48E-04 5.02E-02 

415<rain<950 1.18E-03 -3.44E-01 

rain > 950 6.55E-05 7.27E-01 

 

RMSE: 0.20 

R
2
: 0.65 
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Figure B.5 Mean July-September temperature versus annual log10(R0).  The red line is the least-

squares regression line. 

Regression equation in the form f(x)=a*x+b 

x a b 

tjas -3.20E-01 1.08E+01 

 

R
2
= 0.54 

RMSE=2.75 

 



 

246 

 

 

Figure B.6 Mean July-September temperature versus annual log10(EIR) 

Regression equation in the form f(x)=a*x+b 

x a b 

tjas -3.59E-01 1.07E+01 

 

R
2
= 0.49 

RMSE=4.16 
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Figure B.7 Mean July-September temperature versus annual peak malaria prevalence in 

children ages 2-10. 

Regression equation in the form f(x)=a*x+b 

x a b 

tjas<34 -9.40E+00 3.23E+02 

tjas>34 -5.04E-01 2.05E+01 

 

RMSE: 0.24 

R
2
: 0.47 
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Figure B.8 Mean July-September temperature versus annual mean population immunity index. 

Regression equation in the form f(x)=a*x+b 

x a b 

tjas < 32.7 -1.19E-01 4.04E+00 

tjas > 32.7 -1.80E-02 7.29E-01 

 

RMSE: 0.21 

R
2
: 0.60
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Appendix C Additional results for malaria transmission in 

current climate conditions 

 

 

Figure C.1 Simulation results for site M1.  From top to bottom, the sub figures show annual 

rainfall, peak annual R0, daily mean population immunity index, and daily malaria prevalence in 

children aged 2-10. 
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Figure C.2 Simulation results for site M2.  From top to bottom, the sub figures show annual 

rainfall, peak annual R0, daily mean population immunity index, and daily malaria prevalence in 

children aged 2-10. 
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Figure C.3 Simulation results for site M3.  From top to bottom, the sub figures show annual 

rainfall, peak annual R0, daily mean population immunity index, and daily malaria prevalence in 

children aged 2-10. 
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Figure C.4 Simulation results for site M4.  From top to bottom, the sub figures show annual 

rainfall, peak annual R0, daily mean population immunity index, and daily malaria prevalence in 

children aged 2-10. 
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Figure C.5 Simulation results for site M5.  From top to bottom, the sub figures show annual 

rainfall, peak annual R0, daily mean population immunity index, and daily malaria prevalence in 

children aged 2-10. 
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Figure C.6 Simulation results for site M6.  From top to bottom, the sub figures show annual 

rainfall, peak annual R0, daily mean population immunity index, and daily malaria prevalence in 

children aged 2-10. 
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Figure C.7 Simulation results for site M7.  From top to bottom, the sub figures show annual 

rainfall, peak annual R0, daily mean population immunity index, and daily malaria prevalence in 

children aged 2-10. 
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Figure C.8 Simulation results for site N1.  From top to bottom, the sub figures show annual 

rainfall, peak annual R0, daily mean population immunity index, and daily malaria prevalence in 

children aged 2-10. 
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Figure C.9 Simulation results for site N2.  From top to bottom, the sub figures show annual 

rainfall, peak annual R0, daily mean population immunity index, and daily malaria prevalence in 

children aged 2-10. 
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Figure C.10 Simulation results for site N3.  From top to bottom, the sub figures show annual 

rainfall, peak annual R0, daily mean population immunity index, and daily malaria prevalence in 

children aged 2-10. 
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Figure C.11 Simulation results for site NA1.  From top to bottom, the sub figures show annual 

rainfall, peak annual R0, daily mean population immunity index, and daily malaria prevalence in 

children aged 2-10. 
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Appendix D Additional results for malaria transmission in 

future climate conditions 

 

 

Figure D.1 Simulation results for site M1.  The top row shows log10 (R0) and the bottom row 

shows prevalence in children aged 2-10.  Current conditions are shown on the left, short term 

conditions in the center, and long term conditions on the right.  Closed circles are results from 

the simulation using CCSM4 climate predictions and open circles used MPI-ESM-MR 

predictions. 
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Figure D.2 Simulation results for site M2.  The top row shows log10 (R0) and the bottom row 

shows prevalence in children aged 2-10.  Current conditions are shown on the left, short term 

conditions in the center, and long term conditions on the right.  Closed circles are results from 

the simulation using CCSM4 climate predictions and open circles used MPI-ESM-MR 

predictions.  
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Figure D.3 Simulation results for site M3.  The top row shows log10 (R0) and the bottom row 

shows prevalence in children aged 2-10.  Current conditions are shown on the left, short term 

conditions in the center, and long term conditions on the right.  Closed circles are results from 

the simulation using CCSM4 climate predictions and open circles used MPI-ESM-MR 

predictions.  

 



 

264 

 

 

Figure D.4 Simulation results for site M4.  The top row shows log10 (R0) and the bottom row 

shows prevalence in children aged 2-10.  Current conditions are shown on the left, short term 

conditions in the center, and long term conditions on the right.  Closed circles are results from 

the simulation using CCSM4 climate predictions and open circles used MPI-ESM-MR 

predictions.  
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Figure D.5 Simulation results for site M5.  The top row shows log10 (R0) and the bottom row 

shows prevalence in children aged 2-10.  Current conditions are shown on the left, short term 

conditions in the center, and long term conditions on the right.  Closed circles are results from 

the simulation using CCSM4 climate predictions and open circles used MPI-ESM-MR 

predictions.  
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Figure D.6 Simulation results for site M6.  The top row shows log10 (R0) and the bottom row 

shows prevalence in children aged 2-10.  Current conditions are shown on the left, short term 

conditions in the center, and long term conditions on the right.  Closed circles are results from 

the simulation using CCSM4 climate predictions and open circles used MPI-ESM-MR 

predictions.  
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Figure D.7 Simulation results for site M7.  The top row shows log10 (R0) and the bottom row 

shows prevalence in children aged 2-10.  Current conditions are shown on the left, short term 

conditions in the center, and long term conditions on the right.  Closed circles are results from 

the simulation using CCSM4 climate predictions and open circles used MPI-ESM-MR 

predictions.  
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Figure D.8 Simulation results for site N1.  The top row shows log10 (R0) and the bottom row 

shows prevalence in children aged 2-10.  Current conditions are shown on the left, short term 

conditions in the center, and long term conditions on the right.  Closed circles are results from 

the simulation using CCSM4 climate predictions and open circles used MPI-ESM-MR 

predictions.  
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Figure D.9 Simulation results for site N2.  The top row shows log10 (R0) and the bottom row 

shows prevalence in children aged 2-10.  Current conditions are shown on the left, short term 

conditions in the center, and long term conditions on the right.  Closed circles are results from 

the simulation using CCSM4 climate predictions and open circles used MPI-ESM-MR 

predictions.  
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Figure D.10 Simulation results for site N3.  The top row shows log10 (R0) and the bottom row 

shows prevalence in children aged 2-10.  Current conditions are shown on the left, short term 

conditions in the center, and long term conditions on the right.  Closed circles are results from 

the simulation using CCSM4 climate predictions and open circles used MPI-ESM-MR 

predictions.  
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Figure D.11 Simulation results for site NA1.  The top row shows log10 (R0) and the bottom row 

shows prevalence in children aged 2-10.  Current conditions are shown on the left, short term 

conditions in the center, and long term conditions on the right.  Closed circles are results from 

the simulation using CCSM4 climate predictions and open circles used MPI-ESM-MR 

predictions.  
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Figure D.12 Simulation results for site S1.  The top row shows log10 (R0) and the bottom row 

shows prevalence in children aged 2-10.  Current conditions are shown on the left, short term 

conditions in the center, and long term conditions on the right.  Closed circles are results from 

the simulation using CCSM4 climate predictions and open circles used MPI-ESM-MR 

predictions.  
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Appendix E Model code and input files 

Simulation code and input files used in this thesis are available at: 

\afs\athena.mit.edu\e\l\eltahir\yamana_code 
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