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Abstract
We study a series of topics involving approximation algorithms and the presence of
uncertain data in optimization. On the first theme of approximation, we derive perfor-
mance bounds for rollout algorithms. Interpreted as an approximate dynamic program-
ming algorithm, a rollout algorithm estimates the value-to-go at each decision stage by
simulating future events while following a heuristic policy, referred to as the base pol-
icy. We provide a probabilistic analysis of knapsack problems, proving that rollout
algorithms perform significantly better than their base policies.

Next, we study the average performance of greedy algorithms for online matching
on random graphs. In online matching problems, vertices arrive sequentially and re-
veal their neighboring edges. Vertices may be matched upon arrival and matches are
irrevocable. We determine asymptotic matching sizes obtained by a variety of greedy
algorithms on random graphs, both for bipartite and non-bipartite graphs.

Moving to the second theme of uncertainty, we analyze losses resulting from uncer-
tain transition probabilities in Markov decision processes. We assume that policies are
computed using exact dynamic programming with estimated transition probabilities,
but the system evolves according to different, true transition probabilities. Given a
bound on the total variation error of estimated transition probability distributions, we
derive a general tight upper bound on the loss of expected total reward.

Finally, we consider a randomized model for minmax regret in combinatorial op-
timization under cost uncertainty. This problem can be viewed as a zero-sum game
played between an optimizing player and an adversary, where the optimizing player
selects a solution and the adversary selects costs with the intention of maximizing the
regret of the player. We analyze a model where the optimizing player selects a proba-
bility distribution over solutions and the adversary selects costs with knowledge of the
player’s distribution. We show that under this randomized model, the minmax regret
version of any polynomial solvable combinatorial problem is polynomial solvable, both
for interval and discrete scenario representations of uncertainty.

Thesis Supervisor: Patrick Jaillet
Title: Dugald C. Jackson Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

OPTIMIZATION is a fundamental topic in computer science, mathematics, and op-
erations research. With the development of a formal theory of computation, the

last century has witnessed the emergence of what are now considered basic paradigms
of mathematical optimization. Algorithms drawn from the theory of linear and inte-
ger programming, combinatorial optimization, and dynamic programming, for instance,
have proved invaluable for solving a wide variety of optimization problems. Consider
the conventional 0–1 knapsack problem: given a set of items with values and weights,
how does one select a subset of items that maximizes the total value without exceeding
a total weight limit? It is well known that this can be solved with a simple dynamic
programming recursion [34]. Also consider the maximum bipartite matching problem:
given a bipartite graph with a set of job vertices, a set of worker vertices, and a set
of edges indicating compatible workers and jobs, how does one maximize the number
of jobs completed if each worker can complete one job and jobs cannot be split among
workers? This can be solved with the Hopcroft-Karp algorithm or, alternatively, formu-
lated as a linear programming problem and solved with the simplex method [76, 128].

When faced with a particular optimization problem, one may find that it can be
solved in practice using standard approaches; for example, it is a linear programming
problem, or an instance of a well-known combinatorial problem. Indeed, standard ap-
proaches give a recipe for obtaining a provably optimal solution. In many applications,
however, it is necessary to accept a suboptimal solution – that is, a solution given by an
approximation algorithm. The most obvious motivation for approximation algorithms is
computational complexity. It is unlikely that polynomial-time algorithms will be found
for NP-hard problems [69, 112]. When faced with large instances of NP-hard problems,
one must resort to suboptimal techniques where efficient algorithms are available. Space
complexity poses similar limitations. For processing large data with limited memory, as
modeled by streaming models of computation, approximation is often needed [11, 124].

Approximation algorithms are motivated outside of computational complexity. In
online optimization problems, decisions must be made as the problem is revealed, and
these decisions are irrevocable [42]. This makes it impossible for an online algorithm to
guarantee an optimal solution (though an algorithm can be optimal based on an online
criterion). Online optimization is well studied, and any online algorithm can in fact
be interpreted as an approximation algorithm for the offline (i.e. not online) problem.
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Consider the following variation on the maximum bipartite matching problem. Assume
that jobs are not known upfront but arrive online such that the edges for each job are
revealed when it arrives. Each job must immediately be assigned to an available worker
or dropped. An algorithm for this online problem is equivalent to an algorithm for the
offline problem that performs a single pass through job vertices and makes assignment
decisions.

Algorithm implementation complexity is yet another motivation for approximation
algorithms. Greedy algorithms, which are the most basic type of approximation algo-
rithm, make locally optimal decisions and are often easier to implement than optimal
algorithms. A natural greedy algorithm for the 0–1 knapsack problem, for example, is
to sort the items in non-increasing profit to weight ratio and add each item (if possible)
in this order [89]. In addition to being intuitively pleasing, this algorithm is nearly
trivial to implement and runs in polynomial time. On more elaborate problems, imple-
mentation complexity becomes increasingly important when choosing an algorithm.

An immediate question regarding approximation algorithms is, what can be proved
about the quality of the approximation? Specifically, can an approximation algorithm
guarantee a solution with value that has some bounded deviation from the optimal
value? The first theme of this thesis is to answer this question in a variety of novel
scenarios. Approximation algorithms are often measured from the perspective of worst-
case analysis [143, 146]. For instance, a variation on the greedy algorithm that we
have described for the 0–1 knapsack problem (the decreasing density greedy algorithm)
guarantees a solution with value at least half as large as the optimal value [69]. Our
tool of choice will instead be average-case analysis. We will assume that the problem
structure and/or parameters is generated by some probabilistic process, and we will
look at expected performance. There are merits to both types of analysis. Worst-case
analysis may be more appropriate for high risk situations, while average-case analysis
can give a more realistic depiction of typical performance. Ultimately, it is desirable
to understand algorithm performance from both perspectives, and our contributions
provide new average-case results where the analogous worst-case results are already
known.

Our first topic on the theme of approximation is rollout algorithms. Rollout algo-
rithms are a general class of approximation algorithms that can be used on a problem
admitting a dynamic programming formulation [28, 30]. They combine lookahead with
a greedy algorithm to repeatedly estimate optimal decisions. In practice, rollout algo-
rithms have worked well on a variety of problems, but there are few theoretical results
guaranteeing the quality of the solutions they generate [98, 129, 141]. There are, how-
ever, some worst-case results known for rollout algorithms on the 0–1 knapsack problem
[26, 125]. Complementing this research, we look at the average-case performance of roll-
out algorithms for both the 0–1 knapsack problem and the subset sum problem. We give
a probabilistic analysis of two types of rollout algorithms for these problems, showing
strong performance bounds.

Our second topic on approximation is greedy online matching on random graphs. In
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online matching problems, the graph is revealed over time, and matches must be made
as the graph appears. Greedy matching algorithms have been studied extensively in
the offline setting (i.e. when the entire graph is known) using both worst-case analysis
and average-case analysis [55, 56, 82]. Matching algorithms have also been studied
in the online setting, but mainly using worst-case analysis [2, 83]. We thus consider
greedy online matching from the average-case perspective, using random graphs. We
determine the asymptotic matching sizes obtained by a variety of greedy algorithms
on both Erdős-Rényi random graphs and random regular graphs, and for bipartite and
non-bipartite models.

Beyond approximation, the second theme of this thesis addresses another prac-
tical aspect of optimization. Most standard optimization approaches assume that
problem data are known exactly. Unsurprisingly, applications frequently arise where
data/parameters are uncertain. Uncertainty can be characterized in a variety of ways:
parameters can be modeled as being drawn from a probability distribution, contained
in an interval (i.e. constrained by known lower and upper bounds), or selected from
a finite set of alternatives. Existence of uncertainty can complicate optimization dra-
matically. In the knapsack problem, for example, uncertainty in item weights makes
it difficult to ensure feasibility of potential solutions, and uncertainty in item values
directly undermines the objective of finding the most valuable subset.

Yet, the presence of uncertainty may not necessarily require the use of new or sophis-
ticated algorithms, particularly if solution properties for a given problem and algorithm
do not depend heavily on the uncertain parameters. This motivates the general study of
sensitivity analysis in optimization. Sensitivity analysis seeks to determine how signifi-
cantly solutions or objective values change as problem parameters are perturbed. While
these properties can be analyzed in specific instances using simulation, more general
results can be gained with theoretical analysis. There are simple results in linear pro-
gramming, for example, demonstrating how sensitive objective values are to changes in
constraints and objective coefficients [33].

When parameter uncertainties are formidable, it is necessary to ask how to opti-
mize while intelligently accounting for uncertainty. This is addressed with the fields
of stochastic programming and robust optimization [31, 37, 93, 131]. Stochastic pro-
gramming is mainly dedicated to settings where uncertain parameters are modeled as
random variables with known probability distributions. The prototypical stochastic
programming problem is the two-stage stochastic program with recourse: decisions are
made in the first stage to maximize the current value and expected future value, and
corrective actions are taken in the second stage after uncertain data are realized and
observed. Robust optimization, on the other hand, usually only considers a single opti-
mization stage, and it models uncertainty by describing sets of possibilities for uncertain
parameters. This naturally leads to the use of worst-case robust objectives, such as the
minmax criterion.

Optimizing in the presence of uncertainty is the second theme of this thesis, and we
start with a topic in sensitivity analysis. We consider the presence of uncertain tran-
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sition probabilities in a Markov decision process. The Markov decision process (MDP)
is a standard framework for dynamic optimization, where optimization occurs over a
sequence of alternating decisions and random outcomes [27, 123]. We assume that the
MDP is solved using dynamic programming, but with estimated transition probabili-
ties. Given a bound on the total variation error for estimated transition probabilities,
we determine a general tight upper bound on the loss of expected total reward.

We then move to a topic on robust optimization, combinatorial optimization with
uncertainty in cost coefficients. This problem can be viewed as a game played between
an optimizing player, who selects a solution from a solution set, and an adversary,
who selects costs from an uncertainty set. The two natural choices of objective cri-
teria for the optimizing player are minmax and minmax regret [127, 145]. Problems
under both criteria have been studied extensively, but mainly using a deterministic
model. We consider a randomized model under the minmax regret criterion, where the
optimizing player selects a probability distribution over solutions, and the adversary
selects a probability distribution over costs. We show that minmax regret problems
are computationally easier to solve in this randomized model than in the deterministic
model.

1.1 Organization and Summary of Contributions

We give a topic-by-topic discussion of our results and contributions as follows. The
thesis is divided into four main chapters. On the theme of approximation, Chapters
2 and 3 present our results for rollout algorithms and greedy online matching. For
optimization under uncertainty, Chapters 4 and 5 give our results for uncertainty in
Markov decision processes and robust optimization. A conclusion is given in Chapter
6.

1.1.1 Chapter 2: Rollout Algorithms for Knapsack Problems

Rollout algorithms were introduced by Tesauro and Galperin [140] as online Monte-
Carlo search techniques for computer backgammon. Their application to combinatorial
optimization and stochastic dynamic programming was formalized by Bertsekas, Tsit-
siklis, and Wu [30], and Bertsekas and Castañon [28], respectively. The motivation for
the rollout approach comes from problems that can be solved using classical dynamic
programming, but for which determining the value function (or value-to-go function)
is computationally infeasible. A rollout algorithm estimates the value function at each
decision stage by simulating future events while following a heuristic policy, referred to
as the base policy. In most cases, the rollout algorithm is guaranteed to perform at least
as well as its base policy, but there have been very few results proving a strict improve-
ment in performance. Nevertheless, rollout algorithms have demonstrated excellent
computational performance on a wide variety of problems including vehicle routing,
fault detection, and sensor scheduling [98, 129, 141].

Fortunately, some results showing a strict improvement in worst-case performance
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are known for the 0–1 knapsack problem, where the decreasing density greedy (DDG)
algorithm is used as a base policy [26, 125]. The DDG algorithm takes the best of two
solutions: the one obtained by adding items in order of non-increasing profit to weight
ratio, as long as they fit, and the solution resulting from adding only the feasible item
with highest profit. The first iteration of the rollout algorithm in this setting tries adding
every item to the knapsack and using the DDG algorithm with the remaining items and
capacity, and then takes the best of these solutions. This first iteration is equivalent
to performing partial enumeration, a general technique for obtaining polynomial time
approximation schemes [89]. It can be shown that running a single iteration of the
rollout algorithm improves the approximation guarantee from 1/2 (the bound provided
by the base policy) to 2/3. However, there is a tight example showing that it is not
possible to guarantee improved performance with additional iterations [26].

This work motivates a complementary study of average-case performance of rollout
algorithms for knapsack problems, which we provide in this chapter [105]. We use a
stochastic model that was introduced by Borgwardt and Tremel [41] to study greedy
algorithms for the subset sum problem. We analyze two rollout methods that we refer to
as the exhaustive rollout and consecutive rollout, both of which employ a simple greedy
base policy. Using a graphical interpretation of solutions generated by the algorithms,
we prove that both methods yield a significant improvement in expected performance
after a single iteration of the rollout algorithm relative to the base policy. The bounds
are meaningful for a small number of items, and they also indicate the asymptotic
behavior of the algorithms as the number of items approaches infinity.

We also consider rollout algorithms on a much simpler problem, that of finding a
shortest path in a binary decision tree. We show that a rollout algorithm has inter-
esting behavior on this problem. Namely, when running every iteration of the rollout
algorithm (rather than just the first), average-case performance is strong, but worst-
case performance is arbitrarily bad. We believe that this property may hold for rollout
algorithms on other problems.

1.1.2 Chapter 3: Greedy Online Matching on Random Graphs

The online bipartite matching problem was introduced in the seminal paper of Karp,
Vazirani, and Vazirani [83]. In this problem, we are given a bipartite graph where
vertices in one partition, corresponding to bins, are given up front, and vertices in the
other partition, corresponding to balls, arrive online. (In our introduction above, we
described the bin vertices as workers and the ball vertices as arriving jobs.) When
each ball arrives, its neighboring edges are revealed, and it must immediately be either
matched with an unmatched neighboring bin or dropped (left unmatched). Each bin
may be matched to at most one ball, and decisions are irrevocable. The goal is to
maximize the number of matched balls.

From a worst-case perspective, it is well known that the greedy algorithm, which
matches each ball to a random unmatched neighboring bin (if possible), always achieves
a matching size at least as large as 1/2 the size of the maximum matching. Karp,
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Vazirani, and Vazirani introduced the Ranking algorithm, which picks a random per-
mutation of bins up front and matches each ball to its unmatched neighboring bin that
is ranked highest in the permutation [83]. They showed that this algorithm guaran-
tees a matching size at least 1 − 1/e ≈ 0.632 of the size of the maximum matching in
expectation, and that this is the best possible worst-case guarantee.

In terms of average-case analysis, greedy matching algorithms have been studied
widely, but mainly for the basic offline matching problem. Accordingly, in this chapter,
we study a series of greedy online matching algorithms on Erdős-Rényi graphs and ran-
dom regular graphs [104]. We use the differential equation method, pioneered by Kurtz
[97] and Wormald [148], as well as other probabilistic arguments to derive expressions
for the asymptotic matching sizes produced by various algorithms. In addition to bi-
partite graphs, we define a model for online matching on non-bipartite graphs, and we
consider the average performance of greedy algorithms in this setting.

On the Erdős-Rényi binomial graph G(n, n, p) (the random graph with n vertices
in each partition and edges occurring independently with probability p), we show that
for all monotonic functions p = p(n), the greedy algorithm has a performance ratio of
at least 0.837. The performance ratio here is defined asymptotically as the ratio of the
expected matching size given by the algorithm to the expected maximum matching size.
We show that under the G(n, n, p) model, the performance of the greedy algorithm is
equivalent to the Ranking algorithm, so our results indicate that the Ranking algorithm
has a performance ratio of at least 0.837. For random 2-regular graphs, we show that
the performance ratio for greedy is equal to 0.877. We present similar results for non-
bipartite graphs, showing that the greedy algorithm achieves a performance ratio of
at least 0.837 on G(n, p) and has performance ratio of at least 0.869 on random 2-
regular graphs. We also analyze a series of other algorithms, including a vertex-weighted
matching algorithm and a rollout algorithm on random bipartite graphs.

1.1.3 Chapter 4: Uncertain Transition Probabilities in Markov Decision
Processes

A general T -stage Markov decision process is defined by a sequence of stages where,
for each stage, there is a set of states, a transition probability function mapping states,
decisions, and future states to probabilities, and a reward function mapping states and
decisions to rewards [27, 123]. The goal (most commonly) is to find a decision rule,
or policy, that maximizes total expected reward. Using dynamic programming, MDPs
are solved by stepping backward in time, determining optimal expected future values
of available decisions and storing them as value functions.

The topic of uncertainty in MDPs has been fairly well studied, in part due to
motivations in approximate dynamic programming. The classical result of Singh and
Yee [134] bounds losses incurred by uncertain value functions, and their proof also
generalizes to situations with uncertain rewards. For uncertain transition probabilities,
various robust frameworks have been developed, such as the Markov decision process
with imprecise transition probabilities [78] and the bounded-parameter Markov decision
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process [71].
Our work on uncertain transition probabilities in MDPs bounds losses that are

incurred when conventional dynamic programming is used [103]. We consider a nonsta-
tionary T -stage MDP with nonnegative rewards. We assume that policies are computed
using exact dynamic programming with the estimated transition probabilities, but that
the system evolves according to different, true transition probabilities. Given a bound
on the total variation error of estimated transition probability distributions, we derive
a general upper bound on the loss of expected total reward. Our proof approach is to
analyze the growth of errors incurred by stepping backward in time while computing
value functions; this requires bounding a multilinear program. We show that the loss
bound is tight and that it generalizes to discounted infinite horizon models.

1.1.4 Chapter 5: Randomized Minmax Regret for Combinatorial Optimiza-
tion

Robust frameworks have been developed for various types of optimization, including
linear programming, convex optimization, and discrete optimization [24, 25, 31]. There
has been a particular emphasis on the study of combinatorial optimization problems
with uncertainty in cost coefficients [84, 93]. This has been studied under two types
of uncertainty sets: discrete scenario uncertainty and interval uncertainty. In discrete
scenario uncertainty (see, e.g. the book by Kouvelis and Yu [93]), an entire list of
cost coefficients is given for each scenario, and a single scenario is assumed to be true.
For interval uncertainty (e.g. Kasperski [84]), cost coefficients independently lie within
known lower and upper bounds.

For any type of uncertainty set, the two basic choices of robust criteria are minmax
and minmax regret. Under the minmax criterion, the goal (assuming a minimization
problem) is to select a solution that gives the best upper bound on objective cost over
all possible costs from the uncertainty set. For the minmax regret criterion, the goal is
instead to select the solution that minimizes the maximum possible regret, defined as
the difference between the cost of the selected solution and the optimal solution.

Our interest lies in the minmax regret criterion for combinatorial optimization under
cost uncertainty, which can be viewed as a two-stage game played between an optimizing
player and an adversary. In the first stage, the optimizing player selects a deterministic
solution. In the second stage, the adversary observes the selected solution and chooses
costs from the uncertainty set with the intention of maximizing the optimizing player’s
regret. The goal of the optimizing player is thus to select a solution that least allows the
adversary to generate regret. For both interval and discrete scenario representations
of uncertainty, the minmax regret versions of most polynomial solvable problems are
NP-hard [8]. A variation on this model, first suggested by Bertsimas et al. [35] for the
minmax criterion, is to allow the optimizing player to select a probability distribution
over solutions and require the adversary to select costs based on knowledge of the
player’s distribution, but not its realization. They showed that this randomized model
makes some robust minmax problems polynomial solvable that are otherwise NP-hard
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in the deterministic model [35].
We consider this randomized model under the minmax regret criterion [106]. Re-

markably, we show that the minmax regret version of any polynomial solvable combi-
natorial problem is polynomial solvable. This holds true for both interval and discrete
scenario representations of uncertainty. Our algorithm is based on solving two linear
programs, one to find marginal probabilities of selecting elements, and another to map
marginal probabilities to a mixed strategy. Using the randomized model, we show
new proofs of existing approximation algorithms for the deterministic model based on
primal-dual approaches. We also determine integrality gaps of minmax regret formula-
tions, giving tight lower bounds on performance gains from randomization. Finally, we
prove that minmax regret problems are NP-hard under general convex uncertainty.

1.1.5 Chapter 6: Conclusion

In this chapter, we review our results and methods. We highlight the most important
contributions of our work and enumerate key ideas for future research.



Chapter 2

Rollout Algorithms for Knapsack
Problems

ROLLOUT algorithms provide a natural and easily implemented approach for ap-
proximately solving many discrete and dynamic optimization problems. Their mo-

tivation comes from problems that can be solved using classical dynamic programming,
but for which determining the value function (or value-to-go function) is computation-
ally infeasible. The rollout technique estimates these values by simulating future events
while following a simple greedy/heuristic policy, referred to as the base policy. In most
cases, the rollout algorithm is ensured to perform as well as its base policy [30]. As
shown by many computational studies, the performance is often much better than the
base policy and sometimes near optimal [28].

Theoretical results showing a strict improvement of rollout algorithms over base poli-
cies have been limited to average-case asymptotic bounds on the breakthrough problem
[27] and a worst-case analysis of the 0–1 knapsack problem [26]. The latter work moti-
vates a complementary study of rollout algorithms for knapsack-type problems from an
average-case perspective, which we provide in this chapter. Our goals are to give theo-
retical evidence for the utility of rollout algorithms and to contribute to the knowledge
of problem types and features that make rollout algorithms work well. We anticipate
that our proof techniques may be helpful in achieving performance guarantees on similar
problems.

We use a stochastic model taken directly from the literature that has been used to
study a wide variety of greedy algorithms for the subset sum problem [41]. This model
is extended in a natural manner for our analysis of the 0–1 knapsack problem [89, 102].
We analyze two rollout techniques that we refer to as the exhaustive rollout and the
consecutive rollout, both of which use the same base policy. During each iteration of
the exhaustive rollout, the algorithm decides which one of the available items should
be added to the knapsack. The consecutive rollout algorithm sequentially processes the
items and at each iteration decides if the current item should be added to the knapsack.
The base policy is a simple greedy algorithm that adds items until an infeasible item is
encountered.

For both techniques, we derive bounds showing that the expected performance of
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the rollout algorithms is strictly better than the performance obtained by only using
the base policy. For the subset sum problem, this is demonstrated by measuring the gap
between the total value of packed items and capacity. For the 0–1 knapsack problem,
the difference between total profits of the rollout algorithm and base policy is measured.
The bounds are valid after only a single iteration of the rollout algorithm and hold for
additional iterations.

The organization of the chapter is as follows. In the remainder of this section we
review related work. We introduce our notation in Section 2.2. Section 2.3 describes
the stochastic models in detail and derives important properties of the blind greedy
algorithm, which is the algorithm that we use for a base policy. Results, examples,
and proofs are shown for the exhaustive and consecutive rollout algorithms in Sections
2.4 and 2.5, respectively. In Section 2.6, we analyze the rollout approach on binary
decision trees to glean some insights about average-case and worst-case behavior of
rollout algorithms. A concluding discussion is given in Section 2.7. Section 2.8 contains
omitted integral evaluations.

2.1 Related Work

Rollout algorithms were introduced by Tesauro and Galperin [140] as online Monte-
Carlo search techniques for computer backgammon. The application to combinatorial
optimization was formalized by Bertsekas et al. [30]. They gave conditions under which
the rollout algorithm is guaranteed to perform as well as its base policy, namely if the
algorithm is sequentially consistent or sequentially improving, and presented computa-
tional results on a two-stage maintenance and repair problem. The application of rollout
algorithms to approximate stochastic dynamic programs was provided by Bertsekas and
Castañon [28], where they showed extensive computational results on variations of the
quiz problem. Rollout algorithms have since shown strong computational results on a
variety of problems including vehicle routing (Secomandi [129]), fault detection (Tu and
Pattipati [141]), and sensor scheduling (Li et al. [98]).

Beyond simple bounds derived from base policies, the only theoretical results given
explicitly for rollout algorithms are average-case results for the breakthrough problem
(Bertsekas [27]) and worst-case results for the 0–1 knapsack problem (Bertazzi [26]). In
the breakthrough problem, the objective is to find a valid path through a directed binary
tree, where some edges are blocked. If the free (non-blocked) edges occur with a given
probability, independent of other edges, a rollout algorithm has a larger probability
of finding a free path in comparison to a greedy algorithm [27]. Performance bounds
for the 0–1 knapsack problem were recently shown by Bertazzi [26], who analyzed the
rollout approach with variations of the decreasing density greedy (DDG) algorithm as
a base policy. Similar bounds are also known due to the partial enumeration results of
Sahni [125]. The DDG algorithm takes the best of two solutions: the one obtained by
adding items in order of non-increasing profit to weight ratio, as long as they fit, and
the solution resulting from adding only the item with highest profit. Bertazzi showed
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that from a worst-case perspective, running the first iteration of a rollout algorithm
(specifically, what we will refer to as the exhaustive rollout algorithm) improves the
approximation guarantee from 1/2 (bound provided by the base policy) to 2/3.

While results on approximating the subset sum problem initially focused on worst-
case analysis, the performance of various greedy algorithms on random instances was
analyzed from a computational perspective by Martello and Toth [101]. An early prob-
abilistic analysis of the subset sum problem was given by d’Atri and Puech [48]. Using a
discrete version of the model used in our work, they analyzed the expected performance
of greedy algorithms with and without sorting. They showed an exact probability dis-
tribution for the gap obtained by the algorithms and gave asymptotic expressions for
the probability of obtaining a non-zero gap. These results were refined by Pferschy
[118], who gave precise bounds on expected gap values for greedy algorithms.

A very extensive analysis of greedy algorithms for the subset sum problem was
given by Borgwardt and Tremel [41]. They introduced the continuous model that we
use in this chapter and derived probability distributions of gaps for a variety of greedy
algorithms. In particular, they showed performance bounds for various prolongations of
a greedy algorithm where a different strategy is used on the remaining items after the
greedy policy is no longer feasible. They also analyzed cases where items are ordered
by size prior to use of the greedy algorithms.

In the area of probabilistic 0–1 knapsack problems, Szkatula and Libura [136] inves-
tigated the behavior of greedy algorithms, similar to the blind greedy algorithm used
in our work, for the 0–1 knapsack problem with fixed capacity. They found recurrence
equations describing the weight of the knapsack after each iteration and solved the
equations for the case of uniform weights. In later work [137], they studied asymp-
totic properties of greedy algorithms, including conditions for the knapsack to be filled
almost surely as the number of items approaches infinity.

There has been some work on asymptotic properties of the decreasing density greedy
algorithm (DDG) for probabilistic 0–1 knapsack problems. Diubin and Korbut [53]
showed properties of the asymptotical tolerance of the algorithm, which characterizes
the deviation of the solution from the optimal value. Similarly, Calvin and Leung [43]
showed convergence in distribution between the value obtained by the DDG algorithm
and the value of the knapsack linear relaxation. Finally, it is worth noting other proba-
bilistic studies of knapsack problems including the work of Dean et al. [49] on adaptive
polices, Lueker’s [99] analysis of online algorithms, and the expected polynomial time
algorithm of Beier and Vöcking [21].

2.2 Notation

Since this chapter involves more notation than our other chapters, we summarize the
notation here. We must keep track of ordering in our analysis, so we use sequences in
place of sets and slightly abuse notation to perform set operations on sequences. These
operations will mainly involve index sequences, and our index sequences will always
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contain unique elements. Sequences are denoted by bold letters. If we wish for S to be
the increasing sequence of integers ranging from 2 to 5, we write S = 〈2, 3, 4, 5〉. We
then have 2 ∈ S, while 1 /∈ S. We also say that 〈2, 5〉 ⊆ S and S \ 〈3〉 = 〈2, 4, 5〉.
The concatenation of sequence S with sequence R is denoted by S : R. If R = 〈1, 7〉,
then S : R = 〈2, 3, 4, 5, 1, 7〉. A sequence is indexed by an index sequence if the index
sequence is shown in the subscript. Thus, aS indicates the sequence 〈a2, a3, a4, a5〉. For
a sequence to satisfy equality with another sequence, equality must be satisfied element
by element, according to the order of the sequence. We use the notation Si to denote
the sequence S with item i moved to the front of the sequence: S3 = 〈3, 2, 4, 5〉.

The notation P(·) indicates probability, and E[·] indicates expectation. We define
E[·] := 1− E[·]. For random variables, we will use capital letters to denote the random
variable (or sequence) and lowercase letters to denote specific instances of the random
variable (or sequence). The probability density function for a random variable X is
denoted by fX(x). For random variables X and Y , we use fX|Y (x|y) to denote the
conditional density of X given the event Y = y. When multiple variables are involved,
all variables on the left side of the vertical bar are conditioned on all variables on
the right side of vertical bar. The expression fX,Y |Z,W (x, y|z, w) should be interpreted
as f(X,Y )|(Z,W )((x, y)|(z, w)) and not fX,(Y |Z),W (x, (y|z), w), for example. Events are
denoted by the calligraphic font, such asA, and the disjunction of two events is shown by
the symbol ∨. We often write conditional probabilities of the form P(·|X = x, Y = y,A)
as P(·|x, y,A). The notation U [a, b] indicates the density of a uniform random variable
on interval [a, b]. The indicator function is denoted by 1(·), and the positive part of
an expression is denoted by (·)+. Finally, we use the symbol ← for assignment and
O(·) asymptotic growth1. A summary of symbols that we use throughout the chapter
is given as follows.

2.2.1 List of Chapter Symbols

← assignment
∨ disjunction
(·)+ positive part
A weight of the last packed item, A := WK−1

B knapsack capacity
Cj event that item j is the critical item

C1 event that the first item is not critical

C1n event that neither the first nor the last item is critical
Dj event that item j is the drop critical item
E event that g + wK−1 < 1
G gap given by the Blind-Greedy algorithm

1We write f(n) = O(g(n)) if and only if there exists some constant C > 0 such that lim
n→∞

∣∣∣∣f(n)

g(n)

∣∣∣∣ ≤ C
[130].
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H(·) harmonic number
1(·) indicator function
I index sequence, I := 〈1, 2, . . . , n〉
K critical item index (first item that is infeasible for Blind-Greedy

to pack)
L1 drop critical item index (first infeasible item for Blind-Greedy

when first item skipped)
Lj , j ≥ 2 insertion critical item index (first infeasible item for

Blind-Greedy when j inserted first)
M number of remaining items, M := n−K
n number of items
O(·) asymptotic growth
Pi profit of item i (for the 0–1 knapsack problem)
PS sequence of item profits, indexed by sequence S
Q profit of last packed item, Q := PK−1

U [x, y]: uniform distribution with support [x, y]
V1 drop gap (gap when the first item is skipped)
Vj , j ≥ 2 insertion gap (gap when item j is inserted first)
V u
j upper bound on Vj
V∗ minimum gap; gap obtained after the first iteration of the

rollout algorithm
V u
∗ upper bound on V∗
Wi weight of item i
WS sequence of item weights, indexed by sequence S
Zj , j ≥ 2 insertion gain (gain when item j is inserted first)
Z lj lower bound on Zj
Z∗ maximum gain; gain obtained after the first iteration of the

rollout algorithm
Z l∗ lower bound on Z∗

2.3 Stochastic Model and Blind Greedy Algorithm

In the 0–1 knapsack problem, we are given a sequence of items I = 〈1, 2, . . . , n〉, where
each item i ∈ I has a weight wi ∈ R+ and profit pi ∈ R+. Given a knapsack with
capacity b ∈ R+, the goal is to select a subset of items with maximum total profit such
that the total weight does not exceed the capacity. This is given by the following integer
linear program.

max

n∑

i=1

pixi

s.t.

n∑

i=1

wixi ≤ b,

xi ∈ {0, 1}, i = 1, . . . , n.

(2.1)



34 CHAPTER 2. ROLLOUT ALGORITHMS FOR KNAPSACK PROBLEMS

The subset sum problem refers to the 0–1 knapsack problem with pi = wi for all i ∈ I.
We use the stochastic subset sum model given in [41] and a variation of this model for

the 0–1 knapsack problem. In their subset sum model, for a specified number of items
n, item weights Wi and the capacity B are drawn independently from the following
distributions:

Wi ∼ U [0, 1], i = 1, . . . , n,

B ∼ U [0, n]. (2.2)

Our stochastic knapsack model simply assigns item profits that are independently and
uniformly distributed,

Pi ∼ U [0, 1], i = 1, . . . , n. (2.3)

These values are also independent with respect to the weights and capacity.
For evaluating performance, we only consider cases where

∑n
i=1Wi > B. In all other

cases, any algorithm that tries adding all items is optimal. Since it is difficult to under-
stand the stochastic nature of optimal solutions, we use E[B−∑i∈SWi|

∑n
i=1Wi > B]

as a performance metric for the subset sum problem, where S is the sequence of items
selected by the algorithm of interest. This is the same metric used in [41], where it is
noted with a simple symmetry argument that for all values of n,

P

(
n∑

i=1

Wi > B

)
=

1

2
. (2.4)

For the 0–1 knapsack problem, we directly measure the difference between the rollout
algorithm profit and the profit given by the base policy, which we refer to as the gain
of the rollout algorithm.

For both the subset sum problem and the 0–1 knapsack problem, we use the Blind-
Greedy algorithm, shown in Algorithm 1, as a base policy. The algorithm simply adds
items (without sorting) until it encounters an item that exceeds the remaining capacity,
then stops. Throughout the chapter, we will sometimes refer to Blind-Greedy simply
as the greedy algorithm.

Blind-Greedy may seem inferior to a greedy algorithm that first sorts the items
by weight or profit to weight ratio, and then adds them in non-decreasing value. Sur-
prisingly, for the subset sum problem, it was shown in [41] that the algorithm that adds
items in order of non-decreasing weight (referred to as Greedy 1S) performs equiva-
lently to Blind-Greedy. Of course, we cannot say the same about the 0–1 knapsack
problem. A greedy algorithm that adds items in decreasing profit to weight ratio is
likely to perform much better. Applying our analysis to a sorted greedy algorithm
requires work beyond the scope of this chapter.

In analyzing Blind-Greedy, we refer to the index of the first item that is infea-
sible as the critical item. Let K be the random variable for the index of the critical
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Input: Item sequence I = 〈1, . . . , n〉 with profit sequence pI and weight sequence wI ,
capacity b.

Output: Feasible solution sequence S, value U .
1: Initialize solution sequence S ← 〈〉, remaining capacity b← b, and value U ← 0.
2: for i = 1 to n (each item) do
3: if wi ≤ b (item weight does not exceed remaining capacity) then
4: Add item i to solution sequence, S ← S : 〈i〉.
5: Update remaining capacity b← b− wi, and value U ← U + pi.
6: else
7: Stop and return S, U .
8: end if
9: end for

10: Return S, U .

Algorithm 1. Blind-Greedy

item, where K = 0 indicates that there is no critical item (meaning
∑n

i=1Wi ≤ B).
Equivalently, assuming

∑n
i=1Wi > B, the critical item index satisfies

K−1∑

i=1

Wi ≤ B <
K∑

i=1

Wi. (2.5)

We will refer to items with indices i < K as packed items. We then define the gap of
Blind-Greedy as

G := B −
K−1∑

i=1

Wi, (2.6)

for K > 0. The gap is relevant to both the subset sum problem and the 0–1 knapsack
problem. We use it as a performance measure only on the subset sum problem, however,
since the capacity B is a natural upper bound on the optimal value, and the gap is thus
an upper bound on the difference between a given solution value and the optimal value.
There is no analogous upper bound on optimal value for the 0–1 knapsack problem, so
for this problem we define the gain of the rollout algorithm as

Z :=
∑

i∈R
Pi −

K−1∑

i=1

Pi, (2.7)
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where R is the sequence of items selected by the rollout algorithm. A central result of
[41] is the following, which does not depend on the number of items n.

Theorem 2.1 (Borgwardt and Tremel, 1991). Independent of the critical item index
K > 0, the probability distribution of the gap obtained by Blind-Greedy satisfies

P

(
G ≤ g

∣∣∣∣∣
n∑

i=1

Wi > B

)
= 2g − g2, 0 ≤ g ≤ 1, (2.8)

E

[
G

∣∣∣∣∣
n∑

i=1

Wi > B

]
=

1

3
. (2.9)

Many studies measure performance using an approximation ratio (bounding the
ratio of the value obtained by some algorithm to the optimal value) [26, 89]. While this
metric is generally not tractable under the stochastic model, we can observe a simple
lower bound on the ratio of expectations of the value given by Blind-Greedy to the
optimal value for the subset sum problem. A natural upper bound on the optimal
solution is B, and the solution value given by Blind-Greedy is equal to B − G.
Thus, by Theorem 2.1 and linearity of expectation, the ratio of expected values is at
least E[B−G]

E[B] = 1− 2
3n . For n ≥ 2, this value is at least 2

3 , which is the best worst-case

approximation ratio derived in [26]. A similar comparison for the 0–1 knapsack problem
is not possible because there is no simple bound on the expected optimal solution value.

We describe some important properties of the Blind-Greedy solution that will be
used in later sections and that provide a proof of Theorem 2.1. For the proofs in this
section, as well as other sections, it is helpful to visualize the Blind-Greedy solution
sequence on the nonnegative real line as shown in Figure 2.1.

0 b

w1 w2 wnwk wk+1wk�1

g

Figure 2.1. Sequence given by Blind-Greedy on the nonnegative real line where G = g, B = b,

and WS = ws. Each item ` = 1, . . . , n occupies the interval
[∑`−1

i=1 wi,
∑`
i=1 wi

)
, and the knapsack is

given on the interval [0, b]. The gap g is the difference between the capacity and the total weight of the
packed items.

Previous work on the stochastic model has demonstrated that the critical item
index is uniformly distributed on {1, 2, . . . , n} for cases of interest (i.e.,

∑n
i=1Wi > B)
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[41]. In addition to this property, we show that the probability that a given item is
critical is independent of the weights of all other items. In other sections we follow the
convention of associating the index k with the random variable K. The index ` is used
in this section to make the proofs clearer.

Lemma 2.1. For each item ` = 1, . . . , n, for all subsequences of items S ⊆ I \ 〈`〉 and
all weights wS, the probability that item ` is critical is

P(K = `|WS = wS) =
1

2n
. (2.10)

Proof. Assume that we are given the weights of all items WI = wI . We can divide
the interval [0, n] into n+ 1 segments as a function of item weights as shown in Figure

2.1, so that the `th segment occupies the interval
[∑`−1

i=1 wi,
∑`

i=1wi

)
for ` = 1, . . . , n,

and the last segment is on [
∑n

i=1wi, n]. The probability that item ` is critical is the
probability that B intersects the `th segment. Since B is distributed uniformly over
the interval [0, n], we have

P(K = `|WI = wI) =
w`
n
, (2.11)

showing that this event only depends on w`. Integrating over the uniform density of w`
gives the result. �

An important property of this stochastic model, which is key for the rest of our
development, is that conditioning on the critical item index only changes the weight
distribution of the critical item; all other item weights remain independently distributed
on U [0, 1].

Lemma 2.2. For any critical item K > 0 and any subsequence of items S ⊆ I \ 〈K〉,
the weights WS are independently distributed on U [0, 1], and WK independently follows
the distribution

fWK
(wK) = 2wK , 0 ≤ wK ≤ 1. (2.12)

Proof. For any item ` = 1, . . . , n, consider the subsequence of items S = I \ 〈`〉. Using
Bayes’ theorem, the conditional joint density for WS is given by

fWS ,W`|K(wS , w`|`) =
P(K = `|WS = wS ,W` = w`)

P(K = `)
fWS

(wS)fW`
(w`)

=
w`/n

1/(2n)
fWS

(wS)

= 2w`fWS
(wS), 0 ≤ w` ≤ 1, (2.13)

where we have used the results of Lemma 2.1. This holds for the K = ` and ` = 1, . . . , n,
so we replace the index ` with K in the expression. �
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We can now analyze the gap obtained by Blind-Greedy for K > 0. This gives the
following lemma and a proof of Theorem 2.1.

Lemma 2.3. Independent of the critical item index K > 0, the conditional distribution
of the gap obtained by Blind-Greedy satisfies

fG|WK
(g|wK) = U [0, wK ]. (2.14)

Proof. For any ` = 1, . . . , n and any WI = wI , the posterior distribution of B given
the event K = ` satisfies

fB|WI ,K(b|wI , `) = U
[
`−1∑

i=1

wi,
∑̀

i=1

wi

]
, (2.15)

since we have a uniform random variable B that is conditionally contained in a given
interval. Now using the definition of G in (2.6),

fG|W`,K(g|w`, `) = U [0, w`]. (2.16)

�

Proof of Theorem 2.1. Using Lemma 2.3 and the distribution for WK from Lemma 2.2,
we have for K > 0,

fG(g) =

∫ 1

0
fG|WK

(g|wK)fWK
(wK)dwK =

∫ 1

g

1

wK
2wKdwK = 2− 2g, (2.17)

where we have used that G ≤WK with probability one. This serves as a simpler proof
of the theorem from [41]; their proof is likely more conducive to their analysis. �

Finally, we need a modified version of Lemma 2.2, which will be used in the subse-
quent sections.

Lemma 2.4. Given any critical item K > 0, gap G = g, and any subsequence of
items S ⊆ I \ 〈K〉, the weights WS are independently distributed on U [0, 1], and WK

is independently distributed on U [g, 1].

Proof. Fix K = ` for any ` > 0. The statement of the lemma is equivalent to the
expression

fWS ,W`|G,K(wS , w`|g, `) =
1

1− g fWS
(wS), g ≤ w` ≤ 1. (2.18)

Note that

fG|WS ,W`,K(g|wS , w`, `) = U [0, w`], (2.19)
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which can be shown by the same argument for Lemma 2.3. Then,

fWS ,W`|G,K(wS , w`|g, `) =
fG|WS ,W`,K(g|wS , w`, `)fWS ,W`|K(wS , w`|`)

fG|K(g|`)

=
fG|WS ,W`,K(g|wS , w`, `)fWS

(wS)fW`|K(w`|`)
fG|K(g|`)

=
1

w`

2w`
2− 2g

fWS
(wS), g ≤ w` ≤ 1, (2.20)

where we have used Lemma 2.2, (2.19), and Theorem 2.1. �

2.4 Exhaustive Rollout

The Exhaustive-Rollout algorithm is shown in Algorithm 2. It takes as input a
sequence of items I and capacity b. At each iteration, indexed by t, the algorithm con-
siders all items in the available sequence I. It calculates the value obtained by moving
each item to the front of the sequence and applying the Blind-Greedy algorithm.
The algorithm then adds the item with the highest estimated value (if it exists) to
the solution. We implicitly assume a consistent tie-breaking method, such as giving
preference to the item with the lowest index. The next iteration then proceeds with
the remaining sequence of items. An example progression of the algorithm is given in
the first subsection of this section.

Input: Item sequence I = 〈1, . . . , n〉 with profit sequence pI and weight sequence wI ,
capacity b.

Output: Feasible solution sequence S, value U .
1: Initialize S ← 〈〉, I ← I, b← b, U ← 0.
2: for t = 1 to n do
3: for i ∈ I (each item in remaining item sequence) do

4: Let I
i

denote the sequence I with i moved to the first position.
5: Estimate value of sequence, (·, Ui) = Blind-Greedy(w

I
i , b).

6: end for
7: if maxi Ui > 0 then
8: Determine item with max estimated value, i∗ ← argmaxi Ui.
9: Add item i∗ to solution sequence, S ← S : 〈i∗〉, I ← I \ 〈i∗〉.

10: Update remaining capacity, b← b− wi, and value, U ← U + pi.
11: end if
12: end for
13: Return S, U .

Algorithm 2. Exhaustive-Rollout

Figure 2.2 shows simulated performance of Exhaustive-Rollout on the subset
sum problem as a function of the number of items n as well as for the first, second,
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Figure 2.2. Simulated performance of the Blind-Greedy algorithm and the Exhaustive-Rollout
algorithm on the subset sum problem as a function of the number of items n. Mean gaps, averaged
over 105 simulations, are shown for the Blind-Greedy algorithm as well as for the first, second, third,
and all iterations of the Exhaustive-Rollout algorithm. “All iterations” indicates that for each
value of the number of items n, exactly n iterations are run. For all Exhaustive-Rollout plots, the
mean gaps shown indicate the gaps obtained after running the indicated number of iterations and using
Blind-Greedy thereafter.

third, and all iterations. “All iterations” means that n iterations are run, where n is
the number of items. The gaps shown are not a result of using only the sequence S
from Algorithm 2 after the number of iterations indicated; they are the gaps given by
the sequence S and using Blind-Greedy thereafter. The figure shows that the most
significant reduction in the gap compared to the Blind-Greedy algorithm follows from
the first iteration of the rollout algorithm. However, further reductions in the gap are
still made with additional iterations.

In our analysis, we only consider the first iteration of Exhaustive-Rollout, which
tries using Blind-Greedy after moving each item to the front of the sequence and
takes the best of these solutions. This gives an upper bound for the subset sum gap
and a lower bound on the 0–1 knapsack problem gain following from additional itera-
tions. The technical condition for these bounding properties to hold is that the base
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policy/algorithm is sequentially consistent, as defined in [30]. It is easy to verify that
Blind-Greedy satisfies this property. For the subset sum problem, let V∗(n) denote
the gap obtained after a single iteration of Exhaustive-Rollout on the stochastic
model with n items. We have the following bounds.

Theorem 2.2. For the subset sum problem, the gap V∗(n), obtained by running a single
iteration of Exhaustive-Rollout, satisfies

E

[
V∗(n)

∣∣∣∣∣
n∑

i=1

Wi > B

]
≤ 1

n(2 + n)
+

1

n

n−2∑

m=0

9 + 2m

3(3 +m)(4 +m)
. (2.21)

Corollary 2.1.

E

[
V∗(n)

∣∣∣∣∣
n∑

i=1

Wi > B

]
≤ 1

n(2 + n)
+

1

n
log

[(
3 + 2n

5

)(
7

5 + 2n

)1/3
]
. (2.22)

Theorem 2.3.

lim
n→∞

E

[
V∗(n)

∣∣∣∣∣
n∑

i=1

Wi > B

]
= 0, E

[
V∗(n)

∣∣∣∣∣
n∑

i=1

Wi > B

]
= O

(
log n

n

)
. (2.23)

A plot of the bounds and simulated results is shown in Figure 2.3(a). For the knapsack
problem, let Z∗(n) denote the gain given by a single iteration of Exhaustive-Rollout.
The expected gain is bounded by the two following theorems, where H(n) is the nth
harmonic number, H(n) :=

∑n
`=1

1
` .

Theorem 2.4. For the knapsack problem, the gain Z∗(n), obtained by running a single
iteration Exhaustive-Rollout, satisfies

E

[
Z∗(n)

∣∣∣∣∣
n∑

i=1

Wi > B

]
≥ 1 +

2

n(n+ 1)
− 2H(n)

n2

+
1

n

n−2∑

m=0



m+1∑

j=1

T (j,m) +
(
(186 + 472m+ 448m2 + 203m3 + 45m4 + 4m5)

−(244 + 454m+ 334m2 + 124m3 + 24m4 + 2m5)H(m+ 1)

−(48 + 88m+ 60m2 + 18m3 + 2m4)(H(m+ 1))2
) 1

(m+ 1)(m+ 2)3(m+ 3)2

)
,

(2.24)
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Figure 2.3. Performance bounds and simulated values for (a) expected gap E[V∗(n)|·] and (b) expected
gain E[Z∗(n)|·] after running a single iteration of Exhaustive-Rollout on the subset sum problem
and 0–1 knapsack problem, respectively. For each n, the mean values are shown for 105 simulations.

where

T (j,m) :=
2
(
−4 + j − 4m+ jm−m2 −

(
j + (2 +m)2

)
H(j)

)

j(−3 + j −m)(−2 + j −m)(1 +m)(2 +m)

+
2(j + (2 +m)2)H(3 +m)

j(−3 + j −m)(−2 + j −m)(1 +m)(2 +m)
. (2.25)

Theorem 2.5.

lim
n→∞

E

[
Z∗(n)

∣∣∣∣∣
n∑

i=1

Wi > B

]
= 1, (2.26)

1− E

[
Z∗(n)

∣∣∣∣∣
n∑

i=1

Wi > B

]
= O

(
log2 n

n

)
. (2.27)

The expected gain approaches unit value at a rate slightly slower than the convergence
rate for the subset sum problem. This is likely a result of the fact that in the subset
sum problem, the algorithm is searching for an item with one criterion: a weight ap-
proximately equal to the gap. For the 0–1 knapsack problem, however, the algorithm
must find an item satisfying two criteria: a weight smaller than the gap and a profit
approximately equal to one. The gain is plotted with simulated values in Figure 2.3(b).
While the bound in Theorem 2.4 does not admit a simple integral bound, omitting
the nested summation term

∑m
j=1 T (j,m) gives a looser but valid bound. We show an

example evolution of the algorithm and proofs of the theorems for both problems in the
remainder of this section.
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2.4.1 Example

We show an example of Exhasutive-Rollout for the subset sum problem (recall that
for the subset sum problem, pI = wI). Let n = 6, implying that I = 〈1, 2, 3, 4, 5, 6〉.
Consider the weights wI = 〈0.3, 0.8, 0.6, 0.4, 0.7, 0.1〉 and a capacity b = 2. An
optimal solution sequence is S = 〈1, 3, 4, 5〉, which gives a value equal to the capacity of
2. Running Blind-Greedy gives a value of 1.7 (and a gap of 0.3), which we illustrate
as follows.

I 1 2 3 4 5 6 value

wI 0.3 0.8 0.6 0.4 0.7 0.1

cum. 0.3 1.1 1.7 2.1 2.8 2.9 1.7

This tabular illustration shows the item sequence in the first row, the corresponding
weights in the second row, and the cumulative weight – obtained by summing all weights
up through the current item – in the last row. The cumulative weights greater than
the capacity of 2 are italicized since they correspond to infeasible packings. The value
in the last column is determined by the largest feasible cumulative weight, in this case
1.7.

In applying Exhaustive-Rollout, we initially set I = I. For t = 1 and i = 1,

we have I
1

= I, so the value is equal to the value of the Blind-Greedy algorithm.

For t = 1 and i = 2, we set J = I
2
, where J henceforth indicates the current sequence

that the rollout algorithm is evaluating. This is shown below, following our tabular
notation. The value obtained is 1.7.

J 2 1 3 4 5 6 value

wJ 0.8 0.3 0.6 0.4 0.7 0.1

cum. 0.8 1.1 1.7 2.1 2.8 2.9 1.7

For t = 1 and i = 3, J = I
3

and the value is 1.7.

J 3 1 2 4 5 6 value

wJ 0.6 0.3 0.8 0.4 0.7 0.1

cum. 0.6 0.9 1.7 2.1 2.8 2.9 1.7

For t = 1 and i = 4, J = I
4

and the value is 1.5.

J 4 1 2 3 5 6 value

wJ 0.4 0.3 0.8 0.6 0.7 0.1

cum. 0.4 0.7 1.5 2.1 2.8 2.9 1.5

For t = 1 and i = 5, J = I
5

and the value is 1.8.

I 5 1 2 3 4 6 value

wI 0.7 0.3 0.8 0.6 0.4 0.1

cum. 0.7 1.0 1.8 2.4 2.8 2.9 1.8
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For t = 1 and i = 6, J = I
6

and the value is 1.8.

I 6 1 2 3 4 5 value

wI 0.1 0.3 0.8 0.6 0.4 0.7

cum. 0.1 0.4 1.2 1.8 2.2 2.9 1.8

Both i = 5 and i = 6 give a value of 1.8 for the first iteration (t = 1), which is better
than the Blind-Greedy value of 1.7. We break the tie in favor of i = 5, so we conclude
the first iteration by selecting i∗ = 5 and moving this item to the solution sequence.

We begin the second iteration with the updated sequences S = 〈5〉 and I =

〈1, 2, 3, 4, 6〉. For t = 2 and i = 1, J = I
1

and the value is 1.8, which we know
from the previous iteration, and is shown below.

S 5 J 1 2 3 4 6 value

wS 0.7 wJ 0.3 0.8 0.6 0.4 0.1

cum. 0.7 1.0 1.8 2.4 2.8 2.9 1.8

Note that we have modified the table to include both the solution sequence S and the
current sequence J ; the cumulative weight includes weight from the solution sequence.
We skip the iteration for i = 2 because the second item is packed before the critical

item (this iteration gives the same value of 1.8). For t = 2 and i = 3, J = I
3

and the
value is 1.6.

S 5 J 3 1 2 4 6 value

wS 0.7 wJ 0.6 0.3 0.8 0.4 0.1

cum. 0.7 1.3 1.6 2.4 2.8 2.9 1.6

For t = 2 and i = 4, J = I
4

and the value is 1.4.

S 5 J 4 1 2 3 6 value

wS 0.7 wJ 0.4 0.3 0.8 0.6 0.1

cum. 0.7 1.1 1.4 2.2 2.8 2.9 1.4

Since we have already added item 5 to the solution sequence, the next item to consider

in I is item 6. For t = 2 and i = 6, J = I
6

and the value is 1.9.

S 5 J 6 1 2 3 4 value

wS 0.7 wJ 0.1 0.3 0.8 0.6 0.4

cum. 0.7 0.8 1.1 1.9 2.5 2.9 1.9

The highest value found in the second iteration is for i = 6, giving a value of 1.9, so we
have i∗ = 6, and we move the sixth item to the solution set.

The third iteration starts with updated sets S = 〈5, 6〉 and I = 〈1, 2, 3, 4〉. From

the previous iteration, we know that for t = 3 and i = 1, J = I
1

and the value is 1.9.

S 5 6 J 1 2 3 4 value

wS 0.7 0.1 wJ 0.3 0.8 0.6 0.4

cum. 0.7 0.8 1.1 1.9 2.5 2.9 1.9
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We again skip the case i = 2 since the second item is packed before the critical item.

For t = 3 and i = 3, J = I
3

and the value is 1.7.

S 5 6 J 3 1 2 4 value

wS 0.7 0.1 wJ 0.6 0.3 0.8 0.4

cum. 0.7 0.8 1.4 1.7 2.5 2.9 1.7

For t = 3 and i = 4, J = I
4

and the value is 1.5.

S 5 6 J 4 1 2 3 value

wS 0.7 0.1 wJ 0.4 0.3 0.8 0.6

cum. 0.7 0.8 1.2 1.5 2.3 2.9 1.5

Thus for the third iteration, the highest value of 1.9 is given by i∗ = 1, and we move
the first item to the solution set.

The fourth iteration starts with the sets S = 〈5, 6, 1〉 and I = 〈2, 3, 4〉. Rather
than illustrating the fourth and additional iterations, we can observe that with the
remaining capacity of 0.9, the best that can be done with the remaining weight sequence
wI = 〈0.8, 0.6, 0.4〉 is to insert item 2, giving a total value of 1.9. In fact, this is the
solution given by running only the first two iterations of the rollout algorithm. We
conclude that running all iterations of the rollout algorithm gives the solution sequence
S = 〈5, 6, 1, 2〉, a value of 1.9, and a gap of 2− 1.9 = 0.1.

Summarizing this example, Blind-Greedy gives the solution sequence S = 〈1, 2, 3〉
with value 1.7. The first iteration of Exhaustive-Rollout gives the solution S =
〈5, 1, 2〉 with value 1.8, and the second iteration of Exhaustive-Rollout gives the
solution S = 〈5, 6, 1, 2〉 with value 1.92. This solution given by the second iteration
remains unchanged during additional iterations.

2.4.2 Exhaustive Rollout: Subset Sum Problem Analysis

The proof method for Theorem 2.2 is to visually analyze the solution sequence given
by Blind-Greedy on the nonnegative real line, as shown in Figure 2.1. We consider
the effect of individually moving each item to the front of the sequence, which will
cause the other items to shift to the right. Our strategy is to perform this analysis
while conditioning on three parameters: the greedy gap G, the critical item K, and the
weight of the last packed item WK−1. We then find the minimum gap given by trying
each item at the front of the sequence. Finally, we integrate over conditioned variables
to obtain the final bound.

To analyze solutions obtained by using Blind-Greedy after moving a given item
to the front of the sequence, we introduce two definitions. The jth insertion critical

2In this paragraph we are abusing notation so that S is the sequence given by some iteration of
Exhaustive-Rollout and Blind-Greedy on the remaining items, as opposed to the definition of S
given in the algorithm description.
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item Lj , defined for j ≥ 2, is the first item that is infeasible to pack by Blind-Greedy
when item j is moved to the front of the sequence. Equivalently, Lj satisfies





Wj +

Lj−1∑

i=1

Wi 1(i 6= j) ≤ B < Wj +

Lj∑

i=1

Wi 1(i 6= j), if Wj ≤ B,

Lj = j, if Wj > B.

(2.28)

We then define the corresponding jth insertion gap Vj as the gap given by the greedy
algorithm when item j is moved to the front of the sequence:

Vj := B − 1(Wj ≤ B)


Wj +

Lj−1∑

i=1

Wi 1(i 6= j)


 , j ≥ 2. (2.29)

In the following three lemmas, we bound the probability distribution of the insertion
gap for packed items (j ≤ K − 1), the critical item (j = K), and the remaining items
(j ≥ K + 1), while assuming that K > 1. Lemma 2.8 then handles the case where
K = 1. Thereafter, we bound the minimum of these gaps and the greedy gap G, and
finally integrate over the conditioned variables to obtain the bound on the expected
minimum gap. The key analysis is illustrated in the proof of Lemma 2.6; the related
proofs of Lemma 2.7 and Lemma 2.8 are based on similar ideas. The event Cj indicates
that item j is critical, and C1 indicates the event that the first item is not critical. Recall
that PI = WI for the subset sum problem.

Lemma 2.5. For K > 1 and j = 2, . . . ,K − 1, the jth insertion gap satisfies

Vj = G (2.30)

with probability one.

Proof. This follows trivially since the term
∑K−1

i=1 Wi in (2.5) does not depend on the
order of summation. �

Lemma 2.6. For K > 1 and j = K + 1, . . . , n, the jth insertion gap satisfies Vj ≤
V u
j with probability one, where V u

j is a deterministic function of (G,WK−1,Wj), and
conditioning only on (G,WK−1) gives

P(V u
j > v|g, wK−1, C1) = (g − v)+ + (wK−1 − v)+ − (g + wK−1 − v − 1)+

+(1− g − wK−1)+

=: P(V u > v|g, wK−1, C1). (2.31)

Proof. Fix K = k for k > 1. To simplify notation, make the event C1 implicit through-
out the proof. Define the random variable V u

j so that

V u
j :=

{
Vj , Lj = k ∨ Lj = k − 1,
1, Lj ≤ k − 2 ∨ Lj = j.
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While Vj may generally depend on (G,Wj ,W1, . . . ,Wk−1), the variable V u
j is chosen

so that it only depends on (G,Wk−1,Wj). In cases where Vj does only depend on
(G,Wk−1,Wj), we have V u

j = Vj . When Vj depends on more than these three variables,
V u
j assumes a worst-case bound of unit value.

We begin by analyzing the case where Lj = k∨Lj = k−1, so that the insertion gap
Vj is equal to V u

j . For G = g and WI = wI , a diagram illustrating the insertion gap as
determined by g, wk−1, and wj is shown in Figure 2.4. We will follow the convention of
using lowercase letters for random variables shown in figures and when referring to these
variables. The knapsack is shown at the top of the figure with items packed sequentially
from left to right. The plot at the bottom shows the insertion gap Vj that occurs when
item j is inserted at the front of the sequence, causing the remaining packed items to
slide to the right. The plot is best understood by visualizing the effect of varying sizes
of wj . If wj is very small, the items slide to the right and reduce the gap by the amount
wj . Clearly, if wj = g, then vj = 0, as indicated by the function. As soon as wj is
slightly larger than g, it is infeasible to pack item k − 1, and the gap jumps. Thus for
the instance shown, the jth insertion gap is a deterministic function of (g, wk−1, wj).

0

0

g

v

1 g

(g � v)

bb� 1

w1

g

wk�1 wk

wk�1

g + wk�1

(wk�1 � v)

vj

wj

wj

Figure 2.4. Insertion gap vj as a function of wj , parameterized by (wk−1, g). The function starts at
g and decreases at unit rate, except at w = g where the function jumps to value wk−1. The probability
of the event Vj > v conditioned only on wk−1 and g is given by the total length of the bold regions,
assuming that v < g and g + wk−1 − v ≤ 1. Based on the sizes of g and wk−1 shown, only the events
Lj = k and Lj = k − 1 are possible.

Considering the instance in the figure, if we only condition on g and wk−1 and allow
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Wj to be random, then Vj becomes a random variable whose only source of uncertainty
is Wj . Since by Lemma 2.4 Wj has distribution U [0, 1], the probability of the event
Vj > v is given by the length of the bold regions on the wj axis.

We now explicitly describe the length of the bold regions for all cases of wk−1 and
g; this will include the case Lj = k − 2 ∨ Lj = j (not possible for the instance
in the figure), so the length of the bold regions will define V u

j . Starting with the
instance shown, we have P(V u

j > v|g, wk−1) = (g − v) + (wk−1 − v), as given by the
lengths of the two bold regions, corresponding to the events Lj = k and Lj = k − 1,
respectively. This requires that v ≤ g and v ≤ wk−1, so the expression becomes
P(V u

j > v|g, wk−1) = (g − v)+ + (wk−1 − v)+. We must account for the case where
g+wk−1− v > 1, requiring that we subtract length (g+wk−1− v− 1), so we revise the
expression to P(V u

j > v|g, wk−1) = (g−v)+ +(wk−1−v)+−(g+wk−1−v−1)+. Finally,
for the case of g + wk−1 < 1, we must take care of the region where wi ∈ [g + wk−1, 1].
It is at this point that the event Lj ≤ k − 2 or Lj = j becomes possible and the
distinction between V u

j and Vj is made. Here we have by definition V u
j = 1, which

trivially satisfies Vj ≤ V u
j , so for any 0 ≤ v < 1 this region contributes (1 − g − wk−1)

to P(V u
j > v|g, wk−1). This is handled by adding the term (1 − g − wk−1)+ to the

expression. We finally arrive at

P(V u
j > v|g, wk−1) = (g − v)+ + (wk−1 − v)+ − (g + wk−1 − v − 1)+

+(1− g − wk−1)+. (2.32)

This holds true for any fixed k as long as k > 1, so we may replace wk−1 with wK−1

and make the event C1 explicit to obtain the statement of the lemma. �

Lemma 2.7. For K > 1, the Kth insertion gap satisfies VK ≤ V u
K with probability

one, where V u
K is a deterministic function of (G,WK−1,WK), and conditioning only on

(G,WK−1) gives

P(V u
K > v|g, wK−1, C1) =

(
1

1− g

)
((wK−1 − v)+ − (g + wK−1 − v − 1)+

+(1− g − wK−1)+)

=: P(Ṽ u > v|g, wK−1, C1). (2.33)

Proof. Again fix K = k for k > 1, G = g, Wk−1 = wk−1. Define the random variable
V u
k so that

V u
k =

{
Vk, Lk = k − 1,
1, Lk ≤ k − 2 ∨ Lk = k.

From Lemma 2.4 we are guaranteed that given G = g, Wk follows distribution U [g, 1].
Thus, to determine P(V u

k > v|g, wk−1, C1), we can use the same analysis for Lemma 2.6
but restricted to the interval g ≤ wk ≤ 1. Taking the expression P(V u > v|g, wK−1, C1)
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in (2.31), removing the (g − v)+ term, and normalizing by (1− g), we have

P(V u
k > v|g, wk−1, C1) =

(
1

1− g

)
((wk−1 − v)+ − (g + wk−1 − v − 1)+

+(1− g − wk−1)+) . (2.34)

This holds for all k > 1, so we replace k with K in the expression. �

Lemma 2.8. For K = 1 and j = 2, . . . , n, the jth insertion gap is a deterministic
function of (Wj , G), and conditioning only on G gives

P(Vj > v|g, C1) = (1− v)1(v < g). (2.35)

Proof. Fix G = g. Note that for K = 1, the jth insertion gap can never be greater than
g. Keeping the analysis for Lemma 2.6 in mind and using Lemma 2.4, we have that for
v < g,

P(Vj > v|g, C1) = (g − v) + (1− g), (2.36)

where (g − v) corresponds to the case where wj ∈ [0, g] and (1 − g) corresponds to
wj ∈ (g, 1]. �

Recall that V∗(n) is the gap obtained after the first iteration of the rollout algorithm
on an instance n items, which we refer to as the minimum gap,

V∗(n) := min(G,V2, . . . , Vn). (2.37)

We will make the dependence on n implicit in what follows so that V∗ = V∗(n). We
may now prove the final result.

Proof of Theorem 2.2. For K = k > 1, we have V∗ ≤ V u
∗ with probability

one, where

V u
∗ := min(G,V u

k , V
u
k+1, . . . , V

u
n ). (2.38)

This follows from Lemmas 2.5 - 2.7, as Vj = G for j ≤ k−1. From the analysis in Lem-
mas 2.6 and 2.7, for each j ≥ k, V u

j is a deterministic function of (G,Wk−1,Wk,Wj).
Furthermore, from Lemma 2.4, the item weights Wj for j ≥ k + 1 are independently
distributed on U [0, 1], and Wk is independently distributed on U [g, 1]. Thus, condition-
ing only on G and Wk−1 makes V u

j independent for j ≥ k, and by the definition of the
minimum function,

P(V u
∗ >v|g, wk−1, k, C1)

= P(G > v|g, wk−1, C1)P(V u
k > v|g, wk−1, C1)

n∏

j=k+1

P(V u
j > v|g, wk−1, C1)

= P(G > v|g, wk−1, C1)P(Ṽ u > v|g, wk−1, C1)
(
P(V u > v|g, wk−1, C1)

)(n−k)
.

(2.39)
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Marginalizing over Wk−1 and G using Lemma 2.4 and Theorem 2.1,

P(V u
∗ > v|k, C1) =

∫ 1

0

∫ 1

0
P(V u

∗ > v|g, wk−1, k, C1)fwk−1
(wk−1)fG(g)dwk−1dg.

(2.40)

We refer to P(V u
∗ > v|k, C1) as P(V u

∗ > v|m, C1) via the substitution M := n − K to
simplify expressions. As shown in Section 2.8, evaluation of the integral gives

P(V u
∗ > v|m, C1) =

{
P(V u

∗ > v|m, C1)≤ 1
2
, v ≤ 1

2 ,

P(V u
∗ > v|m, C1)> 1

2
, v > 1

2 ,
(2.41)

where

P(V u
∗ > v|m, C1)≤ 1

2
=

1

3(3 +m)

(
2m(1− 2v)m +m(1− v)m + 9(1− v)3+m

−12m(1− 2v)mv − 3m(1− v)mv + 24m(1− 2v)mv2

+3m(1− v)mv2 − 16m(1− 2v)mv3 −m(1− v)mv3
)
,

(2.42)

P(V u
∗ > v|m, C1)> 1

2
=

1

3
(1− v)3+m +

2(1− v)3+m

3 +m
. (2.43)

Calculating the expected value gives a surprisingly simple expression

E[V u
∗ |m, C1] =

∫ 1

0
P(V u

∗ > v|m, C1)dv =
9 + 2m

3(3 +m)(4 +m)
. (2.44)

We now consider the case C1 where the first item is critical. By Lemma 2.8, each Vj
for j ≥ 2 is a deterministic function of G and Wj . All Wj for j ≥ 2 are independent by
Lemma 2.2, so

P(V∗ > v|g, C1) =

n∏

j=2

P(Vj > v|g, C1) = (1− v)(n−1)
1(v < g). (2.45)

Integrating over G by Theorem 2.1, we have

P(V∗ > v|C1) =

∫ 1

0
P(V∗ > v|g, C1)fG(g)dg

= (1− v)(n−1)

∫ 1

v
(2− 2g)dg

= (1− v)(n−1)(1− 2v + v2) (2.46)
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and

E[V∗|C1] =

∫ 1

0
P(V∗ > v|C1)dv

=

∫ 1

0
(1− v)(n−1)(1− 2v + v2)dv

=
1

n+ 2
. (2.47)

Finally, accounting for all cases of K using total expectation and Lemma 2.1,

E[V∗] = E[V∗|C1]P(C1) +

n∑

k=2

E[V∗|Ck]P(Ck)

=
1

n
E[V∗|C1] +

1

n

n∑

k=2

E[V∗|Ck]

≤ 1

n
E[V∗|C1] +

1

n

n∑

k=2

E[V ∗u |C1,m]

=
1

n(2 + n)
+

1

n

n−2∑

m=0

9 + 2m

3(3 +m)(4 +m)
. (2.48)

Throughout all of the analysis in this section, we have implicitly assumed that∑n
i=1Wi > B. Making this condition explicit gives the desired expression. �

2.4.3 Exhaustive Rollout: 0–1 Knapsack Problem Analysis

We follow the same approach that was used for the subset sum problem and assume
that the reader understands this analysis (and thus less detail is included here). We
employ the results from Section 2.3, and we use the same definition for the jth insertion
item that was used for the subset sum problem. Analogous to the jth insertion gap Vj ,
we define here the jth insertion gain Zj , where

Zj := max


0, 1(Wj ≤ B)


Pj +

Lj−1∑

i=1

Pi1(i 6= j)


−

K−1∑

i=1

Pi


 . (2.49)

The jth insertion gain is simply the positive part of the difference between the value
of the solution obtained by using Blind-Greedy after moving item j to the front of
the sequence, and the value of the solution from using Blind-Greedy on the original
input sequence.

We will bound the expected insertion gains while conditioning on (G,WK−1, PK−1).
Assuming K > 1, this is done in the following three lemmas for packed items, the
critical item, and remaining items, just as we did for the subset sum problem. The
lemma after these three handles the case where K = 1. We assume that

∑n
i=1Wi > B

throughout the section.
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Lemma 2.9. For K > 1 and j = 1, . . . ,K − 1, the jth insertion gain satisfies

Zj = 0 (2.50)

with probability one.

Proof. By the proof of Lemma 2.5. �

Lemma 2.10. For K > 1 and j = K+1, . . . , n, the jth insertion gain satisfies Zj ≥ Z lj
with probability one, where Z lj is a deterministic function of (G,WK−1,Wj , PK−1, Pj),
and conditioning only on (G,WK−1, PK−1) gives

P(Z lj ≤ z|g, wK−1, pK−1, C1) = zg + min(z + pK−1, 1) (wK−1 − (g + wK−1 − 1)+)

+(1− g − wK−1)+

=: P(Z l ≤ z|g, wK−1, pK−1, C1). (2.51)

Proof. Fix K = k for any k > 1, and let the event C1 be implicit. We define the lower
bound random variable Z lj so that

Z lj =

{
Zj , Lj = k ∨ Lj = k − 1,
0, Lj ≤ k − 2 ∨ Lj = j.

This means we have an exact characterization of the jth insertion gain when the inser-
tion critical item is either k or k− 1, and a worst case gain of zero value in other cases.
Thus it can be seen that Zj ≥ Z lj with probability one, and Z lj uniquely depends on the
random variables (G,WK−1,Wj , PK−1, Pj). Let Dk, Dk−1, and D(k−2)− indicate the
events Lj = k, Lj = k − 1, and Lj ≤ k − 2 ∨ Lj = j, respectively. Using an illustration
similar to Figure 2.4 under the assumption that G = g and WS = ws, we have that if
we only allow Wj to be random, then by Lemma 2.4,

P(Dk|g, wk−1, pk−1, pj) = g, (2.52)

P(Dk−1|g, wk−1, pk−1, pj) = wk−1 − (g + wk−1 − 1)+, (2.53)

P(D(k−2)−|g, wk−1, pk−1, pj) = (1− g − wk−1)+. (2.54)

Note that these expressions do not depend on any of the PS values since item weights
and profits are independent. For each of the above cases, we can find the probability
distribution for Z lj while allowing only Pj to be random, so that

P(Z lj ≤ z|Dk, g, wk−1, wj , pk−1) = P(Pj ≤ z) = z, (2.55)

P(Z lj ≤ z|Dk−1, g, wk−1, wj , pk−1) = P(Pj − Pk−1 ≤ z|pk−1) = min(z + pk−1, 1),

(2.56)

P(Z lj ≤ z|D(k−2)−, g, wk−1, wj , pk−1) = P(0 ≤ z) = 1. (2.57)

Again, these expressions do not depend on any of the WS values by item profit and
weight independence. Then, combining terms and noting that the above functions do
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not depend on all of the conditioned parameters, we have that if we only condition on
(G,Wk−1, Pk−1),

P(Z lj ≤ z|g, wk−1, pk−1) = P(Z lj ≤ z|Dk, g, wk−1, pk−1)P(Dk|g, wk−1, pk−1)

+P(Z lj ≤ z|Dk−1, g, wk−1, pk−1)P(Dk−1|g, wk−1, pk−1)

+P(Z lj ≤ z|D(k−2)−, g, wk−1, pk−1)P(D(k−2)−|g, wk−1, pk−1)

= zg + min(z + pk−1, 1) (wk−1 − (g + wk−1 − 1)+)

+(1− g − wk−1)+. (2.58)

The analysis holds for all k > 1, so we replace k with K, which yields the expression in
the lemma. �

Lemma 2.11. For K > 1, the Kth insertion gap satisfies ZK ≥ Z lK with probability
one, where Z lK is a deterministic function of (G,WK−1,WK , PK−1, PK), and condition-
ing only on (G,WK−1, PK−1) gives

P(Z lK ≤ z|g, wK−1, pK−1, C1)

=
1

1− g (min(z + pK−1, 1) (wk−1 − (g + wK−1 − 1)+) + (1− g − wK−1)+)

=: P(Z̃ l ≤ z|g, wK−1, pK−1, C1). (2.59)

Proof. Fix K = k for k > 1 and make the event C1 implicit. We define the lower bound
random variable Z lk so that

Z lk :=

{
Zk, Lk = k − 1,
0, Lk ≤ k − 2 ∨ Lk = k.

This random variable assumes a worst-case bound of zero gain if item k − 1 becomes
infeasible. By definition, we have Zk ≥ Z lk with probability one and that Z lk is uniquely
determined by (G,Wk−1,Wj , Pk−1, Pj). Let Dk−1 be the event that Lk = k − 1 and
let D(k−2)− indicate the event Lk ≤ k − 2 ∨ Lk = k. By Lemma 2.4, we have that for
G = g, item k has distribution U [g, 1]. Using the analysis in the previous lemma but
restricted to the interval [g, 1], we have

P(Dk−1|g, wk−1, pk−1, pk) =
1

1− g (wk−1 − (g + wk−1 − 1)+) , (2.60)

P(D(k−2)−|g, wk−1, pk−1, pk) =
1

1− g (1− g − wk−1)+. (2.61)

By the independence of item weights and profits, the following results carry over from
the proof of the previous lemma:

P(Z lk ≤ z|Dk−1, g, wk−1, wk, pk−1) = P(Pk − Pk−1 ≤ z|pk−1) = min(z + pk−1, 1),

(2.62)

P(Z lk ≤ z|D(k−2)−, g, wk−1, wk, pk−1) = P(0 ≤ z) = 1. (2.63)
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We then have that if we only condition on (G,Wk−1, Pk−1),

P(Z lk ≤z|g, wk−1, pk−1)

= P(Z lk ≤ z|Dk−1, g, wk−1, pk−1)P(Dk−1|g, wk−1, pk−1)

+ P(Z lk ≤ z|D(k−2)−, g, wk−1, pk−1)P(D(k−2)−|g, wk−1, pk−1)

=
1

1− g (min(z + pk−1, 1) (wk−1 − (g + wk−1 − 1)+) + (1− g − wk−1)+) .

(2.64)

The analysis is valid for all k > 1, so we replace k with K to obtain the expression in
the lemma. �

We now define Z∗(n) as the gain given by the first iteration of the rollout algorithm
on an instance with n items,

Z∗(n) := max(Z1, . . . , Zn). (2.65)

For the rest of the section, we will usually refer to Z∗(n) simply as Z∗.

Proof of Theorem 2.4. We proceed in a fashion nearly identical to the proof
of Theorem 2.2. We have that for K = k > 1, Z∗ ≥ Z l∗ with probability one, where

Z l∗ := max(Z lk, Z
l
k+1, . . . , Z

l
n). (2.66)

This makes use of Lemmas 2.9 - 2.11. By Lemmas 2.10 and 2.11, each Z lj for j ≥ k is a
deterministic function of (G,Wk−1,Wj , Pk−1, Pj). Lemma 2.4 gives that item weights
Wj for j > k independently follow the distribution U [0, 1], and Wk independently follows
the distribution U [g, 1]. As a result, conditioning on only (G,Wk−1, Pk−1) makes Z lj
independent for j ≥ k, and then by the definition of the maximum,

P(Z l∗ ≤ z|g,wk−1, pk−1, k, C1)

= P(Z lk ≤ z|g, wk−1, pk−1, C1)

n∏

j=k+1

P(Z lj ≤ z|g, wk−1, pk−1, C1)

= P(Z̃ l ≤ z|g, wk−1, pk−1, C1)
(
P(Z l ≤ z|g, wk−1, pk−1, C1)

)(n−k)
.

(2.67)

In the remainder of the proof, we first integrate over the conditioned variables and then
consider the case C1. For the integrals, we adopt some simplified notation to make
expressions more manageable. As with the subset sum problem, let M := n−K. Also
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define

π+ := g, (2.68)

π0 := wK−1 − (g + wk−1 − 1)+, (2.69)

π− := (1− g − wk−1), (2.70)

π̃0 :=
1

1− g (wk−1 − (g + wk−1 − 1)+) , (2.71)

π̃− :=
1

1− g (1− g − wk−1)+. (2.72)

This allows us to write (2.67) as

P(Z l∗ ≤ z|g, wk−1, pk−1,m, C1)

= (min(z + pk−1, 1)π̃0 + π̃−) (zπ+ + min(z + pk−1, 1)π0 + π−)m. (2.73)

Integrating over pk−1, which follows density U [0, 1],

P(Z l∗ ≤ z|g, wk−1,m, C1)

=

∫
P(Z l∗ ≤ z|g, wk−1, pk−1,m, C1)fPk−1

(pk−1)dpk−1

=

∫ 1−z

0
((z + pk−1)π̃0 + π̃−) (zπ+ + (z + pk−1)π0 + π−)m dpk−1

+

∫ 1

1−z
(π̃0 + π̃−) (zπ+ + π0 + π−)m dpk−1

= (π̃0 + π̃−)(π0 + π− + π+z)
mz +

1

(m+ 1)(m+ 2)π2
0

·
(
(π0 + Pn + π+z)

m+1(π0π̃0(m+ 1) + π0π̃−(m+ 2)− π̃0π− − π̃0π+z)

−(π− + (π0 + π+)z)m+1((2 +m)π0π̃− − π−π̃0 + π̃0(π0 +mπ0 − π+)z)
)
.

(2.74)

At this point, it is useful to evaluate separately the cases where g + wk−1 < 1 and
g + wk−1 ≥ 1. Let E indicate the event that g + wk−1 < 1 holds, and let E be the
complement of this event. Also, define A := WK−1. This allows us to define

P(Z l∗ ≤ z|g, wk−1,m, C1)E := P(Z l∗ ≤ z|g, wk−1,m, C1)1(g + wk−1 < 1), (2.75)

P(Z l∗ ≤ z|g, wk−1,m, C1)E := P(Z l∗ ≤ z|g, wk−1,m, C1)1(g + wk−1 ≥ 1), (2.76)

so that

P(Z l∗ ≤ z|g, wk−1,m, C1) = P(Z l∗ ≤ z|g, wk−1,m, C1)E + P(Z l∗ ≤ z|g, wk−1,m, C1)E .

(2.77)
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Starting with the case where E holds and substituting A for Wk−1,

P(Z l∗ ≤z|g, a,m, C1)E

= z(1− g + gz)m +
(1− g + gz)m+1(1− g +m− gm− gz)

(1− g)a(m+ 1)(m+ 2)

− (1− g + gz + a(1− z))m+1 (1− g +m− gm− gz + a(−1−m+ z +mz))

(1− g)a(m+ 1)(m+ 2)
.

(2.78)

We now wish to calculate

P(Z l∗ ≤ z|m, C1)E :=

∫ 1

0

∫ 1−g

0
P(Z l∗ ≤ z|g, a,m, C1)EfA(a)fG(g)dadg. (2.79)

The evaluation of this integral is given in Section 2.8.2, which shows

P(Z l∗ ≤ z|m, C1)E = ρ1(m, z) +
m+1∑

j=1

ρ2j(m, z) + ρ3(m, z) + ρ4(m, z), (2.80)

where

ρ1(m, z) = −2z
(
2 +m2(−1 + z)2 +m(−1 + z)(−3 + 5z)− 2z

(
3− 3z + z2+m

))

(1 +m)(2 +m)(3 +m)(−1 + z)3
,

(2.81)

ρ2j(m, z) =
2z3+m(j + (2 +m)(−2 + z)− jz)

j(−3 + j −m)(−2 + j −m)(1 +m)(2 +m)(−1 + z)2
, (2.82)

+
2zj(−j(1 +m)(−1 + z) + (2 +m)(−1 +m(−1 + z) + 2z))

j(−3 + j −m)(−2 + j −m)(1 +m)(2 +m)(−1 + z)2
, (2.83)

ρ3(m, z) = −2H(m+ 1)
(
−1 +m(−1 + z) + 2z + (−2 + z)z3+m

)

(1 +m)(2 +m)(3 +m)(−1 + z)2
, (2.84)

ρ4(m, z) = − 2

(2 +m)2(3 +m)(−1 + z)
− 2z2+m

(2 +m)2
+

2z3+m

(2 +m)2(3 +m)(−1 + z)
.

(2.85)

Since we are ultimately interested in the expected value of Z l∗, we wish to evaluate

E[Z l∗|m, C1]E :=

∫ 1

0
P(Z l∗ ≤ z|m, C1)Edz. (2.86)

Recall that E[·] := 1− E[·]. Using the definition

ξj(m) :=

∫ 1

0
ρj(m, z)dz, (2.87)
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we have

E[Z l∗|m, C1]E = ξ1(m) +
m+1∑

j=1

ξ2j(m) + ξ3(m) + ξ4(m), (2.88)

where

ξ1(m) = −2H(m+ 1)(3 +m−H(m+ 3)(2 +m))

(m+ 1)(m+ 2)(m+ 3)
, (2.89)

ξ2j(m)

=
2
(
−(−3 + j −m)(2 +m) +

(
j + (2 +m)2

)
H(j)−

(
j + (2 +m)2

)
H(m+ 3)

)

j(−3 + j −m)(−2 + j −m)(1 +m)(2 +m)
,

(2.90)

ξ3(m) =
2(H(m+ 3)− 1)

(2 +m)2(3 +m)
, (2.91)

ξ4(m) = −(2 +m)(17 + 5m)− 2(3 +m)(4 +m)H(m+ 2)

(m+ 1)(m+ 2)(m+ 3)
. (2.92)

This completes the case for the event E (i.e. g + wk−1 < 1). Now when the event E
holds,

P(Z l∗ ≤ z|g, a,m, C1)E = z(1− g + gz)m − (1− 2g + (1− g)m)z2+m

(1− g)2(1 +m)(2 +m)

+
((1− g)(1 +m)− gz)(1− g + gz)1+m

(1− g)2(1 +m)(2 +m)
. (2.93)

Continuing as we did with the case E ,

P(Z l∗ ≤ z|m, C1)E :=

∫ 1

0

∫ 1

1−g
P(Z l∗ ≤ z|g, a,m, C1)EfA(a)fG(g)dadg

=

∫ 1

0
gP(Z l∗ ≤ z|g, a,m, C1)EfG(g)dg, (2.94)

where we have used the fact that the expression P(Z l∗ ≤ z|g, a,m, C1)E is not a function



58 CHAPTER 2. ROLLOUT ALGORITHMS FOR KNAPSACK PROBLEMS

of a. Evaluation of this integral is given in Section 2.8.3; the expression is

P(Z l∗ ≤ z|m, C1)E

=− 2z
(
1 +m− 3z −mz + z2+m(3 +m− (1 +m)z)

)

(1 +m)(2 +m)(3 +m)(−1 + z)3
+

−2z

(m+ 1)(m+ 2)

m+1∑

j=1

zm+1−j

j

+
2z

(m+ 1)(m+ 2)2(1− z) +
2(1 +m+ z)

(m+ 1)(m+ 2)2(m+ 3)(1− z)2
− (6 + 2m)zm+2

(m+ 1)(m+ 2)

+
zm+2

m+ 1
+

2H(m+ 1)zm+2

(m+ 1)(m+ 2)
− 2(1 +m+ 2z)zm+2

(m+ 1)(m+ 2)2(1− z)

− 2(1 +m+ z)zm+3

(m+ 1)(m+ 2)2(m+ 3)(1− z)2
. (2.95)

We again calculate the following term for the expected value

E[Z l∗|m, C1]E :=

∫ 1

0
P(Z l∗ ≤ z|m)dz

=
20 + 10m+m2 − 2(3 +m)H(1 +m)

(2 +m)(3 +m)2

+
m+1∑

j=1

2

j(−3 + j −m)(1 +m)(2 +m)
. (2.96)

Bringing together both cases E and E , we have

E[Z l∗|m,C1]

=

∫ 1

0
(1− P(Z l∗ ≤ z|m, C1))dz

=1−
∫ 1

0
P(Z l∗ ≤ z|m, C1)dz

=1− E[Z l∗|m, C1]E − E[Z l∗|m, C1]E

=1 +
1

(m+ 1)(m+ 2)3(m+ 3)2

(
(186 + 472m+ 448m2 + 203m3 + 45m4 + 4m5)

+ (−244− 454m− 334m2 − 124m3 − 24m4 − 2m5)H(m+ 1)

+(−48− 88m− 60m2 − 18m3 − 2m4)(H(m+ 1))2
)

+

m+1∑

j=1

T (j,m),

(2.97)
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where

T (j,m) :=
2
(
−4 + j − 4m+ jm−m2 −

(
j + (2 +m)2

)
H(j)

)

j(−3 + j −m)(−2 + j −m)(1 +m)(2 +m)

+
2(j + (2 +m)2)H(3 +m)

j(−3 + j −m)(−2 + j −m)(1 +m)(2 +m)
. (2.98)

If the first item is critical,

P(Z∗ ≤ z|g,m, C1) = (1− g + gz)m. (2.99)

Marginalizing over G and taking the expectation gives

P(Z∗ ≤ z|m, C1) =

∫ 1

0
P(Z l∗ ≤ z|g,m, C1)fG(g)dg

=

∫ 1

0
(1− g + gz)m(2− 2g)dg

=
2
(
1 +m− 2z −mz + z2+m

)

(1 +m)(2 +m)(−1 + z)2
. (2.100)

E(Z∗|m, C1) = 1−
∫ 1

0
P(Z∗ ≤ z|m, C1)dz

= 1 +
2

2 +m
− 2H(m+ 1)

m+ 1
. (2.101)

Since the event C1 indicates M = n− 1,

E(Z∗|C1) = 1 +
2

n+ 1
− 2H(n)

n
. (2.102)

Finally, accounting for the distribution of M with Lemma 2.1 gives the expression in
the theorem:

E

[
Z∗(n)

∣∣∣∣∣
n∑

i=1

Wi > B

]
≥ 1 +

2

n(n+ 1)
− 2H(n)

n2

+
1

n

n−2∑

m=0



m+1∑

j=1

T (j,m) +
(
(186 + 472m+ 448m2 + 203m3 + 45m4 + 4m5)

−(244 + 454m+ 334m2 + 124m3 + 24m4 + 2m5)H(m+ 1)

−(48 + 88m+ 60m2 + 18m3 + 2m4)(H(m+ 1))2
) 1

(m+ 1)(m+ 2)3(m+ 3)2

)
,

(2.103)
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where

T (j,m) :=
2
(
−4 + j − 4m+ jm−m2 −

(
j + (2 +m)2

)
H(j)

)

j(−3 + j −m)(−2 + j −m)(1 +m)(2 +m)

+
2(j + (2 +m)2)H(3 +m)

j(−3 + j −m)(−2 + j −m)(1 +m)(2 +m)
. (2.104)

�

We observe that the nested summation term may be omitted without significant
loss in the performance bound. This is accomplished by showing that the argument of
the sum is always positive.

Lemma 2.12. For all m > 0 and 1 ≤ j ≤ m+ 1,
(
−4 + j − 4m+ jm−m2 −

(
j + (2 +m)2

)
H(j) +

(
j + (2 +m)2

)
H(3 +m)

)

j(−3 + j −m)(−2 + j −m)(1 +m)(2 +m)
> 0.

(2.105)

Proof. The denominator is always positive, so we focus on the numerator. The numer-
ator consists of two parts,

N1(j,m) := (4− j)(m+ 1) +m2, (2.106)

N2(j,m) := (j + (2 +m)2)
m+3∑

i=j+1

1

i
. (2.107)

Our goal is to show that N2(j,m) > N1(j,m) always holds. The difference equation for
N2(j,m) with respect to j satisfies

∆(N2(j,m)) := N2(j + 1,m)−N2(j,m)

=
m+3∑

i=j+2

1

i
+ (j + (2 +m)2)

m+3∑

i=j+2

1

i
− (j + (2 +m)2)

m+3∑

i=j+1

1

i

=
m+3∑

i=j+2

1

i
− j + (2 +m)2

j + 1

≤ m− j + 2

j + 2
− j + (2 +m)2

j + 1

<
m− j + 2

j + 1
− j + (2 +m)2

j + 1

=
−2− 3m−m2 − 2j

j + 1

≤ −4− 3m−m2

m+ 2
. (2.108)
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For the other term, we have

∆(N1(j,m)) = −(m+ 1). (2.109)

Both N1(j,m) and N2(j,m) are decreasing in j and N2(j,m) decreases at a greater
rate. We approximate N2(j,m) with the following:

H(m+ 3)−H(j) =

m+3∑

i=j+1

1

i
≥
∫ m+4

j+1

1

x
dx = log

(
m+ 4

j + 1

)
. (2.110)

Looking at j = 1,

N1(1,m) = 3 + 3m+m2, (2.111)

N2(1,m) ≥ (5 + 4m+m2) log

(
m+ 4

2

)
, (2.112)

guaranteeing N2(1,m) > N1(1,m). With consideration of starting points and slopes
for the two numerator terms, ensuring that N2(m+ 1,m) > N1(m+ 1,m) is sufficient
for the lemma. We have

N1(m+ 1,m) = 3 + 2m, (2.113)

N2(m+ 1,m) = (m+ 1 + (2 +m)2)

(
1

m+ 2
+

1

m+ 3

)

> (5 + 5m+m2)

(
2

m+ 3

)

=
10 + 10m+ 2m2

m+ 3
> 3 + 2m. (2.114)

�

Proof of Theorem 2.5. We will show that limn→∞ E[Z∗|·] = 1, so we are interested in
bounding the rate at which 1−E[Z∗|·] approaches 0. Accordingly, we are only concerned
with the negative terms in (2.103). The magnitudes of these terms are

T1(n) =
2H(n)

n2
, (2.115)

T2(n) =
1

n

n−2∑

m=0

(244 + 454m+ 334m2 + 24m4 + 2m5)H(m+ 1)

(m+ 1)(m+ 2)3(m+ 3)2
, (2.116)

T3(n) =
1

n

n−2∑

m=0

(48 + 88m+ 60m2 + 18m3 + 2m4)(H(m+ 1))2

(m+ 1)(m+ 2)3(m+ 3)2
. (2.117)
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The second and third sum arguments are decreasing in m, so they are bounded by their
respective integrals. Using a logarithmic bound on the harmonic numbers, we have

T1(n) = O

(
log n

n2

)
, (2.118)

T2(n) =
1

n

n−2∑

m=0

O

(
logm

m

)

=
1

n

∫ n−1

0
O

(
logm

m

)
dm

= O

(
log2 n

n

)
, (2.119)

T3(n) =
1

n

n−2∑

m=0

O

(
log2m

m2

)

=
1

n

∫ n−1

0
O

(
log2m

m2

)
dm

= O

(
log2 n

n2

)
. (2.120)

The largest growth rate is O( log2 n
n ). Also, we have that limn→∞ E[Z∗(n)|·] = 1 since

the gain has a natural upper bound of unit value.

2.5 Consecutive Rollout

The Consecutive-Rollout algorithm is shown in Algorithm 3. The algorithm takes
as input a sequence of items I and capacity b and makes calls to Blind-Greedy as
a subroutine. At iteration i, the algorithm calculates the value (U+) of adding item i
to the solution and using Blind-Greedy on the remaining items, and the value (U−)
of not adding the item to the solution and using Blind-Greedy thereafter. The item
is then added to the solution only if the former valuation (U+) is larger. Again, we
assume a consistent tie-breaking method.

We again only focus on the result of the first iteration of the algorithm;
bounds from the first iteration are valid for future iterations. A single iteration of
Consecutive-Rollout effectively takes the best of two solutions, the solution
obtained by Blind-Greedy, and the solution obtained from using Blind-Greedy
after removing the first item. Let V∗(n) denote the gap obtained by a single
iteration of the rollout algorithm for the subset sum problem with n items under
the stochastic model. The results in this section hold for n ≥ 3 and are tight for
n = 3, as the proofs only depend on the first three items. Employing this number
of items strikes a balance between proof tractability and performance tightness.
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Input: Item sequence I = 〈1, . . . , n〉 with profit sequence pI and weight sequence wI ,
capacity b.

Output: Feasible solution sequence S, value U .
1: Initialize S ← 〈〉, remaining item sequence I ← I, b← b, U ← 0.
2: for i = 1 to n (each item) do
3: Estimate the value of adding item i, (·, U+) = Blind-Greedy(I, b).
4: Estimate the value of skipping item i, (·, U−) = Blind-Greedy(I \ 〈i〉, b).
5: if U+ > U− (estimated value of adding the item is larger) then
6: Add item i to solution sequence, S ← S : 〈i〉.
7: Update remaining capacity, b← b− wi, and value, U ← U + pi.
8: end if
9: Remove item i from the remaining item sequence, I ← I \ 〈i〉.

10: end for
11: Return S, U .

Algorithm 3. Consecutive-Rollout
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Figure 2.5. Performance bounds and simulated values for (a) expected gap E[V∗(n)|·] and (b) expected
gain E[Z∗(n)|·] after running a single iteration of the Consecutive-Rollout algorithm on the subset
sum problem and knapsack problem, respectively. For each n, the mean values are shown for 105

simulations.

Theorem 2.6. For the subset sum problem with n ≥ 3, the gap V∗(n), obtained by
running a single iteration of Consecutive-Rollout, satisfies

E

[
V∗(n)

∣∣∣∣∣
n∑

i=1

Wi > B

]
≤ 3 + 13n

60n
≤ 7

30
≈ 0.233. (2.121)

As expected, there is not a strong dependence on n for this algorithm. The
bound is tight for n = 3, where it evaluates to 7

30 ≈ 0.233. It is also clear that
limn→∞ E[V∗(n)|·] ≤ 13

60 ≈ 0.217. The bounds are shown with simulated performance
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in Figure 2.5(a). A similar result holds for the 0–1 knapsack problem.

Theorem 2.7. For the knapsack problem with n ≥ 3, the gain Z∗(n), obtained by
running a single iteration of Consecutive-Rollout, satisfies

E

[
Z∗(n)

∣∣∣∣∣
n∑

i=1

Wi > B

]
≥ −26 + 59n

288n
≥ 151

864
≈ 0.175. (2.122)

The bound is plotted with simulated values in Figure 2.5(b). Again, the bound is tight
for n = 3 with a gain of 151

864 ≈ 0.175. Asymptotically, limn→∞ E[Z∗(n)|·] ≥ 59
288 ≈ 0.205.

The rest of this section is devoted to an example and the theorem proofs.

2.5.1 Example

We demonstrate the Consecutive-Rollout algorithm using the same subset sum
problem that we used for the example in the previous section. Recall that we have
n = 6, the weight sequence wI = 〈0.3, 0.8, 0.6, 0.4, 0.7, 0.1〉, and a capacity b = 2.
The solution given by Blind-Greedy has a value of 1.7, shown below.

I 1 2 3 4 5 6 value

wI 0.3 0.8 0.6 0.4 0.7 0.1

cum. 0.3 1.1 1.7 2.1 2.8 2.9 1.7

Starting with the first iteration (i = 1) of Consecutive-Rollout, we initially
have I = I, and we know that the value of including the first item is 1.7. The value
of skipping the first item follows from the sequence J = I \ 〈1〉; we will again use J to
denote the sequence that the algorithm is considering.

J 2 3 4 5 6 value

wJ 0.8 0.6 0.4 0.7 0.1

cum. 0.8 1.4 1.8 2.5 2.6 1.8

The value of skipping the first item is 1.8. Since this value is greater than the value of
including the first item, the first item is removed from the remaining item sequence.

The second iteration starts with solution sequence S = 〈〉 and remaining item
sequence I = 〈2, 3, 4, 5, 6〉. We already know that the value of including item 2 is 1.8.
The value of skipping item 2, via the sequence J = I \ 〈2〉, is also 1.8.

J 3 4 5 6 value

wJ 0.6 0.4 0.7 0.1

cum. 0.6 1.0 1.7 1.8 1.8

We break the tie in favor of keeping the second item. Note that if we had chosen
otherwise, the value given by additional iterations would have remained at 1.8.

The third iteration starts with solution sequence S = 〈2〉 and remaining item se-
quence I = 〈3, 4, 5, 6〉. We already know that the value of including item 3 is 1.8. The
value of skipping item 3, via the sequence J = I \ 〈3〉, is 2.0.
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S 2 J 4 5 6 value

wS 0.8 wJ 0.4 0.7 0.1

cum. 0.8 1.2 1.9 2.0 2.0

Since the value of 2.0 is optimal, item 3 is not added to the solution set. The fourth
iteration starts with the solution sequence S = 〈2〉 and remaining item sequence I =
〈4, 5, 6〉. Since after the third iteration a value matching the capacity has been found,
there are no improvements to be made, and it is not necessary to demonstrate additional
iterations. The algorithm finishes with solution sequence S = 〈2, 4, 5, 6〉.

In summary, Blind-Greedy gives the solution sequence S = 〈1, 2, 3〉 and value 1.7.
The first iteration of Consecutive-Rollout gives the solution sequence S = 〈2, 3, 4〉
with value 1.83. The second iteration of Consecutive-Rollout also gives the solution
sequence S = 〈2, 3, 4〉 with value 1.8. The third iteration of Consecutive-Rollout
gives solution sequence S = 〈2, 4, 5, 6〉 with value 2.0, which is optimal. All following
iterations i = 4, 5, 6 give the same optimal solution and value.

2.5.2 Consecutive Rollout: Subset Sum Problem Analysis

The proof method for Theorem 2.6 is similar to the approach used for Theorem 2.2.
Keeping Figure 2.1 in mind, we look at modifications to the Blind-Greedy solution
caused by removing the first item. Removing the first item causes the other items to
slide to the left and may make some remaining items feasible to pack. We determine
bounds on the gap produced by this procedure while conditioning on the greedy gap
G, the critical item K, and the item weights (WK ,WK+1). We then take the minimum
of this gap and the greedy gap, and integrate over conditioned variables to obtain the
final bound. Our analysis is divided into lemmas based on the critical item K, where a
separate lemma is given for the cases K = 1, 2 ≤ K ≤ n− 1, and K = n.

To formalize the behavior of Consecutive-Rollout, we introduce the following
two definitions. The drop critical item L1 is the index of the item that becomes critical
when the first item is removed and thus satisfies





L1−1∑

i=2

Wi ≤ B <

L1∑

i=2

Wi, if
∑n

i=2Wi > B,

L1 = n+ 1, if
∑n

i=2Wi ≤ B,

where the latter case signifies that all remaining items can be packed. The drop gap V1

then has definition

V1 := B −
L1−1∑

i=2

Wi. (2.123)

3Here we are again abusing notation so that S is the sequence given by some iteration of
Consecutive-Rollout and Blind-Greedy on the remaining items, as opposed to the definition
of S given in the algorithm description.
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We are ultimately interested in the minimum of the drop gap and the greedy gap, which
we refer to as the minimum gap. The minimum gap is the value obtained by the first
iteration of the rollout algorithm:

V∗(n) := min(G,V1). (2.124)

We will often write V∗(n) simply as V∗. We will also use Ci to denote the event that
item i is critical and C1n for the event that 2 ≤ K ≤ n− 1. Furthermore, recall that we
have PI = WI for the subset sum problem.

Lemma 2.13. For 2 ≤ K ≤ n− 1, the expected minimum gap satisfies

E[V∗(n)|2 ≤ K ≤ n− 1] ≤ 13

60
. (2.125)

Proof. Fix K = k for 2 ≤ k ≤ n − 1. The drop gap, in general, may be a function
of the weights of all remaining items. To make things more tractable, we define the
random variable V u

1 that satisfies V1 ≤ V u
1 with probability one and, as we will show,

is a deterministic function of only (G,W1,Wk,Wk+1). The variable V u
1 is specifically

defined as

V u
1 :=

{
V1, L1 = k ∨ L1 = k + 1,

B −∑k+1
i=2 Wi, L1 ≥ k + 2.

(2.126)

In effect, V u
1 does not account for the additional reduction in the gap given if any of

the items i ≥ k + 2 become feasible, so clearly, V u
1 ≥ V1.

To determine the distribution of V u
1 , we start by considering scenarios where L1 ≥

k+2 is not possible, and thus V u
1 = V1. For G = g and WI = wI , an illustration of the

drop gap, as determined by (g, w1, wk, wk+1), is shown in Figure 2.6. The knapsack is
shown at the top of the figure with items packed from left to right, and at the bottom
the drop gap v1 is shown as a function of w1. The shape of the function is justified by
considering different sizes of w1. As long as w1 is smaller than wk− g, the gap given by
removing the first item increases at unit rate. As soon as w1 = wk − g, item k becomes
feasible, and the gap jumps to zero. The gap then increases at unit rate, and another
jump occurs when w1 reaches wk − g + wk−1. The case shown in the figure satisfies
wk−g+wk+1 +wk+2 > 1. It can be seen that this is a sufficient condition for the event
L1 ≥ k + 2 to be impossible, since even if w1 = 1, item k + 2 cannot become feasible.
It is for this reason that v1 is uniquely determined by (g, w1, wk, wk+1) here.

Continuing with the case shown in the figure, if we only condition on (g, wk, wk+1),
we have by Lemma 2.4 that W1 follows distribution U [0, 1], meaning that the event
V1 > v is given by the length of the bold regions on the w1 axis. We explicitly describe
the size of these regions. Assuming that L1 ≤ k+ 1, we derive the following expression:

P(V1 > v|g, wk, wk+1, C1n,L1 ≤ k + 1)

= (wk − g) + (wk+1 − v)+ + (1− wk + g − wk+1 − v)+

− (wk − g + wk+1 − 1)+, v < g. (2.127)
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g
v

1
w1

(wk � g) (wk+1 � v) (1� wk + g � wk+1 � v)

0 b

w1

g

wk wk+1

b + 1

v1

wk

wk+2

0

Figure 2.6. Gap v1 as a function of w1, parameterized by (g, wk, wk+1), resulting from the removal of
the first item and assuming that K = k with 2 ≤ k ≤ n− 1. The function starts at g and increases at
unit rate, except at w1 = wk − g and w1 = wk − g+wk+1, where the function drops to zero. If we only
condition on (g, wk, wk+1), the probability of the event V1 > v is given by the total length of the bold
regions for v < g. Note that in the figure, wk − g + wk+1 < 1, and the second two bold segments have
positive length; these properties do not hold in general.

The first three terms in the expression come from the three bold regions shown in Figure
2.6. We have specified that v < g, so the length of the first segment is always wk − g.
For the second term, it is possible that v > wk+1, so we only take the positive portion of
wk+1−v. In the third term, we take the positive portion to account for the cases where
item k + 1 does not become feasible, meaning wk − g + wk+1 > 1, and if it is feasible,
where v is greater than the height of the third peak, meaning v > 1− wk + g − wk+1.

The last term is required for the case where item k+ 1 does not become feasible, as
we must subtract the length of the bold region that potentially extends beyond w1 = 1.
Note that we always subtract one in this expression since it is not possible for the w1

value, where v1 = v on the second peak, to be greater than one. To see this, assume the
contrary, so that v+wk − g > 1. This inequality is obtained since, on the second peak,
we have v1 = g −wk +w1 and the w1 value that satisfies v1 = v is equal to v +wk − g.
The statement v+wk− g > 1, however, violates our previously stated assumption that
g < v.

We now argue that we, in fact, have V1 ≤ V u
1 with probability one, where

P(V u
1 > v|g, wk, wk+1, C1n) = (wk − g) + (wk+1 − v)+ + (1− wk + g − wk+1 − v)+

−(wk − g + wk+1 − 1)+, v < g. (2.128)

We have simply replaced V1 with V u
1 in (2.127) and removed the condition L1 ≤ k+ 1.
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We already know that the expression is true for L1 ≤ k+ 1. For L1 ≥ k+ 2, we refer to
Figure 2.6 and visualize the effect of a much smaller wk+2, so that wk−g+wk+1+wk+2 <
1. This would yield four (or more) peaks in the v1 function. To determine the probability
of the event V1 > v while W1 is random, we would have to evaluate the sizes of these
extra peaks, which would be a function of wk+2, wk+3, etc. However, our definition of
V u

1 does not account for the additional reductions in the gap given by items beyond
k + 1. We have already shown that V1 ≤ V u

1 , and now, clearly, V u
1 is a deterministic

function of (G,W1,Wk,Wk+1), and (2.128) is justified.
We now evaluate the minimum of V u

1 and G and integrate over the conditioned
variables. To begin, note that conditioning on the gap G makes V u

1 and G independent,
so,

P(V u
1 > v,G > v|C1n, g, wk, wk+1) = P(V u

1 > v|C1n, g, wk, wk+1)1(v < g). (2.129)

Marginalizing over Wk+1, which has uniform density according to Lemma 2.4, gives

P(V u
1 > v,G > v|C1n, g, wk)

=

∫ 1

0
P(V u

1 > v, g > v|C1n, g, wk, wk+1)fWk+1
(wk+1)dwk+1

=

(
(wk − g) +

∫ 1

v
(wk+1 − v)dwk+1 −

∫ 1

1+g−wk
(wk − g + wk+1 − 1)dwk+1

+

∫ 1−wk+g+v

0
(1− wk + g − wk+1 − v)+dwk+1

)
1(v < g)

=

(
(wk − g) +

1

2
(1− v)2 − 1

2
(wk − g)2

+
1

2
(1− wk + g − v)2

+

)
1(v < g). (2.130)

Using Lemma 2.3, we have

P(V u
1 > v,G > v|C1n, wk) =

∫ wk

0
P(V u

1 > v,G > v|C1n, g, wk)fG|C1n,Wk
(g|C1n, wk)dg

=

∫ wk

v

(
(wk − g) +

1

2
(1− v)2 − 1

2
(wk − g)2

+
1

2
(1− wk + g − v)2

+

)
1

wk
dg

= 1− 2v − v

wk
+

2v2

wk
− v3

2wk
+
vwk

2
. (2.131)
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Finally, we integrate over Wk according to Lemma 2.2

P(V u
1 > v,G > v|C1n) ≤

∫ 1

v
P(V u

1 > v,G > v|C1n, wk)fWk
(wk)dwk

=

∫ 1

v

(
1− 2v − v

wk
+

2v2

wk
− v3

2wk
+
vwk

2

)
2wkdwk

= 1− 11v

3
+ 5v2 − 3v3 +

2v4

3
. (2.132)

This term is sufficient for calculating the expected value bound. �

Lemma 2.14. For K = n, the expected minimum gap satisfies

E[V ∗(n)|K = n] =
1

4
. (2.133)

Proof. We follow the same approach that we used for Lemma 2.13. Figure 2.7 shows the
drop gap V1 as a function of w1, given wn and g. The figure is justified using the same
arguments that are in the proof of Lemma 2.13, but since no other items can become
feasible, we can derive an exact expression for the probability of the event V1 > v when
only conditioning on (g, wn). Since W1 has distribution U [0, 1] via Lemma 2.4, we can
simply take the total length of the bold regions to find P(V1 > v|Cn, wn, g). Thus,

P(V1 > v|Cn, wn, g) = (wn − g) + (1− wn + g − v) = (1− v), v < g, (2.134)

where we have that 1 − wn + g − v is nonnegative since v < g and wn ≤ 1. To find

g

v

1
w1

wn

(wn � g) (1� wn + g � v)

v1

0

Figure 2.7. Drop gap v1 as a function of w1, parameterized by (wn, g), resulting from the removal of
the first item and assuming that the last item is critical (K = n). The function starts at g and increases
at unit rate until w1 = wn − g, where it drops to zero, and then continues to increase at unit rate. If
we only condition on (wn, g), the probability of the event V1 > v is given by the total length of the
bold regions for v < g.

the probability of the event V∗ > v, we note that the events V > v and G > v are
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conditionally independent given G = g, so

P(V > v,G > v|Cn, wn, g) = (1− v)1(v < g). (2.135)

Marginalizing over G using Lemma 2.3 gives

P(V > v,G > v|Cn, wn) =

∫ 1

0
P(V > v,G > v|Cn, wn, g)fG|Cn,Wn

(g|Cn, wn)dg

=

∫ wn

v
(1− v)

1

wn
dg

=
(wn − v)(1− v)

wn
. (2.136)

Noting the distribution of the critical item from Lemma 2.2,

P(V > v,G > v|Cn) =

∫ 1

0
P(V > v,G > v|Cn, wn)fWn|Cn(wn|Cn)dwn

=

∫ 1

0

(wn − v)(1− v)

wn
2wndwn

= 1− 3v + 3v2 − v3 = P(V ∗ > v|Cn). (2.137)

Finally, using the fact that V ∗ is nonnegative,

E[V ∗|Cn] =

∫ 1

0
P(V ∗ > v|Cn)dv =

∫ 1

0
(1− 3v + 3v2 − v3)dv =

1

4
. (2.138)

�

Lemma 2.15. For K = 1, the expected minimum gap satisfies

E[V ∗(n)|K = 1] ≤ 7

30
. (2.139)

Proof. We use a more direct approach when the first item is critical, since W1 no longer
has a uniform distribution (from Lemma 2.2). However, the analysis here is similar to
the proof of Lemma 2.13 in how we bound the drop gap. Note that we have B = G for
this case. Additionally, the gap given by the minimum gap will always be equal to the
drop gap since Blind-Greedy does not pack any items. We define a variable V u

1 that
satisfies V1 ≤ V u

1 with probability one, where

V u
1 :=

{
V1, L1 = 2 ∨ L1 = 3,
G−W2 −W3, L1 ≥ 4.

(2.140)

We let the event L1 ≥ 4 also account for the case where n = 3 and the two remaining
items are feasible. If, in fact, n ≥ 4 and L1 ≥ 4, then V u

1 does not account for the
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Table 2.1. Drop gap bound values when the first item is critical (C1).

Case Defining inequalities Minimum gap bound

D2 W2 > G V u
1 = G

D3 W2 ≤ G,W2 +W3 > G V u
1 = G−W2

D4+ W2 +W3 ≤ G V u
1 = G−W2 −W3

additional reductions in the gap caused by more items becoming feasible. Thus, we see
that V u

1 is a deterministic function of (G,W2,W3).
To further simplify our expressions, we define D2, D3, D4+ to be the events L1 = 2,

L1 = 3, and L1 ≥ 4, respectively. Based on these cases, the drop gap bound V u
1 is given

by the values shown in Table 2.1.
We begin by finding some necessary distributions for the cases. For case D3, the

posterior distribution of W2 is needed. We have

fW2|C1,D3,G(w2|C1,D3, g) =
P(W2 ≤ G,W2 +W3 > G|C1, g, w2)fW2(w2)

P(W2 ≤ G,W2 +W3 > G|C1, g)
,

(2.141)

where we have used Bayes’ theorem and that fW2|C1,G(w2, C1, g) = fW2(w2) = U [0, 1] by
Lemma 2.4. For the numerator, we have

P(W2 ≤ G,W2 +W3 > G|C1, g, w2) = (1− g + w2)1(w2 ≤ g), (2.142)

which follows using Lemma 2.4 for the distribution of W3. Integrating over W2 gives

P(D3|C1, g) =

∫ 1

0
P(W2 ≤ g,W2 +W3 > G|C1, w2)fW2(w2)dw2

=

∫ g

0
(1− g + w2)dw2

= g − g2

2
. (2.143)

Returning to the posterior distribution of W2,

fW2|C1,D3,G(w2|C1,D3, g) =
2(1− g + w2)

(2− g)g
, 0 ≤ w2 ≤ g, (2.144)

P(W2 ≤ w2|C1,D3, g) =
(2− 2g + w2)w2

(2− g)g
, 0 ≤ w2 ≤ g. (2.145)

Moving to the case D4+, define W ′ := W2 +W3;

P(D4+|C1, g) = P(W ′ ≤ g|C1, g) =
g2

2
, (2.146)
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where we have used that the distribution of W ′, conditioned on the first item being
critical, is the distribution for the sum of two independent uniform random variables
(via Lemma 2.4). Finally, for the posterior distribution of W2 +W3, we have

P(W ′ ≤ w′|C1,D4+, g) =
w′2

g2
, 0 ≤ w′ ≤ g. (2.147)

We can now find distributions for V u
1 conditioned on all cases for the drop critical

item. For case D2, it is clear that V u
1 = G, and

P(D2|C1, g) = P(W2 > g) = 1− g. (2.148)

For D3, we have

P(V u
1 > v|C1,D3, g) = P(G−W2 > v|C1, D3, g)

= P(W2 < G− v|C1, D3, g)

=
(2− 2g + (g − v))(g − v)

(2− g)g

=
(2− g − v)(g − v)

(2− g)g
, 0 ≤ v < g. (2.149)

Then for D4+,

P(V u
1 > v|C1,D4+, g) = P(W ′ < G− v|C1,D4+, g)

=
(g − v)2

g2
, 0 ≤ v < g. (2.150)

Considering all three cases, we have

P(V u
1 > v|C1, g) = P(V u

1 > v|C1,D2, g)P(D2|C1, g) + P(V u
1 > v|C1,D3, g)P(D3|C1, g)

+ P(V u
1 > v|C1,D4+, g)P(D4+|C1, g)

=

(
(1− g) +

(2− g − v)(g − v)

(2− g)g

(
g − g2

2

)

+
(g − v)2

g2

(
g2

2

))
1(v < g)

= (1− v − gv + v2)1(v < g). (2.151)

This gives the expected value bound

E[V∗|C1, g] ≤ E[V u
1 |C1, g] =

∫ g

0
(1− v − gv + v2)dv = g − g2

2
− g3

6
. (2.152)

Finally, integrating over G using Theorem 2.1,

E[V∗|C1] ≤
∫ 1

0
E[V∗|C1, g]fG(g)dg =

∫ 1

0

(
g − g2

2
− g3

6

)
(2− 2g)dg =

7

30
. (2.153)

�
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The final result for the subset sum problem follows easily from the stated lemmas.

Proof of Theorem 2.6 Using the above lemmas and noting that the events C1, C1n, and
Cn form a partition of the event

∑n
i=1Wi > B gives

E

[
V∗(n)

∣∣∣∣∣
n∑

i=1

Wi > B

]
= E[V∗(n)|C1]P(C1) + E[V∗(n)|C1n]P(C1n) + E[V∗(n)|Cn]P(Cn)

≤ 7

30

(
1

n

)
+

13

60

(
n− 2

n

)
+

1

4

(
1

n

)
=

3 + 13n

60n
. (2.154)

�

2.5.3 Consecutive Rollout: 0–1 Knapsack Problem Analysis

The analysis of the Consecutive-Rollout algorithm for the 0–1 knapsack problem
follows the same structure as the analysis for the subset sum problem and makes use of
the properties described in Section 2.3. The development here assumes that the reader
is familiar with the subset sum analysis, so less detail is presented.

We use the same definition of the drop critical item L1 that was used on the subset
sum problem. From the algorithm description of Consecutive-Rollout and the gain
definition in (2.7), we have that the gain Z∗(n) satisfies

Z∗(n) = max

(
0,

L1−1∑

i=2

Pi −
K−1∑

i=1

Pi

)
. (2.155)

We will sometimes write Z∗(n) simply as Z∗. The following three lemmas bound the
gain Z∗(n) for different cases of the critical item, assuming n ≥ 3. Theorem 2.7 then
follows easily. We implicitly assume that

∑n
i=1Wi > B holds for the section.

Lemma 2.16. For K = n, the expected gain satisfies

E[Z∗(n)|K = n] =
1

9
. (2.156)

Proof. A positive gain can only obtained in the case where the last item becomes feasible
when removing the first. Consistent with our subset sum notation, let Dn+1 denote the
event where item n becomes feasible when the first item is removed. Using Lemma 2.4
and the perspective of Figure 2.1, this probability is given by

P(Dn+1|g, wn, Cn) = P(W1 ≥Wn −G|wn, g, Cn) = (1− wn + g). (2.157)

Integrating over G using Lemma 2.3 and Wn using Lemma 2.4 gives

P(Dn+1|Cn, wn) =

∫ wn

0
(1− wn + g)

1

wn
dg = 1− wn

2
, (2.158)
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P(Dn+1|Cn) =

∫ 1

0

(
1− wn

2

)
2wndwn =

2

3
. (2.159)

Now assuming that item n becomes feasible, we are interested in the case where it
provides a larger value. This is simply given by the probability

P(Pn ≥ P1) =
1

2
, (2.160)

following from the symmetry of the distributions of P1 and Pn. Conditioned on the
event Pn ≥ P1, we are interested in the distribution of the gain, which is equal to
Pn − P1. We have

P(Pn − P1 ≤ q|Pn ≥ P1) =
P(0 ≤ Pn − P1 ≤ q)

P(Pn ≥ P1)
. (2.161)

For the numerator,

P(0 ≤ Pn − P1 ≤ q) =

∫ 1−q

0

∫ p1+q

p1

dpndp1 +

∫ 1

1−q

∫ 1

p1

dpndp1

= q − q2

2
, (2.162)

which gives
P(Pn − P1 ≤ q|Pn ≥ P1) = 2q − q2, (2.163)

E[Pn − P1|Pn ≥ P1] =
1

3
. (2.164)

Finally, by the independence of item weight and profit, we have

E[Z∗(n)|Cn] = E[Pn − P1|Pn ≥ P1]P(Pn ≥ P1)P(Dn+1|Cn) =
1

3
· 1

2
· 2

3
=

1

9
. (2.165)

�

Lemma 2.17. For 2 ≤ K ≤ n− 1, the expected gain satisfies

E[Z∗(n)|2 ≤ K ≤ n] ≥ 59

288
≈ 0.205. (2.166)

Proof. We again let C1n be the event that 2 ≤ K ≤ n− 1. We fix K = k, and the proof
holds for all valid values of k. In the case of event C1n, it is possible that removing the
first item allows for the critical item to become feasible as well as additional items (i.e.
L1 ≥ k + 2). However, we are only guaranteed the existence of one item beyond the
critical item since it is possible that k = n− 1. Let Dk+1 indicate the event L1 = k+ 1,
and let D(k+2)+ indicate the event L1 ≥ k+2. If item k+2 does not exist (i.e. k = n−1),
then this event means that all remaining items are packed.



Sec. 2.5. Consecutive Rollout 75

For the probability of the event Dk+1, we have from Lemma 2.4 that W1 has distri-
bution U [0, 1]. Then,

P(Dk+1|g, wk, wk+1, C1n) = wk+1 − (wk − g + wk+1 − 1)+. (2.167)

This can be argued using an illustration similar to Figure 2.6, where the second term
mitigates that case where wk+1 extends beyond b+ 1 for B = b. Likewise, for the event
D(k+2)+, we have

P(D(k+2)+|g, wk, wk+1, C1n) = (1− wk + g − wk+1)+. (2.168)

Starting with event Dk+1, we integrate over Wk+1, which has uniform density by Lemma
2.4.

P(Dk+1|g, wk, C1n) =

∫ 1

0
P(Dk+1|g, wk, wk+1, C1n)fWk+1

(wk+1)dwk+1

=

∫ 1

0
wk+1dwk+1 −

∫ 1

1+g−wk
(wk − g + wk+1 − 1)dwk+1

=
1

2
− g2

2
+ gwk −

w2
k

2
. (2.169)

Marginalizing over G with Lemma 2.3 gives

P(Dk+1|wk, C1n) =

∫ 1

0
P(Dk+1|g, wk, C1n)fG|Wk

(g|wk)dg

=

∫ wk

0

(
1

2
− g2

2
+ gwk −

w2
k

2

)
1

wk
dg

=
1

2
− w2

k

6
. (2.170)

Finally, by Lemma 2.2,

P(Dk+1|C1n) =

∫ 1

0
P(Dk+1|wk, C1n)fWk

(wk)dwk

=

∫ 1

0

(
1

2
− w2

k

6

)
2wkdwk =

5

12
. (2.171)

Now for the event D(k+2)+, we integrate in the same order, using the same lemmas.

P(D(k+2)+|g, wk, C1n) =

∫ 1

0
P(D(k+2)+|g, wk, wk+1, C1n)fWk+1

(wk+1)dwk+1

=

∫ 1−wk+g

0
(1− wk + g − wk+1)dwk+1

=
1

2
+ g +

g2

2
− wk − gwk +

w2
k

2
. (2.172)
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P(D(k+2)+|wk, C1n) =

∫ 1

0
P(D(k+2)+|g, wk, C1n)fG|Wk

(g|wk)dg

=

∫ wk

0

(
1

2
+ g +

g2

2
− wk − gwk +

w2
k

2

)
1

wk
dg

=
1

2
− wk

2
+
w2
k

6
. (2.173)

P(D(k+2)+|C1n) =

∫ 1

0
P(D(k+2)+|C1n, wk)fWk

(wk)dwk

=

∫ 1

0

(
1

2
− wk

2
+
w2
k

6

)
2wkdwk =

1

4
. (2.174)

Equipped with these probabilities, we now consider the gain from the rollout for the
different drop critical item cases. For the case where only one item becomes feasible
(Dk+1), the analysis in the previous lemma holds, so we have

E[Pn − P1|C1n,Dk+1] = E[Pn − P1|Pn > P1]P(Pn > P1)P(Dk+1|C1n) =
1

3
· 1

2
· 5

12
=

5

72
.

(2.175)
If two or more items become feasible (D(k+1)+), we only consider the gain resulting
from adding two items, and this serves as a lower bound for the case of more items
becoming feasible. Accordingly, define

P ′ := Pk + Pk+1. (2.176)

The probability that the profits of the two items are greater than P1 is given by

P(P ′ ≥ P1) = 1− P(P ′ < P1) = 1−
∫ 1

0

∫ p1

0
p′dp′dp1 = 1−

∫ 1

0

p2
1

2
dp1 =

5

6
. (2.177)

The gain conditioned on the event P ′ > P1 is given by

P(P ′ − P1 ≤ q|P ′ ≥ P1) =
P(0 ≤ P ′ − P1 ≤ q)

P(P ′ ≥ P1)
. (2.178)

Proceeding with the numerator and assuming 0 ≤ q ≤ 1,

P(0 ≤ P ′ − P1 ≤ q) =

∫ 1−q

0

∫ p1+q

p1

p′dp′dp1 +

∫ 1

1−q

∫ 1

p1

p′dp′dp1

+

∫ 1

1−q

∫ p1+q

1
(2− p′)dp′dp1

=

∫ 1−q

0

(
p1q +

q2

2

)
dp1 +

∫ 1

1−q

(
1

2
− p2

1

2

)
dp1

+

∫ 1

1−q

(
−3

2
+ 2p1 −

p2
1

2
+ 2q − p1q −

q2

2

)
dp1

=
q

2
+
q2

2
− q3

3
, 0 ≤ q ≤ 1. (2.179)
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Now for 1 < q ≤ 2,

P(0 ≤ P ′ − P1 ≤ q) =

∫ 1

0

∫ 1

p1

p′dp′dp1 +

∫ 2−q

0

∫ p1+q

1
(2− p′)dp′dp1

+

∫ 1

2−q

∫ 2

1
(2− p′)dp′dp1

=

∫ 1

0

(
1

2
− p2

1

2

)
dp1

+

∫ 2−q

0

(
−3

2
+ 2p1 −

p2
1

2
+ 2q − p1q −

q2

2

)
dp1 +

1

2

∫ 1

2−q
dp1

= −1

2
+ 2q − q2 +

q3

6
, 1 < q ≤ 2. (2.180)

The distribution for the gain is thus given by

P(P ′ − P1 ≤ q|P ′ − P1 ≥ 0) =

{
3
5q + 3

5q
2 − 2

5q
3, 0 ≤ q ≤ 1,

−3
5 + 12

5 q − 6
5q

2 + 1
5q

3, 1 < q ≤ 2.
(2.181)

The expected value is

E[P ′−P1|P ′−P1 ≥ 0] =

∫ 1

0
q

(
3

5
+

6

5
q − 6

5
q2

)
dq+

∫ 2

1
q

(
12

5
− 12

5
q +

3

5
q2

)
dq =

13

20
.

(2.182)
Recalling that it is possible for more than two items to be added in the case D(k+2)+,
let P ′′ be the total value of items added for the case. We may bound the expected gain
as follows, where the term P(Dk|C1n) is omitted since it provides zero gain. We are
implicitly using the fact that item weights and profits are independent.

E[Z∗(n)|C1n] = E[P ′′ − P1|P ′′ > P1]P(P ′′ ≥ P1)P(D(k+2)+|C1n)

+E[Pn − P1|Pn ≥ P1]P(Pn ≥ P1)P(Dk+1|C1n)

≥ E[P ′ − P1|P ′ > P1]P(P ′ ≥ P1)P(D(k+2)+|C1n)

+E[Pn − P1|Pn ≥ P1]P(Pn ≥ P1)P(Dk+1|C1n)

=
13

20
· 5

6
· 1

4
+

1

3
· 1

2
· 5

12
=

59

288
. (2.183)

�

Lemma 2.18. For K = 1, the expected gain satisfies

E[Z∗(n)|K = 1] ≥ 5

24
≈ 0.208. (2.184)

Proof. We use the drop events D2, D3, and D4+ just as we did for the subset sum
problem. The event probabilities given G = g are the same as those for the subset sum
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problem. Accordingly,

P(D2|C1) =

∫ 1

0
P(D2|C1, g)fG(g)dg =

∫ 1

0
(1− g)(2− 2g)dg =

2

3
, (2.185)

P(D3|C1) =

∫ 1

0
P(D3|C1, g)fG(g)dg =

∫ 1

0

(
g − g2

2

)
(2− 2g)dg =

1

4
, (2.186)

P(D4+|C1) =
1

12
. (2.187)

The greedy solution gives zero value, so the expected gain is easily determined using
independence of item weights and profits,

E[Z∗|C1,D2] = 0, (2.188)

E[Z∗|C1,D3] = E[P2] =
1

2
, (2.189)

E[Z∗|C1,D4+] ≥ E[P2 + P3] = 1. (2.190)

Combining all cases for the drop critical item,

E[Z∗|C1] = E[Z∗|C1,D3]P(D3|C1) + E[Z∗|C1,D4+]P(D4+|C1)

≥ 1

2
· 1

4
+ 1 · 1

12
=

5

24
. (2.191)

�

The result for the knapsack problem then follows.

Proof of Theorem 2.7. The events C1, C1n, and Cn form a partition of the
event

∑n
i=1Wi > B, so using Lemma 2.1 gives

E

[
Z∗(n)

∣∣∣∣∣
n∑

i=1

Wi > B

]
= E[Z∗(n)|C1]P(C1) + E[Z∗(n)|C1n]P(C1n) + E[Z∗(n)|Cn]P(Cn)

≥ 5

24

(
1

n

)
+

59

288

(
n− 2

n

)
+

1

9

(
1

n

)
=
−26 + 59n

288n
. (2.192)

�

2.6 Rollout on Binary Decision Trees

In this section, we analyze a rollout algorithm on a completely different problem, that
of finding the shortest path from a root node to a leaf node in a binary decision tree.
This allows us to make some interesting observations about average-case and worst-case
performance of rollout algorithms that may apply in general. The binary tree model
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Figure 2.8. Binary decision tree of height H = 5. The goal of the problem is to find the shortest path
from the root node to any leaf node. The greedy algorithm chooses the path shown in bold and obtains
a cost equal to 5. The rollout algorithm, run at every iteration, chooses the dashed path, which has a
cost of 3. Running only the first iteration of the rollout algorithm gives the solution with the leaf node
labeled Rollout 1. The optimal solution is shown as dashed and has a cost equal to 2. Irrelevant edge
costs are not shown.



80 CHAPTER 2. ROLLOUT ALGORITHMS FOR KNAPSACK PROBLEMS

was studied by Karp and Pearl [81] and it inspired the result on the breakthrough
problem of Bertsekas [27].

Consider a binary decision tree represented by a directed graph, where each node
has two outgoing edges, except for the leaf nodes. We assume that the tree is perfect,
so that all leaf nodes have the same distance (in terms of number of edges) to the root
node. The height of the tree is the distance between the root node and leaf nodes. Each
edge e has a cost xe ∈ {0, 1}. Starting at the root node, the goal of the problem is
to find a path to any leaf node with the minimum cost. We visualize the problem as
moving from left to right to traverse the tree and choosing children nodes by moving
up or down, as shown in Figure 2.8.

A simple greedy algorithm for this problem does the following: at each node, choose
the outgoing edge with the smaller value and, in case of ties, always choose the upper
edge. The rollout algorithm combines lookahead with the greedy algorithm. At each
node, it looks ahead to both the upper and lower children nodes, estimates the future
cost of these nodes using the greedy algorithm, and then chooses the edge with the
lowest total cost. In case of ties, again, the rollout algorithm always chooses the upper
node.

For the instance shown in Figure 2.8, the greedy algorithm encounters a series of
ties at each level and takes the uppermost path shown in bold, yielding a cost equal
to 5. Running the first iteration of the rollout algorithm leads to the leaf node labeled
Rollout 1, which has an improved cost of 4. Running any additional iterations of the
rollout algorithm leads to the node labeled Rollout ∗, shown by the dashed path, giving
a total cost of 3. The rollout approach does not give the optimal solution in this
instance; the optimal path is the dotted path, which has a cost of 2.

We determine the average-case behavior of both the greedy and the rollout algorithm
on this problem when edge costs are independently equal to 1 with probability p and 0
otherwise. That is,

P(xe = 1) = p, ∀e ∈ E. (2.193)

We can immediately characterize the performance of the greedy algorithm using inde-
pendence. Let zG(H) denote the cost of the greedy algorithm on a binary decision tree
of height H.

Theorem 2.8. The cost of the greedy algorithm for the average-case model on a binary
decision tree of height H satisfies

E[zG(H)] = Hp2. (2.194)

Proof. The greedy algorithm is forced to take an edge with cost 1 only if both outgoing
edges have unit cost. This happens with probability p2. �
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There is not a simple closed-form expression for the expected performance of the
rollout algorithm (that we know of), but we find a recursion that allows us to compute
the expected performance. We derive this recursion by constructing a tree of height h
via joining two trees of height h − 1, which we refer to as the upper and lower trees.
Let the values obtained by the greedy and rollout algorithms from the root of the lower
tree be denoted by g1 and r1, respectively. Likewise, let the values for the upper tree
be denoted by g2 and r2. Let x1 and x2 denote the edge costs joining the tree rooted at
height h to the lower tree and upper tree, respectively. Finally, let g′ and r′ denote the
values of the greedy algorithm and rollout algorithm for the tree at height h. Based on
the description of the two algorithms and the tie-breaking rules, we have

g′ =

{
g1 + x1, x1 < x2,
g2 + x2, x1 ≥ x2,

(2.195)

r′ =

{
r1 + x1, g1 + x1 < g2 + x2,
r2 + x2, g1 + x1 ≥ g2 + x2.

(2.196)

This allows us to calculate the joint probability distribution for the rollout and greedy
costs on a tree of height h, given the joint distribution of costs for two trees at height
h− 1.

For a tree of height h, let Gh be the random variable for the greedy cost and let Rh
be the random variable for the rollout cost. We use the notation

P h(g, r) := P(Gh = g,Rh = r), (2.197)

which is nonzero for g = 0, . . . , h and r = 0, . . . , g, as the rollout cost can never be
greater than the greedy cost. For a node that we are interested in, we will use the
random variables X1 and X2 to denote the lower and upper outgoing edge costs, respec-
tively. In the following four lemmas, we evaluate P(Gh = g,Rh = r|X1 = x1, X2 = x2)
for the joint cases of (x1, x2). To simplify notation, we use

P h(g, r|x1, x2) := P(Gh = g,Rh = r|X1 = x1, X2 = x2). (2.198)

With further use of this notation, we observe by independence of two trees at height
h− 1 that

P h(g, r, g1, r1, g2, r2|x1, x2) = P(g, r|g1, r1, g2, r2, x1, x2)P h−1(g1, r1)P h−1(g2, r2)

(2.199)

and

P h(g, r|x1, x2) =
∑

g1,r1,g2,r2

P(g, r|g1, r1, g2, r2, x1, x2)P h−1(g1, r1)P h−1(g2, r2). (2.200)

In the following lemmas, we use the fact that P(g, r|g1, r1, g2, r2, x1, x2) is a deterministic
function based on (2.195) and (2.196).



82 CHAPTER 2. ROLLOUT ALGORITHMS FOR KNAPSACK PROBLEMS

Lemma 2.19. Given the joint distribution P h−1(·, ·) for a tree of height h−1, the joint
distribution P h(·, ·) at height h conditioned on the edges X1 = 0 and X2 = 0 is

P h(g, r|0, 0) =

g∑

r2=0

P h−1(g, r2)

g−1∑

g1=r

P h−1(g1, r) + P h−1(g, r)

h−1∑

g1=g

g1∑

r1=0

P h−1(g1, r1).

(2.201)

Proof. We have G′ = G2 and

R′ =

{
R1, G1 < G2,
R2, G1 ≥ G2.

(2.202)

Next,

P h(g, r|0, 0) =
∑

g1,g2:g1<g2

∑

r1,r2

P (g, r|g1, r1, g2, r2, 0, 0)P h−1(g1, r1)P h−1(g2, r2)

+
∑

g1,g2:g1≥g2

∑

r1,r2

P (g, r|g1, r1, g2, r2, 0, 0)P h−1(g1, r1)P h−1(g2, r2).

(2.203)

For the first term,
∑

g1,g2:g1<g2

∑

r1,r2

P (g, r|g1, r1, g2, r2, 0, 0)P h−1(g1, r1)P h−1(g2, r2)

=
∑

g1,g2:g1<g2

∑

r1,r2

1(G2 = g,R1 = r)P h−1(g1, r1)P h−1(g2, r2)

=
∑

g1:g1<g

∑

r2

P h−1(g1, r)P
h−1(g, r2)

=

g∑

r2=0

P h−1(g, r2)

g−1∑

g1=r

P h−1(g1, r). (2.204)

For the second term,
∑

g1,g2:g1≥g2

∑

r1,r2

P (g, r|g1, r1, g2, r2, 0, 0)P h−1(g1, r1)P h−1(g2, r2)

=
∑

g1,g2:g1≥g2

∑

r1,r2

1(G2 = g,R2 = r)P h−1(g1, r1)P h−1(g2, r2)

=
∑

g1:g1≥g

∑

r1

P h−1(g1, r1)P h−1(g, r)

= P h−1(g, r)

h−1∑

g1=g

g1∑

r1=0

P h−1(g1, r1). (2.205)

�
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Lemma 2.20. Given the joint distribution P h−1(·, ·) for a tree of height h−1, the joint
distribution P h(·, ·) at height h conditioned on the edges X1 = 0 and X2 = 1 is

P h(g, r|0, 1) =

g∑

r1=0

P h−1(g, r1)

g−1∑

g2=r−1

P h−1(g2, r − 1)

+ P h−1(g, r)

h−1∑

g2=g

g2∑

r2=0

P h−1(g2, r2). (2.206)

Proof. We have G′ = G1 and

R′ =

{
R1, G1 < G2 + 1,
R2 + 1, G1 ≥ G2 + 1.

(2.207)

P h(g, r|0, 1) =
∑

g1,g2:g1<g2+1

∑

r1,r2

P (g, r|g1, r1, g2, r2, 0, 1)P h−1(g1, r1)P h−1(g2, r2)

+
∑

g1,g2:g1≥g2+1

∑

r1,r2

P (g, r|g1, r1, g2, r2, 0, 1)P h−1(g1, r1)P h−1(g2, r2).

(2.208)

For the first term,
∑

g1,g2:g1<g2+1

∑

r1,r2

P (g, r|g1, r1, g2, r2, 0, 1)P h−1(g1, r1)P h−1(g2, r2)

=
∑

g1,g2:g1<g2+1

∑

r1,r2

1(G1 = g,R1 = r)P h−1(g1, r1)P h−1(g2, r2)

=
∑

g2:g<g2+1

∑

r2

P h−1(g, r)P h−1(g2, r2)

= P h−1(g, r)

h−1∑

g2=g

g2∑

r2=0

P h−1(g2, r2). (2.209)

For the second term,
∑

g1,g2:g1≥g2+1

∑

r1,r2

P (g, r|g1, r1, g2, r2, 0, 1)P h−1(g1, r1)P h−1(g2, r2)

=
∑

g1,g2:g1≥g2+1

∑

r1,r2

1(G1 = g,R2 = r − 1)P h−1(g1, r1)P h−1(g2, r2)

=
∑

g2:g≥g2+1

∑

r1

P h−1(g, r1)P h−1(g2, r − 1)

=

g∑

r1=0

P h−1(g, r1)

g−1∑

g2=r−1

P h−1(g2, r − 1). (2.210)

�
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Lemma 2.21. Given the joint distribution P h−1(·, ·) for a tree of height h−1, the joint
distribution P h(·, ·) at height h conditioned on the edges X1 = 1 and X2 = 0 is

P h(g, r|1, 0) =

g∑

r2=0

P h−1(g, r2)

g−2∑

g1=r−1

P h−1(g1, r − 1)

+ P h−1(g, r)
h−1∑

g1=g−1

g1∑

r1=0

P h−1(g1, r1). (2.211)

Proof. We have G′ = G2 and

R′ =

{
R1 + 1, G1 + 1 < G2,
R2, G1 + 1 ≥ G2.

(2.212)

P h(g, r|1, 0) =
∑

g1,g2:g1+1<g2

∑

r1,r2

P (g, r|g1, r1, g2, r2, 1, 0)P h−1(g1, r1)P h−1(g2, r2)

+
∑

g1,g2:g1+1≥g2

∑

r1,r2

P (g, r|g1, r1, g2, r2, 1, 0)P h−1(g1, r1)P h−1(g2, r2).

(2.213)

For the first term,
∑

g1,g2:g1+1<g2

∑

r1,r2

P (g, r|g1, r1, g2, r2, 1, 0)P h−1(g1, r1)P h−1(g2, r2)

=
∑

g1,g2:g1+1<g2

∑

r1,r2

1(R1 = r − 1, G2 = g)P h−1(g1, r1)P h−1(g2, r2)

=
∑

g1:g1+1<g

∑

r2

P h−1(g1, r − 1)P h−1(g, r2)

=

g∑

r2=0

P h−1(g, r2)

g−2∑

g1=r−1

P h−1(g1, r − 1). (2.214)

For the second term,
∑

g1,g2:g1+1≥g2

∑

r1,r2

P (g, r|g1, r1, g2, r2, 1, 0)P h−1(g1, r1)P h−1(g2, r2)

=
∑

g1,g2:g1+1≥g2

∑

r1,r2

1(G2 = g,R2 = r)P h−1(g1, r1)P h−1(g2, r2)

=
∑

g1:g1+1≥g

∑

r1

P h−1(g1, r1)P h−1(g, r)

= P h−1(g, r)
h−1∑

g1=g−1

g1∑

r1=0

P h−1(g1, r1). (2.215)

�
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Lemma 2.22. Given the joint distribution P h−1(·, ·) for a tree of height h−1, the joint
distribution P h(·, ·) at height h conditioned on the edges X1 = 1 and X2 = 1 is

P h(g, r|1, 1) =

g−1∑

r2=0

P h−1(g − 1, r2)

g−2∑

g1=r−1

P h−1(g1, r − 1)

+ P h−1(g − 1, r − 1)

h−1∑

g1=g−1

g1∑

r1=0

P h−1(g1, r1). (2.216)

Proof. We have G′ = G2 + 1 and

R′ =

{
R1 + 1, G1 < G2,
R2 + 1, G1 ≥ G2.

(2.217)

P h(g, r|1, 1) =
∑

g1,g2:g1<g2

∑

r1,r2

P (g, r|g1, r1, g2, r2, 1, 1)P h−1(g1, r1)P h−1(g2, r2)

+
∑

g1,g2:g1≥g2

∑

r1,r2

P (g, r|g1, r1, g2, r2, 1, 1)P h−1(g1, r1)P h−1(g2, r2).

(2.218)

For the first term,
∑

g1,g2:g1<g2

∑

r1,r2

P (g, r|g1, r1, g2, r2, 1, 1)P h−1(g1, r1)P h−1(g2, r2)

=
∑

g1,g2:g1<g2

∑

r1,r2

1(G2 = g − 1, R1 = r − 1)P h−1(g1, r1)P h−1(g2, r2)

=
∑

g1:g1<g−1

∑

r2

P h−1(g1, r − 1)P h−1(g − 1, r2)

=

g−1∑

r2=0

P h−1(g − 1, r2)

g−2∑

g1=r−1

P h−1(g1, r − 1). (2.219)

For the second term,
∑

g1,g2:g1≥g2

∑

r1,r2

P (g, r|g1, r1, g2, r2, 1, 1)P h−1(g1, r1)P h−1(g2, r2)

=
∑

g1,g2:g1≥g2

∑

r1,r2

1(G2 = g − 1, R2 = r − 1)P h−1(g1, r1)P h−1(g2, r2)

=
∑

g1:g1≥g−1

∑

r1

P h−1(g1, r1)P h−1(g − 1, r − 1)

= P h−1(g − 1, r − 1)

h−1∑

g1=g−1

g1∑

r1=0

P h−1(g1, r1). (2.220)

�



86 CHAPTER 2. ROLLOUT ALGORITHMS FOR KNAPSACK PROBLEMS

We can now state the full recursion.

Theorem 2.9. Given the joint distribution P h−1(·, ·) for a tree of height h − 1, the
joint distribution P h(·, ·) at height h satisfies

Ph(g, r) = (1− p)2
(

g∑
r2=0

Ph−1(g, r2)

g−1∑
g1=r

Ph−1(g1, r) + Ph−1(g, r)

h−1∑
g1=g

g1∑
r1=0

Ph−1(g1, r1)

)

+ p(1− p)

(
g∑

r1=0

Ph−1(g, r1)

g−1∑
g2=r−1

Ph−1(g2, r − 1) + Ph−1(g, r)

h−1∑
g2=g

g2∑
r2=0

Ph−1(g2, r2)

)

+ p(1− p)

(
g∑

r2=0

Ph−1(g, r2)

g−2∑
g1=r−1

Ph−1(g1, r − 1) + Ph−1(g, r)

h−1∑
g1=g−1

g1∑
r1=0

Ph−1(g1, r1)

)

+ p2
(
g−1∑
r2=0

Ph−1(g − 1, r2)

g−2∑
g1=r−1

Ph−1(g1, r − 1) + Ph−1(g − 1, r − 1)

h−1∑
g1=g−1

g1∑
r1=0

Ph−1(g1, r1)

)
,

(2.221)

for h ≥ 2.

Proof. This follows using the total probability theorem with the previous four lemmas.
�

We evaluate the above recursion computationally to determine the expected per-
formance of the rollout algorithm. Note that we start our recursion at height h = 1
with

P 1(g, r) =





1− p2, g = 0 and r = 0,
0, g = 1 and r = 0,
p2, g = 1 and r = 1.

(2.222)

Results of the recursion for three values of p and tree heights ranging up to H = 50 are
shown in Figure 2.9. The plots show the expected performance of the greedy algorithm,
given by Theorem 2.8, the rollout algorithm when run at every iteration, calculated
using Theorem 2.9, and the result from the first iteration of the rollout algorithm (and
using greedy thereafter). The first iteration data correspond to mean values over 105

simulations.
These average-case results show that while a significant performance gain is achieved

with only the first iteration of the rollout algorithm, there is a clear benefit to running
additional iterations. For p = 0.25 and H = 50, for instance, the first iteration of the
rollout algorithm gives an expected cost equal to 75% of the expected greedy cost, while
running every iteration gives an expected cost equal to 30% of the expected greedy cost.
Interestingly, this same behavior is not seen from a worst-case perspective. Figure 2.10
shows an instance where a small improvement in performance is made from the first
iteration, but no improvements can be made with following iterations. This is a result
of the fact that the first iteration of the rollout algorithm mistakenly chooses the lower
tree, which does not contain an optimal path. We formalize this with the following
theorem.
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(b) p = 0.5
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(c) p = 0.75

Figure 2.9. Average-case results of rollout algorithms on binary decision tree for (a) p = 0.25, (b)
p = 0.5, and (c) p = 0.75. Expected costs are shown for the greedy algorithm, the first iteration of the
rollout algorithm, and the rollout algorithm run at every iteration (corresponding to H iterations total).
The first iteration results are the mean values from 105 simulations, and the results for all iterations
are are calculated using Theorem 2.9.
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Figure 2.10. Example demonstrating poor worst-case performance of rollout procedure even if the
rollout algorithm is run at every iteration. During the first iteration, the rollout algorithm chooses the
lower edge. Thereafter, it takes the upper edge at each node. The final path chosen by the rollout
algorithm is shown as dashed and has a cost of 4. The optimal path is shown as dotted and has a cost
of 2. This example can be generalized so that for any tree of height H ≥ 4, the cost obtained by the
rollout algorithm is H − 1, while the optimal cost is equal to 2.
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Theorem 2.10. For every height H ≥ 4, there exists a binary decision tree for which
the performance of the rollout algorithm, run at every iteration, obtains a cost zR(H) =
H − 1, while the optimal cost is z∗(H) = 2.

Proof. The example for H = 5 is shown in Figure 2.10. The problem instance can be
easily generalized to larger values of H. �

The strong average-case performance and the poor worst-case performance may
be characteristic of the rollout approach for many problems, including the knapsack
problem. As we noted at the beginning of this chapter for the knapsack problem, using
the decreasing density greedy algorithm gives a worst-case performance guarantee of
1/2, and the first iteration of the rollout algorithm improves the guarantee to 2/3 [26].
Yet, it is not possible to guarantee benefits from additional iterations in the worst
case. As shown in Figure 2.2 for the subset sum problem, however, performance gains
are observable (using the Exhaustive-Rollout algorithm) for iterations beyond the
first iteration in the average case. It may be possible to prove that these performance
improvements hold; this is a topic for future research.

2.7 Discussion

We have shown strong performance bounds for both the Consecutive-Rollout and
Exhaustive-Rollout algorithms on the subset sum problem and 0–1 knapsack prob-
lem. These results hold after only a single iteration and provide bounds for additional
iterations. Simulations indicate that these bounds are very close in comparison with
realized performance of a single iteration. We have also characterized the asymptotic
behavior (asymptotic with respect to the total number of items) of the expected per-
formance of both rollout techniques for the two problems.

The results for Exhaustive-Rollout are particularly interesting. It is remarkable
how simple the expression is for the bound on the Exhaustive-Rollout algorithm
(Theorem 2.2), despite the extensive analysis necessary to prove it. This is evidence
that there may be a simpler proof. A commonly cited drawback of average-case analysis
is that it does not lead to simple, intuitive bounds for small problem instances [47, 133].
Theorem 2.2 seems to be an exception to this rule. Nonetheless, a slight modification to
stochastic subset sum model, namely the stochastic knapsack model that we have used,
leads to an unwieldy expression (Theorem 2.4). Apart from the asymptotic behavior
that this expression gives, it is difficult to argue that this result is useful. In some sense,
this is a negative result, suggesting that average-case bounds for rollout algorithms on
more elaborate problems are likely to become analytically intricate.

In the previous section, we looked at rollout algorithms on binary trees and made an
important observation: running the rollout algorithm beyond the first iteration proved
beneficial in the average case but not in the worst case. This appears to also be true
for knapsack problems. There are provable gains from the first iteration in both the
worst case (due to Bertazzi [26]) and the average case (from this chapter). In the
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worst case, Bertazzi showed an example where it is not possible to guarantee additional
improvements with more iterations. This is not true in the average case. For the
stochastic models used in this chapter, it can be verified via simulation (as we did for
Figure 2.2) that additional performance gains are obtained with more iterations. Note
also that the example problem that we presented shows gains after the first iteration
for both rollout algorithms.

It may be possible to make theoretical statements about this behavior. That is, it
may be possible to prove average-case performance bounds resulting from additional
iterations on the stochastic models. However, this is likely to become cumbersome. Such
an analysis likely requires working with the full distribution of the gap after the first
iteration, rather than just the expected value. More importantly, the useful property
that non-critical item weights remain independently distributed on U [0, 1] (specifically
Lemma 2.2) does not seem to hold for the remaining items after the first iteration of
the rollout has occurred.

Apart from obtaining bounds from additional iterations, there is certainly an op-
portunity in finding tighter versions of our results in future research, though it is not
obvious how this should be done. For both the consecutive and the exhaustive roll-
out techniques, considering the contribution of each additional packed item to the final
minimum gap adds a dimension to the space of variables that must be integrated over,
and these integrals are already complex. In general, finding the expected value of the
minimum of many random variables can be difficult. A different topic is to still con-
sider only the first iteration of the rollout algorithm, but with a larger lookahead length
(e.g. trying all pairs of items for the exhaustive rollout, rather than just each item in-
dividually). From the worst-case perspective, it seems easier to analyze this case than
the effect of additional iterations (see, e.g. results on partial enumeration [89, 125]).
Average-case analysis here might be manageable.

The ideal result for rollout algorithms in general would be a combination of a compu-
tationally difficult problem, a corresponding stochastic model, and a simple expression
describing the expected performance gain as a function of the number of iterations run.
While this is a lofty goal, such a problem/result with some of these characteristics may
be found in the field of random graphs. A proof technique that accounts for multiple
iterations from an average-case perspective will have to handle the stochastic evolution
of the rollout solution. On the binary decision tree, for example, we can think of the
state of the system at each level as the remaining cost of the best currently selected
path. This changes in a random fashion, of course, but it may be concentrated around a
deterministic path. A common approach for such a scenario is the differential equation
method of Kurtz [97] and Wormald [148]. In fact, we will see in Chapter 3 that the
differential equation method can be used to analyze a simple rollout algorithm on ran-
dom 2-regular bipartite graphs, where every iteration is accounted for. The problem of
matching on 2-regular bipartite graphs is trivial, though, and the algorithm that we use
there as a base policy is a bit contrived. The difficulty in using the differential equation
method on the binary decision tree, or on random structures in general, is that sums
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of independent random variables usually lead to normal distributions, which are less
tractable analytically.

While daunting, it is desirable to have theoretical results for more complex problems,
both in the worst case and average case. Studying problems with multidimensional
state space is appealing since these are the types of problems where rollout techniques
are often used and perform well in practice. In this direction, it would be useful to
consider problems such as the bin packing problem, the multiple knapsack problem,
and the multidimensional knapsack problem. Finally, it would be interesting to see
how effective the rollout approach is in a game-theoretic setting. In a dynamic two-
person game, for instance, a base policy would have to state a strategy for a player as
well as an opponent. To our knowledge, this topic has not been considered, although
there has been some work on lookahead search in game playing [109].
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2.8 Evaluations of Integrals

The following lemma is used in integral evaluations described in this section.

Lemma 2.23. For constant values κ1, κ2 and nonnegative integer θ,

∫
(κ1 + κ2x)θ

x
dx = κθ1 log(x) +

θ∑

j=1

κθ−j1 (κ1 + κ2x)j

j
. (2.223)

Proof. We begin by noting that

∫
(κ1 + κ2x)θ

x
dx =

∫
κ2(κ1 + κ2x)θ−1dx+

∫
κ1(κ1 + κ2x)θ−1

x
dx

=
(κ1 + κ2x)θ

θ
+ κ1

∫
(κ1 + κ2x)θ−1

x
dx. (2.224)

The statement of the lemma clearly holds for θ = 0. Assuming that it holds for θ = t,
we have for θ = t+ 1,

∫
(κ1 + κ2x)t+1

x
dx =

(κ1 + κ2x)t+1

t+ 1
+ κ1


κt1 log(x) +

t∑

j=1

κt−j1 (κ1 + κ2x)j

j




= κt+1
1 log(x) +

t+1∑

j=1

κt+1−j
1 (κ1 + κ2x)j

j
. (2.225)

The property then holds for all θ by induction.
�

2.8.1 Evaluation of Integral (2.40)

To simplify expressions, we use A := WK−1. Also recall that M := n−K. The integral
is

P(V u
∗ > v|m, C1)

=

∫ 1

0

∫ 1

0
P(G > v|a, g, C1)P(Ṽ u > v|a, g, C1)

(
P(V u > v|a, g, C1)

)m
fA(a)fG(g)dadg.

(2.226)

This may be evaluated by considering regions where the arguments have simple analyt-
ical descriptions as a function of a and g. We begin by noting that P(G > v|a, g, C1) =
1(v < g), so we may restrict our analysis to regions where v < g. For the integral
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evaluation of (a, g) ∈ Rj , we use the notation

ρj(v,m)

=

∫∫

Rj

P(G > v|a, g, C1)P(Ṽ u > v|a, g, C1)
(
P(V u > v|a, g, C1)

)m
fA(a)fG(g)dadg.

(2.227)

The relevant regions are shown in Figure 2.11, where different enumerations are neces-
sary for v ≤ 1

2 and v > 1
2 . The values of (P(V u > v|a, g, C1))m and P(Ṽ u > v|a, g, C1)

are shown in Table 2.2. Note that in many cases, the 1
1−g factor from P(G > v|a, g, C1)

cancels with the (1− g) factor from fG(g), which simplifies the expression.

Table 2.2. Arguments of (2.40) for regions shown in Figure 2.11.

Region (P(V u > v|a, g, C1))m P(Ṽ u > v|a, g, C1)

R1 (1− v − a)m (1− g − a)/(1− g)
R2 (g − v)m 0
R3 (1− 2v)m (1− g − v)/(1− g)
R4 (a+ g − 2v)m (a− v)/(1− g)
R5 (a+ g − 2v)m (a− v)/(1− g)
R6 (1− v)m 1

R7 (1− v − a)m (1− g − a)/(1− g)
R8 (g − v)m 0
R9 (a+ g − 2v)m (a− v)/(1− g)
R10 (1− v)m 1

g

v

(w3 − g)

1
w1

V

(1− w3 + g − v)

g

v

1

V

(w2 − g)

w3

(1− w2 + g − w3 − v)(w3 − v)

w1

g
v

v

1

1

1 + v

g
v

v

1

1

(a) (b)

g + a > v + 1

g + a < 1 g + a < 1

g + a > v + 1

aa

R1
R2

R3 R5

R4

R6

R7

R8

R9

R10

Figure 2.11. Integration regions for (a) v ≤ 1
2

and (b) v > 1
2
.
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Regions 1-6 correspond to the case where v ≤ 1
2 .

ρ1(v,m) =

∫ v

0

∫ 1−a

v
2(1− v − a)m(1− g − a)dgda =

∫ v

0
(1− a− v)2+mda

=
−(1− 2v)3+m + (1− v)3+m

3 +m
. (2.228)

ρ2(v,m) = 0. (2.229)

ρ3(v,m) =

∫ 1−v

v

∫ 1−a

v
2(1− 2v)m(1− g − v)dgda

=

∫ 1−v

v
(3v − a− 1)(1− 2v)m(v + a− 1)da

=
2

3
(1− 2v)3+m. (2.230)

ρ4(v,m)

=

∫ 1−v

v

∫ v+1−g

1−g
2(a+ g − 2v)m(a− v)dadg

=
1

(1 +m)(2 +m)

∫ 1−v

v

(
−2(1− 2v)1+m + 4g(1− 2v)1+m − 2m(1− 2v)1+m

+ 2gm(1− 2v)1+m + 2(1− v)1+m − 4g(1− v)1+m + 2m(1− v)1+m − 2gm(1− v)1+m

+ 2m(1− 2v)1+mv + 2(1− v)1+mv
)

dg

=
1

(1 +m)(2 +m)

(
m(1− 2v)3+m +m(1− v)m + 2(1− v)mv − 3m(1− v)mv

−6(1− v)mv2 + 2m(1− v)mv2 + 4(1− v)mv3
)
. (2.231)

ρ5(v,m)

=

∫ 1

1−v

∫ 1+v−g

v
2(a+ g − 2v)m(a− v)dadg

=
1

(1 +m)(2 +m)

∫ 1

1−v

(
2(1− v)1+m − 4g(1− v)1+m + 2m(1− v)1+m

−2gm(1− v)1+m + 2(g − v)2+m + 2(1− v)1+mv
)

dg

=
1

(1 +m)(2 +m)(3 +m)

(
−2(1− 2v)3+m + 2(1− v)1+m − 10(1− v)1+mv

−2m(1− v)1+mv + 14(1− v)1+mv2 + 7m(1− v)1+mv2 +m2(1− v)1+mv2
)
. (2.232)



Sec. 2.8. Evaluations of Integrals 95

ρ6(v,m) =

∫ 1

v

∫ 1

1+v−g
(1− v)m(2− 2g)dadg

=

∫ 1

v
(2− 2g)(1− v)m(g − v)dg =

1

3
(1− v)3+m. (2.233)

Summing all terms of P(V u
∗ > v|m, C1) for v ≤ 1

2 gives

P(V u
∗ > v|m, C1)≤ 1

2

:= ρ1(v,m) + ρ2(v,m) + ρ3(v,m) + ρ4(v,m) + ρ5(v,m) + ρ6(v,m)

=
1

3(3 +m)

(
2m(1− 2v)m +m(1− v)m + 9(1− v)3+m − 12m(1− 2v)mv

− 3m(1− v)mv + 24m(1− 2v)mv2 + 3m(1− v)mv2 − 16m(1− 2v)mv3

−m(1− v)mv3
)
. (2.234)

Regions 7-10 are for the case v > 1
2 .

ρ7(v,m) =

∫ 1

v

∫ 1−g

0
2(1− v − a)m(1− g − a)dadg

=
1

(1 +m)(2 +m)

∫ 1

v

(
2(1− v)1+m − 4g(1− v)1+m + 2m(1− v)1+m

−2gm(1− v)1+m +2(g − v)2+m + 2(1− v)1+mv
)

dg =
(1− v)3+m

3 +m
.

(2.235)

ρ8(v,m) = 0. (2.236)

ρ9(v,m) =

∫ 1

v

∫ 1+v−g

v
2(a+ g − 2v)m(a− v)dadg

=
1

(1 +m)(2 +m)

∫ 1

v

(
2(1− v)1+m − 4g(1− v)1+m + 2m(1− v)1+m

−2gm(1− v)1+m + 2(g − v)2+m + 2(1− v)1+mv
)

dg =
(1− v)3+m

3 +m
.

(2.237)

ρ10(v,m) =

∫ 1

v

∫ 1

1+v−g
(1− v)m(2− 2g)dadg

=

∫ 1

v
(2− 2g)(1− v)m(g − v)dg =

1

3
(1− v)3+m. (2.238)

Summing these terms yields for v > 1
2 ,

P(V u
∗ > v|m, C1)> 1

2
:= ρ7(v,m) + ρ8(v,m) + ρ9(v,m) + ρ10(v,m)

=
1

3
(1− v)3+m +

2(1− v)3+m

3 +m
. (2.239)
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In summary, we have

P(V u
∗ > v|m, C1) =

{
P(V u

∗ > v|m, C1)≤ 1
2
, v ≤ 1

2 ,

P(V u
∗ > v|m, C1)> 1

2
, v > 1

2 .
(2.240)

2.8.2 Evaluation of Integral (2.79)

We wish to evaluate

P(Z l∗ ≤ z|m, C1)E :=

∫ 1

0

∫ 1−g

0
P(Z l∗ ≤ z|g, a,m, C1)EfA(a)fG(g)dadg, (2.241)

where

P(Z l∗ ≤z|g, a,m, C1)E

= z(1− g + gz)m +
(1− g + gz)m+1(1− g +m− gm− gz)

(1− g)a(m+ 1)(m+ 2)

− (1− g + gz + a(1− z))m+1 (1− g +m− gm− gz + a(−1−m+ z +mz))

(1− g)a(m+ 1)(m+ 2)
.

(2.242)

We first determine the following using the fact that A follows distribution U [0, 1]

∫
P(Z l∗ ≤ z|g, a,m, C1)EfA(a)da =

∫
P(Z l∗ ≤ z|g, a,m, C1)Eda. (2.243)

The following constants simplify the expression:

λ1 := 1− g + gz, (2.244)

λ2 := z − 1, (2.245)

λ3 := 1− g +m− gm− gz, (2.246)

λ4 := −1−m+ z +mz, (2.247)

λ5 :=
−1

(1− g)(m+ 1)(m+ 2)
. (2.248)
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This gives
∫

P(Z l∗ ≤ z|g, a,m, C1)Eda

=

∫ (
zλm1 −

λ5λ3λ
m+1
1

a
+ λ5λ3

(λ1 + aλ2)m+1

a
+ λ5λ4(λ1 + aλ2)m+1

)
da

= azλm1 − λ5λ3λ
m+1
1 log(a) + λ5λ3


λm+1

1 log(a) +

m+1∑

j=1

λm+1−j
1 (λ1 + λ2a)j

j




+
λ5λ4

λ2(m+ 2)
(λ1 + λ2a)m+2

= azλm1 + λ5λ3

m+1∑

j=1

λm+1−j
1 (λ1 + λ2a)j

j
+

λ5λ4

λ2(m+ 2)
(λ1 + λ2a)m+2, (2.249)

where we have made use of the integral identity from Lemma 2.23. Evaluating over the
domain of integration gives

∫ 1−g

0
P(Z l∗ ≤ z|g, a,m, C1)Eda

= (1− g)zλm1 + λ5λ3



m+1∑

j=1

λm+1−j
1 zj

j
− λm+1

1 H(m+ 1)




+
λ5λ4(zm+2 − λm+2

1 )

λ2(m+ 2)
. (2.250)

Next, we calculate

∫ 1

0

∫ 1−g

0
P(Z l∗ ≤ z|g, a,m, C1)EfA(a)fG(g)dadg

=

∫ 1

0

(∫ 1−g

0
P(Z l∗ ≤ z|g, a,m, C1)Eda

)
(2− 2g)dg.

(2.251)

We integrate each additive term separately:

ρ1(m, z) =

∫ 1

0
(1− g)zλm1 (2− 2g)dg

=

∫ 1

0
2(1− g)2z(1− g + gz)mdg

= −2z
(
2 +m2(−1 + z)2 +m(−1 + z)(−3 + 5z)− 2z

(
3− 3z + z2+m

))

(1 +m)(2 +m)(3 +m)(−1 + z)3
.

(2.252)



98 CHAPTER 2. ROLLOUT ALGORITHMS FOR KNAPSACK PROBLEMS

ρ2j(m, z) =

∫ 1

0
λ5λ3

λm+1−j
1 zj

j
(2− 2g)dg

=

∫ 1

0
−2(1− g +m− gm− gz)(1− g + gz)m+1−jzj

(m+ 1)(m+ 2)j
dg

=
2z3+m(j + (2 +m)(−2 + z)− jz)

j(−3 + j −m)(−2 + j −m)(1 +m)(2 +m)(−1 + z)2

+
2zj(−j(1 +m)(−1 + z) + (2 +m)(−1 +m(−1 + z) + 2z))

j(−3 + j −m)(−2 + j −m)(1 +m)(2 +m)(−1 + z)2
.

(2.253)

ρ3(m, z) =

∫ 1

0
−λ5λ3λ

m+1
1 H(m+ 1)(2− 2g)dg

=

∫ 1

0

2H(m+ 1)(1− g +m− gm− gz)(1− g + gz)m+1

(m+ 1)(m+ 2)
dg

= −2H(m+ 1)
(
−1 +m(−1 + z) + 2z + (−2 + z)z3+m

)

(1 +m)(2 +m)(3 +m)(−1 + z)2
. (2.254)

ρ4(m, z) =

∫ 1

0

λ5λ4(zm+2 − λm+2
1 )

λ2(m+ 2)
(2− 2g)dg

= −2(−1−m+ z +mz)(zm+2 − (1− g + gz)m+2)

(m+ 1)(m+ 2)2(−1 + z)
dg

= − 2

(2 +m)2(3 +m)(−1 + z)
− 2z2+m

(2 +m)2
+

2z3+m

(2 +m)2(3 +m)(−1 + z)
.

(2.255)

With these terms, we have

P(Z l∗ ≤ z|m, E , C1) = ρ1(m, z) +

m+1∑

j=1

ρ2j(m, z) + ρ3(m, z) + ρ4(m, z). (2.256)

2.8.3 Evaluation of Integral (2.94)

The integral is

P(Z l∗ ≤ z|m, C1)E =

∫ 1

0
gP(Z l∗ ≤ z|g, a,m, C1)EfG(g)dg, (2.257)

where

P(Z l∗ ≤ z|g, a,m, C1)E = z(1− g + gz)m − (1− 2g + (1− g)m)z2+m

(1− g)2(1 +m)(2 +m)

+
((1− g)(1 +m)− gz)(1− g + gz)1+m

(1− g)2(1 +m)(2 +m)
. (2.258)
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For the first term in P(Z l∗ ≤ z|m, C1)E ,

∫ 1

0
gz(1− g + gz)m(2− 2g)dg = −2z

(
1 +m− 3z −mz + z2+m(3 +m− (1 +m)z)

)

(1 +m)(2 +m)(3 +m)(−1 + z)3
.

(2.259)

To find the indefinite integral of the second term in P(Z l∗ ≤ z|m, C1)E , we use the
substitution g = 1− e.

∫
−2g(1− 2g + (1− g)m)z2+m

(1− g)(1 +m)(2 +m)
dg

=

∫
2(1− e)(1− 2(1− e) + em)zm+2

e(m+ 1)(m+ 2)
de

=

∫
(−2 + 2e(m+ 3)− 2e2(m+ 2))zm+2

e(m+ 1)(m+ 2)
de

=

∫ −2zm+2

e(m+ 1)(m+ 2)
de+

∫
2(m+ 3)zm+2

(m+ 1)(m+ 2)
de+

∫ −2ezm+2

(m+ 1)
de

=
−2zm+2

(m+ 1)(m+ 2)
log(e) +

2e(3 +m)zm+2

(m+ 1)(m+ 2)
− e2zm+2

(m+ 1)
. (2.260)

For the indefinite integral of the final term in P(Z l∗ ≤ z|m, C1)E , we again use the
substitution g = 1− e.

∫
2g((1− g)(1 +m)− gz)(1− g + gz)1+m

(1− g)(1 +m)(2 +m)
dg

=

∫ −2(1− e)(e(m+ 1)− (1− e)z)(1 + (1− e)(z − 1))m+1

e(m+ 1)(m+ 2)
de

=

∫
(2z − 2e(1 +m+ 2z)− 2e2(−1−m− z))(z + e(1− z))m+1

e(m+ 1)(m+ 2)
de

=

∫
2z(z + e(1− z))m+1

e(m+ 1)(m+ 2)
de+

∫ −2(1 +m+ 2z)(z + e(1− z))m+1

(m+ 1)(m+ 2)
de

+

∫ −2e(−1−m− z)(z + e(1− z))m+1

(m+ 1)(m+ 2)
de

=
2z

(m+ 1)(m+ 2)


zm+1 log(e) +

m+1∑

j=1

zm+1−j(z + e(1− z))j
j




−2(1 +m+ 2z)(z + e(1− z))m+2

(m+ 1)(m+ 2)2(1− z) − 2e(−1−m− z)(z + e(1− z))m+2

(m+ 1)(m+ 2)2(1− z)

+
2(−1−m− z)(z + e(1− z))m+3

(m+ 1)(m+ 2)2(m+ 3)(1− z)2
. (2.261)
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Note that we have used the integral identity from Lemma 2.23. For the second and
third terms, we have

∫ 1

0

(
((1− g)(1 +m)− gz)(1− g + gz)1+m

(1− g)2(1 +m)(2 +m)
− (1− 2g + (1− g)m)z2+m

(1− g)2(1 +m)(2 +m)

)
dg

=
2z

(m+ 1)(m+ 2)

m+1∑

j=1

zm+1−j(z + e(1− z))j
j

− 2(1 +m+ 2z)(z + e(1− z))m+2

(m+ 1)(m+ 2)2(1− z)

−2e(−1−m− z)(z + e(1− z))m+2

(m+ 1)(m+ 2)2(1− z) +
2(−1−m− z)(z + e(1− z))m+3

(m+ 1)(m+ 2)2(m+ 3)(1− z)2

+
2e(3 +m)zm+2

(m+ 1)(m+ 2)
− e2zm+2

(m+ 1)

∣∣∣∣
e=0

e=1

=
−2z

(m+ 1)(m+ 2)

m+1∑

j=1

zm+1−j

j
+

2z

(m+ 1)(m+ 2)2(1− z)

+
2(1 +m+ z)

(m+ 1)(m+ 2)2(m+ 3)(1− z)2
− (6 + 2m)zm+2

(m+ 1)(m+ 2)
+
zm+2

m+ 1
+

2H(m+ 1)zm+2

(m+ 1)(m+ 2)

− 2(1 +m+ 2z)zm+2

(m+ 1)(m+ 2)2(1− z) −
2(1 +m+ z)zm+3

(m+ 1)(m+ 2)2(m+ 3)(1− z)2
. (2.262)

Altogether,

P(Z l∗ ≤ z|m, C1)E

= − 2z
(
1 +m− 3z −mz + z2+m(3 +m− (1 +m)z)

)

(1 +m)(2 +m)(3 +m)(−1 + z)3
+

−2z

(m+ 1)(m+ 2)

m+1∑

j=1

zm+1−j

j

+
2z

(m+ 1)(m+ 2)2(1− z) +
2(1 +m+ z)

(m+ 1)(m+ 2)2(m+ 3)(1− z)2
− (6 + 2m)zm+2

(m+ 1)(m+ 2)

+
zm+2

m+ 1
+

2H(m+ 1)zm+2

(m+ 1)(m+ 2)
− 2(1 +m+ 2z)zm+2

(m+ 1)(m+ 2)2(1− z)

− 2(1 +m+ z)zm+3

(m+ 1)(m+ 2)2(m+ 3)(1− z)2
. (2.263)



Chapter 3

Greedy Online Matching on
Random Graphs

IN the online bipartite matching problem, we are given a bipartite graph G = (I, J, E)
where I is a set of n bins and J is a set of n balls. Balls arrive online; when a ball

j ∈ J arrives, its edges are revealed and it must immediately be either matched with
an unmatched neighboring bin or dropped (left unmatched). Each bin may be matched
to at most one ball and decisions are irrevocable. The goal is to maximize the number
of matched balls.

The problem has received significant attention due to applications in Internet adver-
tising as well as under streaming models of computation, which place limits on memory
utilization for processing large datasets [61, 107, 124]. From a worst-case perspective,
it is well known that the Greedy algorithm, which matches each ball to a random un-
matched neighboring bin (if possible), always achieves a matching size that is at least
1/2 the size of the maximum matching. The Ranking algorithm of Karp, Vazirani,
and Vazirani [83] picks a random permutation of bins up front and matches each ball to
the unmatched neighboring bin that is ranked highest in the permutation. The Rank-
ing algorithm guarantees a matching size at least 1 − 1/e ≈ 0.632 of the size of the
maximum matching in expectation, which is the best possible worst-case guarantee.

Surprisingly, the average-case performance of these algorithms has been largely over-
looked. In this chapter, we study the performance of greedy-type matching algorithms
on random graph models. We focus on Erdős-Rényi binomial graphs and random regu-
lar graphs. The binomial bipartite graph G(n, n, p) is the random graph with n vertices
in each partition and where each potential edge (i, j) ∈ I × J occurs independently
with probability p = p(n). We study this model for essentially all functions p(n). The
random r-regular bipartite graph G(n, n, r) is defined by uniform distribution over all
r-regular bipartite graphs. We analyze this model for r = 2 since we conjecture that
this gives a lower bound on performance for r ≥ 2.

We start by analyzing the Oblivious algorithm, which has knowledge of a ball’s
edges when it arrives but does not know which neighboring bins are occupied. The
algorithm picks a random neighboring bin; if the bin is unmatched, then the ball is
matched, otherwise it is dropped. This rule models load balancing scenarios where a

101
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central server knows which machines can process a given job, but is not aware of the
machine availability. Next, we analyze Greedy and Ranking, showing that under the
G(n, n, p) model, the performance of the two algorithms is equivalent. We extend our
analysis to the vertex-weighted matching problem under the G(n, n, p) model, where
each bin has a weight and the greedy algorithm matches each ball to the available
neighboring bin with largest weight.

For 2-regular random bipartite graphs, we analyze Oblivious and Greedy, as well
as a variation on Greedy that we refer to as Degree-Greedy. Suited specifically
for online matching on random regular graphs, the Degree-Greedy algorithm favors
matching to bins with more edges that have been revealed at the time of a ball arrival,
as there will be fewer future opportunities to match such bins. We also consider a
rollout technique for offline matching on 2-regular bipartite graphs, which we refer to
as the Oblivious-Rollout algorithm. While this algorithm is awkward in a practical
setting, we study it with the intent of better understanding rollout algorithms.

The online matching problem is motivated primarily for bipartite graphs, but we
also define a generalization of the online matching for non-bipartite graphs. For this
problem, all vertices in the graph arrive sequentially; when a vertex arrives, its edges
connecting to already existing vertices are revealed. Each vertex is only allowed to
be matched when it arrives or when one of its neighbors arrives, and matches are
again irrevocable. We determine matching sizes obtained by a non-bipartite version of
Greedy on the binomial graph G(n, p) and on the random regular graph G(n, r) for
r = 2. We also examine a Degree-Greedy algorithm for non-bipartite graphs.

Our primary tool for analysis in this chapter is the differential equation method of
Kurtz [97] and Wormald [148]. We specifically use Wormald’s general theorem, which
is tailored to random graph processes. In our proofs, we calculate the expected change
in the number of matched vertices upon the arrival of each vertex as a function of
the number of matched vertices. Normalizing these equations and taking the limit as
n → ∞ gives deterministic differential equations and solutions. The stochastic nature
of the algorithms are shown to be concentrated around the deterministic solutions via
Wormald’s theorem. We believe that our proofs contain some of the simplest applica-
tions of Wormald’s theorem. Our proofs for Greedy and Ranking on G(n, n, p), for
instance, are nearly as simple as the worst-case proof for Ranking of Devanur, Jain,
and Kleinberg [52].

One of the fascinating features of the differential equation method for random graphs
is that, even in cases requiring the use of a complicated system of differential equations,
it is often possible to obtain analytically tractable solutions. We will see that this is
true for nearly all of our results.

In the next section we discuss related work. Section 3.2 presents some existing
results that we will use and presents Wormald’s theorem. Section 3.3 is dedicated to
the analysis of bipartite graphs, first under the G(n, n, p) model and then under the
regular model G(n, n, r) for r = 2. Section 3.4 handles non-bipartite graphs, likewise
starting with G(n, p) and then moving to non-bipartite G(n, r) for r = 2. A discussion
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is given in Section 3.5, and Section 3.6 shows a proof of Wormald’s theorem.

3.1 Related Work

The online matching problem was originally analyzed by Karp, Vazirani and Vazirani
[83]; they introduced the Ranking algorithm and showed that it obtains a competitive
ratio of 1 − 1/e. Simpler proofs for Ranking algorithm have since been found [38,
52]. A 1 − 1/e competitive algorithm is known for vertex-weighted online bipartite
matching, which was given by Aggarwal, Goel, Karande, and Mehta [2]. Outside of
online matching, there are a variety of problems that have been studied in an online
setting; the book by Borodin and El-Yaniv [42] gives a good introduction.

The use of deterministic differential equations to model random processes was
first studied by Kurtz, who gave a general purpose theorem for continuous-time jump
Markov processes [97]. A discrete-time theorem tailored for random graphs was given
by Wormald, which we use in this chapter [147, 148]. The differential equation method
has been used to study a variety of graph properties including k-cores, independent
sets, and greedy packing on hypergraphs [120, 147, 148]. It was also used to analyze a
load balancing scenario similar to ours by Mitzenmacher [110].

Early studies of matchings on random graphs focused on determining the existence
of perfect matchings; Erdős and Rényi showed that the threshold for the existence of
a perfect matching occurs when the graph is likely to have a minimum degree of one
[57, 58]. One of the first studies of greedy matchings on random graphs, and one of the
first to employ the differential equation method (via Kurtz’s theorem), was the work
of Karp and Sipser [82, 97]. They considered non-bipartite sparse graphs, specifically
the G(n, p) model with p = c/n. The Karp-Sipser algorithm first matches all vertices
with degree one until there are no such vertices remaining, and then obtains matches by
selecting random edges. This results in a matching size that is within a factor 1− o(1)
of the maximum matching1. The algorithm was studied more in depth by Aronson,
Frieze, and Pittel [13], who gave a precise bound on the o(1) term.

Simpler greedy matching algorithms have been studied on a variety of non-bipartite
graphs. Two general algorithms have been used. The first algorithm, which Dyer et
al. [56] refer to as Greedy (or Randomized-Greedy), simply picks random edges to
add to the matching until there are no edges remaining. The other algorithm, which
is referred to as Modified-Greedy (or Modified-Randomized-Greedy), picks a
vertex at random and then randomly chooses one of its neighboring edges to add to the
matching (if no such edges exist, the vertex is simply removed).

Considering results that are valid for all graphs, Dyer and Frieze [55] showed that
there exist graphs for which the Greedy algorithm gives an average matching size
nearly equal to the worst-case bound. Aronson, Dyer, and Frieze [12] showed that
Modified-Greedy gives an expected matching size greater than 1/2 + ε of the maxi-

1We write f(n) = o(g(n)) if and only if lim
n→∞

f(n)

g(n)
= 0 [130].
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mum matching size for some ε > 1/400, 000; remarkably, this holds for all graphs. The
lower bound was improved to 1 + 1/256 in the work of Poloczek and Szegedy [121].

In application to random graphs, Dyer, Frieze, and Pittel [56] analyzed the two al-
gorithms on the Erdős-Rényi random graph G(n,M) where M = bcn/2c. They showed
that as n→∞, the matching sizes obtained by the algorithms follow a normal distribu-
tion with mean and variance determined by c. As we will show, the expected fraction
of matched vertices for their Modified-Greedy algorithm is identical to the frac-
tion matched by our Greedy algorithm, both for bipartite and non-bipartite graphs
G(n, n, p) and G(n, p) where p = c/n. Their results were obtained using differential
equations based on moment generating functions – this approach is much more elab-
orate than ours and gives statements about the distribution of matching sizes rather
than just expected sizes.

Greedy matching on random regular graphs was considered by Frieze, Radcliffe,
and Shen [66]. They focused on random 3-regular graphs, which are referred to as
random cubic graphs, and they employed the Mingreedy algorithm. The Mingreedy
algorithm is similar to Modified-Greedy, except it always picks a starting vertex
among those with minimum degree in the graph. They showed that this algorithm
leaves O(n1/5 log n) unmatched vertices on random cubic graphs.

3.2 Background

In this section, we introduce graphs and random graph models, state a few key tools
that will be used in our analysis, and provide some definitions for characterizing our
results. Throughout the chapter, we use the term asymptotically almost surely (a.a.s.)
to mean occurring with probability 1− o(1).

An undirected graph G = (V,E) is defined by a set V of vertices and a set E of
edges. Each edge is an unordered pair (u, v) of vertices u, v ∈ V . The edge (u, v) is said
to be a neighbor of u and of v; we also say a vertex is a neighbor of another vertex if
they share an edge. A graph is bipartite if the vertex set V can be partitioned into two
sets I and J such that every edge (u, v) has one vertex u ∈ I and one vertex v ∈ J ;
such a graph is usually denoted by G = (I, J, E). To provide intuition in the online
setting, we sometimes refer to the set I as being a set of bins and the set J as being a
set of balls. The degree of a vertex is the number of edges incident to it. An r-regular
graph is a graph where all vertices have degree r.

A matching in a graph is a vertex-disjoint set of edges (i.e. a set of edges where no
two edges share a vertex). A vertex is said to be matched if one of its edges is part of
the matching. The size of a matching refers to the number of edges in the set, which is
equal to half of the number of matched vertices. A maximum matching is a matching
with maximum size2. A perfect matching is a matching where all vertices are matched.

Moving to random graph models, we start by defining the binomial random graph

2A maximal matching, on the other hand, is a matching that cannot accommodate any additional
edges.
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G(n, p), which is one of the two classical Erdős-Rényi models [39, 79]. The G(n, p)
graph is the non-bipartite graph with n vertices, where each of the

(
n
2

)
potential edges

is present independently with probability p. The total number of edges occurring thus
follows a binomial distribution with parameters

(
n
2

)
and p. The other Erdős-Rényi

graph model G(n,M), referred to as the uniform model, is specified by the uniform
distribution over all n-vertex graphs with exactly M edges. We only consider G(n, p)
for ease of analysis, but as discussed in both [39] and [79], properties of the two graphs
are often similar for the appropriate choices of M and p.

The random regular graph G(n, r) is defined by the uniform distribution over all
n-vertex r-regular graphs. We will always assume that rn is even. As noted in [79],
despite the similar notation G(n, p) and G(n, r), it is usually clear from context which
model is being referred to. In our analysis, we will need to construct random regular
graphs, which takes some care. We will use the configuration model, which generates
a random graph serving as an approximation to a random r-regular graph. In the
configuration model for a given r, each vertex has r slots, giving a total of rn slots.
All slots are paired uniformly at random, allowing for potential multiple edges and self
loops. Note that it is not valid to generate G(n, r) by revealing each pair sequentially
and resampling edges that result in multiple edges or self loops. This strategy can lead
to a state where the only remaining slot pairing options give multiple edges or self loops.
We use the notation P(n, r) to denote a random graph generated by the configuration
model. If this process happens to generate a graph without multiple edges and self
loops – such a graph is referred to as simple – the graph is a valid uniform sample from
G(n, r).

The bipartite versions of binomial random graphs and random regular graphs are
defined analogously over n by n bipartite graphs (meaning there are a total of 2n vertices
with n vertices in each partition). The binomial random graph G(n, n, p) is the n by n
bipartite graph with each edge between the two partitions occurring independently with
probability p. Similarly, G(n, n, r) is defined by the uniform distribution over all n by n
r-regular bipartite graphs. The bipartite configuration model is denoted by P(n, n, r).
This model may generate graphs with multiple edges, but self loops cannot occur since
all pairings are bipartite. We will prove many of our results using the configuration
model via the following theorem (see, e.g. [79]).

Theorem 3.1. Any property that holds a.a.s. for P(n, r) also holds a.a.s. for G(n, r).
Likewise, any property that holds a.a.s. for P(n, n, r) also holds a.a.s. for G(n, n, r).

For some algorithm A, let µA(n, n, p) denote the matching size (equal to one half
the total number of matched vertices) obtained by algorithm A on G(n, n, p), and let
µA(n, n, r) denote the matching size obtained by algorithm A on G(n, n, r). For non-
bipartite graphs, let µA(n, p) denote the matching size given by algorithm A on G(n, p)
and let µA(n, r) denote the matching size given by A on G(n, r).

For the binomial graphs G(n, n, p) and G(n, p), we will be interested in algorithm
performance where p is a function p = p(n). Define a valid function p(n) as a function
that for all n > 0, is monotonic and satisfies 0 < p(n) < 1 (thus implying that 0 ≤



106 CHAPTER 3. GREEDY ONLINE MATCHING ON RANDOM GRAPHS

limn→∞ p(n) ≤ 1). Our results will be stated by giving the asymptotic matching sizes
obtained by algorithms that hold asymptotically almost surely. We will also state
results normalized by the asymptotic expected maximum matching size. Denote the
maximum matching size on G(n, n, p) by µ∗(n, n, p); note that µ∗(n, n, p) is a random
variable. Consider an algorithm A and a function p = p(n). We define the performance
ratio3 for the bipartite graph G(n, n, p) as

RA(p(n)) := lim
n→∞

E[µA(n, n, p(n))]

E[µ∗(n, n, p(n))]
. (3.1)

This definition also applies to the non-bipartite graph G(n, p), where µ∗(n, p) denotes
the maximum matching size;

RA(p(n)) := lim
n→∞

E[µA(n, p(n))]

E[µ∗(n, p(n))]
. (3.2)

Extending the definition to random r-regular graphs, we note that all regular bi-
partite graphs have a perfect matching, so the denominator in the performance ratio
is equal to n. Let µA(n, n, r) denote the matching size obtained by algorithm A on
G(n, n, r). The performance ratio for the bipartite graph G(n, n, r) is

RA(r) := lim
n→∞

E[µA(n, n, r)]

n
. (3.3)

Non-bipartite regular graphs are not guaranteed to have a perfect matching. In
particular, it holds a.a.s. that the graph G(n, 2) contains an odd cycle and thus cannot
have a perfect matching [149]. On the other hand, G(n, r) for r ≥ 3 a.a.s. has a
perfect matching for nr even [39, 148]. Let µA(n, r) denote the matching size obtained
by algorithm A on G(n, r) and let µ∗(n, r) denote the maximum matching size. The
performance ratio for the non-bipartite graph G(n, r) is

RA(r) := lim
n→∞

E[µA(n, r)]

E[µ∗(n, r)]
. (3.4)

While this definition includes E[µ∗(n, r)] in the denominator instead of simply n/2,
we will bound the performance ratio in our results using the fact that µ∗(n, r) ≤ n/2.
Altogether, the performance ratio is essentially the analog of the competitive ratio from
online algorithms adapted for average-case analysis.

Binomial random graphs with an edge probability function p(n) = c/n for a constant
c > 0 are referred to as sparse random graphs. The following results indicate the
maximum matching sizes on G(n, n, p) and G(n, p) for the sparse regime, which we
will use in the denominator of the performance ratios. For bounding the maximum

3A more rigorous metric is the expectation of the ratio of matching sizes, as used in [67], rather
than the ratio of expectations. However, concentration results can often be used to establish relations
between the two metrics; for example, see [100].
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matching size of G(n, n, p), we use a result from Bollobás and Brightwell [40]. Their
result (specifically Theorem 14 in [40]) is stated in terms of the size of the largest
independent set for a bipartite graph, which by König’s theorem bounds the maximum
matching size [91]. Here and throughout the rest of the chapter, we define γ∗ = γ∗(c)
as the smallest root of the equation x = c exp(−ce−x), and γ∗ = γ∗(c) = ce−γ∗ .

Theorem 3.2 (Bollobás and Brightwell [40]). Let µ∗(n, n, c/n) denote the size of the
maximum matching on the graph G(n, n, p) where p = c/n. Then a.a.s.,

µ∗(n, n, c/n)

n
≤ 2− γ∗ + γ∗ + γ∗γ∗

c
+ o(1), (3.5)

where γ∗ is the smallest root of the equation x = c exp(−ce−x) and γ∗ = ce−γ∗.

The above bound is known to be tight for c ≤ e. The asymptotic maximum matching
size for the non-bipartite graph G(n, p) was determined in numerous papers [82, 119],
and most recently by Aronson et al. [13]. Remarkably, this result is equivalent to the
above result for bipartite graphs (differing only by a factor of two since the bipartite
graph has twice as many vertices).

Theorem 3.3 (Aronson et al. [13]). Let µ∗(n, c/n) denote the size of the maximum
matching on the graph G(n, p) where p = c/n. Then a.a.s.,

µ∗(n, c/n)

n
= 1− γ∗ + γ∗ + γ∗γ∗

2c
+ o(1), (3.6)

where γ∗ is the smallest root of the equation x = c exp(−ce−x) and γ∗ = ce−γ∗.

We now discuss the two important theoretical tools that we will use in our proofs.
The first and simpler is the celebrated Azuma-Hoeffding inequality, stated as follows
[148]. We will use the inequality in conjunction with Doob martingales to show con-
centration of properties around their expected values.

Lemma 3.1 (Azuma-Hoeffding [17, 75]). Let X0, X1, . . . , Xt be a martingale such that
|Xi −Xi−1| ≤ ci, 1 ≤ i ≤ t, for constants ci. Then for any α > 0,

P(|Xt −X0| ≥ α) ≤ 2 exp

(
− α2

2
∑t

i=1 c
2
i

)
. (3.7)

Our second and more general tool is Wormald’s theorem, which is used to show
concentration of random processes around deterministic differential equations. We in-
troduce the theorem using notation consistent with [148].

Consider a discrete-time random process defined for times t = 0, 1, . . . and let S be a
set of states. (The set S can be thought of as a set of deterministic graphs, for example.)
At each time t, the process is in a unique state qt ∈ S. Let Qt denote the random
variable for the state at time t. We define the probability space Ω to have elements
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corresponding to all possible sequences (q0, q1, . . .). Let ht = (q0, . . . , qt) be the history
of the process up to time t, and denote its random variable by Ht = (Q0, . . . , QT ).

We define a sequence of random processes indexed by n = 1, 2, . . . so that each
process has a set of states S(n), and for each time t, the nth process is in a state

q
(n)
t ∈ S(n). To simplify notation, we often omit n and write qt to mean q

(n)
t and S

to mean S(n). Let S(n)+ denote the set of all histories ht = (q0, . . . , qt) where each
qk ∈ S(n) for t = 0, 1, . . ..

Wormald’s general theorem is stated as follows [148]. Note that in part (iii), a
Lipschitz condition is satisfied for a function f(u) on the domain D if there exists a
constant L > 0 satisfying

|f(u)− f(v)| ≤ L||u− v||∞ (3.8)

for all u, v ∈ D. The stopping time TD is needed for situations where the Lipschitz
condition fails, which often happens near the end of some graph processes.

Theorem 3.4 (Wormald [148]). For 1 ≤ l ≤ a, where a is fixed, let y(l) : S(n)+ → R
and fl : R(a+1) → R, such that for some constant C0 and all l, |y(l)(ht)| < C0n for all
ht ∈ S(n)+ for all n. Let Yl(t) denote the random variable induced by yl(Ht). Assume the
following three conditions hold, where D is some bounded connected open set containing
the closure of

{(0, z1, . . . , za) : P(Yl(0) = zln, 1 ≤ l ≤ a) 6= 0 for some n}, (3.9)

and TD is a stopping time for the minimum t such that (t/n, Y1(t)/n, . . . , Ya(t)/n) /∈ D.

(i) (Boundedness hypothesis.) For some function β = β(n) ≥ 1

max
1≤l≤a

|Yl(t+ 1)− Yl(t)| ≤ β, (3.10)

for t < TD.

(ii) (Trend hypothesis.) For some function λ1 = λ1(n) = o(1), for all 1 ≤ l ≤ a

|E[Yl(t+ 1)− Yl(t)|Ht]− fl(t/n, Y1(t)/n, . . . , Ya(t)/n)| ≤ λ1 (3.11)

for t < TD.

(iii) (Lipschitz hypothesis.) Each function fl is continuous, and satisfies a Lipschitz
condition, on

D ∩ {(t, z1, . . . , za) : t ≥ 0}, (3.12)

with the same Lipschitz constant for each l.

Then the following are true.



Sec. 3.3. Bipartite Graphs 109

(a) For (0, ẑ1, . . . , ẑa) ∈ D the system of differential equations

∂zl
∂x

= fl(x, z1, . . . , za), 1 ≤ l ≤ a (3.13)

has a unique solution in D for zl : R→ R passing through

zl(0) = ẑl, 1 ≤ l ≤ a (3.14)

and which extends to points arbitrarily close to the boundary of D;

(b) Let λ > λ1 with λ = o(1). For a sufficiently large constant C, with probability

1−O(βλ exp (−nλ3

β3 )),

Y
(l)
t = nzl(t/n) +O(λn) (3.15)

uniformly for 0 ≤ t ≤ σn and for each l, where zl(x) is the solution in (a) with
ẑl = 1

nYl(0), and σ = σ(n) is the supremum of those x to which the solution can be
extended before reaching within l∞-distance Cλ of the boundary of D.

While this version of the theorem is most appropriate for our work, there are more
general forms that allow the boundedness hypothesis to hold only with a certain prob-
ability and permit a to grow as a function of n [148].

3.3 Bipartite Graphs

As described in the chapter introduction, the online bipartite matching problem is given
by a set of n bin vertices, which are given up front, and n sequentially arriving ball
vertices. Recall that edges neighboring a ball only become known when the ball arrives,
each ball must be matched before the next ball arrives, and matches are irrevocable.
This implies that the simple greedy procedure of randomly assigning each ball to an
unmatched neighboring bin is not necessarily optimal.

An example problem instance and progression of the greedy algorithm are shown
in Figure 3.1. In this particular instance, the greedy algorithm makes two mistakes,
leading to a suboptimal matching size. In Figure 3.1 (b), the first ball is matched to
the third bin, which blocks the third ball from being matched in part (d), as the third
ball can only be matched to the third bin. The same problem occurs in part (e) and
part (f), where the fourth ball is matched to the fourth bin and the fifth ball is left
unmatched.

The first subsection here is devoted the the Erdős-Rényi random graph G(n, n, p)
and the second subsection considers the random regular graph G(n, n, r). Throughout
our analysis, we will use both t and j to index arriving balls.
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Figure 3.1. Instance and progression of online bipartite matching problem for n = 5. Bins vertices
are shown on the left and arriving ball vertices are shown on the right. Bold edges indicate matches.
When each ball arrives, all of its neighboring edges are revealed and it must be matched or dropped.
As shown in part (d), the third ball must be dropped since its only neighbor is the third bin, which is
occupied via the first ball. Similarly, the fifth ball must be dropped in part (f) since its only neighboring
bin is occupied. It is easy to see that the maximum matching size for the offline problem is equal to 5.

3.3.1 Binomial Graphs

We introduce the Oblivious and Greedy online matching algorithms here, and an-
alyze them on G(n, n, p) for all growth rates of valid functions p = p(n). We then
consider the extension to vertex weighted matching on sparse graphs, where p = c/n.
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The following lemma will be used to satisfy the trend hypothesis of Wormald’s theorem.

Lemma 3.2. For n > 0, c ≤ n/2, and 0 ≤ w ≤ 1,

0 ≤ e−cw −
(

1− c

n

)nw
≤ c

ne
. (3.16)

Proof. Using the inequalities 1−x ≥ e−x−x2 for x ≤ 1/2 and 1−x ≤ e−x for x ≥ 0, we

obtain e−cw
(

1− c2w
n

)
≤
(
1− c

n

)nw ≤ e−cw. The result follows by rearranging terms

and using cwe−cw ≤ 1/e. �

Oblivious Algorithm

The Oblivious algorithm performs a one-shot trial for each ball j, where it attempts
to match j to a random neighbor. The algorithm is unaware of which bins are already
matched, so an attempted match to an already occupied bin means that ball j is
dropped. This is shown in Algorithm 4. We use N(j) to denote the set of neighboring
bins of ball j.

1: for j = 1 to n (each ball) do
2: When ball j arrives, let N(j) denote the set of neighboring bins
3: if |N(j)| > 0 then
4: Select a random neighboring bin i′ ∈ N(j)
5: if bin i′ is unmatched then
6: Match j to i′

7: else
8: j is dropped
9: end if

10: end if
11: end for

Algorithm 4. Oblivious

Intuitively, the algorithm is expected to do well on extremely sparse graphs, specif-
ically those where balls are likely to have at most one neighbor. On the other hand,
the performance on dense graphs should be suboptimal since each ball has a variety of
neighboring bins that are not utilized by the algorithm. The following results confirm
this behavior. For the sparse regime where p = c/n, Theorem 3.5 gives the asymptotic
matching size obtained by Oblivious as a function of c. Theorem 3.6 then character-
izes the performance ratio of Oblivious for all valid functions p(n). For p(n) = o(1/n),
the performance ratio is equal to 1, whereas for p(n) = ω(1/n), the performance ratio is
at least 1−1/e. The phase transition of the lower bound thus occurs where p(n) = c/n,
and is plotted in Figure 3.2. As Corollary 3.1 states, the global lower bound for the
performance ratio is 1− 1/e.
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Figure 3.2. Performance ratio lower bound for Oblivious algorithm on G(n, n, c/n), according to
Theorem 3.6. The global lower bound of 1− 1/e is shown as dashed.

Theorem 3.5. Let µO(n, n, c/n) denote the matching size obtained by the Oblivious
algorithm on the graph G(n, n, p), where p = c/n and c > 0 is a constant. Then a.a.s.,

µO(n, n, c/n)

n
= 1− e(e−c−1) + o(1). (3.17)

Theorem 3.6. The performance ratio RO(p(n)) of Oblivious on G(n, n, p), for all
valid functions p = p(n), satisfies

RO(p(n)) = 1, p(n) = o(1/n),

RO(p(n)) ≥ c− ce(e−c−1)

2c− (γ∗ + γ∗ + γ∗γ∗)
, p(n) = c/n,

RO(p(n)) ≥ 1− 1
e , p(n) = ω(1/n).

(3.18)

Corollary 3.1. The performance ratio of Oblivious on G(n, n, p) for all valid func-
tions p = p(n) satisfies

RO(p(n)) ≥ 1− 1

e
. (3.19)

We use simple arguments to prove the p(n) = o(1/n) and p(n) = ω(1/n) parts of
Theorem 3.6, corresponding to Lemma 3.3 and Lemma 3.4 below. We then present two
proofs of Theorem 3.5, one based on a linearity of expectation argument, and another
using Wormald’s theorem. This allows us to prove the p = c/n part of Theorem 3.6,
with the help of Theorem 3.2.
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Lemma 3.3. For all valid functions p(n) where p(n) = o(1/n), the performance of
Oblivous on G(n, n, p) with p = p(n) satisfies RG(p(n)) = 1.

Proof. We consider the number of isolated edges in G(n, n, p), where an edge (i, j) is
isolated if N(i) = {j} and N(j) = {i}. For any bin and ball pair (i, j), the probability
of an isolated edge occurring between them is

P((i, j) is isolated edge) = p(1− p)(2n−2). (3.20)

Every isolated edge is matched by Oblivious, so

E[µO] ≥ n2p(1− p)(2n−2), (3.21)

where µO is the size of the Oblivious matching. The maximum matching size, denoted
by µ∗, is upper bounded in expectation by the expected number of edges, n2p, so

E[µO]

E[µ∗]
≥ (1− p)(2n−2) ≥ (e−p−p

2
)(2n−2) = (e−o(

1
n

))(2n−2) = e−o(1) → 1. (3.22)

�

Lemma 3.4. For all valid functions p(n) where p(n) = ω(1/n), the performance of
Oblivous on G(n, n, p) with p = p(n) satisfies RG(p(n)) ≥ 1− 1/e.

Proof. Fix a bin i. For each ball j, there is an attempted assignment of j to i with
probability 1/n if j has at least one neighbor. Thus,

P(no attempted match of j to i) = 1−
(

1− (1− p)n
n

)
. (3.23)

Considering all balls and using 1− x ≤ e−x,

P(no attempted match to i) ≤
(

1−
(

1− e−pn
n

))n

=

(
1−

(
1− e−ω(1)

n

))n
→
(

1− 1

n

)n
→ e−1.

(3.24)

Accordingly, the expected number of bins matched by Oblivious is at least n(1−1/e).
The maximum matching size is at most n, so the result follows. The bound is shown
to be tight by simply setting p(n) = 1− ε where ε > 0 and letting ε→ 0. �

First proof of Theorem 3.5. As in the proof directly above, we fix a bin i and note that
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for ball j,

P(no attempted match of j to i) = 1−
(

1− (1− p)n
n

)

= 1−
(

1− (1− c
n)n

n

)

→ 1−
(

1− e−c
n

)
. (3.25)

where on the second line we have substituted p = c/n and on the third line we have
used the limiting definition of the natural exponent function. Considering all balls,

P(no attempted match to i) =

(
1−

(
1− (1− c

n)n

n

))n

→
(

1−
(

1− e−c
n

))n

→ e(e
−c−1), (3.26)

where on the last line we have again used the definition of the natural exponent function.
We then have the probability that bin i is matched is

P(bin i is matched) = 1− e(e−c−1). (3.27)

This gives that

E[µO] = n(1− e(e−c−1)). (3.28)

To see the concentration around the expected value, we use a Doob martingale indexed
by the arriving balls. Using Lemma 3.1 with ci = 1 for i = 1, . . . , n and α = n3/4, we
have with probability 1− e−

√
n/2,

µO = n(1− e(e−c−1)) + n3/4. (3.29)

�

Second proof of Theorem 3.5. Let Y (t) denote the number of occupied bins immediately
before the tth ball arrives, where Y (1) = 0. Slightly abusing notation, we use Y (t) to
denote both the random variable and instances of the random variable. Given Y (t), the
tth ball is dropped if it is isolated or if its selected neighbor is already matched. Thus,

P(ball t is matched|Y (t)) = (1− (1− p)n)

(
1− Y (t)

n

)

= E[Y (t+ 1)− Y (t)|Y (t)]. (3.30)
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Define the normalized random variable

Z(x) =
Y (nx)

n
, 0 ≤ x ≤ 1, (3.31)

so that Z(x) indicates the fraction of occupied bins after nx of the arrivals have occurred.
We have

E[Z(x+ 1/n)− Z(x)|Z(x)]

1/n
= (1− (1− p)n)(1− Z(x))

=
(

1−
(

1− c

n

)n)
(1− Z(x))

= (1− e−c)(1− Z(x)) + o(1). (3.32)

As n→∞, we arrive at the differential equation

dz(x)

dx
= (1− e−c)(1− z(x)), (3.33)

where z(·) is deterministic and replaces Z(·). Integrating and using z(0) = 0 gives

z(x) = 1− e(e−c−1)x, 0 ≤ x ≤ 1. (3.34)

Applying Theorem 3.4, we choose the domain D defined by −ε < x < 1 + ε and
−ε < z(x) < 1 + ε, for ε > 0. Clearly we have C0 = 1 and β = 1 by the nature
of the matching process. Let λ1 = c/(en) for the trend hypothesis, which is satisfied
according to Lemma 3.2. The Lipschitz hypothesis is satisfied with a Lipschitz constant
L = (1 + ε)(1 − e−c). Setting x = 1 and choosing λ = cn−1/4, Theorem 3.4 (b) gives

that with probability 1−O(n1/4e−c
3n1/4

),

µO(n, n, p) = n(1− e(e−c−1)) +O(n3/4). (3.35)

�

Proof of Theorem 3.6. The cases of p(n) = o(1/n) and p(n) = ω(1/n) are
given by Lemma 3.3 and Lemma 3.4. For the regime p = c/n, define the normalized
random variables

µ̃O(n, n, c/n) :=
µO(n, n, c/n)

n
, (3.36)

µ̃∗(n, n, c/n) :=
µ∗(n, n, c/n)

n
. (3.37)

By Theorem 1, µ̃O converges in probability. Additionally, µ̃O is bounded and thus
uniformly integrable, so convergence in probability implies convergence in mean [72];

lim
n→∞

E[µ̃O(n, n, c/n)] = 1− e(e−c−1). (3.38)
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Similarly, µ̃∗ must satisfy

lim
n→∞

E[µ̃∗(n, n, c/n)] ≥ 2− γ∗ + γ∗ + γ∗γ∗
c

. (3.39)

�
Proof of Corollary 3.1. The expected maximum matching size is no greater than the
expected number of non-isolated vertices on one side of the graph, so RO(c/n) ≥
1−e(e−c−1)

1−e−c ≥ 1− 1/e. �

Greedy Algorithm

The Greedy algorithm is shown in Algorithm 5. Upon the arrival of each ball, Greedy
assigns the ball to a randomly selected neighboring bin that is unmatched. If no such
bin exists, the ball is dropped. Recall that the Ranking algorithm instead picks an
initial ranking of bins and always assigns each ball to the neighboring unmatched bin
with highest rank. The Ranking algorithm is shown in Algorithm 6, where ρ : I →
{1, . . . , n} is an injective mapping, or ranking of bins, chosen uniformly at random. We
will see that Ranking and Greedy perform equivalently on G(n, n, p).

1: for j = 1 to n (each ball) do
2: When ball j arrives, let U(j) denote the set of unmatched neighboring bins
3: if |U(j)| > 0 then
4: Match j to a random bin i′ ∈ U(j)
5: else
6: j is dropped
7: end if
8: end for

Algorithm 5. Greedy (bipartite)

1: Choose a random permutation of bins ρ
2: for j = 1 to n (each ball) do
3: When ball j arrives, let U(j) denote the set of unmatched neighboring bins
4: if |U(j)| > 0 then
5: Match j to the bin i′ = argmin

i∈U(j)
ρ(i)

6: else
7: j is dropped
8: end if
9: end for

Algorithm 6. Ranking

Just as with Oblivious, we consider the performance of Greedy in three regimes.
It is clear that on extremely sparse graphs, Greedy should perform near optimally, as



Sec. 3.3. Bipartite Graphs 117

Oblivious does. In contrast to Oblivious, however, the Greedy algorithm should
also perform well on very dense graphs because many bins are available to each ball.
Indeed, this is the case; the following results show that Greedy is only suboptimal
in the regime p(n) = c/n. For this regime, the asymptotic matching size is given by
Theorem 3.7. Theorem 3.8 gives the lower bound on the performance ratio across
all three regimes, stating that the performance ratio for p(n) = o(1/n) and p(n) =
ω(1/n) is equal to one. Figure 3.3 shows that for p(n) = c/n, the lower bound on the
Greedy performance ratio passes through its global minimum of 0.837. This minimum
is formalized with Corollary 3.2. Finally, Theorem 3.9 states that Greedy performs
equivalently to any online matching algorithm ALG. Since Ranking is a valid instance
of ALG, the equivalence of Ranking and Greedy follows from this theorem, as stated
by Corollary 3.3. When we say that two algorithms perform equivalently, we mean that
they generate the same probability distribution of matching sizes.

Theorem 3.7. Let µG(n, n, c/n) denote the matching size obtained by the Greedy
algorithm on the graph G(n, n, p), where p = c/n and c > 0 is a constant. Then a.a.s.,

µG(n, n, c/n)

n
= 1− log(2− e−c)

c
+ o(1). (3.40)

Theorem 3.8. The performance ratio RG(p(n)) of Greedy on G(n, n, p), for all valid
functions p = p(n), satisfies

RG(p(n)) = 1, p(n) = o(1/n),

RG(p(n)) ≥ c− log(2− e−c)
2c− (γ∗ + γ∗ + γ∗γ∗)

, p(n) = c/n,

RG(p(n)) = 1, p(n) = ω(1/n).

(3.41)

Corollary 3.2. The performance ratio of Greedy on G(n, n, p) for all valid functions
p = p(n) satisfies

RG(p(n)) ≥ 0.837. (3.42)

Theorem 3.9. Consider any online bipartite matching algorithm ALG that always
matches each ball to an unmatched neighboring bin, if possible. Then ALG and
Greedy perform equivalently on G(n, n, p).

Corollary 3.3. The Greedy and Ranking algorithms perform equivalently on
G(n, n, p).

We begin our analysis by proving Theorem 3.9, which implies the equivalence
of Greedy and Ranking. We address the very sparse (p(n) = o(1/n)) and dense
(p(n) = ω(1/n)) regions for Theorem 3.8 with Lemma 3.5 and 3.6, respectively.
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Figure 3.3. Performance ratio lower bound for Greedy algorithm on G(n, n, c/n), according to
Theorem 3.8. The global minimum of 0.837 at c = 3.169 is shown at the intersection of the dashed
lines.

Then, we prove Theorem 3.7 and the sparse (p(n) = c/n) component of Theo-
rem 3.8 using Wormald’s theorem. The proof of Corollary 3.2 follows easily afterwards.

Proof of Theorem 3.9. We define a Markov chain for the simultaneous evolution of the
decisions made by ALG and the construction of G(n, n, p). The Markov chain has a
finite state space defined by variables (t, Y (t)). Specifically, t = 1, . . . , n + 1 indexes
arriving balls and Y (t) denotes the number of matched bins immediately before ball t
arrives. The extra index t = n+ 1 indicates the completion of the process and Y (n+ 1)
is the final number of matched bins. Referring to all states with a fixed t as a stage in
the process, each stage has t states corresponding to the possible number of matched
bins Y (t) = 0, . . . , t− 1.

By definition of G(n, n, p), the neighboring edges for each ball are drawn indepen-
dently; in particular, they are drawn independent of the bins that have been matched
by ALG. Note also that since ALG is an online algorithm, it is not possible for ALG
to know which edges are present for future balls. Thus, the probability of a transition
from state (t, Y ) to state (t + 1, Y ) (where a match is not possible) is (1 − p)(n−Y (t)),
while the probability of a transition to state (t + 1, Y + 1) (where a match occurs) is
1− (1− p)(n−Y (t)).

The distribution of the number of bins matched by ALG is given by the distribution
of states for stage t = n+1 (i.e. the distribution of Y (n+1)). The Markov chain is valid
for any algorithm ALG, again as long as it is an online algorithm that matches a ball to
an unmatched neighboring bin, given the opportunity. However, for a particular graph
instance of G(n, n, p), two algorithms may obviously generate different matching sizes.
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Since the Greedy algorithm is a valid instance of ALG, the proof is complete. �

Lemma 3.5. For all valid functions p(n) where p(n) = o(1/n), the performance of
Greedy on G(n, n, p) with p = p(n) satisfies RG(p(n)) = 1.

Proof. The proof for Lemma 3.3 holds. �

Lemma 3.6. For all valid functions p(n) where p(n) = ω(1/n), the performance of
Greedy on G(n, n, p) with p = p(n) satisfies RG(p(n)) = 1.

Proof. We use a crude lower bound for the probability that each ball is matched. When
ball t arrives, at most t− 1 bins are occupied, so

P(ball t is matched) ≥ 1− (1− p)(n−t+1). (3.43)

Let µG denote the matching size obtained by Greedy. Then

E[µG] ≥ n−
n∑

t=1

(1− p)(n−t+1) = n− (1− (1− p)n)(1− p)
p

≥ n− 1

p
. (3.44)

The maximum matching size is at most n, so

E[µG]

E[µ∗]
≥ 1− 1

np(n)
= 1− 1

ω(1)
→ 1. (3.45)

�

Proof of Theorem 3.7. Again let Y (t) denote the number of occupied bins immediately
before the tth arrival. Conditioning on Y (t), the tth ball cannot be assigned only if edges
connecting the ball to the n − Y (t) neighboring bins are not present. The probability
of a match is then

P(ball t is matched|Y (t)) = 1− (1− p)n
(

1−Y (t)
n

)
= E[Y (t+ 1)− Y (t)|Y (t)]. (3.46)

Normalizing as before, we obtain

E[Z(x+ 1/n)− Z(x)|Z(x)]

1/n
= 1−

(
1− c

n

)n(1−Z(x))
(3.47)

= 1− e−c(1−Z(x)) + o(1). (3.48)

The corresponding differential equation for n→∞ is

dz(x)

dx
= 1− e−c(1−z(x)). (3.49)



120 CHAPTER 3. GREEDY ONLINE MATCHING ON RANDOM GRAPHS

By integration and the initial value for z(x),

z(x) = 1− log (1 + e−cx(ec − 1))

c
, 0 ≤ x ≤ 1. (3.50)

The application of Wormald’s theorem is the same as the proof for Oblivious but
with Lipschitz constant L = cecε. �

Proof of Theorem 3.8. The proof follows the same approach as the proof of Theorem
3.6. �

Proof of Corollary 3.2. The approach for Corollary 3.1 can be used to show that the
property holds for small c values (e.g. c < 1/2) and large c values (e.g. c > 5). For
the remaining region, the exact expression for the performance ratio can be minimized
numerically; the minimum is obtained at c∗ = 3.1685009 and RG(c∗) = 0.8370875. �

Vertex-Weighted Matching

We now modify the online bipartite matching problem so that each bin i has a rank, ri ∈
{1, 2, . . . ,m} for some constant m, and our goal is to match balls to lower ranked bins.
This is better understood by allowing each bin to have one of m distinct weights wi ∈ R,
where a larger weighted bin has a lower rank, and the goal of the matching problem is
to maximize the weighted sum of matched bins. The appropriate greedy algorithm for
this problem is the Vertex-Weighted-Greedy algorithm, which matches each ball
to its neighboring bin with smallest rank, as shown in Algorithm 7.

1: for j = 1 to n (each ball) do
2: When ball j arrives, let U(j) denote the set of unmatched neighboring bins
3: if |U(j)| > 0 then
4: Match j to a neighboring bin i′ ∈ argmin

i∈U(j)
ri

5: else
6: j is dropped
7: end if
8: end for

Algorithm 7. Vertex-Weighted-Greedy

We will only consider the performance of this algorithm in the sparse regime, where
p(n) = c/n. Interestingly, the differential equation method is valid and tractable for
this setting. Let nr denote the total number of bins with rank r, where

∑
r nr = n, and

let gr := nr/n. The result of this section is as follows.

Theorem 3.10. Let µ(W,r)(n, n, c/n) denote the number of bins with rank r that are
matched by Vertex-Weighted-Greedy on the graph G(n, n, p), where p = c/n and
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c > 0 is a constant. Then a.a.s.,

µ(W,r)(n, n, c/n)

n
= gr −

1

c
log

(
1 + e−cx(ec

∑r
k=1 gk − 1)

1 + e−cx(ec
∑r−1
k=1 gk − 1)

)
+ o(1), 1 ≤ r ≤ m. (3.51)

Proof. We use the notation Yr(t), 1 ≤ r ≤ m, to denote the number of rank r bins
that are occupied immediately prior to the arrival of ball t. Consider the probability
that a given ball t is matched to a rank two bin. This occurs if edges connecting to the
n1−Y1(t) unmatched rank one bins are not present and there is at least one unmatched
neighboring bin with rank two, so

E[Y2(t+ 1)− Y2(t)|Y(t)] =

(
(1− p)n

(
g1−Y1(t)n

))(
1− (1− p)n

(
g2−Y2(t)n

))
, (3.52)

where Y(t) = (Y1(t), Y2(t), . . . Ya(t)). Generalizing, for 1 ≤ r ≤ m,

E[Yr(t+ 1)− Yr(t)|Y(t)] =

(
1− (1− p)n

(
gr−Yr(t)n

)) r−1∏

k=1

(
(1− p)n

(
gk−

Yk(t)

n

))
.

(3.53)

After normalizing and substituting p = c/n,

E[Zr(x+ 1/n)− Zr(x)|Z(x)]

1/n
=

(
1− e−c(gr−Zr(x))

)
e−c

∑r−1
k=1(gk−Zk(x)) + o(1).

(3.54)

We arrive at the following system of differential equations for n→∞ :

dzr(x)

dx
=
(

1− e−c(gr−zr(x))
)
e−c

∑r−1
k=1(gk−zk(x)), 1 ≤ r ≤ m. (3.55)

It can be verified that the solution to the system of differential equations with initial
conditions zr(0) = gr, 1 ≤ r ≤ m, is

zr(x) = gr −
1

c
log

(
1 + e−cx(ec

∑r
k=1 gk − 1)

1 + e−cx(ec
∑r−1
k=1 gk − 1)

)
, 0 ≤ x ≤ 1, (3.56)

for 1 ≤ r ≤ m. The application of Wormald’s theorem is the same as the application of
Oblivious and Greedy, but with Lipschitz constant L = (a−1)(1−e−c(1+ε))ce(a−1)cε+
ceacε. �

3.3.2 Regular Graphs

We now move to the random regular graph G(n, n, r). Ideally, we would state general
results for matching sizes obtained as a function of r, but the complexity of the analysis
for regular graphs restricts us to the case where r = 2 for most of our work.
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While offline matching on 2-regular graphs is obviously a trivial problem, there is
no simple algorithm for the online problem on G(n, n, r) for r = 2 that guarantees a
perfect matching. Note that for r = 1, even the online problem is trivial and essentially
any algorithm with knowledge of arriving edges is optimal. For r ≥ 2, the Greedy
algorithm is not optimal for the online problem, but we expect the asymptotic matching
size obtained by Greedy on r-regular graphs to be monotonically increasing in r for
r ≥ 2.

We will see that random 2-regular graphs are still amenable to analysis via
Wormald’s theorem, albeit with a bit more work than for Erdős-Rényi graphs. We will
have to designate cases for various bins based on how many edges have been revealed,
and model the density of these cases with the differential equations. Nevertheless, we
can still obtain simple expressions for matching sizes.

This subsection is structured as follows. We begin with an analysis of Greedy on
2-regular graphs. We then introduce the Degree-Greedy algorithm, which is suited
for regular graphs and performs slightly better than Greedy. Finally, we step away
from the online setting to study a rollout algorithm for the offline matching problem on
2-regular graphs. This algorithm uses the Oblivious algorithm as a base policy and is
accordingly called the Oblivious-Rollout algorithm. Offline matching on 2-regular
graphs, as we have stated, is a trivial problem. Our goal in studying Oblivious-
Rollout is to better understand the general behavior of rollout algorithms.

Oblivious and Greedy

The Oblivious algorithm is easy enough to analyze that we can state its performance
on G(n, n, r) as a general function of r, and we can use the uniform model directly
instead of the configuration model. The following theorem follows using linearity of
expectation and the Azuma-Hoeffding inequality.

Theorem 3.11. Let µO(n, n, r) denote the matching size obtained by the Oblivious
algorithm on the random regular graph G(n, n, r) for r = 1, 2, . . .. Then a.a.s.,

µO(n, n, r)

n
= 1−

(
1− 1

r

)r
+ o(1). (3.57)

Proof. The expected value follows using a simple linearity of expectation argument,
similar to the first proof of Theorem 3.5. Then, using Lemma 3.1 with ci = 1 for
i = 1, . . . , n and α = n3/4, we have with probability 1− e−

√
n/2,

µO(n, n, r) = n

(
1−

(
1− 1

r

)r)
+ n3/4. (3.58)

�

To analyze the Greedy algorithm on G(n, n, 2), we must use the configuration
model P(n, n, r). This means that we will allow multiple edges to occur, though this
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will happen with negligible probability. When each ball arrives, two edges are drawn
to determine neighboring bins. Prior to drawing the edges, there are three possibilities
for the type of each bin. These possibilities are labeled as

A : the bin has no edges,
B : the bin has one edge and is matched,
C : the bin has one edge and is unmatched.

Ball arrivals are indexed by t. Due to Lipschitz continuity requirements in
Wormald’s theorem, we make the restriction t < n(1− ε) for some ε > 0. Immediately
before ball t arrives, let YA(t), YB(t), YC(t) be the number of bins with labels A,B, and
C, respectively, and define the vector Y(t) = (YA(t), YB(t), YC(t)). Let Yµ(t) indicate
the number of matched bins. Throughout the process, we always have

2YA(t) + YB(t) + YC(t) = 2(n− t+ 1), (3.59)

which follows from the number of remaining edge slots, where each A bin contributes
two slots.

Let `1(t) and `2(t) indicate the bin labels for the first and second edges of ball t.
The probability that both neighbors satisfy case A, for example, is

P(`1(t) = A, `2(t) = A) =
4YA(t)(YA(t)− 1)

(2YA(t) + YB(t) + YC(t))(2YA(t) + YB(t) + YC(t)− 1)

=
YA(t)2

(n− t+ 1)2
+ o(1), (3.60)

conditioned on the vector Y(t). The Greedy algorithm matches the ball to one of
the two bin, so one case A bin is lost, one case C bin is gained, and one case B bin is
gained. Let χη denote the event (`1(t) = χ, `2(t) = η) ∨ (`1(t) = η, `2(t) = χ). Hence
for the event AA we have

E[YA(t+ 1)− YA(t)|Y(t), AA] = −2,

E[YB(t+ 1)− YB(t)|Y(t), AA] = 1,

E[YC(t+ 1)− YC(t)|Y(t), AA] = 1,

E[Yµ(t+ 1)− Yµ(t)|Y(t), AA] = 1. (3.61)

Table 3.1 enumerates all possible events for the joint neighbor configuration of each
ball with probabilities and resulting changes in variables. Figure 3.4 also shows an
example evolution of bin labels. In the table, ∆Y`(t) = Y`(t + 1) − Y`(t) and the o(1)
terms assume t < n(1 − ε). Note that all cases result in a deterministic change of bin
counts except for case AC. In this case, the ball is matched with the A bin or the C
bin each with probability 1/2. There is one omission from the table: let Em indicate
the event that both edges of ball t connect to the same bin (this must be an A bin),
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Table 3.1. Variable changes for bipartite Greedy according to cases of neighboring bins.

Case Probability E[∆YA(t)|·] E[∆YB(t)|·] E[∆YC(t)|·] E[∆Yµ(t)|·]
AA

YA(t)2

(n− t+ 1)2
+ o(1) −2 1 1 1

AB
YA(t)YB(t)

(n− t+ 1)2
+ o(1) −1 0 0 1

AC
YA(t)YC(t)

(n− t+ 1)2
+ o(1) −1 1/2 −1/2 1

BB
YB(t)2

4(n− t+ 1)2
+ o(1) 0 −2 0 0

BC
YB(t)YC(t)

2(n− t+ 1)2
+ o(1) 0 −1 −1 1

CC
YC(t)2

4(n− t+ 1)2
+ o(1) 0 0 −2 1

which can occur under the P(n, n, r) model and results in a multiple edge. This occurs
with probability

P(Em|Y(t)) =
YA(t)

2(n− t+ 1)(n− t+ 1/2)
. (3.62)

We will see shortly that this probability is o(1), so we omit it in our analysis for the
time being. Using the table, we can determine the expected changes in all variables
conditioned on Y(t) as follows.

E[∆YA(t)|Y(t)] =
−2YA(t)2 − YA(t)YB(t)− YA(t)YC(t)

(n− t+ 1)2
+ o(1), (3.63)

E[∆YB(t)|Y(t)] =
YA(t)2 + 1

2YA(t)YC(t)− 1
2YB(t)2 − 1

2YB(t)YC(t)

(n− t+ 1)2
+ o(1),

(3.64)

E[∆YC(t)|Y(t)] =
YA(t)2 − 1

2YA(t)YC(t)− 1
2YB(t)YC(t)− 1

2YC(t)2

(n− t+ 1)2
+ o(1),

(3.65)

E[∆Yµ(t)|Y(t)] = 1− YB(t)2

4(n− t+ 1)2
+ o(1). (3.66)

For any label `, let z`(x) be the normalized version of Y`(t) so that z`(x) = Y`(nx)
n and

thus 0 ≤ z`(x) ≤ 1 for 0 ≤ x ≤ 1. As n → ∞, the expected changes above yield the
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Figure 3.4. Example evolution of bin labels for a 2-regular bipartite graph where n = 5 and Greedy
is used. Bold edges indicate matched balls and bins. Part (a) shows the bin labels at t = 1 prior to
edges for the first ball being revealed; part (b) shows bin labels at t = 2 prior to edges for the second
ball being revealed, and indicates that the first ball was matched to the third bin; etc. Notice in part
(d) that the third ball is unable to be matched because both of its neighboring bins are occupied. The
final matching of size 4 is shown in part (f).

following deterministic system of differential equations

dzA(x)

dx
=
−2zA(x)2 − zA(x)zB(x)− zA(x)zC(x)

(1− x)2
, (3.67)

dzB(x)

dx
=

zA(x)2 + 1
2zA(x)zC(x)− 1

2zB(x)2 − 1
2zB(x)zC(x)

(1− x)2
, (3.68)

dzC(x)

dx
=

zA(x)2 − 1
2zA(x)zC(x)− 1

2zB(x)zC(x)− 1
2zC(x)2

(1− x)2
, (3.69)

dzµ(x)

dx
= 1− zB(x)2

4(1− x)2
. (3.70)
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Lemma 3.7. The solution to the system of differential equations (3.67-3.70) with the
initial conditions zA(0) = 1, zB(0) = 0, zC(0) = 0, zµ(0) = 0 is

zA(x) = (1− x)2,

zB(x) = 2(1− x)(ex/2 − 1),

zC(x) = 2(1− x)(1 + x− ex/2),

zµ(x) = 4ex/2 − ex − 3. (3.71)

Proof. We can simplify the normalized version of (3.67) by noting that

dzA(x)

dx
=
−2zA(x)2 − zA(x)zB(x)− zA(x)zC(x)

(1− x)2

= (2zA(x) + zB(x) + zC(x))

( −zA(x)

(1− x)2

)

=
−zA(x)

(1− x)
. (3.72)

We can then put the equation in separable form

dzA(x)

zA(x)
=
−dx

(1− x)
. (3.73)

Integrating both sides and using the initial condition gives the expression for zA(x).
Moving to (3.68), the derivative of zB(x), we can substitute zB(x) = 2(1−x)−2zA(x)−
zC(x) and zA(x) = (1− x)2 to obtain

dzB(x)

dx
= 1− x+

zB(x)

2
. (3.74)

This can be solved with a conventional method (e.g. integrating factor) to give the
expression for zB(x). The expression for the derivative of zC(x) simplifies to

dzC(x)

dx
= (1− x)2 +

(x+ 1)zC(x)

2(x− 1)
, (3.75)

which does not need to be solved since zC(x) follows easily from zA(x) and zB(x).
Finally, the derivative of zµ(x) simplifies to

dzµ(x)

dx
= 2ex/2 − ex. (3.76)

This is easily integrated to give the result. �

The lemma suggests that the expected fraction of balls matched by the greedy
algorithm is 4e1/2 − e1 − 3 ≈ 0.877. We will use Wormald’s theorem to formally justify
this result. First we need the following lemma to satisfy the trend hypothesis.
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Lemma 3.8. For x = t/n, z`(x) = Y`(t)/n, and t/n < 1 − ε, the expected changes
(3.63-3.66) and differential equations (3.67-3.70) satisfy

E[∆Y`(t)|Y(t)]− dz`(x)

dx
= O(1/n). (3.77)

for ` = A,B,C, µ.

Proof. We show that the event Em, where both edges of a ball connect to the same bin,
occurs with probability O(1/n). Let t′ = n− t so that t′ > nε. Then,

P(Em|Y(t)) =
YA(t)

2(n− t+ 1)(n− t+ 1/2)

≤ 1

2(t′ + 1/2)

<
1

2nε
= O(1/n), (3.78)

where we have used that YA(t) ≤ (n− t+ 1) from (3.59).
For the remaining events, it is sufficient to bound the difference between the true

and estimated probabilities for the event cases shown in Table 3.3. For the event AA,
we have the following exact and estimated probabilities,

P(AA) =
YA(t)(YA(t)− 1)

(n− t+ 1)(n− t+ 1/2)
,

P̂(AA) =
(YA(t)/n)2

(1− t/n)2
, (3.79)

where we have made the conditioning on Y(t) implicit. Using t′ = n− t, the difference
is

P̂(AA)− P(AA) =
YA(t)2

(t′)2
− YA(t)2

(t′ + 1)(t′ + 1/2)
+

YA(t)

(t′ + 1)(t′ + 1/2)

<
YA(t)2

(t′)2
− YA(t)2

(t′ + 1)2
+
YA(t)

(t′)2

=
(1 + 2t′)YA(t)2

(t′)2(1 + t′)2
+
YA(t)

(t′)2

<
(1 + 2t′)

(1 + t′)2
+

1

t′

<
3

t′
+

1

(t′)2

= O(1/t′) = O(1/n). (3.80)

where we have used YA(t) ≤ t′ and 1/t′ < 1/(nε). Similar analysis of the other cases
shows that the differences are O(1/n). �
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Theorem 3.12. Let µG(n, n, 2) denote the matching size obtained by the Greedy
algorithm on the regular graph G(n, n, 2). Then a.a.s.,

µG(n, n, 2)

n
= 4e1/2 − e− 3 + o(1), (3.81)

where 4e1/2 − e− 3 ≈ 0.877.

Proof. Using Wormald’s theorem, we set C0 = 1 and β = 2. To satisfy the Lipschitz
condition, we choose the domain defined by −ε < z`(x) < 1 + ε for ` = A,B,C, µ and
−ε < x < 1− ε where ε > 0 . By Lemma 3.8, the trend hypothesis is satisfied with λ1 =
O(1/n). Choosing λ = n−1/4, for any ε > 0 we have that λ > λ1 for a sufficiently large
n. We can make ε arbitrarily small so that the differential equations are valid arbitrarily
close to the end of the process. The solution to the system of differential equations is
given by Lemma 3.7. Using Theorem 3.1, we have with probability 1−O(n1/4e−n

1/4/8),

µG = n(4e1/2 − e− 3) +O(n3/4). (3.82)

�

Corollary 3.4. The performance ratio of Greedy on G(n, n, r) for r = 2 satisfies

RG(2) = 4e1/2 − e− 3 ≈ 0.877. (3.83)

Degree-Greedy

When performing online matching in the presence of a regular graph, it is evident that
the Greedy algorithm does not make optimal online choices. In particular, it does not
favor assignments to bins that already have many edges exposed. This is clear with
2-regular graphs as we have just seen; recall that for Greedy, if a ball arrives and it has
both an A neighbor and a C neighbor, the ball is assigned to each bin with probability
1/2. In these cases it is actually preferable to assign the ball to the C neighbor since
this is the last time that the C neighbor can be matched, while there will be another
opportunity for the A neighbor later. The instance in Figure 3.4 shows an example,
where in part (b), matching the ball to the C bin would have allowed for a matching
size of 5 instead of 4.

This motivates a variation of the Greedy algorithm that always chooses the un-
matched neighboring bin with the largest degree. We refer to this as the Degree-
Greedy algorithm. It is important to note that this algorithm makes sense for regular
graphs, but for other graphs, it may perform worse than Greedy. In many realistic
scenarios, certain bins are likely to be more popular than others, meaning they will
have more edges. In these cases it is actually preferable to assign balls to bins that
have a smaller degree, given the opportunity, because these bins are less likely to have
future matching opportunities.
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1: for j = 1 to n (each ball) do
2: When ball j arrives, let U(j) denote the set of unmatched neighboring bins
3: if |U(j)| > 0 then
4: Let d(i) denote the current degree of bin i
5: Match j to a neighboring bin i′ ∈ argmax

i∈U(j)
d(i)

6: end if
7: end for

Algorithm 8. Degree-Greedy (bipartite)

We analyze the Degree-Greedy algorithm for 2-regular bipartite graphs in this
section. For general r-regular bipartite graphs with r ≥ 2, the analysis becomes signif-
icantly more difficult, but we expect the algorithm performance to be lower bounded
by the 2-regular case. The Degree-Greedy algorithm is shown in Algorithm 8. We
use the same definitions and approach that we used to analyze Greedy. To begin, we
list the expected variable changes for the algorithm in Table 3.2; the table only differs
from Table 3.1 for the AC case.

Table 3.2. Variable changes for bipartite Degree-Greedy according to cases of neighboring bins.

Case Probability E[∆YA(t)|·] E[∆YB(t)|·] E[∆YC(t)|·] E[∆Yµ(t)|·]
AA

YA(t)2

(n− t+ 1)2
+ o(1) −2 1 1 1

AB
YA(t)YB(t)

(n− t+ 1)2
+ o(1) −1 0 0 1

AC
YA(t)YC(t)

(n− t+ 1)2
+ o(1) −1 0 0 1

BB
YB(t)2

4(n− t+ 1)2
+ o(1) 0 −2 0 0

BC
YB(t)YC(t)

2(n− t+ 1)2
+ o(1) 0 −1 −1 1

CC
YC(t)2

4(n− t+ 1)2
+ o(1) 0 0 −2 1
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From Table 3.1, we have the following expected changes.

E[∆YA(t)|Y(t)] =
−2YA(t)2 − YA(t)YB(t)− YA(t)YC(t)

(n− t+ 1)2
+ o(1), (3.84)

E[∆YB(t)|Y(t)] =
YA(t)2 − 1

2YB(t)2 − 1
2YB(t)YC(t)

(n− t+ 1)2
+ o(1), (3.85)

E[∆YC(t)|Y(t)] =
YA(t)2 − 1

2YB(t)YC(t)− 1
2YC(t)2

(n− t+ 1)2
+ o(1), (3.86)

E[∆Yµ(t)|Y(t)] = 1− YB(t)2

4(n− t+ 1)2
+ o(1). (3.87)

The corresponding differential equations are

dzA(x)

dx
=
−2zA(x)2 − zA(x)zB(x)− zA(x)zC(x)

(1− x)2
, (3.88)

dzB(x)

dx
=

zA(x)2 − 1
2zB(x)2 − 1

2zB(x)zC(x)

(1− x)2
, (3.89)

dzC(x)

dx
=

zA(x)2 − 1
2zB(x)zC(x)− 1

2zC(x)2

(1− x)2
, (3.90)

dzµ(x)

dx
= 1− zB(x)2

4(1− x)2
. (3.91)

The solution to the equations are given by the following lemma; we omit its proof as
it is similar to the proof of Lemma 3.7. The result of the lemma indicates that the
fraction of matched vertices is 11

12 ≈ 0.917, which is indeed larger than the fraction of
0.877 for the Greedy algorithm. The use of Wormald’s theorem is the same as the
application for Greedy and the result is stated below.

Lemma 3.9. The solution to the system of differential equations (3.88-3.112) with the
initial conditions zA(0) = 1, zB(0) = 0, zC(0) = 0, zµ(0) = 0 is

zA(x) = (1− x)2,

zB(x) = x(1− x),

zC(x) = x(1− x),

zµ(x) = x− x3

12
. (3.92)

Theorem 3.13. Let µDG(n, n, 2) denote the matching size obtained by the Degree-
Greedy algorithm on the regular graph G(n, n, 2). Then a.a.s.,

µDG(n, n, 2)

n
=

11

12
+ o(1). (3.93)
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Proof. The proof of Theorem 3.12 applies, making use of Lemma 3.8 for the trend
hypothesis, but with the solutions given in Lemma 3.9. �

Corollary 3.5. The performance ratio of Degree-Greedy on G(n, n, r) for r = 2
satisfies

RDG(2) =
11

12
. (3.94)

We have specified that the Degree-Greedy algorithm is appropriate for random
regular graphs, but how does it perform on the Erdős-Rényi random graph G(n, n, p)?
Observe that Degree-Greedy is a valid instance of an online algorithm ALG stated
in Theorem 3.9, so it follows that its performance is characterized by Greedy. Note
that the arguments in the proof of Theorem 3.9 are not valid for random regular graphs
because the edges for each arriving ball are not drawn independently; they are a function
of the existing graph. We have the following.

Corollary 3.6. The Degree-Greedy and Greedy algorithms perform equivalently
on G(n, n, p).

Simulations and intuition suggest that the expected matching size of Greedy on
G(n, n, r) is monotonically increasing in r for r ≥ 2. This is difficult to prove immedi-
ately because the expected matching size is not monotonically increasing in the edge set
E. That is, for two edge sets E1 and E2 such that E1 ⊂ E2, it is not necessarily true that
the expected matching size given by Greedy on E2 is greater than the expected size
for E1. This is obvious for 1-regular graphs, since Greedy returns a perfect matching
on these graphs but has an expected matching size on random 2-regular graphs that
is strictly less than n (as we have shown). However, it also holds for graphs with a
minimum degree of 2, as demonstrated by the example in Figure 3.5.
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(a) (b)

Figure 3.5. Example showing that the expected matching size of Greedy is not monotonically
increasing in edge sets, even for graphs with a minimum degree of 2. The expected matching size for
the graph in (a) is 11/4 = 2.75. The graph in (b) is a superset of the graph in (a) and has a lower
expected matching size of 8/3 ≈ 2.67.

The graph in Figure 3.5 (a) is a subgraph of the graph in Figure 3.5 (b). Note
that the latter graph is not quite a 3-regular graph because of the missing edge (2, 3).
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Both graphs are small enough that we can enumerate all possible progressions of the
Greedy algorithm. For the graph in part (a), there are two progressions that occur
with probability 1/4 – one giving a matching size of 3 and another giving matching size
of 2 – and one progression that occurs with probability 1/2 that gives a matching of
size 3. For the graph in part (b), there are six unique progressions of Greedy, each
occurring with equal probability. Four of the progressions give a matching size of 3 and
two give a matching size of 2, so the expected matching size for part (a) is 2.67. Thus
the expected matching size for part (a) is 2.75, larger than that of part (b) despite
having fewer edges. We have the following theorem.

Theorem 3.14. The expected matching size given by Greedy for online bipartite
matching is not monotonically increasing in the edge set E, even for graphs with a
minimum degree of 2.

Rollout

We now step away from the online scenario to make a connection with matching and roll-
out algorithms; we study the offline matching problem on G(n, n, 2). Offline matching
on 2-regular bipartite graphs is trivial since the graph consists just of even cycles. How-
ever, we are interested in a scenario where it is possible to make theoretical statements
about rollout algorithms. We consider a rollout algorithm that uses the Oblivious
algorithm as a base policy. The algorithm is best interpreted as a fortified rollout al-
gorithm because it picks an initial global solution and seeks to improve this solution
locally at each step [27].

The algorithm makes three sequential passes over all balls. During the first pass,
each ball proposes a match to a random neighboring bin. During the second pass, the
proposed bin for each ball is changed if the bin has more than one proposal. The third
pass matches each ball to its proposed bin, as long as the proposed bin is not matched.
We present and analyze the algorithm on 2-regular random graphs, but the algorithm
can be generalized to other bipartite graphs fairly easily.

This algorithm is referred to as Oblivious-Rollout and is shown in Algorithm 9.
Phase 1, phase 2, and phase 3 correspond to the first, second, and third passes, respec-
tively. The algorithm reduces to Oblivious if phase 2 is omitted. In the description,
K(i) indicates the proposal count for each bin i, which must be between 0 and 2, N(j)
indicates the set of neighbors for ball j, and the function P (·) is a mapping of balls to
bins indicating proposals.

We still assume the configuration model in the analysis, but with a different order
of edge exposure. Each ball reveals one neighboring edge during phase 1, and the other
edge during phase 2 (as opposed to revealing both edges immediately, for example).
The proposal during phase 1 is given exactly by first revealed edge. During phase 2,
the second edge of each ball is revealed and it is determined whether or not the ball
is colliding with another ball. A colliding ball means that its proposed bin has two
proposals (the proposals remaining from the first phase). If a ball is colliding and its



Sec. 3.3. Bipartite Graphs 133

newly revealed edge connects to an unproposed bin, the proposal is switched to the new
bin.

1: Initialize the proposal count for all bins: K(i)← 0, ∀i.
2: for j = 1 to n (phase 1) do
3: Choose a random neighboring bin i′ ∈ N(j).
4: Set the proposed bin for ball j equal to i′: P (j)← i′.
5: Increase the proposal count for bin i′: K(i′)← K(i′) + 1.
6: end for
7: for j = 1 to n (phase 2) do
8: Let i′ denote the current proposed bin for ball j: i′ ← P (j).
9: Let i′′ denote the remaining neighboring bin for ball j: i′′ ← N(j) \ {i′}.

10: if K(i′′) = 0 and K(i′) = 2 then
11: Switch proposal for ball j to bin i′′: P (j)← i′′.
12: Update proposal counts: K(i′)← K(i′)− 1, K(i′′)← K(i′′) + 1
13: end if
14: end for
15: for j = 1 to n (phase 3) do
16: Let i denote the current proposed bin for ball j: i← P (j).
17: if bin i is unmatched then
18: Match ball j to bin i.
19: end if
20: end for

Algorithm 9. Oblivious-Rollout

Since phase 1 represents the Oblivious algorithm, we know that with simple argu-
ments (i.e. those used to prove Theorem 3.11), bins can be classified into three types:
bins with zero proposal, bins with one proposal, and bins with two proposals. The ex-
pected number of bins with these descriptions is n/4, n/2, and n/4, respectively. With
this in mind, we introduce some definitions to to analyze phase 2.

At step j during phase 2, the jth ball will have an existing proposed edge from
phase 1 that connects to some bin. We enumerate three possibilities for this bin, where
an encountered neighbor of a bin i refers to a ball j′ ∈ N(i) with index less than the
current ball j; that is j′ < j. The bin labels are

R2 : Two proposals such that neither of its neighbors have been encountered,
S2 : Two proposals such that exactly one of its neighbors has been encountered,
R1 : One proposal whose neighbor has not been encountered.

The second edge that is drawn during phase 2 must connect to some bin, and this bin
must have one of the following three labels, prior to the new edge being drawn,

M0 : No edges,
M1 : One unproposed edge,
Q1 : One proposed edge.
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Finally, we must keep track of the number of bins with two unproposed edges throughout
the process; for this we use the label

M2 : Two unproposed edges.

An example of phase 2 of the algorithm with evolution of the bin labels is shown in
Figure 3.6.

Let Y`(t) denote the number of bins at time t during phase 2 that have the label `.
Also define the vector Y(t) = (YR2(t), YS2(t), YR1(t), YM1(t), YM0(t), YQ1(t)). Defining
t = 0 as the end of phase 1 and the beginning of phase 2, we now make a formal
statement about the end of phase 1.

Lemma 3.10. With probability 1− 2e−
√
n/2, at the end of phase 1 we have

YR2(0) = YM0(0) =
n

4
+ n3/4, (3.95)

YR1(0) = YQ1(0) =
n

2
+ n3/4. (3.96)

Proof. The mean values follow simply by linearity of expectation. For example, the
probability that a bin has two proposals (R2) is the probability that its two neighbors
both revealed their edges in phase 1, which is equal to (1/2)2. The concentration follows
by using Lemma 3.1 with α = n3/4 via the edge exposure (Doob) martingale. �

Moving to phase 2, we study the expected change in the variables conditioned on
Y(t). We again assume t < (1−ε)n for some ε > 0 with regards for Lipschitz continuity.
For each ball, two items are sampled. From phase 1, the ball has a neighboring bin
with label `1 ∈ {R2, S2, R1}. When drawing the second edge for the ball, a bin label
`2 ∈ {M0,M1, Q1} is sampled. It is during phase 2 that multiple edges can occur under
the configuration model; the probability of multiple edges is negligible and we address
this in Lemma 3.12. The total number of existing edges to encounter and new edges to
draw decreases by one for each ball, so we have for all t,

2YR2(t) + YR1(t) + YS2(t) = n− t+ 1, (3.97)

2YM0(t) + YM1(t) + YQ1(t) = n− t+ 1. (3.98)

To calculate the expected change in the variables at each step, we begin by noting
that in all cases where aR2 label is encountered, the number ofR2 labeled bins decreases
by one. If an R2 label is not encountered, the number of such bins remains constant.
This gives

E[∆YR2(t)|Y(t)] =
−2YR2(t)

2YR2(t) + YR1(t) + YS2(t)
=
−2YR2(t)

n− t+ 1
. (3.99)

Now consider the label S2. To gain an S2 bin, we must have a case where `1(t) = R2,
meaning there is a colliding ball, and it must not be possible to switch the proposal to
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the alternative bin. This only occurs if `2(t) = Q1. On the other hand, an S2 bin is
lost whenever one is encountered. Together,

E[∆YS2(t)|Y(t)] =
2YR2(t)YQ1(t)

(2YR2(t) + YR1(t) + YS2(t))(2YM0(t) + YM1(t) + YQ1(t))

− YS2(t)

2YR2(t) + YR1(t) + YS2(t)

=
2YR2(t)YQ1(t)

(n− t+ 1)2
− YS2(t)

n− t+ 1
. (3.100)

The label count for R1 is partly the complement of the S2 case. An additional R2 bin
is generated whenever a collision is encountered and it is possible to switch the proposal
to the newly drawn bin. This requires `1(t) = R2(t) and we must have `2(t) = M1 or
`2(t) = M2. An R1 bin is lost whenever it is encountered.

E[∆YR1(t)|Y(t)] =
2YR2(t)(2YM0(t) + YM1(t))

(n− t+ 1)2
− YR1(t)

n− t+ 1
. (3.101)

An M1 bin is gained whenever `1(t) = R1 and `2(t) = M0. One is lost whenever it is
encountered, so

E[∆YM1(t)|Y(t)] =
2YR1(t)YM0(t)

(n− t+ 1)2
− YM1(t)

n− t+ 1
. (3.102)

The number of M0 bins only decreases, and does so by one whenever one is encountered.

E[∆YM0(t)|Y(t)] =
−2YM0(t)

n− t+ 1
. (3.103)

A Q1 bin is gained whenever `2(t) = M0 and the tth ball is colliding, and lost whenever
one is encountered.

E[∆YQ1(t)|Y(t)] =
(2YR2(t) + YS2(t))(2YM0(t))

(n− t+ 1)2
− YQ1(t)

n− t+ 1
. (3.104)

Finally, it is easy to see that

E[∆YM2(t)|Y(t)] =
YR1(t)YM1(t)

(n− t+ 1)2
. (3.105)

Using the same normalization procedure as before, the system of differential equations
is
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dzR2(x)

dx
=
−2zR2(x)

1− x , (3.106)

dzS2(x)

dx
=

2zR2(x)zQ1(x)

(1− x)2
− zS2(x)

1− x , (3.107)

dzR1(x)

dx
=

2zR2(x)(2zM0(x) + zM1(x))

(1− x)2
− zR1(x)

1− x , (3.108)

dzM0(x)

dx
=
−2zM0(x)

1− x , (3.109)

dzM1(x)

dx
=

2zR1(x)zM0(x)

(1− x)2
− zM1(x)

1− x , (3.110)

dzQ1(x)

dx
=

(2zR2(x) + zS2(x))(2zM0(x))

(1− x)2
− zQ1(x)

1− x , (3.111)

dzM2(x)

dx
=

zR1(x)zM1(x)

(1− x)2
. (3.112)

Lemma 3.11. The solution to the system of differential equations (3.106-3.112) with
the initial conditions zR2(0) = 1/4, zS2(0) = 0, zR1(0) = 1/2, zM1(0) = 0, zM0(0) =
1/4, zQ1(0) = 1/2, zM2(0) = 0 is

zR2(x) =
(1− x)2

4
, (3.113)

zS2(x) =
1

2
(e−x/2 + x− 1)(1− x), (3.114)

zR1(x) =

(
1− e−x/2

2

)
(1− x), (3.115)

zM1(x) =
1

2
(e−x/2 + x− 1)(1− x), (3.116)

zM0(x) =
(1− x)2

4
, (3.117)

zQ1(x) =

(
1− e−x/2

2

)
(1− x), (3.118)

zM2(x) =
e−x

4

(
ex/2x− ex/2 + 1

)2
. (3.119)

Proof. Based on the similarities of the differential equations and the starting conditions,
we guess the following identities:

zR2(x) = zM0(x), (3.120)

zS2(x) = zM1(x), (3.121)

zR1(x) = zQ1(x). (3.122)
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We can immediately verify the first identity since the differential equation for zR2(x) is
a function only of itself and x; the same can be said for zM0(x). Integration gives

zR2(x) = zM0(x) =
(1− x)2

4
. (3.123)

Next we substitute the guessed identities into the differential equation for zR1(x):

dzR1(x)

dx
=

2zR2(x)(2zM0(x) + zM1(x))

(1− x)2
− zR1(x)

1− x

=
2zR2(x)(1− x− zQ1(x))

(1− x)2
− zR1(x)

1− x

=
2zR2(x)(1− x− zR1(x))

(1− x)2
− zR1(x)

1− x

=
1

2
(1− x)− zR1(x)

(
1

2
+

1

1− x

)
, (3.124)

where we have used 2zM0(x) + zM1(x) + zQ1(x) = 1− x in the second equality and the
solution for zR2(x) in the last equality. Thus

zR1(x) =

(
1− e−x/2

2

)
(1− x). (3.125)

Now moving to the differential equation for zS2(x),

dzS2(x)

dx
=

2zR2(x)zQ1(x)

(1− x)2
− zS2(x)

1− x (3.126)

=
2zR2(x)zR1(x)

(1− x)2
− zS2(x)

1− x (3.127)

=

(
1− e−x/2

2

)
(1− x)

2
− zS2(x)

1− x , (3.128)

where the first inequality follows from the guess zR1(x) = zQ1(x). The solution is

zS2(x) =
1

2
(e−x/2 + x− 1)(1− x). (3.129)

Now to verify that the guessed identities are correct for zQ1(x), we have

d

dx

((
1− e−x/2

2

)
(1− x)

)
=

(3− x)e−x/2

4
− 1. (3.130)
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Substituting the derived solutions in (3.111),

(2zR2(x) + zS2(x))(2zM0(x))

(1− x)2
− zQ1(x)

1− x =
(1− x)2

4
+
(
e−x/2 + x− 1

) (1− x)

4

−
(

1− e−x/2

2

)

=
(3− x)e−x/2

4
− 1. (3.131)

We apply the same reasoning for zM1(x),

d

dx

((
e−x/2 + x− 1

) (1− x)

2

)
=

(x− 3)e−x/2

4
+ (1− x). (3.132)

Substituting in (3.110),

2zR1(x)zM0(x)

(1− x)2
− zM1(x)

1− x =

(
1− e−x/2

2

)
(1− x)

2
− (e−x/2 + x− 1)

2

=
(x− 3)e−x/2

4
+ (1− x). (3.133)

This validates all of the solutions except for zM2(x). We reduce (3.112) to

dzM2(x)

dx
=

e−x

4

(
2ex/2 − 1

)(
1− ex/2(1− x)

)
. (3.134)

Direct integration then gives

zM2(x) =
e−x

4

(
ex/2x− ex/2 + 1

)2
. (3.135)

�

To determine the final fraction of matched bins suggested by the differential equations,
we simply calculate 1 − zM2(1) = 1/(4e) ≈ 0.908. We state one more lemma for the
trend hypothesis in Wormald’s theorem, and then formally justify this result.

Lemma 3.12. For x = t/n, z`(x) = Y`(t)/n, and t/n < 1 − ε, the expected changes
(3.99-3.105) and differential equations (3.106-3.112) satisfy

E[∆Y`(t)|Y(t)]− dz`(x)

dx
= O(1/n), (3.136)

for ` = R2, S2, R1,M1,M0, Q1,M2.
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Proof. Let Em denote the event that a multiple edge is encountered under the configu-
ration model. At any point during phase 2 we have, using n− t > nε,

P(Em|Y(t)) =
1

n− t+ 1
<

1

nε
= O(1/n). (3.137)

Now for the labels; for the R2 label, we have

E[∆YR2(t)|Y(t)]− dzR2(x)

dx
=
−2YR2(t)

n− t+ 1
+

2YR2(t)/n

1− t/n

=
2YR2(t)

(n− t+ 1)(n− t)
≤ 1

n− t
<

1

nε
, (3.138)

where in the first inequality, we have used 2YR2(t) ≤ n − t + 1, and in the second
inequality, t/n < 1− ε. The analysis for the other labels follows similarly. �

Theorem 3.15. Let µOR(n, n, 2) denote the matching size obtained by the Oblivious-
Rollout algorithm on the regular graph G(n, n, 2). Then a.a.s.,

µOR(n, n, 2)

n
= 1− 1

4e
+ o(1), (3.139)

where 1− 1
4e ≈ 0.908.

Proof. We employ Wormald’s theorem using C0 = 1 and β = 1. The Lipschitz condition
is satisfied with the domain defined by −ε < z`(x) < 1 + ε for ` = R2, S2, . . . ,M2 and
−ε < x < 1− ε where ε > 0. From Lemma 3.10, we have zR2(0) = zM2(0) = 1/4 + o(1)
and zR1(0) = zQ1(0) = 1/2 + o(1). The trend hypothesis is satisfied with λ1 = O(1/n)
by Lemma 3.12. Choosing λ = n−1/4, for any ε > 0 we have that λ > λ1 for a
sufficiently large n. We can make ε arbitrarily small so that the differential equations
are valid arbitrarily close to the end of the process. With the solution to the differential
equations given by Lemma 3.11, we have with probability 1−O(n1/4e−n

1/4
),

µOR = n

(
1− 1

4e

)
+O(n3/4). (3.140)

�
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Figure 3.6. Example evolution of bin labels during phase 2 of the Oblivious-Rollout algorithm.
Proposals from phase 1 are shown in part (a). In parts (b) - (g), the bin labels are shown as updated
after the new edge for each ball has been exposed. The only proposal change occurs in (d), where the
new edge and proposal change are shown in a single step. Phase 2 thus improves the matching size
from 4 to 5.
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3.4 Non-bipartite Graphs

In this section, we generalize the online greedy matching problem to non-bipartite
graphs. This model starts with an empty graph and all vertices arrive sequentially.
When each vertex arrives, only its neighboring edges connecting to existing vertices
are revealed. We allow each vertex to be irrevocably matched when either it arrives or
when it is matched to one of its arriving neighboring vertices. This is in contrast with
the bipartite model, where vertices in one partition are given up front and vertices in
the other partition arrive sequentially.

The intuitive greedy algorithm for this problem is essentially identical to the
Greedy algorithm for the bipartite case: it matches each arriving vertex to a random
unmatched neighbor if possible. An example progression of Greedy on a small graph
is shown in Figure 3.7. Part (a) shows the full graph, including with a maximum
matching of size 5 shown in bold. Parts (b)-(l) show the progression of the online
algorithm, which obtains a matching of size 3.

The section is organized similar to the previous section. We start with the binomial
random graph G(n, p) and then move to the random regular graph G(n, r).
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Figure 3.7. Instance and progression of online non-bipartite matching problem for n = 10 (continued
on following page). The graph with a maximum matching shown in bold is shown in (a). The behavior
of the online algorithm is shown in (b) - (l); the size of the matching obtained by the online algorithm
is 3.
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Figure 3.7 (continued). Instance and progression of online non-bipartite matching problem for n = 10.
The graph with a maximum matching shown in bold is shown in (a). The behavior of the online
algorithm is shown in (b) - (l); the size of the matching obtained by the online algorithm is 3.

3.4.1 Binomial Graphs

We state here the Greedy algorithm for non-bipartite graphs and determine its per-
formance on G(n, p) for valid functions p = p(n).

The Greedy algorithm for non-bipartite graphs is shown in Algorithm 10; it simply
matches each arriving vertex to a randomly selected unmatched neighboring vertex. As
with the bipartite case, Wormald’s theorem is only needed for the sparse regime p = c/n.

1: for j = 1 to n (each vertex) do
2: When vertex j arrives, let U(j) be the set of unmatched neighboring vertices
3: if |U(j)| > 0 then
4: Match j to a random vertex i′ ∈ U(j)
5: end if
6: end for

Algorithm 10. Greedy (non-bipartite)
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Theorem 3.16. Let µG(n, c/n) denote the matching size obtained by the Greedy
algorithm on the graph G(n, p), where p = c/n and c > 0 is a constant. Then a.a.s.,

µG(n, c/n)

n
=

1

2
− log (2− e−c)

2c
+ o(1). (3.141)

Proof. Let Y (t) denote the number of matched vertices immediately before the tth

arrival. Conditioning on Y (t), the tth vertex cannot be matched only if edges connecting
the vertex to the t− 1− Y (t) neighboring vertices are not present. The probability of
a match is then

P(vertex t is matched|Yt) = 1− (1− p)t−1−Y (t)

=
1

2
E[Y (t+ 1)− Y (t)|Y (t)]. (3.142)

Normalizing gives

E[Z(x+ 1/n)− Z(x)|Z(x)]

1/n
= 2− 2

(
1− c

n

)n(x−1/n−Z(x))
(3.143)

= 2− 2e−c(x−Z(x)) + o(1). (3.144)

The corresponding differential equation for n→∞ is

dz(x)

dx
= 2− 2e−c(x−z(x)), (3.145)

which has solution

z(x) = 2x− log (−1 + 2ecx)

c
, 0 ≤ x ≤ 1. (3.146)

Note that since Y (t) denotes the number of matched vertices, the matching size at time
t is equal to Y (t)/2. To apply Wormald’s theorem, let the domain D be defined by
−ε < x < 1 + ε and −ε < z(x) < 1 + ε, for ε > 0. We have C0 = 1 and β = 2. Let λ1 =
O(1/n). The Lipschitz hypothesis is satisfied with a Lipschitz constant L = 4cec(1+2ε).

Setting λ = cn−1/4, we have that with probability 1−O(n1/4e−c
3n1/4

),

µG(n, c/n) = n

(
1

2
− log (2− e−c)

2c

)
+O(n3/4). (3.147)

�

The first interesting observation about the expression in Theorem 3.16 is that it is
exactly equal to the expression in Theorem 3.7 for bipartite graphs, differing by a factor
of two since the bipartite graph has twice as many vertices. However, the differential
equations for the two processes, specifically (3.50) and (3.146), are clearly not the
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same. Both processes thus arrive at the same matching size despite taking different
paths. Even more remarkable, the matching size (3.141) given by Greedy for non-
bipartite graphs is equal to the matching size obtained by using Modified-Greedy
on non-bipartite graphs, which was studied by Dyer et al. [56]. Recall that Modified-
Greedy solves the offline matching problem, where at each step, it selects a random
vertex and then chooses a random neighboring edge, and removes the corresponding
matched vertices. Accordingly, Modified-Greedy performs the same procedure as
Greedy, but starts with and operates on the entire graph, and still obtains the same
matching size that Greedy does for the online problem!

Equipped with the above theorem and using some of the proof techniques that we
used for bipartite graphs, the performance ratio for all valid functions p = p(n) is stated
as follows.

Theorem 3.17. The performance ratio RG(p(n)) of Greedy on G(n, p), for all valid
functions p = p(n), satisfies

RG(p(n)) = 1, p(n) = o(1/n),

RG(p(n)) =
c− log(2− e−c)

2c− (γ∗ + γ∗ + γ∗γ∗)
, p(n) = c/n,

RG(p(n)) = 1, p(n) = ω(1/n).

(3.148)

Proof. The performance ratio for p(n) = o(1/n) follows from arguments in the proof
of Lemma 3.3, and for p(n) = ω(1/n) from the arguments in the proof of Lemma 3.6.
The sparse regime result follows from Theorem 3.16 and Theorem 3.3. �

Corollary 3.7. The performance ratio of Greedy on G(n, p) for all valid functions
p = p(n) satisfies

RG(p(n)) ≥ 0.837. (3.149)

Proof. The proof is the same as the proof of Corollary 3.2. �

3.4.2 Regular Graphs

We determine the matching sizes produced by both Degree-Greedy and Greedy
for random 2-regular non-bipartite graphs. We only show the analysis for Degree-
Greedy, however, since the analysis for Greedy is nearly identical. The Degree-
Greedy algorithm for regular graphs is shown in Algorithm 11.

We perform the analysis via the configuration model P(n, 2). We use Em again to
denote the occurrence of a multiple edge, and since we are now working with an non-
bipartite graph, it is possible for self loops to occur. We use Es to denote the occurrence
of a self loop. Both of these events will happen with negligible probability, as we show
in Lemma 3.13.

We use bin labels defined similarly to the bipartite case. Upon the arrival of a new
vertex, there are two possibilities for each one of its edges. The edge either connects to
an existing vertex or a vertex that will arrive later. In the latter case, we say that the
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1: for j = 1 to n do
2: When vertex j arrives, let U(j) be the set of unmatched neighboring vertices
3: if |U(j)| > 0 then
4: For each bin i, let d(i) denote its current degree
5: Match j to a neighboring bin i′ ∈ argmax

i∈U(j)
d(i)

6: end if
7: end for

Algorithm 11. Degree-Greedy (non-bipartite)

Table 3.3. Variable changes for non-bipartite Degree-Greedy according to cases of neighboring bins.

Case E[∆YA(t)|·] E[∆YB(t)|·] E[∆YC(t)|·] E[∆Yµ(t)|·]
DD 1 0 0 0
AD −1 2 0 1
BD 0 −1 1 0
CD 0 1 −1 1
AA −2 1 1 1
AB −1 0 0 1
AC −1 0 0 1
BB 0 −2 0 0
BC 0 −1 −1 1
CC 0 0 −2 1

edge is deferred.. There are three cases for vertices having at least one deferred edge.
We label these vertices as

A : the vertex has two deferred edges,
B : the vertex has one deferred edge and is matched,
C : the vertex has one deferred edge and is unmatched.

Altogether, each edge of an arriving vertex can connect to a vertex of type A, B, C, or
it can be deferred. We denote a deferred edge by D.

As before, we define the vector Y(t) = (YA(t), YB(t), YC(t)). We use t to index
arriving vertices. For Lipschitz continuity, we make the restriction t < n(1 − ε) for
some ε > 0. Let Yµ(t) denote the matching size at time t. The changes in variables
conditioned on Y(t) are shown in Table 3.3. Note that the first vertex (i.e. t = 1) will
always result in the DD case, which generates a type A vertex. Figure 3.8 shows an
example progression of bin labels.

Letting YD(t) denote the number of deferred edges prior to the arrival of the vertex
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Figure 3.8. Example evolution of bin labels for a 2-regular non-bipartite graph where n = 10 and
Degree-Greedy is used. The graph with a maximum matching shown in bold is shown in (a). The
behavior of the online algorithm is shown in (b) - (l); it obtains a matching size of 4.
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at time t, we have

2YA(t) + YB(t) + YC(t) + YD(t) = 2(n− t+ 1). (3.150)

The probabilities of the events in Table 3.3 are

P(DD|Y(t)) =

(
1− (2YA(t) + YB(t) + YC(t))

2(n− t+ 1)

)2

+ o(1), (3.151)

P(AD|Y(t)) =
2YA(t)

(n− t+ 1)

(
1− (2YA(t) + YB(t) + YC(t))

2(n− t+ 1)

)
+ o(1), (3.152)

P(BD|Y(t)) =
YB(t)

(n− t+ 1)

(
1− (2YA(t) + YB(t) + YC(t))

2(n− t+ 1)

)
+ o(1), (3.153)

P(CD|Y(t)) =
YC(t)

(n− t+ 1)

(
1− (2YA(t) + YB(t) + YC(t))

2(n− t+ 1)

)
+ o(1), (3.154)

P(AA|Y(t)) =
YA(t)2

(n− t+ 1)2
+ o(1), (3.155)

P(AB|Y(t)) =
YA(t)YB(t)

(n− t+ 1)2
+ o(1), (3.156)

P(AC|Y(t)) =
YA(t)YC(t)

(n− t+ 1)2
+ o(1), (3.157)

P(BB|Y(t)) =
YB(t)2

4(n− t+ 1)2
+ o(1), (3.158)

P(BC|Y(t)) =
YB(t)YC(t)

2(n− t+ 1)2
+ o(1), (3.159)

P(CC|Y(t)) =
YC(t)2

4(n− t+ 1)2
+ o(1). (3.160)

Combining the variable changes with the probabilities gives the following expected
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changes and differential equations.

E[∆YA(t)|Y(t)] =
4YA(t)2 + (YB(t) + YC(t)− 2(n− t+ 1))2

4(n− t+ 1)2

+
4YA(t) (YB(t) + YC(t)− 4(n− t+ 1))

4(n− t+ 1)2
+ o(1), (3.161)

E[∆YB(t)|Y(t)] = −6YA(t)2 + YB(t)(YC(t) + 2(n− t+ 1))

2(n− t+ 1)2

+
YC(t)(YC(t)− 2(n− t+ 1))

2(n− t+ 1)2

−2YA(t)(YB(t) + 3YC(t)− 4(n− t+ 1))

2(n− t+ 1)2
+ o(1), (3.162)

E[∆YC(t)|Y(t)] = −−2YA(t)2 + YB(t)2 + 2YA(t)(YB(t)− YC(t))

2(n− t+ 1)2

+
2YC(t)(n− t+ 1)

2(n− t+ 1)2

−YB(t)(YC(t)− 2(n− t+ 1))

2(n− t+ 1)2
+ o(1), (3.163)

E[∆Yµ(t)|Y(t)] = −(2YA(t) + YC(t))(2YA(t) + YC(t)− 4(n− t+ 1))

4(n− t+ 1)2
+ o(1).

(3.164)

dzA(x)

dx
=

4zA(x)2 + (zB(x) + zC(x)− 2(1− x))2

4(1− x)2

+
4zA(x) (zB(x) + zC(x)− 4(1− x))

4(1− x)2
, (3.165)

dzB(x)

dx
= −6zA(x)2 + zB(x)(zC(x) + 2(1− x)) + zC(x)(zC(x)− 2(1− x))

2(1− x)2

−2zA(x)(zB(x) + 3zC(x)− 4(1− x))

2(1− x)2
, (3.166)

dzC(x)

dx
= −−2zA(x)2 + zB(x)2 + 2zA(x)(zB(x)− zC(x)) + 2zC(x)(1− x)

2(1− x)2

−zB(x)(zC(x)− 2(1− x))

2(1− x)2
, (3.167)

dzµ(x)

dx
= −(2zA(x) + zC(x))(2zA(x) + zC(x)− 4(1− x))

4(1− x)2
. (3.168)
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Lemma 3.13. For x = t/n, z`(x) = Y`(t)/n, and t/n < 1 − ε, the expected changes
(3.161 - 3.164) and differential equations (3.165 - 3.168) satisfy

E[∆Y`(t)|Y(t)]− dz`(x)

dx
= O(1/n), (3.169)

for ` = A,B,C, µ.

Proof. We show that the events Em of a multiple edge and Es of a self loop occurring
both have probabilities O(1/n). For the former,

P(Em|Y(t)) =
2YA(t)

(2(n− t+ 1))2
<

1

2(n− t) = O(1/n), (3.170)

which follows using 2YA(t) ≤ 2(n− t+ 1) and 1/(n− t) < 1/(nε). The probability of a
self loop at any time t is simply

P(Es) =
1

2(n− t+ 1)
= O(1/n). (3.171)

By bounding the differences between the true and estimated probabilities listed in
equations (3.151 - 3.160), the remainder of the proof follows the same approach as the
proof of Lemma 3.8. �

Lemma 3.14. The solution to the system of differential equations (3.165-3.168) with
the initial conditions zA(0) = 1, zB(0) = 0, zC(0) = 0, zµ(0) = 0 is

zA(x) = x(1− x)2,

zB(x) = (1− x)

(
2x+ x2 − 2(1−Q(1)−Q(x− 1))

φ(x− 1)

)
,

zC(x) = (1− x)

(
−2x+ x2 +

2(1−Q(1)−Q(x− 1))

φ(x− 1)

)
,

zµ(x) =

∫ x

0
−1

4

(
u2 − 2(1−Q(1)−Q(u− 1))

φ(u− 1)

)

·
(

4 + u2 − 2(1−Q(1)−Q(u− 1))

φ(u− 1)

)
du, (3.172)

where

φ(x) :=
e−

1
2
x2

√
2π

, (3.173)

Q(x) :=
1√
2π

∫ ∞

x
e−

u2

2 du. (3.174)
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Proof. We define

θ(x) := 2zA(x) + zB(x) + zC(x). (3.175)

We then have

dθ(x)

dx
= 2

dzA(x)

dx
+
dzB(x)

dx
+
dzC(x)

dx
(3.176)

=
2(1− x− 2zA(x)− zB(x)− zC(x))

(1− x)

=
2(1− x− θ(x))

(1− x)
, (3.177)

where in the second equality we have substituted (3.165 - 3.167). Then using θ(0) = 0,
we have the solution

θ(x) = 2x(1− x). (3.178)

The next step is to make the substitution

zB(x) + zC(x) = 2x(1− x)− 2zA(x) (3.179)

in (3.165) to obtain

dzA(x)

dx
=
−2zA(x) + (1− x)3

(1− x)
. (3.180)

With zA(0) = 0 we have

zA(x) = x(1− x)2. (3.181)

Moving to zB(x), we may now make the substitution

zC(x) = 2x(1− x)− 2x(1− x)2 − zB(x) (3.182)

in (3.166), giving

dzB(x)

dx
=
−zB(x)

(
2(1− x) + x2

)
− (1− x)2x(−4 + x+ x2)

(1− x)
. (3.183)

Thus,

zB(x) = (1− x)

(
2x+ x2 − 2(1−Q(1)−Q(x− 1))

φ(x− 1)

)
. (3.184)

This immediately gives via (3.182),

zC(x) = (1− x)

(
−2x+ x2 +

2(1−Q(1)−Q(x− 1))

φ(x− 1)

)
. (3.185)
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We finally arrive at

dzµ(x)

dx
= −1

4

(
x2 − 2(1−Q(1)−Q(x− 1))

φ(x− 1)

)

·
(

4 + x2 − 2(1−Q(1)−Q(x− 1))

φ(x− 1)

)
, (3.186)

zµ(x) =

∫ x

0
−1

4

(
u2 − 2(1−Q(1)−Q(u− 1))

φ(u− 1)

)

·
(

4 + u2 − 2(1−Q(1)−Q(u− 1))

φ(u− 1)

)
du. (3.187)

We leave this in integral form since it does not have an analytical solution. �

We now prove the result for Degree-Greedy on non-bipartite graphs. We also
state the result for Greedy without proof since the analysis is similar.

Theorem 3.18. Let µDG(n, 2) denote the matching size obtained by the Degree-
Greedy algorithm on the regular graph G(n, 2). Then a.a.s.,

µDG(n, 2)

n
= 0.442121 + o(1). (3.188)

Proof. We use Wormald’s theorem with C0 = 1 and β = 2. The Lipschitz condition is
satisfied by the domain −ε < z`(x) < 1 + ε for ` = A,B,C, µ and −ε < x < 1− ε where
ε > 0. By Lemma 3.13, the trend hypothesis is satisfied with λ1 = O(1/n). Choosing
λ = n−1/4, for any ε > 0 we have that λ > λ1 for a sufficiently large n. Making ε small
makes the differential equations valid arbitrarily close to the end of the process. Thus
by the numerical solution from Lemma 3.14, with probability 1−O(n1/4e−n

1/4/8),

µDG = n(0.442121) +O(n3/4). (3.189)

�

Corollary 3.8. The performance ratio of Degree-Greedy on G(n, r) for r = 2
satisfies

RDG(2) ≥ 0.884242. (3.190)

Theorem 3.19. Let µG(n, 2) denote the matching size obtained by the Greedy algo-
rithm on the random graph G(n, 2). Then a.a.s.,

µG(n, 2)

n
= 0.434431 + o(1). (3.191)

Corollary 3.9. The performance ratio of Greedy on G(n, r) for r = 2 satisfies

RG(2) ≥ 0.868862. (3.192)

Finally, by the same observation we made in the bipartite case, we have the following.

Lemma 3.15. The Degree-Greedy and Greedy algorithms perform equivalently
on G(n, p).
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3.5 Discussion

Altogether, we have seen that greedy online matching algorithms perform well on ran-
dom graphs. Our important results are summarized in Table 3.4. Performance improve-
ments in comparison to worst-case bounds are expected, but the magnitudes of these
improvements are surprising. Consider our results on the Erdős-Rényi graph G(n, n, p).
The Oblivious algorithm, which is clearly inferior to Ranking, has a minimum per-
formance ratio 1−1/e ≈ 0.632 that is equal to the best possible worst-case competitive
ratio of any online matching algorithm (i.e. that of Ranking). Likewise, the lower
bound of 0.837 on the performance ratio of Greedy and Ranking is very high.

It is clear that the sparse regime p(n) ∼ 1/n is where a phase change occurs in
matching performance for the graphs G(n, n, p) and G(n, p). This is where the perfor-
mance ratio of the Oblivious algorithm transitions from 1 to 1 − 1/e, and where the
performance ratio of Greedy passes through its global minimum of 0.837 (both for
bipartite and non-bipartite cases). The sparse regime is in this sense the rich setting to
study online matching on Erdős-Rényi graphs.

Table 3.4. Summary of lower bounds on performance ratios for random graph models and algorithms.

G(n, n, p) G(n, n, 2) G(n, p) G(n, 2)

Oblivious 1− 1/e ≈ 0.632 3/4 = 0.75

Greedy 0.837 4e1/2 − e− 3 ≈ 0.877 0.837 0.869
Ranking 0.837

Degree-Greedy 0.837 11/12 ≈ 0.917 0.837 0.884
Oblivious-Rollout 1− 1/(4e) ≈ 0.908

There are surprising similarities in matching properties for Erdős-Rényi graphs.
Note again that the bounds/expressions for the asymptotic maximum matching sizes
on G(n, n, c/n) and G(n, c/n) are equivalent (technically differing only by a factor of
two since the former graph is twice as large). This is not necessarily expected since non-
bipartite graphs contain odd cycles and bipartite graphs do not. Similar observations
were made by Frieze [64], as the differential equations for part of the Karp-Sipser
algorithm (specifically phase 2) on bipartite and non-bipartite graphs are equivalent.

Let us also recall the multiple settings that give rise to the expression in Theorem 3.7.
As the theorem claims, this is the (asymptotic) matching size obtained by Greedy on
G(n, n, c/n). According to Theorem 3.9, this is also the matching size given by Ranking
on G(n, n, c/n). For our online matching model, this is the expected matching size given
by the Greedy algorithm on G(n, c/n). Finally, this is the asymptotic matching size
given by Modified-Greedy for the offline matching problem on G(n, c/n) [56]. That
any of these results should be equal is remarkable, let alone all of them.

On random regular graphs, the behavior of Greedy is even more optimistic than
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on binomial random graphs. The performance ratio for Greedy on G(n, n, 2) is at least
0.877 and on G(n, 2) it is at least 0.869. Here the differences between bipartite and non-
bipartite graphs are apparent – since odd cycles are present in the latter, the slightly
smaller expected matching size makes sense. We conjecture that the performance ratios
RG(r) are increasing in r for r ≥ 2 in both the bipartite and non-bipartite cases, but
it is an open problem to prove this.

The result for the Oblivious-Rollout algorithm is important for rollout algo-
rithms. While the analysis in Chapter 2 only considered the first iteration of rollout
algorithms, the result for Oblivious-Rollout characterizes the performance after
running every iteration. The algorithm is not practical, but we have demonstrated
that the differential equation method is useful for one rollout application, and in future
research it may be effective for other problems.

Rollout algorithms aside, it is interesting to compare the performance of Oblivious-
Rollout with Greedy. We have shown that taking a crude solution, as given by the
Oblivious algorithm (with a performance ratio of 0.75), and refining it, which is what
the Oblivious-Rollout algorithm does (for a ratio of 0.908), gives stronger perfor-
mance than simply using Greedy (0.877). However, the Degree-Greedy algorithm
(0.917) is still the superior greedy algorithm.

A variety of possibilities exist for further research. Most obviously, there are missing
entries in Table 3.4. We have not analyzed the Oblivious algorithm on non-bipartite
graphs, but we expect it to be similar to the bipartite case. The same can be said about
the Ranking algorithm on non-bipartite graphs. We have also not considered Ranking
on random regular graphs. While it may be straightforward to study Oblivious-
Rollout on G(n, 2), its analysis for Erdős-Rényi graphs is likely to be difficult.

It would be helpful to know if the bound on the maximum matching size on G(n, n, p)
is in fact tight for all c > 0 [40]. Recall that this is the bound given by Bollobás and
Brightwell (Theorem 3.2), and it is known to be tight for c ≤ e [40]. We conjecture
that it is in fact tight for all c > 0. A tight bound on this result would imply that the
performance ratio bound in Theorem 3.8 is tight, including the lower bound of 0.837.
In the unlikely event that it is not tight, the best lower bound on the performance ratio
cannot be any greater than 0.845, where the denominator bound is tight for c = e. The
most straightforward way to show tightness of this bound is to carry out the analysis
of the Karp-Sipser algorithm on bipartite graphs. In fact, some of this analysis has
already been completed in [64].

We have allowed the existence of isolated vertices in our consideration of Erdős-
Rényi graphs, which is unlikely to be realistic for many applications. This could be
resolved by imposing a restriction on the minimum degree of vertices, as was done in
[65], for example. Unbalanced bipartite graphs (i.e. with more vertices on one side) are
likely to be encountered in practice – our approach can be used in this situation, but
less is known about expected maximum matching size here.

More generally, a valid criticism of random graph research in general is that G(n, n, p)
and G(n, p) are not realistic models of naturally occurring graphs. The same can be
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argued for random regular graphs. For internet applications, there is extensive evidence
that real graphs follow a power law distribution [10, 18, 19, 90, 94, 95]. It would be
interesting to understand the behavior of greedy algorithms in these more realistic
models, particularly preferential attachment models, where the graph is built such that
edges connect to vertices with probabilities proportional to the degree of the vertices
[115, 142].

3.6 Proof of Wormald’s Theorem

We use the following one-sided version of the Azuma-Hoeffding inequality in the proof
[17, 75, 148].

Lemma 3.16. Let X0, X1, . . . , Xt be a supermartingale where X0 = 0 and |Xi−Xi−1| ≤
ci, 1 ≤ i ≤ t, for constants ci. Then for any α > 0,

P(Xt ≥ α) ≤ exp

(
− α2

2
∑t

i=1 c
2
i

)
. (3.193)

Proof of Theorem 3.4 (Wormald’s theorem). Our development is nearly identical to the
proof in [148], but we include a few additional details. We will only prove part (b) as
part (a) is a standard result. We prove the theorem in only one dimension (i.e. a = 1)
and explain the generalization to more dimensions afterwards. Let

w := dnλ/βe . (3.194)

We will assume that β/λ ≤ n1/3 (and thus w ≥ n2/3) so that the probability bound
in the theorem conclusion is nontrivial. Recall that β is a constant, so w is a slowly
growing function w = O(nλ) that is restricted to integer values.

Fix some t ≥ 0 and consider the sequence of random variablesX−k for k = 0, 1, . . . , w,
where

X−k := Y (t+ k)− Y (t)− kf(t/n, Y (t)/n)− kg(n). (3.195)

Here g(n) is some deterministic function to be specified. Similarly define

X+
k := Y (t+ k)− Y (t)− kf(t/n, Y (t)/n) + kg(n). (3.196)

We will show that for an appropriately chosen g(n), X−k is a supermartingale and X+
k

is a submartingale. That is, for a correctly chosen g(n), we will have

E[X−k+1|Ht+k] ≤ X−k , k = 0, 1, . . . , w,

E[X+
k+1|Ht+k] ≥ X+

k , k = 0, 1, . . . , w. (3.197)
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In the following analysis, we assume that the scaled variables (t/n, Y (t)/n) are at a
distance (in terms of (3.8)) at least Cλ from the boundary of D; this will be justified
later. Conditioning on Ht+k for the sequence X−k , we have

E[X−k+1 −X−k |Ht+k] = E[Y (t+ k + 1)− Y (t)− (k + 1)f(t/n, Y (t)/n)

−(k + 1)g(n)− Y (t+ k) + Y (t)

+kf(t/n, Y (t)/n) + kg(n)|Ht+k]

= E[Y (t+ k + 1)− Y (t+ k)|Ht+k]− f(t/n, Y (t)/n)− g(n)

= E[Y (t+ k + 1)− Y (t+ k)|Ht+k]

−f((t+ k)/n, Y (t+ k)/n) +O(βk/n)− g(n)

= O(λ1) +O(βk/n)− g(n)

= O(λ)− g(n). (3.198)

The first equality above follows by definition of X−k and the second equality follows from
canceling terms and noting that the functions f(t/n, Y (t)/n) and g(n) are deterministic.
The third equality uses both the boundedness hypothesis (so that |Y (t+k)−Y (t)| ≤ βk)
and the Lipschitz hypothesis. The fourth equality follows from the trend hypothesis
and the fifth equality is satisfied since λ1 = O(λ) and βw/n = O(λ).

Using the same analysis, it is easy to show

E[X+
k+1 −X+

k |Ht+k] = O(λ) + g(n). (3.199)

Thus, there exists some function g(n) = O(λ) such that X−k is a supermartingale and
X+
k is a submartingale. To bound the differences of the supermartingale we observe

|X−k+1 −X−k | ≤ |Y (t+ k + 1)− Y (t+ k)|+ |f(t/n, Y (t)/n)|+ |g(n)|
≤ β +O(1)

≤ κβ, (3.200)

where κ > 0 is some constant. The second inequality uses the boundedness hypothesis,
the Lipschitz hypothesis, and the fact that λ = o(1); the third inequality follows since
β ≥ 1. This analysis again holds for the submartingale.

Now using Lemma 3.16 with the supermartigale X−k , we have

P(Y (t+ w)− Y (t)− wf(t/n, Y (t)/n)− wg(n) ≥ α′|Ht) ≤ exp

(
− (α′)2

2wκ2β2

)
,(3.201)

for any constant α′ > 0, or equivalently,

P(Y (t+ w)− Y (t)− wf(t/n, Y (t)/n) ≥ wg(n) + κβ
√

2wα|Ht) ≤ e−α, (3.202)

for any α > 0. Using the fact that the sequence −X+
k is a supermartingale as well,

application of Lemma 3.16 gives

P(−Y (t+ w) + Y (t) + wf(t/n, Y (t)n) ≥ wg(n) + κβ
√

2wα|Ht) ≤ e−α. (3.203)
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Using a union bound, we have

P(|Y (t+ w)− Y (t)− wf(t/n, Y (t)/n)| ≥ wg(n) + κβ
√

2wα|Ht) ≤ 2e−α. (3.204)

We set

α =
nλ3

β3
, (3.205)

so that

P(|Y (t+ w)− Y (t)− wf(t/n, Y (t)/n)| ≥ O(λw)|Ht) ≤ 2e−α, (3.206)

where we have used w = dnλ/βe and g(n) = O(λ).
Next we define

ki := iw, i = 0, 1, . . . , bσn/wc. (3.207)

We will show that for each i,

P(|Y (kj)− z(kj/n)n| ≥ Bj for some j ≤ i) = O(ie−α), (3.208)

where

Bj := Bw
(
λ+

w

n

)((
1 +

Bw

n

)j
− 1

)
n

Bw
, (3.209)

and B is a constant that will be specified shortly. We will prove this using induction
on i. To begin, the statement clearly holds for z(0) = Y (0)/n. For the inductive step,
we use the decomposition

Y (ki+1)− z(ki+1/n)n = A1 +A2 +A3 +A4, (3.210)

where

A1 = Y (ki)− z(ki/n)n,

A2 = Y (ki+1)− Y (ki)− wf(ki/n, Y (ki)/n),

A3 = wz′(ki/n) + z(ki/n)n− z(ki+1/n)n,

A4 = wf(ki/n, Y (ki)/n)− wz′(ki/n). (3.211)

From the inductive hypothesis, we have that with probability 1−O(ie−α),

|A1| < Bi. (3.212)

It follows from (3.206) that for a large enough constant B′,

|A2| < B′λw (3.213)
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with probability 1−O(e−α). We will see that Bi = O(λn), so the inductive hypothesis
indicates that the scaled variables are at least a distance Cλ from the boundary of
the domain D; this justifies the assumption mentioned previously. Using the Lipschitz
hypothesis and the fact that z(·) satisfies (a) in the theorem conclusion, we have

z(ki+1/n)− z(ki/n) ≤ (w/n)(z′(ki/n) +O(w/n)), (3.214)

so that for a large enough constant B′′,

|A3| ≤
B′′w2

n
. (3.215)

Finally, from (3.212), and again using the Lipschitz hypothesis and the conclusion of
part (a),

|A4| ≤
B′′′Biw

n
(3.216)

for a large enough constant B′′′ with probability 1 − O(ie−α). Letting
B = max(B′, B′′, B′′′), we have

|Y (ki+1 − z(ki+1/n)n| ≤ |A1|+ |A2|+ |A3|+ |A4|

≤ Bi

(
1 +

Bw

n

)
+B

(
wλ+

w2

n

)
(3.217)

with probability 1 − O((i + 1)e−α). To verify that (3.209) holds for j = i + 1, we
substitute Bi in the above expression:

Bi

(
1 +

Bw

n

)
+B

(
wλ+

w2

n

)

= Bw
(
λ+

w

n

)((
1 +

Bw

n

)i
− 1

)
n

Bw

(
1 +

Bw

n

)
+B

(
wλ+

w2

n

)

= n
(
λ+

w

n

)((
1 +

Bw

n

)i+1

−
(

1 +
Bw

n

))
+Bw

(
λ+

w

n

)

=
(
λ+

w

n

)(
n

(
1 +

Bw

n

)i+1

− n−Bw +Bw

)

= n
(
λ+

w

n

)((
1 +

Bw

n

)i+1

− 1

)
. (3.218)

Note that (1 + Bw/n)i+1 is bounded by eB + O(1), so Bi = O(λn). Generalizing to
the continuous time process, for any t ≤ σn, we set i = bt/wc. The difference in the
variables Y (·) and nz(·) from time ki to t is bounded by O(λn). This gives that with
probability 1−O((n/w)e−α),

|Y (t)− z(t/n)n| = O(λn). (3.219)
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This concludes the theorem for a = 1.
To generalize the proof for a > 1, the inductive statement (3.208) becomes

P(|Yl(kj)− zl(kj/n)n| ≥ Bj for some j ≤ i) = O(aie−α), 1 ≤ l ≤ a. (3.220)

This inductive statement at step i for each l depends on all variables 1 ≤ l ≤ a being
well behaved at step i− 1. The inclusion of the a term in the right-hand side of (3.220)
follows from a union bound over the events that each variable is not well behaved at
step i− 1. �



Chapter 4

Uncertain Transition Probabilities in
Markov Decision Processes

WITH the widespread use of Markov decision processes (MDPs), it is not difficult
to find situations where model parameters are subject to uncertainty. This is

especially true of transition probabilities. In operations research applications, historical
demands must be used to predict future demands in inventory and resource allocation
problems. More generally, estimated distributions are often derived via a limited num-
ber of samples of an exact distribution. Transition probabilities may even need to be
estimated by an expert.

A variety of algorithms have been developed to optimize over transition probability
uncertainty in a robust fashion. These approaches often use a maxmin criteria under
various uncertainty descriptions [51, 62, 96, 117, 126, 132]. This has led to useful
frameworks, such as the Markov decision process with imprecise probabilities (MDPIP),
where transition probabilities are described by a set of linear inequalities, and the
bounded-parameter Markov decision process (BMDP), where intervals are given for
transition probabilities and rewards [71, 78]. However, scenarios where distribution
estimates are used directly in conventional dynamic programming, rather than a robust
algorithm, have received less attention. This chapter addresses such scenarios.

We provide a general loss bound for situations where an MDP policy is determined
using estimated transition probabilities, but the system evolves according to different,
true transition probabilities. The policy is computed using exact dynamic program-
ming with estimated transition probabilities and stored in the form of a lookup table
[122]. During the online phase of the algorithm, the MDP evolves according to its true
underlying transition probabilities, and decisions are made using the lookup table. This
decision process is referred to as the approximate policy. The optimal policy, on the
other hand, uses knowledge of a lookup table calculated with true transition probabil-
ities. The loss is defined as the difference between the expected total reward obtained
by the optimal policy and the approximate policy.

The loss bound applies to finite horizon undiscounted, finite horizon discounted, and
infinite horizon discounted scenarios. We show a tight example for the finite horizon
undiscounted case that can be generalized to the other cases. We do not assume sta-

159
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tionarity, so the transition probabilities, rewards, and states may vary among stages.
Our proof approach is to analyze the growth of errors incurred by stepping backward
in time while computing value functions. This requires bounding a multilinear program
[54].

The organization of the chapter is as follows. Section 4.1 discusses related work and
Section 4.2 provides background on Markov decision processes and dynamic program-
ming. Before studying uncertain transition probabilities, we review some known results
on uncertain value functions and approximate backward induction in Section 4.3 and
Section 4.4. The goal of these sections is twofold. First, we are interested in building
intuition for understanding the analysis of uncertain transition probabilities. Second,
we wish to discuss uncertain value functions and approximate backward induction in a
finite-horizon undiscounted setting since this is useful for general approximate dynamic
programming applications. Section 4.5 proves the loss bound for uncertain transition
probabilities and gives a tight example for the undiscounted finite horizon case. Note
that throughout Sections 4.3-4.5, the definition of the approximate policy will change.
A discussion is given in Section 4.6.

4.1 Related Work

The topic of uncertainty in MDP transition probabilities was initially addressed by Sil-
ver [132], who characterized uncertainty both by considering potential sets of transition
probabilities and treating transition probabilities as random variables. Satia and Lave
[126] employed game-theoretic and Bayesian formulations of uncertainty and created a
variant of policy-iteration for maxmin and maxmax objectives. They also gave perfor-
mance bounds under the Bayesian formulation for both objectives. White and Eldeib
[78] looked at discounted, infinite horizon problems where transition probabilities for
each state and action are described by a finite set of linear inequalities. This model is
referred to as a Markov decision process with imprecise probabilities (MDPIP). They
considered an adversarial mechanism that selects transition probabilities after an action
is selected at each stage, and they used successive approximations to form a maxmin
strategy.

Given et al. [71] introduced the bounded-parameter Markov decision process
(BPMD), where intervals are given for various parameters of the MDP (e.g. transition
probabilities, rewards). They defined analogues of traditional MDP features, such
as interval value functions and optimal interval policies, and developed algorithms
for using these features. They noted that their framework can be used to perform
sensitivity analysis via computations. Nilim and Ghaoui [117] considered uncertainties
in transition matrices that can be described via non-convex sets. They showed how
such problems can be solved with a robust dynamic programming framework and
demonstrated the effectiveness of using likelihood regions and entropy bounds to
represent uncertainty. They also proved optimality of the robust control problems.
Filho et al. [62] worked with the linear programming approach to dynamic
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programming and used multilinear and integer reformulation strategies to handle
uncertainties in transition probabilities, where potential transition probabilities are
given by credal sets. They looked at criteria of maxmin, maxmax, and E-admissibility
for their algorithms. A variety of other approaches to optimizing under uncertain
transition probabilities has been considered [3, 51, 96].

There has been some analysis of parameter sensitivity in dynamic programming.
Hopp [77] analyzed the sensitivity of optimal policies under perturbations of problem
parameters. Müller [113] studied variations in value functions resulting from transition
probabilities that satisfy various stochastic order relations. There has also been recent
work in applying sensitivity analysis for uncertain rewards in dynamic programming
[138, 139].

Loss bounds for uncertain value functions in MDPs have been relatively well ex-
plored. Singh and Yee [134] proved an upper bound on losses incurred from a bounded
error in value functions for the infinite-horizon discounted case. Similar bounds have
been found for finite-horizon undiscounted problems [74, 88, 108]. Loss bounds in
approximate policy iteration and approximate value iteration scenarios have been con-
sidered in [29, 60, 114].

4.2 Markov Decision Processes and Dynamic Programming

We give a brief introduction to Markov decision processes and dynamic programming.
Thorough introductions to these topics can be found in [20, 27, 122, 123].

We define a T -stage non-stationary Markov decision process as follows1. We are
given a set of stages, indexed

t = 0, . . . , T, (4.1)

where t = 0 is the starting stage and t = T is the terminal stage. For each stage, we
are given a finite set of states

St, t = 0, . . . , T. (4.2)

At stage t, we say that the process is in some state St ∈ St. We make the restriction
that the starting stage has a singleton set S0 = {S0}, where S0 is the unique starting
state. For each state at non-terminal stages, there exists a finite set of feasible decisions

Xt(St), St ∈ St, t = 0, . . . , T − 1. (4.3)

When we are in some non-terminal state St, we must choose an action or decision
xt ∈ Xt(St). The action results in a reward as determined by the reward function

Rt : St ×Xt(St)→ R, t = 0, . . . , T − 1. (4.4)

1There are actually T + 1 stages in our definition since we include t = 0 as a stage, but the process
consists of a total of T decisions.
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We have slightly abused notation here to write Xt(St) := ∪St∈StXt(St)2. At the terminal
stage t = T , we also have the terminal reward function

VT : ST → R. (4.5)

In addition to a reward, a selected action results in a random transition to a state at
the following stage governed by a transition probability function

Pt : St+1 × St ×Xt(St)→ [0, 1], t = 0, . . . , T − 1. (4.6)

We write Pt(St+1|St, xt) to indicate the probability that we transition to state St+1

given that we are in state St and select action xt. We have
∑

St+1∈St+1

Pt(St+1|St, xt) = 1, xt ∈ Xt(St), St ∈ St, t = 0, . . . , T − 1. (4.7)

In summary, the Markov decision process is defined by the collection
(T, (St,Xt(St), Rt,Pt)T−1

t=0 , VT ). If the set of states, feasible decisions, reward
functions, and transition probabilities are all identical for all stages, the MDP is
referred to as stationary. Otherwise, it is referred to as non-stationary.

An example Markov decision process for T = 3 is shown in Figure 4.1 with a
directed graph structure. The white nodes indicate states, the black nodes indicate
terminal states, and the gray nodes indicate decisions. (The gray nodes can also be
interpreted as post-decision states [122].) Arcs exiting states point to feasible decisions
for each state with arc weights indicating rewards. Arcs exiting decision nodes point
to possible state transitions with arc weights indicating transition probabilities. The
example has a total of ten states {W0,W1, . . . ,W9} where

S0 = {W0},
S1 = {W1,W2,W3},
S2 = {W4,W5,W6},
S3 = {W7,W8,W9}. (4.8)

There are a total of twelve decisions {A1, A2, . . . , A12} where

X0(W0) = {A1, A2, A3},
X1(W1) = {A4, A5},

...

X2(W6) = {A12}. (4.9)

Of course, only three decisions are made during any evolution of the process, and some
states (such as W6) only have one feasible decision to select.

2We will only consider arguments for the function Rt of the form (St, xt) that are well defined,
meaning xt ∈ Xt(St).
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Figure 4.1. A T -stage Markov decision process for T = 3. White nodes are states, gray nodes are
decisions, and black nodes are terminal states. Weights for arcs exiting states indicate rewards, and
weights for arcs exiting decisions indicate transition probabilities. Terminal reward values are labeled
for the three terminal states.

The goal in a Markov decision process is to determine a policy that maximizes some
objective, usually total expected reward. We define a decision rule as a mapping of
states to feasible actions at a given stage,

Xt : St → Xt(St), t = 0, . . . , T − 1. (4.10)

A policy π is then defined as a series of decision rules

π = (X0, X1, . . . , XT−1). (4.11)

We use the notation Xπ
t (·) to indicate the decision rule at stage t under policy π. In

general, an action taken under a policy π is denoted by xπt := Xπ
t (St); however, we

sometimes write the action simply as xπt (St) or just xπt . Rewards are time discounted
with a discount factor α satisfying 0 ≤ α ≤ 1, so that a reward Rt at stage t is worth
αtRt. The goal that we are interested in is maximizing total expected reward,

max
π∈Π

E

[
T−1∑

t=0

αtRt(St, X
π
t (St)) + αTVT (ST )

]
, (4.12)

where Π is the set of all policies. The expectation is taken with respect to random
transitions in the process as well as decisions made by the policy; for a detailed ex-
planation, see [123]. The policy maximizing the above expression is referred to as the
optimal policy.
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The optimal policy can be found using dynamic programming, which we explain
without proof. Dynamic programming uses optimal value functions for each stage,

Vt : St → R, t = 0, . . . , T − 1. (4.13)

The value Vt(St) indicates the expected value of a state assuming that optimal decisions
are made in the future. Optimal value functions are determined recursively, starting at
the last stage and moving backward, via the backward induction equation

Vt(St) := max
xt∈Xt(St)


Rt(St, xt) + α

∑

St+1

Pt(St+1|St, xt)Vt+1(St+1)


 ,

t = 0, . . . , T − 1. (4.14)

The notation
∑
St+1

(·) indicates
∑

St+1∈St+1
(·). To further simplify notation, we write

E[Vt+1(St+1)|St, xt] for
∑
St+1

Pt(St+1|St, xt)Vt+1(St+1), giving

Vt(St) = max
xt∈Xt(St)

(Rt(St, xt) + αE[Vt+1(St+1)|St, xt]) . (4.15)

We also sometimes omit xt ∈ Xt(St) in the argument for the maximum function and
write xt.

The procedure of stepping backward in time and using (4.14) to determine val-
ues of all states is referred to dynamic programming, value iteration, and/or backward
induction. This procedure is shown explicitly in Algorithm 12; we refer to it as the
Backward-Induction algorithm. In general, the value functions are computed in
advance before the actual evolution of the MDP.

Input: Markov decision process (T, (St,Xt(St), Rt,Pt)T−1
t=0 , VT ), discount factor α.

Output: Optimal value functions (Vt)
T−1
t=0 .

1: for t = T − 1 to 0 (each stage) do
2: for St ∈ St (each state at stage t) do

3: Vt(St)← max
xt∈Xt(St)


Rt(St, xt) + α

∑

St+1

Pt(St+1|St, xt)Vt+1(St+1)




4: end for
5: end for

Algorithm 12. Backward-Induction

For the example in Figure 4.1, assuming α = 1, the Backward-Induction algo-
rithm gives the state values

V0(W0) = 11.2, V1(W1) = 10.2, V2(W4) = 5,

V1(W2) = 8.5, V2(W5) = 6.5,

V1(W3) = 9.5, V2(W6) = 4.5. (4.16)
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The value of the unique starting state indicates the entire value of the MPD, which in
this case is 11.2.

Using the optimal value functions determined by Algorithm 12, the optimal policy
at each state St makes decisions x∗t (St) according to

x∗t (St) := argmax
xt∈Xt(St)


Rt(St, xt) + α

∑

St+1

Pt(St+1|St, xt)Vt+1(St+1)


 ,

t = 0, . . . , T − 1. (4.17)

The optimal policy can be determined by evaluating this equation for all states. More
practically, it can be determined online by evaluating (4.17) only for each state that is
observed during the process. We can thus view the online optimal policy in algorith-
mic form, shown in Algorithm 13. Note that the sequence of decisions given by this
algorithm is only optimal for the series of states encountered in a particular realization;
this series occurs randomly.

Input: Markov decision process (T, (St,Xt(St), Rt,Pt)T−1
t=0 , VT ), discount factor α, value

functions (Vt)
T−1
t=1 .

Output: Sequence of optimal decisions (x∗t )
T−1
t=0 for realized state sequence (St)

T−1
t=0 .

1: for t = 0 to T − 1 (each stage) do
2: When state St is revealed, choose action

x∗t (St)← argmax
xt∈Xt(St)


Rt(St, xt) + α

∑

St+1

Pt(St+1|St, xt)Vt+1(St+1)


.

3: end for

Algorithm 13. Optimal-Policy

For the example from Figure 4.1, an example evolution under the optimal policy
is shown in Figure 4.2 (again assuming α = 1). The realized path is shown in bold;
it is determined by decisions made under the optimal policy and random outcomes for
selected actions. The alternating sequence of states and actions for the evolution shown
is (W0, A1,W1, A4,W5, A11,W8), which gives a total value of 8.

We now consider any general policy π that makes decisions xπt (·). The policy value
V π
t (St) of a state St is the expected value given by starting in state St and following

the policy π through stage T . It is determined by the recursive equation

V π
t (St) := Rt(St, x

π
t (St)) + αE[V π

t+1(St+1)|St, xπt (St)],

t = 0, . . . , T − 1. (4.18)

For all policies at the terminal stage,

V π
T (ST ) = VT (ST ), ST ∈ ST . (4.19)
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Figure 4.2. Example evolution under the optimal policy for the MDP from Figure 4.1. The evolution
is indicated by the path shown in bold. Bold arcs exiting states (white nodes) are due to decisions
made by the optimal policy, and bold arcs exiting decision nodes (in gray) are due to realizations of
the random state transitions.

Once again, to simplify notation, we use xπt in place of xπt (St) for various policies and
write (4.18) as

V π
t (St) = Rt(St, x

π
t ) + αE[V π

t+1(St+1)|St, xπt ], (4.20)

where the state of interest should be clear from context. An example policy for the
MDP in Figure 4.1 is to always choose the decision with the higher index (e.g, among
decisions A1, A2, A3, choose A3). This corresponds to always picking the lower decision
arc in the figure. It can be verified that for this policy, the policy values of all states
are

V π̂
0 (W0) = 7.5, V π̂

1 (W1) = 8.75, V π̂
2 (W4) = 5,

V π̂
1 (W2) = 5.5, V π̂

2 (W5) = 6.5,

V π̂
1 (W3) = 9.5, V π̂

2 (W6) = 4.5. (4.21)

For a general MDP, the value of a state under the optimal policy is denoted by V ∗t (·)
and is given by

V ∗t (St) := Rt(St, x
∗
t ) + αE[V ∗t+1(St+1)|St, x∗t ],

t = 0, . . . , T − 1. (4.22)

The optimal policy value V ∗t (St) defined in (4.22) is equal to Vt(St) defined in (4.14).
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4.3 Uncertain Value Functions

We begin by considering losses resulting from uncertain value functions. This is of high
interest in approximate dynamic programming, where the true/exact value function is
computationally difficult to calculate, so an approximate value function is used instead.
If the value function approximation has bounded error, one is interested in bounding
the resulting loss from the approximate policy, where the loss is defined as the difference
between the values of the optimal policy and the approximate policy. The approximate
policy in this section is simply the policy that uses the approximate value function.
The analysis here draws from the proof of Singh and Lee [134]. Unlike their work,
however, our analysis is valid for a non-stationary finite horizon; we also allow for the
undiscounted case (α = 1) and present a tight example.

Mathematically, we assume the existence of approximate value functions

V̂t : St → R, t = 1, . . . , T. (4.23)

During the evolution of the MDP, the approximate policy is defined as the policy that
makes decisions x̂t(·), where

x̂t(St) := argmax
xt∈Xt(St)

(
Rt(St, xt) + αE[V̂t+1(St+1)|St, xt]

)
. (4.24)

The value of a state under the approximate policy, which we refer to simply as the
approximate policy value, is denoted by V π̂

t (St) and is given by

V π̂
t (St) := Rt(St, x̂t(St)) + αE[V π̂

t+1(St+1)|St, x̂t(St)], t = 0, . . . , T − 1. (4.25)

Using x̂t in place of x̂t(St), this equation becomes

V π̂
t (St) = Rt(St, x̂t) + αE[V π̂

t+1(St+1)|St, x̂t]. (4.26)

We assume that the approximate value function at each stage t has error at most δt;
that is,

|Vt(St)− V̂t(St)| ≤ δt, ∀St ∈ St, t = 1, . . . , T. (4.27)

The loss of the approximate policy for a given state is defined as

Lt(St) := Vt(St)− V π̂
t (St), t = 0, . . . , T. (4.28)

The total loss L of the approximate policy is given by the loss of the unique starting
state,

L := L0(S0) = V0(S0)− V π̂
0 (S0). (4.29)

The main result for this section is given below, followed by the proof. Note that the
infinite horizon case corresponds to T →∞.
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Theorem 4.1. (Singh and Lee [134]) For a T -stage Markov decision process, if for
all stages t = 1, . . . , T and states St ∈ St the approximate value function satisfies
|Vt(St)− V̂t(St)| ≤ δt, then the total loss of the approximate policy satisfies

L ≤ 2

T∑

t=1

αtδt. (4.30)

Corollary 4.1. For an infinite horizon discounted (α < 1) Markov decision process, if
for all stages t = 1, . . . , T and states St ∈ St the approximate value function satisfies
|Vt(St)− V̂t(St)| ≤ δ, then the total loss of the approximate policy satisfies

L ≤ 2αδ

1− α. (4.31)

Corollary 4.2. For a T -stage undiscounted (α = 1) Markov decision process, if for
all stages t = 1, . . . , T and states St ∈ St the approximate value function satisfies
|Vt(St)− V̂t(St)| ≤ δ, then the total loss of the approximate policy satisfies

L ≤ 2δT. (4.32)

Proof of Theorem 4.1. The proof is a generalization of the proof used in [134].
Define lt as the maximum loss over all states at stage t,

lt := max
St∈St

|Lt(St)|, t = 0, . . . , T. (4.33)

From the definition of the approximate policy (4.24), the approximate decision x̂t ap-
pears as good as the optimal decision x∗t , so

Rt(St, x
∗
t ) + αE[V̂t+1(St+1)|St, x∗t ] ≤ Rt(St, x̂t) + αE[V̂t+1(St+1)|St, x̂t]. (4.34)

We plug in the identities V̂t+1(St+1) ≥ Vt+1(St+1)−δt+1 and V̂t+1(St+1) ≤ Vt+1(St+1)+
δt+1 from (4.27) to obtain

Rt(St, x
∗
t ) + αE[Vt+1(St+1)|St, x∗t ]− αδt+1

≤ Rt(St, x̂t) + αE[Vt+1(St+1)|St, x̂t] + αδt+1. (4.35)

Rearranging,

Rt(St, x
∗
t )−Rt(St, x̂t) ≤ 2αδt+1 + αE[Vt+1(St+1)|St, x̂t]− αE[Vt+1(St+1)|St, x∗t ].

(4.36)
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Starting with the definition of the loss for some state St and using the inequality above,

Lt(St) = Rt(St, x
∗
t )−Rt(St, x̂t) + αE[Vt+1(St+1)|St, x∗t ]− αE[V π̂

t+1(St+1)|St, x̂t]
≤ 2αδt+1 + αE[Vt+1(St+1)|St, x̂t]− αE[Vt+1(St+1)|St, x∗t ]

+αE[Vt+1(St+1)|St, x∗t ]− αE[V π̂
t+1(St+1)|St, x̂t]

= 2αδt+1 + αE[Vt+1(St+1)|St, x̂t]− αE[V π̂
t+1(St+1)|St, x̂t]

≤ 2αδt+1 + αlt+1. (4.37)

This gives the recurrence

lt ≤ 2αδt+1 + αlt+1. (4.38)

We form the inductive hypothesis

lt ≤ 2
T∑

u=t+1

αu−tδu. (4.39)

Since terminal states give the same value for every policy, lT = 0. The inductive
hypothesis gives

lT−1 ≤ 2αδT , (4.40)

which is correct. Now assuming that (4.39) holds for t = τ , we show that it holds for
t = τ − 1.

lτ−1 ≤ 2αδτ + α2
T∑

u=τ+1

αu−τδu

= 2αδτ + 2

T∑

u=τ+1

αu−τ+1δu

= 2
T∑

u=τ

αu−τ+1δu. (4.41)

Plugging in t = 0 in (4.39) completes the proof.
�

We show a tight example for the undiscounted case stated in Corollary 4.2, which
can be generalized to the discounted case. This is given by a deterministic (meaning all
transitions occur deterministically) T -stage process consisting of continue states and
stop states. Figure 4.3 shows the process for T = 3. The system starts at a continue
state C0. From a given continue state Ct, we can move either to the following continue
state Ct+1 (action C) or the following stop state Pt+1 (action P ) for t = 0, . . . , T − 1.
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The terminal continue state CT is absorbing, meaning the process ends in this state.
Each stop state Pt for t = 1, . . . , T is also absorbing, so once a stop state is selected,
the process stops.

The reward function is defined as follows. If at any continue state Ct we decide to
stop, the immediate reward is equal to zero. If we continue, the immediate reward is
equal to ε, where 0 < ε� δ. Thus,

Rt(Ct, xt) =

{
0, xt = P,
ε, xt = C,

t = 0, . . . , T − 1. (4.42)

The true and estimated values for the stop states are given by

Vt(Pt) = 2δ(T − t) + 2δ, t = 1, . . . , T,

V̂t(Pt) = 2δ(T − t) + δ, t = 1, . . . , T.
(4.43)

The true and estimated values for the continue states are given by

Vt(Ct) = 2δ(T − t), t = 0, . . . , T,

V̂t(Ct) = 2δ(T − t) + δ, t = 1, . . . , T.
(4.44)

Note that the approximate value function satisfies |Vt(S) − V̂t(S)| ≤ δ for t =
1, . . . , T . Let St+1(Ct, xt) denote the state encountered at stage t + 1, resulting from
decision xt ∈ {C,P} at state Ct. At a given continue state Ct, the approximate policy
faces the following optimization problem,

max
xt∈{C,P}

(
Rt(Ct, xt) + V̂t+1(St+1(Ct, xt))

)

= max (2δ(T − t)− δ, 2δ(T − t)− δ + ε) . (4.45)

Clearly, the estimated value of choosing to continue is better by ε. The approximate
policy always chooses to continue and realizes a total value of Tε. The optimal policy,
however, is to stop at stage C0 and obtain a value equal to 2δT . As we let ε become
arbitrarily small, the loss of the approximate policy approaches 2δT .
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Figure 4.3. Tight example for Corollary 4.2 with T = 3.

4.4 Approximate Backward Induction

In this section, we analyze losses from an approximate value function that is gener-
ated by some form of approximate backward induction. This setting is also relevant to
approximate dynamic programming scenarios, and it will provide intuition for under-
standing uncertain transition probabilities in the following section.

The backward induction process at each stage introduces its own error, but it also
uses value function estimates for the following stage that have their own errors. Despite
this accumulation of errors, the total loss incurred will not be as significant as one might
expect. This results from the fact that the relative error in the value function introduced
at each stage ultimately determines the loss, not the total error. This will become clear
when we analyze the tight example.

We model the approximate backward induction process via backward induction
equation (4.14) with the inclusion of some error function

Et : St ×Xt(St)→ R, t = 0, . . . , T − 1. (4.46)

The approximate value function here is thus generated by

V̂t(St) := max
xt∈Xt(St)

(
Rt(St, xt) + αE[V̂t+1(St+1)|St, xt] + Et(St, xt)

)
,

t = 0, . . . , T − 1, (4.47)
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where V̂T (·) = VT (·). The approximate policy in this section makes decisions x̂t(·),
where

x̂t(St) := argmax
xt∈Xt(St)

(
Rt(St, xt) + αE[V̂t+1(St+1)|St, xt] + Et(St, xt)

)
. (4.48)

The value of a state under the approximate policy is again given by

V π̂
t (St) := Rt(St, x̂t) + αE[V π̂

t+1(St+1)|St, x̂t]. (4.49)

We use et to denote the maximum error at stage t:

et := max
St∈St

max
xt∈Xt(St)

|Et(St, xt)|, t = 0, . . . , T − 1. (4.50)

Recall that a state loss is

Lt(St) := Vt(St)− V π̂
t (St), t = 0, . . . , T, (4.51)

and that the total loss of the approximate policy is

L := L0(S0) = V0(S0)− V π̂
0 (S0). (4.52)

We state the main result and then present the analysis. Again, the infinite horizon case
corresponds to the limit T →∞.

Theorem 4.2. For a T -stage Markov decision process solved with approximate back-
ward induction, if for all stages t = 0, . . . , T−1, states St ∈ St, and actions xt ∈ Xt(St),
the error function satisfies |E(St, xt)| ≤ et, then the total loss of the approximate policy
satisfies

L ≤ 2
T−1∑

t=0

αtet. (4.53)

Corollary 4.3. For an infinite horizon discounted (α < 1) Markov decision process
solved with approximate backward induction, if for all stages t = 0, . . . , T − 1, states
St ∈ St, and actions xt ∈ Xt(St), the error function satisfies |E(St, xt)| ≤ et, then the
total loss of the approximate policy satisfies

L ≤ 2αe

1− α. (4.54)

Corollary 4.4. For a T -stage undiscounted (α = 1) Markov decision process solved
with approximate backward induction, if for all stages t = 0, . . . , T − 1, states St ∈ St,
and actions xt ∈ Xt(St), the error function satisfies |E(St, xt)| ≤ e, then the total loss
of the approximate policy satisfies

L ≤ 2eT. (4.55)
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We introduce a few definitions and lemmas to prove Theorem 4.2. Define the esti-
mation error Ft(St) for state St as

Ft(St) := Vt(St)− V̂t(St), t = 0, . . . , T. (4.56)

Also define the approximate policy error Gt(St) for state St as

Gt(St) := V̂t(St)− V π̂
t (St), t = 0, . . . , T. (4.57)

It is easy to see that with these definitions, the loss of a state is given by

Lt(St) = Ft(St) +Gt(St). (4.58)

The maximum estimation error and approximate policy error at each stage are denoted
by ft and gt, respectively;

ft := max
St∈St

|Ft(St)|, (4.59)

gt := max
St∈St

|Gt(St)|. (4.60)

We will derive bounds for ft and gt in terms of et, ft+1, and gt+1 in the following
lemmas. To be explicit with our development, we first state two propositions.

Proposition 4.1. For two bounded functions H1(x) and H2(x) and a finite domain X ,

max
x∈X

(H1(x) +H2(x)) ≤ max
x∈X

(H1(x)) + max
x∈X

(H2(x)) . (4.61)

Proof. This holds by definition of the maximum. �

Proposition 4.2. For two bounded functions H1(x) and H2(x) and a finite domain X ,

max
x∈X

(H1(x) +H2(x)) ≥ max
x∈X

(H1(x)) + min
x∈X

(H2(x)) . (4.62)

Proof. Define

xmax
12 := argmax

x∈X
(H1(x) +H2(x)) , (4.63)

xmax
1 := argmax

x∈X
(H1(x)) , (4.64)

xmin
2 := argmin

x∈X
(H2(x)) . (4.65)

Then,

H1(xmax
12 ) +H2(xmax

12 ) ≥ H1(xmax
1 ) +H2(xmax

1 )

≥ H1(xmax
1 ) +H2(xmin

2 ). (4.66)

�
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We first determine a recursive relationship for bounds on the estimation error.

Lemma 4.1. For t = 0, . . . , T − 1, the bounds on estimation errors satisfy

ft ≤ αft+1 + et. (4.67)

Proof. Starting with the negative estimation error,

V̂t(St)− Vt(St) = max
xt∈Xt(St)

(
Rt(St, xt) + αE[V̂t+1(St+1)|St, xt] + Et(St, xt)

)
− Vt(St)

= max
xt∈Xt(St)

(Rt(St, xt) + αE[Vt+1(St+1)|St, xt]− αE[Ft+1(St+1)|St, xt]

+Et(St, xt))− Vt(St)
≤ max

xt∈Xt(St)
(Rt(St, xt) + αE[Vt+1(St+1)|St, xt])

+ max
xt∈Xt(St)

(−αE[Ft+1(St+1)|St, xt] + Et(St, xt))− Vt(St)

≤ αft+1 + et. (4.68)

The first equality above follows from the definition of the approximate value function,
and the second equality follows from the definition of the estimation error. The first
inequality follows from Proposition 4.1. The second inequality follows from canceling
like terms as well as the bounds on estimation error and the error function.

Now for the positive estimation error,

Vt(St)− V̂t(St) = Vt(St)− max
xt∈Xt(St)

(
Rt(St, xt) + αE[V̂t+1(St+1)|St, xt] + Et(St, xt)

)

= Vt(St)− max
xt∈Xt(St)

(Rt(St, xt) + αE[Vt+1(St+1)|St, xt]

−αE[Ft+1(St+1)|St, xt] + Et(St, xt))

≤ Vt(St)− max
xt∈Xt(St)

(Rt(St, xt) + αE[Vt+1(St+1)|St, xt])

− min
xt∈Xt(St)

(αE[Ft+1(St+1)|St, xt] + Et(St, xt))

≤ αft+1 + et. (4.69)

The development above follows the same progression as the previous expression, except
the first inequality uses Proposition 4.2. �

The same relationship holds for the approximate policy error.

Lemma 4.2. For t = 0, . . . , T − 1, the bounds on approximate policy error satisfy

gt ≤ αgt+1 + et. (4.70)
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Proof. We have for the positive approximate policy error,

V̂t(St)− V π̂
t (St) = Rt(St, x̂t) + αE[V̂t+1(St+1)|St, x̂t] + Et(St, x̂t)

−Rt(St, x̂t)− αE[V π̂
t+1(St+1)|St, x̂t]

= αE[Gt+1(St+1)|St, x̂t] + Et(St, x̂t)

≤ αgt+1 + et. (4.71)

The first equality uses substitution of the approximate value function, and the second
equality follows from canceling like terms and the definition of the approximate policy
error. The inequality follows from bounds on the error terms.

Likewise, for the negative approximate policy error,

V π̂
t (St)− V̂t(St) = Rt(St, x̂t) + αE[V π̂

t+1(St+1)|St, x̂t)]
−Rt(St, x̂t)− αE[V̂t+1(St+1)|St, x̂t]− Et(St, x̂t)

= −αE[Gt+1(St+1)|St, x̂t]− Et(St, x̂t)
≤ αgt+1 + et. (4.72)

�

We can now prove Theorem 4.2.

Proof of Theorem 4.2. Using induction on the above lemmas, we have
g0 =

∑T−1
t=0 αtet + αT gT and f0 =

∑T−1
t=0 αtet + αT fT . With gT = fT = 0,

L = V0(S0)− V π̂
0 (S0) = G0(S0) + F0(S0) ≤ g0 + f0 = 2

T−1∑

t=0

αtet. (4.73)

�

We show a tight example for Corollary 4.4. The example is simpler than the one in
the previous section and is shown for T = 3 in Figure 4.4. The example consists of only
one decision at the beginning of the process. The decision is between two deterministic
paths: one with maximum estimation error and one with maximum approximate policy
error. The path with zero future value appears better than the path with maximum
value, only by a difference of ε, so the approximate policy chooses the path obtaining
only ε value. The optimal decision is to choose the other path.

Specifically, starting in state S0, we must choose between state A1 (action A) and
state B1 (action B). Thereafter, for t = 1, . . . , T − 1, state At deterministically leads
to state At+1 and state Bt deterministically leads to state Bt+1. All rewards are equal
to zero, except for the initial decision:

R0(S0, x0) =

{
0, x0 = A,
ε, x0 = B,

(4.74)
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where 0 < ε� e. The error function is minimum for path A and maximum for path B:

E0(S0, x0) =

{
−e, x0 = A,
e, x0 = B,

(4.75)

Et(St, ·) =

{
−e, St = At,
e, St = Bt,

t = 1, . . . , T − 1. (4.76)

The states in path A and path B have values

Vt(At) = 2eT, t = 1, . . . , T,

Vt(Bt) = V π̂
t (Bt) = 0, t = 1, . . . , T.

(4.77)

Note since there are no choices to be made along these paths, the values stated above
hold for any policy. The stated error functions yield the following estimated values:

V̂t(At) = e(T + t), t = 1, . . . , T − 1,

V̂t(Bt) = e(T − t), t = 1, . . . , T − 1.
(4.78)

In effect, states A1 and B1 appear to have the same value of eT from the perspective
of the approximate policy in state S0. Since path B gives the extra reward ε, the
approximate policy chooses this path and realizes a total value of ε. The optimal
decision is to choose path A, which has value 2eT .

Notice in the tight example that

δt := max
St∈St

|Vt(St)− V̂t(St)| = e(T − t), t = 1, . . . , T. (4.79)

Using these values in Theorem 4.1 from the previous section gives the total loss bound
L ≤ e(T 2 − T ), which grows quadratically in T , and is clearly not as strong as the
bound L ≤ 2eT derived here. Coincidentally, the two bounds are equal for the case
shown in Figure 4.4, where T = 3.

R = 0, E = �e R = 0, E = �e

R = 0, E = e R = 0, E = e
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R
=
✏, E

=
e

V0(S0) = 6e

V b⇡
3 (B3) = 0V b⇡

2 (B2) = 0V b⇡
1 (B1) = 0

bV2(B2) = ebV1(B1) = 2e

V b⇡
0 (S0) = ✏
bV0(S0) = 3e + ✏

S0 A1 A2 A3

B1 B2 B3

Figure 4.4. Tight example for Corollary 4.4 with T = 3. The policy values for states at stages
t = 1, . . . , T hold for any policy because there is only a single choice for the following state.
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4.5 Uncertainty in Transition Probabilities

We now focus on the main topic of this chapter, deriving a general upper bound on
the the loss resulting from uncertain transition probabilities. This section is structured
as follows. First, we restate some definitions in the context of uncertain transition
probabilities. The first subsection states the results, and the second subsection shows
the analysis. The third subsection gives a tight example for the undiscounted finite
horizon case.

In this section, we are given estimated transition probability functions

P̂t : St+1 × St ×Xt(St)→ [0, 1], t = 0, . . . , T − 1, (4.80)

where P̂t(St+1|St, xt) indicates the estimated probability that we transition to state
St+1 given that we are in state St and select action xt. These functions satisfy

∑

St+1∈St+1

P̂t(St+1|St, xt) = 1, xt ∈ Xt(St), St ∈ St, t = 0, . . . , T − 1. (4.81)

We also assume that these functions satisfy an L1-norm error bound of 2η with respect
to the true transition probability functions.

Assumption 4.1. For all stages t = 0, . . . , T − 1, states St ∈ St, and actions xt ∈
Xt(St), the estimated transition probability functions satisfy

∑

St+1∈St+1

∣∣∣P̂t(St+1|St, xt)− Pt(St+1|St, xt)
∣∣∣ ≤ 2η, (4.82)

where 0 < η < 1.

The above error bound can also be stated in terms of the total variation distance
between the true and estimated probability distributions. Consider two probability
distributions P and Q, defined on a common finite set S. The total variation distance
between P and Q is the maximum difference in probability that the two distributions
assign to the same event, i.e.

ηTV(P,Q) := max
S∈S
|P (S)−Q(S)|. (4.83)

The total variation distance relates to the L1-norm error as follows (see, e.g. [111], for
the short proof).

Proposition 4.3.

ηTV(P,Q) = max
S∈S
|P (S)−Q(S)| = 1

2

∑

S∈S
|P (S)−Q(S)|. (4.84)
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Thus, Assumption 4.1 is equivalent to stating that all estimated transition probability
functions have a total variation error of at most η.

The approximate value function in this section is now generated using backward
induction with the estimated transition probabilities; that is,

V̂t(St) := max
xt∈Xt(St)


Rt(St, xt) + α

∑

St+1

P̂t(St+1|St, xt)V̂t+1(St+1)


 ,

t = 0, . . . , T − 1, (4.85)

where V̂T (·) = VT (·). We use the shorthand notation Ê[V̂t+1(St+1)|St, xt] in place of∑
St+1

P̂t(St+1|St, xt)V̂t+1(St+1), giving

V̂t(St) = max
xt∈Xt(St)

(
Rt(St, xt) + αÊ

[
V̂t+1(St+1)|St, xt

])
. (4.86)

The approximate policy in this section makes decisions using the approximate value
function as well as estimated transition probabilities:

x̂t(St) := argmax
xt∈Xt(St)

(
Rt(St, xt) + αÊ

[
V̂t+1(St+1)|St, xt

])
. (4.87)

The approximate policy value of a state St is denoted by V π̂
t (St) and, since it represents

value obtained from the true system behavior, is defined via the correct transition
probabilities:

V π̂
t (St) := Rt(St, x̂t(St)) + αE[V π̂

t+1(St+1)|St, x̂t(St)]. (4.88)

As in the previous sections, we use xt in place of xt(St) for various policies; the state
of interest should be clear from context:

V π̂
t (St) = Rt(St, x̂t) + αE[V π̂

t+1(St+1)|St, x̂t]. (4.89)

The loss of a state under the approximate policy is defined by

Lt(St) := Vt(St)− V π̂
t (St), t = 0, . . . , T. (4.90)

The total loss of the approximate policy L is given by the loss of the unique starting
state,

L := L0(S0) = V0(S0)− V π̂
0 (S0). (4.91)

To obtain a finite bound on the loss of the approximate policy, it is necessary to have
bounds on the rewards for all stages. We state this with the following assumption,
where R is a nonnegative real number.
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Assumption 4.2. For all stages t = 0, . . . , T − 1, states St ∈ St, and actions xt ∈
Xt(St), the reward function satisfies

0 ≤ Rt(St, xt) ≤ R. (4.92)

Additionally, the terminal rewards for all states ST ∈ ST satisfy

0 ≤ VT (ST ) ≤ R. (4.93)

4.5.1 Results

The general upper bound that we derive reduces to the following three cases.

Theorem 4.3. For a T -stage discounted (α < 1) Markov decision process solved with
backward induction using uncertain transition probabilities, if for all stages, states, and
actions, the transition probability total variation error is at most η, then the total loss
of the approximate policy satisfies

L ≤ 2R

(
αη − αT+1 + αT+2(1− η) + αT+1(1− η)T+1(1− α)

(1− α)(1− α(1− η))

)
, (4.94)

for 0 < η < 1.

Theorem 4.4. For an infinite horizon discounted (α < 1) Markov decision process
solved with backward induction using uncertain transition probabilities, if for all stages,
states, and actions, the transition probability total variation error is at most η, then the
total loss of the approximate policy satisfies

L ≤ 2Rαη

(1− α)(1− α(1− η))
, (4.95)

for 0 < η < 1.

Theorem 4.5. For a T -stage undiscounted (α = 1) Markov decision process solved
with backward induction using uncertain transition probabilities, if for all stages, states,
and actions, the transition probability total variation error is at most η, then the total
loss of the approximate policy satisfies

L ≤ 2R

η

(
−1 + η(T + 1) + (1− η)T+1

)
, (4.96)

for 0 < η < 1.

It can be shown that the loss function is concave in η. Thus, first-order loss bounds
can be found by evaluating limη→0

∂L
∂η . This gives the following corollaries.
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Corollary 4.5. For a finite or infinite horizon discounted problem (α < 1), the total
loss of the approximate policy satisfies

L ≤ 2Rαη

(1− α)2
. (4.97)

Corollary 4.6. For a finite horizon undiscounted problem (α = 1), the total loss of the
approximate policy satisfies

L ≤ ηRT (T + 1). (4.98)

Figure 4.5 shows the loss bound for the infinite horizon discounted case as a function
of η for two fixed values of α and R = 1. Both the bounds from the full expression
(4.95) and the first-order expression (4.97) are shown. To visualize the full expression
(4.95) as a function of α, we define the normalized loss, which is simply the loss divided
by the maximum possible total reward of R/(1− α),

L̃ :=
L

R/(1− α)
. (4.99)

Figure 4.6 shows a plot of the normalized loss bound for various values of η as a function
of α.

Similar results for the finite horizon undiscounted case are shown in Figure 4.7 and
Figure 4.8. Figure 4.7 shows bounds for T = 10 and T = 5 as a function of η, along with
first-order approximations. The normalized loss for the finite horizon case is defined as

L̃ :=
L

R(T + 1)
. (4.100)

Figure 4.8 shows a plot of the normalized loss bound for various values of η as a function
of T . It is clear that the bound exceeds the bound on maximum total reward for large
enough values of η and T . This is true for η ≥ 0.2 and T ≥ 8 as well as η ≥ 0.1 and
T ≥ 15, for instance.
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Figure 4.5. Loss bound for infinite horizon discounted case (4.95) as a function of η for two values of
α fixed and R = 1. First-order approximations are shown as dashed.
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Figure 4.6. Normalized loss bound for infinite horizon discounted case as a function of discount factor
α for various values of η.
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Figure 4.7. Loss bound for undiscounted case (4.96) as a function of η for two values of T fixed and
R = 1. First-order approximations are shown as dashed.
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Figure 4.8. Normalized loss bound for undiscounted case as a function of horizon length T for various
values of η.
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4.5.2 Analysis

The overarching proof approach is similar to the analysis in the previous section. We
will use the same definitions for estimation error and approximate policy error. Instead
of the additive error considered in the previous section, the errors here will accumu-
late from calculating expected future values using an estimated transition probability
distribution. To reiterate, the estimation error for a state St is

Ft(St) := Vt(St)− V̂t(St), t = 0, . . . , T. (4.101)

The approximate policy error for a state St is

Gt(St) := V̂t(St)− V π̂
t (St), t = 0, . . . , T. (4.102)

The maximum estimation error at stage t is

ft := max
St∈St

|Ft(St)|, t = 0, . . . , T, (4.103)

and the maximum approximate policy error is

gt := max
St∈St

|Gt(St)|, t = 0, . . . , T. (4.104)

We define the difference between the true and estimated distributions as

D(St+1|St, xt) := P̂t(St+1|St, xt)− Pt(St+1|St, xt). (4.105)

We can view D(·|St, xt) as vector of length |St+1| with entries that sum to zero; we refer
to D(·|St, xt) as a difference vector. In terms of the transition probability error bound
from Assumption 4.1, for all stages, states, and actions,

∑

St+1

|D(St+1|St, xt)| ≤ 2η. (4.106)

Before bounding the growth of maximum estimation and approximate policy errors,
we observe a few implications following from the bounds on rewards. Recall Assumption
4.2, which states that rewards at each stage must be nonnegative and at most R. We
define the the maximum possible state value at stage t,

V t := R

T∑

u=t

αu−t. (4.107)

This immediately gives

0 ≤ Vt(St) ≤ V t, ∀St ∈ St, t = 0, . . . , T. (4.108)

The same holds for the value of any policy, including the approximate policy,

0 ≤ V π̂
t (St) ≤ V t, ∀St ∈ St, t = 0, . . . , T. (4.109)

An equivalent statement holds for the approximate value function, as given by the
following lemma.
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Lemma 4.3. Under the backward induction process with estimated transition probabil-
ities, for all stages t = 0, . . . , T and states St ∈ St,

0 ≤ V̂t(St) ≤ V t. (4.110)

Proof. Intuitively, each state value estimate is formed by taking a convex combination of
state values for the following stage, so the property holds by induction. More explicitly,
we show that if the property holds for all states at stage t = τ + 1, then it holds for all
states at stage t = τ . For a given state Sτ ,

V̂τ (Sτ ) = max
xτ


Rτ (Sτ , xτ ) + α

∑

Sτ+1

P̂(Sτ+1|Sτ , xτ )V̂τ+1(Sτ+1)




≤ R+ αV τ+1

= R+ αR

T∑

u=τ+1

αu−τ−1

= R

(
1 +

T∑

u=τ+1

αu−τ

)

= R
T∑

u=τ

αu−τ = V τ . (4.111)

The second line uses Assumption 4.2 and the inductive hypothesis. The remaining lines
follow from manipulation and use of the maximum value expression (4.107). A similar
argument gives that V̂τ (Sτ ) ≥ 0. Since the terminal state values satisfy VT (ST ) =
V̂T (ST ), the inductive argument is complete. �

We now focus on bounding the growth of errors. We start by assuming that we are
given the maximum estimation error ft+1 and we wish to find an upper bound on ft.
In the backward induction process with estimated transition probabilities, recall that
the estimated value of a state is

V̂t(St) = max
xt∈Xt(St)


Rt(St, xt) + α

∑

St+1

P̂t(St+1|St, xt)V̂t+1(St+1)


 . (4.112)

From the definition of the difference vector,

V̂t(St) = max
xt∈Xt(St)


Rt(St, xt) + α

∑

St+1

Pt(St+1|St, xt)V̂t+1(St+1)

+α
∑

St+1

D(St+1|St, xt)V̂t+1(St+1)


 . (4.113)
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Starting with the negative estimation error,

− Ft(St) = V̂t(St)− Vt(St)

= max
xt∈Xt(St)


Rt(St, xt) + α

∑

St+1

Pt(St+1|St, xt)V̂t+1(St+1)

+α
∑

St+1

D(St+1|St, xt)V̂t+1(St+1)


− Vt(St)

= max
xt∈Xt(St)


Rt(St, xt) + α

∑

St+1

Pt(St+1|St, xt)Vt+1(St+1)

−α
∑

St+1

Pt(St+1|St, xt)Ft+1(St+1) + α
∑

St+1

D(St+1|St, xt)Vt+1(St+1)

−α
∑

St+1

D(St+1|St, xt)Ft+1(St+1)


− Vt(St)

≤ αmax


−

∑

St+1

Pt(St+1|St, xt)Ft+1(St+1) +
∑

St+1

D(St+1|St, xt)Vt+1(St+1)

−
∑

St+1

D(St+1|St, xt)Ft+1(St+1)


 . (4.114)

The third equality above follows from substitution of the estimation error for stage
t + 1, and the inequality follows from Proposition 4.1 and canceling like terms. The
last maximum is taken over all possible probability distributions, difference vectors,
and value functions. Since xt simply indexes distributions, difference vectors, and value
functions, this generalization is justified.

We wish to find an upper bound on (4.114) that holds for all instances. This
requires formulating a multilinear program with constraints representing our stated as-
sumptions. To simplify notation for the program, we abbreviate Ft+1(St+1), Vt+1(St+1),
Pt(St+1|St, xt), D(St+1|St, xt) by F (s), V (s), P (s), D(s), respectively, where s is used
in place of St+1. Also denote the set St+1 by S, the bound ft+1 by f , and the bound
V t+1 by V . With further abbreviation, we consider F, V, P, D all as vectors in R|S|.
Temporarily ignoring the α term in (4.114), we have the multilinear program
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maximize
F,V,P,D

Z1 =
∑

s∈S
(−P (s)F (s) +D(s)V (s)−D(s)F (s))

subject to
∑

s∈S
|D(s)| ≤ 2η,

∑

s∈S
P (s) = 1,

∑

s∈S
D(s) = 0,

0 ≤ V (s) ≤ V , ∀s ∈ S,
0 ≤ V (s)− F (s) ≤ V , ∀s ∈ S,
|F (s)| ≤ f, ∀s ∈ S,
0 ≤ P (s) ≤ 1, ∀s ∈ S,
0 ≤ P (s) +D(s) ≤ 1, ∀s ∈ S.

(4.115)

Implicitly, we are also considering sets S of all finite sizes. For the constraints with
sums, the first one represents the bound on total variation error, and the second and
third are necessary for both the true and estimated transition probabilities to be valid.
The two constraints thereafter ensure that both the true and estimated state values do
not violate the bounds given by (4.108) and Lemma 4.3. Of the last three constraints,
the first constraint is the bound on estimation error, and the remaining two bounds are
required to ensure valid probability distributions.

Let Z∗1 denote the optimal objective value for (4.115). In an effort to find an upper
bound for this program, we first show that we can impose additional assumptions on the
probability distribution P (s) without affecting the final bound. We then find optimal
choices of variables when other variables are fixed to obtain the bound. Define the
states with the maximum and minimum V (s)− F (s) values as

s+ := argmax
s∈S

(V (s)− F (s)) , (4.116)

s− := argmin
s∈S

(V (s)− F (s)) . (4.117)

Consider an instance where P (s), V (s), and F (s) are given and where P (s−) ≥ η and
P (s+) ≤ 1− η. We have left to choose D(s). The result has a simple structure.

Lemma 4.4. For instances of (4.115) where P, V , and F are fixed, and where P (s−) ≥
η and P (s+) ≤ 1− η, the optimal choice of D(s) is given by

D(s) =





η, s = s+,
−η, s = s−,
0, otherwise.

(4.118)
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Proof. The non-constant part of the objective function is
∑

s∈S D(s) (V (s)− F (s)) .
Let S+ := {s : D(s) > 0} and S− := {s : D(s) < 0}. Define ∆+ :=

∑
s∈S+ D(s) and

∆− :=
∑

s∈S− D(s). For any given ∆+ and ∆−, it is optimal to choose S+ = {s+}
and S− = {s−} as these provide the largest and smallest multipliers for ∆+ and ∆−,
respectively. Now letting ∆+, ∆− vary, we must have ∆+ = −∆−, and the resulting
objective function is increasing in ∆+, assuming V (s+) − F (s+) 6= V (s−) − F (s−).
Making ∆+ as large as possible gives ∆+ = η and ∆− = −η. �

The assumption on P (s+) and P (s−) values is without loss of generality, as shown
by the following lemma. Define an instance of (4.115) as a set of states S with given
P, F, V vectors. Optimization is over D. Let P be the set of all problem instances,
and let P be the set of problem instances that satisfy P (s+) ≤ (1− η) and P (s−) ≥ η.

Lemma 4.5. For every problem instance I ∈ P \P with optimal value Z∗, there exists
a problem instance I ∈ P with optimal value Z

∗
such that Z∗ ≤ Z∗.

Proof. The presence of
∑

s∈S −P (s)F (s) in the objective function requires the proof to
be non-trivial. Returning to the analysis in Lemma 4.4, if P (s−) < −∆−, it is optimal
to add states to S− in increasing order of V (s) − F (s) until

∑
s∈S− P (s) ≥ −∆−.

If P (s+) > 1 − η, then ∆+ = 1 − P (s+). With this in mind, we use a problem
transformation algorithm to produce the instance I given I and show that during each
step of the algorithm, the optimal objective value does not decrease. The procedure for
generating the new problem instance is shown in Algorithm 14.

Beginning with line 4, if P (s+) > 1−η, the algorithm adjusts the values of states s+

and s−. Under the optimal solution, if P (s+) is decreased by c, then D(s+) increases
by c. Let V ′(·) F ′(·), D′(·) refer to state properties after lines 4-10 of the algorithm
have been executed. We use the shorthand notation P+ for P (s+), F ′− for F ′(s−), etc.
The change in the optimal objective value ∆Z∗ for line 6 is

∆Z∗ = −(P+ − c)F+ + (D+ + c)V+ − (D+ + c)F+

+P+F+ −D+V+ +D+F+

= cV+, (4.119)

which is always nonnegative. The change in optimal objective value for lines 7-9 is

∆Z∗ = −P ′−F ′− +D′−V
′
− −D′−F ′−

+P−F− −D−V− +D−F−

= P−V−, (4.120)

where we have used P− = −D− under the optimal solution.
Lines 11-19 of the algorithm are used to aggregate states in an iterative fashion until

P (s−) ≥ η. Define S−(A) as the set of states in instance A that are assigned negative
D(s) values under the optimization of (4.115), as explained in Lemma 4.4. At each
iteration of the process, the algorithm aggregates the two smallest V (s) − F (s) states
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Input: I ∈ P
Output: I ∈ P

1: A ← I
2: s+ ← argmaxs∈A V (s)− F (s)
3: s− ← argmins∈A V (s)− F (s)
4: if P (s+) > 1− η then
5: c← P (s+)− (1− η)
6: P (s+)← P (s+)− c
7: P (s−)← P (s−) + c
8: F (s−)← 0
9: V (s−)← 0

10: end if
11: while

∑
s∈S−(A) P (s) ≤ ∆− do

12: r1 ← argmins∈A V (s)− F (s)
13: r2 ← argmins∈A\{r1} V (s)− F (s)
14: P (r′)← P (r1) + P (r2)
15: D(r′)← D(r1) +D(r2)
16: F (r′)← max(F (r2)− V (r2),−f)
17: V (r′)← 0
18: A ← (A \ {r1, r2}) ∪ {r′}
19: end while
20: I ← A

Algorithm 14. Problem-Transformation

to produce a new state r′ with V (r′) − F (r′) value smaller than the remaining states.
At any point in the process, let r1 and r2 be the states with the smallest and second
smallest V (s)−F (s) values, respectively. Initially, r1 = s−. For other iterations, r1 = r′

from the previous iteration. During the aggregation process, we wish only to increase
the objective value, so adding the aggregated state and removing the two original states
always creates a positive change in the objective function:

− P ′F ′ +D′(V ′ − F ′) ≥ −P1F1 − P2F2 +D1(V1 − F1)

+D2(V2 − F2), (4.121)

where P1 = P (r1), P2 = P (r2), and V ′, F ′, D′ now refer to state values obtained after
one iteration of the aggregation process. The D′ and P ′ values are given by

D′ = D1 +D2, (4.122)

P ′ = P1 + P2. (4.123)

The V ′ value is always equal to zero, and F ′ is determined according to

F ′ = max(F2 − V2,−f), (4.124)
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which results from the constraints that V ′−F ′ must be positive and V ′−F ′ ≤ V2−F2.
The algorithm repeats the process while P (r′) ≤ η, so D1 = −P1 always holds, as the
optimal D(s) places the maximum possible weight on the lowest V (s)−F (s) coefficient
before placing weight on other states. The change in objective value ∆Z∗ for the
aggregation process is always nonnegative. For each iteration, there are two cases;
−f > F2 − V2 and −f ≤ F2 − V2. For the first case, we have

∆Z∗ = −P ′F ′ +D′(V ′ − F ′) + P1F1 + P2F2 −D1V1 +D1F1 −D2V2 +D2F2

= (P1 + P2)f + (D1 +D2)f + P1F1 + P2F2 −D1V1 +D1F1 −D2V2 +D2F2

= P1(F1 + f) + P2(F2 + f) +D1(f + F1 − V1) +D2(f + F2 − V2). (4.125)

Since P1 = −D1,

∆Z∗ = P1V1 + P2(F2 + f) +D2(f + F2 − V2). (4.126)

The terms D2 and f +F2−V2 are nonpositive (the latter by definition of the case), and
the remaining terms are all nonnegative. The second case gives

∆Z∗ = −P ′F ′ +D′(V ′ − F ′) + P1F1 + P2F2 −D1V1 +D1F1 −D2V2 +D2F2

= (P1 + P2)(V2 − F2) + (D1 +D2)(V2 − F2) + P1F1 + P2F2 −D1V1

+D1F1 −D2V2 +D2F2

= P1(V2 − F2 + F1) + P2V2 +D1(V2 − F2 − V1 + F1). (4.127)

Again using P1 = −D1,

∆Z∗ = P1V1 + P2V2, (4.128)

which is always nonnegative. �

The above lemma shows that we can assume P (s+) ≤ (1−η) and P (s−) ≥ η without
loss of generality. Using this observation with Lemma 4.4 allows us to formulate the
following multilinear program, which has optimal objective value Z∗2 . As we show in
the lemma below, Z∗1 ≤ Z∗2 .

maximize
F,V,P

Z2 = η (V (s+)− F (s+))− η (V (s−)− F (s−))−
∑

s∈S
P (s)F (s)

subject to
∑

s∈S
P (s) = 1,

P (s+) ≤ 1− η,
P (s−) ≥ η,
0 ≤ V (s) ≤ V , ∀s ∈ S,
0 ≤ V (s)− F (s) ≤ V , ∀s ∈ S,
|F (s)| ≤ f, ∀s ∈ S,
0 ≤ P (s) ≤ 1, ∀s ∈ S,
V (s)− F (s) ≤ V (s+)− F (s+), ∀s ∈ S,
V (s)− F (s) ≥ V (s−)− F (s−), ∀s ∈ S.

(4.129)
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Lemma 4.6. The optimal objective values for the multilinear programs (4.115) and
(4.129) satisfy

Z∗1 ≤ Z∗2 . (4.130)

Proof. Lemma 4.5 states that we can assume P (s−) ≥ η and P (s+) ≤ 1 − η without
loss of generality, and Lemma 4.4 indicates the optimal values for the D vector in such
cases. �

We now assume that V and P are fixed and we would like to calculate the optimal
F values. We rewrite the objective function in (4.129) as

Z2 = ηV+ − ηV− − (P+ + η)F+ − (P− − η)F− −
∑

s∈S\{s−,s+}

P (s)F (s), (4.131)

where P+ := P (s+), P− := P (s−), F+ := F (s+), F− := F (s−), V+ := V (s+), and
V− := V (s−). Since the coefficients for all F (s) values are nonnegative, the F (s) values
for all s ∈ S should be made as small as possible. The resulting objective function is
bounded by the following lemma.

Lemma 4.7. The optimal objective value of (4.129) satisfies

Z∗2 ≤ ηV + (1− η)f. (4.132)

Proof. Using the bounds on F (s) gives

Z∗2 ≤ ηV+ − ηV− − (P+ + η)F+ − (P− − η)F− + f(1− P+ − P−). (4.133)

We evaluate cases based on values for V+, V−.

Case 1: V+ ≥ V − f, V− ≥ V − f
The smallest that F+ and F− can be is V+ − V and V− − V , respectively. This gives

Z∗2 ≤ ηV+ − ηV− − (p+ + η)(V+ − V )− (p− − η)(V− − V ) + f(1− p+ − p−)

= −p+V+ + p+V − p−V− + p−V + f − fp+ − fp−
= p+(V − V+ − f) + p−(V − V− − f) + f

≤ f, (4.134)

where we have used that both V −V+− f and V −V+− f are nonpositive by definition
of the case. The other cases follow similar reasoning.
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Case 2: V+ ≥ V − f, V− ≤ V − f
We set F+ = V+ − V and F− = −f . Then,

Z∗2 ≤ ηV+ − ηV− − (p+ + η)(V+ − V ) + (p− − η)f + f(1− p+ − p−)

= −ηV− + ηV − p+V+ + p+V − ηf + f − fp+

= −ηV− + ηV + p+(V − V+ − f) + f(1− η)

≤ ηV + (1− η)f, (4.135)

where we have set V− = 0 and used that V − V+ − f ≤ 0.

Case 3: V+ ≤ V − f, V− ≤ V − f
Both F+ and F− are set equal to −f . Then,

Z∗2 ≤ ηV+ − ηV− + (p+ + η)f + (p− − η)f + f(1− p+ − p−)

= ηV+ − ηV− + f

≤ η(V − f) + f

= ηV + (1− η)f. (4.136)

We have set V+ equal to its maximum possible value of V − f and V− = 0.

Case 4: V+ ≤ V − f, V− ≥ V − f
It is optimal to set F+ = −f and F− = V− − V+ + F+, where the latter is the smallest
value of F− permitted from the constraint V+ − F+ ≥ V− − F−. Then,

Z∗2 ≤ ηV+ − ηV− + (p+ + η)f − (p− − η)(V− − V+ − f) + f(1− p+ − p−)

= p−(V+ − V−) + f

≤ f, (4.137)

where we have used that V+−V− is nonpositive by definition of the case. The maximum
bounds are achieved by the second and third cases. �

An example of a tight solution (i.e. satisfying Lemma 4.7 with equality) using only
three states is shown below.

V F P D
s0 0 −f η −η
s1 0 −f 1− η 0
s2 V 0 0 η

The solution provides an intuitive understanding of the bound. Consider an adversary
who wishes to construct an approximate value as large as possible for a state with zero
value. The adversary has a total probability weight of 2η that may be added/subtracted
from various state probabilities in the following stage. To make the approximate state
value large, the adversary adds weight η to the state s2 with maximum value, yielding
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an objective increase of ηV , and subtracts η weight from the minimum value state
s0, which has zero value. Since adding η weight to V leaves at most (1− η) remaining
weight for the estimated distribution, this weight is associated with state s1, as it carries
maximum (negative) estimation error. This solution is used as a building block for the
tight example shown in the next subsection.

Returning to our original analysis, we have shown using (4.114), (4.115), Lemma
4.6, and Lemma 4.7 that

Z∗1 ≤ Z∗2 ≤ ηV + (1− η)f (4.138)

and replacing the α term,

V̂t(St)− Vt(St) ≤ αηV t+1 + α(1− η)ft+1. (4.139)

Finding a lower bound for the estimation error V̂t(St)−Vt(St) follows a similar approach.

Ft(St) = Vt(St)− V̂t(St)

= Vt(St)− max
xt∈Xt(St)


Rt(St, xt) + α

∑

St+1

Pt(St+1|St, xt)V̂t+1(St+1)

+α
∑

St+1

D(St+1|St, xt)V̂t+1(St+1)




= Vt(St)− max
xt∈Xt(St)


Rt(St, xt) + α

∑

St+1

Pt(St+1|St, xt)Vt+1(St+1)

−α
∑

St+1

Pt(St+1|St, xt)Ft+1(St+1) + α
∑

St+1

D(St+1|St, xt)Vt+1(St+1)

−α
∑

St+1

D(St+1|St, xt)Ft+1(St+1)




≤ −αmin


−

∑

St+1

Pt(St+1|St, xt)Ft+1(St+1) +
∑

St+1

D(St+1|St, xt)Vt+1(St+1)

−
∑

St+1

D(St+1|St, xt)Ft+1(St+1)


 . (4.140)

The third equality above follows from substitution of the estimation error for stage
t + 1, and the inequality follows from Proposition 4.2 and canceling like terms. The
last minimum is taken over all probability distributions, difference vectors, and value
functions. Simplifying notation and ignoring α gives the multilinear program
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minimize
F,V,P,D

Z3 =
∑

s∈S
(−P (s)F (s) +D(s)V (s)−D(s)F (s))

subject to
∑

s∈S
|D(s)| ≤ 2η,

∑

s∈S
P (s) = 1,

∑

s∈S
D(s) = 0,

0 ≤ V (s) ≤ V , ∀s ∈ S,
0 ≤ V (s)− F (s) ≤ V , ∀s ∈ S,
|F (s)| ≤ f, ∀s ∈ S,
0 ≤ P (s) ≤ 1, ∀s ∈ S,
0 ≤ P (s) +D(s) ≤ 1, ∀s ∈ S.

(4.141)

Substituting F (s) = −F ′(s) and W (s) = V − V (s) for all s ∈ S gives the program

minimize
F ′,W,P,D

Z4 =
∑

s∈S
(P (s)F ′(s)−D(s)W (s) +D(s)F ′(s))

subject to
∑

s∈S
|D(s)| ≤ 2η,

∑

s∈S
P (s) = 1,

∑

s∈S
D(s) = 0,

0 ≤W (s) ≤ V , ∀s ∈ S,
0 ≤W (s)− F ′(s) ≤ V , ∀s ∈ S,
|F ′(s)| ≤ f, ∀s ∈ S,
0 ≤ P (s) ≤ 1, ∀s ∈ S,
0 ≤ P (s) +D(s) ≤ 1, ∀s ∈ S,

(4.142)

where we have used that
∑

sD(s)V = 0 in the objective function. Negating the objective
function and changing from minimization to maximization makes the problem identical
to (4.115) with W (s) = V (s) and F ′(s) = F (s). Recalling the −1 coefficient in (4.140),
we thus have that

− Z∗3 = −Z∗4 = Z∗1 ≤ ηV + (1− η)f, (4.143)

where the inequality follows from Lemma 4.6 and Lemma 4.7. Hence, replacing the α
factor that we have omitted,

Vt(St)− V̂t(St) ≤ αηV t+1 + α(1− η)ft+1. (4.144)
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The following lemma then holds.

Lemma 4.8. For t = 0, . . . , T − 1, the bounds on estimation errors satisfy

ft ≤ αηV t+1 + α(1− η)ft+1. (4.145)

Proof. Summarizing the arguments we have made above, we used (4.114), (4.115),
Lemma 4.6, and Lemma 4.7 to show that

− Ft(St) = V̂t(St)− Vt(St) ≤ αηV t+1 + α(1− η)ft+1. (4.146)

Then we used (4.140) and showed the equivalences of the programs (4.141), (4.142), and
(4.115). Using again Lemma 4.6 and Lemma 4.7 with the equivalences of the programs,
we showed

Ft(St) = Vt(St)− V̂t(St) ≤ αηV t+1 + α(1− η)ft+1. (4.147)

�

We now move to bounding the approximate policy error, Gt(St), starting with the
upper bound. Note again that the decision x̂t chosen by the approximate policy is given
by

x̂t(St) = argmax
xt∈Xt(St)


Rt(St, xt) + α

∑

St+1

Pt(St+1|St, xt)V̂t+1(St+1)

+α
∑

St+1

D(St+1|St, xt)V̂t+1(St+1)


 (4.148)

and that the value of a state under the approximate policy is given by

V π̂
t (St) = Rt(St, x̂t) + α

∑

St+1

Pt(St+1|St, x̂t)V π̂
t+1(St+1). (4.149)
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Expanding the approximate policy error,

Gt(St) = V̂t(St)− V π̂
t (St)

= Rt(St, x̂t) + α
∑

St+1

Pt(St+1|St, x̂t)V̂t+1(St+1) + α
∑

St+1

D(St+1|St, x̂t)V̂t+1(St+1)

−Rt(St, x̂t)− α
∑

St+1

Pt(St+1|St, x̂t)V π̂
t+1(St+1)

= α
∑

St+1

Pt(St+1|St, x̂t)V π̂
t+1(St+1) + α

∑

St+1

Pt(St+1|St, x̂t)Gt+1(St+1)

+ α
∑

St+1

D(St+1|St, x̂t)V π̂
t+1(St+1) + α

∑

St+1

D(St+1|St, x̂t)Gt+1(St+1)

− α
∑

St+1

Pt(St+1|St, x̂t)V π̂
t+1(St+1)

= α
∑

St+1

Pt(St+1|St, x̂t)Gt+1(St+1) + α
∑

St+1

D(St+1|St, x̂t)V π̂
t+1(St+1)

+ α
∑

St+1

D(St+1|St, x̂t)Gt+1(St+1). (4.150)

Above, the third inequality follows from substituting the approximate policy error for
stage t+1 and canceling the identical reward terms, and the fourth equality follows from
canceling like terms. To find the maximum value of (4.150), we adopt the shorthand
notation we used before along with V ′(s) = V π̂(St+1), G(s) = Gt+1(St+1), g = gt+1.
This gives the multilinear program

maximize
G,V ′,P,D

Z5 =
∑

s∈S
(P (s)G(s) +D(s)V ′(s) +D(s)G(s))

subject to
∑

s∈S
|D(s)| ≤ 2η,

∑

s∈S
P (s) = 1,

∑

s∈S
D(s) = 0,

0 ≤ V ′(s) ≤ V , ∀s ∈ S,
0 ≤ V ′(s) +G(s) ≤ V , ∀s ∈ S,
|G(s)| ≤ g, ∀s ∈ S,
0 ≤ P (s) ≤ 1, ∀s ∈ S,
0 ≤ P (s) +D(s) ≤ 1, ∀s ∈ S.

(4.151)

Substituting G(s) with −G′(s) gives the same program in (4.115) with F (s) = G′(s)
and V (s) = V ′(s). The bounds for Vt+1(·) are the same as the bounds for V π̂

t+1(·) as we
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noted in (4.108) and (4.109). Thus, for equal bounds f = g,

Z∗5 = Z∗1 , (4.152)

and using our bound on Z∗1 from Lemma 4.6 and Lemma 4.7,

Z∗5 ≤ ηV t+1 + (1− η)gt+1. (4.153)

For the lower bound of (4.150), we have the problem

minimize
G,V ′,P,D

Z6 =
∑

s∈S
(P (s)G(s) +D(s)V ′(s) +D(s)G(s))

subject to
∑

s∈S
|D(s)| ≤ 2η,

∑

s∈S
P (s) = 1,

∑

s∈S
D(s) = 0,

0 ≤ V ′(s) ≤ V , ∀s ∈ S,
0 ≤ V ′(s) +G(s) ≤ V , ∀s ∈ S,
|G(s)| ≤ g, ∀s ∈ S,
0 ≤ P (s) ≤ 1, ∀s ∈ S,
0 ≤ P (s) +D(s) ≤ 1, ∀s ∈ S.

(4.154)

Again using substitution with G′(s) = −G(s), we have an instance of (4.141) with
F (s) = G′(s) and V (s) = V ′(s). This gives, for equal bounds f = g,

Z∗6 = Z∗3 , (4.155)

and using (4.143),
Z∗6 ≥ −ηV − (1− η)g. (4.156)

We have the following lemma.

Lemma 4.9. For t = 0, . . . , T − 1, the bounds on approximate policy errors satisfy

gt ≤ αηV t+1 + α(1− η)gt+1. (4.157)

Proof. We used (4.150), the equivalence of (4.151) and (4.115), Lemma 4.6, and Lemma
4.7 to show that

Gt(St) = V̂t(St)− V π̂
t (St) ≤ αηV t+1 + α(1− η)gt+1. (4.158)
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We then used (4.150), the equivalences of (4.154), (4.141), (4.115), and again Lemma
4.6 and Lemma 4.7 to show that

Gt(St) = V̂t(St)− V π̂
t (St) ≥ −αηV t+1 − α(1− η)gt+1. (4.159)

�

Equipped with bounds on the growth of estimation errors and approximate policy
errors from Lemma 4.8 and Lemma 4.9, we can now prove the final results.

Proof of Theorem 4.3. From Lemma 4.8,

ft ≤ αηV t+1 + α(1− η)ft+1, (4.160)

where fT = 0. Our inductive hypothesis is

ft ≤ η
T∑

u=t+1

αu−t(1− η)u−t−1V u, t = 0, . . . , T − 1. (4.161)

For t = T − 1, substituting gives

fT−1 ≤ αηV T , (4.162)

which is correct. Now assuming that (4.161) holds for t = τ , we show that it holds for
t = τ − 1.

fτ−1 ≤ αηV τ + α(1− η)η

T∑

u=τ+1

αu−τ (1− η)u−τ−1V u

= αηV τ + αη
T∑

u=τ+1

αu−τ (1− η)u−τV u

= η

T∑

u=τ

αu−τ+1(1− η)u−τV u. (4.163)

Since Lemma 4.9 gives the same recursive relationship, the same expression holds for
gt using gT = 0:

gt ≤ η
T∑

u=t+1

αu−t(1− η)u−t−1V u, t = 0, . . . , T − 1. (4.164)

We have

f0 ≤ η
T∑

t=1

αt(1− η)t−1V t. (4.165)



198 CHAPTER 4. UNCERTAIN TRANSITION PROBABILITIES IN MARKOV DECISION PROCESSES

Note that

V t = R
T∑

u=t

αu−t

=
R

αt
(αt − αT+1)

1− α

=
R

1− α −
RαT−t+1

1− α . (4.166)

With the assumption that η < 1,

f0 ≤ ηR

1− α
T∑

t=1

αt(1− η)t−1 − ηαT+1R

1− α
T∑

t=1

αt(1− η)t−1

=
ηR

(1− α)(1− η)

(
(α(1− η))− (α(1− η))T+1

1− α(1− η)

)

− ηαT+1R

(1− α)(1− η)

(
(1− η)− (1− η)T+1

η

)

= R

(
αη − αT+1 + αT+2(1− η) + αT+1(1− η)T+1(1− α)

(1− α)(1− α(1− η))

)
. (4.167)

The same expression also holds for g0. Recalling that

L = V0(S0)− V π̂
0 (S0) = G0(S0) + F0(S0) ≤ g0 + f0, (4.168)

the proof is complete. �

Proof of Theorem 4.4. There is a bounded reward per stage, so the limit of
(4.94) as T →∞ is well defined [27]. �

Proof of Theorem 4.5. Note that

V t = (T − t+ 1)R. (4.169)
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Using the same approach as the discounted case, we have

f0 ≤ η
T∑

t=1

(1− η)t−1V t

= η(T + 1)R
T∑

t=1

(1− η)t−1 − ηR
T∑

t=1

(1− η)t−1t

=
η(T + 1)R

1− η

(
(1− η)− (1− η)T+1

1− (1− η)

)

− ηR

1− η

(
(1− η)− (T + 1)(1− η)T+1 + T (1− η)T+2

η2

)

=
R

η

(
−1 + η(T + 1) + (1− η)T+1

)
. (4.170)

The same expression is valid for g0, yielding

L ≤ 2R

η

(
−1 + η(T + 1) + (1− η)T+1

)
. (4.171)

�
Proof of Corollary 4.5. Let

Lu =
2Rαη

(1− α)(1− α(1− η))
. (4.172)

We first show that Lu is concave in η and then find limη→0
∂Lu
∂η . We have

∂2Lu
∂η2

=
4Rα2

(1− α)(1− α(1− η))2

(
αη

(1− α(1− η))
− 1

)
. (4.173)

The first term

4Rα2

(1− α)(1− α(1− η))2
(4.174)

is clearly nonnegative, and the fact that

αη

(1− α(1− η))
− 1 (4.175)

is nonpositive follows from 1− α > 0. Next, the first derivative is

∂Lu
∂η

=
2Rα

(1− α)(1− α(1− η))

(
αη

(1− α(1− η))
− 1

)
, (4.176)
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and

lim
η→0

∂Lu
∂η

=
2Rα

(1− α)2
. (4.177)

�

Proof of Corollary 4.6. Let

Lu =
2R

η

(
−1 + η(T + 1) + (1− η)T+1

)
. (4.178)

The second derivative is given by

∂2Lu
∂η2

=
2R

η2

(−2

η
+

2(1− η)T

η
+ (1− η)TT + (1− η)T−1T + (1− η)T−1ηT 2

)
.

(4.179)

The term 2R
η2

is clearly nonnegative, so it is sufficient to show that the remaining ex-
pression is nonpositive to establish concavity. We wish to show that

2(1− η)T

η
+ (1− η)TT + (1− η)T−1T + (1− η)T−1ηT 2 ≤ 2

η
, (4.180)

or equivalently,

(1− η) +
ηT

2
+
η(1− η)T

2
+
η2T 2

2
≤ (1− η)−(T−1). (4.181)

We will determine the Taylor expansion for (1− η)−(T−1). First note that

∂k

∂ηk
(1− η)−(T−1) = (1− η)−(T−1+k)

k−1∏

u=0

(T − 1 + u), k ≥ 1. (4.182)

The Taylor series around η = 0 gives

(1− η)−(T−1) = 1 +

∞∑

k=1

ηk

k!

k−1∏

u=0

(T − 1 + u). (4.183)

Each term in the expansion is nonnegative, and evaluating the expression through k = 2
gives precisely the left hand side of (4.181). This shows that Lu is a concave function
of η.

The first derivative of the loss bound is

∂Lu
∂η

=
2R

η2

(
1− (1− η)T − (1− η)T ηT

)
. (4.184)

Taking the limit as η → 0 gives

lim
η→0

∂Lu
∂η

= RT (T + 1). (4.185)

�
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Figure 4.9. Tight example for undiscounted case with T = 3. White nodes are pre-decision states,
gray nodes are post-decision states, and black nodes are terminal states. Terminal states with nonzero
values do not violate the bound on reward R because they can be interpreted as paths where a reward
R is received at each following stage.

4.5.3 Tight Example

We show a tight example for the undiscounted case assuming that T ≤ (1−η)
η . Tight

examples for the discounted cases can be derived using similar structure. We introduce
a few terms to describe the example. A post-decision state Sxt = (St, xt) is defined
by a state St and a feasible decision xt ∈ Xt(St) for the state [122]. Post-decision
states are essentially what we have until now called decisions, but we refer to them
here as “states” since we assign values and approximate values to them as we would
with ordinary states. We refer to value functions and approximate value functions of
post-decision states with the notation V x

t (·) and V̂ x
t (·), respectively. A pre-decision

state is what we have until now referred to as a state.
The example is described with a directed tree structure. Nodes in the tree corre-

spond to pre-decision states (denoted by W ), post-decision states (denoted by X)3, and

3The post-decision states for the example should not be confused with the our notation for a policy,
which also uses the symbol X.
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absorbing and terminal states (denoted by Y ). Arcs correspond to transitions between
sequential states that occur by decision or randomly. The example for T = 3 is shown in
Fig. 4.9. The only decision takes place at t = 0 from the unique pre-decision state W0.
The decision is between two post-decision states XA

0 and XB
0 corresponding to path A

and path B, respectively. Path A, which has a large expected reward, is defined as the
set of all node descendants of XA

0 . Path B, which has a negligible expected reward, is
defined as the set of all node descendants of XB

0 .
For t = 1, . . . , T − 1, there are two pre-decision and two post-decision states labeled

WA
t , W

B
t , X

A
t , X

B
t . The notation WA

t denotes the pre-decision state at stage t on path
A, for example. For t = 1, . . . , T , there are four absorbing states, two for each path,
which are denoted by Y A+

t , Y A−
t , Y B+

t , Y B−
t . For t = T , these four absorbing states

are terminal states, and there are two additional absorbing/terminal states Y A◦
T , Y B◦

T .
The outgoing arcs for nodes are given as follows, where δ+(S) denotes the set of nodes
connected to node S with an outgoing arc.

δ+(W0) = {XA
0 , X

B
0 }, (4.186)

δ+(XQ
t ) = {WQ

t+1, Y
Q+
t+1 , Y

Q−
t+1 }, Q = A, B, t = 0, . . . , T − 2, (4.187)

δ+(WQ
t ) = {XQ

t }, Q = A, B, t = 1, . . . , T − 1, (4.188)

δ+(XQ
T ) = {Y Q+

T , Y Q◦
T , Y Q−

T }, Q = A, B. (4.189)

Like our previous examples, arc weights exiting pre-decision states correspond to re-
wards, and arc weights exiting post-decision states correspond to probabilities. The
reward function for the starting pre-decision state W0 is

R0(W0, ·) =

{
0, choose XA

0 ,
ε, choose XB

0 ,
(4.190)

where 0 < ε � R. Since all other pre-decision states have only one decision (one
exiting arc), we can simply specify the corresponding rewards as a function of the state
for t = 1, . . . , T − 1:

Rt(W
Q
t ) =

{
(T−t+1)ηR

1−η , Q = A,

0, Q = B.
(4.191)

With the assumption that T ≤ (1−η)
η , these rewards do not violate the reward bound

R. Absorbing state values for t = 1, . . . , T are given by

Vt(St) =

{
(T − t+ 1)R, St = Y Q+

t ,

0, St = Y Q−
t ,

Q = A, B,
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VT (Y A◦
T ) =

ηR

(1− η)
, VT (Y B◦

T ) = 0. (4.192)

Note that the absorbing states with nonzero values do not violate the upper bound
on rewards; they can be interpreted as paths where the maximum reward is obtained
at each following stage for the remainder of the horizon. Transition and estimated
transition probabilities are given by

P(St+1|XA
0 ) =





η, St+1 = Y A+
t+1 ,

(1− η), St+1 = WA
t+1, Y

A◦
T ,

0, St+1 = Y A−
t+1 ,

(4.193)

P(St+1|XB
0 ) =





0, St+1 = Y B+
t+1 ,

(1− η), St+1 = WB
t+1, Y

B◦
T ,

η, St+1 = Y B−
t+1 ,

(4.194)

P̂(St+1|XA
0 ) =





0, St+1 = Y A+
t+1 ,

(1− η), St+1 = WA
t+1, Y

A◦
T ,

η, St+1 = Y A−
t+1 ,

(4.195)

P̂(St+1|XB
0 ) =





η, St+1 = Y B+
t+1 ,

(1− η), St+1 = WB
t+1, Y

B◦
T ,

0, St+1 = Y B−
t+1 ,

(4.196)

for t = 0, . . . , T −1. Since we have fully specified the construction of the tight example,
we now prove that it is indeed tight.

Lemma 4.10. Based on the construction of the tight example (4.186) - (4.196), the
true and estimated values of the post-decision states at the starting stage satisfy

V x
0 (XA

0 ) = 2η
T∑

u=1

(1− η)u−1V u, (4.197)

V̂ x
0 (XA

0 ) = η

T∑

u=1

(1− η)u−1V u, (4.198)

V̂ x
0 (XB

0 ) = η

T∑

u=1

(1− η)u−1V u, (4.199)

V x
0 (XB

0 ) = 0. (4.200)

Proof. Starting with the true value for path A, our inductive hypothesis is

V x
t (XA

t ) = 2η
T∑

u=t+1

(1− η)u−t−1V u, t = 0, . . . , T − 1. (4.201)
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Plugging in t = T − 1 gives

V x
T−1(XA

T−1) = 2ηV T = 2ηR, (4.202)

which matches the construction of the tight example. We now verify that the hypothesis
holds for t = τ − 1 given that it holds for t = τ . We have

V x
τ−1(XA

τ−1) = ηV τ + (1− η)

(
(T − τ + 1)ηR

(1− η)
+ 2η

T∑

u=τ+1

(1− η)u−τ−1V u

)

= ηV τ + (T − τ + 1)ηR+ 2η
T∑

u=τ+1

(1− η)u−τV u

= 2ηV τ + 2η

T∑

u=τ+1

(1− η)u−τV u

= 2η

T∑

u=τ

(1− η)u−τV u. (4.203)

On the first line, we used the definitions for the true transition probabilities (4.193),
reward function (4.191), and terminal state values (4.192). The third line follows by
noting that V τ = (T − τ + 1). For the estimated state value of path A, the inductive
hypothesis is

V̂ x
t (XA

t ) = η

T∑

u=t+1

(1− η)u−t−1V u, t = 0, . . . , T − 1. (4.204)

For t = T − 1,

V̂ x
T−1(XA

T−1) = ηV T = ηR. (4.205)

Now assuming that it holds for t = τ ,

V̂ x
τ−1(XA

τ−1) = η · 0 + (1− η)

(
(T − τ + 1)ηR

(1− η)
+ η

T∑

u=τ+1

(1− η)u−τ−1V u

)

= (T − τ + 1)ηR+ η

T∑

u=τ+1

(1− η)u−τV u

= ηV τ + η
T∑

u=τ+1

(1− η)u−τV u

= η

T∑

u=τ

(1− η)u−τV u. (4.206)
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Moving to the estimated value for path B, the inductive hypothesis is again

V̂ x
t (XB

t ) = η
T∑

u=t+1

(1− η)u−t−1V u, t = 0, . . . , T − 1, (4.207)

which satisfies V̂ x
T−1(XB

T−1) = ηV T = ηR. Assuming it is valid for t = τ ,

V̂ x
τ−1(XB

τ−1) = ηV τ + (1− η)η
T∑

u=τ+1

(1− η)u−τ−1V u

= ηV τ + η

T∑

u=τ+1

(1− η)u−τV u

= η
T∑

u=τ

(1− η)u−τV u. (4.208)

Finally, it can be verified by inspection that V x
0 (XB

0 ) = 0. �

Theorem 4.6. The total loss of the tight example (4.186) - (4.196) for 0 < η < 1 is

L =
2R

η

(
−1 + η(T + 1) + (1− η)T+1

)
− ε. (4.209)

Proof. Consider Lemma 4.10 and the rewards for the initial stage (4.190). The optimal
choice for the problem is to choose path A and obtain the expected value given by
(4.197),

V x
0 (XA

0 ) = 2η

T∑

u=1

(1− η)u−1V u. (4.210)

The estimated post-decision values for both paths are equal to V x
0 (XA

0 )/2. Since the
immediate reward for choosing path B is larger by ε, however, the approximate policy
chooses path B and realizes value ε. The expression (4.210) for V x

0 (XA
0 ) evaluates to

the upper bound on the loss using the development in (4.170). �

4.6 Discussion

We have presented a general loss bound for Markov decision processes solved using exact
dynamic programming with estimated transition probabilities. The bound applies to
discounted finite and infinite horizon scenarios as well as undiscounted finite horizon
scenarios. We also presented a tight example that can be generalized to these scenarios.

One major drawback of our uncertainty model is that it is relatively pessimistic:
the total variation description of probability uncertainty leads to a boundary solution
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(Lemma 4.4) where probability weight is placed on paths with maximum and zero
future value. This behavior is more adversarial than one might expect from natural
uncertainty occurring in a system.

This motivates two questions for future research. First, is there a class of problems
that naturally prohibits the existence of states with maximum future value (i.e. where
the upper bound on reward is obtained at each future stage) so that an improved
bound for this class of problems is closer to real-life systems? Next, what bounds can
be obtained for other characterizations of probability uncertainty? Our result applies
to some other measures of probability distance simply by known identities relating
the measures. For instance, Pinsker’s inequality gives, for an upper bound on the
Kullback–Leibler (KL) divergence between two distributions, an upper bound on the
total variation distance between two distributions [45]. Letting transition probabilities
themselves be random variables allows for interesting modeling options. Probabilities
could have additive Gaussian noise, for example. However, this average-case analog of
our work here is likely to be difficult to analyze. While our worst-case analysis requires
bounds on rewards, the average-case analysis would probably require assumptions on
the distribution of rewards, which is rather constricting.

Understanding the effects of uncertainty with conventional dynamic programming
is helpful, but approximate dynamic programming methods are used more frequently
for large systems. It would be interesting to see which approximation methods are
more robust in the presence of uncertain transition probabilities. Some approximation
methods, for example, may be better able to capture correlations in uncertain transition
probabilities across stages.



Chapter 5

Randomized Minmax Regret for
Combinatorial Optimization

MANY optimization applications involve cost coefficients that are not fully known.
When information on cost coefficients is available in the form of probability

distributions (e.g. from historical data or other estimates), stochastic programming
is often an appropriate modeling choice [37, 131]. In other cases, costs may only be
known to be contained in intervals (i.e. each cost has a known lower and upper bound)
or to be a member of a finite set of scenarios, and one is more interested in worst-case
performance. Robust optimization formulations are desirable here as they employ a
minmax-type objective and do not require knowledge of cost distributions [31, 84, 93].

In a general robust optimization problem with cost uncertainty, one must select
a set of items from some feasible solution set such that item costs are contained in
some uncertainty set. The basic problem of selecting an optimal solution from the
solution set when costs are known is referred to as the nominal problem. When only
the uncertainty set is known, the goal under the minmax criterion (also referred to as
absolute robustness) is to select a solution that gives the best upper bound on objective
cost over all possible costs from the uncertainty set [145] (this is assuming that the
nominal problem is a minimization problem). That is, one must select the solution
that, when item costs are chosen to maximize the cost of the selected solution, is
minimum. Under the minmax regret criterion (sometimes called the robust deviation
model), the goal is instead to select the solution that minimizes the maximum possible
regret, defined as the difference between the cost of the selected solution and the optimal
solution [127].

The motivation for choosing the minmax regret criterion over the minmax criterion
is shown by the following example; the example involves a nominal problem with a
maximizing objective, so the criterion analogous to minmax is actually maxmin here.
Consider the choice between two items, the values of which are unknown but are con-
tained within known bounds: the first item has a value v1 ∈ [0, 100] while the second
item as a value v2 ∈ [1, 2]. The maxmin solution is to choose the second item since
it guarantees a value of at least 1 as opposed to 0. This choice, however, ignores the
potential value of up to 100 that could be obtained in choosing the first item. The

207
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minmax regret solution is to choose the first item since this choice has a maximum
regret of 2 (the value of the maximum possible difference v2−v1), whereas choosing the
second item has a maximum regret of 99 (the value of the maximum possible difference
v1 − v2). The minmax regret criterion thus seeks to exploit potential gains in value,
while the minmax/maxmin criterion is more risk averse.

This example, as well as other robust optimization problems under cost uncertainty,
can be interpreted as a two-stage game played between an optimizing player and an ad-
versary. In the first stage, the optimizing player selects some solution deterministically
from the solution set. In the second stage, the adversary observes the solution chosen by
the optimizing player and selects costs from the uncertainty set. The adversary selects
costs either to give the worst objective value for the optimizing player (under the min-
max/maxmin criterion) or to maximize the regret of the optimizing player (under the
minmax regret criterion). We refer to this model as the deterministic model. A slightly
different model is to allow the optimizing player to select a probability distribution over
solutions and require the adversary to select costs with knowledge of the optimizing
player’s distribution, but not its realization. We refer to this model as the randomized
model, and this chapter focuses on the randomized model under the minmax regret
criterion.

To illustrate the randomized model, we again consider our item selection example
but with value bounds v1 ∈ [0, 100] and v2 ∈ [10, 60]. The deterministic minmax regret
solution is still to choose the first item, guaranteeing a minmax regret of 60, while
the maxmin solution is to choose the second item. The randomized minmax regret
solution, however, is to choose the first item with probability 9/15 and the second item
with probability 6/15. For any distribution over values within bounds chosen by the
adversary, assuming it is chosen without knowledge of the selected item, the resulting
expected regret is no greater than 36. The randomized model, from the perspective of
the optimizing player, is thus a game played against a less powerful adversary. This
model is more realistic for many applications where the adversary is nature.

Remarkably, we show that under this randomized model, the minmax regret ver-
sion of any polynomial solvable 0–1 integer linear programming problem is polynomial
solvable. This holds true for both interval and discrete scenario representations of un-
certainty1. Our crucial observation is that the randomized model corresponds to the
linear programming relaxation of the mixed integer program for the deterministic model.
This leads to some useful insights. First, the minmax expected regret in the randomized
model is upper bounded by the minmax regret in the deterministic model, a property
that was satisfied in our example. Next, the linear program formulation can be used
to create an approximation algorithm for the deterministic problem. We show that ex-
isting approximation algorithms for deterministic minmax regret problems, which have
been proved using combinatorial arguments, can in fact be derived using primal-dual

1We have illustrated interval uncertainty with the example item selection problem. The same prob-
lem under discrete scenario uncertainty might have, for example, three scenarios corresponding to costs
(v1, v2) = (0, 100), (10, 60), (20, 30).
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methods [6, 85]. Our analysis here leads to lower bounds on randomized minmax regret
with respect to the deterministic minmax regret, effectively stating limits on the power
of using randomization.

Given that the randomized model makes many minmax regret problems polynomial
solvable for interval uncertainty and discrete scenario uncertainty, it is natural to ask
if polynomial solvability remains in the presence of slightly more elaborate uncertainty
sets. We show that for general convex uncertainty sets, however, both the deterministic
and randomized minmax regret problems are NP-hard2.

5.1 Related Work

One of the first studies of minmax regret from both an algorithmic and complexity
perspective was that of Averbakh [14]. He looked at the minmax regret version of
the simple problem of selecting k items out of n total items, where the cost of each
item is uncertain, and the goal is to select the set of items with minimum total cost.
For interval uncertainty, he derived a polynomial time algorithm based on interchange
arguments. However, he demonstrated that for the discrete scenario representation of
uncertainty, the minmax regret problem becomes NP-hard, even for the case of only
two scenarios. It is interesting to contrast these results with the case of minmax regret
linear programming, which as shown by Averbakh and Lebedev [16], is NP-hard for
interval uncertainty but polynomial solvable for discrete scenario uncertainty.

Apart from the item selection problem, most polynomial solvable minmax regret
combinatorial problems are NP-hard, both for interval and discrete scenario uncer-
tainty. This is true for the shortest path, minimum spanning tree, assignment, and
minimum s-t cut problems [4, 5, 15, 93, 150]. One exception is the minimum cut prob-
lem, the minmax regret version of which is polynomial solvable both for interval and
discrete scenario uncertainty [5]. The survey paper of Aissi et al. [8] provides a compre-
hensive summary of results related to both minmax and minmax regret combinatorial
problems. For problems that are already NP-complete, most of their minmax regret
versions are Σp

2-complete (meaning that they lie at the second level of the polynomial
hierarchy) [50, 80]. To solve minmax regret problems in practice, the book by Kasper-
ski reviews standard mixed integer program (MIP) formulations for both interval and
discrete scenario uncertainty [84].

General approximation algorithms for deterministic minmax regret are known for
both types of uncertainty. Kasperski and Zieliński [85] proved a 2-approximation algo-
rithm based on midpoint costs under interval uncertainty, and Aissi et al. [6] gave a
k-approximation algorithm using mean costs under discrete scenario uncertainty, where
k is the number of scenarios. Under interval uncertainty, fully polynomial time approxi-
mation schemes are known for many problems [84, 86]. For discrete scenario uncertainty,
Kasperski et al. [87] looked at the minmax regret item selection problem, which models
special cases of many combinatorial problems. They showed that for a non-constant

2For an introduction to NP-hardness and other complexity topics, see [69, 112].
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number of scenarios, the problem is not approximable within any constant factor unless
P=NP. If the number of scenarios is constant, fully polynomial time approximation
schemes are known for some problems [7, 9].

The application of a game-theoretic model with mixed strategies to robust optimiza-
tion problems was introduced by Bertsimas et al. [35]. They focused on the minmax
criterion, and their analysis was motivated by adversarial models used for online op-
timization algorithms. As described by Ben-David et al. [23] (see also Borodin and
El-Yaniv [42]), the three types of adversaries are the oblivious adversary, the adaptive
online adversary, and the adaptive offline adversary. The adaptive offline adversary is
the analog of the conventional deterministic minmax regret problem, while the adap-
tive online adversary corresponds to the randomized model. The analog of the oblivious
adversary, which we do not study, is the model where the adversary first selects costs,
and the optimizing player then selects the solution after viewing these costs.

For the randomized (corresponding to the adaptive online adversary) minmax prob-
lem, Bertsimas et al. [35] showed that if it is possible to optimize over both the solution
set and the uncertainty set in polynomial time, then an optimal mixed strategy solution
can be computed in polynomial time, and that the expected cost under the randomized
model is no greater than the cost for the deterministic model. This holds despite the
fact that solving the minmax version of many polynomial solvable problems is NP-hard
for the deterministic case [32]. They also gave lower bounds on the improvement gained
from randomization for various uncertainty sets. Our work is similar to theirs, but we
focus on the minmax regret criterion instead of the minmax criterion.

Another line of research that is related to ours is in security applications, where the
adversarial model is realistically motivated. Korzhyk et al. [92] considered assignment-
type problems where defensive resources, such as security guards, must be assigned
to valued targets. They followed a Stackelberg model where the defending player has
the power to commit to a mixed strategy; the attacker then observes this mixed strat-
egy (though not the realization) and decides which targets to attack. They used lin-
ear programming formulations along with the Birkhoff-von Neumann theorem to find
polynomial-sized optimal mixed strategies. It is also worth mentioning the work of
Bertismas et al. on randomized strategies for network interdiction [36].

5.2 Definitions

We consider a general combinatorial optimization problem where we are given a set of
n items E = {e1, e2, . . . , en} and a set F of feasible subsets of E. Each item e ∈ E has
a cost ce ∈ R. Given the vector c = (c1, . . . , cn), the goal of the optimization problem
is to select the feasible subset of items that minimizes the total cost; we refer to this as
the nominal problem:

F ∗(c) := min
T∈F

∑

e∈T
ce. (5.1)
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Let x = (x1, . . . , xn) be a characteristic vector for some set T ∈ F , so that xe = 1 if
e ∈ T and xe = 0 otherwise. Also let X ⊆ {0, 1}n denote the set of all characteristic
vectors corresponding to feasible sets T ∈ F . We assume that X is described in size m
(e.g. with m linear inequalities). We can equivalently write the nominal problem with
a linear objective function:

F ∗(c) = min
x∈X

∑

e∈E
cexe. (5.2)

Throughout the chapter, we will use both set notation and characteristic vectors for
ease of presentation.

We will review the conventional regret definitions for the deterministic minmax
regret framework and then present the analogous definitions for our randomized model.
For some cost vector c ∈ C, the deterministic cost of a solution T ∈ F is

F (T, c) :=
∑

e∈T
ce. (5.3)

The regret of a solution T under some cost vector c is the difference between the cost
of the solution and the optimal cost:

R(T, c) := F (T, c)− F ∗(c). (5.4)

The maximum regret problem for a solution T is

Rmax(T ) := max
c∈C

R(T, c) = max
c∈C

(F (T, c)− F ∗(c)) . (5.5)

The deterministic minmax regret problem is then

ZD := min
T∈F

Rmax(T ) = min
T∈F

max
c∈C

(F (T, c)− F ∗(c)). (5.6)

In the remainder of the chapter, we will frequently abuse the notation F (·, c), R(·, c)
and Rmax(·) by replacing set arguments with vectors (e.g. F (x, c) in place of F (T, c)),
but we will follow the convention of using capital letters for sets and lowercase letters
for vectors.

We now move to the randomized framework, where the optimizing player selects a
distribution over solutions and the adversary selects a distribution over costs. Starting
with the optimizing player, for some set T ∈ F , let yT denote the probability that the
optimizing player selects set T . Let y = (yT )T∈F be the vector of length |F| specifying
the set selection distribution; we will refer to y simply as a solution. Define the feasible
region for y as

Y := {y|y ≥ 0,1>y = 1}, (5.7)

where the notation 0 and 1 indicates a full vector of zeros and ones, respectively, and
> denotes the transpose operation. We similarly define a distribution over costs for the
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adversary. The set C may in general be infinite, but we will only consider strategies
with finite support; for now we will assume that such strategies are sufficient. Thus
consider a finite set Cf ⊆ C, and for some c ∈ Cf , let wc denote the probability that the
adversary selects costs c. Then let w = (wc)c∈Cf and define the feasible region

W := {w|w ≥ 0,1>w = 1}. (5.8)

We are interested in succinct descriptions of strategies for both players. We define
for the optimizing player a mixed strategy encoding M = (Θ, Y ) as a set of deter-
ministic solutions Θ = {Ti ∈ F | i = 1, . . . , µ} that should be selected with nonzero
probability and the corresponding probabilities Y = {yTi ∈ [0, 1] | i = 1, . . . , µ} that
satisfy

∑µ
i=1 yTi = 1. Here µ is the support size of the mixed strategy (i.e., the number

of deterministic solutions with nonzero probability). Likewise, define an adversarial
mixed strategy encoding L = (C,W ) as a set of costs C = {cj ∈ Cf | j = 1, . . . , η} to
be selected with corresponding probabilities W = {wcj ∈ [0, 1] | j = 1, . . . , η} satisfying∑η

j=1wcj = 1.
The expected regret under y and w is simply

R(y, w) :=
∑

T∈F

∑

c∈Cf

yTwcR(T, c) =
∑

T∈F

∑

c∈Cf

yTwc(F (T, c)− F ∗(c)). (5.9)

For a given y, the maximum expected regret problem is

Rmax(y) := max
w∈W

∑

c∈Cf

wc
∑

T∈F
yTR(T, c)

= max
c∈Cf

∑

T∈F
yTR(T, c). (5.10)

The above equality follows using the standard observation used in game theory: the
optimization of w ∈ W is maximization of the function G(y, c) =

∑
T∈F yTR(T, c) over

the convex hull of Cf , which is equivalent to optimizing over Cf itself. The minmax
expected regret problem, which we refer to as the randomized minmax regret problem,
is

ZR := min
y∈Y

Rmax(y) = min
y∈Y

max
c∈C

(∑

T∈F
yT (F (T, c)− F ∗(c))

)
, (5.11)

where we have replaced Cf with C under the assumption that Cf contains the maximizing
cost vector.

The above minmax expected regret problem is the problem faced by the optimizing
player. The adversary, however, is interested in solving the maxmin expected regret
problem, defined as follows. First, the minimum expected regret problem for a given w
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is

Rmin(w) := min
y∈Y

∑

T∈F
yT
∑

c∈Cf

wcR(T, c)

= min
T∈F

∑

c∈Cf

wcR(T, c), (5.12)

where we have once again used the fact that optimizing over the convex hull of the
set of solutions is equivalent to optimizing over the set of solutions. The adversarial
randomized maxmin regret problem is

ZAR := max
w∈W

Rmin(w) = max
w∈W

min
T∈F


∑

c∈Cf

wc(F (T, c)− F ∗(c))


 . (5.13)

It is often the case that the minmax value of the game is equal to the maxmin value;
that is, ZR = ZAR. Von Neumann’s minimax theorem states that this holds for two-
person zero-sum games with a finite number of pure strategies [144]. In the following
sections, we will show that this identity holds for discrete scenario uncertainty and
interval uncertainty, following from linear programming duality.

5.3 Discrete Scenario Uncertainty

Under discrete scenario uncertainty, we are given a finite set S of |S| = k scenarios. For
each S ∈ S, there exists a cost vector cS = (cSe )e∈E . The adversary’s mixed strategy
is a probability distribution over scenarios, so we are not concerned with complications
arising from infinite sets. This section is divided into three parts. We first determine
computation of the optimal randomized strategy for the optimizing player, and we
then look at computation of the adversary’s optimal strategy. Thereafter, we use the
randomized model to devise a primal-dual approximation scheme for the deterministic
minmax regret problem. We restate and clarify some notation in the context of discrete
scenario uncertainty throughout our development.

5.3.1 Optimizing Player

We first make some observations regarding the deterministic minmax regret problem
that will be helpful in making comparisons with the randomized model. Under discrete
scenario uncertainty, the deterministic maximum regret problem is

Rmax(T ) = max
S∈S

R(T, cS) = max
S∈S

(
F (T, cS)− F ∗(cS)

)
. (5.14)

The deterministic minmax regret problem is

ZD = min
T∈F

Rmax(T ) = min
T∈F

max
S∈S

(F (T, cS)− F ∗(cS)). (5.15)
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Lemma 5.1. For discrete scenario uncertainty, the deterministic minmax regret prob-
lem is equivalent to the following mixed integer program.

ZD = min
z,x

z

s.t.
∑

e∈E
cSe xe − F ∗(cS) ≤ z, ∀S ∈ S, (5.16)

x ∈ X ,
z free.

Proof. Slightly abusing the notation for maximum regret, we have with vector notation

Rmax(x) = max
S∈S

(∑

e∈E
cSe xe − F ∗(cS)

)
. (5.17)

The program then follows by definition of the maximum. �

For the randomized model, recall that the optimizing player’s distribution over
solutions is denoted by y = (yT )T∈F and that Y denotes the set of valid probability
distributions. The maximum expected regret problem is

Rmax(y) = max
S∈S

∑

T∈F
yTR(T, cS) = max

S∈S

(∑

T∈F
yTF (T, cS)− F ∗(cS)

)
. (5.18)

We define the expected value of a solution for a distribution y and cost vector cS to
simplify notation:

F (y, cS) :=
∑

T∈F
yTF (T, cS). (5.19)

The maximum expected regret problem can then be stated as

Rmax(y) = max
S∈S

(F (y, cS)− F ∗(cS)). (5.20)

The randomized minmax regret problem is

ZR = min
y∈Y

Rmax(y) = min
y∈Y

max
S∈S

(F (y, cS)− F ∗(cS)). (5.21)

To solve the randomized minmax regret problem, it is possible to write a linear pro-
gram analogous to the above integer program using variables yT . This would, however,
have |F| variables, which may grow exponentially in n. Instead, we note that for the
maximum regret expected regret problem,

Rmax(y) = max
S∈S

(∑

T∈F
yT
∑

e∈T
cSe − F ∗(cS)

)

= max
S∈S

(∑

e∈E
cSe

∑

T∈F :e∈T
yT − F ∗(cS)

)
. (5.22)
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The change in summation order motivates the substitution

pe :=
∑

T∈F :e∈T
yT , e ∈ E. (5.23)

Let p = (p1, . . . , pn); we refer to this as the marginal probability vector. The substitution
is a mapping from Y to the convex hull of X . The following is the minmax regret analog
of an observation made by Bertsimas et al. [35].

Lemma 5.2. For discrete scenario uncertainty, the objective value ZR of the random-
ized minmax regret problem (5.11) is equal to that of the problem

min
p∈CH(X )

max
S∈S

(∑

e∈E
cSe pe − F ∗(cS)

)
, (5.24)

where CH(X ) denotes the convex hull of X .

Proof. We use the same arguments presented in [35]. By definition of the substitution
(5.23), the vector p must lie in the convex hull of X . Carathéodory’s theorem [44] states
that any p ∈ CH(X ) can be represented by a convex combination of at most n+1 points
in X , so there exists a surjective mapping from Y to CH(X ). �

Since we will use the simplified formulation given in Lemma 5.2 to solve the ran-
domized minmax regret problem, we address the problem of recovering a vector y given
a solution p. In the proof of the lemma, we have used Carathéodory’s theorem, which
proves the existence of such a mapping but does not give its construction. Recall that
we defined for the optimizing player a mixed strategy encoding M = (Θ, Y ) as a set
of deterministic solutions Θ = {Ti ∈ F | i = 1, . . . , µ} that should be selected with
nonzero probability and the corresponding probabilities Y = {yTi ∈ [0, 1] | i = 1, . . . , µ}
that satisfy

∑µ
i=1 yTi = 1. Here µ is the support size of the mixed strategy (i.e. the

number of deterministic solutions with nonzero probability). For a given vector p, we
are interested in solving the following constraint satisfaction program3:

min
y

0

s.t.
∑

T∈F :e∈T
yT = pe, ∀e ∈ E, (5.25)

∑

T∈F
yT = 1,

y ≥ 0.

3We have written a 0 in the objective function since all objective coefficients have zero value.
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Consider the dual program of (5.25), which has variables u = (u1, . . . , ue) and w:

max
w,u

w −
∑

e∈E
peue

s.t. w −
∑

e∈T
ue ≤ 0, ∀T ∈ F , (LPM)

u,w free.

Recall that the region X is described in size m.

Lemma 5.3. For any given p ∈ CH(X ), a corresponding mixed strategy encoding M =
(Θ, Y ) of size polynomial in n can be found via the linear programming formulation
(LPM). Furthermore, if the nominal problem F ∗(c) can be solved in time polynomial
in n and m, then M can be found in time polynomial in n and m.

Proof. Notice that while the primal program has an exponential number of variables
and a linear number of constraints, the opposite holds true for the dual. The primal
program is bounded since all objective coefficients are equal to zero and is feasible due
to Carathéodory’s theorem. Therefore the dual program must be feasible and bounded.

To guarantee a polynomial sized solution, note that the separation problem for
the constraints in (LPM) is simply the nominal problem with costs u, so the dual
program can be solved via the ellipsoid method. If the nominal problem can be solved
in polynomial time, then the constraints (LPM) can be generated in polynomial time,
giving a polynomial time solution for the entire dual program.

From a practical perspective, a separation oracle for the constraints in (LPM) gives
an efficient method for performing row generation with the simplex method. Each row
i generated while solving the dual problem gives a solution Ti ∈ F , and its dual variable
is the corresponding probability yTi . �

Using Lemma 5.2, we can now formulate a linear program to solve the randomized
minmax regret problem.

min
p,z

z

s.t.
∑

e∈E
cSe pe − F ∗(cS) ≤ z, ∀S ∈ S, (LPD)

p ∈ CH(X ),

z free.

This leads to the important result that the randomized minmax regret problem is
polynomial solvable for any polynomial solvable nominal problem. Also, the minmax
expected regret is upper bounded by the minmax regret in the deterministic case. Recall
that the feasible region X is described in size m.
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Input: Nominal combinatorial problem, cost vectors (cS)S∈S
Output: Optimizing player’s optimal mixed strategy M∗ = (Θ∗, Y ∗) where Θ∗ =

(T1, . . . , Tµ) and Y ∗ = (yT1 , . . . , yTµ)
1: Solve linear program (LPD) to get probability vector p∗ = (p∗1, . . . , p

∗
n).

2: Solve linear program (LPM) with p = p∗ to generate constraints indexed i =
1, . . . , µ. Each constraint i corresponds to a set Ti ∈ F and dual variable yTi ,
indicating that Ti is an element in the optimal mixed strategy and has probability
yTi .

Algorithm 15. Rand-Minmax-Regret (discrete scenario uncertainty)

Theorem 5.1. For discrete scenario uncertainty, if the nominal problem F ∗(c) can
be solved in time polynomial in n and m, then the corresponding randomized minmax
regret problem miny∈Y maxS∈S(F (y, cS) − F ∗(cS)) can be solved in time polynomial in
n, m, and k.

Proof. The linear program (LPD) is

min
p,z

z (5.26)

s.t.
∑

e∈E
cSe pe − F ∗(cS) ≤ z, ∀S ∈ S, (5.27)

p ∈ CH(X ), (5.28)

z free. (5.29)

Since for all S ∈ S, the value F ∗(cS) is polynomial solvable, each constraint (5.27) can
be enumerated in polynomial time. If we can optimize over X in polynomial time, then
we can separate over CH(X ) in polynomial time via the result of [73]. This gives the
separation oracle for (5.28). �

Corollary 5.1. For discrete scenario uncertainty, ZR ≤ ZD.

Proof. The program (5.26) - (5.29) is the linear programming relaxation of (5.16). �

5.3.2 Adversary

Moving to the perspective of the adversary under discrete scenario uncertainty, the
adversary must select a mixed strategy over scenarios. The finite number of scenarios
naturally requires the adversary’s distribution to have finite support. Specifically, the
adversary selects a distribution over costs w = (wS)S∈S . The minimum expected regret
problem for a given w is

Rmin(w) = min
T∈F

∑

S∈S
wSR(T, cS)

= min
T∈F

∑

S∈S
wS
(
F (T, cS)− F ∗(cS)

)
. (5.30)
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Recall that W indicates valid probability distributions for w. The adversarial random-
ized maxmin regret problem is

ZAR = max
w∈W

Rmin(w) = max
w∈W

min
T∈F

∑

S∈S
wS
(
F (T, cS)− F ∗(cS)

)
. (5.31)

From the above definition, we formulate a linear program to solve the adversarial
randomized maxmin regret problem:

max
w,z

z (5.32)

s.t.
∑

S∈S
wS(F (T, cS)− F ∗(cS)) ≥ z, ∀T ∈ F , (5.33)

w ∈ W, (5.34)

z free. (5.35)

The linear program has an exponential number of constraints, but the nominal problem
gives a separation oracle. Since determining the adversary’s optimal mixed strategy
requires only solving this linear program, it is not necessary to enumerate an algorithm.

Theorem 5.2. For discrete scenario uncertainty, if the nominal problem F ∗(c) can be
solved in time polynomial in n and m, then the corresponding randomized adversarial
maxmin regret problem maxw∈W minT∈F

∑
S∈S wS

(
F (T, cS)− F ∗(cS)

)
can be solved in

time polynomial in n, m, and k.

Proof. The separation oracle for (5.33) is given by the nominal problem. First, notice
that F ∗(cS) for S ∈ S can be computed once at initialization and then stored for easy
computation of

∑
S∈S wSF

∗(cS) for any w. Next, we have

∑

S∈S
wSF (T, cS) =

∑

S∈S
wS
∑

e∈T
cSe =

∑

e∈T

(∑

S∈S
wSc

S
e

)
. (5.36)

This means that solving nominal problem with costs d = (d1, . . . , dn) where

de =
∑

S∈S
wSc

S
e (5.37)

and comparing the solution with z and
∑

S∈S wSF
∗(cS) gives the oracle. �

Corollary 5.2. For discrete scenario uncertainty, ZR = ZAR.

Proof. Using the substitution of the marginal probability vector in (5.23), it can be
verified that the linear program solved by the adversary (5.32) - (5.35) is the dual of
the program solved by the optimizing player (5.26) - (5.29). The result holds by strong
duality. �
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5.3.3 Primal-Dual Approximation

As noted in the above corollary, the linear program solved by the adversary (5.32)
- (5.35) is the dual of the program solved by the optimizing player (5.26) - (5.29).
These linear programs correspond to the relaxation of the deterministic minmax regret
problem and can thus be used to develop a primal-dual approximation scheme. We will
refer to the program solved by the optimizing player as the primal linear program and
the problem solved by the adversary as the dual linear program.

We rewrite the dual program (5.32) - (5.35) as

max
w,z

z −
∑

S∈S
wSF

∗(cS) (5.38)

s.t.
∑

S∈S
wSF (T, cS) ≥ z, ∀T ∈ F , (5.39)

w ∈ W, (5.40)

z free. (5.41)

A simple feasible solution to this program is given first by setting wS = 1/k for each
S ∈ S. Using the standard approach for primal-dual algorithms [146], we then start
with a sufficiently small value of z and increase it until a constraint becomes tight.
The set corresponding to the tight solution is then added to the primal solution. The
constraint (5.39) can be written as

∑

S∈S
wSF (T, cS) =

∑

S∈S
wS
∑

e∈T
cSe =

∑

e∈T

(
1

k

∑

S∈S
cSe

)
. (5.42)

The first constraint that becomes tight corresponds to the set M that minimizes the
mean costs over all scenarios,

M := argmin
T∈F

∑

e∈T

(
1

k

∑

S∈S
cSe

)
. (5.43)

The set M , which is a complete primal feasible solution, is added to the primal problem.
Additionally, we have a feasible solution to the adversarial (dual) linear program with
objective value

(
1

k

)∑

S∈S

(∑

e∈M
cSe − F ∗(cS)

)
, (5.44)

which is a lower bound on the optimal objective value ZR. Using the same observations
made in [6], this gives a k-approximation algorithm for the minmax regret problem. We
refer to this as the Mean-Cost-Approximation algorithm, shown in Algorithm 16.
The result given by the primal-dual framework is stronger than the result proved in [6]
since it states that Rmax(M) ≤ kZR instead of Rmax(M) ≤ kZD.
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Input: Nominal combinatorial problem, cost vectors (cS)S∈S
Output: Feasible solution M ∈ F satisfying Rmax(M) ≤ kZD.

1: Determine mean costs for each item: de ←
1

k

∑

S∈S
cSe , ∀e ∈ E.

2: Solve nominal problem with mean costs: M ← argmin
T∈F

∑

e∈T
de.

Algorithm 16. Mean-Cost-Approximation (Aissi et al. [6])

Theorem 5.3. For discrete scenario uncertainty, the solution to the nominal problem
with mean costs is a k-approximation algorithm for the deterministic minmax regret
problem.

Proof. Using the construction above for a lower bound on ZR, we have

ZD

k
≤
(

1

k

)
max
S∈S

(∑

e∈M
cSe − F ∗(cS)

)
≤
(

1

k

)∑

S∈S

(∑

e∈M
cSe − F ∗(cS)

)
≤ ZR. (5.45)

The first inequality follows by definition of the deterministic minmax regret, the second
inequality by a simple identity between the sum of a set of values and the maximum
(since the regret is always nonnegative), and the third inequality from the linear pro-
gram. �

An interesting corollary of this analysis is a tight bound on the power of random-
ization in the minmax regret problem. For any nominal problem, moving from the
deterministic model to the randomized model allows the optimizing player to reduce
the expected regret by at most a factor of k. Equivalently, the integrality gap, defined
as the largest possible ratio of the optimal objective value of a program to its optimal
linear programming relaxation, is at most k. We state this with the following theorem
and show that it is tight.

Theorem 5.4. For discrete scenario uncertainty and all nominal problems,

ZR ≥
ZD

k
, (5.46)

where k = |S| is the number of scenarios. Equivalently, the integrality gap of the mixed
integer program (5.16) is equal to k.

Proof. The inequality follows from the primal-dual analysis. We construct a tight ex-
ample using n = k items, where the goal of the problem is simply to select the single
item with lowest cost. For each item, there exists a scenario where the item has cost
ce = 1 and all other items have costs ce = 0. The deterministic minmax regret is equal
to 1 for the problem. In the randomized problem, the optimizing player selects each
item with probability 1/k, and the adversary selects each scenario with probability 1/k.
The expected regret is equal to the probability that the optimizing player selects the
same item to which the adversary assigns unit cost, which is equal to 1/k. �
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5.4 Interval Uncertainty

In this section we assume that cost uncertainty is characterized by interval uncertainty,
meaning that the cost of each item is independently contained within known lower and
upper bounds:

ce ∈ [c−e , c
+
e ], ∀e ∈ E. (5.47)

Define the region
I := {c|ce ∈ [c−e , c

+
e ], e ∈ E}. (5.48)

The set I is in general infinite. Since we wish to use a distribution over I with finite
support, we loosely define the set If to be some subset If ⊂ I with finite cardinality
over which a probability distribution will be defined. The exact construction of If will
become clear during the analysis, but a sufficient example to consider at this point
is the set of cost vectors where costs are set equal to their lower or upper bounds,
If = {c|ce = c−e or ce = c+

e , e ∈ E}.
We proceed in the same way as the last section, studying the optimal policy for the

optimizing player and then the adversary, followed by a primal-dual approximation al-
gorithm for the deterministic problem. We restate notation and definitions throughout.

5.4.1 Optimizing Player

Under interval uncertainty, we have the deterministic maximum regret problem

Rmax(T ) = max
c∈I

R(T, c) = max
c∈I

(F (T, c)− F ∗(c)) (5.49)

and the deterministic minmax regret problem

ZD = min
T∈F

Rmax(T ) = min
T∈F

max
c∈I

(F (T, c)− F ∗(c)). (5.50)

The deterministic minmax regret problem is well studied and can be solved with a
mixed integer program [84]. We use an unconventional formulation that (potentially)
has an exponential number of constraints. We will ultimately show that the random-
ized minmax regret problem corresponds to the linear programming relaxation of this
formulation.

Lemma 5.4. For interval uncertainty, the deterministic minmax regret problem (5.6)
is equivalent to the following mixed integer program.

ZD = min
x,z

z

s.t.
∑

e∈E\T

c+
e xe −

∑

e∈T
c−e (1− xe) ≤ z, ∀T ∈ F , (5.51)

x ∈ X ,
z free.
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Proof. From the maximum regret definition (5.49) and using vector notation instead of
set notation,

Rmax(x) = max
c∈I

(F (x, c)− F ∗(c))

= max
c∈I

(∑

e∈E
cexe −min

T∈F

∑

e∈T
ce

)

= max
T∈F

max
c∈I

(∑

e∈E
cexe −

∑

e∈T
ce

)

= max
T∈F

max
c∈I


 ∑

e∈E\T

cexe −
∑

e∈T
ce(1− xe)




= max
T∈F


 ∑

e∈E\T

c+
e xe −

∑

e∈T
c−e (1− xe)


 , (5.52)

where in the third equality we have used that the expression
∑

e∈E cexe is not a function
of T , and the last equality follows since xe ∈ {0, 1}. The program is then valid by the
definition of the maximum. �

In the randomized model, the maximum expected regret is

Rmax(y) = max
c∈I

∑

T∈F
yTR(T, c) = max

c∈I

(∑

T∈F
yTF (T, c)− F ∗(c)

)
. (5.53)

As with the discrete scenario uncertainty case, we define the expected value of a solution
for a distribution y and cost vector c,

F (y, c) :=
∑

T∈F
yTF (T, c), (5.54)

so the maximum expected regret can be stated as

Rmax(y) = max
c∈I

(F (y, c)− F ∗(c)). (5.55)

The randomized minmax regret problem is thus

ZR = min
y∈Y

Rmax(y) = min
y∈Y

max
c∈I

(F (y, c)− F ∗(c)). (5.56)

Starting with analysis of the maximum expected regret problem (5.53), we use the
same substitution that we used in the previous section. Specifically, we let

pe =
∑

U∈F :e∈U
yU , e ∈ E (5.57)

and define the marginal probability vector p = (p1, . . . , pn). Slightly abusing notation,
we write Rmax(p) in place of Rmax(y) via this substitution.
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Lemma 5.5. For interval uncertainty, the maximum expected regret problem (5.53) is
equivalent to the problem

Rmax(p) = max
T∈F


 ∑

e∈E\T

c+
e pe −

∑

e∈T
c−e (1− pe)


 . (5.58)

Proof. We start with (5.53) and use the substitution of p. The analysis is nearly iden-
tical to the proof of Lemma 5.4.

Rmax(y) = max
c∈I

(F (y, c)− F ∗(c))

= max
c∈I

(∑

U∈F
yU
∑

e∈U
ce −min

T∈F

(∑

e∈T
ce

))

= max
c∈I

(∑

e∈E
ce

∑

U∈F :e∈U
yU −min

T∈F

(∑

e∈T
ce

))

= max
c∈I

(∑

e∈E
cepe −min

T∈F

(∑

e∈T
ce

))
. (5.59)

Now using the notation Rmax(p),

Rmax(p) = max
c∈I

(∑

e∈E
cepe −min

T∈F

(∑

e∈T
ce

))

= max
c∈I

max
T∈F

(∑

e∈E
cepe −

∑

e∈T
ce

)

= max
T∈F

max
c∈I


 ∑

e∈E\T

cepe −
∑

e∈T
ce (1− pe)


 , (5.60)

where in the first equality we have used the fact that the expression
∑

e∈E cepe is not a
function of T , and the other equalities follow from rearranging terms. Notice in (5.60)
that pe is simply the total probability that item e is selected, so for y ∈ Y, we must
have pe ∈ [0, 1]. This makes it easy to see that for a given T ∈ F ,

max
c∈I


 ∑

e∈E\T

cepe −
∑

e∈T
ce (1− pe)


 =

∑

e∈E\T

c+
e pe −

∑

e∈T
c−e (1− pe) . (5.61)

Substituting (5.61) into (5.60) then gives an optimization problem with a finite number
of feasible solutions,

Rmax(p) = max
T∈F


 ∑

e∈E\T

c+
e pe −

∑

e∈T
c−e (1− pe)


 , (5.62)
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which completes the proof. �

An immediate corollary of Lemma 5.5 is that we can solve the maximum expected
regret problem for a given y by enumerating all |F| subsets (potentially an exponential
number of them) and choosing the one that maximizes the argument of (5.62). This
allows the entire randomized minmax regret problem to be restated.

Lemma 5.6. For interval uncertainty, the objective value ZR of the randomized minmax
regret problem (5.11) is equal to that of the problem

min
p∈CH(X )

max
T∈F


 ∑

e∈E\T

c+
e pe −

∑

e∈T
c−e (1− pe)


 , (5.63)

where CH(X ) denotes the convex hull of X .

Proof. By the same argument as the proof of Lemma 5.2. �

Using Lemma 5.6, we can now formulate a linear program to solve the randomized
minmax regret problem:

min
p,z

z

s.t.
∑

e∈E\T

c+
e pe −

∑

e∈T
c−e (1− pe) ≤ z, ∀T ∈ F , (LPI)

p ∈ CH(X ),

z free.

While the above program may have an exponential number of constraints, it can be
solved efficiently via the ellipsoid algorithm if a separation oracle is available for the
constraints. This brings us to our main result and Algorithm 17.

Input: Nominal combinatorial problem, item cost bounds (c−e , c
+
e ), e ∈ E.

Output: Optimizing player’s optimal mixed strategy M∗ = (Θ∗, Y ∗) where Θ∗ =
(T1, . . . , Tµ) and Y ∗ = (yT1 , . . . , yTµ)

1: Solve linear program (LPI) to get probability vector p∗ = (p∗1, . . . , p
∗
n).

2: Solve linear program (LPM) with p = p∗ to generate constraints indexed i =
1, . . . , µ. Each constraint i corresponds to a set Ti ∈ F and dual variable yTi ,
indicating that Ti is an element in the optimal mixed strategy and has probability
yTi .

Algorithm 17. Rand-Minmax-Regret (interval uncertainty)

Theorem 5.5. For interval uncertainty, if the nominal problem F ∗(c) can be solved in
time polynomial in n and m, then the corresponding randomized minmax regret problem
miny∈Y maxc∈I(F (y, c)− F ∗(c)) can be solved in time polynomial in n and m.
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Proof. The linear program (LPI) is

min
p,z

z (5.64)

s.t.
∑

e∈E\T

c+
e pe −

∑

e∈T
c−e (1− pe) ≤ z, ∀T ∈ F , (5.65)

p ∈ CH(X ), (5.66)

z free. (5.67)

The separation oracle for the constraints (5.66) is given by the equivalence of optimiza-
tion and separation [73]. To see the separation oracle for the constraint (5.65), we define
the item cost vector d = (d1, . . . , dn) where

de = c−e + pe(c
+
e − c−e ), e ∈ E, (5.68)

and then solve

zd = min
T∈F

∑

e∈T
de. (5.69)

Let Td be the set that minimizes the above expression. If
∑

e∈E c
+
e pe − zd ≤ z, then

we are guaranteed feasibility, otherwise the separating hyperplane (5.65) is generated
where T = Td. To see the validity of this approach, we have

∑

e∈E
c+
e pe − zd =

∑

e∈E
c+
e pe −min

T∈F

∑

e∈T
de

=
∑

e∈E
c+
e pe −min

T∈F

∑

e∈T
(c−e + pe(c

+
e − c−e ))

= max
T∈F

(∑

e∈E
c+
e pe −

∑

e∈T
(c−e + pe(c

+
e − c−e ))

)

= max
T∈F


 ∑

e∈E\T

c+
e pe −

∑

e∈T
c−e (1− pe)


 . (5.70)

The solution to the linear program (5.64) - (5.67) is a vector p, which can then be used
to find a mixed strategy y in polynomial time using Lemma 5.3. �

Corollary 5.3. For interval uncertainty, ZR ≤ ZD.

Proof. This follows simply by noting that the program (LPI) is the linear programming
relaxation of (5.51). �
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5.4.2 Adversary

The set If is necessary for describing the distribution of the adversary. The distribution
over costs is w = (wc)c∈If , and W again indicates the set of valid distributions. The
minimum expected regret problem is

Rmin(w) = min
T∈F

∑

c∈If

wcR(T, c)

= min
T∈F

∑

c∈If

wc (F (T, c)− F ∗(c)) . (5.71)

The adversarial randomized maxmin regret problem is then

ZAR = max
w∈W

Rmin(w) = max
w∈W

min
T∈F

∑

c∈If

wc (F (T, c)− F ∗(c)) . (5.72)

We can directly formulate a linear program for the adversarial maxmin regret prob-
lem, explicitly writing the constraints for w ∈ W.

max
w,z

z (5.73)

s.t.
∑

c∈If

wc

(∑

e∈T
ce − F ∗(c)

)
≥ z, ∀T ∈ F , (5.74)

∑

c∈If

wc = 1, (5.75)

w ≥ 0, (5.76)

z free. (5.77)

Since this program has an exponential number of constraints and potentially an expo-
nential number of variables, we consider its dual. We expect this “dual of the dual”
program to be the primal linear program solved by the optimizing player; this will
indeed be the case after some manipulation. The dual of (5.73) - (5.77) is

min
α,β

β (5.78)

s.t.
∑

T∈F
αT

(∑

e∈T
ce − F ∗(c)

)
≤ β, ∀c ∈ If , (5.79)

∑

T∈F
αT = 1, (5.80)

α ≥ 0, (5.81)

β free. (5.82)
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To simplify this program, note that for a feasible α = (αT )T∈F , we have∑
T∈F αTF

∗(c) = F ∗(c). Furthermore,
∑

T∈F
αT
∑

e∈T
ce =

∑

e∈E
ce

∑

T∈F :e∈T
αT . (5.83)

We use the substitution

qe :=
∑

T∈F :e∈T
αT , e ∈ E. (5.84)

Let q = (q1, . . . , qn). This substitution is a mapping from X to the convex hull of X ,
much like the definition of the marginal probability vector. Taking the substitution into
account gives the program

min
q,β

β (5.85)

s.t.
∑

e∈E
ceqe − F ∗(c) ≤ β, ∀c ∈ If , (5.86)

q ∈ CH(X ), (5.87)

β free.

This program no longer has an exponential number of variables, and the exponential
number of constraints can be handled via separation, which we describe shortly. First,
for some set A ∈ F , define the cost vector cA = (cAe )e∈E where

cAe :=

{
c−e , e ∈ A,
c+
e , e ∈ E \A. (5.88)

That is, cA is the cost vector where all costs are equal to their upper bound, except
for costs in the set A, which are equal to their lower bound. The analysis below
shows that without loss of generality, we can can consider cost vectors of this form
for separation of the constraint (5.86). This allows us to define If as the set of all
cost vectors {cA| A ∈ F}. Since this may still be an exponentially sized set, recall
that we defined an adversarial mixed strategy encoding L = (C,W ) as a set of costs
C = {cAj ∈ If | j = 1, . . . , η} to be selected with corresponding probabilities W =
{w

cAj
∈ [0, 1] | j = 1, . . . , η} satisfying

∑η
j=1wcAj = 1.

Theorem 5.6. For interval uncertainty, if the nominal problem F ∗(c) can be solved in
time polynomial in n and m, then the corresponding randomized adversarial maxmin
regret problem maxw∈W minT∈F

∑
c∈If wS (F (T, c)− F ∗(c)) can be solved in time poly-

nomial in n and m.

Proof. The constraint (5.86) is simply the maximum regret problem for a given vector
q and can be generated via the nominal problem,

max
c∈If

(∑

e∈E
ceqe − F ∗(c)

)
= max

T∈F


 ∑

e∈E\T

c+
e qe −

∑

e∈T
c−e (1− qe)


 , (5.89)
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where we have used the analysis in Lemma 5.5. This allows us to write the linear
program as

min
q,β

β (5.90)

s.t.
∑

e∈E\T

c+
e qe −

∑

e∈T
c−e (1− qe) ≤ β, ∀T ∈ F , (5.91)

q ∈ CH(X ), (5.92)

β free. (5.93)

Note that this is precisely the linear program (5.64) - (5.67) solved by the optimizing
player. This justifies the assumption of the finite set If : only a polynomial number of
separating cost vectors will be generated, and they will be of the form cA as defined in
(5.88). The adversary is of course interested in the dual variables of the linear program
(5.90) - (5.93). Each separating hyperplane generated for the constraint (5.91) gives
a set T ∈ F for which the adversary adds the cost vector cT (based on the notation
in (5.88)) to his mixed strategy. This cost vector has probability wcT in the mixed
strategy, given by the corresponding dual variable. �

Corollary 5.4. For interval uncertainty, ZR = ZAR.

Proof. This holds by strong duality, since the optimizing player solves (5.64)-(5.67),
which is the dual of the linear program (5.73) - (5.77) for the adversary. �

5.4.3 Primal-Dual Approximation

The primal linear program for the optimizing player is (5.64)-(5.67), and the dual linear
program for the adversary is (5.73) - (5.77). Using a similar approach to the previous
section, we devise a primal-dual approximation algorithm for the deterministic minmax
regret problem.

We rewrite the dual linear program as

max
w,z

z −
∑

c∈If

wcF
∗(c) (5.94)

s.t.
∑

c∈If

wc
∑

e∈U
ce ≥ z, ∀U ∈ F , (5.95)

∑

c∈If

wc = 1, (5.96)

w ≥ 0, (5.97)

z free. (5.98)

We must select a feasible solution for w; we will make the simple choice of setting
wc = 1/2 for two cost vectors. Recall the definition of the cost vector cA. For some set



Sec. 5.4. Interval Uncertainty 229

A ∈ F , we have cA = (cAe )e∈E where

cAe =

{
c−e , e ∈ A,
c+
e , e ∈ E \A. (5.99)

Additionally, we define cA = (cAe )e∈E where

cAe =

{
c+
e , e ∈ A,
c−e , e ∈ E \A. (5.100)

We set wc = 1/2 for c = cA and c = cA, so the linear program becomes

max
z

z − 1

2

(
F ∗(cA)− F ∗(cA)

)
(5.101)

s.t.
∑

e∈U

(
c−e + c+

e

2

)
≥ z, ∀U ∈ F , (5.102)

z free. (5.103)

Under the primal-dual approach, we increase z until one of the constraints becomes
tight. The first tight constraint corresponds to the primal solution M that has minimum
total cost under the midpoint costs:

M := argmin
U∈F

∑

e∈U

(
c−e + c+

e

2

)
. (5.104)

This gives the objective value

1

2

(∑

e∈M
(c−e + c+

e )− F ∗(cA)− F ∗(cA)

)
. (5.105)

By choosing the set A to be the midpoint cost minimizing set M , we can write the
resulting objective value in terms of the maximum deterministic regret.

Lemma 5.7. For A = M ,

∑

e∈M
(c−e + c+

e )− F ∗(cA)− F ∗(cA) = Rmax(M). (5.106)

Proof. The maximum regret for the set M can be expressed as

Rmax(M) =
∑

e∈M
c+
e −min

T∈F


 ∑

e∈T∩M
c+
e +

∑

e∈T\M

c−e


 ; (5.107)
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this can be shown by taking the expression in (5.52), plugging in the characteristic
vector corresponding to M , and using simple manipulations. Also note that

F ∗(cA) = min
T∈F


 ∑

e∈T∩A
c+
e +

∑

e∈T\A

c−e


 . (5.108)

Thus for A = M , we have

Rmax(M) =
∑

e∈M
c+
e − F ∗(cA). (5.109)

It is left to show that F ∗(cM ) =
∑

e∈M c−e . This, however, immediately follows with
a simple argument. Since the set M is minimum for midpoint costs, it must also be
minimum for costs cM (i.e., the costs where ce = c−e for all e ∈ M and ce = c+

e for all
e ∈ E \M).

To verify that M is indeed the minimum solution under costs cM , consider the set
M along with some other set U ∈ F that differs from M by at least one element. We
look at the change in cost when moving from midpoint costs to the cost vector cM for
both sets. For M , the change in cost is

−
∑

e∈M

(c−e + c+
e )

2
. (5.110)

For U , the change in cost is

−
∑

e∈U∩M

(c−e + c+
e )

2
+

∑

e∈U\M

(c−e + c+
e )

2
. (5.111)

It is clear that (5.110) is no greater than (5.111). Starting with midpoint costs, M is
the lowest cost solution, and when moving to the cost vector cM , the decrease in cost
is at least as significant for M as it is for any other set U . Hence, M must also be a
minimum cost solution under costs cM . �

This gives a new proof that solving the nominal problem with midpoint costs gives
a 2-approximation algorithm for the deterministic minmax regret problem. Once again,
the result here is stronger than the result of [85] since it states that Rmax(M) ≤ 2ZR

instead of Rmax(M) ≤ 2ZD.

Theorem 5.7. For interval uncertainty, the solution to the nominal problem with mid-
point costs is a 2-approximation algorithm for the deterministic minmax regret problem.

Proof. The linear program (5.94)-(5.98) is the dual of the problem solved by the opti-
mizing player in the randomized framework. By weak duality, any feasible solution to
(5.94)-(5.98) gives a lower bound on the value of the game in the randomized framework
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Input: Nominal combinatorial problem, item cost bounds (c−e , c
+
e ), e ∈ E.

Output: Feasible solution M ∈ F satisfying Rmax(M) ≤ 2ZD.

1: Determine midpoint costs for each item: de ←
(
c−e + c+

e

2

)
, ∀e ∈ E.

2: Solve nominal problem with midpoint costs: M ← argmin
T∈F

∑

e∈T
de.

Algorithm 18. Midpoint-Cost-Approximation (Kasperski and Zieliński [85])

ZR. The construction described above using costs cA and cA gives a feasible solution to
the program, and Lemma 5.7 allows us to express the resulting objective value in terms
of the maximum deterministic regret for a solution set M using A = M . Specifically,

ZD

2
≤ Rmax(M)

2
≤ ZR ≤ ZD, (5.112)

where the first inequality follows from the definition of the deterministic minmax re-
gret problem, the second inequality follows using Lemma 5.7 with the feasible linear
programming solution, and the third inequality follows from Corollary 5.3. �

The potential gain from using randomization under interval uncertainty is not as
significant as with discrete scenario uncertainty.

Theorem 5.8. For interval uncertainty and all nominal problems,

ZR ≥
ZD

2
. (5.113)

Equivalently, the integrality gap of the mixed integer program (5.51) is equal to 2.

Proof. The inequality follows from the primal-dual analysis. A tight example is easily
constructed. Consider a problem with two items E = {e1, e2} where the optimizing
player must choose one item. Let (c+

e , c
−
e ) = (0, 1) for both items e = e1, e2. It can be

verified that ZD = 1 and ZR = 1/2. �

5.4.4 Minimum Assignment Example

We apply the above theory to a small instance of the minimum assignment problem.
Given a bipartite graph G = (V1, V2, E) with edge costs cij for each edge in (i, j) ∈ E,
the minimum assignment problem asks for a perfect matching with minimum total cost.
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This is stated by the following integer program:

min
∑

(i,j)∈E

cijxij (5.114)

s.t.
∑

j:(i,j)∈E

xij = 1, ∀i ∈ V1, (5.115)

∑

i:(i,j)∈E

xij = 1, ∀j ∈ V2, (5.116)

xij ∈ {0, 1}, ∀(i, j) ∈ E. (5.117)

The minimum assignment problem is polynomial solvable, but its deterministic minmax
regret version is NP-hard [84]. A useful feature of the minimum assignment problem
for our work is that the linear programming relaxation of the above program directly
gives the convex hull of solutions.

We look at a simple problem instance with a complete graph where |V1| = |V2| = 3,
shown in Figure 5.1 (a). Since bipartite graphs are easily described in terms of adjacency
matrices, we will use use matrix notation here in place of the vector notation used in
the analysis. The cost bounds for the problem are given by

c− =




4 5 0
4 4 2
1 2 5


 , c+ =




5 7 6
7 6 7
7 6 6


 , (5.118)

where the (i, j)th entry of c− indicates c−ij , the lower bound on the cost of edge (i, j). It
can be verified either by enumeration or with the integer program that the deterministic
minmax regret solution is

x =




0 0 1
0 1 0
1 0 0


 , (5.119)

which is shown by the bold solution in Figure 5.1 (b). With knowledge of this solution
selected by the optimizing player, the adversary sets all costs for edges in the solution
equal to their maximum value and all other costs equal to their minimum value; the
resulting costs are

c =




4 5 6
4 6 2
7 2 5


 . (5.120)

These costs are shown with their corresponding edges in Figure 5.1 (b). The value of
the solution selected by the optimizing player is equal to 19, while the optimal solution,
indicated by the dashed solution in Figure 5.1 (b), has a cost of 8. The deterministic
minmax regret value for the problem is thus ZD = 11.
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[4, 5]

[5, 7]

[0, 6]

[4, 7]

[4, 6]

[1, 7]
[2, 6]

[5, 6]

[2, 7]
7

6

6

4

4

5

2 2

5

(a) (b)

Figure 5.1. Minimum assignment example with (a) cost bounds for each edge labeled as [c−e , c
+
e ] and

(b) deterministic minmax regret solution shown in bold. The edge weights shown in (b) indicate the
costs selected by the adversary, which are maximum for the solution selected by the optimizing player
and minimum for all other edges. The optimal solution under the selected edge weights is shown by
the dashed solution.

Solving the randomized minmax regret problem, first for marginal probabilities,
gives the probability matrix

p =




3/8 0 5/8
1/6 11/24 3/8

11/24 13/24 0


 . (5.121)

This is illustrated in Figure 5.3, where each edge thickness is shown in proportion to
its probability. Solving the linear program transforming marginal probabilities gives a
mixed strategy for the optimizing player consisting of three solutions T1, T2, and T3

with adjacency matrices

xT1 =




0 0 1
0 1 0
1 0 0


 , xT2 =




1 0 0
0 0 1
0 1 0


 , xT3 =




0 0 1
1 0 0
0 1 0


 , (5.122)

and corresponding probabilities

yT1 =
11

24
, yT2 =

3

8
, yT3 =

1

6
. (5.123)

The solutions are also shown in Figure 5.2.
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The adversary’s mixed strategy consists of three cost matrices. These cost matrices
are cT1 , cT2 , and cT3 for the solutions shown in Figure 5.2; specifically,

cT1 =




5 7 0
7 4 7
1 6 6


 , cT2 =




4 7 6
7 6 2
7 2 6


 , cT3 =




5 7 0
4 6 7
7 2 6


 . (5.124)

These are selected with probabilities

wcT1 =
3

8
, wcT2 =

11

24
, wcT3 =

1

6
. (5.125)

The value of the randomized minmax regret problem is ZR = 149/24 ≈ 6.208.
It is interesting to note that solving the optimal problem with midpoint costs, that

is, with cost matrix

c =




4.5 6 3
5.5 5 4.5
4 4 5.5


 , (5.126)

gives the same solution that solving the deterministic minmax regret problem gives. So
for this problem, the midpoint approximation scheme is optimal.

T1 T2 T3

Figure 5.2. Solutions in optimizing player’s mixed strategy.

5.5 General Uncertainty Sets

In this section, we show that if the uncertainty set C is allowed to be a general non-
negative convex set and the nominal problem is polynomial solvable, the maximum
expected regret problem becomes NP-hard. Note that the deterministic maximum re-
gret problem is a special case of the maximum expected regret problem. The result
of this section thus implies that both randomized and deterministic minmax regret
problems are NP-hard under general convex uncertainty, even if the nominal problem
is polynomial solvable.
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3/8

5/8

0 1/6

11/24

13/24

11/24

3/8

0

Figure 5.3. Marginal probability solution for randomized minmax regret problem. Edge weights
indicate the probabilities; edge thicknesses are also shown in proportion to the probabilities.

We restate the maximum expected regret problem for general uncertainty sets. For a
given marginal probability vector p, the maximum expected regret problem is, starting
with the first line of (5.60),

Rmax(p) = max
c∈C

(∑

e∈E
cepe − F ∗(c)

)

= max
c∈C

(∑

e∈E
cepe −min

x∈X

∑

e∈E
cexe

)

= max
c∈C

max
x∈X

(∑

e∈E
ce(pe − xe)

)
. (5.127)

Negating the objective function, the maximum expected regret problem is equivalent
to

−Rmax(p) = min
c∈C

min
x∈X

∑

e∈E
ce(xe − pe) (5.128)

for a given p ∈ CH(X ).
Before we examine the complexity of (5.128), we consider the following problem

that we refer to as the bilinear combinatorial problem:

min
c∈C

min
x∈X

∑

e∈E
cexe. (5.129)
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We demonstrate the hardness of this problem via a reduction from the Hamiltonian path
problem. The proof is similar to the standard proof for showing that the intersection
of three matroids is NP-hard [128]. We then modify the proof slightly to show that the
maximum expected regret problem is NP-hard.

Lemma 5.8. For polynomial solvable nominal problems F ∗(c) = minx∈X
∑

e∈E cexe
and nonnegative convex uncertainty sets C, the bilinear combinatorial problem
minc∈C minx∈X

∑
e∈E cexe is NP-hard.

Proof. Recall that the directed Hamiltonian path problem asks the following: given a
directed graph G = (V,E) with a designated source node s and terminal node t, does
there exist a path starting at s and ending at t that visits each node exactly once? For
a given instance of the directed Hamiltonian path problem, we construct an instance of
the bilinear combinatorial problem such that it has an optimal objective value of zero
if and only if the graph contains a valid Hamiltonian path.

We construct the set C to indicate the selection of edges so that each vertex has
exactly one incoming edge (except for vertex s) and one outgoing edge (except for vertex
t). Specifically, we say that an edge e is selected if its cost ce is equal to zero, otherwise
we refer to it as blocked. The notation δ+(v) (respectively δ−(v)) indicates the set of
outgoing (incoming) edges for vertex v. The constraints for the set C are

∑

e∈δ−(v)

ce = |δ−(v)| − 1, v ∈ V \ {s},

∑

e∈δ−(s)

ce = |δ−(s)|,

∑

e∈δ+(v)

ce = |δ+(v)| − 1, v ∈ V \ {t},

∑

e∈δ+(t)

ce = |δ+(t)|,

0 ≤ ce ≤ 1, e ∈ E. (5.130)

Note that for a given vertex, if one if its incoming edges is selected (ce = 0), then all
of the remaining incoming edges must be blocked (ce = 1); the same holds for outgoing
edges.

Define X to indicate the set of all feasible spanning trees for G, so that
minx∈X

∑
e∈E cexe is the minimum spanning tree problem. For an optimal solution

x∗ = (x∗1, . . . , x
∗
n) to the bilinear combinatorial problem giving zero objective value,

the set {e|x∗e = 0, e ∈ E} indicates a valid Hamiltonian path. This holds because the
construction of C indicates that all vertices have one selected incoming and outgoing
edge (except for s and t), and the spanning tree ensures that no cycles are present.
Finally, we have that the construction of the set C can be done in polynomial time. �
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Theorem 5.9. For polynomial solvable nominal problems F ∗(c) = minx∈X
∑

e∈E cexe
and nonnegative convex uncertainty sets C, the maximum expected regret problem
maxc∈C

(∑
e∈E cepe − F ∗(c)

)
where p ∈ CH(X ) is NP-hard.

Proof. We modify the reduction used for Lemma 5.8 to account for the presence of
some p ∈ CH(X ) in the objective function of the maximum expected regret problem,
which is now

min
c∈C

min
x∈X

∑

e∈E
ce(xe − pe). (5.131)

Again let X indicate the set of all feasible spanning trees for the directed graph G =
(V,E), and let p ∈ X be a valid spanning tree. We construct a new graph over the
same set of vertices by taking G and duplicating |V | − 1 edges. For each edge given
by the spanning tree p, we choose a corresponding edge in G (note that there may be
more than one option if both edges (vi, vj) and (vj , vi) are present, for example) and
duplicate it. Let this new graph be denoted by G′ = (V,E′), and let the set of all
spanning trees over the new graph be indicated by X ′. Let p̃ ∈ X ′ indicate the set of
edges that were constructed via duplication (i.e. the edges E′ \ E), which is a valid
spanning tree for G′. We finally construct the set C′ using the inequalities in (5.130)
but over E′ instead of E.

Now consider the modified maximum expected regret problem

min
c∈C′

min
x∈X ′

∑

e∈E′
ce(xe − p̃e) = min

c∈C′
min
x∈X ′


∑

e∈E
cexe +

∑

e∈E′\E

ce(xe − 1)


 . (5.132)

It can be seen that the modified problem has an objective value equal to −(|V | − 1) if
and only if G has a Hamiltonian path. This corresponds to the first sum in objective
function being equal to zero and the second sum being equal to −(|V | − 1). As before,
for an optimal solution x∗ = (x∗1, . . . , x

∗
n+|V |−1) to the modified problem, the set {e|x∗e =

0, e ∈ E′} gives a Hamiltonian path that is valid for both G′ and G. Notice that all
of the duplicated edges e ∈ E′ \ E must be blocked (ce = 1) and not selected by the
minimum spanning tree (xe = 0) for the objective value to be equal to −(|V | − 1). To
finish the proof, we observe that the construction of C′ and G′ can be accomplished in
polynomial time.

An example of the reduction is shown in Figure 5.4. Figure 5.4 (a) shows a directed
graph with edges E = {e1, e2, . . . , e7}, a source node s, and a terminal node t. A
spanning tree indicating p is given by the set {e1, e2, e3, e4, e7}, shown in Figure 5.4
(b) in bold. Figure 5.4 (c) shows duplication of edges in the spanning tree, given by
the introduction of edges {e8, e9, e10, e11, e12}. Thus E′ = E ∪ {e8, e9, e10, e11, e12}.
With the formulation of the corresponding maximum expected regret problem (5.132),
the optimal solution has blocked edges (ce = 1) for the set {e1, e5, e8, e9, e10, e11, e12},
shown as dashed in Figure 5.4 (d). The remaining non-blocked edges are in the set
{e2, e3, e4, e6, e7}, which is a valid spanning tree and thus a Hamiltonian path. �



238 CHAPTER 5. RANDOMIZED MINMAX REGRET FOR COMBINATORIAL OPTIMIZATION
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Figure 5.4. Example of the construction shown in Theorem 5.9. (a) A directed graph with source
node s and terminal node t. (b) A spanning tree for the corresponding undirected graph shown in bold.
(c) Directed graph with edges for the spanning tree duplicated. (d) Optimal solution for edge costs
c ∈ C′, where blocked edges, corresponding to ce = 1, are dashed. The valid Hamiltonian path is given
by the non-blocked (solid) edges.

5.6 Discussion

We have shown that for both interval and discrete scenario representations of uncer-
tainty, the randomized minmax regret version of any polynomial solvable combinatorial
problem is polynomial solvable. These results are at first glance surprising. For many
applications that are not truly adversarial in nature, the randomized minmax regret
model is more appropriate than the deterministic minmax regret model. In particular,
the deterministic solution may be overly conservative since costs are not actually chosen
in an adversarial fashion in response to the selected solution. On the other hand, one
must be willing to tolerate higher variance if randomization is used.

Our results on lower bounds for randomized minmax regret in relation to determin-
istic minmax regret, specifically Theorems 5.4 and 5.8, have important implications for
approximating deterministic minmax regret problems. Theorem 5.8 indicates that the
integrality gap for the minmax regret problem is equal to 2, and it is easy to create
instances of nearly all nominal problems that achieve this gap. The same can be argued
for the integrality gap of k under discrete scenario uncertainty. In Kasperski [84], it
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is posed as an open problem whether there exist approximation algorithms under in-
terval uncertainty that, for some specific nominal problems, achieve an approximation
ratio better than 2. We have answered this question in the negative for approximation
schemes based on our linear programming relaxations.

An important future step with randomized minmax regret research is to develop
approximation algorithms (now in the randomized model) for dealing with nominal
problems that are already NP-complete. This problem is non-trivial: an algorithm
with an approximation factor α for a nominal problem does not immediately yield
an algorithm to approximate the randomized minmax regret problem with a factor
α. Another interesting topic to study from an experimental perspective is a hybrid
approach that employs both deterministic and randomized minmax regret. For example,
one could find a solution that minimizes the maximum expected regret, subject to the
maximum regret being no greater than some constant. The algorithm for this problem
can be easily constructed by combining our results with existing work, but it may no
longer run in polynomial time.
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Chapter 6

Conclusion

THIS thesis has addressed four topics on approximation and uncertainty in optimiza-
tion. In the first part of the thesis, on the theme of approximation, we analyzed

greedy-type algorithms on classic combinatorial problems of packing and matching. Our
focus was on average-case analysis, and our results included average-case analogues of
known theorems for worst-case behavior. On the second theme of uncertainty, we con-
sidered the effect of uncertain transition probabilities in Markov decision processes and
then explored a randomized model for robust optimization with cost uncertainty. In this
chapter, we review our contributions and give recommendations for future research.

6.1 Summary of Contributions

In Chapter 2, we investigated the performance of rollout algorithms on the subset sum
problem and 0–1 knapsack problem. As observed by Bertsekas [27], rollout algorithms
tend to perform well in simulation, but it has been difficult to obtain theoretical re-
sults proving that they perform well. In particular, it has been difficult to prove that
they perform strictly better than their base policies. We noted a few exceptions in the
literature: Bertsekas [27] described an average-case asymptotic result for the break-
through problem, and some worst-case results are known for the 0–1 knapsack problem
due to Bertazzi and Sahni [26, 125]. To complement this work, we studied the subset
sum problem and the 0–1 knapsack problem using average-case analysis. In accordance
with two natural ways to modify a greedy algorithm for these problems, we defined the
Consecutive-Rollout and Exhaustive-Rollout algorithms, both of which use
the simple Blind-Greedy base policy.

We proved that both rollout algorithms perform significantly better than the Blind-
Greedy base policy in expectation. The bounds that we derived hold after the first
iteration of the algorithms and are valid for small values of n (recall that we only
required n ≥ 3, where n is the number of items). To our knowledge, these are the first
non-asymptotic average-case bounds to show a strict improvement of rollout algorithms
over a base policy. For the subset sum problem, we employed a graphical diagram to
prove performance gains. A similar strategy was used for the 0–1 knapsack problem.
The crucial assumption that we used to make the proofs tenable was to only consider the
contribution of the first few packed items to the performance improvement. We showed
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that this gives a close characterization of the first iteration of the rollout algorithms
in comparison to simulations. For both problems, we arrived at simple bounds for
the Consecutive-Rollout algorithm. On the other hand, for the Exhaustive-
Rollout algorithm, we obtained a simple bound for the subset sum problem and an
unwieldy expression for the 0–1 knapsack bound.

More generally, we argued that rollout algorithms may perform better in the average
case than in the worst case. We pointed out the tight example given by Bertazzi [26]
for the 0–1 knapsack problem, which shows that in the worst case, it is not possible to
guarantee a performance gain beyond the first iteration of the rollout algorithm. On
the other hand, simulations indicate performance gains from additional iterations under
stochastic models for knapsack problems. We also looked at the problem of finding a
shortest path in a binary decision tree. We showed that even when running every
iteration of the rollout algorithm, performance is poor in the worst case but strong on
average.

Continuing with the theme of approximation, in Chapter 3, we considered the
average-case performance of greedy online matching. The online bipartite matching
problem was introduced in the well-known paper of Karp et al. [83], where it was stud-
ied using worst-case analysis. Karp et al. presented the Ranking algorithm, which
has a competitive ratio of 1 − 1/e ≈ 0.632, and showed that this is the best possible
competitive ratio for any online algorithm. We looked at the average-case performance
of greedy algorithms on this problem using the Erdős-Rényi binomial random graph
G(n, n, p) and the random regular graph G(n, n, r). The majority of our analysis was
conducted using the differential equation method with Wormald’s theorem [148].

We described our results in terms of asymptotic matching sizes and performance
ratios, where we defined the performance ratio as an average-case analog of the com-
petitive ratio. Under the G(n, n, p) model, we showed that the performance ratio for
Greedy is at least 0.837 for all monotonic functions p = p(n). Moreover, we showed
that Ranking and Greedy are equivalent on G(n, n, p), indicating that the results for
Greedy apply also to Ranking. For the random regular graph model G(n, n, r), we
focused on the case where r = 2. We showed that the performance ratio of Greedy
on this model is 0.877, larger than the lower bound for G(n, n, p). We also defined
the Degree-Greedy algorithm for random regular graphs and showed that its perfor-
mance ratio on G(n, n, 2) is equal to 11/12 ≈ 0.917.

In addition to the conventional online bipartite model, we presented a model for
online non-bipartite matching, where all vertices in the graph arrive sequentially (as
opposed to just one side in the case of the bipartite model). For the binomial random
graph G(n, p), we showed that the non-bipartite Greedy algorithm achieves the same
asymptotic fraction of matched vertices that the bipartite Greedy algorithm does. We
also showed that it has a performance ratio of at least 0.837 for all monotonic functions
p = p(n). For the non-bipartite random regular graph model G(n, r) with r = 2, we
showed that the Greedy algorithm has a performance ratio of at least 0.869 and that
the Degree-Greedy algorithm has a performance ratio of at least 0.884.
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Turning to the second theme of uncertainty, Chapter 4 dealt with uncertainty in
Markov decision processes. Under the total expected reward criterion, we reviewed
existing loss bounds for uncertain value functions and approximate backwards induc-
tion, generalizing these results to account for undiscounted models and showing tight
examples. The main topic of the chapter was devoted to losses resulting from uncer-
tain transition probabilities. We examined a general non-stationary Markov decision
process with nonnegative, bounded rewards. Our assumption was that for all stages,
states, and actions, estimated transition probabilities are available, and that the total
variation error on the estimated probabilities is upper bounded by a known value.

Assuming that the Markov decision process is solved with conventional dynamic
programming, we derived a general upper bound on the expected total loss as a function
of the horizon length, reward bound, discount factor, and bound on total variation
error. Our proof technique was to analyze the interplay among the the approximate
policy value, the approximate value function, and the optimal value function. We
defined the approximate policy error as the difference between the approximate policy
value and the approximate value function, and the estimation error as the difference
between the approximate value function and the optimal value function. We showed
that the growth of these errors while stepping backwards in time is characterized by
a multilinear program, and we bounded the multilinear program using the worst-case
behavior induced by the total variation distance. We presented a tight example for the
undiscounted case and derived first-order approximations of the loss bounds.

Finally, in Chapter 5, we studied a randomized model for robust optimization. We
focused on the problem of combinatorial optimization with uncertainty in cost coeffi-
cients. We noted that most models existing in the literature, both for the minmax and
minmax regret robust criteria, require the optimizing player to make a deterministic
selection of a solution; the solution is then viewed by some adversary who selects costs
against the optimizing player [84, 93]. An alternative model, first suggested by Bertsi-
mas et al. [35] for the minmax criterion in robust optimization, is to allow the optimizing
player to select a probability distribution over solutions and require the adversary to
select a probability distribution over costs in response to the player’s distribution. We
studied this randomized model under the minmax regret criterion. For both discrete
scenario uncertainty and interval uncertainty, we proved that the randomized minmax
regret version of any polynomial solvable nominal problem is polynomial solvable.

Our key observation was that the randomized minmax regret problem corresponds
to the linear programming relaxation of the deterministic minmax regret problem. The
algorithm that we presented for solving the randomized problem requires solving two
linear programs: one to determine marginal probabilities and another to map marginal
probabilities to a distribution over deterministic solutions. While both linear programs
may have an exponential number of constraints, we showed that the nominal problem
gives a separation oracle for both programs. In addition to calculating the optimal
strategy for the optimizing player, we showed how to calculate the adversary’s optimal
strategy, which corresponds to the dual interpretation of the minmax regret linear
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program.
We also used the linear programs with a primal-dual interpretation to show new

proofs of existing approximation algorithms for the deterministic minmax regret
problem. For discrete scenario uncertainty, we showed a new proof that solving the
nominal problem with mean costs (averaged uniformly over all scenarios) gives a
k-approximation algorithm for the deterministic minmax regret problem, where k is
the number of scenarios. Likewise, for interval uncertainty, we gave a new proof that
solving the nominal problem with midpoint costs gives a 2-approximation algorithm for
the deterministic minmax regret problem. Furthermore, we showed that the integrality
gaps of the deterministic minmax regret problems are k and 2 for discrete scenario
uncertainty and interval uncertainty, respectively. These integrality gaps give bounds
on the reduction in expected regret when moving from the deterministic model to the
randomized model. Lastly, we considered the minmax regret problem under general
convex uncertainty. We showed that even for polynomial solvable nominal problems,
solving the maximum regret problem, which is simpler than the entire minmax regret
problem (randomized or deterministic), is NP-hard under convex uncertainty.

6.2 Recommendations for Future Research

We give here a summary of important directions for future research on the four topics
that this thesis has addressed. We revisit many of the ideas that we gave in the dis-
cussion sections of the previous chapters. We also mention some additional, broader
research directions.

6.2.1 Rollout Algorithms

Our work on rollout algorithms, as well as the worst-case results of Bertzzi [26] and Sahni
[125], are important first steps in proving strict improvements relative to base policies.
Yet, there are many open problems, even just involving the 0–1 knapsack problem and
the subset sum problem. The obvious place to start is in proving performance bounds
for additional iterations (beyond the first) of the rollout algorithm. We have argued that
average-case analysis is the appropriate method for doing this, as opposed to worst-case
analysis. This seems difficult for the stochastic model that we considered, but it might
be easier with simpler models, such as models where the knapsack capacity is fixed, for
example. Determining upper bounds on improvements (i.e. statements that the rollout
improvement is no better than some bound) on our stochastic model is also important.
We have proved some of such results, but we did not include them for sake of brevity.

An alternative direction is to look at different lookahead lengths. We used a looka-
head length equal to one in all of our work. A lookahead length of two, for example,
would at every iteration try adding all pairs of available items and using the base policy
thereafter. Note that the first iteration of the rollout algorithm with larger lookahead
lengths is understood due to partial enumeration results [89, 125].

For more practical applications, it is desirable to understand rollout performance
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on problems with a muti-dimensional state space. (The subset sum problem and 0–1
knapsack problem both have a single-dimensional state space, namely, the capacity.)
Rollout algorithms are, after all, a form of approximate dynamic programming, and
approximate dynamic programming techniques are needed for problems suffering from
the curse of dimensionality [22, 27, 122]. Problems such as the the bin packing prob-
lem, the multiple knapsack problem (where one can choose from multiple knapsacks to
place items), and the multidimensional knapsack problem (where each item consumes
multiple resources) are good candidates for further research. While partial enumera-
tion results are known for these problems [89], general theorems for rollout algorithms
on these problems will require some work. Note that in resource allocation problems
where individual items only consume a small amount of resources relative to the total
supply, model predictive control with fluid models has proved very useful; see [46, 68]
for examples. These approaches can be viewed as continuous analogs of the rollout
approach.

Theoretically, it would be nice to find a simple problem with a clean expression for
rollout performance as a function of the number of iterations run. Again, this would
probably have to be some problem analyzed from the average-case perspective. Recall
that we did make some progress on this front in Chapter 3, where we showed that
for matching on random 2-regular bipartite graphs, running the Oblivious-Rollout
algorithm (at each iteration) improves the performance ratio from 3/4 to 1− 1/(4e) ≈
0.908. This problem is extremely simple, though, so it would be preferable to obtain a
result on a slightly more difficult problem. A closed-form expression for the performance
of the rollout algorithm on binary decision trees that we considered in Chapter 2 would
be an illuminating result. Solving the recursion analytically is probably too lofty a goal,
but it may be possible to find an asymptotic solution.

Using the rollout approach in a game-theoretic setting is also interesting, especially
since this was one of the early uses of rollout algorithms [140]. A theoretical treatment
for a two-player game would require many modeling decisions. The player using the
rollout algorithm must have a base policy, or strategy, and she must also have some
base policy model for her opponent that she uses in her rollouts. Then, during actual
gameplay, the opponent may or may not have knowledge of the approximation algorithm
that she is using. An opponent who knows exactly what rollout approach she is using
has the opportunity to exploit this in his decisions.

6.2.2 Greedy Online Matching on Random Graphs

In our work on matching on random graphs, we were primarily interested in the expected
asymptotic matching sizes given by algorithms, and we were less concerned about how
tightly concentrated the matching sizes are around their expected values. Wormald’s
general theorem was sufficient for our analysis, but it is possible to obtain tighter con-
centration results, still employing differential equations, but using the so-called wholistic
approach. This is described in Wormald’s tutorial paper [148]. Alternatively, the al-
together different approach used by Dyer et al. [56] may be useful for the algorithms



246 CHAPTER 6. CONCLUSION

we considered. Their results characterize the asymptotic distribution of matching sizes,
rather than just the expected values.

Building on our results for random regular graphs, it may be possible to analyze
the algorithms that we presented on G(n, n, r) and G(n, r) for r = 3 (recall that we
only considered r = 2). Some approximations will likely be required, however. Directly
generalizing our approach to r = 3 for Degree-Greedy on bipartite graphs, for ex-
ample, requires enumerating five bin labels, leading to 35 joint cases of bin labels to
consider in the analysis. Furthermore, the resulting differential equations do not seem
to be solvable analytically. A related open problem for random regular graphs is to
prove that the asymptotic matching sizes given by our algorithms are monotonically
increasing in r for r ≥ 2.

An important topic in Erdős-Rényi graphs is the tightness of the asymptotic bound
for the maximum matching size on G(n, n, c/n) given by Bollobás and Brightwell [40].
Whether this bound is tight for c > e is an open problem, and this problem could be re-
solved by analyzing the Karp-Sipser algorithm for bipartite graphs [13, 64, 82]. It would
also be useful to understand the asymptotic maximum matching size for unbalanced
bipartite graphs (i.e. graphs with more vertices in one partition than the other).

Most importantly, while Erdős-Rényi random graphs and random regular graphs are
natural first steps for analyzing matching algorithms, they are not realistic for many
applications. Random graphs with node degrees following a power law distribution are
more appropriate, but of course are not as easy to deal with analytically. However,
it may still be possible to use the differential equation method on such graphs. A
reasonable and interesting graph model to start with is the preferential attachment
model [115, 142].

6.2.3 Uncertainty in Markov Decision Processes

Our perspective on uncertain transition probabilities in Markov decision processes was
fairly general. We allowed the process to be non-stationary (meaning the set of states,
rewards, and transition probabilities may vary across stages), and our only critical
assumption was that rewards are upper bounded by some constant. It would be in-
teresting to see how the loss bounds change when additional restrictions are placed on
the MDP. There are likely some classes of problems, for instance, where states with
maximum future reward (that we used to construct the tight example) cannot occur.
There may also be some problems where the loss bounds for stationary processes are
different than bounds for non-stationary process.

The bounds that we derived are pessimistic, in part because of the worst-case be-
havior induced by the total variation distance. If uncertain transition probabilities are
in fact known within a certain total variation error for a given system, the loss in total
expected reward is likely to be significantly less than our upper bound. The reason
is that uncertain transition probabilities are not truly chosen adversarially. This mo-
tivates other models of uncertainty, perhaps where parameters are subject to random
(instead of worst-case) fluctuations. One option is to model transition probabilities
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with additive Gaussian noise and look at the expected loss. The direct analysis of
this average-case problem seems difficult, however. It would be necessary to have an
understanding of the distribution of rewards, as opposed to just an upper bound, and
Gaussian distributions are often not convenient to work with analytically.

We looked at uncertain transition probabilities assuming that the MDP is solved
with exact dynamic programming. Exact dynamic programming is not computationally
feasible for large systems, though, and approximate dynamic programming methods
must be used instead [122, 135]. Some approximate dynamic programming algorithms
may be more sensitive to uncertain transition probabilities than others, and there are
opportunities for research here.

Developing robust optimization algorithms for dealing with uncertainty in Markov
decision processes is a fruitful research area. Even without uncertainty in model pa-
rameters, MDPs are difficult to solve, so computational complexity becomes an even
more significant concern when a layer of robustness is added. A related topic is online
learning of uncertain parameters in Markov decision processes; this is a setting where
learning takes place as the system is being optimized. This can be viewed as a type of
multi-armed bandit problem, where an optimizer must make decisions to balance the
objectives of exploration (learning more about the system) and exploitation (making
decisions with high value) [45, 70]. Online learning in Markov decision processes is
an active research area, and the topic of uncertain transition probabilities has been
considered to some extent [1, 59].

6.2.4 Randomized Minmax Regret for Combinatorial Optimization

We showed that the linear programming formulations for the randomized minmax re-
gret problems are effective in deriving approximation algorithms for the deterministic
minmax regret problems via the primal-dual approach. However, we only analyzed
known approximation algorithms, and there are a variety of other algorithms to con-
sider. For instance, the maximum likelihood solution from the randomized problem –
that is, the solution in the mixed strategy with maximum probability – is likely to be
a good approximation for the deterministic minmax regret problem. It may also hold
that any solution in the support of the mixed strategy is a decent approximation. Of
course, none of these solutions will be able to guarantee an approximation ratio better
than the integrality gaps that we determined. If many different approximation algo-
rithms are available, however, where each algorithm gives an approximate solution, it
is easy to calculate the maximum regret for each solution in a given problem instance
and then pick the solution with the smallest maximum regret.

A useful extension for the randomized minmax regret framework is to consider ap-
proximation techniques for nominal problems that are NP-hard. Our solution approach
is still valid for NP-hard nominal problems but of course comes at the expense of NP-
hardness. Approximating the randomized minmax regret problem is nontrivial since an
α-approximation algorithm for the nominal problem does not give an α-approximation
algorithm for the randomized minmax regret problem. An approximation scheme will
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likely incur losses in two steps: first when solving the minmax regret program for ob-
taining marginal probabilities, and second when mapping marginal probabilities to a
mixed strategy.

For both the minmax and minmax regret criteria, the randomized and deterministic
models give two useful models of nature, the latter giving nature more power. However,
the randomized model may still be too pessimistic, and for many applications, it may
generate solutions that are too conservative. Other models with adversaries of varying
power would thus be useful to consider. For interval uncertainty, an indifferent ad-
versary, for example, might randomly select costs with a uniform distribution over the
specified intervals. It is easy to see that the optimal minmax strategy for the optimizing
player in this setting is to solve the nominal problem with midpoint costs. Yet, it might
be possible to define adversaries that lie between this indifferent adversary and the one
in the randomized model in terms of power. For instance, an adversary might play the
indifferent strategy with some probability and the randomized maximum regret strat-
egy with remaining probability. Another type of adversary is a computationally bounded
adversary [63, 116]. This is relevant to minmax regret problems under general convex
uncertainty sets, where the maximum regret problem is NP-hard. Such an adversary,
for example, may only be able to solve polynomial problems and approximate NP-hard
problems.
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