
Some Problems in Graph Ramsey Theory

by

Andrey Vadim Grinshpun

Submitted to the Department of Mathematics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Mathematics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2015

c○ Andrey Vadim Grinshpun, MMXV. All rights reserved.

The author hereby grants to MIT permission to reproduce and to

distribute publicly paper and electronic copies of this thesis document

in whole or in part in any medium now known or hereafter created.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Department of Mathematics

December 12, 2014

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Jacob Fox

Associate Professor

Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Peter Shor

Chairman, Applied Mathematics Committee, Department of

Mathematics



2



Some Problems in Graph Ramsey Theory

by

Andrey Vadim Grinshpun

Submitted to the Department of Mathematics
on December 12, 2014, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Mathematics

Abstract

A graph 𝐺 is 𝑟-Ramsey minimal with respect to a graph 𝐻 if every 𝑟-coloring of the
edges of 𝐺 yields a monochromatic copy of 𝐻, but the same is not true for any proper
subgraph of 𝐺. The study of the properties of graphs that are Ramsey minimal with
respect to some 𝐻 and similar problems is known as graph Ramsey theory; we study
several problems in this area.

Burr, Erdős, and Lovász introduced 𝑠(𝐻), the minimum over all 𝐺 that are 2-
Ramsey minimal for 𝐻 of 𝛿(𝐺), the minimum degree of 𝐺. We find the values of
𝑠(𝐻) for several classes of graphs 𝐻, most notably for all 3-connected bipartite graphs
which proves many cases of a conjecture due to Szabó, Zumstein, and Zürcher.

One natural question when studying graph Ramsey theory is what happens when,
rather than considering all 2-colorings of a graph 𝐺, we restrict to a subset of the
possible 2-colorings. Erdős and Hajnal conjectured that, for any fixed color pattern
𝐶, there is some 𝜀 > 0 so that every 2-coloring of the edges of a 𝐾𝑛, the complete
graph on 𝑛 vertices, which doesn’t contain a copy of 𝐶 contains a monochromatic
clique on 𝑛𝜀 vertices. Hajnal generalized this conjecture to more than 2 colors and
asked in particular about the case when the number of colors is 3 and 𝐶 is a rainbow
triangle (a 𝐾3 where each edge is a different color); we prove Hajnal’s conjecture for
rainbow triangles.

One may also wonder what would happen if we wish to cover all of the vertices
with monochromatic copies of graphs. Let ℱ = {𝐹1, 𝐹2, . . .} be a sequence of graphs
such that 𝐹𝑛 is a graph on 𝑛 vertices with maximum degree at most ∆. If each 𝐹𝑛 is
bipartite, then the vertices of any 2-edge-colored complete graph can be partitioned
into at most 2𝐶Δ vertex disjoint monochromatic copies of graphs from ℱ , where 𝐶 is
an absolute constant. This result is best possible, up to the constant 𝐶.

Thesis Supervisor: Jacob Fox
Title: Associate Professor
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Chapter 1

Introduction

A graph 𝐺 is 𝐻-Ramsey with 𝑟 colors, denoted by 𝐺 →𝑟 𝐻, if any 𝑟-coloring of the

edges of 𝐺 contains a monochromatic copy of 𝐻. If 𝑟 = 2 we simply write 𝐺 → 𝐻.

The fact that for every graph 𝐻 there is a graph 𝐺 such that 𝐺 is 𝐻-Ramsey was

first proved by Ramsey [79] in 1930 and rediscovered independently by Erdős and

Szekeres a few years later [36]. Ramsey theory is currently one of the most active

areas of combinatorics with connections to number theory, geometry, analysis, logic,

and computer science.

A fundamental problem in graph Ramsey theory is to understand the graphs 𝐺

satisfying 𝐺 is 𝐾𝑘-Ramsey, where 𝐾𝑘 denotes the complete graph on 𝑘 vertices. The

Ramsey number 𝑟(𝐻) is the minimum number of vertices of a graph 𝐺 which is 𝐻-

Ramsey. The most famous question in this area is that of estimating the Ramsey

number 𝑟(𝐾𝑘). Classical results of Erdős [31] and Erdős and Szekeres [36] show that

2𝑘/2 ≤ 𝑟(𝐾𝑘) ≤ 22𝑘. While there have been several improvements on these bounds

(see, for example, [21]), despite much attention, the constant factors in the above

exponents remain the same. Given these difficulties, the field has naturally stretched

in different directions. In this thesis we prove new results in three of these directions.

It should be noted that the text of this thesis, including the abstract and introduction,

may closely follow or be directly taken from various papers of the author including

[41, 42, 44, 51, 52].
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1.1 Chapter 2: Minimum Degrees of Minimal Ram-

sey Graphs

The first such direction is to understand, for a fixed graph 𝐻, properties of the

collection of graphs that are Ramsey for𝐻. Clearly, for a fixed graph𝐻, the collection

of graphs that are Ramsey for it is upwards closed. That is, if 𝐺 is Ramsey for 𝐻 and

𝐺 is a subgraph of 𝐺′, then 𝐺′ is also Ramsey for 𝐻. Therefore, to understand the

collection of graphs that are Ramsey for 𝐻, it is sufficient to understand the collection

ℳ(𝐻) of graphs that are minimal subject to being Ramsey for 𝐻; these graphs are

called Ramsey minimal for 𝐻.

For a graph 𝐺, let 𝛿(𝐺) denote the minimum degree of the vertices of 𝐺. Our

interest in Chapter 2 lies in 𝑠(𝐻), which is the minimum of 𝛿(𝐺) over all graphs

𝐺 ∈ ℳ(𝐻). This parameter was first introduced and studied by Burr, Erdős, and

Lovász in 1976 [12]. A simple upper bound is 𝑠(𝐻) ≤ 𝑟(𝐻) − 1. Indeed, one may

take any Ramsey-minimal graph on 𝑟(𝐻) vertices, and the minimum degree of this

graph is at most 𝑟(𝐻) − 1. Since 𝑟(𝐾𝑡) is exponential in 𝑡, the result of Burr, Erdős,

and Lovász [12] that 𝑠(𝐾𝑡) = (𝑡− 1)2 may be surprising.

Fox and Lin [43] observed the simple lower bound 𝑠(𝐻) ≥ 2𝛿(𝐻) − 1 which holds

for every graph 𝐻. We say a graph 𝐻 is Ramsey simple if this lower bound is tight,

that is if 𝑠(𝐻) = 2𝛿(𝐻)− 1. In recent years, the study of 𝑠(𝐻) has received increased

attention. Fox and Lin [43] present an alternative proof that 𝑠(𝐾𝑡) = (𝑡−1)2 and also

show that 𝐾𝑠,𝑡 is Ramsey simple, where 𝐾𝑠,𝑡 is a complete bipartite graph with parts

of size 𝑠 and 𝑡. Szabó, Zumstein, and Zürcher [88] conjectured that every bipartite

graph without isolated vertices is Ramsey simple.

They prove this conjecture for a variety of bipartite graphs including trees, even

cycles, and bipartite graphs where every vertex in one of the parts has degree 𝛿(𝐻).

They also prove the conjecture for connected bipartite graphs with parts 𝐴 of size 𝑎

and 𝐵 of size 𝑏 with 𝑏 ≥ 𝑎 in which 𝐴 contains a minimum degree vertex. It is worth

noting that they also address the case of isolated vertices.

In Chapter 2 we prove this conjecture for all 3-connected bipartite graphs, as
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well as for several other graphs. We also find the first examples of graphs that are

Ramsey simple but are not bipartite and the first examples of connected graphs 𝐻,𝐻 ′

satisfying 𝐻 ⊆ 𝐻 ′ with 𝑠(𝐻) > 𝑠(𝐻 ′), a rather surprising property.

1.2 Chapter 3: The Erdős-Hajnal Conjecture for Rain-

bow Triangles

In Chapter 3 we pursue a different variant when studying which graphs satisfy𝐺→ 𝐻,

namely by considering what happens when, rather than considering all colorings of

𝐺, we restrict which colorings are allowed. Erdős and Hajnal [35] famously conjecture

that, for any 2-coloring 𝐶 of a complete graph, there is a 𝜀 = 𝜀(𝐶) > 0 such that, for

every 𝑛, every 2-coloring of the edges of a complete graph on 𝑛 vertices satisfying that

the 2-coloring contains no copy of 𝐶 does contain a monochromatic 𝐾𝑛𝜀 . In other

words, if we only considered those colorings which don’t contain 𝐶, Ramsey numbers

would grow polynomially rather than exponentially.

There are now several partial results on the Erdős-Hajnal conjecture. Erdős and

Hajnal [35] proved that, for each fixed coloring 𝐶, there is 𝜖 = 𝜖(𝐶) > 0 such that

every coloring of a 𝐾𝑛 which does not contain a copy of 𝐶 has a monochromatic

clique with 𝑒𝜖
√
log𝑛 vertices. Fox and Sudakov [45], strengthening an earlier result of

Erdős and Hajnal, proved that for each fixed coloring 𝐶 there is 𝜖 = 𝜖(𝐶) > 0 such

that every coloring of a 𝐾𝑛 which does not contain a copy of 𝐶 has either a balanced

complete bipartite graph in the first color or a clique of order 𝑛𝜖 in the second color.

Erdős and Hajnal also proposed studying a multicolor generalization of their con-

jecture. It states that for every fixed 𝑘-coloring of the edges 𝐶 of a complete graph,

there is an 𝜖 = 𝜖(𝐶) > 0 such that every 𝑘-coloring of the edges of the complete graph

on 𝑛 vertices without a copy of 𝐶 contains a clique of order 𝑛𝜖 which only uses 𝑘− 1

colors. They proved a weaker estimate, replacing 𝑛𝜖 by 𝑒𝜖
√
log𝑛. Note that the case of

two colors is what is typically referred to as the Erdős-Hajnal conjecture.

Hajnal [59] conjectured that the following special case of the multicolor generaliza-
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tion of the Erdős-Hajnal conjecture holds. There is 𝜖 > 0 such that every 3-coloring

of the edges of the complete graph on 𝑛 vertices without a rainbow triangle (that is,

a triangle with all its edges different colors), contains a set of order 𝑛𝜖 which uses

at most two colors. We prove Hajnal’s conjecture, and further determine a tight

bound on the order of the largest guaranteed 2-colored set in any such coloring; this

size is Θ(𝑛1/3 log2 𝑛). Indeed, we actually find asymptotically tight bounds for every

𝑟 ≥ 𝑠 ≥ 1 for the largest size of a clique that uses at most 𝑠 colors in an 𝑟-coloring of

a 𝐾𝑛 that contains no rainbow triangles.

1.3 Chapter 4: Packing Vertex-Disjoint Monochro-

matic Copies of Sparse Graphs

In Chapter 4 we pursue another variant of Ramsey theory where, rather than taking

a coloring of a graph 𝐺 and finding a single monochromatic copy of some graph 𝐻,

we instead wish to partition all of the vertices of 𝐺 into monochromatic copies of

graphs.

An area that has attracted much interest is the study of Ramsey numbers for

bounded degree graphs. In 1975, Burr and Erdős [11] raised the problem that every

graph 𝐺 with 𝑛 vertices and maximum degree ∆ has a linear Ramsey number, so

𝑟(𝐺) ≤ 𝐶(∆)𝑛, for some constant 𝐶(∆) depending only on ∆. This was proved

by Chvátal, Rödl, Szemerédi and Trotter [20] in one of the earliest applications of

Szemerédi’s celebrated Regularity Lemma [89]. Because the proof uses the Regularity

Lemma, the bound on 𝐶(∆) is quite weak; it is of tower type in ∆.

Recently, Conlon [22] and, independently, Fox and Sudakov [45] have shown how

to prove the bound of 𝐶𝐵(∆) ≤ 2𝑂(Δ) in the bipartite case. For the non-bipartite

graph case, the current best bound is due to Conlon, Fox, and Sudakov [25] 𝐶(∆) ≤
2𝑂(Δ logΔ).

Graham, Rödl, and Ruciński [49] proved that there are bipartite graphs with 𝑛

vertices and maximum degree ∆ for which the Ramsey number is at least 2Ω(Δ)𝑛,

12



meaning that the upper bound of Conlon, Fox, and Sudakov is best possible, up to

the constant in the exponent.

It is a natural question (initiated by András Gyárfás) to ask how many monochro-

matic members from a bounded-degree graph family are needed to partition the vertex

set of a 2-edge-colored complete graph. In Chapter 4 we study this problem and re-

lated questions. Given ℱ = {𝐹1, 𝐹2, . . .} a sequence of graphs, we say it is a proper

graph sequence if 𝐹𝑛 is a graph on 𝑛 vertices. We say it has some graph property if

every graph of ℱ has that property (e.g. ℱ is bipartite if 𝐹𝑛 is bipartite for every 𝑛).

We prove, for bipartite proper graph sequences ℱ with maximum degree at most

∆, that the vertices of any 2-edge-colored complete graph may be partitioned into

2𝑂(Δ) monochromatic copies of graphs from ℱ , and that this is best possible up to

the constant in the exponent. We further prove that for proper graph sequences ℱ
with maximum degree at most ∆, that the vertices of any 2-edge-colored complete

graph may be partitioned into 2𝑂(Δ logΔ) monochromatic copies of graphs from ℱ .

Finally, we generalize this to arrangeable graph sequences by showing that, for proper

graph sequences ℱ with arrangeability 𝑎 and chromatic number 𝑘 satisfying that

the maximum degree of 𝐹𝑛 is at most
√
𝑛/ log 𝑛, the vertices of any 2-edge-colored

complete graph may be partitioned into 2𝑂(𝑎4𝑘2) monochromatic copies of graphs from

ℱ .

13
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Chapter 2

Minimum Degrees of Minimal

Ramsey Graphs

2.1 Introduction

For graphs 𝐺 and 𝐻 we write 𝐺→ 𝐻 and say 𝐺 is Ramsey for 𝐻 if in any 2-coloring

of the edges of 𝐺 there exists a monochromatic copy of 𝐻. Ramsey’s theorem [79]

states that for any 𝐻 there is a 𝐺 that is Ramsey for 𝐻.

Clearly, for a fixed graph 𝐻, the collection of graphs that are Ramsey for it is

upwards closed. That is, if 𝐺 is Ramsey for 𝐻 and 𝐺 is a subgraph of 𝐺′, then 𝐺′

is also Ramsey for 𝐻. Therefore, to understand the collection of graphs that are

Ramsey for 𝐻, it is sufficient to understand the collection ℳ(𝐻) of graphs that are

minimal subject to being Ramsey for 𝐻; these graphs are called Ramsey minimal for

𝐻.

Many fundamental problems in graph theory concern the study of ℳ(𝐻). The

most famous of these, one of the driving motivations for the field of Ramsey theory,

is to compute or estimate the Ramsey number 𝑟(𝐻) for various 𝐻, where 𝑟(𝐻) is the

smallest number of vertices of any graph inℳ(𝐻). Of particular interest is 𝑟(𝐾𝑡), the

Ramsey number of the complete graph on 𝑡 vertices. Classical results of Erdős and

Szekeres [36] and Erdős [31] imply that 2𝑡/2 ≤ 𝑟(𝐾𝑡) ≤ 22𝑡 for 𝑡 ≥ 2. Despite much

interest (see, e.g., [21]), there have been no improvements in the constant factors in
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the above exponents.

This impasse has naturally led to the study of other problems related to ℳ(𝐻).

For example, the size Ramsey number 𝑟(𝐻) is the minimum number of edges of any

graph in ℳ(𝐻). This parameter was introduced by Erdős et al. [32]. While this

parameter is still far from understood, there are now several beautiful results about

size Ramsey numbers of sparse graphs (see, e.g., [5], [64], [80]). Another related

problem asks which graphs 𝐻 are Ramsey-infinite, that is for which graphs 𝐻 is the

family ℳ(𝐻) infinite (see, e.g., the book [50]).

For a graph 𝐺, let 𝛿(𝐺) denote the minimum degree of the vertices of 𝐺. Our

interest in this chapter lies in 𝑠(𝐻), which is the minimum of 𝛿(𝐺) over all graphs

𝐺 ∈ ℳ(𝐻). This parameter was first introduced and studied by Burr, Erdős, and

Lovász in 1976 [12]. A simple upper bound is 𝑠(𝐻) ≤ 𝑟(𝐻) − 1. Indeed, one may

take any Ramsey-minimal graph on 𝑟(𝐻) vertices, and the minimum degree of this

graph is at most 𝑟(𝐻) − 1. Since 𝑟(𝐾𝑡) is exponential in 𝑡, the result of Burr, Erdős,

and Lovász [12] that 𝑠(𝐾𝑡) = (𝑡− 1)2 may be surprising.

Fox and Lin [43] observed the simple lower bound 𝑠(𝐻) ≥ 2𝛿(𝐻) − 1 which holds

for every graph 𝐻. To see this, assume for contradiction there is some minimal

Ramsey graph 𝐺 for 𝐻 with a vertex 𝑣 of degree at most 2𝛿(𝐻) − 2. By minimality,

there must be some red-blue coloring of the edges of 𝐺− 𝑣 without a monochromatic

copy of 𝐻; we may extend this to an edge-coloring of 𝐺 by coloring at most 𝛿(𝐻)− 1

of the edges incident to 𝑣 blue and at most 𝛿(𝐻) − 1 of the edges incident to 𝑣 red.

As 𝐺 is Ramsey for 𝐻, it follows that this coloring must have a monochromatic copy

of 𝐻 containing 𝑣. However, 𝑣 has degree less than 𝛿(𝐻) in any monochromatic

subgraph, contradicting that 𝑣 is in a monochromatic copy of 𝐻, and completing the

proof. We say a graph 𝐻 is Ramsey simple if this lower bound is tight, that is if

𝑠(𝐻) = 2𝛿(𝐻) − 1.

In recent years, the study of 𝑠(𝐻) has received increased attention. Fox and Lin

[43] present an alternative proof that 𝑠(𝐾𝑡) = (𝑡 − 1)2 and also show that 𝐾𝑠,𝑡 is

Ramsey simple. Szabó, Zumstein, and Zürcher [88] conjectured that every bipartite

graph without isolated vertices is Ramsey simple.
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Conjecture 2.1.1. [88] If 𝐻 is bipartite with no isolated vertices, then 𝐻 is Ramsey

simple.

They prove this conjecture for a variety of bipartite graphs including trees, even

cycles, and bipartite graphs where every vertex in one of the parts has degree 𝛿(𝐻).

They also prove the conjecture for connected bipartite graphs with parts 𝐴 of size

𝑎 and 𝐵 of size 𝑏 with 𝑏 ≥ 𝑎 in which 𝐴 contains a minimum degree vertex. It

is worth noting that they also address the case of isolated vertices: they show that

for any graph 𝐻 on 𝑛 vertices (not necessarily bipartite), if we denote the graph

obtained from 𝐻 by adding 𝑡 isolated vertices by 𝐻 + 𝑡𝐾1, then 𝑠(𝐻 + 𝑡𝐾1) = 𝑠(𝐻)

if 𝑡 ≤ 𝑟(𝐻) − 𝑛, and 𝑠(𝐻 + 𝑡𝐾1) = 0 if 𝑡 > 𝑟(𝐻) − 𝑛.

In this chapter we prove Conjecture 2.1.1 for all 3-connected bipartite graphs.

Theorem 2.1.2. If 𝐻 is bipartite and 3-connected, then 𝑠(𝐻) = 2𝛿(𝐻) − 1.

In the process of proving the above result, we prove the following theorem which

gives the first examples of Ramsey simple graphs that are not bipartite.

Theorem 2.1.3. If 𝐻 is 3-connected and has some vertex 𝑣 of degree 𝛿(𝐻) so that

the neighbors of 𝑣 are contained in an independent set of size 2𝛿(𝐻) − 1, then 𝐻 is

Ramsey simple.

In a fairly wide range of values of 𝑝, the binomial random graph 𝐺(𝑛, 𝑝) satisfies

the conditions of the above theorem, and hence we have the following corollary.

Corollary 2.1.4. If 𝑛−1 log 𝑛 ≪ 𝑝 ≪ 𝑛−2/3, then 𝐺(𝑛, 𝑝) is almost surely Ramsey

simple.

The lower bound on 𝑝 originates from the need to be 3-connected (for 𝑝≪ 𝑛−1 log 𝑛

there will almost surely be isolated vertices). The upper bound on 𝑝 guarantees that

the expected number of triangles is 𝑜(𝑛) and hence the neighborhood of a typical

vertex is an independent set. Further, one expects that there is a minimum degree

vertex 𝑣 whose neighborhood is an independent set, and can be extended to an inde-

pendent set twice larger. The details of this proof are given in Section 2.9. Note also
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that in this range 𝐺(𝑛, 𝑝) is almost surely not bipartite, so these graphs do not fall

under the assumptions of Theorem 2.1.2, and are examples of Ramsey simple graphs

that are not bipartite.

There has also been much interest in the value of 𝑠(𝐾𝑡 ·𝐾2), where 𝐻 ·𝐾2 denotes

the collection of graphs obtained by adding a new vertex 𝑣 to 𝐻, picking a vertex 𝑢

of 𝐻, and connecting 𝑣 to 𝑢. It was shown [88] that 𝑠(𝐾𝑡 · 𝐾2) ≥ 𝑡 − 1, and they

conjecture that 𝑠(𝐾𝑡 ·𝐾2) = 𝑠(𝐾𝑡) = (𝑡− 1)2, for 𝑡 sufficiently large. The motivation

for this conjecture is that, for 𝑡 sufficiently large, it intuitively may be the case that

any graph which is Ramsey for 𝐾𝑡 is also Ramsey for 𝐾𝑡 ·𝐾2. This conjecture was

disproved in [42], where it is shown that 𝑠(𝐾𝑡 · 𝐾2) = 𝑡 − 1. In this chapter, we

generalize the lower bound of [88] that 𝑠(𝐾𝑡 ·𝐾2) ≥ 𝑡 − 1 to graphs other than 𝐾𝑡,

and we find upper bounds on 𝑠(𝐻 ·𝐾2) for many graphs 𝐻. Most notably, we find

that 𝑠(𝐾𝑡,𝑡 ·𝐾2) = 1, where 𝐾𝑡,𝑡 is the complete bipartite graph with parts of size 𝑡.

This is strong support for Conjecture 2.1.1, as 𝐾𝑡,𝑡 ·𝐾2 was thought to be the best

candidate for a counterexample.

Theorem 2.1.2 and Theorem 2.1.3 use a powerful tool originating from [12] and

generalized in [13] which requires the graphs to be 3-connected. In Section 2.3, we

present the tools necessary to prove Theorems 2.1.2 and 2.1.3 and then present their

proofs. We defer the proof that Corollary 2.1.4 follows from Theorem 2.1.3 and some

basic facts about 𝐺(𝑛, 𝑝) to Section 2.9. In Section 2.4, we prove lower bounds for

𝑠(𝐻 · 𝐾2) for many graphs 𝐻. In Section 2.5, we show that 𝑠(𝐾𝑡,𝑡 · 𝐾2) = 1, and

in Section 2.6 we give an upper bound for 𝑠(𝐻 · 𝐾2) for many graphs 𝐻. Finally,

in Section 2.7, we give the first examples of connected graphs 𝐻 ⊆ 𝐻 ′ with 𝑠(𝐻) >

𝑠(𝐻 ′).

2.2 Preliminaries

In this section, we introduce notation and tools that we use to prove bounds on 𝑠(𝐻).

Unless stated otherwise, all our colourings are red-blue colourings of the edges of a

graph. We call two edge-disjoint graphs 𝑅,𝐵 on the same vertex set 𝑉 a colour
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pattern on 𝑉 . For a graph 𝐻, a colour pattern is called 𝐻-free if neither 𝑅 nor 𝐵

contains 𝐻 as a subgraph. Let 𝐺 be a graph that contains 𝑅 ∪ 𝐵 as a subgraph,

where 𝑅,𝐵 is a colour pattern. We say a colouring 𝑐 of 𝐺 extends (or has) colour

pattern 𝑅∪𝐵 if 𝑅 and 𝐵 are both monochromatic with different colours. For a graph

𝐻, we call a colouring 𝑐 𝐻-free if there is no monochromatic copy of 𝐻 in 𝑐. Given

a graph 𝐺 which contains some 𝐺0 as an induced subgraph, we say the pair (𝐺,𝐺0)

is 𝐻-robust if any graph which is obtained from 𝐺 by adding some vertices 𝑆 to 𝐺

and adding edges within 𝑆 ∪ 𝑉 (𝐺0) satisfies that any copy of 𝐻 is either contained

entirely within 𝑆 ∪ 𝑉 (𝐺0) or is contained entirely within 𝐺.

Burr, Erdős, and Lovász [12] introduced a powerful tool in determining 𝑠(𝐾𝑡). It

states that, given any 𝐾𝑡-free colour pattern 𝑅,𝐵, there is some graph 𝐺 ⊇ 𝑅 ∪ 𝐵
which is not Ramsey for 𝐾𝑡, but any 𝐾𝑡-free coloring of 𝐺 extends the colour pattern

𝑅 ∪ 𝐵. For a graph 𝐻 and a colour pattern 𝑅,𝐵, we call a graph B = B(𝐻,𝑅,𝐵)

a BEL gadget for 𝐻 (with colour pattern 𝑅 ∪ 𝐵) if B contains 𝑅 ∪ 𝐵 as an induced

subgraph, B 9 𝐻 and any 𝐻-free colouring of B has colour pattern 𝑅 ∪ 𝐵. Burr,

Nešetřil and Rödl [13] extended the proofs in [12] in the following way.

Lemma 2.2.1. [13] For any 3-connected graph 𝐻 and any 𝐻-free colour pattern

𝑅 ∪ 𝐵, there exists a graph B = B(𝐻,𝑅,𝐵) that is a BEL gadget for 𝐻 with colour

pattern 𝑅,𝐵 so that (B, 𝑅 ∪ 𝐵) are 𝐻-robust. Furthermore, if 𝐻 and 𝑅 ∪ 𝐵 are

bipartite, then so is B.

Let us say that BEL gadgets exist for 𝐻 if for any 𝐻-free colour pattern 𝑅,𝐵

there is a BEL gadget for 𝐻 with colour pattern 𝑅 ∪𝐵.

2.3 A large class of Ramsey-simple graphs

In this section, we prove Theorem 2.1.2 and Theorem 2.1.3. In the following, we give

a sufficient condition for a graph 𝐻 to be Ramsey-simple.

Lemma 2.3.1. Let 𝐻 be a graph and suppose 𝐻 has no isolated vertices and BEL

gadgets exist for 𝐻. If there is an 𝐻-free graph 𝐺 with an independent set 𝑆 of size
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2𝛿(𝐻) − 1 so that any graph obtained from 𝐺 by adding a vertex 𝑣 and connecting 𝑣

to 𝛿(𝐻) vertices of 𝑆 contains a copy of 𝐻, then 𝐻 is Ramsey simple.

Proof. Take 𝐺0 to be a red copy 𝑅 of 𝐺 with distinguished set 𝑆 and a blue copy

𝐵 of 𝐺 with the same distinguished set 𝑆 (note this creates no conflicts since 𝑆 is

an independent set). Note that 𝑅,𝐵 is a colour pattern that is 𝐻-free, since both

𝑅 and 𝐵 consist of a copy of 𝐺 along with isolated vertices. Since there exist BEL

gadgets for 𝐻, we may create a graph B so that B 9 𝐻, but any 𝐻-free coloring

of B extends the colour pattern 𝑅 ∪ 𝐵. Now, add a vertex 𝑣 to B and add edges

from 𝑣 to all of 𝑆. Call the resulting graph 𝐺′. The degree of 𝑣 in 𝐺′ is 2𝛿(𝐻) − 1,

and the graph obtained by removing 𝑣 is not Ramsey for 𝐻. In any two-coloring of

the edges containing 𝑣, at least 𝛿(𝐻) of those edges must have the same colour, say,

without loss of generality, red. Then, by assumption on 𝐺, 𝑣 along with these 𝛿(𝐻)

neighbours in 𝑆 and the red copy of 𝐺 contain a monochromatic copy of 𝐻. Hence,

𝐺′ is Ramsey for 𝐻. Any Ramsey-minimal subgraph of 𝐺′ must contain 𝑣, and so

𝑠(𝐻) ≤ 2𝛿(𝐻) − 1, i.e., 𝐻 is Ramsey simple.

In the next lemma, we show how to construct 𝐺 under certain assumptions on 𝐻.

Lemma 2.3.2. Let 𝐻 be a graph and suppose 𝐻 has no isolated vertices and BEL

gadgets exist for 𝐻. If there is a vertex 𝑢 of degree 𝛿(𝐻) in 𝐻 whose neighbourhood

is contained in an independent set of size 2𝛿(𝐻) − 1, then 𝐻 is Ramsey simple.

Proof. Let 𝑛 be the number of vertices of𝐻. Consider a graph 𝐺 on 𝑛−1 vertices that

is complete except for an independent set 𝑆 on 2𝛿(𝐻)− 1 vertices; that is, the graph

consists of an independent set on 2𝛿(𝐻)−1 vertices and a clique on 𝑛−1−(2𝛿(𝐻)−1)

vertices, and there is a complete bipartite graph between them. Notice that 𝐻 − 𝑢

is a subgraph of 𝐺 for any 𝐻 satisfying the assumptions of the theorem. Adding a

vertex 𝑣 to 𝐺 and connecting 𝑣 to any 𝛿(𝐻) vertices of 𝑆 creates a copy of 𝐻 where

𝑣 acts as a copy of 𝑢. The graph 𝐺 is 𝐻-free since it has only has 𝑛 − 1 vertices.

Therefore, we can apply Lemma 2.3.1 to conclude that 𝐻 is Ramsey simple.

Note that Theorem 2.1.3 is a corollary of Lemma 2.3.2 and Lemma 2.2.1. We now
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apply Lemma 2.2.1 to show that every bipartite 3-connected graph is Ramsey simple

(Theorem 2.1.2). We again prove a slightly stronger result.

Theorem 2.3.3. Suppose 𝐻 is a connected bipartite graph with at least two vertices.

If BEL gadgets exist for 𝐻, then 𝐻 is Ramsey simple.

Proof. Let 𝐴,𝐵 be a bipartition of 𝐻 with |𝐴| ≤ |𝐵|, and take 𝑎 = |𝐴| , 𝑏 = |𝐵|,
so 𝑎 ≤ 𝑏. Let 𝑛 = 𝑎 + 𝑏 = |𝑉 (𝐻)|. Let 𝛿 = 𝛿(𝐻). If 𝐵 contains only vertices of

degree 𝛿, if 𝐴 contains a vertex of degree 𝛿, or if 𝑎 = 𝑏, then it was proved in [88] that

𝐻 is Ramsey simple, as desired. So we may assume that 𝐵 contains some vertex of

degree larger than 𝛿, that 𝐴 contains no vertex of degree 𝛿, and that 𝑏 > 𝑎; this also

means that 𝐵 must contain some vertex 𝑢 of degree 𝛿. Under these assumptions we

will show that there is a graph 𝐺 satisfying the assumptions of Lemma 2.3.1, thus

completing the proof. That is, 𝐺 is 𝐻-free and has an independent set 𝑆 of size 2𝛿−1

so that adding a vertex 𝑣 to 𝐺 and connecting 𝑣 to any 𝛿 vertices of 𝑆 creates a copy

of 𝐻.

If 𝑏 ≥ 2𝛿, then we may take 𝐺 to be a complete bipartite graph with both parts

of size 𝑏− 1. We will take 𝑆 to be any 2𝛿 − 1 vertices from one of the parts. 𝐺 will

not contain a copy of 𝐻, as neither of its parts has size at least 𝑏. Adding a vertex 𝑣

and connecting it to any 𝛿 vertices of 𝑆 creates a copy of 𝐻 with 𝑣 serving as a copy

of 𝑢.

Therefore, we may assume that 𝑎 < 𝑏 < 2𝛿. In particular, this means that any two

vertices in 𝐵 have a common neighbour and any two vertices in 𝐴 have a common

neighbour. Now, we will instead consider the graph 𝐺 obtained as follows. Take an

independent set 𝑆 on 2𝛿 − 1 vertices. For any set 𝑆 ′ of 𝛿 vertices of 𝑆, add a copy of

𝐻−𝑢 where 𝑆 ′ is 𝑁(𝑢). Formally, 𝐺 will have vertex set 𝑆∪
(︀(︀

𝑆
𝛿

)︀
× [𝑛− 𝛿 − 1]

)︀
. Enu-

merate the vertices of 𝐻 as 𝑢1, . . . , 𝑢𝑛 so that 𝑢 = 𝑢𝑛 and 𝑁(𝑢) = {𝑢𝑛−𝛿, . . . , 𝑢𝑛−1}.
For each set 𝑆 ′ ⊆ 𝑆 of size 𝛿, fix some ordering 𝑣𝑆′,𝑛−𝛿, 𝑣𝑆′,𝑛−𝛿+1, . . . , 𝑣𝑆′,𝑛−1 of the ver-

tices of 𝑆 ′. The edges of 𝐺 that are not incident to 𝑆 are those pairs of vertices of the

form {(𝑆 ′, 𝑘1), (𝑆
′, 𝑘2)} where 𝑆 ′ is a set of 𝛿 vertices from 𝑆 and {𝑢𝑘1 , 𝑢𝑘2} is an edge

of 𝐻. The edges that are incident to 𝑆 are those pairs of the form {𝑣𝑆′,𝑘1 , (𝑆
′, 𝑘2)}
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where {𝑢𝑘1 , 𝑢𝑘2} is an edge of 𝐻. Note that 𝐺 is bipartite.

The subgraph of 𝐺 consisting of those edges incident to 𝑆 is bipartite with one

part being 𝑆. In the other part, all of the vertices have degree at most 𝛿 (since the

vertex (𝑆 ′, 𝑘) can be adjacent only to vertices in 𝑆 ′). Therefore, if this subgraph

contains a copy of 𝐻, one of the parts of 𝐻 must contain only vertices of degree 𝛿,

contradicting the assumption.

Hence, any copy of 𝐻 in 𝐺 must contain some edge {(𝑆 ′, 𝑘1), (𝑆
′, 𝑘2)} not incident

to 𝑆. Note that there are only 𝑛− 1 vertices in 𝑆 ′ or of the form (𝑆 ′, 𝑘). Therefore,

a copy of 𝐻 must contain some other vertex.

However, a copy of 𝐻 cannot contain any vertex of 𝑆 other than those in 𝑆 ′.

Indeed, such a vertex would share no common neighbours with both (𝑆 ′, 𝑘1) and

(𝑆 ′, 𝑘2). However, as (𝑆 ′, 𝑘1) and (𝑆 ′, 𝑘2) are adjacent, they must be in different parts

of the bipartition, contradicting the assumption that any vertex of the copy of 𝐻

must have a common neighbour with each vertex in the same part.

Therefore, a copy of 𝐻 must contain a vertex of the form (𝑆 ′′, ℓ1) with 𝑆
′′ distinct

from 𝑆 ′. However, since 𝑆 ′′ and 𝑆 ′ are distinct sets of size 𝛿, they can intersect in at

most 𝛿−1 vertices. Since the only vertices from 𝑆 in a copy of 𝐻 must be contained in

𝑆 ′, and the only neighbours of (𝑆 ′′, ℓ1) in 𝑆 are in 𝑆 ′′, we must have that all neighbours

in 𝑆 of (𝑆 ′′, ℓ1) used by this copy of 𝐻 must be contained in 𝑆 ′ ∩ 𝑆 ′′. Since this is

at most 𝛿 − 1 vertices, the vertex (𝑆 ′′, ℓ1) must have degree at least 𝛿 and so must

have another neighbour in the copy of 𝐻. In 𝐺, the only neighbours of (𝑆 ′′, ℓ1) not

contained in 𝑆 are of the form (𝑆 ′′, ℓ2), and so 𝐻 must contain some vertex (𝑆 ′′, ℓ2)

as a neighbour of (𝑆 ′′, ℓ1). In particular, in this copy of 𝐻, the vertices of the form

(𝑆 ′, 𝑘) contain vertices from both parts of 𝐻, as do vertices of the form (𝑆 ′′, 𝑘). In

order to have that any two vertices from the same part share a common neighbour,

we must have that 𝑆 ′ ∩ 𝑆 ′′ contains vertices from both parts of 𝐻. However, 𝐺 is

bipartite and 𝑆 ′∩𝑆 ′′ is contained in one of the bipartitions, contradicting that a copy

of the connected graph 𝐻 can have vertices from both parts in 𝑆 ′ ∩ 𝑆 ′′. Therefore,

𝐺 has no copy of 𝐻. By construction, adding a vertex to 𝐺 and connecting it to any

𝛿 vertices of 𝑆 creates a copy of 𝐻. Therefore, 𝐺 has the desired properties, and so,
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by Lemma 2.3.1, 𝐻 is Ramsey simple.

2.4 Stronger lower bounds for graphs with hanging

edges

For a collection ℋ of graphs, we say that a graph 𝐺 is ℋ-Ramsey, and denote this by

𝐺→ ℋ, if in any two colouring of the edges of 𝐺 there exists a monochromatic copy

of some 𝐻 in ℋ. If 𝐺 is minimal with this property, we call 𝐺 ℋ-Ramsey minimal.

We denote by ℳ = ℳ(ℋ) the class of ℋ-Ramsey minimal graphs. Note this class

does not need to relate by inclusion to any of the classes ℳ(𝐻) for 𝐻 ∈ ℋ due to

the minimality assumption. We also set 𝑠(ℋ) := min𝐺∈ℳ(ℋ) 𝛿(𝐺), as before.

Given a graph𝐻 = (𝑉,𝐸), we denote by𝐻 ·𝐾2 the collection of graphs obtained by

picking some vertex 𝑣 of 𝐻, adding some new vertex 𝑤, and adding an edge between

𝑣 and 𝑤. This is a slight abuse of notation as we have already defined 𝐾𝑘 ·𝐾2 to be

a single graph, but a graph 𝐺 is Ramsey for the previous definition of 𝐾𝑘 ·𝐾2 if and

only if it is Ramsey for the new definition, so the notation is consistent. Note that if

𝐻 is vertex transitive, then 𝐻 ·𝐾2 contains, up to isomorphism, only one graph.

The following proof closely follows the ideas of the proof that 𝑠(𝐾𝑡 ·𝐾2) ≥ 𝑡 − 1

in [88].

For a graph 𝐻, let

ℱ(𝐻) := {𝐶 ⊆ 𝐻[𝑁(𝑥)] : 𝑥 ∈ 𝑉 (𝐻), 𝐶 is a connected component of 𝐻[𝑁(𝑥)]}

denote the collection of all connected graphs that appear in the neighbourhood of any

vertex 𝑥 of 𝐻. We will prove the following theorem:

Theorem 2.4.1. Let 𝐻 = (𝑉,𝐸) be a graph on 𝑛 vertices, and assume 𝐻 has the

following properties:

1. 𝐻 is connected.

2. 𝐻 has minimum degree at least two.
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3. There is a colouring of 𝐾𝛼(𝐻) that is 𝐶-free for every 𝐶 ∈ ℱ(𝐻).

Then 𝑠(𝐻 ·𝐾2) ≥ 𝛿(𝐻).

Remark 2.4.2. Note that Condition (3) trivially fails, e.g., when 𝐻 is bipartite, or

more generally, if there exists a vertex 𝑥 of 𝐻 so that 𝐻[𝑁(𝑥)] contains an isolated

vertex. Note also, that when 𝐻 is the complete graph, then Condition (3) is trivially

satisfied. In Section 2.10, we give a large class of non-trivial examples of sparse

(vertex-transitive) graphs 𝐻 that fulfill all conditions of the theorem, meaning that

the single graph 𝐻 ·𝐾2 satisfies 𝑠(𝐻 ·𝐾2) ≥ 𝛿(𝐻).

Proof. Let 𝐺′ be an 𝐻 ·𝐾2-Ramsey minimal graph. We want to show that 𝛿(𝐺′) ≥
𝛿(𝐻). Assume the opposite and remove some vertex from 𝐺′ of degree 𝛿(𝐺′) < 𝛿(𝐻).

This leaves some graph 𝐺 = (𝑉,𝐸). By minimality of 𝐺′, there is a two colouring 𝜒

of 𝐸(𝐺) such that there is no monochromatic copy of 𝐹 for any 𝐹 ∈ 𝐻 ·𝐾2. Call the

two colours red and blue.

We say a vertex of 𝐺 is critical under some colouring 𝜓 if it is contained in both

a red and a blue copy of 𝐻. We will show below that we can convert 𝜒 to a colouring

𝜓 of 𝐺 with no monochromatic 𝐹 ∈ 𝐻 ·𝐾2 and without critical vertices. Let us first

show how the existence of such a colouring implies Theorem 2.4.1.

Claim 2.4.3. If there is a colouring 𝜓 of 𝐺 with no monochromatic 𝐹 ∈ 𝐻 · 𝐾2

and with no critical vertices, then there is a colouring of 𝐺′ with no monochromatic

𝐻 ·𝐾2.

Proof. If 𝑣 is the vertex we removed from 𝐺′ of degree less than 𝛿(𝐻), we define the

colouring 𝜓′ of 𝐺′ as follows: 𝜓′ agrees with 𝜓 on 𝐺, and an edge 𝑣𝑤 is coloured blue

if 𝑤 is contained under 𝜓 in a red copy of 𝐻, and otherwise the edge is coloured red.

Assume 𝐺′ has a monochromatic copy 𝐹 ′ of some 𝐹 ∈ 𝐻 · 𝐾2. By choice of 𝜓,

this 𝐹 ′ must use 𝑣. Since 𝑑(𝑣) < 𝛿(𝐻), 𝑣 must be the hanging vertex. Suppose 𝐹 ′

were red. Then 𝐹 ′ − 𝑣 is red copy of 𝐻, so the pending edge 𝑣𝑤 must be coloured

blue in 𝜓′, a contradiction. On the other hand, if 𝐹 ′ were blue, then 𝑣𝑤 would be

blue and by definition of 𝜓′ 𝑤 is also contained in a red copy of 𝐻 under 𝜓. Then 𝑤

would be critical in 𝐺 under 𝜓, a contradiction.
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It remains to show the existence of a colouring 𝜓 of 𝐸(𝐺) without a monochromatic

𝐹 ∈ 𝐻 · 𝐾2 and no critical vertices, completing the proof. Let us first study the

structure of 𝜒, the given colouring of 𝐺.

Lemma 2.4.4. Let 𝜒 be any colouring of 𝐺 without a monochromatic copy of any

𝐹 ∈ 𝐻 ·𝐾2.

(𝑖) For any red (blue) copy 𝐻1 of 𝐻 in 𝐺, all edges between 𝑉 (𝐻1) and 𝑉 (𝐺)∖𝑉 (𝐻1)

are blue (red).

(𝑖𝑖) Given 𝐻1, 𝐻2 two monochromatic copies of 𝐻 in 𝐺 of the same colour, either

𝑉 (𝐻1) = 𝑉 (𝐻2) or 𝑉 (𝐻1) ∩ 𝑉 (𝐻2) = ∅.

(𝑖𝑖𝑖) Let 𝐻1 be a red and 𝐻2 be a blue copy of 𝐻 in 𝐺. Then there are no edges in

𝐺 between 𝑉 (𝐻1) ∖ 𝑉 (𝐻2) and 𝑉 (𝐻2) ∖ 𝑉 (𝐻1).

(𝑖𝑣) For any critical vertex 𝑣, if it is contained in a red copy 𝐻1 and a blue copy 𝐻2

of 𝐻, 𝑣 is not adjacent in 𝐺 to any vertex 𝑤 not in 𝑉 (𝐻1) ∪ 𝑉 (𝐻2).

Proof. By assumption, there is no monochromatic 𝐹 ∈ 𝐻 ·𝐾2, so (𝑖), (𝑖𝑖𝑖) and (𝑖𝑣)

are immediate. (𝑖𝑖) follows by connectivity of 𝐻.

We would like to keep track of the positions of monochromatic copies of 𝐻. There-

fore, for a red-blue-colouring 𝜓 of 𝐺, we set

𝒱red(𝜓) := {𝑉 ′ ⊆ 𝑉 (𝐺) : There is a red copy of 𝐻 in 𝐺 such that 𝑉 (𝐻) = 𝑉 ′}, and

𝒱blue(𝜓) := {𝑉 ′ ⊆ 𝑉 (𝐺) : There is a blue copy of 𝐻 in 𝐺 such that 𝑉 (𝐻) = 𝑉 ′}.

In other words, 𝒱red(𝜓) (𝒱blue(𝜓)) is the collection of 𝑉 ′ so that 𝑉 ′ is the vertex set

of a red (blue) copy of 𝐻.

We are now ready to describe the recolouring algorithm. The main motivation

behind the definition of 𝜓 below is that we have strong control over the kinds of struc-

tures that contain edges incident to critical vertices, and so have much leeway when

recolouring said edges. Indeed, we will use this structure to remove all monochromatic

copies of 𝐻 that contain critical vertices.
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𝐼. Let 𝒱red(𝜒) = {𝑉0, 𝑉1, . . .} be the hosts of red copies of 𝐻 under 𝜒. Define 𝜒′

to agree with 𝜒 on any edge that is not internal to any 𝑉𝑖, and to be red on any

edge internal to some 𝑉𝑖.

𝐼𝐼. Let 𝒱blue(𝜒′) = {𝑊0,𝑊1, . . .} be the hosts of blue copies of 𝐻 under 𝜒′. Define

𝜒′′ to be blue on any edge that is internal to some 𝑊𝑖 but not internal to any

𝑉𝑖, and to agree with 𝜒′ on all other edges.

Note that by Lemma 2.4.4 (𝑖𝑖), the elements of 𝒱red(𝜒) are pairwise disjoint, and by

2.4.4 (𝑖) all edges between any two 𝑉𝑖 are blue. Now, 𝜒
′ only colours edges red inside

the 𝑉𝑖. Further, 𝜒
′′ only changes edges not inside the 𝑉𝑖 to blue. We therefore have

𝒱red(𝜒) = 𝒱red(𝜒′′) =: 𝒱red.

Further note, since 𝐺 has no monochromatic 𝐻 · 𝐾2 under 𝜒 and 𝜒′ only coloured

edges red inside the 𝑉𝑖, 𝐺 has no monochromatic 𝐻 ·𝐾2 under 𝜒′. Therefore, again

by Lemma 2.4.4 (𝑖) and (𝑖𝑖), the elements 𝑊𝑗 ∈ 𝒱blue(𝜒′) are pairwise disjoint, and

all edges between any two 𝑊𝑗 are red. Now, since 𝜒′′ recolours only edges inside

𝑊𝑗 ∈ 𝒱blue(𝜒′) to blue, the new hosts of blue 𝐻 are the same as before. That is,

𝒱blue(𝜒′) = 𝒱blue(𝜒′′) =: 𝒱blue.

For each 𝑉𝑖 containing a critical vertex under 𝜒′′, choose some critical 𝑣𝑖 ∈ 𝑉𝑖. For

each 𝑊𝑗 containing a critical vertex, if possible, choose some critical 𝑤𝑗 ∈ 𝑊𝑗 such

that for every 𝑖, 𝑤𝑗 ̸= 𝑣𝑖. If this is not possible, choose any critical vertex 𝑤𝑗 ∈ 𝑊𝑗.

Take 𝐴 to be the set of 𝑣𝑖 and 𝐵 the set of 𝑤𝑗. We will now describe the final

recolouring step. Since the 𝑉𝑖 are pairwise disjoint, as are the𝑊𝑗, the sets of the form

𝑉𝑖 ∩𝑊𝑗 are pairwise disjoint. So we may colour their internal edges independently of

each other.

𝐼𝑉. Our final colouring 𝜓 will be obtained by recolouring some edges of 𝜒′′. First,

recolour the edges internal to any (𝑉𝑖 ∩𝑊𝑗) ∖ (𝐴 ∪ 𝐵) so that it contains no
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monochromatic copy of any connected component of 𝐻[𝑁(𝑣)] for any 𝑣 ∈ 𝑉 (𝐻)

(we will show that this is possible). 𝜓 will also recolour edges incident to some

𝑣𝑖, 𝑤𝑗. Given any 𝑣𝑖, it is a critical vertex under 𝜒′′, so take 𝑗 to be the unique

index such that 𝑣𝑖 ∈ 𝑊𝑗. For any vertex 𝑣′ ∈ 𝑉𝑖 with 𝑣𝑖𝑣
′ ∈ 𝐸, colour the edge

𝑣𝑖𝑣
′ blue if 𝑣′ ̸= 𝑤𝑗. If 𝑣

′ = 𝑤𝑗, colour the edge arbitrarily.

Given any 𝑤𝑗, it is a critical vertex under 𝜒′′, so take 𝑖 to be the unique index

such that 𝑤𝑗 ∈ 𝑉𝑖. For any vertex 𝑤′ ∈ 𝑊𝑗 with 𝑤𝑗, 𝑤
′ ∈ 𝐸, colour the edge

𝑤𝑗𝑤
′ red if 𝑤′ ̸= 𝑣𝑖, and colour it arbitrarily if 𝑤′ = 𝑣𝑖. (We will later check

that this is well-defined, i.e. that we haven’t coloured any edges twice, except

those coloured arbitrarily.)

𝜓 will agree with 𝜒′′ on all other edges.

We now begin proving that 𝜓 is well-defined and has the desired properties. We

first note some properties of 𝜒′′.

Observation 2.4.5. 𝜒′′ above satisfies

(𝑖) 𝜒′′ has no monochromatic 𝐻 ·𝐾2;

(𝑖𝑖) if an edge 𝑒 is internal to 𝑉𝑖 and not internal to any 𝑊𝑗, then 𝑒 has colour red;

(𝑖𝑖𝑖) if an edge 𝑒 is internal to 𝑊𝑖 and not internal to any 𝑉𝑗, then 𝑒 has colour blue.

Proof. We noted above already that 𝐺 contains no monochromatic 𝐻 ·𝐾2 under 𝜒
′.

Now, 𝜒′′ only recolours edges inside 𝒱blue to blue, so (𝑖) follows. (𝑖𝑖) and (𝑖𝑖𝑖) are

immediate from the colouring procedure.

Note that each property listed by the lemma above is symmetric with respect to

the colours.

Lemma 2.4.6. 𝜓 is well-defined.

Proof. Let us first note that for each 𝑖 and 𝑗, |𝑉𝑖 ∩𝑊𝑗| ≤ 𝛼(𝐻). To see this, note any

edge internal to 𝑉𝑖 ∩𝑊𝑗 is coloured red by 𝜒′′, so since there is a blue copy of 𝐻 on

𝑊𝑗 by definition, we must have that in this copy 𝑉𝑖 ∩𝑊𝑗 forms an independent set,
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so |𝑉𝑖 ∩𝑊𝑗| ≤ 𝛼(𝐻). Therefore, by assumption, 𝑉𝑖 ∩𝑊𝑗 and so 𝑉𝑖 ∩𝑊𝑗 ∖ (𝐴 ∪ 𝐵)

may be coloured so there is no monochromatic copy of any connected component of

𝐻[𝑁(𝑣)] for any 𝑣 ∈ 𝑉 .

We now check that we do not ask for 𝜓 to colour an edge both red and blue; note

if an edge does not contain a 𝑣𝑖 or 𝑤𝑗 then it is only coloured once by 𝜓. Otherwise,

assume it has the form {𝑣𝑖, 𝑣} with 𝑣 ∈ 𝑉𝑖 ∖ 𝐵 and so was coloured blue. But then

for it to be coloured red we must have 𝑣𝑖 = 𝑤𝑗 for some 𝑗 and 𝑣 ∈ 𝑊𝑗 ∖ 𝐴. But if

𝑣𝑖 = 𝑤𝑗 we must have that 𝑤𝑗 could not have been chosen such that 𝑤𝑗 ̸= 𝑣𝑖, so we

must have |𝑉𝑖 ∩𝑊𝑗| = 1, which is impossible since 𝑣, 𝑣𝑖 ∈ 𝑉𝑖 ∩𝑊𝑗.

We collect some immediate facts about the colouring 𝜓.

Observation 2.4.7.

The red degree of 𝑣𝑖 in 𝑉𝑖 under 𝜓 is at most one.

The blue degree of 𝑤𝑗 in 𝑊𝑗 under 𝜓 is at most one.

Any edge in 𝑉𝑖 that is not internal to any 𝑊𝑗 and is blue under 𝜓 is incident to 𝑣𝑖.

Any edge in 𝑊𝑗 that is not internal to any 𝑉𝑖 and is red under 𝜓 is incident to 𝑤𝑗.

Lemma 2.4.8. If 𝑣 was a critical vertex under 𝜒′′, then 𝑣 is not contained in any

monochromatic copy of 𝐻 under 𝜓.

Proof. Let 𝐻1 be a monochromatic red copy of 𝐻 in 𝐺 under 𝜓 (the case for blue is

symmetric) and assume it contains a vertex critical under 𝜒′′. If 𝑉 (𝐻1) = 𝑉𝑖 for some

𝑖, then the red-degree of 𝑣𝑖 in 𝑉𝑖 is at most 1, giving a contradiction since 𝛿(𝐻) > 1.

Therefore, 𝐻1 needs to use some edge 𝑒 = 𝑣𝑤 that has been recoloured by 𝜓 to

red. But 𝜓 only recoloured edges that were incident to some critical vertices, that is

𝑣 ∈ 𝑉𝑖 ∩𝑊𝑗 and 𝑤 ∈ 𝑉𝑖 ∪𝑊𝑗 for some 𝑉𝑖 ∈ 𝒱red, 𝑊𝑗 ∈ 𝒱blue. Since 𝑉 (𝐻1) ̸= 𝑉𝑖,

we may assume that 𝑒 is an edge leaving 𝑉𝑖, i.e. 𝑤 ∈ 𝑊𝑗 ∖ 𝑉𝑖. Hence 𝑒 is not

contained in 𝑉𝑖 ∩𝑊𝑗, so by the definition of 𝜓, 𝑒 is incident to 𝑤𝑗, the critical vertex

we chose for 𝑊𝑗. That is, 𝑣 = 𝑤𝑗. Note that there are no red edges between 𝑊𝑗 ∖ 𝑉𝑖
and 𝑉𝑖 excluding those incident to 𝑤𝑗. We consider now the neighbourhood of 𝑤𝑗

in 𝑉 (𝐻1) ∩𝑊𝑗. Note that property (3) of Theorem 2.4.1 implies in particular that
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there are no isolated vertices in 𝐻1[𝑁(𝑤𝑗)]. Therefore some connected component 𝐶

of 𝐻1[𝑁(𝑤𝑗)] containing at least one edge is contained in 𝑊𝑗. But the only red edges

of 𝑊𝑗 are either incident to 𝑤𝑗 or contained in some 𝑉𝑖′ ∩𝑊𝑗 (where 𝑖 and 𝑖
′ may or

may not coincide). Therefore by connectivity, we must have that 𝐶 is contained in

some (𝑉𝑖′ ∩𝑊𝑗) ∖ {𝑤𝑗}.
By construction (𝑉𝑖′ ∩𝑊𝑗) ∖ (𝐴 ∪𝐵) = (𝑉𝑖′ ∩𝑊𝑗) ∖ {𝑣𝑖′ , 𝑤𝑗} contains no red copy

of 𝐶. But 𝑣𝑖′ is blue to all vertices of 𝑉𝑖′ except possibly 𝑤𝑗, so by connectivity (𝑉𝑖′ ∩
𝑊𝑗)∖{𝑤𝑗} contains no red copy of 𝐶, but this is a contradiction as the neighbourhood

of 𝑤𝑗 must have a connected component in a set of this form.

Lemma 2.4.9. 𝜓 contains no critical vertices.

Proof. Let a vertex 𝑣 be given, and assume 𝑣 is critical under 𝜓. Then 𝑣 must be

contained in 𝜓 in some red copy 𝐻1 of 𝐻 and in some blue copy 𝐻2 of 𝐻. By

Lemma 2.4.8, neither 𝐻1 nor 𝐻2 may contain any vertices that were critical under

𝜒′′. However, any recoloured edge of 𝜓 is incident to a critical vertex of 𝜒′′; therefore,

the colourings of 𝐻1 and 𝐻2 agree with those of 𝜒′′, but then 𝑣 is critical under 𝜒′′,

a contradiction.

Lemma 2.4.10. 𝜓 contains no monochromatic copy of 𝐻 ·𝐾2.

Proof. We already know that under 𝜒′′, 𝐺 does not contain a monochromatic copy

of any 𝐹 ∈ 𝐻 · 𝐾2. Suppose 𝐹1 is a monochromatic copy of some 𝐹 ∈ 𝐻 · 𝐾2

under 𝜓. Then 𝐹1 must use some edge 𝑒 = 𝑣𝑤, where 𝑣 is critical under 𝜒′′, since

𝜓 only recoloured such edges. By Lemma 2.4.8, 𝑒 must be the pending edge and 𝑣

the pending vertex. Thus, 𝑤 is contained in a monochromatic copy 𝐻1 of 𝐻 under

𝜓. Again by Lemma 2.4.8, 𝑤 cannot be a critical vertex under 𝜒′′. Also, since 𝜓 only

recoloured edges which contained a critical vertex under 𝜒′′, and none of these vertices

are contained in a monochromatic copy of 𝐻 under 𝜓, none of the edges internal to

𝐻1 were recoloured by 𝜓. Therefore, 𝐻1 was already a monochromatic copy of 𝐻 in

𝜒′′. But since 𝜓 recoloured 𝑒, it needs to be internal to some 𝑉𝑖 or some 𝑊𝑗, none of

which are equal to 𝑉 (𝐻1). But that means 𝑤 is critical under 𝜒′′, a contradiction.

29



Now, Claim 2.4.3, Lemma 2.4.9, and Lemma 2.4.10 prove Theorem 2.4.1.

2.5 Upper bounds for complete bipartite graphs with

hanging edges

In this section we will show that, for every 𝑡 ≥ 2, we have 𝑠(𝐾𝑡,𝑡 · 𝐾2) = 1. Since

𝐾𝑡,𝑡 · 𝐾2 is not 3-connected, we cannot simply apply Lemma 2.2.1 to create BEL

gadgets for it. We will instead use BEL gadgets for 𝐾𝑡,𝑡 to construct a weaker version

of BEL gadgets for 𝐾𝑡,𝑡 ·𝐾2. However, first we must show that BEL gadgets do exists

for 𝐾2,2, as 𝐾2,2 is not 3-connected. Since the proof is almost identical for 𝐾2,𝑡, we

prove the more general version here. Throughout this and the next section, we call a

graph 𝑆 = 𝑆(𝐻, 𝑒, 𝑓) a negative (positive) signal sender if 𝑆 9 𝐻 and in any 𝐻-free

colouring of 𝑆, the edges 𝑒 and 𝑓 receive a different (the same) colour. The two edges

𝑒 and 𝑓 of 𝑆 are called signal edges.

Lemma 2.5.1. For 𝑡 ≥ 2, let 𝑅,𝐵 be a 𝐾2,𝑡-free colour pattern. Then there exists

a graph B = B(𝐾2,𝑡, 𝑅,𝐵) that is a BEL gadget for 𝐾2,𝑡 so that (B, 𝑅 ∪ 𝐵) is 𝐾2,𝑡-

robust. Furthermore, if 𝑅 ∪𝐵 is bipartite, then so is B.

Proof. Let 𝑠 = 6(𝑡−1) + 1. We first show that the graph 𝐾3,𝑠 with one edge removed

is a negative signal sender for 𝐾2,𝑡 in which the two signal edges are adjacent. It is

known [43] that 𝐾3,𝑠 is Ramsey minimal for 𝐾2,𝑡. Take a copy of 𝐾3,𝑠−1 and name

the three vertices 𝑎, 𝑏, 𝑐 from the part of size three. Add a vertex 𝑣 to the graph

and connect it to both 𝑎 and 𝑏. Call this graph 𝑆−. We claim that 𝑆− is a negative

signal sender for 𝐾2,𝑡 with signal edges 𝑣𝑎 and 𝑣𝑏. To see this, assume there is some

colouring of 𝑆− in which 𝑣𝑎 and 𝑣𝑏 have the same colour, say red, and there is no

monochromatic copy of 𝐾2,𝑡. Then we may add an edge from 𝑣 to 𝑐 and colour

it blue. This graph is a copy of 𝐾3,𝑠 and so must have a monochromatic copy of

𝐾2,𝑡. This copy must use the added edge and therefore 𝑣, but 𝑣 has blue-degree 1, a

contradiction.
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Furthermore, there is a 𝐾2,𝑡-free colouring of 𝑆− (in which 𝑣𝑎 and 𝑣𝑏 necessarily

have different colours), since 𝐾3,𝑠 is Ramsey-minimal.

Once the existence of a negative signal sender 𝑆− has been established in which the

signal edges are adjacent, it follows along the lines in [13] that BEL-gadgets for 𝐾2,2

exist, with the modification that, rather than using 3-connectivity, we use that the

graph 𝑆− above is bipartite and therefore has girth at least 4. The general approach

is to glue several copies of 𝑆− along their signal edges to obtain signal senders (both

positive and negative) in which the signal edges are arbitrarily far apart. Due to the

similarity, we omit this argument.

Next, we show the existence of a “weak” BEL gadget for 𝐾𝑡,𝑡 ·𝐾2 conditioned on

𝑠(𝐾𝑡,𝑡 · 𝐾2) > 1. We need this weak version to construct “strong” signal senders in

Lemma 2.5.3.

Lemma 2.5.2. For any 𝑡 ≥ 2, let 𝑅,𝐵 be a colour pattern. There is a graph ̃︀B with

an induced copy of 𝑅 ∪ 𝐵 so that (̃︀B, 𝑅 ∪ 𝐵) is 𝐾𝑡,𝑡-robust and so that the following

hold.

(1) Any 𝐾𝑡,𝑡-free colouring in which 𝑅 is red and 𝐵 is blue extends to a 𝐾𝑡,𝑡-free

colouring of ̃︀B.

(2) Any 𝐾𝑡,𝑡 ·𝐾2-free colouring of ̃︀B has colour pattern 𝑅 ∪𝐵.

Furthermore, if 𝑅 ∪𝐵 is bipartite, then so is ̃︀B.

Proof. Let B = B(𝐾𝑡,𝑡, 𝑅,𝐵) be a BEL gadget for 𝐾𝑡,𝑡. B exists by Lemma 2.2.1 for

𝑡 ≥ 3, and by Lemma 2.5.1 for 𝑡 = 2. If 𝑅 ∪𝐵 is bipartite, we may assume that B is

bipartite. Note that B satisfies Property (1) and satisfies Property (2) with 𝐾𝑡,𝑡 ·𝐾2

replaced by 𝐾𝑡,𝑡.

We now modify B to create the desired weak signal sender. To do this, if B is

bipartite with parts 𝐴,𝐵, then for every set 𝑆 of 𝑡 vertices contained either entirely

within 𝐴 or entirely within 𝐵, we add a new set of 𝑡 + 1 vertices 𝑉𝑆 and add a

complete bipartite graph between 𝑉𝑆 and 𝑆. If B is not bipartite, we take every set

𝑆 of 𝑡 vertices and add a set 𝑉𝑆 as above. Note that the degree of each of the vertices
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Figure 2-1: The graph 𝐺0 in the proof of Lemma 2.5.3 with special signal edge 𝑓 .
The white circles are all sets of 𝑡 − 1 vertices, and thick lines indicate that vertices
between those sets are pairwise connected. The blue edges are all edges in 𝐵 and the
red edges are all edges in 𝑅.

of 𝑉𝑆 is 𝑡, so any colouring of B without a monochromatic copy of 𝐾𝑡,𝑡 extends to

a colouring of the modified graph without a monochromatic copy of 𝐾𝑡,𝑡 by giving

every vertex added this way degree 𝑡 − 1 in red and degree 1 in blue. However, if

there is a monochromatic copy of 𝐾𝑡,𝑡 in B, without loss of generality in colour red,

then, picking one of the parts of 𝑡 vertices, call it 𝑆, from the monochromatic copy,

either one of the edges from 𝑆 to 𝑉𝑆 is red and we have a red 𝐾𝑡,𝑡 ·𝐾2, or all of the

edges are blue and the complete bipartite graph between 𝑆 and 𝑉𝑆 contains a blue

𝐾𝑡,𝑡 ·𝐾2. Note also that we maintain robustness when adding the various 𝑉𝑆.

We now construct a version of a signal sender which we call “strong” (negative

or positive) signal sender. The reason for this name is that we have control of the

colours of the edges incident to one of the signal edges.

Lemma 2.5.3. For 𝑡 ≥ 2 there is a bipartite graph 𝑆− = 𝑆−(𝐾𝑡,𝑡, 𝑒, 𝑓) with two

independent edges 𝑒, 𝑓 so that any 𝐾𝑡,𝑡 ·𝐾2-free colouring of 𝑆− satisfies that 𝑒 and

𝑓 have different colours, and there is a 𝐾𝑡,𝑡-free colouring of 𝑆− so that every edge

incident to 𝑓 has a different colour from 𝑓 .

Proof. We first describe a colour pattern 𝑅,𝐵 and then apply the previous lemma; we
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will then add some vertices and edges to 𝑅 ∪𝐵 to obtain a graph 𝐺0; an illustration

of 𝐺0 with colour pattern 𝑅 ∪𝐵 can be found in Figure 2-1.

Let 𝐴0, 𝐴1, . . . , 𝐴2𝑡−1, 𝐵0, 𝐵1, . . . , 𝐵2𝑡−1 be disjoint sets of 𝑡−1 elements each. For

each 1 ≤ 𝑖 ≤ 2𝑡 − 1, add a complete bipartite graph between 𝐵0 and 𝐴𝑖 , between

𝐴0 and 𝐵𝑖, and between 𝐴𝑖 and 𝐵𝑖. Furthermore, add a new edge 𝑓 , say between

new vertices 𝑣𝑎 and 𝑣𝑏, and add all edges between 𝑣𝑏 and
⋃︀

1≤𝑖≤2𝑡−1𝐴𝑖, and add all

edges between 𝑣𝑎 and
⋃︀

1≤𝑖≤2𝑡−1𝐵𝑖. This is the graph 𝐺0. All edges between 𝐴0 ∪𝐵0

and
⋃︀

1≤𝑖≤2𝑡−1𝐴𝑖 ∪ 𝐵𝑖 form the subgraph 𝐵. All edges between
⋃︀

1≤𝑖≤2𝑡−1𝐴𝑖 and⋃︀
1≤𝑖≤2𝑡−1𝐵𝑖 form the subgraph 𝑅.

Now, apply Lemma 2.5.2 to obtain a graph ̃︀B that contains 𝑅 ∪𝐵 as an induced

subgraph such that Property (1) and (2) of the lemma hold. The graph 𝑆− is obtained

by adding to ̃︀B the vertices 𝑣𝑎, 𝑣𝑏 and the edges incident to them, as described above.

Let 𝑒 be an arbitrary edge in 𝑅.

By construction, there exists a 𝐾𝑡,𝑡-free colouring of ̃︀B that has the colour pattern

𝑅 ∪ 𝐵. Without loss of generality, we may assume that 𝑅 is red and 𝐵 is blue in

this colouring. We extend this to a 𝐾𝑡,𝑡-free colouring of 𝑆− in the following way.

Colour 𝑓 blue and colour all other edges incident to 𝑣𝑎 and 𝑣𝑏 red. By construction,

𝑓 has a different colour than all edges adjacent to it. It is easy to see that there is no

monochromatic 𝐾𝑡,𝑡 in this colouring of 𝐺0, and, therefore, by robustness there is no

monochromatic 𝐾𝑡,𝑡.

It remains to prove that any 𝐾𝑡,𝑡 ·𝐾2-free colouring of 𝑆− satisfies that 𝑒 and 𝑓

have different colours. Let 𝑐 be a 𝐾𝑡,𝑡 ·𝐾2-free colouring of 𝑆−. By construction, the

colouring 𝑐 has colour pattern 𝑅,𝐵, say without loss of generality that 𝑅 is red and

𝐵 is blue. Assume for a contradiction that 𝑓 is red. If there exists 1 ≤ 𝑖 ≤ 2𝑡 − 1

such that all the edges 𝑣𝑎𝑥 and 𝑣𝑏𝑦 for 𝑥 ∈ 𝐵𝑖, 𝑦 ∈ 𝐴𝑖 are red, then 𝐴𝑖 ∪𝐵𝑖 ∪ {𝑣𝑎, 𝑣𝑏}
forms a red 𝐾𝑡,𝑡. If 𝑓 is adjacent to one more red edge, this forms a red 𝐾𝑡,𝑡 ·𝐾2, a

contradiction. If 𝑣𝑏 has blue degree at least 𝑡, then it and its neighbors along with 𝐵0

and any other blue edge out of 𝐵0 form a monochromatic 𝐾𝑡,𝑡 ·𝐾2. The symmetric

statement holds for 𝑣𝑎. However, in any colouring in which 𝑣𝑏 and 𝑣𝑎 both have

blue degree less than 𝑡, there must be some 𝑖 so that the edges from {𝑣𝑎, 𝑣𝑏} are
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monochromatic in red to 𝐴𝑖 ∪ 𝐵𝑖; then 𝐴𝑖 ∪ 𝐵𝑖 along with 𝑣𝑎 and 𝑣𝑏 and one more

red edge incident to 𝑣𝑎 form a red copy of 𝐾𝑡,𝑡 ·𝐾2, a contradiction.

As in the case of Lemma 2.5.1 and Lemma 2.5.2, the above lemma will imply the

existence a stronger version of BEL gadgets for 𝐾𝑡,𝑡 ·𝐾2, and we omit the proof.

Lemma 2.5.4. For any 𝑡 ≥ 2, let 𝑅,𝐵 be a colour pattern. There is a graph ̃︀B with

an induced copy of 𝑅 ∪ 𝐵 so that (̃︀B, 𝑅 ∪ 𝐵) is 𝐾𝑡,𝑡-robust and so that the following

hold.

(1) Any 𝐾𝑡,𝑡 ·𝐾2-free colouring in which 𝑅 is red and 𝐵 is blue and no 𝐾𝑡,𝑡 in 𝑅

is incident or contains any edges of 𝐵 and no 𝐾𝑡,𝑡 in 𝐵 is incident or contains

any edges of 𝑅 extends to a 𝐾𝑡,𝑡 · 𝐾2-free colouring of ̃︀B in which no vertex

of 𝑅 ∪ 𝐵 is contained in a monochromatic copy of a 𝐾𝑡,𝑡, except those vertices

contained in a 𝐾𝑡,𝑡 within 𝑅 or within 𝐵.

(2) Any 𝐾𝑡,𝑡 ·𝐾2-free colouring of ̃︀B has colour pattern 𝑅,𝐵.

Furthermore, if 𝑅 ∪𝐵 is bipartite, then so is ̃︀B.

We are now ready to prove the main theorem of this section.

Theorem 2.5.5. For 𝑡 ≥ 2, 𝑠(𝐾𝑡,𝑡 ·𝐾2) = 1.

Proof. We first describe a graph 𝐺0 together with a colour pattern 𝑅 ∪ 𝐵 ⊆ 𝐺0 and

then apply Lemma 2.5.4 to force this colour pattern. An illustration of the graph 𝐺0

with colour pattern 𝑅 ∪𝐵 can be found in Figure 2-2.

Let 𝑈 be a set of size 2𝑡−1, and let {𝑈𝑇 : 𝑇 ∈
(︀
𝑈
𝑡

)︀
} be a collection of disjoint sets

of size 2𝑡, indexed by the 𝑡-subsets of 𝑈 . Form a graph 𝐹 on the union of those sets

in the following way. The subgraph 𝐹 [𝑈 ] forms a clique 𝐾2𝑡−1, and each subgraph

𝐹 [𝑈𝑇 ] for 𝑇 ∈
(︀
𝑈
𝑡

)︀
forms a clique 𝐾2𝑡. Furthermore, for each 𝑇 ∈

(︀
𝑈
𝑡

)︀
, we choose a

subset 𝑆𝑇 of size 𝑡− 1 in 𝑈𝑇 and add all edges between this set and 𝑇 ; we also add,

for each 𝑇 , a new vertex and connect it to one vertex of 𝑆𝑇 .

Take two copies, 𝐹 and 𝐹 ′, of the above graph. Add a vertex 𝑣 and add all edges

between 𝑣 and 𝑈 ∪ 𝑈 ′. This graph is 𝐺0. The colour pattern 𝑅 ∪ 𝐵 we define as
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Figure 2-2: The graph 𝐺0 in the proof of Theorem 2.5.5 for 𝑡 = 2 with colour pattern
𝑅 ∪𝐵 where 𝐵 consists of all blue edges and 𝑅 consists of all red edges.

follows:

𝑅 =

(︂
𝑈

2

)︂
∪
⋃︁

𝑇∈(𝑈
𝑡 )

(︂
𝑈𝑇

2

)︂
⊆ 𝐹,

𝐵 =

(︂
𝑈 ′

2

)︂
∪
⋃︁

𝑇∈(𝑈′
𝑡 )

(︂
𝑈 ′
𝑇

2

)︂
⊆ 𝐹 ′.

We claim there is a 𝐾𝑡,𝑡 · 𝐾2-free colouring of the edges of 𝐺0 that extends the

colour pattern 𝑅 ∪ 𝐵 so that any copy of 𝐾𝑡,𝑡 in 𝑅 is not incident to any edge of

𝐵 and any copy of 𝐾𝑡,𝑡 in 𝐵 is not incident to any edge in 𝑅. To see this, colour

𝑅 red and 𝐵 blue. Further, colour all remaining edges of 𝐹 blue and all remaining

edges of 𝐹 ′ red. Finally, colour all of the edges from 𝑣 to 𝑈 red and from 𝑣 to 𝑈 ′

blue. The only monochromatic copies of 𝐾𝑡,𝑡 are contained within one of the 𝑈𝑇 or

𝑈 ′
𝑇 or are contained in 𝑣 along with 𝑈 or 𝑣 along with 𝑈 ′. The edges touching those

monochromatic copies are either contained themselves in a monochromatic copy of

𝐾𝑡,𝑡 or are not contained in 𝑅 ∪𝐵.

We now show that any 𝐾𝑡,𝑡 ·𝐾2-free colouring of the edges of 𝐺0 that extends the

colour pattern 𝑅∪𝐵 must satisfy that 𝑣 is contained in both a red and a blue copy of

𝐾𝑡,𝑡. In any such colouring, all of the edges of 𝑅 must have the same colour, without

loss of generality red. Then, since the colouring has no monochromatic 𝐾𝑡,𝑡 ·𝐾2, all of

the edges leaving any 𝑈𝑇 must be blue. Therefore, any 𝑡 vertices of 𝑈 form one of the
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parts in a blue 𝐾𝑡,𝑡−1. If 𝑣 had blue degree at least 𝑡 to 𝑈 , then 𝑣 along with 𝑡 of its

blue neighbours would be contained in a blue 𝐾𝑡,𝑡 ·𝐾2, contradicting our assumption.

Therefore, 𝑣 must have red degree at least 𝑡 to 𝑈 . In this case, 𝑣 is contained in a

red 𝐾𝑡,𝑡 with the vertices of 𝑈 . By symmetry, 𝑣 is contained in a blue 𝐾𝑡,𝑡 with the

vertices of 𝑈 ′.

Now, applying Lemma 2.5.4 to 𝐺0 with 𝑅,𝐵 and adding a vertex 𝑤 to B and

connecting 𝑤 only to 𝑣 gives the desired result.

2.6 Upper bounds for graphs with hanging edges

In this section, we generalize the methods of the previous section. Throughout this

section, let 𝐻 be a graph that is sufficiently connected, which we define to be a

graph that is either 3-connected or isomorphic to the complete bipartite graph 𝐾2,𝑡

with 𝑡 ≥ 2. Further, let 𝐻 ′ ∈ 𝐻 · 𝐾2. We call a vertex 𝑤 a distinguished vertex

of 𝐻 if attaching a pendant edge to 𝐻 at 𝑤 yields a copy of 𝐻 ′. Clearly, if 𝐻 is

vertex-transitive, any vertex in it is distinguished.

Let 𝛿2(𝐺) be the second-smallest degree in 𝐺. Note that 𝛿2(𝐻
′) ≤ 𝛿(𝐻) + 1.

In this section we show that 𝑠(𝐻 ′) ≤ 𝛿2(𝐻
′), and if 𝐻 is bipartite then 𝑠(𝐻 ′) = 1.

Since 𝐻 ′ is not 3-connected, we cannot directly apply Lemma 2.2.1 to construct BEL

gadgets for it. By applying Lemma 2.2.1 to 𝐻, we will get a weaker version of BEL

gadgets for 𝐻 ′. First, however, we need an even simpler lemma.

Lemma 2.6.1. If 𝐻 is a 2-connected graph and 𝐻 ′ ∈ 𝐻 ·𝐾2, then either 𝑠(𝐻 ′) = 1

or there is a graph 𝐹 with a vertex 𝑢 satisfying that

(1) there is an 𝐻 ′-free colouring of 𝐹 in which 𝑢 is not a distinguished vertex of

any monochromatic copy of 𝐻, and

(2) in any 𝐻 ′-free colouring of 𝐹 , 𝑢 is incident to edges of both colours.

Furthermore, if 𝐻 is bipartite, so is 𝐹 .

Proof. Let 𝑡 be the number of vertices of 𝐻. Let ̃︀𝐹 be a minimal Ramsey graph for

𝐻 ′ (if 𝐻 is bipartite, we may take ̃︀𝐹 to be bipartite as well) and obtain a graph 𝐹 ′
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by removing an edge 𝑒 = {𝑤0, 𝑤1} from ̃︀𝐹 , and adding a pendant edge to both 𝑤0

and 𝑤1. By minimality, the graph ̃︀𝐹 − 𝑒 is not Ramsey for 𝐻 ′. Therefore, if 𝐹 ′ is

Ramsey for 𝐻 ′, then one of the pendant edges is necessary for being Ramsey, and

thus 𝑠(𝐻 ′) = 1. Otherwise, 𝐹 ′ is not Ramsey for 𝐻 ′. If 𝐹 ′ satisfies Property (1) and

(2) with 𝑢 = 𝑤0 then we are done.

We now split the argument into two cases, based on which of the two properties

𝐹 ′ fails to possess. In both cases we conclude that one of the following holds:

1. 𝑠(𝐻) = 1,

2. There is a graph 𝐹 (different from 𝐹 ′) with the properties desired by the lemma,

3. There is a graph 𝐹 ′′ with a special property (𝑃 ).

After this, we will show that property (𝑃 ) implies the existence of 𝐹 , as desired.

The Property (𝑃 ) is the following. 𝐹 ′′ contains 𝑡−1 vertices 𝑢 = 𝑣0, 𝑣1, 𝑣2, . . . , 𝑣𝑡−2

that are at pairwise distance at least 𝑡 so that

(𝑎) there is an 𝐻 ′-free colouring 𝜒 of 𝐹 ′′ in which all edges containing 𝑢 = 𝑣0 are

red and, for every 0 ≤ 𝑖 ≤ 𝑡− 2, 𝑣𝑖 is not a distinguished vertex of any red copy

of 𝐻; and

(𝑏) in any colouring of 𝐹 ′′ in which 𝑢 is incident to edges of only one colour, all of

𝑣1, . . . , 𝑣𝑡−2 are contained as distinguished vertices in a monochromatic copy of

𝐻.

Assume first that in any 𝐻 ′-free colouring of 𝐹 ′, the vertex 𝑤0 is a distinguished

vertex in a monochromatic copy of 𝐻. It is possible that in every 𝐻 ′-free colouring

of 𝐹 ′, the vertex 𝑤0 is a distinguished vertex in a monochromatic copy of 𝐻 in both

colours. In this case, 𝑠(𝐻) = 1 (just add a pendant edge to 𝑤0). Otherwise, there is

an 𝐻-free colouring in which 𝑤0 is a distinguished vertex in a monochromatic copy

of 𝐻 in only one colour. In the latter case, the graph 𝐹 ′′ may be obtained by taking

𝑡 − 2 copies of 𝐹 taking 𝑣1, . . . , 𝑣𝑡−2 to be the copies of 𝑤0, and taking 𝑢 to be an

isolated vertex.
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For the second case, assume that there is a colouring of 𝐹 ′ without a monochro-

matic copy of 𝐻 ′ in which 𝑤0 is not a distinguished vertex in any monochromatic

copy of 𝐻 and that there is a colouring of 𝐹 ′ without a monochromatic copy of 𝐻 ′

in which 𝑤0 is incident to edges of only one colour. Note that if we add the edge 𝑒 to

𝐹 ′ then 𝐹 ′ is Ramsey for 𝐻 ′ and so, in particular, if we take the colouring without a

monochromatic copy of 𝐻 ′ in which 𝑤0 is incident to edges of only one colour, say 𝐶0,

and colour 𝑒 in the other colour, say 𝐶1, we must create a copy of 𝐻 ′; this copy must

contain 𝑒 and be of colour 𝐶1. But the degree of 𝑤0 in colour 𝐶1 in this colouring is

1, and so 𝑤0 cannot be contained in a monochromatic copy of 𝐻 in colour 𝐶1. There-

fore, the edge 𝑒 must be a pendant edge in a monochromatic copy of 𝐻 ′. Note further

that in this colouring 𝑤0 is not a distinguished vertex in a monochromatic copy of

𝐻, since in 𝐹 ′ we added a pendant edge to 𝑤0 and this would create a copy of 𝐻 ′ in

the colouring of 𝐹 ′, so in the colouring of 𝐹 ′ we must have that 𝑤1 is a distinguished

vertex in a monochromatic copy of 𝐻. Note that, since we added a pendant edge to

𝑤1, it cannot be a distinguished vertex in monochromatic copies in both colours, for

otherwise there would be a copy of 𝐻 ′ (in the colour of the pendant edge).

Now, obtain 𝐹 ′′ as follows. Take |𝑉 (𝐻)| (𝑡− 1) copies of 𝐹 ′, call them 𝐹 ′
0, 𝐹

′
1, . . . ,

𝐹 ′
|𝑉 (𝐻)|(𝑡−1). For each copy 𝐹 ′

𝑖 , associate the copy of 𝑤1 in 𝐹 ′
𝑖 with the copy of 𝑤0 in

𝐹 ′
𝑖+1. Take 𝑢 to be the copy of 𝑤0 from 𝐹 ′

0 and take 𝑣𝑖 to be the copy of 𝑤0 from

𝐹 ′
𝑖*|𝑉 (𝐻)|.

The distance from 𝑢 to any 𝑣𝑖 and between any two 𝑣𝑖, 𝑣𝑗 is at least |𝑉 (𝐻)| by
construction. There is a colouring without a monochromatic copy of 𝐻 ′ in which 𝑢 is

incident to edges of only one colour and each 𝑣𝑖 is not contained as the distinguished

vertex in a monochromatic copy of 𝐻 in that same colour; to see this, colour each

𝐹 ′
𝑖 independently without a monochromatic copy of 𝐻 ′ so that its copy of 𝑤0 is

monochromatic in colour 𝐶0. The connectivity condition on 𝐻 guarantees that any

monochromatic copy of 𝐻 must be internal to some copy of 𝐹 ′
𝑖 , and we do not create

any monochromatic copies of 𝐻 ′ since we have said that in any colouring of 𝐹 ′ in

which there is no monochromatic copy of 𝐻 ′ and in which 𝑤0 is incident to edges of

only one colour, 𝑤1 must not be contained in a monochromatic copy of 𝐻 ′ in the other
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colour. We also see by induction that each 𝑣𝑖 must be contained as a distinguished

vertex in a monochromatic copy of 𝐻; indeed, we see this for each copy of 𝑤0 in each

of the 𝐹 ′
𝑖 , as by induction the vertex 𝑤1 in 𝐹

′
𝑖−1 is contained as a distinguished vertex

in a monochromatic copy of 𝐻, and so 𝑤0 in 𝐹
′
𝑖 must be incident to only edges of the

other colour in 𝐹 ′
𝑖 , and so the copy of 𝑤1 in 𝐹 ′

𝑖 is also contained as a distinguished

vertex in a monochromatic copy of 𝐻.

We now show how to obtain a graph 𝐹 with the desired properties from 𝐹 ′′ that

has Property (𝑃 ). To 𝐹 ′′, add two isolated vertices 𝑣 and 𝑣′1 and put a copy of 𝐻 on

the vertex set 𝑢, 𝑣, 𝑣1, . . . , 𝑣𝑡−2 in which 𝑣1 is a distinguished vertex and so that 𝑢𝑣

forms an edge. This is possible since 𝐻 is 2-connected. Finally, add an edge between

𝑣′1 and 𝑣1. This is the graph 𝐹 .

To see that there is an 𝐻 ′-free colouring of 𝐹 in which 𝑢 is not contained in a

monochromatic copy of 𝐻 as a distinguished vertex, let 𝜒 be the colouring of 𝐹 ′′

from (𝑎). Now colour all edges of the copy of 𝐻 on vertex set 𝑢, 𝑣, 𝑣1, . . . , 𝑣𝑡−2 red,

except for the edge 𝑢𝑣 which we colour blue. Note that we have not created any new

monochromatic copies of 𝐻 since 𝐻 is 2-connected and the distance in 𝐹 ′′ between

any 𝑣𝑖 and 𝑣𝑗 (0 ≤ 𝑖 < 𝑗 ≤ 𝑡− 2) is large. Since none of 𝑢, 𝑣1, . . . , 𝑣𝑡−2 is contained in

a red copy of 𝐻 as a distinguished vertex, we have also not created a monochromatic

copy of 𝐻 ′. Thus, Property (1) follows.

Finally, let 𝜒′ be a colouring of 𝐹 in which 𝑢 is incident to edges of only one

colour, say red. By Property (𝑏), each 𝑣𝑖, 1 ≤ 𝑖 ≤ 𝑡− 2, is a distinguished vertex in a

monochromatic copy of 𝐻 in 𝐹 ′′. Suppose, one of those copies, say 𝐻𝑖 that “hangs” at

vertex 𝑣𝑖 is red. Then, either it forms a red copy with another edge containing 𝑣𝑖 (and

there is nothing to prove), or all other edges not in 𝐻𝑖 that are incident to 𝑣𝑖 must

be blue. But then, on the shortest path between 𝑢 and 𝑣𝑖 that misses 𝑣 (which exists

by 2-connectivity of 𝐻) there is some 𝑣𝑗 which is incident to edges of both colours,

and since it is the distinguished vertex of a monochromatic copy of 𝐻 in 𝐹 ′′, there

is a monochromatic 𝐻 ′. So suppose that all the monochromatic copies of 𝐻 in 𝐹 ′′,

of which the vertices 𝑣1, . . . , 𝑣𝑡−2 are distinguished, are blue. Again, either we find a

blue copy of 𝐻 ′, or all edges between the 𝑣𝑖, including the edge 𝑣
′
1𝑣1 are coloured red.
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By assumption, all edges containing 𝑢 are red, including the edge 𝑢𝑣, yielding a red

copy of 𝐻 ′ on the vertex set {𝑢, 𝑣, 𝑣′1, 𝑣1, . . . , 𝑣𝑡−2}.

We now prove a (weak) generalization of Lemma 2.5.2 by using BEL gadgets for

𝐻.

Lemma 2.6.2. Let 𝐻 be a graph that is sufficiently connected and let 𝐻 ′ ∈ 𝐻 ·𝐾2.

Either 𝑠(𝐻 ′) = 1 or the following holds. Given an 𝐻-free colour pattern 𝑅,𝐵 there

is a graph 𝐺 with an induced copy of 𝑅 ∪𝐵 so that (𝐺,𝑅 ∪𝐵) is 𝐻-robust and:

(1) There exists an 𝐻 ′-free colouring of 𝐺 that extends the colour pattern 𝑅,𝐵 in

which none of the vertices of 𝑅∪𝐵 are distinguished vertices of a monochromatic

copy of 𝐻.

(2) Any 𝐻 ′-free colouring of 𝐺 has the colour pattern 𝑅,𝐵.

Furthermore, if 𝑅 ∪𝐵 and 𝐻 are bipartite, then so is 𝐺.

Proof. LetB = B(𝐻,𝑅,𝐵) be a BEL gadget for𝐻 which exists by Lemma 2.2.1 when

𝐻 is 3-connected, and by Lemma 2.5.1 when 𝐻 = 𝐾2,𝑡 for some 𝑡 ≥ 2. Furthermore,

if 𝐻 is bipartite and if 𝑅 ∪ 𝐵 is bipartite, we may assume that B is bipartite. Note

that B satisfies Property (1) and Property (2) if we replace in the properties 𝐻 ′ by

𝐻.

For every vertex 𝑢 of B, add a copy of the graph 𝐹 given by the previous lemma

(which exists unless 𝑠(𝐻 ′) = 1) and identify the distinguished vertex of 𝐹 with 𝑢; this

is the graph 𝐺. Consider the colouring in which 𝑅 is red and 𝐵 is blue. Since B is a

BEL gadget for 𝐻, this colouring extends to an 𝐻-free colouring of B. This colouring

extends to an 𝐻 ′-free colouring of 𝐺 in which no vertex of B is a distinguished vertex

in a monochromatic copy of 𝐻. This follows from Property (1) in Lemma 2.6.1, since

any copy of 𝐹 meets B only in its distinguished vertex 𝑢, and since 𝐻 is connected.

Therefore, property (1) holds.

To see that property (2) holds, let 𝜒 be an 𝐻 ′-free colouring of 𝐺. Then by

property (2) in Lemma 2.6.1, every vertex 𝑢 of B is incident to edges of both colours
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that do not lie inside B. Therefore, the colouring must be 𝐻-free on B. And thus,

by the property of a BEL gadget, 𝜒 must extend the colour pattern 𝑅 ∪𝐵.

Using the above lemma, we will construct signal senders in which we have some

control over the structure of edges incident to the signal edges, similar to the graphs

in Lemma 2.5.3.

Lemma 2.6.3. Let 𝐻 be a graph that is sufficiently connected, let 𝐻 ′ ∈ 𝐻 ·𝐾2 and

assume that 𝑠(𝐻 ′) ̸= 1. Take 𝑡 to be the number of vertices of 𝐻 Then there is a graph

𝑆− = 𝑆−(𝐻 ′, 𝑒, 𝑓) with two independent edges 𝑒, 𝑓 so that any 𝐻 ′-free colouring of 𝑆−

satisfies that 𝑒 and 𝑓 have different colours, and there is an 𝐻 ′-free colouring of 𝑆−

so that every edge incident to 𝑓 has a different colour from 𝑓 , and so that any vertex

in 𝑒 or 𝑓 is not the distinguished vertex in a monochromatic copy of 𝐻. Furthermore,

if 𝐻 is triangle-free, then 𝑒 and 𝑓 are not contained in any triangles.

Proof. Let 𝜒 be the chromatic number of 𝐻 and let 𝜒 be the set of all 𝜒-colorings of

𝐻. Define 𝜎 to be the size of the smallest color class over all 𝜒-colorings of 𝐵; i.e.,

𝜎 = min
𝜒∈𝜒

min
𝑖∈[𝜒]

|𝜒−1(𝑖)|.
If 𝜒 > 2, letℋ be any (𝜒−1)-uniform linear hypergraph having girth greater than 𝑡

and chromatic number at least 3. If 𝜒 = 2, we take 𝑉 (ℋ) = {𝑣1} and 𝐸(ℋ) = {{𝑣1}}.
In either case, set 𝑁 = |𝑉 (ℋ)| and {𝑣1, 𝑣2, . . . , 𝑣𝑁} = 𝑉 (ℋ).

From ℋ we build a graph 𝐺0 on 𝑉 (ℋ) by joining two vertices if and only if they

are both contained in some hyperedge of ℋ. Throughout this construction we will

keep the underlying structure of ℋ in mind. At this point, each hyperedge in ℋ
corresponds to a clique on (𝜒− 1) vertices.

We now build a graph 𝐺1 by blowing up each vertex 𝑣𝑖 ∈ 𝑉 (𝐺0) into an inde-

pendent set 𝑉𝑖 of size 2𝑡(𝑡 − 1) vertices; that is 𝑉 (𝐺1) = 𝑉1 ⊔ 𝑉2 ⊔ · · · ⊔ 𝑉𝑁 with

|𝑉𝑖| = 2𝑡(𝑡− 1) and 𝑥𝑦 ∈ 𝐸(𝐺1) if and only if there exists a pair of integers 𝑖, 𝑗 ∈ [𝑁 ]

such that 𝑥 ∈ 𝑉𝑖, 𝑦 ∈ 𝑉𝑗, and 𝑣𝑖𝑣𝑗 ∈ 𝐸(𝐺0). Each hyperedge of ℋ now corresponds

to a complete (𝜒 − 1)-partite graph and the intersection of two hyperedges is either

the empty set or some independent set 𝑉𝑖.
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To 𝑉 (𝐺1) add an independent set 𝜃 of 𝜎 − 1 vertices and join every vertex in 𝜃

to every vertex in 𝑉 (𝐺1). Add, for every vertex 𝑣 from 𝑉 (𝐺1), a new vertex 𝑤 and

make 𝑣𝑤 an edge. Add two more vertices and an edge 𝑒 between them. Let 𝐺2 be

the graph obtained by this procedure. Take 𝐵 = 𝐺2.

If 𝐻 has an edge 𝑟 not contained in any 𝐾3, take 𝑥1 and 𝑥2 to be the endpoints

of 𝑟; note such an edge exists if 𝐻 is bipartite. Otherwise, take 𝑟 to be any edge of

𝐻 and 𝑥1, 𝑥2 to be its endpoints. Define 𝐻̃ to be the (labeled) graph on 𝑡− 1 vertices

obtained from 𝐻 ′ by removing the vertices 𝑥1 and 𝑥2. We obtain 𝐺3 from 𝐺2 by

inserting the edges of 2𝑡 vertex-disjoint (labeled) copies of 𝐻̃ into each 𝑉𝑖. Take 𝑅 to

be the edges we just added, that is the edges of 𝐺3 that are not in 𝐺2.

Let B be the graph obtained by applying Lemma 2.6.2 to the colour pattern 𝑅,𝐵

(we will show later that 𝑅,𝐵 has the necessary properties). The vertex set of 𝑆− is

obtained by adding two vertices 𝑥′1 and 𝑥
′
2 to 𝑉 (B). We add the edge 𝑓 := 𝑥′1𝑥

′
2 and,

for each 𝑖 and for each copy of 𝐻̃ that we added to 𝑉𝑖, we connect 𝑥
′
1 to the neighbors

of 𝑥1 in that copy, and 𝑥′2 to the neighbors of 𝑥2 in that copy.

We will now check that the colour pattern 𝑅,𝐵 does not contain a monochromatic

𝐻.

Note that 𝑅 is the disjoint union of connected components that contain at most

𝑡− 1 vertices, so 𝑅 cannot contain a copy of 𝐻. Note also that 𝐵, excluding vertices

of degree 1, is a 𝜒-chromatic graph where one of the parts has size 𝜎−1, so 𝐵 cannot

contain a monochromatic copy of 𝐻 by definition of 𝜎.

Indeed, we argue that we may extend 𝑅,𝐵 to colour the edges incident to 𝑥′1, 𝑥
′
2

without creating a monochromatic copy of 𝐻. To do this, colour all of 𝑅 red, colour

all of 𝐵 blue, colour 𝑓 blue, and colour all of the edges incident to 𝑓 red. Clearly,

we do not create a blue copy of 𝐻. Note that, in the case 𝐻 is 3-connected, any

red copy of 𝐻 using 𝑥′1 and/or 𝑥
′
2 must remain connected after removing 𝑥′1 and 𝑥

′
2,

and so vertices of the copy, excluding 𝑥′1 and 𝑥′2, must be contained entirely within

the vertex set of one of the copies of 𝐻̃ inside one of the 𝑉𝑖. If we fix any copy of

𝐻̃ and consider the graph induced by this copy along with 𝑥′1 and 𝑥′2, this graph is

isomorphic to 𝐻 ′ in which 𝑟 is coloured blue rather than red. This graph has no red

42



copy of 𝐻, as the vertex of degree 1 cannot be used in a copy of 𝐻, and then the

number of red edges remaining after this vertex is omitted is fewer than the number

of edges in 𝐻.

Finally, we wish to show that if the edges of 𝐵 are coloured blue, the edges of 𝑅

are coloured red, and 𝑓 is coloured red, then there must be a monochromatic copy of

𝐻. Recall that the induced graph on 𝑉𝑖 consists of 2𝑡(𝑡− 1) vertex-disjoint red copies

of 𝐻̃. For each such copy of 𝐻̃ in 𝑉𝑖, if the bipartite graph between 𝐻̃ and {𝑥′1, 𝑥′2}
is colored entirely red, then this forms a red copy of 𝐻 ′. If this is not the case, for

each 𝑉𝑖 and all the copies of 𝐻̃ in 𝑉𝑖, there is at least one blue edge in the bipartite

graph between 𝐻̃ and {𝑥′1, 𝑥′2}. Hence the bipartite graph on 𝑉𝑖∪{𝑥′1, 𝑥′2} contains at
least 2(𝑡− 1) blue edges, which implies that either the bipartite graph 𝑉𝑖 ∪ {𝑥′1} has

at least has 𝑡 − 1 blue edges or the bipartite graph 𝑉𝑖 ∪ {𝑥′1} has at least 𝑡 − 1 blue

edges. In the case 𝜒 = 2, then the graph 𝐵 along with the 𝑡 − 1 blue edges contain

a blue 𝐾𝜎,𝑡−1, which must contain a blue copy of 𝐻, and there are other blue edges

incident to either part, so taking one of those forms a blue 𝐻 ′, as desired.

The remaining case is when 𝜒 > 2. In this case, we define a 2-colouring of ℋ; we

colour vertex 𝑣𝑖 with colour 1 if 𝑥′1 has at least 𝑡− 1 blue edges to 𝑉𝑖, and otherwise

𝑥′2 has at least 𝑡− 1 blue edges to 𝑉𝑖 and we colour vertex 𝑣𝑖 with colour 2. Because

ℋ has chromatic number at least 3, there must exist a monochromatic edge under

this colouring. Therefore, there is some 𝑗 ∈ [2] and some edge 𝑠 of the hypergraph

so that 𝑥′𝑗 has blue-degree at least 𝑡 − 1 to each of the 𝑉𝑖 with 𝑖 ∈ 𝑗. However, this

forms a complete blue multipartite graph with one part of size 𝜎 and the remaining

parts of size 𝑡− 1, which must contain a blue 𝐻 ′.

As discussed around Lemma 2.5.2, the above lemma immediately gives the follow-

ing version of BEL gadgets for 𝐻 ′.

Lemma 2.6.4. If 𝐻 is sufficiently connected and 𝐻 ′ ∈ 𝐻 · 𝐾2 with 𝑠(𝐻 ′) ̸= 1, let

𝑅,𝐵 be a colour pattern. There is a graph ̃︀B with an induced copy of 𝑅 ∪ 𝐵 so that

(̃︀B, 𝑅 ∪𝐵) is 𝐻-robust and so that the following hold.

(1) Any 𝐻 ′-free colouring in which 𝑅 is red and 𝐵 is blue and no 𝐻 in 𝑅 is incident
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or contains any edges of 𝐵 and no 𝐻 in 𝐵 is incident or contains any edges of

𝑅 extends to a 𝐻 ′-free colouring of ̃︀B in which no vertex of 𝑅 ∪𝐵 is contained

as a distinguished vertex in a monochromatic copy of a 𝐻, except those vertices

contained as a distinguished vertex in a copy of 𝐻 within 𝑅 or within 𝐵.

(2) Any 𝐻 ′-free colouring of ̃︀B has colour pattern 𝑅,𝐵.

The previous lemma will allow us to show the upper bound 𝑠(𝐻 ′) ≤ 𝛿2(𝐻
′).

Theorem 2.6.5. If 𝐻 is sufficiently connected and 𝐻 ′ ∈ 𝐻 · 𝐾2, we have 𝑠(𝐻 ′) ≤
𝛿2(𝐻

′).

Proof. If 𝑠(𝐻) = 1, we are done, and otherwise we may apply Lemma 2.6.4. Take 𝑡

to be the number of vertices of 𝐻. Take 𝐵 to be 𝑡− 1 vertex-disjoint cliques, each on

𝑡 vertices. Apply Lemma 2.6.4 to this colour pattern (𝑅 is empty) to get a graph B.

Pick vertices 𝑣1, . . . , 𝑣𝑡−1, one from each of the cliques from 𝐵. Pick a vertex 𝑣𝑡 ̸= 𝑣1

from the first clique. Add edges to form a clique on 𝑣1, . . . , 𝑣𝑡−1, and add one more

edge between 𝑣1 and 𝑣𝑡. Observe that this is not Ramsey for 𝐻 ′, as we may colour

all of 𝐵 blue and all of the edges added to 𝐵 red; in blue there is no copy of 𝐻 ′ by

construction, and in red we have a connected component on 𝑡 vertices, but one of

those vertices has degree 1 so there is no red 𝐻 in this part of the graph. We will

now add one more vertex 𝑣 of degree 𝛿2(𝐻
′) and show that with this vertex the graph

is Ramsey for 𝐻 ′. We first consider the case where there is a vertex of degree 𝛿2(𝐻
′)

that is not incident to the vertex of degree 1 in 𝐻 ′. Add a vertex 𝑣 and connect it to

𝑣1, . . . , 𝑣𝛿2(𝐻′). Otherwise, if the vertex of degree 𝛿2(𝐻
′) is incident to the vertex of

degree 1, then connect 𝑣 to 𝑣1, . . . , 𝑣𝛿2(𝐻′)−1 and to 𝑣𝑡. In either case, if 𝐵 is coloured

blue, then if 𝑣 has any outgoing blue edges it is contained in a blue 𝐻 ′ as the pendant

vertex, and, otherwise, all of its outgoing edges are red and it is contained in a red

𝐻 ′.
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2.7 The complete graph with an added vertex

We define 𝐻𝑡,𝑑 to be the graph on 𝑡+ 1 vertices that contains a 𝐾𝑡 and in which the

remaining vertex (not in the 𝐾𝑡) has degree 𝑑, with its neighbors being any 𝑑 vertices

of the 𝐾𝑡.

Note 𝐻𝑑,𝑑 is isomorphic to 𝐾𝑑+1, for which 𝑠(𝐾𝑑+1) is known to be 𝑑2 [12]. For

𝑑 = 1, it was recently shown that 𝑠(𝐻𝑡,1) = 𝑡 − 1 [42]. For 𝑑 = 0, it was found

𝑠(𝐻𝑡,0) = 𝑠(𝐾𝑡) = (𝑡− 1)2 [88]. A natural question that arises is how 𝑠(𝐻𝑡,𝑑) behaves

when 𝑑 is between 1 and 𝑡. We now state the main result of this section.

Theorem 2.7.1. For all 1 < 𝑑 < 𝑡 we have

𝑠(𝐻𝑡,𝑑) = 𝑑2.

The proof of this theorem is presented in two parts. In the first part, we prove

that 𝑠(𝐻𝑡,𝑑) ≥ 𝑑2 for all values of 𝑑. The second part expands on the ideas in [12]

and [42] and deals with the upper bound on 𝑠(𝐻𝑡,𝑑) for 𝑑 ≥ 2: we construct a graph

𝐺 with a vertex 𝑣 of degree 𝑑2 that is Ramsey for 𝐻𝑡,𝑑 such that 𝐺 − 𝑣 ̸→ 𝐻𝑡,𝑑. It

follows from this that 𝑠(𝐻𝑡,𝑑) ≤ 𝑑2, and so we obtain 𝑠(𝐻𝑡,𝑑) = 𝑑2 for all 1 < 𝑑 < 𝑡.

We now begin with the first part of our proof, which closely follows the ideas of [12].

Lemma 2.7.2. Let 𝐻 be a graph such that, for all 𝑣 ∈ 𝑉 (𝐻), the neighborhood of 𝑣

contains a copy of 𝐾𝑑. Then 𝑠(𝐻) ≥ 𝑑2.

Proof. Suppose there exists 𝐹 ∈ ℳ(𝐻) and some 𝑣 ∈ 𝑉 (𝐹 ) with deg (𝑣) < 𝑑2. Since

𝐹 is minimal, we can 2-color the edges of 𝐹 − 𝑣 so that there is no monochromatic

copy of 𝐻. Consider any such 2-coloring of 𝐹 − 𝑣. In this coloring, let 𝑆 denote the

neighborhood of 𝑣 and let 𝑇1, . . . , 𝑇𝑘 be a maximal set of vertex-disjoint red copies of

𝐾𝑑 in 𝑆. Since deg (𝑣) < 𝑑2, we must have |𝑆| < 𝑑2, and so 𝑘 ≤ 𝑑− 1. Now we color

all the edges connecting 𝑣 to 𝑇1, . . . , 𝑇𝑘 blue, and all other edges incident to 𝑣 red.

We claim that no monochromatic copy of 𝐻 arises in such a coloring. Note that such

a copy would need to use 𝑣. We will now show that there is no red 𝑑-clique in the
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red neighborhood of 𝑣 and that there is no blue 𝑑-clique in the blue neighborhood of

𝑣, thus showing that 𝑣 cannot be contained in any monochromatic copy of 𝐻.

Any red 𝑑-clique in 𝑆 must intersect one of 𝑇1, . . . , 𝑇𝑘 and therefore would have a

blue edge from 𝑣. On the other hand, suppose there exists a blue 𝑑-clique in the blue

neighborhood of 𝑣, which is precisely 𝑇1∪· · ·∪𝑇𝑘. Since 𝑘 ≤ 𝑑−1, by the pigeonhole

principle, at least two vertices of this blue 𝑑-clique must be contained in the same 𝑇𝑖.

These two vertices, however, are connected by a red edge, a contradiction. It follows

that such an 𝐹 ∈ ℳ(𝐻) cannot exist, and hence 𝑠(𝐻) ≥ 𝑑2.

Since the neighborhood of each vertex in 𝐻𝑡,𝑑 contains a copy of 𝐾𝑑, we have the

following corollary.

Corollary 2.7.3. For all values of 𝑑 we have 𝑠(𝐻𝑡,𝑑) ≥ 𝑑2.

This completes the first part of our proof, establishing a lower bound on the value

of 𝑠(𝐻𝑡,𝑑).

For the upper bound, we wish to construct an 𝐻-minimal graph with vertex of

degree exactly 𝑑2 for 𝑑 ≥ 2. To that end, we wish to show that 𝐻𝑡,𝑑 has BEL gadgets.

Theorem 2.2.1 implies this in the case 𝑑 ≥ 3, but not when 𝑑 = 2; the majority of

the work in this section is proving that 𝐻𝑡,2 has BEL gadgets.

Theorem 2.7.4. For all 2 ≤ 𝑑 ≤ 𝑡, the graph 𝐻𝑡,𝑑 has BEL gadgets.

We postpone the proof of this theorem to the end of the section; let us first see

why it implies the desired upper bound on 𝑠(𝐻𝑡,𝑑).

Lemma 2.7.5. For all 2 ≤ 𝑑 ≤ 𝑡 there exists a graph 𝐹 ′ with vertex 𝑣 of degree 𝑑2

so that 𝐹 ′ → 𝐻𝑡,𝑑 but 𝐹 ′ − 𝑣 ̸→ 𝐻𝑡,𝑑.

Proof. If 𝑑 = 𝑡 then 𝑠(𝐻𝑡,𝑑) = 𝑑2 by [12], which immediately implies the lemma; we

will henceforth assume 𝑑 < 𝑡.

The graph 𝐻𝑡,𝑑 has BEL gadgets by Theorem 2.7.4. This means that, for any

graph 𝐺 and 2-coloring 𝜓 of 𝐺 without a monochromatic copy of 𝐻, there exists a

graph 𝐹 ̸→ 𝐻𝑡,𝑑 with an induced copy of 𝐺 such that every 2-coloring of 𝐹 without
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a monochromatic copy of 𝐻𝑡,𝑑 agrees with 𝜓 on the copy of 𝐺, up to permutation of

colors. We describe our graph 𝐺 together with its coloring 𝜓 for our BEL gadget as

follows:

1. 𝐺 contains 𝑑 disjoint red copies 𝑇1, . . . , 𝑇𝑑 of 𝐾𝑡,

2. For each distinct pair 𝑖 and 𝑗, there is a complete blue bipartite graph between

𝑇𝑖 and 𝑇𝑗, and

3. For each way there is to choose a 𝑑-tuple 𝑇 = (𝑡1, . . . , 𝑡𝑑) ∈ 𝑇1 × · · · × 𝑇𝑑 by

taking one vertex from each 𝑇𝑖, we add a set of 𝑡−𝑑 vertices 𝑆𝑇 = {𝑣𝑇1 , . . . , 𝑣𝑇𝑡−𝑑};
we add blue edges between all pairs of vertices in 𝑆𝑇 so that 𝑆𝑇 becomes a blue

clique, and add more blue edges so that there is a complete blue bipartite graph

between 𝑆𝑇 and 𝑇 . For distinct 𝑑-tuples 𝑇 and 𝑇 ′, 𝑆𝑇 and 𝑆𝑇 ′ are disjoint.

An example of this 𝐺 with coloring 𝜓 is shown in Figure 2-3. We first claim that this

coloring 𝜓 contains no monochromatic copy of 𝐻𝑡,𝑑. The connected components in

red are all copies of 𝐾𝑡, so there is no red copy of 𝐻𝑡,𝑑. We also claim there is no blue

copy of 𝐻𝑡,𝑑. If we omit the vertices that are contained in the various 𝑆𝑇 , the blue

graph is 𝑑-partite and so contains no 𝐾𝑡, as 𝑑 < 𝑡. Therefore, any blue copy of 𝐻𝑡,𝑑

must use some vertex 𝑤 in some 𝑆𝑇 as part of a blue 𝐾𝑡. Note that the blue degree of

𝑤 is 𝑡−1, and therefore this blue 𝐾𝑡 must consist precisely of 𝑤 and its neighborhood.

However, any vertex that is not 𝑤 or contained in the blue neighborhood of 𝑤 has

degree at most 𝑑− 1 to the neighborhood of 𝑤 by construction, and so cannot be the

vertex of degree 𝑑 in 𝐻𝑡,𝑑. Therefore, there is no blue copy of 𝐻𝑡,𝑑.

Consider a graph 𝐹 ̸→ 𝐻𝑡,𝑑 with an induced copy of 𝐺 such that any 2-coloring

of 𝐹 without a monochromatic copy of 𝐻𝑡,𝑑 restricts to the coloring 𝜓 on the induced

copy of 𝐺, up to permutation of the colors; this exists by Theorem 2.7.4. We now

modify 𝐹 to 𝐹 ′ by adding a vertex 𝑣, and adding 𝑑 edges from 𝑣 to each 𝑇𝑖 in the

induced copy of 𝐺. The vertex 𝑣 clearly has degree 𝑑2. We claim that this modified

graph 𝐹 ′ is Ramsey for 𝐻𝑡,𝑑. Consider any 2-coloring of 𝐹 ′. In this 2-coloring, if

there is a monochromatic copy of 𝐻𝑡,𝑑 in the subgraph 𝐹 = 𝐹 ′− 𝑣, then we are done.
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Otherwise suppose the 2-coloring does not yield a monochromatic copy of 𝐻𝑡,𝑑 in 𝐹 .

Then the induced graph 𝐺 must have coloring 𝜓, up to permutation of colors. Let us

assume without loss of generality that each 𝑇𝑖 forms a red clique and the remaining

edges are blue.

If 𝑣 had red degree 𝑑 to some 𝑇𝑖, then 𝑣 together with 𝑇𝑖 would be a red copy of

𝐻𝑡,𝑑. Thus, at least one edge from 𝑣 to each copy of 𝑇𝑖 must be colored blue. Choose

one vertex 𝑡𝑖 from each 𝑇𝑖 so that 𝑣 has a blue edge to 𝑡𝑖 and take 𝑇 = (𝑡1, . . . , 𝑡𝑑).

Then these vertices 𝑡𝑖 together with 𝑆𝑇 forms a blue 𝐾𝑡, and adding 𝑣 creates a blue

𝐻𝑡,𝑑.

This immediately gives the desired upper bound on 𝑠(𝐻𝑡,𝑑).

Corollary 2.7.6. For every 2 ≤ 𝑑 ≤ 𝑡, we have 𝑠(𝐻𝑡,𝑑) ≤ 𝑑2.

Proof. By the previous lemma, there is a graph 𝐹 ′ with a vertex 𝑣 of degree 𝑑2 which

is Ramsey for 𝐻𝑡,𝑑 so that 𝐹 ′ − 𝑣 is not Ramsey for 𝐻𝑡,𝑑. Take 𝐹
′′ to be a subgraph

of 𝐹 ′ which is minimal subject to the constraint that 𝐹 ′′ is Ramsey for 𝐹 . 𝐹 ′′ must

contain 𝑣, and so 𝑠(𝐻𝑡,𝑑) ≤ 𝛿(𝐹 ′′) ≤ 𝑑2, as desired.

𝑣𝑦

𝑣𝑥

𝑣𝑧

𝑆𝑇

Figure 2-3: Example of 𝐺 with the coloring 𝜓 for 𝑡 = 5 and 𝑑 = 3. Here, only one
set 𝑆𝑇 is shown, corresponding to the triple 𝑇 = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧). The dashed blue edges
represent complete blue bipartite graphs. When we add the external vertex 𝑣, we will
connect it to three vertices from each copy of 𝐾5, making its degree 𝑑2 = 9.
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We now prove that 𝐻𝑡,2 has BEL gadgets. Note that, for 𝑡 = 2, the graph 𝐻2,2

is isomorphic to 𝐾3, for which it is known that BEL gadgets exist [12]. Henceforth,

we will assume that 𝑡 ≥ 3. The ideas behind the proof of BEL gadgets for 𝐻𝑡,2 stems

from a strategy in [42]. We now introduce the main tool that we will need.

Definition 2.7.7. Write 𝐹
𝜖→ 𝐻 to mean that, for every 𝑆 ⊆ 𝑉 (𝐹 ) such that |𝑆| ≥

𝜖|𝑉 (𝐹 )|, the subgraph of 𝐹 induced by 𝑆 is Ramsey for 𝐻 (i.e. 𝐹 [𝑆] → 𝐻).

The following lemma, which is a strengthening of a theorem in [76], is proven in

[42].

Lemma 2.7.8. For any graph 𝐻 and every 𝜖 > 0 and 𝑡 > 2, if 𝜔(𝐻) < 𝑡 then there

exists a graph 𝐹 that is 𝐾𝑡-free such that 𝐹
𝜖→ 𝐻.

We are now ready to construct a graph 𝐺0 so that, for every coloring of 𝐺0 without

a monochromatic copy of𝐻𝑡,2, a particular copy of some (arbitrary) graph 𝑅0 is forced

to be monochromatic. Furthermore, there is a coloring of 𝐺0 where 𝑅0 is red, all of

the edges leaving 𝑅0 are blue, there is no red 𝐻𝑡,2, and there is no blue 𝐾𝑡. The proof

of this lemma closely follows the arguments in [42].

Lemma 2.7.9. Let 𝑅0 be a graph that has no copy of 𝐻𝑡,2. Then there exists a graph

𝐺0 with an induced copy of 𝑅0 and the following properties:

1. There is a 2-coloring of 𝐺0 without a red copy of 𝐻𝑡,2 and without a blue copy

of 𝐾𝑡 in which the edges of 𝑅0 are red, and all of the edges incident to, but not

contained in, 𝑅0 are blue, and

2. Every 2-coloring of 𝐺0 without a monochromatic copy of 𝐻𝑡,2 results in 𝑅0 being

monochromatic.

Proof. Take 𝜖 = 2−𝑛−𝑡2 , where 𝑛 is the number of vertices in 𝑅0. Let 𝐹1, 𝐹2, . . . , 𝐹𝑡−2

be copies of the graph as defined in Lemma 2.7.8 when applied to 𝐻 = 𝐻𝑡−1,1. We

claim that the graph 𝐺0 := 𝐹1�𝐹2� · · ·�𝐹𝑡−2�𝑅0 satisfies both desired conditions

(see Figure 2-4).
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To see the first property, color all the edges internal to any of 𝐹1, 𝐹2, . . . , 𝐹𝑡−2, 𝑅0

red and the remaining edges blue. There can be no monochromatic red copy of 𝐻𝑡,2,

since each 𝐹𝑖 is 𝐾𝑡-free and 𝑅0 is 𝐻𝑡,2-free. Furthermore, there is no blue 𝐾𝑡, since

the graph induced by the blue edges is (𝑡− 1)-chromatic.

To see the second property, we consider some 2-coloring 𝜓 of 𝐺0 so that 𝐺0

does not have a monochromatic copy of 𝐻𝑡,2. We show that this forces 𝑅0 to be

monochromatic. For a subset 𝑆 of the vertices and some vertex 𝑣 ̸∈ 𝑆, define the

color pattern 𝑐𝑣 with respect to 𝑆 to be the function with domain 𝑆 that maps a vertex

𝑤 ∈ 𝑆 to the color of the edge (𝑣, 𝑤). This method was utilized in [42].

For a vertex 𝑣 ∈ 𝐹1, consider its color pattern 𝑐𝑣 with respect to 𝑉 (𝑅0). There

are 2𝑛 possible color patterns, so at least a 2−𝑛 fraction of the vertices in 𝐹1 have the

same color pattern with respect to 𝑉 (𝑅0). Call the set of these vertices 𝑆1. Then

|𝑆1| ≥ 2−𝑛 · |𝑉 (𝐹1)| ≥ 𝜖 · |𝑉 (𝐹1)|, so there must exist a monochromatic copy 𝐻1

isomorphic to 𝐻𝑡−1,1 in 𝑆1. Without loss of generality, suppose 𝐻1 is monochromatic

in red. We claim that all the edges going from 𝑆1 to 𝑅0 (and in particular from

𝐻1 to 𝑅0) are blue. Indeed, since all vertices 𝑣 ∈ 𝑆1 have the same color pattern

with respect to 𝑅0, then for a fixed vertex 𝑖 ∈ 𝑅0 the edges (𝑖, 𝑣) have the same

color for all 𝑣 ∈ 𝑆1. If that color is red, then 𝑖 along with all the vertices of 𝐻1

would form a monochromatic red copy of 𝐻𝑡,2, which contradicts our definition of

𝜓. We now proceed inductively. Suppose we have identified red copies of 𝐻𝑡−1,1

labeled 𝐻1, . . . , 𝐻𝑘−1 in 𝐹1, . . . , 𝐹𝑘−1 with vertex sets 𝑉1, . . . , 𝑉𝑘−1 respectively, and

that all edges between these copies as well as to 𝑅0 are blue. In 𝐹𝑘, at least a

2−𝑛−𝑡(𝑘−1) > 𝜖 fraction of the vertices 𝑆𝑘 have the same color pattern with respect to

𝑉 (𝑅0)∪𝑉 (𝐻1)∪· · ·∪𝑉 (𝐻𝑘−1). Since |𝑆𝑘| > 𝜖·|𝑉 (𝐹𝑘)|, we have 𝐹 [𝑆𝑘] → 𝐻𝑡−1,1. Find

a monochromatic copy of 𝐻𝑡−1,1 and call it 𝐻𝑘. Suppose 𝐻𝑘 is blue. Then, as in the

case before, all the edges between 𝐻𝑘 and 𝑅0, as well as to 𝐻1, . . . , 𝐻𝑘−1, would have

to be red, otherwise there would be a monochromatic blue copy of 𝐻𝑡,2. But if all

these edges are red, then any vertex of 𝐻𝑘 along with 𝐻1 forms a monochromatic copy

of 𝐻𝑡,2, a contradiction. Thus, 𝐻𝑘 must be red, and consequently all edges between

𝐻𝑘 and 𝐻1, . . . , 𝐻𝑘−1, 𝑅0 must be blue, completing the inductive step. After applying
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this argument 𝑡− 2 times, we have a collection (𝐻1, . . . , 𝐻𝑡−2) of red copies of 𝐻𝑡−1,1

with complete bipartite blue graphs between any two of them. Now, suppose some

edge in 𝑅0 was blue. Then this edge, along with one vertex in each of 𝐻1, . . . , 𝐻𝑡−2

and one other arbitrary vertex in 𝐻1 forms a monochromatic blue copy of 𝐻𝑡,2. Thus,

all the edges in 𝑅0 must be colored red, as required.

𝐹1 𝐹2 𝐹3

𝑅0

Figure 2-4: Construction of the gadget graph 𝐺0 for 𝑡 = 5 and 𝑑 = 2. The dashed
lines represent complete bipartite graphs.

We now introduce a lemma which is a stronger version of an idea first introduced

in [12] known as a positive signal sender.

Lemma 2.7.10. There is a graph 𝐺 with two independent edges 𝑒 and 𝑓 so that, in

any 2-coloring of 𝐺 without a monochromatic copy of 𝐻𝑡,2, both edges 𝑒 and 𝑓 must

have the same color. Furthermore, there is a 2-coloring of 𝐺 with no red 𝐻𝑡,2 and no

blue 𝐾𝑡 in which both edges 𝑒 and 𝑓 are red, and in which all of the edges incident to

either of 𝑒 or 𝑓 are blue. Furthermore, there are no edges incident to both 𝑒 and 𝑓 .

Proof. This follows by taking 𝑅0 in the previous lemma to be two disjoint edges, 𝑒

and 𝑓 .
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We now take the above lemma and use it to prove a slight strengthening of itself.

Lemma 2.7.11. There is a graph 𝐺 with two independent edges 𝑒 and 𝑓 so that in

any 2-coloring of 𝐺 without a monochromatic copy of 𝐻𝑡,2 both edges 𝑒 and 𝑓 must

have the same color. Furthermore, there is a 2-coloring of 𝐺 with no red 𝐻𝑡,2 and no

blue 𝐾𝑡 in which both edges 𝑒 and 𝑓 are red, and in which all of the edges incident to

either of 𝑒 or 𝑓 are blue. Furthermore, any path between a vertex of 𝑒 and a vertex

of 𝑓 has length at least 3.

Proof. Lemma 2.7.10 gave us a graph that satisfied all of these constraints except

for the last one. Take two copies 𝐺′, 𝐺′′ of this graph from Lemma 2.7.10, with

distinguished pairs of edges (𝑒′, 𝑓 ′) and (𝑒′′, 𝑓 ′′), respectively. Identify 𝑓 ′ with 𝑒′′ and

take 𝑒 = 𝑒′ and 𝑓 = 𝑓 ′′, and call the resulting (combined) graph 𝐺. By construction,

any path between a vertex of 𝑒 and a vertex of 𝑓 has length at least 3. Also by

construction, in any 2-coloring of 𝐺 without a monochromatic copy of 𝐻𝑡,2, we must

have that 𝑒 = 𝑒′ and 𝑓 ′ have the same color, and 𝑓 ′ = 𝑒′′ and 𝑓 ′′ = 𝑓 have the same

color, and so 𝑒 and 𝑓 have the same color. Finally, if we color 𝑒, 𝑓 ′, and 𝑓 all red, then

we may extend this to colorings of 𝐺′ and 𝐺′′ so that neither 𝐺′ nor 𝐺′′ contains a red

𝐻𝑡,2 or a blue 𝐾𝑡 so that all edges incident to either of 𝑒 or 𝑓 are blue. This coloring

contains no red 𝐻𝑡,2, as every connected component in red is contained entirely within

at least one of 𝐺′ and 𝐺′′, and neither one of these graphs has a red copy of 𝐻𝑡,2.

There is no blue copy of 𝐾𝑡, as every blue triangle is contained either entirely within

𝐺′ or entirely within 𝐺′′, and neither one contains a blue copy of 𝐾𝑡.

The next lemma uses these so-called strong positive signal senders to construct a

weaker version of BEL gadgets for 𝐻𝑡,2. It is weaker because it does not guarantee

that we can agree with a given coloring 𝜓 of a graph up to permutation of colors; it

only guarantees that in a monochromatic 𝐻𝑡,2-free coloring of the graph, the edges

that are red in 𝜓 all end up with one color 𝛼1 and the edges that are blue in 𝜓 all end

up with one color 𝛼2. The two colors 𝛼1 and 𝛼2 may be the same. After proving this

lemma, we will then show that the existence of this weaker version of BEL gadgets

implies the full strength of the BEL theorem, completing the proof.
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Lemma 2.7.12. Given edge-disjoint graphs 𝐺0 and 𝐺1 on the same vertex set that

are both 𝐻𝑡,2-free, there is a graph 𝐺 with an induced copy of 𝐺0 ∪ 𝐺1 so that there

is a 2-coloring of 𝐺 without a monochromatic copy of 𝐻𝑡,2 in which 𝐺0 is red and 𝐺1

is blue. Furthermore, in any 2-coloring of 𝐺 without a monochromatic 𝐻𝑡,2, all the

edges in 𝐺0 have the same color and all the edges in 𝐺1 have the same color.

Proof. Take 𝐹 to be a copy of the graph given by Lemma 2.7.11.

Form a graph 𝐺 as follows. Start with 𝐺0 ∪𝐺1 on the same vertex set. Add two

edges 𝑒0 and 𝑒1 independent from both 𝐺0 and 𝐺1. For any edge 𝑓0 in 𝐺0, we add

a copy of 𝐹 with 𝑒0 and 𝑓0 as the distinguished edges. For any edge 𝑓1 in 𝐺1, we

add a copy of 𝐹 with 𝑒1 and 𝑓1 as the distinguished edges. By construction, in any

2-coloring of 𝐺 without a monochromatic 𝐻𝑡,2, all of the edges in 𝐺0 have the same

color and all of the edges in 𝐺1 have the same color.

Consider coloring all edges of 𝐺0 as well as 𝑒0 red and all edges of 𝐺1 as well as

𝑒1 blue. By construction of 𝐹 , we may extend this coloring to a coloring of 𝐺 in

which every copy of 𝐹 attached to two edges in 𝐺0 contains no blue 𝐾𝑡 and no red

𝐻𝑡,2 and in which all of the edges of 𝐹 that are incident to the two edges are blue.

Symmetrically, in this coloring every copy of 𝐹 attached to two edges in 𝐺1 contains

no red 𝐾𝑡 and no blue 𝐻𝑡,2 and satisfies that all of the edges of 𝐹 that are incident

to the two edges are red.

We claim there is no blue 𝐻𝑡,2. By symmetry it will follow that there is also no

red 𝐻𝑡,2. First, observe that if we pick any two edges (𝑒, 𝑓) to which a copy of 𝐹

is attached, the vertices of any triangle in 𝐺 are either contained entirely in 𝐹 or

entirely in the graph 𝐺′ obtained by removing the vertices of 𝐹 except 𝑒 and 𝑓 ; this

follows immediately from the construction. Note further that any triangle that is not

contained entirely in 𝐺′ must use some vertex 𝑤 that belongs to 𝐹 but not to 𝐺′;

since there is no vertex in 𝐹 that has as a neighbor both a vertex of 𝑒 and a vertex

of 𝑓 , such a triangle may not use both a vertex of 𝑒 and a vertex of 𝑓 ; in particular,

this means that all of the edges used by the triangle are contained in 𝐹 (note that

there are no edges between 𝑒 and 𝑓 that are not contained in 𝐹 , by the way we

constructed 𝐺0 and 𝐺1). Therefore, any copy of 𝐾𝑡 must be contained entirely in the
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edges of 𝐹 or in entirely in 𝐺′. Since there is no blue 𝐾𝑡 in the copies of 𝐹 attached

to edges from 𝐺0, any blue copy of 𝐻𝑡,2 must have its copy of 𝐾𝑡 contained entirely

in 𝐺1 or entirely in some copy of 𝐹 attached to an edge of 𝐺1. If we take a blue 𝐾𝑡

contained in some copy of 𝐹 attached an edge 𝑒 and some edge 𝑓 in 𝐺1, then, since

all of the edges incident to both 𝑒 and 𝑓 are red, if we take the connected component

corresponding to the blue subgraph of 𝐺 containing this copy of 𝐾𝑡, we see that it is

contained entirely in this copy of 𝐹 . But by assumption this copy of 𝐹 has no 𝐻𝑡,2,

and so this blue 𝐾𝑡 is not contained in any copy of 𝐻𝑡,2. Therefore, any blue copy

of 𝐻𝑡,2 must have its 𝐾𝑡 contained in 𝐺1. By assumption, 𝐺1 contains no copy of

𝐻𝑡,2, so this copy must have some vertex outside of 𝐺1 that has blue degree at least

2 to this copy of 𝐾𝑡. Such a vertex cannot be contained in the copies of 𝐹 attached

to an edge of 𝐺1, as these are completely red to 𝐺1. Therefore, this vertex must be

contained in some copy of 𝐹 attached to an edge 𝑒 and an edge 𝑓 of 𝐺0. But neither

𝑒 nor 𝑓 may be edges of the blue clique, since they are both red, and so this vertex

must have a blue neighbor in 𝑒 and a blue neighbor in 𝑓 , but this contradicts our

assumptions on 𝐹 , concluding the proof.

If a graph 𝐻 satisfies the conclusions of the above lemma, we say it has weak BEL

gadgets. We now prove that this is enough to get strong BEL gadgets for 𝐻𝑡,2, thus

completing the proof of the upper bound.

Lemma 2.7.13. If 𝐻 is connected and has weak BEL gadgets, then 𝐻 has BEL

gadgets.

Proof. Consider a graph 𝐺 with a given 2-coloring 𝜓. Let 𝐺 be composed of the

graphs 𝐺′
0 and 𝐺

′
1, where 𝐺

′
0 is the graph induced by the blue edges of 𝐺 and 𝐺′

1 is

the graph induced by the red edges of 𝐺. Take 𝑡 to be the number of vertices in 𝐻.

Define a graph 𝐺0 by taking 𝐺′
0, adding to it some set 𝑆 of 𝑡 vertices, and adding

edges to 𝑆 so it forms a copy of 𝐻 with one edge removed. Define 𝐺1 by taking 𝐺′
1,

adding to it 𝑆, and adding to 𝑆 the edge that was removed from 𝐻. We will show

that this resulting graph can be made a strong BEL gadget for 𝐻. Note that neither

𝐺0 nor 𝐺1 contains a copy of 𝐻; the connected components are either connected
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components of 𝐺0 or 𝐺1, or are in 𝑆. Note further that in any 2-coloring of 𝐺0 ∪𝐺1

in which all of the edges in 𝐺0 have the same color and all of the edges of 𝐺1 have

the same color, if 𝐺0 and 𝐺1 have the same color then there is a monochromatic copy

of 𝐻, namely on vertex set 𝑆. Now, taking a weak BEL gadget for 𝐺0 and 𝐺1 yields

the desired strong BEL gadget for 𝐺′
0 and 𝐺

′
1.

2.8 Concluding Remarks

We have shown that all 3-connected bipartite graphs are Ramsey simple. However,

Conjecture 2.1.1 remains open.

Conjecture 2.8.1. [88] If 𝐻 is bipartite with no isolated vertices, then 𝐻 is Ramsey

simple.

We have also demonstrated the first class of graphs that is not bipartite but is

Ramsey simple, namely those graphs that have BEL, that don’t have isolated vertices,

and that contain a vertex of minimum degree 𝛿 whose neighbourhood is contained in

an independent set of size 2𝛿 − 1. One may hope to use similar techniques to those

found in the proof of Theorem 2.1.2 to get a corresponding result for triangle-free

graphs. This leads us to the following conjecture.

Conjecture 2.8.2. Every connected triangle-free graph without isolated vertices is

Ramsey simple.

Based on the techniques used here, it may be significantly easier to prove the

conjecture just for 3-connected graphs.

Conjecture 2.8.3. Every 3-connected triangle-free graph is Ramsey simple.

2.9 Sparse random graphs are Ramsey simple

We prove Corollary 2.1.4 that the random graph 𝐺(𝑛, 𝑝) with 𝑛−1 log 𝑛≪ 𝑝≪ 𝑛−2/3

is Ramsey simple with high probability. This follows from showing that 𝐺(𝑛, 𝑝)

satisfies the conditions of Theorem 2.1.3 with high probability.
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Proof of Corollary 2.1.4. Let 𝑛−1 log 𝑛 ≪ 𝑝 ≪ 𝑛−2/3 and assume that the vertex set

of 𝐺(𝑛, 𝑝) is [𝑛].

We will use the following basic facts about 𝐺(𝑛, 𝑝), for 𝑝 in the aforementioned

range.

(1) For every 𝑑, 𝑃 [𝛿(𝐺(𝑛, 𝑝)) = 𝑑] = 𝑜(1).

(2) 𝑃 [𝛿(𝐺(𝑛, 𝑝)) ≤ 𝑝𝑛] = 1 − 𝑜(1).

(3) With high probability, there exists a unique vertex in 𝐺(𝑛, 𝑝) of minimum degree.

(4) With high probability, 𝐺(𝑛, 𝑝) is 3-connected.

(5) For any 𝑑, we have 𝑃 [𝛿(𝐺(𝑛− 1, 𝑝)) ≥ 𝑑− 1] ≥ 𝑃 [𝛿(𝐺(𝑛, 𝑝)) ≥ 𝑑] − 𝑜(1).

Facts (1), (2), and (3) follow from Theorem 3.9(i) and its proof in [8], and (4)

follows from Theorem 7.7 in [8]. We now prove fact (5).

Consider the vertex 𝑛 ∈ [𝑛]. Since with high probability there is a unique vertex

of minimum degree by fact (3), the probability that 𝑛 is this vertex is 𝑜(1). Then, in

the distribution obtained by taking 𝐺(𝑛, 𝑝) and removing the vertex 𝑛, every vertex

has degree at least its degree in the 𝐺(𝑛, 𝑝) minus 1. Since with high probability the

minimum degree vertex of 𝐺(𝑛, 𝑝) was in [𝑛− 1], we have that the minimum degree

of this 𝐺(𝑛− 1, 𝑝) is at least 𝛿(𝐺(𝑛, 𝑝)) − 1. This completes the proof of (5).

We wish to show that, with high probability, 𝐺 = 𝐺(𝑛, 𝑝) contains a minimum

degree vertex, call its degree 𝛿, whose neighborhood is contained in an independent set

of size 2𝛿− 1. Combining this with fact (4) and applying Theorem 2.1.3 immediately

implies Corollary 2.1.4.

For any 0 < 𝜀 < 1, pick 𝑑 minimal so that 𝑃 [𝛿(𝐺(𝑛, 𝑝)) ≤ 𝑑] ≥ 1 − 𝜀. We will let

𝜖 very slowly tend to 0. By (2) we must have that 𝑑 ≤ 𝑝𝑛. By (1) we must have that

1 − 𝜀 ≤ 𝑃 [𝛿(𝐺(𝑛, 𝑝)) ≤ 𝑑] ≤ 1 − 𝜀+ 𝑜(1).

For every set 𝑆 ⊆ [𝑛] with |𝑆| ≤ 𝑑 and every vertex 𝑣 ∈ [𝑛] ∖ 𝑆, take 𝑇𝑆,𝑣 to be some

set containing 𝑆 of size 2 |𝑆| − 1 so that 𝑇𝑆,𝑣 does not contain 𝑣. For any such 𝑆 and

𝑣, let 𝐴𝑆,𝑣 be the event that 𝑣 is the unique vertex of minimum degree in 𝐺(𝑛, 𝑝) and

that its neighbourhood is 𝑆. Let 𝐵𝑆,𝑣 be the event that 𝑇𝑆,𝑣 is not an independent
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set. Note that the probability that there is some vertex 𝑣 of minimum degree whose

neighbourhood is contained in an independent set of size 2 deg(𝑣) − 1 is at least the

probability that there exists a set 𝑆 of size at most 𝑝𝑛 and a vertex 𝑣 not in 𝑆 so

that 𝐴𝑆,𝑣 holds and 𝐵𝑆,𝑣 does not hold. We will show that this is true with high

probability.

Note that the events 𝐴𝑆,𝑣 are disjoint. With probability at least 1−𝜖−𝑜(1), which

is 1 − 𝑜(1) as 𝜖 tends to 0, the minimum degree is at most 𝑑 and there is a unique

vertex of minimum degree. Equivalently, exactly one of the events 𝐴𝑆,𝑣 occurs. We

next show that the conditional probability 𝑃 [𝐵𝑆,𝑣|𝐴𝑆,𝑣] is 𝑜(1), which completes the

proof.

We consider the distribution 𝐺(𝑛, 𝑝)|𝐴𝑆,𝑣. For convenience, we will assume that

𝑣 = 𝑛. Then, in this distribution, the neighbours of 𝑣 are 𝑆, and the remaining

vertices form the distribution 𝐺(𝑛− 1, 𝑝) conditioned on the event that all vertices in

𝑆 have degree at least 𝛿 and all vertices in [𝑛− 1] ∖ 𝑆 have degree at least 𝛿 + 1; call

this event 𝐶𝑆. Hence, 𝑃 [𝐵𝑆,𝑣|𝐴𝑆,𝑣] = 𝑃 [𝐵𝑆,𝑣|𝐶𝑆], where the first probability is taken

with respect to 𝐺(𝑛, 𝑝) and the second probability is taken with respect to 𝐺(𝑛−1, 𝑝).

By definition, we have 𝑃 [𝐵𝑆,𝑣|𝐶𝑆] = 𝑃 [𝐵𝑆,𝑣 ∧ 𝐶𝑆]/𝑃 [𝐶𝑆] ≤ 𝑃 [𝐵𝑆,𝑣]/𝑃 [𝐶𝑆]. The

expected number of edges in 𝑇𝑆,𝑣 in 𝐺(𝑛− 1, 𝑝) is

(︂
2 |𝑆| − 1

2

)︂
𝑝 ≤

(︂
2𝑑

2

)︂
𝑝 ≤ 4𝑑2𝑝 ≤ 4𝑝3𝑛2 = 𝑜(1),

where the last inequality uses 𝑑 ≤ 𝑝𝑛, and the last equality uses 𝑝 = 𝑜(𝑛−2/3). Since

the probability that there is an edge in 𝑇𝑆,𝑣 is at most the expected number of edges

in 𝑇𝑆,𝑣, we have 𝑃 [𝐵𝑆,𝑣] = 𝑜(1).

We next give a lower bound for 𝑃 [𝐶𝑆]. Note that 𝐶𝑆 holds if 𝛿(𝐺(𝑛−1, 𝑝)) ≥ 𝛿+1.

Hence,

𝑃 [𝐶𝑆] ≥ 𝑃 [𝛿(𝐺(𝑛− 1, 𝑝)) ≥ 𝛿 + 1] ≥ 𝑃 [𝛿(𝐺(𝑛, 𝑝)) ≥ 𝛿 + 2] − 𝑜(1)

≥ 𝑃 [𝛿(𝐺(𝑛, 𝑝)) ≥ 𝑑+ 2] − 𝑜(1) ≥ 𝑃 [𝛿(𝐺(𝑛, 𝑝)) ≥ 𝑑+ 1] − 𝑜(1) ≥ 𝜖− 𝑜(1)
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where the second inequality is by fact (5), the third inequality uses 𝛿 ≤ 𝑑, the fourth

inequality follows from fact (2), and the last inequality holds by the choice of 𝑑.

Putting this together, we have

𝑃𝐺(𝑛,𝑝)[𝐵𝑆,𝑣|𝐴𝑆,𝑣] = 𝑃𝐺(𝑛−1,𝑝)[𝐵𝑆,𝑣|𝐶𝑆] ≤

𝑃𝐺(𝑛−1,𝑝)[𝐵𝑆,𝑣]/𝑃𝐺(𝑛−1,𝑝)[𝐶𝑆] = 𝑜(1)/(𝜖− 𝑜(1)) = 𝑜(1),

where the last inequality is by taking 𝜖 to tend to 0 slower than 𝑃𝐺(𝑛,𝑝)[𝐵𝑆,𝑣] tends to

0. This completes the proof.

2.10 Random Caley graphs with a pendant edge

We give a non-trivial example of a vertex-transitive graph 𝐻 such that 𝐻 ·𝐾2 is not

Ramsey simple.

Let 𝐺 be a group, and 𝑆 be a subset of elements of 𝐺, called the set of gen-

erators. The (undirected) Caley graph 𝑋(𝐺,𝑆) has vertex set 𝐺 and edge set

{{𝑔, 𝑔𝑠} : 𝑔 ∈ 𝐺, 𝑠 ∈ 𝑆} . Clearly, 𝑋(𝐺,𝑆) is vertex-transitive and the degree of a

vertex is |𝑆 ∪ 𝑆−1|. For 0 ≤ 𝑝 ≤ 1, we denote by 𝐻 ∼ 𝑋(𝐺, 𝑝) a random Caley graph

𝐻 = 𝑋(𝐺,𝑆) where 𝑆 is chosen by including every element of 𝐺 with probability 𝑝.

Theorem 2.10.1. Let 𝐺 be a group on 𝑛 elements, let 𝑝 → 0 such that 𝑝 ≫
√︁

ln𝑛
𝑛
,

and let 𝐻 ∼ 𝑋(𝐺, 𝑝). Then a.a.s. 𝑠(𝐻 ·𝐾2) ≥ 𝛿(𝐻) > 1.

Proof. We prove that 𝐻 satisfies the conditions of Theorem 2.4.1 a.a.s. Let 𝑆 denote

the set of generators of 𝐻 chosen by including every element of 𝐺 with probability 𝑝.

It is clear that 𝛿(𝐻) ≥ 2 a.a.s. since a.a.s. 𝛿(𝐻) ≥ |𝑆| ≥ 𝑝𝑛/2 ≫ 1.

For condition (1) and (3) of Theorem 2.4.1, let 𝐶 be a large constant to be

determined later. We pick the set 𝑆 in 𝐶 rounds. Let 𝑞 ∈ [0, 1] be such that

𝑝 = 1 − (1 − 𝑞)𝐶 . Note that 𝑞 = (1 + 𝑜(1))𝑝/𝐶 if 𝑝 → 0. For 1 ≤ 𝑖 ≤ 𝐶, pick

a set 𝑅𝑖 of elements each with probability 𝑞 of being in the set, choices for different 𝑖

being independent. Let 𝑆 = 𝑅1 ∪ . . .∪𝑅𝐶 and note that this is an equivalent way of

picking the set 𝑆 of elements each with probability 𝑝 of being in the set.
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For an element 𝑥 ∈ 𝐺 and a subset 𝐴 ⊆ 𝐺, we use the shorthand notation

𝑥.𝐴 := {𝑥𝑎 : 𝑎 ∈ 𝐴}.

Lemma 2.10.2. Let 𝑥 ∈ 𝐺 be a vertex of 𝐻, and let 𝑅1, . . . , 𝑅𝐶 be as above. Then

with probability tending to one, the set 𝑥.𝑅1 is connected.

Before we prove the lemma, let us show how it implies that 𝐻 is connected a.a.s.,

i.e. condition (1) of Theorem 2.4.1 holds.

Let 𝑥 ∈ 𝐺 be an arbitrary element of 𝐺. We claim that a.a.s. 𝑥.𝑅1 is a dominating

set of 𝐻, i.e. for every 𝑦 ∈ 𝐺, there is an edge between 𝑦 and 𝑥.𝑅1. By definition,

there is an edge between 𝑦 and 𝑥.𝑅1 if there exists a generator 𝑠 ∈ 𝑆 and an element

𝑟1 ∈ 𝑅1 such that 𝑦𝑠 = 𝑥𝑟1. For fixed 𝑥 and 𝑦, there are |𝑅1| possible values 𝑠 ∈ 𝐺

such that 𝑦𝑠 = 𝑥𝑟1. With probability tending to one, |𝑥.𝑅1| ≥ 𝑛𝑞/2. Therefore,

choosing 𝑅2, . . . , 𝑅𝐶 , the probability that there exists some 𝑦 ∈ 𝐺 such that there is

no edge between 𝑥.𝑅1 and 𝑦 is at most

𝑛(1 − 𝑞)(𝐶−1)𝑛𝑞/2 + Pr(|𝑥.𝑅1| < 𝑛𝑞/2) ≤ 𝑒−
𝐶−1
2

𝑛𝑞2+ln𝑛 + 𝑜(1) = 𝑜(1),

since 𝑞 ≫
√︁

ln𝑛
𝑛
. Together with Lemma 2.10.2 it follows that a.a.s. the graph 𝐻 is

connected.

To prove that 𝑥.𝑅1 is connected, we need to show that a.a.s. for every nontrivial

partition 𝐴∪̇𝐵 of 𝑅1, there is an edge between 𝑥.𝐴 and 𝑥.𝐵. That is, there exists

𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 and 𝑦 ∈ 𝑆 such that 𝑏 = 𝑎𝑦. We show first that with high probability

the set 𝑌𝐴,𝐵 := {𝑎−1𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} of distinct such values 𝑦 ∈ 𝐺 is large enough

for any partition of 𝑅1, and then use the random choices of 𝑅2, . . . , 𝑅𝐶 to show that

at least one solution survives with very high probability. In fact, we show something

slightly stronger.

Lemma 2.10.3. There exists a universal constant 𝑐 > 0 such that the following holds.

Let 𝑞 ≫
√︁

ln𝑛
𝑛
. Further, let 1 ≤ 𝑛𝐴 ≤ 𝑛𝑞, 𝑛𝑞/3 ≤ 𝑛𝐵 ≤ 2𝑛𝑞, and let 𝐴 ⊆ 𝐺 of size

|𝐴| = 𝑛𝐴. Let 𝐵 be a set of size 𝑛𝐵 chosen uniformly at random from 𝐺 ∖ 𝐴. Then

with probability at least 1 − 2−100𝑛𝐵 we have that |𝑌𝐴,𝐵| ≥ min{𝑐 · 𝑛, 𝑐 · 𝑛𝐴𝑛𝐵}.
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Proof. Let 𝑐 > 0 be a constant to be chosen later. For disjoint sets 𝐴,𝐵 ⊆ 𝐺 let

𝑈𝐴,𝐵 be the event that |𝑌𝐴,𝐵| < min{𝑐𝑛, 𝑐|𝐴||𝐵|}. Let us choose 𝐵 one element at

a time and analyse how the value of 𝑌𝐴,𝐵 changes. To be precise, for 1 ≤ 𝑡 ≤ 𝑛𝐵

choose an element 𝑏𝑡 ∈ 𝐺 ∖ (𝐴 ∪ 𝐵𝑡−1) uniformly at random, where 𝐵0 := ∅ and

𝐵𝑡 := 𝐵𝑡−1 ∪{𝑏𝑡}. Let 𝑋𝑡 :=
⃒⃒
𝑌𝐴,𝐵𝑡 ∖ 𝑌𝐴,𝐵𝑡−1

⃒⃒
be the random variable that counts the

“new” values 𝑎−1𝑏 with 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 after step 𝑡. If
⃒⃒
𝑌𝐴,𝐵𝑡−1

⃒⃒
≥ 𝑐𝑛, we are done.

So we may condition on the event that |𝑌𝐴,𝐵| < 𝑐𝑛 (and hence |𝑌𝐴,𝐵𝑡 | < 𝑐𝑛 for any

𝑡 ≤ 𝑛𝐵) which we abbreviate with 𝑍. Then for a fixed element 𝑎 ∈ 𝐴

Pr
(︀
𝑎−1𝑏𝑡 ∈ 𝑌𝐴,𝐵𝑡−1

⃒⃒
𝑍
)︀
<

𝑐𝑛

|𝐺− 𝐴−𝐵𝑡−1|
< 2𝑐

for 𝑛 large enough since |𝐴| + |𝐵𝑡| ≤ 3𝑛𝑞 = 𝑜(𝑛). Hence, the expected size of

𝑋𝑡 conditioning on the event 𝑍 is at least (1 − 2𝑐)|𝐴| and therefore, by Markov’s

Inequality,

Pr

(︂
𝑋𝑡 <

|𝐴|
2

⃒⃒
𝑍

)︂
= Pr

(︂
|𝐴| −𝑋𝑡 >

|𝐴|
2

⃒⃒
𝑍

)︂
≤ 2 ·E(|𝐴| −𝑋𝑡| 𝑍)

|𝐴|
≤ 4𝑐.

That is, the random variable 𝑋𝑡 takes value (at least) |𝐴|/2 with probability (at

least) 1−4𝑐, independent of the history 𝑋1, . . . , 𝑋𝑡−1. Let 𝑌1, . . . , 𝑌𝑛𝐵
be independent

Bernoulli experiments that are one with probability 4𝑐 and zero otherwise. Then the

sum
∑︀

1≤𝑡≤𝑛𝐵
𝑌𝑡 is a lower bound on the number of steps that 𝑋𝑡 fails to have value
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at least |𝐴|/2. Therefore,

Pr(𝑈𝐴,𝐵) ≤ Pr
(︀
|𝑌𝐴,𝐵| < 𝑐|𝐴||𝐵|

⃒⃒
|𝑌𝐴,𝐵| < 𝑐𝑛

)︀
= Pr (𝑋𝑡 < |𝐴|/2 at least (1 − 2𝑐)𝑛𝐵 times)

≤ Pr

(︃ ∑︁
1≤𝑡≤𝑛𝐵

𝑌𝑡 ≥ (1 − 2𝑐)𝑛𝐵

)︃

≤ 2𝑛𝐵 · (4𝑐)(1−2𝑐)𝑛𝐵

< 2−100𝑛𝐵

for 𝑐 small enough.

Proof of Lemma 2.10.2. Let 𝑐 > 0 be the constant from Lemma 2.10.3 and let 𝑍

denote the event that 𝑁 := |𝑅1| ∈ [ 𝑞𝑛
2
, 2𝑞𝑛] and that for every non-trivial partition

𝐴∪̇𝐵 of 𝑅1 the set 𝑌𝐴,𝐵 = {𝑎−1𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} has size at least min{𝑐𝑛, 𝑐|𝐴||𝐵|}.
We claim that the probability of 𝑍 is 1 − 𝑜(1). Certainly, 𝑁 ∈ [ 𝑞𝑛

2
, 2𝑞𝑛] a.a.s. Let

now 𝐴∪̇𝐵 = 𝑅 be a partition of 𝑅, let 𝑛𝐴 := |𝐴|, 𝑛𝐵 := |𝐵| and assume without

loss of generality that 𝑛𝐴 ≤ 𝑛𝐵. Note that by Lemma 2.10.3, the probability that

|𝑌𝐴,𝐵| < min{𝑐𝑛, 𝑐|𝐴||𝐵|} is at most 2−100𝑛𝐵 ≤ 2−20𝑛𝑞. It follows that the probability

that 𝑍 fails to hold is at most

2𝑛𝑞∑︁
𝑁=𝑛𝑞/2

∑︁
𝐴⊆𝑅,|𝐴|≤𝑁/2

2−20𝑛𝑞 + 𝑜(1) ≤ 2𝑛𝑞2−19𝑛𝑞 + 𝑜(1) → 0

since 𝑛𝑞 → ∞. We now condition on 𝑍. Fix now a non-trivial partition 𝑅1 = 𝐴∪̇𝐵,
say |𝐴| = 𝑛𝐴, |𝐵| = 𝑛𝐵, and assume without loss of generality that 𝑛𝐴 ≤ 𝑁/2. By

assumption, there are at least min{𝑐𝑛, 𝑐|𝐴||𝐵|} (nontrivial) solutions for 𝑎𝑦 = 𝑏 with

𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. Let 𝑋𝐴,𝐵 be the random variable that counts the number of

elements in 𝑌𝐴,𝐵 that are chosen to be in 𝑅2∪ . . .∪𝑅𝐶 . Since for a particular element

𝑦 ∈ 𝑌𝐴,𝐵 the choices for 𝑅2, . . . , 𝑅𝐶 are independent, and since choices for distinct

elements in 𝑌𝐴,𝐵 are independent, it follows that

Pr𝑅2,...,𝑅𝐶
(𝑋𝐴,𝐵 = 0) = (1 − 𝑞)(𝐶−1)|𝑌𝐴,𝐵 | ≤ exp [−(𝐶 − 1)𝑞min{𝑐𝑛, 𝑐|𝐴||𝐵|}] .
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It follows that

Pr(𝑅1 is not connected)

= Pr(𝑅1 is not connected
⃒⃒
𝑍) + 𝑜(1)

= Pr(∃ a partition 𝐴 ∪𝐵 = 𝑅1 such that 𝑋𝐴,𝐵 = 0
⃒⃒
𝑍) + 𝑜(1)

≤
2𝑛𝑞∑︁

𝑁=𝑛𝑞/2

𝑁/2∑︁
𝑛𝐴=1

∑︁
𝐴∈(𝑅1

𝑛𝐴
)

Pr𝑅2,...,𝑅𝐶
(𝑋𝐴,𝐵 = 0

⃒⃒
𝑍) + 𝑜(1)

≤
2𝑛𝑞∑︁

𝑁=𝑛𝑞/2

⎛⎜⎜⎝ ∑︁
1≤𝑛𝐴≤𝑁/2

𝑛𝐴(𝑁−𝑛𝐴)≤𝑛

(︂
𝑁

𝑛𝐴

)︂
𝑒−(𝐶−1)𝑞𝑐𝑛𝐴(𝑁−𝑛𝐴) +

∑︁
1≤𝑛𝐴≤𝑁/2

𝑛𝐴(𝑁−𝑛𝐴)>𝑛

(︂
𝑁

𝑛𝐴

)︂
𝑒−(𝐶−1)𝑞𝑐𝑛

⎞⎟⎟⎠+ 𝑜(1)

≤
2𝑛𝑞∑︁

𝑁=𝑛𝑞/2

⎛⎜⎜⎝ ∑︁
1≤𝑛𝐴≤𝑁/2

𝑛𝐴(𝑁−𝑛𝐴)≤𝑛

𝑒𝑛𝐴(ln𝑁−Θ(𝑞𝑁)) + 2𝑁𝑒−(𝐶−1)𝑞𝑐𝑛

⎞⎟⎟⎠+ 𝑜(1)

≤ 2(𝑛𝑞)2𝑒−Θ(𝑞2𝑛) + 2𝑛𝑞2𝑁𝑒−(𝐶−1)𝑞𝑐𝑛 + 𝑜(1),

since ln𝑁 ≤ ln𝑛≪ 𝑞2𝑛/2 ≤ 𝑞𝑁 . Therefore, the probability that 𝑅1 is not connected

is at most

exp
[︀
𝑂(ln(𝑞𝑛)) − Θ(𝑞2𝑛)

]︀
+ exp [ln(2𝑛𝑞) + 2𝑛𝑞 − (𝐶 − 1)𝑐𝑛𝑞] + 𝑜(1) = 𝑜(1),

again since ln(𝑛𝑞) ≪ 𝑞2𝑛 and if we choose 𝐶 = 𝐶(𝑐) ≥ 3/𝑐.

We now prove condition (3) of Theorem 2.4.1. We need to analyse the family

ℱ(𝐻) = {𝐹 ⊆ 𝐻[𝑁(𝑥)] : 𝑥 ∈ 𝑉 (𝐻), 𝐹 is a connected component of 𝐻[𝑁(𝑥)]}

and show that there is a 2-colouring of 𝐾𝛼(𝐻) that does not contain a monochromatic

copy of 𝐹 , for any 𝐹 ∈ ℱ(𝐻). Since 𝐻 is vertex-transitive, the graph 𝐻[𝑁(𝑥)] is the

same graph for every 𝑥 ∈ 𝐺. Let us denote this graph by 𝐻𝑁 . We show first that 𝐻𝑁

is connected a.a.s. which implies that ℱ(𝐻) consists of a single graph.

Lemma 2.10.4. Let 𝐺, 𝑝, 𝑞,𝐻,𝑅1, . . . , 𝑅𝐶 be as above. Then, 𝐻𝑁 is connected a.a.s.
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Proof. Fix a vertex 𝑥 ∈ 𝐺. Note that the neighbourhood 𝑁(𝑥) = 𝑥.(𝑆 ∪ 𝑆−1)

is connected since 𝑥.𝑅1 is connected a.a.s. by Lemma 2.10.2, and since 𝑥.𝑅1 is a

dominating set in 𝐻.

Lemma 2.10.5. Let 𝐺, 𝑝,𝐻 be as in Theorem 2.10.1. Then, 𝐻𝑁 has at least 𝑚 =

𝑝3𝑛2(1 + 𝑜(1)) edges a.a.s.

Proof. Fix 𝑥 ∈ 𝐺 and let 𝑆 be the set we pick by including each element of 𝐺

with probability 𝑝, all choices being independent. We will count only the edges in

𝑥.𝑆 ⊆ 𝑁(𝑥). Note that an edge in 𝑥.𝑆 corresponds to a triple (𝑎, 𝑏, 𝑐) ∈ 𝑆3 such that

𝑎 = 𝑏𝑐. We shall see that a.a.s the number of solutions to 𝑎 = 𝑏𝑐 with 𝑎, 𝑏, 𝑐 ∈ 𝑆

is large. There are a total of 𝑛2 choices for 𝑏 and 𝑐, giving a total of 𝑛2 solutions

for 𝑎 = 𝑏𝑐 in the group 𝐺 of order n. For simplicity, let us only consider nontrivial

triples, i.e. solutions for 𝑎 = 𝑏𝑐 where 𝑎, 𝑏, 𝑐 are distinct. There are still 𝑛2 − 𝑂(𝑛)

such solutions. For a nontrivial triple (𝑎, 𝑏, 𝑐) let 𝑋𝑎,𝑏,𝑐 be the indicator random

variable which evaluates to one if and only if all of 𝑎, 𝑏, 𝑐 are chosen to be in 𝑆.

Let 𝑋 =
∑︀
𝑋𝑎,𝑏,𝑐 be the random variable counting the number of these solutions

with 𝑎, 𝑏, 𝑐 chosen to be generators and 𝑎, 𝑏, 𝑐 distinct. The expected number of 𝑋 is

𝑝3𝑛2 − 𝑂(𝑛𝑝2) by linearity of expectation, as 𝑋𝑎,𝑏,𝑐 = 1 with probability 𝑝3 for each

nontrivial triple. To see that 𝑋 is concentrated about its mean, we use the second

moment method and bound the variance of 𝑋. For two (distinct) nontrivial triples

write (𝑎, 𝑏, 𝑐) ∼ (𝑎′, 𝑏′, 𝑐′) if 𝑋𝑎,𝑏,𝑐 and 𝑋𝑎′,𝑏′,𝑐′ are not independent. Let

∆ =
∑︁

(𝑎,𝑏,𝑐)∼(𝑎′,𝑏′,𝑐′)

Pr(𝑋𝑎,𝑏,𝑐 = 1 ∧ 𝑋𝑎′,𝑏′,𝑐′ = 1),

where the sum runs over all ordered pairs of non-trivial triples. We note that

Var(𝑋) ≤ E(𝑋) + ∆, see e.g. Chapter 4.3 in [3]. A pair (𝑋𝑎,𝑏,𝑐, 𝑋𝑎′,𝑏′,𝑐′) is not

independent if and only if the sets {𝑎, 𝑏, 𝑐} and {𝑎′, 𝑏′, 𝑐′} have nonempty intersection.

If two nontrivial triples {𝑎, 𝑏, 𝑐} and {𝑎′, 𝑏′, 𝑐′} intersect in one element then

Pr(𝑋𝑎,𝑏,𝑐 = 1 ∧ 𝑋𝑎′,𝑏′,𝑐′ = 1) = 𝑝5. The number of such (pairs of) triples is 𝑂(𝑛3). If

two nontrivial triples {𝑎, 𝑏, 𝑐} and {𝑎′, 𝑏′, 𝑐′} intersect in two or three elements then
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Pr(𝑋𝑎,𝑏,𝑐 = 1 ∧ 𝑋𝑎′,𝑏′,𝑐′ = 1) ≤ 𝑝3. The number of such (pairs of) triples is 𝑂(𝑛2).

It follows that Var(𝑋) = 𝑂(𝑝3𝑛2) +𝑂(𝑝5𝑛3) = 𝑜(E(𝑋)2) since 𝑝≫ 𝑛−2/3. There-

fore, by Corollary 4.3.3 in [3], 𝑋 = E(𝑋)(1 + 𝑜(1)) = 𝑝3𝑛2(1 + 𝑜(1)) a.a.s.

We are ready to prove condition (3) and thus finish the proof of Theorem 2.10.1.

Let 𝐻𝑁 be as before. By Lemma 2.10.4, 𝐻𝑁 is a.a.s. connected, and by Lemma

2.10.5, 𝐻𝑁 has a.a.s. at least 𝑝3𝑛2(1 + 𝑜(1)) edges, and a.a.s. at most 2𝑛𝑝 vertices.

The Ramsey number of a graph 𝐺 with 𝑀 edges and 𝑁 vertices is at least 2(𝑀−1)/𝑁

(take a random colouring of the complete graph on 2(𝑀−1)/𝑁 vertices and see that the

expected number of monochromatic copies of 𝐺 is 𝑜(1)).

Now, 𝛼(𝐻) ≤ 𝑛 since 𝐻 has 𝑛 vertices. Therefore, 𝛼(𝐻) ≪ 𝑅(𝐻𝑁) a.a.s., since

𝑝≫
√︁

ln𝑛
𝑛
, and it follows that Property (3) holds a.a.s.
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Chapter 3

The Erdős-Hajnal Conjecture for

Rainbow Triangles

3.1 Introduction

A classical result of Erdős and Szekeres [36], which is a quantitative version of Ram-

sey’s theorem [79], implies that every graph on 𝑛 vertices contains a clique or an

independent set of order at least 1
2

log 𝑛. In the other direction, Erdős [31] showed

that a random graph on n vertices almost surely contains no clique or independent

set of order 2 log 𝑛.

An induced subgraph of a graph is a subset of its vertices together with all edges

with both endpoints in this subset. There are several results and conjectures indicat-

ing that graphs which do not contain a fixed induced subgraph are highly structured.

In particular, the most famous conjecture of this sort by Erdős and Hajnal [35] says

that for each fixed graph 𝐻 there is 𝜖 = 𝜖(𝐻) > 0 such that every graph 𝐺 on 𝑛

vertices which does not contain a fixed induced subgraph 𝐻 has a clique or indepen-

dent set of order 𝑛𝜖. This is in stark contrast to general graphs, where the order of

the largest guaranteed clique or independent set is only logarithmic in the number of

vertices.

There are now several partial results on the Erdős-Hajnal conjecture. Erdős and

Hajnal [35] proved that for each fixed graph 𝐻 there is 𝜖 = 𝜖(𝐻) > 0 such that every
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graph 𝐺 on 𝑛 vertices which does not contain an induced copy of 𝐻 has a clique

or independent set of order 𝑒𝜖
√
log𝑛. Fox and Sudakov [45], strengthening an earlier

result of Erdős and Hajnal, proved that for each fixed graph 𝐻 there is 𝜖 = 𝜖(𝐻) > 0

such that every graph 𝐺 on 𝑛 vertices which does not contain an induced copy of

𝐻 has a balanced complete bipartite graph or an independent set of order 𝑛𝜖. All

graphs on at most four vertices are known to satisfy the Erdős-Hajnal conjecture, and

Chudnovsky and Safra [18] proved it for the 5-vertex graph known as the bull. Alon,

Pach, and Solymosi [2] proved that if 𝐻1 and 𝐻2 satisfy the Erdős-Hajnal conjecture,

then for every 𝑣 of 𝐻1, the graph formed from 𝐻 by substituting 𝑣 by a copy of 𝐻2

satisfies the Erdős-Hajnal conjecture. The recent survey [17] discusses many further

related results on the Erdős-Hajnal conjecture.

A natural restatement of the Erdős-Hajnal conjecture is that for every fixed red-

blue edge-coloring 𝜒 of a complete graph, there is an 𝜖 = 𝜖(𝜒) > 0 such that every

red-blue edge-coloring of the complete graph on 𝑛 vertices without a copy of 𝜒 contains

a monochromatic clique of order 𝑛𝜖. Indeed, for the graphs 𝐻 and 𝐺, we can color

the edges red and the nonadjacent pairs blue.

Erdős and Hajnal also proposed studying a multicolor generalization of their con-

jecture. It states that for every fixed 𝑘-coloring of the edges of 𝜒 of a complete graph,

there is an 𝜖 = 𝜖(𝜒) > 0 such that every 𝑘-coloring of the edges of the complete graph

on 𝑛 vertices without a copy of 𝜒 contains a clique of order 𝑛𝜖 which only uses 𝑘 − 1

colors. They proved a weaker estimate, replacing 𝑛𝜖 by 𝑒𝜖
√
log𝑛. Note that the case of

two colors is what is typically referred to as the Erdős-Hajnal conjecture.

Hajnal [59] conjectured that the following special case of the multicolor generaliza-

tion of the Erdős-Hajnal conjecture holds. There is 𝜖 > 0 such that every 3-coloring

of the edges of the complete graph on 𝑛 vertices without a rainbow triangle (that is,

a triangle with all its edges different colors), contains a set of order 𝑛𝜖 which uses at

most two colors. We prove Hajnal’s conjecture, and further determine a tight bound

on the order of the largest guaranteed 2-colored set in any such coloring. A Gallai

coloring is a coloring of the edges of a complete graph without rainbow triangles, and

a Gallai 𝑟-coloring is a Gallai coloring that uses 𝑟 colors.
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Theorem 3.1.1. Every Gallai 3-coloring on 𝑛 vertices contains a set of order Ω(𝑛1/3 log2 𝑛)

which uses at most two colors, and this bound is tight up to a constant factor.

To give an upper bound, we use lexicographic products. We will let [𝑚] =

{1, . . . ,𝑚} denote the set consisting of the first 𝑚 positive integers.

Definition 3.1.2. Given edge-colorings 𝐹1 of 𝐾𝑚1 and 𝐹2 of 𝐾𝑚2 using colors from

𝑅, the lexicographic product coloring 𝐹1 ⊗ 𝐹2 of 𝐸(𝐾𝑚1𝑚2) is defined on any edge

𝑒 = {(𝑢1, 𝑣1), (𝑢2, 𝑣2)} (where we take the vertex set of 𝐾𝑚1𝑚2 to be [𝑚1]× [𝑚2]) to be

𝐹1(𝑢1, 𝑢2) if 𝑢1 ̸= 𝑢2, and otherwise 𝑣1 ̸= 𝑣2 and it is defined to be 𝐹2(𝑣1, 𝑣2).

That is, there are 𝑚1 disjoint copies of 𝐹2 and they are connected by edge colors

defined by 𝐹1.

The upper bound in Theorem 3.1.1 is obtained by taking the lexicographic product

of three 2-edge-colorings of the complete graph on 𝑛1/3 vertices, where each pair of

colors is used in one of the colorings, and the largest monochromatic clique in each

of the colorings is of order 𝑂(log 𝑛). A simple lemma in the next section shows that,

in a lexicographic product coloring 𝐹 = 𝐹1⊗𝐹2, the largest set of vertices using only

colors red and blue (for example) in 𝐹 has size equal to the product of the size of the

largest set of vertices using only colors red and blue in 𝐹1 with the size of the largest

set of vertices using only colors red and blue in 𝐹2. For any set 𝑆 of two of the three

colors, the largest such set has order 𝑂(𝑛1/3)𝑂(log 𝑛)𝑂(log 𝑛) = 𝑂(𝑛1/3 log2 𝑛).

In the other direction, we will utilize the following important structural result of

Gallai [48] on edge-colorings of complete graphs without rainbow triangles.

Lemma 3.1.3. An edge-coloring 𝐹 of a complete graph on a vertex set 𝑉 with |𝑉 | ≥ 2

is a Gallai coloring if and only if 𝑉 may be partitioned into nonempty sets 𝑉1, . . . , 𝑉𝑡

with 𝑡 > 1 so that each 𝑉𝑖 has no rainbow triangles under 𝐹 , at most two colors are

used on the edges not internal to any 𝑉𝑖, and the edges between any fixed pair (𝑉𝑖, 𝑉𝑗)

use only one color. Furthermore, any such substitution of Gallai colorings for vertices

of a 2-edge-coloring of a complete graph 𝐾𝑡 yields a Gallai coloring.

Gallai colorings naturally arise in several areas including in information theory

[70], in the study of partially ordered sets, as in Gallai’s original paper [48], and in
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the study of perfect graphs [14]. There are now a variety of papers which consider

Ramsey-type problems in Gallai colorings (see, e.g., [19, 47, 56, 58]). However, these

works mainly focus on finding various monochromatic subgraphs in such colorings.

Because it may be of independent interest to the reader, we first present a par-

ticularly simple approach that will prove Hajnal’s conjecture, but will not give tight

bounds.

A graph is a cograph if it has at most one vertex, or if it or its complement is

not connected, and all of its induced subgraphs have this property. In other words,

the family of cographs consists of all those graphs that can be obtained from an

isolated vertex by successively taking the disjoint union of two previously constructed

cographs, 𝐺1 and 𝐺2, or by the join of them that we get by adding all edges between

𝐺1 and 𝐺2. It was shown by Seinsche [87] that cographs are precisely those graphs

which do not contain the path with three edges as an induced subgraph. It is easy

to check by induction that every cograph is a perfect graph, that is, the chromatic

number of every induced subgraph is equal to its clique number.

Proposition 3.1.4. In any Gallai 3-coloring of a complete graph, there is an edge-

partition of the complete graph into three 2-colored subgraphs, each of which is a

cograph.

Proof: This follows from Gallai’s structure theorem by induction on the number of

vertices. The result is trivial for edge-colorings of complete graphs with fewer than

two vertices, which serves as the base case. Using Lemma 3.1.3, we get a nontrivial

vertex partition of the Gallai 3-coloring of the complete graph into parts 𝑉1, . . . , 𝑉𝑡

such that only two colors appear between the parts. By the induction hypothesis, we

can partition the edge-set of the complete graph on 𝑉𝑖 into three cographs, each which

is two-colored. For the two colors that go between the parts, we take the graph which

is the join of the cographs in each 𝑉𝑖, that is, add all edges between the parts, and for

each of the other two pairs of colors, we just take the disjoint union of the cographs

of those two colors from each part. Since the join or disjoint union of cographs are

cographs, this completes the proof by induction. 2
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The following corollary verifies Hajnal’s conjecture and, apart from the two loga-

rithmic factors, gives the lower bound in Theorem 3.1.1.

Corollary 3.1.5. Every Gallai 3-coloring of 𝐸(𝐾𝑛) contains a 2-colored clique with

at least 𝑛1/3 vertices.

Proof: Indeed, applying Proposition 3.1.4, if the first cograph (which is 2-colored)

contains a clique of order 𝑛1/3 then we are done; otherwise, it contains no clique of

order 𝑛1/3 and, since cographs are perfect graphs, has chromatic number at most 𝑛1/3,

in which case it contains an independent set of order 𝑛2/3. In this latter case, this

independent set of order 𝑛2/3 in the first cograph contains in the second cograph a

clique of order 𝑛1/3 or an independent set (which is a clique in the third cograph) of

order 𝑛1/3. We thus get a clique of order 𝑛1/3 in one of the three cographs, which is

a 2-colored set. 2

Improving the lower bound further to Theorem 3.1.1 appears to be considerably

harder, and uses a different proof technique, relying on a weighted version of Ram-

sey’s theorem and a carefully chosen induction argument. The weighted version of

Ramsey’s theorem shows that if each vertex of a complete graph on 𝑡 vertices is given

a positive red weight and a positive blue weight whose product is one, then in any

red-blue edge-coloring of 𝐾𝑡, there is a red clique 𝑆 and a blue clique 𝑈 such that the

product of the red weight of 𝑆 (the sum of the red weights of the vertices in 𝑆) and

the blue weight of 𝑈 (the sum of the blue weights of the vertices in 𝑈) is Ω
(︀
log2 𝑡

)︀
.

Note that this extends the quantitative version of Ramsey’s theorem as the case in

which all the red and blue weights are one implies that there is a monochromatic

clique of order Ω(log 𝑡).

We further consider a natural generalization of this problem to more colors, and

give a tight bound in the next theorem. In order to state the result more succinctly,
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we introduce some notation: for positive integers 𝑟 and 𝑠 with 𝑠 ≤ 𝑟, let

𝑐𝑟,𝑠 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if 1 = 𝑠 < 𝑟 or if 𝑠 = 𝑟 − 1 and 𝑟 is even;

𝑠(𝑟 − 𝑠) if 1 < 𝑠 < 𝑟 − 1;

1 + 3
𝑟

if 𝑠 = 𝑟 − 1 and 𝑟 is odd;

0 if 𝑠 = 𝑟.

Theorem 3.1.6. Let 𝑟 and 𝑠 be fixed positive integers with 𝑠 ≤ 𝑟. Every 𝑟-coloring

of the edges of the complete graph on 𝑛 vertices without a rainbow triangle contains

a set of order Ω(𝑛(𝑠
2)/(

𝑟
2) log𝑐𝑟,𝑠 𝑛) which uses at most 𝑠 colors, and this bound is tight

apart from the constant factor.

We next give a brief discussion of the proof of Theorem 3.1.6. The case 𝑠 = 𝑟 is

trivial as the complete graph uses at most 𝑟 colors. The case 𝑠 = 1 is easy. Indeed,

in this case, by the Erdős-Szekeres bound on Ramsey numbers for 𝑟 colors, there is

a monochromatic set of order Ω(log 𝑛), where the implied positive constant factor

depends on 𝑟. In the other direction, we give a construction which we conjecture is

tight.

The Ramsey number 𝑟(𝑡) is the minimum 𝑛 such that every 2-coloring of the edges

of the complete graph on 𝑛 vertices contains a monochromatic clique of order 𝑡. The

bounds mentioned in the beginning of the introduction give 2𝑡/2 ≤ 𝑟(𝑡) ≤ 22𝑡 for

𝑡 ≥ 2. For 𝑟 even, consider a lexicographic product of 𝑟/2 colorings, each a 2-edge

coloring of the complete graph on 𝑟(𝑡) − 1 vertices with no monochromatic 𝐾𝑡. This

gives a Gallai 𝑟-coloring of the edges of the complete graph on (𝑟(𝑡) − 1)𝑟/2 vertices

with no monochromatic clique of order 𝑡. A similar construction for 𝑟 odd gives a

Gallai 𝑟-coloring of the edges of the complete graph on (𝑡−1) (𝑟(𝑡) − 1)(𝑟−1)/2 vertices

with no monochromatic clique of order 𝑡. The following conjecture which states that

these bounds are best possible seems quite plausible. It was verified by Chung and

Graham [19] in the case 𝑡 = 3.

Conjecture 3.1.7. Let 𝑁(𝑟, 𝑡) = (𝑟(𝑡) − 1)𝑟/2 for 𝑟 even and
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𝑁(𝑟, 𝑡) = (𝑡 − 1) (𝑟(𝑡) − 1)(𝑟−1)/2 for 𝑟 odd. For 𝑛 > 𝑁(𝑟, 𝑡), every 𝑟-coloring of the

edges of the complete graph on 𝑛 vertices has a rainbow triangle or a monochromatic

𝐾𝑡.

Having verified the easy cases 𝑠 = 1 and 𝑠 = 𝑟 of Theorem 3.1.6, for the rest

of the chapter, we assume 1 < 𝑠 < 𝑟. A natural upper bound on the size of the

largest set using at most 𝑠 colors comes from the following construction. We will let

[𝑟] be the set of colors. Consider the complete graph on [𝑟], where each edge 𝑃 gets

a positive integer weight 𝑛𝑃 such that the product of all 𝑛𝑃 is 𝑛. For each edge 𝑃 of

this complete graph, we consider a 2-coloring 𝑐𝑃 of the edges of the complete graph

on 𝑛𝑃 vertices using the colors in 𝑃 and whose largest monochromatic clique has

order 𝑂(log 𝑛𝑃 ), which exists by Erdős lower bound [31] on Ramsey numbers. We

then consider the Gallai 𝑟-coloring 𝑐 of the complete graph on 𝑛 vertices which is the

lexicographic product of the
(︀
𝑟
2

)︀
colorings of the form 𝑐𝑃 . For each set 𝑆 of colors,

the largest set of vertices in this edge-coloring of 𝐾𝑛 using only colors in 𝑆 has order

∏︁
𝑃∈𝑆

𝑛𝑃

∏︁
|𝑃∩𝑆|=1

𝑂(log 𝑛𝑃 ).

The order of the largest set using at most 𝑠 colors in coloring 𝑐 is thus the maximum

of the above expression over all subsets 𝑆 of colors of size 𝑠. Therefore, we want to

choose the various 𝑛𝑃 to minimize this maximum. For 𝑠 < 𝑟 − 1, we give a second

moment argument which shows that the best choice is essentially that the 𝑛𝑃 are all

equal, i.e., 𝑛𝑃 = 𝑛1/(𝑟
2) for all 𝑃 . In this case, the above expression, for each choice

of 𝑆, matches the claimed upper bound in Theorem 3.1.6. The case 𝑠 = 𝑟 − 1 turns

out to be more delicate. For 𝑟 even, the optimal choice turns out to be 𝑛𝑃 = 𝑛2/𝑟

for 𝑃 an edge of a perfect matching of the complete graph with vertex set [𝑟], and

otherwise 𝑛𝑃 = 1. For 𝑟 odd, we have three different edge weights. The graph on

[𝑟] whose edges consist of those pairs with weight not equal to 1 consist of a disjoint

union of a triangle and a matching with (𝑟 − 3)/2 edges. The edges of the triangle

each have weight 𝑛1/𝑟(log 𝑛)(𝑟−3)/2𝑟 and the edges of the matching each have weight

𝑛2/𝑟(log 𝑛)−3/𝑟. It is straightforward to check that these choices of weights give the
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claimed upper bound in Theorem 3.1.6.

Similar to the case 𝑟 = 3 and 𝑠 = 2 mentioned above, using Gallai’s structure

theorem, we observe that, in any 𝑟-coloring of the edges of the complete graph on 𝑛

vertices without a rainbow triangle, the complete graph can be edge-partitioned into(︀
𝑟
2

)︀
subgraphs, each of which is a 2-colored perfect graph. A simple argument then

shows that there is a vertex subset of at least 𝑛(𝑠
2)/(

𝑟
2) vertices which uses at most 𝑠

colors, which verifies the lower bound in Theorem 3.1.6 apart from the logarithmic

factors. Improving the lower bound further to Theorem 3.1.6 is more involved, using

a weighted version of Ramsey’s theorem and a carefully chosen induction argument

to prove this.

The rest of the chapter is organized as follows. In the next section, we prove some

basic properties of lexicographic product colorings. In Section 3.3, we give simple

proofs of lower and upper bounds in the direction of Theorem 3.1.1 which match

apart from two logarithmic factors. In order to close the gap and obtain Theorem

3.1.1, in Section 3.4 we prove a weighted extension of Ramsey’s theorem. We complete

the proof of Theorem 3.1.1 in Section 3.5 by establishing a tight lower bound on the

size of the largest 2-colored set of vertices in any Gallai 3-coloring of the complete

graph on 𝑛 vertices. The remaining sections are devoted to the proof of Theorem

3.1.6. In Section 3.6, we prove the upper bound for Theorem 3.1.6. In Section 3.7,

we give a simple proof of a lower bound which matches Theorem 3.1.6 apart from the

logarithmic factors. In Section 3.8.1, using the second moment method, we establish

an auxiliary lemma which gives a tight bound on the minimum possible number of

nonzero weights in a graph with non-negative edge weights such that no set of 𝑠

vertices contains sufficiently more than the average weight of a subset of 𝑠 vertices.

We give the lower bound for Theorem 3.1.6 in Section 3.8.2, which completes the

proof of this theorem. The proofs of some of the auxiliary lemmas which involve

lengthy calculations are deferred to the end. All logarithms in this chapter are base

2, unless otherwise indicated. All colorings are edge-colorings of complete graphs,

unless otherwise indicated. For the sake of clarity of presentation, we systematically

omit floor and ceiling signs whenever they are not crucial. We also do not make any
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serious attempt to optimize absolute constants in our statements and proofs.

3.2 Lexicographic product colorings

In this section, we will prove some simple results about lexicographic product colorings

(Definition 3.1.2). These will be useful in constructing examples of 𝑟-colorings that

do not contain large vertex sets that use at most 𝑠 colors.

For such a lexicographic product coloring 𝐹1⊗𝐹2 with 𝐹1 on𝑚1 vertices and 𝐹2 on

𝑚2 vertices, we will view the vertex set interchangeably as [𝑚1×𝑚2] and [𝑚1]× [𝑚2].

For the sake of brevity, we often refer to a lexicographic product coloring as simply a

product coloring.

Definition 3.2.1. For 𝐹 an edge-coloring of 𝐾𝑛 and 𝑆 ⊆ 𝑅 a set of colors, we write

that a set 𝑍 of vertices is 𝑆-subchromatic in 𝐹 if every edge internal to 𝑍 takes colors

(under 𝐹 ) only from 𝑆.

When 𝐹 and 𝑆 are clear from context, we shall simply say that 𝑍 is subchromatic.

We will write 𝑔
𝑆,𝐹

to be the size of the largest subchromatic set of vertices.

If 𝐹 is an edge-coloring constructed via a product of two other colorings 𝐹1, 𝐹2,

then the next lemma allows us to determine 𝑔
𝑆,𝐹

in terms of 𝑔
𝑆,𝐹1

and 𝑔
𝑆,𝐹2

.

Lemma 3.2.2. For any 𝑟-colorings 𝐹1, 𝐹2 of 𝐸(𝐾𝑛1), 𝐸(𝐾𝑛2), respectively, and any

set 𝑆 ⊆ 𝑅 of colors, 𝑔
𝑆,𝐹

= 𝑔
𝑆,𝐹1

· 𝑔
𝑆,𝐹2

, where 𝐹 = 𝐹1 ⊗ 𝐹2.

Proof: Let 𝑍 a set of subchromatic vertices in 𝐹 (so 𝑍 ⊆ 𝑉 (𝐾𝑛1×𝑛2)) be given. We

will first show |𝑍| ≤ 𝑔
𝑆,𝐹1

· 𝑔
𝑆,𝐹2

.

Take 𝑈 ⊆ [𝑛1] to be the set of 𝑢 ∈ [𝑛1] such that there is some 𝑣 ∈ [𝑛2] with

(𝑢, 𝑣) ∈ 𝑍; that is, 𝑈 is the subset of [𝑛1] that is used in 𝑍. For any 𝑢 ∈ [𝑛1], take

𝑉𝑢 ⊆ [𝑛2] to be the set of 𝑣 ∈ [𝑛2] such that (𝑢, 𝑣) ∈ 𝑍, that is, 𝑉𝑢 is the subset of

[𝑛2] that is paired with 𝑢 in 𝑍. By construction, we have 𝑍 =
⋃︀

𝑢∈𝑈{𝑢} × 𝑉𝑢.

Therefore, the set 𝑈 must be subchromatic in 𝐹1, as given distinct 𝑢1, 𝑢2 ∈ 𝑈
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there are 𝑣1, 𝑣2 so that (𝑢1, 𝑣1), (𝑢2, 𝑣2) ∈ 𝑍, and hence:

𝐹1(𝑢1, 𝑢2) = 𝐹 ((𝑢1, 𝑣1), (𝑢2, 𝑣2)) ∈ 𝑆.

Thus, |𝑈 | ≤ 𝑔
𝑆,𝐹1

.

Furthermore, given 𝑢 ∈ 𝑈 we must have that 𝑉𝑢 is subchromatic in 𝐹2, as given

distinct 𝑣1, 𝑣2 ∈ 𝑉𝑢 we have that

𝐹2(𝑣1, 𝑣2) = 𝐹 ((𝑢, 𝑣1), (𝑢, 𝑣2)) ∈ 𝑆.

Therefore, |𝑉𝑢| ≤ 𝑔
𝑆,𝐹2

.

Hence,

|𝑍| =

⃒⃒⃒⃒
⃒⋃︁
𝑢∈𝑈

{𝑢} × 𝑉𝑢

⃒⃒⃒⃒
⃒ =

∑︁
𝑢∈𝑈

|𝑉𝑢| ≤
∑︁
𝑢∈𝑈

𝑔
𝑆,𝐹2

= |𝑈 | 𝑔
𝑆,𝐹2

≤ 𝑔
𝑆,𝐹1

· 𝑔
𝑆,𝐹2

.

Since 𝑍 was arbitrary, we get 𝑔
𝑆,𝐹

≤ 𝑔
𝑆,𝐹1

· 𝑔
𝑆,𝐹2

.

We now prove that 𝑔
𝑆,𝐹

≥ 𝑔
𝑆,𝐹1

𝑔
𝑆,𝐹2

, thus giving the desired result: take 𝑈 ⊆ [𝑛1] a

subchromatic set under 𝐹1 and 𝑉 ⊆ [𝑛2] a subchromatic set under 𝐹2. We claim that

𝑈×𝑉 is subchromatic under 𝐹 . Consider any distinct pairs (𝑢1, 𝑣1), (𝑢2, 𝑣2) ∈ 𝑈×𝑉 .
If 𝑢1 ̸= 𝑢2 then

𝐹 ((𝑢1, 𝑣1), (𝑢2, 𝑣2)) = 𝐹1(𝑢1, 𝑢2) ∈ 𝑆,

and if 𝑢1 = 𝑢2 then

𝐹 ((𝑢1, 𝑣1), (𝑢2, 𝑣2)) = 𝐹2(𝑣1, 𝑣2) ∈ 𝑆.

If we choose 𝑈 to have size 𝑔
𝑆,𝐹1

and 𝑉 to have size 𝑔
𝑆,𝐹2

, we get 𝑔
𝑆,𝐹1

· 𝑔
𝑆,𝐹2

=

|𝑈 × 𝑉 | ≤ 𝑔
𝑆,𝐹

. 2

The next lemma states that the property of being a Gallai coloring is preserved

under taking product colorings.

Lemma 3.2.3. If 𝐹1, 𝐹2 are Gallai 𝑟-colorings of 𝐸(𝐾𝑛1), 𝐸(𝐾𝑛2), respectively, then

if 𝐹 = 𝐹1 ⊗ 𝐹2 then 𝐹 is a Gallai coloring.
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Proof: Let any three vertices 𝑢 = (𝑢1, 𝑢2), 𝑣 = (𝑣1, 𝑣2), 𝑤 = (𝑤1, 𝑤2) ∈ [𝑛1] ×
[𝑛2] be given. We will show that they do not form a rainbow triangle under 𝐹 . If

𝑢1 = 𝑣1 = 𝑤1 then 𝐹 (𝑢, 𝑣) = 𝐹2(𝑢2, 𝑣2), 𝐹 (𝑢,𝑤) = 𝐹2(𝑢2, 𝑤2), 𝐹 (𝑣, 𝑤) = 𝐹2(𝑣2, 𝑤2);

therefore, 𝑢, 𝑣, 𝑤 do not form a rainbow triangle by the assumption that 𝐹2 is a

Gallai coloring. If 𝑢1, 𝑣1, 𝑤1 are pairwise distinct then 𝐹 (𝑢, 𝑣) = 𝐹1(𝑢1, 𝑣1), 𝐹 (𝑢,𝑤) =

𝐹1(𝑢1, 𝑤1), 𝐹 (𝑣, 𝑤) = 𝐹1(𝑣1, 𝑤1) and so 𝑢, 𝑣, 𝑤 do not form a rainbow triangle by the

assumption that 𝐹1 is a Gallai coloring. Otherwise, exactly one pair of 𝑢1, 𝑣1, 𝑤1 are

equal. Assume without loss of generality that 𝑢1 = 𝑣1, 𝑢1 ̸= 𝑤1, and 𝑣1 ̸= 𝑤1. We

have:

𝐹 (𝑢,𝑤) = 𝐹1(𝑢1, 𝑤1) = 𝐹1(𝑣1, 𝑤1) = 𝐹 (𝑣, 𝑤),

so again 𝑢, 𝑣, 𝑤 do not form a rainbow triangle. 2

The following corollary states that we may take a product of any number of 2-

colorings and the result will be a Gallai coloring; since all 2-colorings are Gallai

colorings, it follows by induction from the previous lemma.

Corollary 3.2.4. If 𝐹1, . . . , 𝐹𝑘 are 2-edge-colorings, then 𝐹1 ⊗ · · · ⊗ 𝐹𝑘 is a Gallai

coloring.

3.3 Simple bounds for three colors

In this section we will demonstrate simple upper and lower bounds in the case 𝑟 = 3

and 𝑠 = 2. We first apply the techniques of the previous section to demonstrate a

Gallai 3-coloring with no large 2-colored vertex set; we will use 𝑅 for the set of colors.

Theorem 3.3.1. There is a Gallai 3-coloring on 𝑚 vertices so that, for every two

colors 𝑆 ∈
(︀
𝑅
2

)︀
, every vertex set 𝑍 using colors from 𝑆 satisfies |𝑍| ≤ (4/9 +

𝑜(1))𝑚1/3 log2𝑚.

Proof: Take 𝑡 = ⌈𝑚1/3⌉; then 𝑡3 is at least 𝑚. For every pair of colors 𝑃 ∈
(︀
𝑅
2

)︀
, take

𝐹𝑃 to be a 2-coloring of 𝐸(𝐾𝑡) using colors from 𝑃 so that the largest monochromatic

clique has size at most 2 log 𝑡. Such a coloring exists by the lower bound on Ramsey
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numbers proved by Erdős and Szekeres in [36]. We define 𝐹 a coloring on 𝑡3 vertices

by taking 𝐹 = 𝐹{𝑅1,𝑅2} ⊗ 𝐹{𝑅2,𝑅3} ⊗ 𝐹{𝑅1,𝑅3} where 𝑅1, 𝑅2, 𝑅3 are such that 𝑅 =

{𝑅1, 𝑅2, 𝑅3}. This is a Gallai coloring by Corollary 3.2.4. Fixing any set 𝑆 of two

colors, two of the above three colorings have 𝑆-subchromatic sets of size at most

2 log 𝑡, and the remaining one has size 𝑡, so the size of the largest 𝑆-subchromatic set

in 𝐹 is at most 𝑡(2 log 𝑡)2 by Lemma 3.2.2. Since 𝑆 is arbitrary, the size of the largest

𝑆-subchromatic set for any 𝑆 ∈
(︀
𝑅
2

)︀
is at most 𝑡(2 log 𝑡)2.

Restricting 𝐹 to any𝑚 vertices will be a 3-Gallai coloring with no subchromatic set

of size larger than 𝑡(2 log 𝑡)2. Note that since 𝑡 = ⌈𝑚1/3⌉, we have 𝑡 = (1 + 𝑜(1))𝑚1/3,

so

𝑡(2 log 𝑡)2 = (1 + 𝑜(1))𝑚1/3(2 log(𝑚1/3))2 = (4/9 + 𝑜(1))𝑚1/3 log2𝑚.

2

We now proceed to prove that any Gallai 3-coloring on 𝑚 vertices contains a

subchromatic set on two colors of size at least 𝑚1/3. Indeed, the next theorem is a

strengthening of this statement, as it states that the geometric average over 𝑆 ∈
(︀
𝑅
2

)︀
of 𝑔

𝑆,𝐹
must be at least 𝑚1/3.

We have three colors and we refer to them as red, blue, and yellow.

Theorem 3.3.2. For any Gallai 3-coloring 𝐹 on 𝑚 vertices, we have
∏︀

𝑆∈(𝑅
2)
𝑔
𝑆,𝐹

≥
𝑚.

Proof: We proceed by induction on 𝑚 to prove the theorem.

Define 𝑔 to be the size of the largest subchromatic set using only the colors blue

and yellow, 𝑜 to be the size of the largest subchromatic set using only the colors red

and yellow, and 𝑝 to be the size of the largest subchromatic set using only the colors

red and blue. (A note on nomenclature: 𝑔 stands for “green," as blue and yellow form

green when mixed. Similarly, 𝑜 stands for “orange" and 𝑝 for “purple.") We wish to

show that 𝑔𝑜𝑝 ≥ 𝑚.

If 𝑚 = 1, then 𝑔 = 𝑜 = 𝑝 = 1 and 𝑔𝑜𝑝 = 𝑚.

Otherwise, 𝑚 > 1 and by the structure theorem for Gallai colorings there is a non-

trivial partition of the vertex set into parts 𝑉1, . . . , 𝑉𝑡 and a pair of colors 𝑄 ∈
(︀
𝑅
2

)︀
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satisfying that for any distinct 𝑖, 𝑗 ∈ [𝑡] there is a 𝑞 ∈ 𝑄 so that every edge between 𝑉𝑖

and 𝑉𝑗 has color 𝑞. Take 𝑚𝑖 to be the size of 𝑉𝑖. Take 𝑔𝑖 to be the size of the largest

set using only the colors blue and yellow from 𝑉𝑖, 𝑜𝑖 to be the size of the largest set

using only the colors red and yellow from 𝑉𝑖, and 𝑝𝑖 to be the size of the largest set

using only the colors red and blue from 𝑉𝑖. Without loss of generality we assume that

𝑄 contains colors blue and yellow.

We have 𝑔 =
∑︀

𝑖 𝑔𝑖. Indeed, we may combine all the largest sets using colors blue

and yellow from each 𝑉𝑖 to obtain a set of size
∑︀

𝑖 𝑔𝑖 that only uses blue and yellow.

Furthermore, 𝑜 ≥ max𝑖 𝑜𝑖 and 𝑝 ≥ max𝑖 𝑝𝑖. This gives:

𝑔𝑜𝑝 =
∑︁
𝑖

𝑔𝑖𝑜𝑝 ≥
∑︁
𝑖

𝑔𝑖𝑜𝑖𝑝𝑖 ≥
∑︁
𝑖

𝑚𝑖 = 𝑚,

where the last inequality follows by the induction hypothesis applied to 𝐹 restricted

to 𝑉𝑖. 2

Note that we use 𝑜 ≥ max𝑖 𝑜𝑖 and 𝑝 ≥ max𝑖 𝑝𝑖. It is on these inequalities that

we will, in the next sections, gain multiple factors of log𝑚; if, for example, we find

some set 𝑈 ⊆ [𝑡] satisfying that, for each distinct 𝑖, 𝑗 ∈ 𝑈 , the edges between 𝑉𝑖, 𝑉𝑗

are all yellow, then 𝑜 ≥ ∑︀
𝑖∈𝑈 𝑜𝑖. If it were the case that the 𝑜𝑖, 𝑝𝑖 were all pairwise

equal, then we would get by the Erdős-Szekeres bound for Ramsey numbers that

𝑜𝑝 = Ω(log2 𝑡max𝑖 𝑜𝑖𝑝𝑖); this motivates the approach in the next two sections, where

we handle the general case in which it may not be true that the 𝑜𝑖, 𝑝𝑖 are all pairwise

equal.

3.4 A weighted Ramsey theorem

In this section we will prove a version of Ramsey’s theorem that will apply to graphs

in which the weight of a vertex may depend on the color of the clique that contains

the vertex. The next lemma is a convenient statement of a quantitative bound on the

classical Ramsey Theorem.
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Lemma 3.4.1. In every 2-coloring of the edges of 𝐾𝑡, for some 𝑘 and ℓ there is a

red clique of order 𝑘 and a blue clique of order ℓ with 𝑘ℓ ≥ 1
4

log2 𝑡.

Proof: Take 𝑘 to be the order of the largest red clique and ℓ to be the order of the

largest blue clique. We must have

𝑡 < 𝑅(𝑘 + 1, ℓ+ 1) ≤
(︂
𝑘 + ℓ

𝑘

)︂
.

In Section 3.9 we indicate how to prove that
(︀
𝑘+ℓ
𝑘

)︀
≤ 22

√
𝑘ℓ; combining this with the

above inequality gives the desired result. 2

For the rest of this chapter, let 𝑀 := 216. The following lemma, which we call

the weighted Ramsey theorem, states that if vertex 𝑖 contributes weight 𝛼𝑖 to any

red clique in which it is contained and weight 𝛽𝑖 to any blue clique in which it is

contained, then we may give a lower bound for the product of the sizes of the largest

(weighted) red and blue cliques.

Lemma 3.4.2. Given a 2-coloring of the edges of a complete graph on 𝑡 vertices with

𝑡 ≥ 𝑀 and vertex weights (𝛼𝑖, 𝛽𝑖), take 𝛾𝑖 = 𝛼𝑖𝛽𝑖 and 𝛾 = min𝑖 𝛾𝑖. There is a red

clique 𝑆 and a blue clique 𝑈 with(︃∑︁
𝑠∈𝑆

𝛼𝑠

)︃(︃∑︁
𝑢∈𝑈

𝛽𝑢

)︃
≥ 𝛾

32
log2 𝑡.

Proof: We will dyadically partition the vertices based on their pair of weights (𝛼𝑖, 𝛽𝑖),

and then apply the classical Erdős-Szekeres bound on Ramsey numbers in the form

of the previous lemma. That is, we will find a large set of vertices 𝐴 so that any two

vertices in 𝐴 have similar values for 𝛼𝑖 and 𝛽𝑖. By applying Lemma 3.4.1 to this set

we will obtain the desired result.

Take 𝛼 = max𝑖 𝛼𝑖 and 𝛽 = max𝑖 𝛽𝑖.

If 𝛼𝛽 ≥ 𝛾
32

log2 𝑡 we may take 𝑆 = {𝑖} with 𝛼𝑖 = 𝛼 and 𝑈 = {𝑗} with 𝛽𝑗 = 𝛽.

Otherwise, 𝛼𝛽/𝛾 < 1
32

log2 𝑡. Observe that for each 𝑖 we have 𝛼𝑖 ≤ 𝛼, 𝛽𝑖 ≤ 𝛽, and

𝛼𝑖𝛽𝑖 ≥ 𝛾.
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This gives 𝛾/𝛽 ≤ 𝛼𝑖 ≤ 𝛼 and 𝛾/𝛼 ≤ 𝛽𝑖 ≤ 𝛽. Note that we may partition [𝛾/𝛽, 𝛼]

into𝑚1 ≤ log(𝛼𝛽/𝛾)+1 intervals 𝐼1, . . . , 𝐼𝑚1 such that, within any interval 𝐼𝑖, we have

sup(𝐼𝑖)/ inf(𝐼𝑖) ≤ 2. Similarly, we may partition [𝛾/𝛼, 𝛽] into 𝑚2 ≤ log(𝛼𝛽/𝛾) + 1

intervals 𝐼 ′1, . . . , 𝐼
′
𝑚2

with sup(𝐼 ′𝑖)/ inf(𝐼 ′𝑖) ≤ 2. By the pigeonhole principle, there

must be some pair (𝑗, 𝑗′) such that, taking 𝐴 := {𝑖 : 𝛼𝑖 ∈ 𝐼𝑗, 𝛽𝑖 ∈ 𝐼 ′𝑗′}, we have

|𝐴| ≥ 𝑡/(𝑚1𝑚2).

Applying the previous lemma to 𝐴, we get that there is a red clique 𝑆 of size 𝑘

and a blue clique 𝑈 of size ℓ with 𝑘ℓ ≥ 1
4

log2(𝑡/(𝑚1𝑚2)).

Note that, since 𝑡 ≥𝑀 , we get𝑚1𝑚2 ≤ (log( 1
32

log2 𝑡)+1)2 = log2( 1
16

log2 𝑡) ≤ 𝑡1/4.

Therefore, we get

1

4
log2(𝑡/(𝑚1𝑚2)) ≥

1

4
log2(𝑡3/4) ≥ 1

8
log2 𝑡.

Take 𝛼𝐴 = min𝑖∈𝐴 𝛼𝑖 and 𝛽𝐴 = min𝑖∈𝐴 𝛽𝑖. For any 𝑖 ∈ 𝐴, 𝛼𝑖 ∈ 𝐼𝑗 and hence

𝛼𝐴 ≥ 𝛼𝑖/2. Similarly, for any 𝑖 ∈ 𝐴 we have 𝛽𝐴 ≥ 𝛽𝑖/2. Therefore, fixing any 𝑖 ∈ 𝐴,

we get 𝛼𝐴𝛽𝐴 ≥ 𝛼𝑖

2
𝛽𝑖

2
≥ 𝛾/4. Therefore,

(︃∑︁
𝑠∈𝑆

𝛼𝑠

)︃(︃∑︁
𝑢∈𝑈

𝛽𝑢

)︃
≥
(︃∑︁

𝑠∈𝑆

𝛼𝐴

)︃(︃∑︁
𝑢∈𝑈

𝛽𝐴

)︃
= 𝑘𝛼𝐴ℓ𝛽𝐴 ≥ 𝑘ℓ𝛾/4 ≥ 𝛾

32
log2 𝑡.

2

Since, in the statement of the weighted Ramsey theorem, we take 𝛾 = min𝑖 𝛼𝑖𝛽𝑖, it

provides good bounds when 𝛼𝑖𝛽𝑖 does not vary much between the vertices. Therefore,

when we wish to use it in the upcoming sections, we will first dyadically partition the

vertices based on 𝛼𝑖𝛽𝑖 and then apply the lemma to each partition.

Note that we chose 𝛾 = min𝑖 𝛼𝑖𝛽𝑖. We may hope to be able to use other functions

of 𝛼𝑖, 𝛽𝑖 in this expression. However, it is not as robust as one may hope. In particular,

we want to observe that the function 𝛼𝑖 + 𝛽𝑖 will not yield an analogous theorem,

as if we have many vertices of weight (0, 1) and color all of the edges red, then the

largest red clique has size 0 and the largest blue clique has size 1, but for each 𝑖 we

79



have 𝛼𝑖 + 𝛽𝑖 = 1. Fortunately, using 𝛼𝑖𝛽𝑖 will suffice for our purposes.

3.5 Tight lower bound for three colors

In this section we will show that any Gallai 3-coloring on 𝑚 vertices has a 2-colored

set of size Ω(𝑚1/3 log2𝑚). This matches the upper bound up to a constant factor.

We will refer to the three edge colors as red, blue, and yellow.

For the rest of this section, fix an integer 𝑚 ∈ N. We remark that in this section

there is an inductive argument for which it is important to note that 𝑚 remains fixed

throughout.

Let

𝑓(𝑛) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑐 log2(𝐶𝑛) if 0 < 𝑛 ≤ 𝑚4/9

𝑐2 log2(𝑚4/9) log2(𝐶𝑛𝑚−4/9) if 𝑚4/9 < 𝑛 ≤ 𝑚8/9

𝑐3 log4(𝑚4/9) log2(𝐶𝑛𝑚−8/9) if 𝑚8/9 < 𝑛 ≤ 𝑚,

,

where 𝐷 = 22048, 𝐶 = 2𝐷8
, and 𝑐 = log−2(𝐶2) = 𝐷−16/4. We will have a further

discussion about 𝑓 and its properties shortly. For now, simply note that 𝑓(𝑚) =

Ω(log6𝑚).

We will prove the following theorem.

Theorem 3.5.1. For any 𝑛 ∈ [𝑚], a Gallai coloring 𝐹 on 𝑛 vertices satisfies either

max𝑆 𝑔𝑆,𝐹 ≥ 𝑚7/18/8 or
∏︀

𝑆 𝑔𝑆,𝐹 ≥ 𝑛𝑓(𝑛).

Before we prove Theorem 3.5.1, we show how it implies the existence of a large

subchromatic set.

Theorem 3.5.2. Every Gallai 3-coloring of 𝐸(𝐾𝑚) has a two colored set of size

Ω(𝑚1/3 log2𝑚).

Proof: By Theorem 3.5.1, we have that either max𝑆 𝑔𝑆,𝐹 ≥ 𝑚7/18/8 = Ω(𝑚1/3 log2𝑚),

or ∏︁
𝑆

𝑔
𝑆,𝐹

≥ 𝑚𝑓(𝑚) = 𝑐3𝑚 log4(𝑚4/9) log2(𝐶𝑚1/9)
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≥ 𝑐3𝑚2−6(log4𝑚)2−9(log2𝑚) = 2−15𝑐3𝑚 log6𝑚.

As we have a lower bound on the product of three numbers, one of these numbers must

be at least the cubed root. Hence, max𝑆 𝑔𝑆,𝐹 ≥ 2−5𝑐𝑚1/3 log2𝑚 = Ω(𝑚1/3 log2𝑚), as

desired. 2

We will now proceed with a further discussion about 𝑓 . We call (0,𝑚4/9], (𝑚4/9,𝑚8/9],

(𝑚8/9,𝑚] the “intervals of 𝑓 ." Note that on each interval, 𝑓(𝑛) = 𝛾 log2(𝛿𝑛) for some

constants 𝛾, 𝛿 (where 𝑚 is viewed as a constant). Intuitively, 𝐶 is large so that we

avoid the range of values in which log is poorly behaved, and 𝑐 is small both so that

we may assume 𝑛 is large and to make the transitions between intervals easier. 𝑓 was

chosen so that it satisfies certain properties, the more interesting of which we explic-

itly enumerate below. All of these properties are formalizations of the statement “𝑓

does not grow too quickly."

Lemma 3.5.3. If 𝑚 ≥ 𝐶, then the following statements hold about 𝑓 for any integer

𝑛 with 1 < 𝑛 ≤ 𝑚.

1. For any 𝛼 ∈
[︀
1
𝑛
, 1
]︀
, 𝑓(𝛼𝑛) ≥ 𝛼𝑓(𝑛).

2. For any 𝛼1, 𝛼2, 𝛼3 ∈
[︀
1
𝑛
, 1
]︀
such that

∑︀
𝑖 𝛼𝑖 = 1 we have, taking 𝑛𝑖 = 𝛼𝑖𝑛,

𝑛𝑓(𝑛) −
∑︁
𝑖

𝑛𝑖𝑓(𝑛𝑖) ≤
8

log𝐶
𝑛𝑓(𝑛).

3. For 𝑖 ≥ 0 and 𝑚7/18 ≥ 2𝑗 ≥ 1 we have 𝑓(2𝑖) log2(𝐷2𝑗) ≥ 512𝑓(2𝑖+ 8
7
𝑗).

4. For 1 ≤ 𝜏 ≤ 𝑛 ≤ 𝐷3𝜏 , we have 𝑓(𝜏) ≥ 𝑓(𝑛)/2.

5. For any 𝛼 ∈
[︀
1
𝑛
, 1
32

]︀
, 𝑓(𝛼𝑛) ≥ 16𝛼𝑓(𝑛).

These properties are collectively referred to as “the facts about 𝑓" and are proved

in Section 3.10.

We now proceed with a proof of Theorem 3.5.1.

Proof of Theorem 3.5.1: We proceed by induction on 𝑛. Define 𝑔 to be the size

of the largest set in 𝐹 using only the colors blue and yellow, 𝑜 to be the size of the
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largest set in 𝐹 using only the colors red and yellow, and 𝑝 to be the size of the largest

set in 𝐹 using only the colors red and blue. We wish to show that either 𝑔𝑜𝑝 ≥ 𝑛𝑓(𝑛)

or max(𝑔, 𝑜, 𝑝) ≥ 𝑚7/18/8.

Our base cases are those 𝑛 for which 𝑓(𝑛) ≤ 1, as for these cases by Theorem

3.3.2 𝑔𝑜𝑝 ≥ 𝑛 ≥ 𝑛𝑓(𝑛). Since 𝑐 = log−2(𝐶2), any 𝑛 < 𝐶 is a base case.

If we are not in a base case, we have 𝑛 ≥ 𝐶 (and 𝑓(𝑛) ≥ 1).

Since 𝐹 is a Gallai coloring, there is a non-trivial partition 𝑉 (𝐾𝑛) = 𝑉1 ∪ . . .∪ 𝑉𝑡
with |𝑉1| ≥ . . . ≥ |𝑉𝑡| ≥ 1 such that there is some 2-coloring 𝜒 of [𝑡] such that for

every distinct 𝑖, 𝑗 ∈ [𝑡] and 𝑢 ∈ 𝑉𝑖, 𝑣 ∈ 𝑉𝑗, the color under 𝐹 of {𝑢, 𝑣} is 𝜒(𝑖, 𝑗).

Suppose, without loss of generality, that 𝜒 only uses the colors blue and yellow.

The proof will split into three cases.

Cases 1 and 2, Preliminary discussion: These will be the cases in which 𝑉1 has

a substantial portion of the vertices. Let 𝑈1 = 𝑉1, 𝑈2 denote the union of 𝑉𝑗 over

𝑗 ̸= 1 such that 𝜒(1, 𝑗) is yellow, and 𝑈3 denote the union of 𝑉𝑗 over 𝑗 ̸= 1 such that

𝜒(1, 𝑗) is blue. We have that 𝑈1, 𝑈2, 𝑈3 is a non-trivial partition of 𝑉 . Let 𝑛𝑖 = |𝑈𝑖|.
Let 𝛼𝑖 = |𝑈𝑖| /𝑛 = 𝑛𝑖/𝑛 for 𝑖 = 1, 2, 3, so 𝛼1 + 𝛼2 + 𝛼3 = 1.

For 𝑖 = 1, 2, 3, let 𝐹𝑖 be the coloring 𝐹 restricted to 𝑈𝑖. Let 𝑔𝑖 be the size of the

largest subchromatic set in 𝐹𝑖 using only the colors blue and yellow, 𝑜𝑖 be the size of

the largest subchromatic set in 𝐹𝑖 using only the colors red and yellow, and 𝑝𝑖 be the

size of the largest subchromatic set in 𝐹𝑖 using only the colors red and blue. Suppose

without loss of generality 𝑛2 ≥ 𝑛3, so 𝛼2 ≥ (1 − 𝛼1)/2 and max(𝛼1, 𝛼2) ≥ 1/3. By

the induction hypothesis, for 𝑖 = 1, 2, 3, we have that either one of 𝑔𝑖, 𝑜𝑖, 𝑝𝑖 is at least

𝑚7/18/8, in which case we may use 𝑔 ≥ max𝑖 𝑔𝑖, 𝑜 ≥ max𝑖 𝑜𝑖, 𝑝 ≥ max𝑖 𝑝𝑖 to complete

the induction, or

𝑔𝑖𝑜𝑖𝑝𝑖 ≥ 𝑛𝑖𝑓(𝑛𝑖).

Assume we are in this latter case. Since the 𝑈𝑖 are connected only by yellow and

blue edges, we may take the largest subchromatic set using only yellow and blue from

each 𝑈𝑖, giving 𝑔 ≥ 𝑔1+𝑔2+𝑔3 (in fact, equality holds). Since 𝑈1 and 𝑈2 are connected

with yellow edges, we may take the largest subchromatic set using only red and yellow
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from both 𝑈1 and 𝑈2, or we may simply take the largest such subchromatic set from

𝑈3, so we get 𝑜 ≥ max(𝑜1 + 𝑜2, 𝑜3). Similarly, 𝑝 ≥ max(𝑝1 + 𝑝3, 𝑝2).

Note

𝑔𝑜𝑝 ≥ 𝑔1𝑜𝑝+ 𝑔2𝑜𝑝+ 𝑔3𝑜𝑝 ≥ 𝑔1(𝑜1 + 𝑜2)(𝑝1 + 𝑝3) + 𝑔2(𝑜1 + 𝑜2)𝑝2 + 𝑔3𝑜3(𝑝1 + 𝑝3)

≥ 𝑔1(𝑜1 + 𝑜2)𝑝1 + 𝑔2(𝑜1 + 𝑜2)𝑝2 + 𝑔3𝑜3𝑝3 = 𝑔1𝑜2𝑝1 + 𝑔2𝑜1𝑝2 +
3∑︁

𝑖=1

𝑔𝑖𝑜𝑖𝑝𝑖.

We thus have

𝑔𝑜𝑝−
3∑︁

𝑖=1

𝑔𝑖𝑜𝑖𝑝𝑖 ≥ 𝑔1𝑜2𝑝1 + 𝑔2𝑜1𝑝2 ≥ 2
√︀

(𝑔1𝑜2𝑝2)(𝑔2𝑜1𝑝1) = 2
√︀

(𝑔1𝑜1𝑝1)(𝑔2𝑜2𝑝2)

≥ 2
√︀

(𝑛1𝑓(𝑛1))(𝑛2𝑓(𝑛2)) ≥ 2
√
𝛼1𝛼2𝑛

√︀
𝑓(𝑛1)𝑓(𝑛2),

where the second inequality is an instance of the arithmetic-geometric mean inequal-

ity.

Case 1: 𝛼1, 𝛼2 ≥ (log𝐶)−1/4. In this case, we have

𝑔𝑜𝑝−
3∑︁

𝑖=1

𝑔𝑖𝑜𝑖𝑝𝑖 ≥ 2
√
𝛼1𝛼2𝑛

√︀
𝑓(𝑛1)𝑓(𝑛2) ≥ 2𝛼1𝛼2𝑛𝑓(𝑛) ≥ 2𝑛𝑓(𝑛)/

√︀
log𝐶

≥ 8

log𝐶
𝑛𝑓(𝑛) ≥ 𝑛𝑓(𝑛) −

3∑︁
𝑖=1

𝑛𝑖𝑓(𝑛𝑖),

where the second inequality is by the first fact about 𝑓 , the third inequality is by

substituting lower bounds on 𝛼1 and 𝛼2, and the last inequality is by the second fact

about 𝑓 . Hence,

𝑔𝑜𝑝 ≥
3∑︁

𝑖=1

𝑔𝑖𝑜𝑖𝑝𝑖 + 𝑛𝑓(𝑛) −
3∑︁

𝑖=1

𝑛𝑖𝑓(𝑛𝑖) ≥ 𝑛𝑓(𝑛),

where the last inequality is by the induction on hypothesis applied to 𝑈𝑖 for 𝑖 = 1, 2, 3.

This completes this case.

Case 2: 𝛼1 ≥ (log𝐶)−1/4 ≥ 𝛼2. Before we proceed with this case, we prove a simple
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claim.

Claim 3.5.4. 𝑛𝑓(𝑛) + 𝑛1𝑓(𝑛1) − 2𝑛1𝑓(𝑛) > 0.

Proof: Note 𝑛𝑓(𝑛) − 𝑛1𝑓(𝑛) = (1 − 𝛼1)𝑛𝑓(𝑛). Therefore,

𝑛1𝑓(𝑛1) − 𝑛1𝑓(𝑛) ≥ 𝛼1𝑛1𝑓(𝑛) − 𝑛1𝑓(𝑛) = 𝛼2
1𝑛𝑓(𝑛) − 𝛼1𝑛𝑓(𝑛) = −𝛼1(1 − 𝛼1)𝑛𝑓(𝑛),

where the first inequality follows from the first fact about 𝑓 . From this we get

𝑛𝑓(𝑛) +𝑛1𝑓(𝑛1)−2𝑛1𝑓(𝑛) ≥ (1−𝛼1)𝑛𝑓(𝑛)−𝛼1(1−𝛼1)𝑛𝑓(𝑛) = (1−𝛼1)
2𝑛𝑓(𝑛) > 0.

2

In this case we have 𝛼1 ≥ 1 − (𝛼2 + 𝛼3) ≥ 1 − 2𝛼2 ≥ 1 − 2(log𝐶)−1/4 ≥ 1/2 and

hence

𝑔𝑜𝑝−
3∑︁

𝑖=1

𝑔𝑖𝑜𝑖𝑝𝑖 ≥ 2
√
𝛼1𝛼2𝑛

√︀
𝑓(𝑛1)𝑓(𝑛2) ≥ 8𝛼1𝛼2𝑛𝑓(𝑛) ≥ 4𝛼2𝑛𝑓(𝑛)

≥ 2(𝛼2 + 𝛼3)𝑛𝑓(𝑛) = 2(𝑛− 𝑛1)𝑓(𝑛)

≥ 2(𝑛− 𝑛1)𝑓(𝑛) − (𝑛𝑓(𝑛) + 𝑛1𝑓(𝑛1) − 2𝑛1𝑓(𝑛))

= 𝑛𝑓(𝑛) − 𝑛1𝑓(𝑛1) ≥ 𝑛𝑓(𝑛) −
3∑︁

𝑖=1

𝑛𝑖𝑓(𝑛𝑖),

where the second inequality is by both the first fact about 𝑓 applied to 𝑓(𝑛1) and

the fifth fact about 𝑓 applied to 𝑓(𝑛2), the third inequality is by 𝛼1 ≥ 1/2, and the

second-to-last one is by the claim.

Hence,

𝑔𝑜𝑝 ≥
3∑︁

𝑖=1

𝑔𝑖𝑜𝑖𝑝𝑖 + 𝑛𝑓(𝑛) −
3∑︁

𝑖=1

𝑛𝑖𝑓(𝑛𝑖) ≥ 𝑛𝑓(𝑛),

where the last inequality is by the induction on hypothesis applied to 𝑈𝑖 for 𝑖 = 1, 2, 3.

This completes this case.

84



Case 3: 𝛼1 < (log𝐶)−1/4. This is the sparse case, when each part is at most a

(log𝐶)−1/4 = 𝐷−2 fraction of the total.

Take 𝑛𝑖 = |𝑉𝑖|. Take 𝐹𝑖 to be the coloring 𝐹 restricted to 𝑉𝑖. Take 𝑔𝑖 to be the

size of the largest subchromatic set in 𝐹𝑖 using only the colors blue and yellow, 𝑜𝑖 to

be the size of the largest subchromatic set in 𝐹𝑖 using only the colors red and yellow,

and 𝑝𝑖 to be the size of the largest subchromatic set in 𝐹𝑖 using only the colors red

and blue.

We reorder the 𝑉𝑖 so that if 𝑖 ≤ 𝑗 then 𝑜𝑖𝑝𝑖 ≤ 𝑜𝑗𝑝𝑗.

Take 𝜏 = ⌊log(2𝐷−2𝑛)⌋, so max𝑖 𝑛𝑖 ≤ (log𝐶)−1/4𝑛 ≤ 𝐷−2𝑛 ≤ 2𝜏 ≤ 2𝐷−2𝑛.

Define, for 𝑖 ≤ 𝜏 , 𝐼𝑖 := [2𝑖, 2𝑖+1]. Take Φ(𝑖) = {𝑗 : 𝑛𝑗 ∈ 𝐼𝑖}. The Φ(𝑖) are dyadically

partitioning the indices; we will eventually use these partitions to construct sets to

which we will apply the weighted Ramsey theorem.

Note that 𝑔 =
∑︀

𝑗 𝑔𝑗, so we have 𝑔𝑜𝑝 =
∑︀

𝑗 𝑔𝑗𝑜𝑝.

We now present the idea behind the argument for the rest of this case. Fix 𝑖 so

that Φ(𝑖) has at least 2𝐷2
7
8
(𝜏−𝑖) elements and 𝑖 ≥ log(𝑛𝑚−7/18) (we will show that

most vertices 𝑣 are contained in 𝑉𝑗 as 𝑗 varies over the Φ(𝑖) that have this property).

We will define a weighted graph whose vertices are the indices and whose coloring is

𝜒. Given an index 𝑗 its weight will be (𝑜𝑗, 𝑝𝑗). If we find a yellow clique in 𝜒 then

the sum of the 𝑜𝑗 in the clique gives a lower bound on 𝑜, and, similarly, if we find a

blue clique in 𝜒 then the sum of the 𝑝𝑗 in the clique gives a lower bound on 𝑝. We

will apply the weighted Ramsey theorem to half of the indices in Φ(𝑖) (to the indices

that are larger than the median of Φ(𝑖), to be precise); from this, we will be able to

conclude that if 𝑗 is an index smaller than the median, then 𝑜𝑝/(𝑜𝑗𝑝𝑗) ≥ 𝐷′𝑓(𝑛)/𝑓(𝑛𝑗)

for some large constant 𝐷′ and so 𝑔𝑗𝑜𝑝 ≥ 𝐷′𝑔𝑗𝑜𝑗𝑝𝑗𝑓(𝑛)/𝑓(𝑛𝑗) ≥ 𝐷′𝑛𝑗𝑓(𝑛). We now

proceed with the argument.

When we count, we wish to omit parts Φ(𝑖) that don’t satisfy desired properties;

take

𝐵′ := {𝑖 ≤ 𝜏 : |Φ(𝑖)| ≤ 2𝐷2
7
8
(𝜏−𝑖)},

𝐵′′ := {𝑖 ≤ log(𝑛𝑚−7/18)}.

85



Take 𝐵 = 𝐵′∪𝐵′′. We will show that a large fraction of the vertices are not contained

in 𝑉𝑗 for 𝑗 ∈ Φ(𝑖) where 𝑖 ranges over 𝐵.

∑︁
𝑖∈𝐵′

∑︁
𝑗∈Φ(𝑖)

𝑛𝑗 ≤
∑︁
𝑖≤𝜏

2𝑖+1(2𝐷2
7
8
(𝜏−𝑖)) = 4𝐷2

7
8
𝜏
∑︁
𝑖≤𝜏

2
𝑖
8 ≤ 4𝐷2

7
8
𝜏 1

21/8 − 1
· 2(𝜏+1)/8

≤ 8𝐷
1

21/8 − 1
2𝜏 ≤ 128𝐷2𝜏 ≤ 256

𝐷
𝑛 ≤ 𝑛/4,

where the fourth inequality follows from 21/8 ≥ (1 + 1/16).

Note, if
∑︀

𝑖 𝑔𝑖 ≥ 𝑚7/18/8, then we may complete the induction; assume this is not

the case. In particular, we get 𝑡 ≤ 𝑚7/18/8 (since 𝑔𝑖 ≥ 1). Therefore,

∑︁
𝑖∈𝐵′′

∑︁
𝑗∈Φ(𝑖)

𝑛𝑗 ≤
∑︁
𝑖∈𝐵′′

∑︁
𝑗∈Φ(𝑖)

2𝑛𝑚−7/18 ≤ 2𝑡𝑛𝑚−7/18 ≤ 𝑛/4.

Hence, ∑︁
𝑖∈𝐵

∑︁
𝑗∈Φ(𝑖)

𝑛𝑗 ≤
∑︁
𝑖∈𝐵′

∑︁
𝑗∈Φ(𝑖)

𝑛𝑗 +
∑︁
𝑖∈𝐵′′

∑︁
𝑗∈Φ(𝑖)

𝑛𝑗 ≤ 𝑛/4 + 𝑛/4 ≤ 𝑛/2.

As a corollary we get
∑︀

𝑖 ̸∈𝐵
∑︀

𝑗∈Φ(𝑖) 𝑛𝑗 ≥ 𝑛/2.

For any fixed 𝑖 ≤ 𝜏 such that 𝑖 ̸∈ 𝐵, take 𝛽𝑖 to be the median of Φ(𝑖) (if Φ(𝑖) has

an even number of elements, take 𝛽𝑖 to be the larger of the two medians). Consider

{(𝑜𝑗, 𝑝𝑗) : 𝑗 ∈ Φ(𝑖), 𝑗 ≥ 𝛽𝑖}. By 𝑖 ̸∈ 𝐵, this has at least 𝐷2
7
8
(𝜏−𝑖) ≥ 𝑀 elements

(recall from the weighted Ramsey theorem that 𝑀 = 216), so we get, by applying the

weighted Ramsey theorem to this set, that 𝑜𝑝 ≥ 𝑜𝛽𝑖
𝑝𝛽𝑖

log2
(︁
𝐷2

7
8
(𝜏−𝑖)

)︁
/32. Finally,

observe that either one of the 𝑜𝑗, 𝑝𝑗, 𝑔𝑗 is at least 𝑚7/18/8 in which case we may

conclude the induction, or by the induction hypothesis we may assume 𝑜𝑗𝑝𝑗𝑔𝑗 ≥
𝑛𝑗𝑓(𝑛𝑗). Therefore,
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∑︁
𝑗∈Φ(𝑖)

𝑔𝑗𝑜𝑝 ≥
∑︁
𝑗∈Φ(𝑖)

𝑔𝑗𝑜𝛽𝑖
𝑝𝛽𝑖

log2
(︁
𝐷2

7
8
(𝜏−𝑖)

)︁
/32 ≥

∑︁
𝑗∈Φ(𝑖):𝑗≤𝛽𝑖

𝑔𝑗𝑜𝛽𝑖
𝑝𝛽𝑖

log2
(︁
𝐷2

7
8
(𝜏−𝑖)

)︁
/32

≥
∑︁

𝑗∈Φ(𝑖):𝑗≤𝛽𝑖

𝑔𝑗𝑜𝑗𝑝𝑗 log2
(︁
𝐷2

7
8
(𝜏−𝑖)

)︁
/32 ≥

∑︁
𝑗∈Φ(𝑖):𝑗≤𝛽𝑖

𝑛𝑗𝑓(𝑛𝑗) log2
(︁
𝐷2

7
8
(𝜏−𝑖)

)︁
/32

≥
∑︁

𝑗∈Φ(𝑖):𝑗≤𝛽𝑖

𝑛𝑗𝑓
(︀
2log𝑛𝑗

)︀
log2

(︁
𝐷2

7
8
(𝜏−log𝑛𝑗)

)︁
/32 ≥

∑︁
𝑗∈Φ(𝑖):𝑗≤𝛽𝑖

16𝑛𝑗𝑓(2𝜏 )

≥
∑︁

𝑗∈Φ(𝑖):𝑗≤𝛽𝑖

8𝑛𝑗𝑓(𝑛),

where the third inequality is by 𝑜𝑗𝑝𝑗 ≤ 𝑜𝑗′𝑝𝑗′ for 𝑗 ≤ 𝑗′, the fourth inequality is by

the induction hypothesis applied to 𝑉𝑗, the sixth inequality is by the third fact about

𝑓 , and the seventh inequality is by the fourth fact about 𝑓 and noting 2𝜏 ≥ 𝐷−3𝑛.

We now consider for any set 𝐽 ⊆ Φ(𝑖):

∑︁
𝑗∈𝐽

𝑛𝑗 ≥ 2𝑖 |𝐽 | .

∑︁
𝑗∈Φ(𝑖)

𝑛𝑗 ≤ 2𝑖+1 |Φ(𝑖)| .

This gives: ∑︀
𝑗∈𝐽 𝑛𝑗∑︀

𝑗∈Φ(𝑖) 𝑛𝑗

≥ |𝐽 |
2 |Φ(𝑖)| .

Noting that |{𝑗 ∈ Φ(𝑖) : 𝑗 ≤ 𝛽𝑖}| ≥ |Φ(𝑖)| /2:

∑︁
𝑗∈Φ(𝑖):𝑗≤𝛽𝑖

8𝑛𝑗𝑓(𝑛) ≥ 1

4

∑︁
𝑗∈Φ(𝑖)

8𝑛𝑗𝑓(𝑛) = 2𝑓(𝑛)
∑︁
𝑗∈Φ(𝑖)

𝑛𝑗.

Therefore,
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𝑔𝑜𝑝 ≥
∑︁
𝑗

𝑔𝑗𝑜𝑝 ≥
∑︁
𝑖≤𝜏

∑︁
𝑗∈Φ(𝑖)

𝑔𝑗𝑜𝑝 ≥
∑︁

𝑖≤𝜏 :𝑖 ̸∈𝐵

∑︁
𝑗∈Φ(𝑖)

𝑔𝑗𝑜𝑝 ≥
∑︁

𝑖≤𝜏 :𝑖 ̸∈𝐵

2𝑓(𝑛)
∑︁
𝑗∈Φ(𝑖)

𝑛𝑗

= 2𝑓(𝑛)
∑︁

𝑖≤𝜏 :𝑖 ̸∈𝐵

∑︁
𝑗∈Φ(𝑖)

𝑛𝑗 ≥ 2𝑓(𝑛)
𝑛

2
= 𝑛𝑓(𝑛).

We have thus concluded the induction. 2

We informally refer to 𝐵′′ in the above proof as large if a large fraction of the

vertices are contained in a 𝑉𝑗 for 𝑗 ∈ Φ(𝑖) where 𝑖 ranges over 𝐵′′. The case in which

𝐵′′ was large easily implied the desired result. In extending this result in Section

3.8 to more colors, the primary difficulty is the following: when 𝑠 is not 2, it is not

obvious that there is a large 𝑠-colored set as a result of 𝐵′′ being large.

3.6 Upper bound for many colors

In this section we will give asymptotically tight upper bounds for how large of a

subchromatic set must exist in an edge coloring on 𝑚 vertices. We will first show

how to construct such colorings from weighted graphs with vertex set 𝑅, and then

we will choose such graphs to finish the construction. The next theorem states that

if we have a weighted graph on 𝑟 vertices with edge weights 𝑤𝑃 , then we can find a

coloring 𝐹 so that 𝑔
𝑆,𝐹

is, up to logarithmic factors,
∏︀

𝑃⊆𝑆 𝑤𝑃 .

Lemma 3.6.1. Given a weighted graph (𝑅,𝒫) on 𝑟 vertices with integer edge weights

{𝑤𝑃}𝑃∈𝒫 , taking 𝑚 :=
∏︀

𝑃∈𝒫 𝑤𝑃 , there is a Gallai 𝑟-coloring on 𝑚 vertices so that

for any 𝑆 ⊆ 𝑅, the size of the largest subchromatic set with colors in 𝑆 is at most∏︀
𝑃∈𝒫:𝑃⊆𝑆 𝑤𝑃 ·∏︀𝑃∈𝒫:|𝑃∩𝑆|=1 2 log𝑤𝑃 .

Proof: We may define a Gallai 𝑟-coloring on𝑚 vertices as follows: take 𝑃1, . . . , 𝑃𝑘 an

arbitrary enumeration of 𝒫 . For each edge 𝑃 , take 𝐹𝑃 to be a 2-coloring of 𝐸(𝐾𝑤𝑃
)

using colors from 𝑃 so that the largest monochromatic clique has order at most

2 log𝑤𝑃 (such a coloring exists by the Erdős-Szekeres bound for Ramsey numbers
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[36]). We define a coloring 𝐹 on 𝑚 vertices by

𝐹 = 𝐹𝑃1 ⊗ 𝐹𝑃2 ⊗ · · · ⊗ 𝐹𝑃𝑘
.

𝐹 is a Gallai coloring by Corollary 3.2.4. Given any 𝑆 ⊆ 𝑅, note that 𝑔
𝑆,𝐹𝑃

= 𝑤𝑃 if

𝑃 ⊆ 𝑆, as 𝐹𝑃 uses only colors from 𝑃 . If |𝑃 ∩ 𝑆| = 1, then the largest subchromatic

set in 𝐹𝑃 using colors from 𝑃 ∩ 𝑆 is at most 2 log𝑤𝑃 by choice of 𝐹𝑃 , so 𝑔𝑆,𝐹𝑃
≤

2 log𝑤𝑃 . If |𝑃 ∩ 𝑆| = 0, then 𝑔
𝑆,𝐹𝑃

= 1 as any two distinct vertices are connected by

an edge the color of which is not in 𝑆. Therefore,

𝑔
𝑆,𝐹

=
∏︁
𝑖

𝑔
𝑆,𝐹𝑃𝑖

≤
∏︁

𝑃∈𝒫:𝑃⊆𝑆

𝑤𝑃 ·
∏︁

𝑃∈𝒫:|𝑃∩𝑆|=1

2 log𝑤𝑃 .

2

The condition in the above lemma that the edge weights are integers is slightly

cumbersome; we will now eliminate it.

Lemma 3.6.2. Let (𝑅,𝒫) be a weighted graph on 𝑟 vertices (𝑟 ≥ 3) and weights

𝑤𝑃 satisfying 𝑤𝑃 = 𝜔(1) for every 𝑃 ∈ 𝒫. Letting 𝑚 :=
∏︀

𝑃∈𝒫 𝑤𝑃 , if 𝑚 is an

integer and each 𝑤𝑃 satisfies 𝑤𝑃 ≥ 𝜔(1), then there is a Gallai 𝑟-coloring on 𝑚

vertices such that, for any 𝑆 ⊆ 𝑅, the size of the largest subchromatic set is at most

(1 + 𝑜(1))
∏︀

𝑃∈𝒫:𝑃⊆𝑆 𝑤𝑃 ·∏︀𝑃∈𝒫:|𝑃∩𝑆|=1 2 log𝑤𝑃 .

Proof: Take 𝑤′
𝑃 = ⌈𝑤𝑃 ⌉. Since 𝑤𝑃 ≥ 𝜔(1), we get 𝑤′

𝑃 ≤ (1 + 𝑜(1))𝑤𝑃 . We may

apply the previous lemma to the 𝑤′
𝑃 to get an 𝑟-Gallai coloring on

∏︀
𝑃 𝑤

′
𝑃 ≥ 𝑚

vertices so that for any 𝑆 ⊆ 𝑅 the size of the largest subchromatic set is at most

∏︁
𝑃∈𝒫:𝑃⊆𝑆

𝑤′
𝑃 ·

∏︁
𝑃∈𝒫:|𝑃∩𝑆|=1

2 log𝑤′
𝑃 ≤ (1 + 𝑜(1))

∏︁
𝑃∈𝒫:𝑃⊆𝑆

𝑤𝑃 ·
∏︁

𝑃∈𝒫:|𝑃∩𝑆|=1

2 log𝑤𝑃 .

Restrict this coloring to any 𝑚 vertices; it is still a Gallai 𝑟-coloring and for any

𝑆 ⊆ 𝑅 the size of the largest subchromatic set is at most (1 + 𝑜(1))
∏︀

𝑃∈𝒫:𝑃⊆𝑆 𝑤𝑃 ·∏︀
𝑃∈𝒫:|𝑃∩𝑆|=1 2 log𝑤𝑃 . 2
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Now, if we wish to obtain colorings without large subchromatic sets, we need

only construct appropriate weighted graphs. Intuitively, we would like to minimize

the number of edges in such a graph (while still being able to maintain that all the

𝑆 ⊆ 𝑅 have approximately the same value of
∏︀

𝑃⊆𝑆 𝑤𝑃 ), as every edge creates extra

log factors. This observation motivates the following bounds.

Theorem 3.6.3. There is a Gallai 𝑟-coloring on 𝑚 vertices such that for any 𝑆 ∈
(︀
𝑅
𝑠

)︀
the size of the largest subchromatic set is at most (1 + 𝑜(1))𝑚(𝑠

2)/(
𝑟
2) log𝑐𝑟,𝑠 𝑚, where

𝑐𝑟,𝑠 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑠(𝑟 − 𝑠) if 𝑠 < 𝑟 − 1,

1 if 𝑠 = 𝑟 − 1 and r is even,

(𝑟 + 3)/𝑟 if 𝑠 = 𝑟 − 1 and r is odd.

Proof: If 𝑠 < 𝑟− 1, we may apply the previous lemma to a clique on 𝑟 vertices with

edge weights 𝑚1/(𝑟
2). Any 𝑆 ⊆ 𝑅 of size 𝑠 has

(︀
𝑠
2

)︀
internal edges and 𝑠(𝑟 − 𝑠) edges

intersecting it in one vertex. By the previous lemma, we may find a Gallai 𝑟-coloring

where the size of the largest subchromatic set is asymptotically at most:

𝑚(𝑠
2)/(

𝑟
2)
(︁

2 log
(︁
𝑚1/(𝑟

2)
)︁)︁𝑠(𝑟−𝑠)

≤ 𝑚(𝑠
2)/(

𝑟
2)(log𝑚)𝑠(𝑟−𝑠).

If 𝑠 = 𝑟−1 and 𝑟 is even, we may consider a perfect matching on 𝑟 vertices where

each edge has weight 𝑚2/𝑟; any subset of size 𝑟−1 contains 𝑟/2−1 edges and there is

one edge with which it shares exactly one vertex. By the previous lemma, we may find

a Gallai 𝑟-coloring where the size of the largest subchromatic set is asymptotically at

most:

𝑚(𝑟/2−1)/(𝑟/2)2 log(𝑚1/(𝑟/2)) ≤ 𝑚(𝑟/2−1)/(𝑟/2) log𝑚 = 𝑚(𝑠
2)/(

𝑟
2) log𝑚.

If 𝑠 = 𝑟 − 1 and 𝑟 is odd, we may consider a graph formed by taking the disjoint

union of a triangle on 3 vertices and a matching with (𝑟 − 3)/2 edges. The edges

of the triangle will each have weight 𝑤1 := 𝑚1/𝑟(log𝑚)(𝑟−3)/2𝑟 and the edges of the

matching will each have weight 𝑤2 := 𝑚2/𝑟(log𝑚)−3/𝑟. Note that the product of the

weights is 𝑤3
1𝑤

(𝑟−3)/2
2 = 𝑚. Let 𝑆 ⊆ 𝑅 of size 𝑠 = 𝑟 − 1 be given.
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If the vertex not contained in 𝑆 is part of the triangle, then 𝑆 contains (𝑟 − 3)/2

edges of weight 𝑤2 and 1 edge of weight 𝑤1. Furthermore, there are two edges each

of weight 𝑤1 that 𝑆 intersects in one vertex. In the graph obtained from the previous

lemma the size of the largest subchromatic set taking colors from 𝑆 is asymptotically

at most:

𝑤1𝑤
(𝑟−3)/2
2 (2 log𝑤1)

2 = 𝑚(𝑟−2)/𝑟(log𝑚)−(𝑟−3)/𝑟(2 log(𝑚1/𝑟(log𝑚)(𝑟−3)/2𝑟))2

≤ 𝑚(𝑟−2)/𝑟(log𝑚)−(𝑟−3)/𝑟(log𝑚)2

= 𝑚(𝑠
2)/(

𝑟
2)(log𝑚)(𝑟+3)/𝑟.

If the vertex not contained in 𝑆 is part of the matching then 𝑆 contains (𝑟− 5)/2

edges of weight 𝑤2 and 3 edges of weight 𝑤1. Furthermore, there is one edge of weight

𝑤2 that intersects 𝑆 in one vertex. In the graph obtained from the previous lemma the

size of the largest subchromatic set taking colors from 𝑆 is asymptotically at most:

𝑤3
1𝑤

(𝑟−5)/2
2 (2 log𝑤2) = 𝑚(𝑟−2)/𝑟(log𝑚)3/𝑟(2 log(𝑚2/𝑟(log𝑚)−3/𝑟))

≤ 𝑚(𝑟−2)/𝑟(log𝑚)3/𝑟(log𝑚)

= 𝑚(𝑠
2)/(

𝑟
2)(log𝑚)(𝑟+3)/𝑟.

2

3.7 Weak lower bound for many colors

We now provide a simple lower bound for the largest size of a subchromatic set in any

𝑟-coloring of 𝐸(𝐾𝑚) that shows our upper bounds are tight up to polylogarithmic

factors; we show that any Gallai 𝑟-coloring on 𝑚 vertices contains a subchromatic

set of size at least 𝑚(𝑠
2)/(

𝑟
2). The following is a common generalization of Hölder’s

inequality that we will find useful.
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Lemma 3.7.1. If 𝒮 is a finite set of indices and, for each 𝑆 ∈ 𝒮, 𝑔𝑆 is a function

mapping [𝑡] to the non-negative reals, then

∏︁
𝑆∈𝒮

∑︁
𝑖

𝑔𝑆(𝑖) ≥
(︃∑︁

𝑖

∏︁
𝑆∈𝒮

𝑔𝑆(𝑖)1/|𝒮|

)︃|𝒮|

Using the above lemma, we will prove a lower bound on the product of the 𝑔
𝑆,𝐹

for 𝐹 a Gallai 𝑟-coloring. This will easily imply the desired lower bound.

Theorem 3.7.2. For any Gallai 𝑟-coloring 𝐹 on 𝑚 vertices,

∏︁
𝑆∈(𝑅

𝑠)

𝑔
𝑆,𝐹

≥ 𝑚(𝑟−2
𝑠−2).

Proof: Take 𝑔
𝑆

= 𝑔
𝑆,𝐹

. We proceed by induction on 𝑚. If 𝑚 = 1, then each 𝑔
𝑆
is 1

as is their product, while 𝑚(𝑟−2
𝑠−2) is also 1. If 𝑚 > 1, we may find some pair of colors

𝑄 and some non-trivial partition of the vertices 𝑉1, . . . , 𝑉𝑡 such that for each pair of

distinct 𝑖, 𝑗 in [𝑡], there is a 𝑞 ∈ 𝑄 so that all of the edges between 𝑉𝑖 and 𝑉𝑗 have

color 𝑞.

Define, for 𝑖 ∈ [𝑡], 𝐹𝑖 to be the restriction of 𝐹 to 𝑉𝑖. Take 𝑔
𝑆,𝑖

:= 𝑔
𝑆,𝐹𝑖

. By

induction, for each 𝑖 we have
∏︀

𝑆 𝑔𝑆,𝑖 ≥ 𝑚
(𝑟−2
𝑠−2)

𝑖 , where 𝑚𝑖 = |𝑉𝑖|.
Note that if 𝑄 ⊆ 𝑆 then 𝑔

𝑆
≥∑︀𝑖 𝑔𝑆,𝑖 , since we may combine the largest subchro-

matic sets from each 𝐹𝑖. For every 𝑆 we have 𝑔
𝑆
≥ max𝑖 𝑔𝑆,𝑖 , so

∏︁
𝑆

𝑔
𝑆
≥
(︃ ∏︁

𝑆:𝑄⊆𝑆

∑︁
𝑖

𝑔
𝑆,𝑖

)︃ ∏︁
𝑆:𝑄 ̸⊆𝑆

𝑔
𝑆
≥
(︃∑︁

𝑖

∏︁
𝑆:𝑄⊆𝑆

𝑔
1/(𝑟−2

𝑠−2)
𝑆,𝑖

)︃(𝑟−2
𝑠−2) ∏︁

𝑆:𝑄̸⊆𝑆

𝑔
𝑆

=

(︃∑︁
𝑖

∏︁
𝑆:𝑄⊆𝑆

𝑔
1/(𝑟−2

𝑠−2)
𝑆,𝑖

∏︁
𝑆:𝑄 ̸⊆𝑆

𝑔
1/(𝑟−2

𝑠−2)
𝑆

)︃(𝑟−2
𝑠−2)

≥
(︃∑︁

𝑖

∏︁
𝑆

𝑔
1/(𝑟−2

𝑠−2)
𝑆,𝑖

)︃(𝑟−2
𝑠−2)

≥
(︃∑︁

𝑖

𝑚𝑖

)︃(𝑟−2
𝑠−2)

= 𝑚(𝑟−2
𝑠−2),

where the first inequality follows by 𝑔
𝑆
≥ ∑︀

𝑖 𝑔𝑆,𝑖 if 𝑄 ⊆ 𝑆, the second inequality
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follows by the preceding lemma and noting |𝑆| =
(︀
𝑟−2
𝑠−2

)︀
, the third inequality follows

by 𝑔
𝑆
≥ 𝑔

𝑆,𝑖
, and the fourth inequality follows by the induction hypothesis. 2

Note that, in proving this bound, if |𝑆 ∩𝑄| = 1, we simply use 𝑔
𝑆
≥ 𝑔

𝑆,𝐹𝑖
. As in

the 𝑟 = 3, 𝑠 = 2 case, if we can find a set of indices 𝑉𝑖1 , . . . , 𝑉𝑖𝑘 so that between any

two of them the edges use the color contained in 𝑆 ∩ 𝑄, we may obtain a stronger

lower bound on 𝑔
𝑆
.

We now conclude the argument.

Theorem 3.7.3. In any Gallai 𝑟-coloring 𝐹 on 𝑚 vertices, there is some 𝑆 ∈
(︀
𝑅
𝑠

)︀
with 𝑔

𝑆,𝐹
≥ 𝑚(𝑠

2)/(
𝑟
2)

Proof: By the previous theorem,
∏︀

𝑆∈(𝑅
𝑠)
𝑔
𝑆,𝐹

≥ 𝑚(𝑟−2
𝑠−2). As this is a product over(︀

𝑟
𝑠

)︀
numbers, there must be some 𝑆 with

𝑔
𝑆,𝐹

≥ 𝑚(𝑟−2
𝑠−2)/(

𝑟
𝑠) = 𝑚(𝑠

2)/(
𝑟
2).

2

3.8 Lower bound for many colors

In this section we show that our upper bounds on sizes of subchromatic sets in Gallai

colorings are tight up to constant factors (where we view 𝑟 and 𝑠 as constant).

3.8.1 Discrepancy lemma in edge-weighted graphs

The lemma in this subsection has the following form: either a given weighted graph

has many edges of non-zero weight or it has some set 𝑆 of size 𝑠 whose weight is

significantly larger than average. In the next subsection we will show how to reduce

the problem of lower bounding the size of the largest subchromatic set in a Gallai 𝑟-

coloring to a problem regarding the number of non-zero edges in a graph that doesn’t

contain vertex subsets 𝑆 whose weight is significantly larger than average, so this

lemma will be useful.
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Lemma 3.8.1. Given weights 𝑤𝑃 for 𝑃 ∈
(︀
𝑅
2

)︀
with 𝑤𝑃 ≥ 0, take 𝑤 =

∑︀
𝑃 𝑤𝑃 . Take

𝑎0 =
(︀
𝑟
2

)︀
if 𝑠 < 𝑟 − 1, 𝑎0 = 𝑟/2 if 𝑠 = 𝑟 − 1 and 𝑟 is even, and 𝑎0 = (𝑟 + 3)/2 if

𝑠 = 𝑟 − 1 and 𝑟 is odd. Either there are at least 𝑎0 pairs 𝑃 with 𝑤𝑃 > 0 or there is

some 𝑆 ⊆ 𝑅 of size 𝑠 satisfying

∑︁
𝑃⊆𝑆

𝑤𝑃 ≥

⎛⎝1 +

(︃
4𝑟

(︂
𝑟

2

)︂2
)︃−1

⎞⎠ (︀𝑠2)︀(︀
𝑟
2

)︀𝑤.
The proof of the above lemma uses elementary techniques along with the second

moment method and is deferred to Section 3.11.

3.8.2 Proof of lower bound for many colors

Let

𝑑 =

(︀
𝑟−2
𝑠−1

)︀(︀
𝑟−2
𝑠−2

)︀ =
𝑟 − 𝑠

𝑠− 1
,

𝐶 = 32𝑟

(︂
𝑟

2

)︂3

𝑑,

𝛿 =

(︂
4

(︂
𝑟 − 2

𝑠− 2

)︂
𝐶

)︂−1

,

𝛿0 = 𝐶−1

(︂
𝑟 − 2

𝑠− 1

)︂(︂
𝑟 − 2

𝑠− 2

)︂−1(︂(︂
𝑟

2

)︂
+ 1

)︂−1

= 𝐶−1𝑑

(︂(︂
𝑟

2

)︂
+ 1

)︂−1

,

𝛿1 = 2−(𝑟
2)−2

(︀
𝛿−1
0 + 1

)︀−(𝑟
2)−1

(︂
𝑟 − 2

𝑠− 1

)︂−1

,

𝑐 = (𝛿/4)2𝛿
1/𝑑
1 .

𝑑 is an appropriately chosen scaling factor; why it is appropriate will become evident

later. 𝐶 should be thought of as a large constant, and 𝛿, 𝛿0, 𝛿1, and 𝑐 should be

thought of as small constants. We provide some bounds on the above; although we

will not explicitly reference these, they are useful for verifying various inequalities:
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𝑟−1 ≤ 𝑑 ≤ 𝑟,

𝐶 ≤ 4𝑟8,

𝛿 ≥ 2−8𝑟,

𝛿0 ≥ 𝑟−11/4,

𝛿1 ≥ 2−11𝑟3 ,

𝑐 ≥ 2−12𝑟4 .

When we constructed the upper bound via product colorings, there was a weighted

graph (namely the one used to construct the coloring) so that for any 𝑆 ⊆ 𝑅 we could

approximate the size of the largest clique using colors from 𝑆 by the product of the

weights of edges contained in 𝑆. It is tempting to believe that the structure of any

Gallai coloring 𝐹 can be approximated this way. Though this is not true in general,

the next theorem states that if it is not true then
∏︀

𝑆 𝑔𝑆,𝐹 must be large. Take for

the rest of this chapter

𝑚0 := 222
28𝑟

2

. (3.1)

Theorem 3.8.2. If 𝑚 ≥ 𝑚0, then for any Gallai coloring 𝐹 on 𝑛 ≤ 𝑚 vertices, there

are 𝑓 ≥ 1, 𝜖 ≥ 0, 𝒫 ⊆
(︀
𝑅
2

)︀
, and, for 𝑃 ∈ 𝒫, weights 𝑤𝑃 ∈ [1,∞) satisfying:

1. For every 𝑆 ∈
(︀
𝑅
𝑠

)︀
, 𝑔

𝑆,𝐹
≥∏︀𝑃∈(𝑆

2)∩𝒫
𝑤𝑃 .

2.
∏︀

𝑃∈𝒫 𝑤𝑃 ≥ 𝑚−𝜖𝑛.

3.
∏︀

𝑆∈(𝑅
𝑠)
𝑔
𝑆,𝐹

≥ (𝑛𝑓)(
𝑟−2
𝑠−2).

4. 𝑓 ≥ (log𝑚)𝐶𝜖.

5. Taking 𝑎 to be the size of 𝒫, 𝑓 ≥
(︀
𝑐 log2𝑚

)︀𝑎𝑑
.

From the above theorem we will quickly be able to conclude Theorem 3.1.1. Note

that, if 𝑓 is large enough, then by condition (3) we conclude that
∏︀

𝑆∈(𝑅
𝑠)
𝑔
𝑆,𝐹

is large

and so some 𝑔
𝑆,𝐹

is large. Otherwise, by condition (4) we have an upper bound on the
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size of 𝜖, so by conditions (1) and (2) the structure of the coloring is well-approximated

by the 𝑤𝑃 . This latter case will allow us to apply our work on weighted graphs from

the previous subsection to get a lower bound on 𝑎, and then we will apply condition

(5) to conclude that some 𝑔
𝑆,𝐹

is large.

Proof: We will write 𝑔
𝑆
for 𝑔

𝑆,𝐹
. We will take 𝑤𝑃 = 1 for any 𝑃 in

(︀
𝑅
2

)︀
but not in

𝒫 ; this way, for any 𝑇 ⊆
(︀
𝑅
2

)︀
, we have

∏︀
𝑃∈𝑇∩𝒫 𝑤𝑃 =

∏︀
𝑃∈𝑇 𝑤𝑃 .

We proceed by induction on 𝑛.

Base Case: If 𝑛 = 1, then we may take 𝑓 = 1, 𝜖 = 0, and 𝒫 = ∅. Letting 𝑎 = |𝑃 | = 0,

1. For every 𝑆 ∈
(︀
𝑅
𝑠

)︀
, 𝑔

𝑆
= 1 =

∏︀
𝑃∈(𝑆

2)
𝑤𝑃 .

2.
∏︀

𝑃∈(𝑅
2)
𝑤𝑃 = 1 = 𝑚−𝜖𝑛.

3.
∏︀

𝑆∈(𝑅
𝑠)
𝑔
𝑆

= 1 = (𝑛𝑓)(
𝑟−2
𝑠−2).

4. 𝑓 = 1 = (log𝑚)𝐶𝜖.

5. 𝑓 = 1 =
(︀
𝑐 log2𝑚

)︀𝑎𝑑
.

Preliminary discussion: If 𝑛 > 1, there is some pair of colors 𝑄 = {𝑄1, 𝑄2} and

there is a non-trivial partition 𝑉 (𝐾𝑛) = 𝑉1 ∪ . . . ∪ 𝑉𝑡 with |𝑉1| ≥ . . . ≥ |𝑉𝑡| such that

there is some 2-coloring 𝜒 :
(︀
𝑡
2

)︀
→ 𝑄 such that for every distinct 𝑖, 𝑗 ∈ [𝑡] and 𝑢 ∈ 𝑉𝑖,

𝑣 ∈ 𝑉𝑗, the color under 𝐹 of {𝑢, 𝑣} is 𝜒(𝑖, 𝑗) (which is in 𝑄).

Given 𝜖 > 0, define 𝑓𝜖(ℓ) := (log𝑚)𝐶
log(𝛼𝑚𝜖)

log𝑚 , where 𝛼 = ℓ/𝑛. Note that we may

rewrite 𝑓𝜖(ℓ) = (log𝑚)𝐶𝜖+𝐶 log𝛼
log𝑚 ; we will move between the two expressions freely.

Note also that 𝑓𝜖(ℓ) is an increasing function of ℓ. We will need some lemmas about

𝑓𝜖, all of which are formalizations of the statement “𝑓𝜖 does not grow too quickly".

Lemma 3.8.3. The following statements hold about 𝑓𝜖 for every choice of 𝜖 ≥ 0,

𝑚 ≥ 𝑚0, and 1 < 𝑛 ≤ 𝑚.

1. For any 𝛼 ∈ [ 1
𝑛
, 1],

𝑓𝜖(𝛼𝑛) ≥ 𝛼1/(2(𝑟−2
𝑠−2))𝑓𝜖(𝑛).

In particular, 𝑓𝜖(𝛼𝑛) ≥ 𝛼𝑓𝜖(𝑛).
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2. For any 𝛼1, 𝛼2, 𝛼3 ∈ [ 1
𝑛
, 1] with 𝛼1 + 𝛼2 + 𝛼3 = 1, taking 𝑛𝑖 = 𝛼𝑖𝑛,

𝑛𝑓𝜖(𝑛) ≤
∑︁
𝑖

𝑛𝑖𝑓𝜖(𝑛𝑖) + 3(log−3/4𝑚)𝑛𝑓𝜖(𝑛).

3. For 𝑖 ≥ 0 and𝑚𝛿 ≥ 2𝑗 ≥ 1 we have 𝑓𝜖(2
𝑖) log2/(𝑟−2

𝑠−2)((log1/4𝑚)2𝑗) ≥ 256
(︀
𝑟
2

)︀
𝑓𝜖(2

𝑖+2𝑗).

4. For any 𝛼 ≥ log−1𝑚, 𝑓𝜖(𝛼𝑛) ≥ 𝑓𝜖(𝑛)/2.

We will refer to the above collectively as the facts about 𝑓𝜖; we prove them in

Section 3.12.

The proof will split into four cases.

Cases 1 and 2, Preliminary discussion: For these cases, a simple numerical claim

will be useful.

Claim 3.8.4. For positive reals 𝑎, 𝑏 with 𝑎 ≤ 1, we have

(1 + 𝑎)𝑏 ≥ 1 + 𝑎𝑏/2.

Proof: Since 0 ≤ 𝑎 ≤ 1 we have 1 + 𝑎 ≥ 𝑒𝑎/2. Then

(1 + 𝑎)𝑏 ≥ 𝑒𝑎𝑏/2 ≥ 1 + 𝑎𝑏/2.

2

Cases 1 and 2 will be those cases in which 𝑉1 is large.

Take 𝑈1 = 𝑉1. Take 𝑈2 to be the union of the 𝑉𝑗 such that the edges between 𝑉1

and 𝑉𝑗 are of color 𝑄1. Take 𝑈3 to be the union of the 𝑉𝑗 such that the edges between

𝑉1 and 𝑉𝑗 are of color 𝑄2. We may assume without loss of generality that |𝑈2| ≥ |𝑈3|.
Then {𝑈1, 𝑈2, 𝑈3} is a partition of 𝑉 .

Define, for 𝑖 = 1, 2, 3, 𝐹𝑖 to be the restriction of 𝐹 to 𝑈𝑖. Take 𝑔
𝑆,𝑖

:= 𝑔
𝑆,𝐹𝑖

.

Define 𝑛𝑖 = |𝑈𝑖| and 𝛼𝑖 = 𝑛𝑖/𝑛. By the induction hypothesis, for each 𝐹𝑖 there are

appropriate choices of 𝑓𝑖, 𝜖𝑖,𝒫𝑖, and 𝑤𝑃,𝑖. Take 𝑎𝑖 = |𝒫𝑖|.
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The general approach for these cases as well as for Case 3 will be to choose some

index 𝑖 and simply use the same graph to approximate our coloring. That is, we will

take 𝒫 = 𝒫𝑖 and 𝑤𝑃 = 𝑤𝑃,𝑖, and then we will show that 𝜖 and 𝑓 may be chosen

appropriately.

We now proceed: if, for some index 𝑖, we take 𝒫 = 𝒫𝑖 and 𝑤𝑃 = 𝑤𝑃,𝑖, since 𝑔𝑆 ≥
𝑔
𝑆,𝑖
, we will have property (1): for every 𝑆 ∈

(︀
𝑅
𝑠

)︀
, 𝑔

𝑆
≥ 𝑔

𝑆,𝑖
≥∏︀𝑃⊆𝑆 𝑤𝑃,𝑖 =

∏︀
𝑃⊆𝑆 𝑤𝑃 .

Furthermore,

∏︁
𝑃∈(𝑅

2)

𝑤𝑃 =
∏︁

𝑃∈(𝑅
2)

𝑤𝑃,𝑖 ≥ 𝑚−𝜖𝑖𝑛𝑖 = 𝑚−𝜖𝑖𝛼𝑖𝑛 = 𝑚−𝜖𝑖−log(1/𝛼𝑖)/ log𝑚𝑛.

If we take 𝜖 = 𝜖𝑖 + log(1/𝛼𝑖)
log𝑚

, then the above shows that property (2) will hold.

Define

𝑥𝑖 := max

(︂
(log𝑚)

𝐶
(︁
𝜖𝑖+

log(1/𝛼𝑖)

log𝑚

)︁
, (𝑐 log2𝑚)𝑎𝑖𝑑

)︂
.

If 𝑖 is the index minimizing 𝑥𝑖, then we will take:

𝜖 = 𝜖𝑖 +
log(1/𝛼𝑖)

log𝑚
,

𝒫 = 𝒫𝑖,

𝑤𝑃 = 𝑤𝑃,𝑖,

and 𝑓 = 𝑥𝑖; we will show that this satisfies properties (4) and (5), so choosing 𝑖 to

minimize 𝑥𝑖 minimizes our 𝑓 . Take 𝑎 = |𝒫|. We have already observed that properties

(1) and (2) will hold.

Take 𝜖′ = max
(︁
𝜖, log((𝑐 log

2 𝑚)𝑎𝑑)
𝐶 log log𝑚

)︁
. Note that 𝑓 = 𝑥𝑖 = (log𝑚)𝐶𝜖′ = 𝑓𝜖′(𝑛). In this

case properties (4) and (5) hold by the choice of 𝑓 :

𝑓 ≥ (log𝑚)𝐶𝜖′ ≥ (log𝑚)𝐶𝜖.

𝑓 ≥ (log𝑚)𝐶𝜖′ ≥ (log𝑚)𝐶
log((𝑐 log2 𝑚)𝑎𝑑)

𝐶 log log𝑚 = 2log((𝑐 log2 𝑚)𝑎𝑑) = (𝑐 log2𝑚)𝑎𝑑.

We have only to show that, with this choice of 𝑓 , property (3) holds. We claim
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that each 𝑓𝑖 satisfies 𝑓𝑖 ≥ 𝑓𝜖′(𝑛𝑖).

If for some 𝑖 we have 𝜖𝑖 < 𝜖′ + log𝛼𝑖

log𝑚
, then we must have (𝑐 log2𝑚)𝑎𝑖𝑑 ≥ 𝑓 =

(log𝑚)𝐶𝜖′ , for otherwise we would have 𝑥𝑖 < 𝑓 , contradicting our choice of 𝜖. There-

fore, for such an index 𝑖,

𝑓𝑖 ≥ (𝑐 log2𝑚)𝑎𝑖𝑑 ≥ (log𝑚)𝐶𝜖′ = 𝑓𝜖′(𝑛) ≥ 𝑓𝜖′(𝑛𝑖).

Otherwise, 𝜖𝑖 ≥ 𝜖′ + log𝛼𝑖

log𝑚
so

𝑓𝑖 ≥ (log𝑚)𝐶𝜖𝑖 ≥ (log𝑚)𝐶(𝜖′+ log𝛼𝑖
log𝑚 ) = 𝑓𝜖′(𝑛𝑖).

We have, for each 𝑆 satisfying 𝑄 ⊆ 𝑆, that 𝑔
𝑆
≥ 𝑔

𝑆,1
+ 𝑔

𝑆,2
+ 𝑔

𝑆,3
. For each 𝑆

satisfying 𝑄1 ∈ 𝑆, we have

𝑔
𝑆
≥ max(𝑔

𝑆,1
+ 𝑔

𝑆,2
, 𝑔

𝑆,3
) ≥ 𝑔

𝑆,1
+ 𝑔

𝑆,2
.

Similarly, if 𝑄2 ∈ 𝑆 then 𝑔
𝑆
≥ 𝑔

𝑆,1
+ 𝑔

𝑆,3
. Finally, for all 𝑆 we have 𝑔

𝑆
≥ max𝑖 𝑔𝑆,𝑖 .

We have by the generalization of Hölder’s inequality (Lemma 3.7.1):

∏︁
𝑆

𝑔
𝑆
≥
∏︁

𝑆:𝑄⊆𝑆

∑︁
𝑖

𝑔
𝑆,𝑖

∏︁
𝑆:𝑄̸⊆𝑆

𝑔
𝑆
≥

⎛⎝∑︁
𝑖

(︃ ∏︁
𝑆:𝑄⊆𝑆

𝑔
𝑆,𝑖

∏︁
𝑆:𝑄̸⊆𝑆

𝑔
𝑆

)︃1/(𝑟−2
𝑠−2)
⎞⎠(𝑟−2

𝑠−2)

.

Therefore, we need only check that

∑︁
𝑖

(︃ ∏︁
𝑆:𝑄⊆𝑆

𝑔
𝑆,𝑖

∏︁
𝑆:𝑄 ̸⊆𝑆

𝑔
𝑆

)︃1/(𝑟−2
𝑠−2)

≥ 𝑛𝑓.

Fix 𝑇 ∈
(︀
𝑅
𝑠

)︀
so that 𝑇 ∩𝑄 = {𝑄1}. We get 𝑔

𝑇
≥ 𝑔

𝑇,1
+ 𝑔

𝑇,2
.

Case 1: 𝛼1, 𝛼2 ≥ log−1/2𝑚. The argument from the weak lower bound case applied
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here only gives:

∑︁
𝑖

(︃ ∏︁
𝑆:𝑄⊆𝑆

𝑔
𝑆,𝑖

∏︁
𝑆:𝑄 ̸⊆𝑆

𝑔
𝑆

)︃1/(𝑟−2
𝑠−2)

≥
∑︁
𝑖

𝑛𝑖𝑓𝜖′(𝑛𝑖).

The main idea behind solving this case is to observe that it is sufficient to gain a

constant factor on either the largest or second largest term of the above sum.

Consider:

∑︁
𝑖

(︃ ∏︁
𝑆:𝑄⊆𝑆

𝑔
𝑆,𝑖

∏︁
𝑆:𝑄 ̸⊆𝑆

𝑔
𝑆

)︃1/(𝑟−2
𝑠−2)

≥
(︃

(𝑔
𝑇,1

+ 𝑔
𝑇,2

)
∏︁
𝑆 ̸=𝑇

𝑔
𝑆,1

)︃1/(𝑟−2
𝑠−2)

+

(︃
(𝑔

𝑇,1
+ 𝑔

𝑇,2
)
∏︁
𝑆 ̸=𝑇

𝑔
𝑆,2

)︃1/(𝑟−2
𝑠−2)

+

(︃∏︁
𝑆

𝑔
𝑆,3

)︃1/(𝑟−2
𝑠−2)

.

We will handle the case 𝑔
𝑇,1

≤ 𝑔
𝑇,2
; the case where 𝑔

𝑇,1
≥ 𝑔

𝑇,2
has a symmetric

argument. Then, since 𝑔
𝑇,1

+ 𝑔
𝑇,2

≥ 2𝑔
𝑇,1
, the previous is at least:

21/(𝑟−2
𝑠−2)

∏︁
𝑆

𝑔
1/(𝑟−2

𝑠−2)
𝑆,1 +

∏︁
𝑆

𝑔
1/(𝑟−2

𝑠−2)
𝑆,2 +

∏︁
𝑆

𝑔
1/(𝑟−2

𝑠−2)
𝑆,3

=
∑︁
𝑖

∏︁
𝑆

𝑔
1/(𝑟−2

𝑠−2)
𝑆,𝑖 +

(︁
21/(𝑟−2

𝑠−2) − 1
)︁∏︁

𝑆

𝑔
1/(𝑟−2

𝑠−2)
𝑆,1

≥
∑︁
𝑖

𝑛𝑖𝑓𝑖 + ((1 + 1)1/(
𝑟−2
𝑠−2) − 1)𝑛1𝑓1

≥
∑︁
𝑖

𝑛𝑖𝑓𝜖′(𝑛𝑖) +

(︂
2

(︂
𝑟 − 2

𝑠− 2

)︂)︂−1

𝑛1𝑓𝜖′(𝑛1)

≥
∑︁
𝑖

𝑛𝑖𝑓𝜖′(𝑛𝑖) +

(︂
2

(︂
𝑟 − 2

𝑠− 2

)︂)︂−1

(log−1/2𝑚)𝑛𝑓𝜖′((log−1/2𝑚)𝑛)

≥
∑︁
𝑖

𝑛𝑖𝑓𝜖′(𝑛𝑖) +

(︂
4

(︂
𝑟 − 2

𝑠− 2

)︂)︂−1

(log−1/2𝑚)𝑛𝑓𝜖′(𝑛)

≥
∑︁
𝑖

𝑛𝑖𝑓𝜖′(𝑛𝑖) + 3(log−3/4𝑚)𝑛𝑓𝜖′(𝑛) ≥ 𝑛𝑓𝜖′(𝑛) = 𝑛𝑓,

where the first follows from the induction hypothesis, the second follows from Claim

3.8.4, the third follows from the lower bound on 𝛼1, the fourth follows from the fourth
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fact about 𝑓𝜖′ , the fifth follows from 𝑚 ≥ 𝑚0, and the sixth follows from the second

fact about 𝑓𝜖′ .

Case 2: log−1/2𝑚 ≥ 𝛼2. In this case we have 𝛼1 = 1 − (𝛼2 + 𝛼3) ≥ 1 − 2𝛼2 ≥
1 − 2 log−1/2𝑚 ≥ 3/4.

Again, the argument from the weak lower bound only gives:

∑︁
𝑖

(︃ ∏︁
𝑆:𝑄⊆𝑆

𝑔
𝑆,𝑖

∏︁
𝑆:𝑄 ̸⊆𝑆

𝑔
𝑆

)︃1/(𝑟−2
𝑠−2)

≥
∑︁
𝑖

𝑛𝑖𝑓𝜖′(𝑛𝑖).

The main idea behind this case is to observe that it is sufficient to gain either a factor

of (1 + 8𝛼2) on the first term (which is much larger than the others) or a factor of

4𝛼
−1/(2(𝑟−2

𝑠−2))
2 on the second term. We will do the former if 𝑔

𝑇,2
/𝑔

𝑇,1
is large enough,

and otherwise we may accomplish the latter.

If 𝑔
𝑇,2

≥ 16
(︀
𝑟−2
𝑠−2

)︀
𝛼2𝑔𝑇,1

, we have

∑︁
𝑖

(︃ ∏︁
𝑆:𝑄⊆𝑆

𝑔
𝑆,𝑖

∏︁
𝑆:𝑄̸⊆𝑆

𝑔
𝑆

)︃1/(𝑟−2
𝑠−2)

≥
(︃ ∏︁

𝑆:𝑄⊆𝑆

𝑔
𝑆,1

∏︁
𝑆:𝑄̸⊆𝑆

𝑔
𝑆

)︃1/(𝑟−2
𝑠−2)

≥(𝑔
𝑇,1

+ 𝑔
𝑇,2

)1/(
𝑟−2
𝑠−2)

∏︁
𝑆 ̸=𝑇

𝑔
1/(𝑟−2

𝑠−2)
𝑆,1 ≥

(︂
1 + 16

(︂
𝑟 − 2

𝑠− 2

)︂
𝛼2

)︂1/(𝑟−2
𝑠−2)∏︁

𝑆

𝑔
1/(𝑟−2

𝑠−2)
𝑆,1

≥
(︃

1 +
16
(︀
𝑟−2
𝑠−2

)︀
𝛼2

2
(︀
𝑟−2
𝑠−2

)︀ )︃
𝑛1𝑓1 = 𝑛1𝑓1 + 8𝛼2𝑛1𝑓1,

where the last inequality is by Claim 3.8.4.

We know 𝑓𝑖 ≥ 𝑓𝜖′(𝑛𝑖), so the above is at least:

𝑛1𝑓𝜖′(𝑛1) + 8𝛼2𝑛1𝑓𝜖′(𝑛1) ≥ 𝛼2
1𝑛𝑓𝜖′(𝑛) + 8𝛼2𝛼

2
1𝑛𝑓𝜖′(𝑛)

≥ (1 − 2𝛼2)
2𝑛𝑓𝜖′(𝑛) + 4𝛼2𝑛𝑓𝜖′(𝑛)

> 𝑛𝑓𝜖′(𝑛) = 𝑛𝑓,
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where the first inequality follows from the first fact about 𝑓𝜖′ and the second inequality

from substituting lower bounds on 𝛼1.

Otherwise, we have 𝑔
𝑇,2

≤ 16
(︀
𝑟−2
𝑠−2

)︀
𝛼2𝑔𝑇,1

, so

∑︁
𝑖

(︃ ∏︁
𝑆:𝑄⊆𝑆

𝑔
𝑆,𝑖

∏︁
𝑆:𝑄̸⊆𝑆

𝑔
𝑆

)︃1/(𝑟−2
𝑠−2)

≥
∏︁
𝑆

𝑔
1/(𝑟−2

𝑠−2)
𝑆,1 +

(︃
(𝑔

𝑇,1
+ 𝑔

𝑇,2
)
∏︁
𝑆 ̸=𝑇

𝑔
𝑆,2

)︃1/(𝑟−2
𝑠−2)

.

Then the latter term is at least:

(︃
𝑔
𝑇,1

∏︁
𝑆 ̸=𝑇

𝑔
𝑆,2

)︃1/(𝑟−2
𝑠−2)

≥
(︃

1

16
(︀
𝑟−2
𝑠−2

)︀
𝛼2

∏︁
𝑆

𝑔
𝑆,2

)︃1/(𝑟−2
𝑠−2)

≥
(︃

1

16
(︀
𝑟−2
𝑠−2

)︀
𝛼2

)︃1/(𝑟−2
𝑠−2)

𝑛2𝑓2 ≥ 4𝛼
−1/(2(𝑟−2

𝑠−2))
2 𝑛2𝑓2

≥ 4𝛼
−1/(2(𝑟−2

𝑠−2))
2 𝑛2𝑓𝜖′(𝑛2) ≥ 4𝛼

−1/(2(𝑟−2
𝑠−2))

2 𝑛2

(︂
𝛼
1/(2(𝑟−2

𝑠−2))
2 𝑓𝜖′(𝑛)

)︂
= 4𝑛2𝑓𝜖′(𝑛),

where the third inequality follows from the upper bound on 𝛼2 and from 𝑚 ≥ 𝑚0 and

the fifth inequality from the first fact about 𝑓𝜖′ .

Therefore,

∑︁
𝑖

(︃ ∏︁
𝑆:𝑄⊆𝑆

𝑔
𝑆,𝑖

∏︁
𝑆:𝑄 ̸⊆𝑆

𝑔
𝑆

)︃1/(𝑟−2
𝑠−2)

≥
∏︁
𝑆

𝑔
1/(𝑟−2

𝑠−2)
𝑆,1 + 4𝑛2𝑓𝜖′(𝑛) ≥ 𝑛1𝑓𝜖′(𝑛1) + 4𝑛2𝑓𝜖′(𝑛)

≥ 𝛼2
1𝑛𝑓𝜖′(𝑛) + 4𝛼2𝑛𝑓𝜖′(𝑛)

≥ (1 − 2𝛼2)
2𝑛𝑓𝜖′(𝑛) + 4𝛼2𝑛𝑓𝜖′(𝑛)

≥ 𝑛𝑓𝜖′(𝑛) = 𝑛𝑓,

where the third inequality follows from the first fact about 𝑓𝜖′ .

Cases 3 and 4, Preliminary discussion: These will be the cases in which none of

the 𝑉𝑖 are large. For these cases, we will take 𝑛𝑖 = |𝑉𝑖| and 𝛼𝑖 = 𝑛𝑖/𝑛. We will take
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𝐹𝑖 to be 𝐹 restricted to 𝑉𝑖 and take 𝑔
𝑆,𝑖

= 𝑔
𝑆,𝐹𝑖

. By induction, for each 𝐹𝑖 there are

appropriate choices of 𝑓𝑖, 𝜖𝑖,𝒫𝑖, and 𝑤𝑃,𝑖. Take 𝑎𝑖 = |𝒫𝑖|.
Since in these cases we have many indices, we will be able to apply the weighted

Ramsey theorem to appropriately selected subsets of them. The rest of the prelimi-

nary discussion for Cases 3 and 4 is based on doing so.

For each non-negative integer 𝑖 let 𝐼𝑖 := [2𝑖, 2𝑖+1]. Take Φ(𝑖) = {𝑗 : 𝑛𝑗 ∈ 𝐼𝑖}. The
Φ(𝑖) form a dyadic partition of the indices which will eventually determine how the

indices are clustered when we apply the weighted Ramsey theorem. Take 𝐵′′ := {𝑖 ≤
log(𝑛𝑚−𝛿)}.

Take 𝜏 = ⌊log(2(log−1/2𝑚)𝑛)⌋, so max𝑖 𝑛
′
𝑖 ≤ (log−1/2𝑚)𝑛 ≤ 2𝜏 ≤ 2(log−1/2𝑚)𝑛

and Φ(𝑖) is empty for 𝑖 > 𝜏 .

For any pair 𝑇, 𝑇 ′ satisfying 𝑄 ∩ 𝑇 = {𝑄1} and 𝑄 ∩ 𝑇 ′ = {𝑄2}, take 𝑔𝑖 =∏︀
𝑆 ̸∈{𝑇,𝑇 ′} 𝑔𝑆,𝑖 , 𝑜𝑖 = 𝑔

𝑇,𝑖
, 𝑝𝑖 = 𝑔

𝑇 ′,𝑖 and 𝑔 =
∏︀

𝑆 ̸∈{𝑇,𝑇 ′} 𝑔𝑆 , 𝑜 = 𝑔
𝑇
, 𝑝 = 𝑔

𝑇 ′ . Take 𝐺𝑇,𝑇 ′ to

be the set of indices 𝑗 with 𝑜𝑝 ≥ 𝑜𝑗𝑝𝑗 log2((log1/4𝑚)2(𝜏−𝑖)/2)/32, where 𝑖 is such that

𝑗 ∈ Φ(𝑖).

𝐺𝑇,𝑇 ′ is the collection of indices 𝑗 for which 𝑔
𝑇
𝑔
𝑇 ′ is substantially larger than

𝑔
𝑇,𝑗
𝑔
𝑇 ′,𝑗 , where the meaning of “substantially larger" depends on the size of 𝑛𝑗. The

following lemma states that almost all vertices are contained in some 𝑉𝑗 as 𝑗 varies

over the indices of 𝐺𝑇,𝑇 ′ .

Claim 3.8.5.
∑︀

𝑗∈𝐺𝑇,𝑇 ′ 𝑛𝑗 ≥ (1 − 𝛿1)𝑛.

Proof: Take {𝑉 ′
𝑖 }𝑖≤𝑡 to be a reordering of {𝑉𝑖}𝑖≤𝑡 so that if 𝑖 ≤ 𝑗 then 𝑔

𝑇,𝑉 ′
𝑖

𝑔
𝑇 ′,𝑉 ′

𝑖

≤
𝑔
𝑇,𝑉 ′

𝑗

𝑔
𝑇 ′,𝑉 ′

𝑗

. That is, the 𝑉 ′
𝑖 are in increasing order based on the value of 𝑔

𝑇,𝑉 ′
𝑖

𝑔
𝑇 ′,𝑉 ′

𝑖

.

Let 𝑔′𝑗, 𝑜
′
𝑗, 𝑝

′
𝑗,Φ(𝑖)′, 𝑛′

𝑗, 𝐺
′
𝑇,𝑇 ′ be defined as before (so, for example, 𝑜′𝑖 = 𝑔

𝑇,𝑉 ′
𝑖

).

When we count, we wish to omit certain intervals that do not satisfy desired

properties. Let

𝐵 := {𝑖 ≤ 𝜏 : |Φ(𝑖)′| ≤ 4𝛿−1
1 (log1/4𝑚)2(𝜏−𝑖)/2}.

We will show that a large fraction of the vertices are not contained in
⋃︀

𝑖∈𝐵 ∪𝑗∈Φ(𝑖)′𝑉
′
𝑗 ;
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that is, most vertices are not contained in 𝑉 ′
𝑗 where 𝑗 is an index in 𝜑(𝑖)′ for some

𝑖 ∈ 𝐵.

∑︁
𝑖∈𝐵

∑︁
𝑗∈Φ(𝑖)′

𝑛′
𝑗 ≤

∑︁
𝑖≤𝜏

2𝑖+1(4𝛿−1
1 (log1/4𝑚)2(𝜏−𝑖)/2) = 8𝛿−1

1 (log1/4𝑚)2𝜏/2
∑︁
𝑖≤𝜏

2𝑖/2

≤ 8𝛿−1
1 (log1/4𝑚)2𝜏/24 · 2𝜏/2 = 32𝛿−1

1 (log1/4𝑚)2𝜏 ≤ 64𝛿−1
1 (log−1/4𝑚)𝑛

≤ 𝛿1𝑛/2.

Thus,

∑︁
𝑖∈𝐵

∑︁
𝑗∈Φ(𝑖)′

𝑛′
𝑗 ≤ 𝛿1𝑛/2. (3.2)

For any fixed 𝑖 ≤ 𝜏 such that 𝑖 ̸∈ 𝐵, enumerate Φ(𝑖)′ as 𝜑𝑖,1, 𝜑𝑖,2, . . . , 𝜑𝑖,|Φ(𝑖)′|

with 𝑜′𝜑𝑖,𝑗1
𝑝′𝜑𝑖,𝑗1

≤ 𝑜′𝜑𝑖,𝑗2
𝑝′𝜑𝑖,𝑗2

if 𝑗1 ≤ 𝑗2. That is, this enumeration is so that the

𝑉 ′
𝜑𝑖,𝑗

are listed in increasing order with respect to their 𝑜′𝑗𝑝
′
𝑗 values. Take 𝛽𝑖 to be

𝜑𝑖,(1−𝛿1/4)|Φ(𝑖)′|. Consider {(𝑜′𝑗, 𝑝
′
𝑗) : 𝑗 ∈ Φ(𝑖)′, 𝑗 ≥ 𝛽𝑖}. By 𝑖 ̸∈ 𝐵, this has at least

(log1/4𝑚)2(𝜏−𝑖)/2 ≥ 𝑀 elements. We get by applying the weighted Ramsey theorem

to this set (with the coloring given by 𝜒) that:

𝑜𝑝 ≥ 𝑜′𝛽𝑖
𝑝′𝛽𝑖

log2
(︁

(log1/4𝑚)2(𝜏−𝑖)/2
)︁

32
.

For any 𝑗 ∈ Φ(𝑖)′, we have that if 𝑗 ≤ 𝛽𝑖 then 𝑜
′
𝑗𝑝

′
𝑗 ≤ 𝑜′𝛽𝑖

𝑝′𝛽𝑖
, so the above is at least

𝑜′𝑗𝑝
′
𝑗

log2((log1/4 𝑚)2(𝜏−𝑖)/2)
32

, so 𝑗 ∈ 𝐺′
𝑇,𝑇 ′ .

If 𝑖 ̸∈ 𝐵 we obtain

∑︁
𝑗∈Φ(𝑖)′:𝑗 ̸∈𝐺′

𝑇,𝑇 ′

𝑛′
𝑗 ≤

∑︁
𝑗∈Φ(𝑖)′:𝑗>𝛽𝑖

𝑛′
𝑗 ≤

𝛿1
4
|Φ(𝑖)′| 2𝑖+1

= |Φ(𝑖)′| 2𝑖𝛿1/2 ≤ 𝛿1
2

∑︁
𝑗∈Φ(𝑖)′

𝑛𝑗
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Therefore, ∑︁
𝑗∈Φ(𝑖)′∩𝐺′

𝑇,𝑇 ′

𝑛′
𝑗 ≥ (1 − 𝛿1/2)

∑︁
𝑗∈Φ(𝑖)′

𝑛′
𝑗.

Thus,

∑︁
𝑗∈𝐺′

𝑇,𝑇 ′

𝑛′
𝑗 ≥

∑︁
𝑖 ̸∈𝐵

∑︁
𝑗∈Φ(𝑖)′∩𝐺′

𝑇,𝑇 ′

𝑛′
𝑗 ≥ (1 − 𝛿1/2)

∑︁
𝑖 ̸∈𝐵

∑︁
𝑗∈Φ(𝑖)′

𝑛′
𝑗

≥ (1 − 𝛿1/2)2 𝑛 ≥ (1 − 𝛿1)𝑛,

where the third inequality follows from (3.2).

As
∑︀

𝑗∈𝐺𝑇,𝑇 ′ 𝑛
′
𝑗 =

∑︀
𝑗∈𝐺𝑇,𝑇 ′ 𝑛𝑗, this completes the proof of the claim.

2

Case 3: 𝛼1 ≤ log−1/2𝑚 and
∑︀

𝑖∈𝐵′′
∑︀

𝑗∈Φ(𝑖) 𝑛𝑗 ≤ 𝑛/2. Fix any pair 𝑇, 𝑇 ′ ∈
(︀
𝑅
𝑠

)︀
with

𝑇 ∩𝑄 = 𝑄1 and 𝑇
′∩𝑄 = 𝑄2. The idea behind this case will be to choose some subset

𝐺𝑎 of the indices so that, as 𝑗 varies over 𝐺𝑎, the value of 𝑎𝑗 does not change, to

intersect this set with 𝐺𝑇,𝑇 ′ , and to use this to show that
∏︀

𝑆 𝑔𝑆 is large. In this case,

as in Cases 1 and 2, we will simply choose some 𝑗 appropriately and take 𝒫 = 𝒫𝑗 and

𝑤𝑃 = 𝑤𝑃,𝑗.

Note that 𝑠𝑖 ∈
[︀(︀

𝑟
2

)︀]︀
, so by the pigeonhole principle there must be some value 𝑠

such that ∑︁
𝑖 ̸∈𝐵′′

∑︁
𝑗∈Φ(𝑖):𝑠𝑖=𝑠

𝑛𝑗 ≥
(︂
𝑟

2

)︂−1 ∑︁
𝑖 ̸∈𝐵′′

∑︁
𝑗∈Φ(𝑖)

𝑛𝑗 ≥
(︂
𝑟

2

)︂−1

𝑛/2,

where the last inequality follows by the assumptions for Case 3. Take 𝐺𝑎 to be the

set of indices 𝑗 with 𝑎𝑗 = 𝑎 and, taking 𝑖 to be the index with 𝑗 ∈ Φ(𝑖), 𝑖 is not in

𝐵′′; by the above,
∑︀

𝑗∈𝐺𝑎
𝑛𝑗 ≥

(︀
𝑟
2

)︀−1
𝑛/2. Then take 𝜖 = min𝑖∈𝐺𝑎 𝜖𝑖 + log(1/𝛼𝑖)

log𝑚
. Note

that this is the same as taking 𝜖 = 𝜖𝑖 + log(1/𝛼𝑖)
log𝑚

where 𝑖 is an index in 𝐺𝑎 minimizing

𝑥𝑖 := max

(︂
(log𝑚)

𝐶
(︁
𝜖𝑖+

log(1/𝛼𝑖)

log𝑚

)︁
, (𝑐 log2𝑚)𝑎𝑖𝑑

)︂
,

as all the 𝑎𝑖 are equal to 𝑎.

Take, with 𝑖 as above, 𝒫 = 𝒫𝑖 and 𝑤𝑃 = 𝑤𝑃,𝑖. Then, as in Cases 1 and 2,
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properties (1) and (2) hold. Furthermore, as in Cases 1 and 2, taking

𝜖′ = max

(︃
𝜖,

log
(︀
(𝑐 log2𝑚)𝑎𝑑

)︀
𝐶 log log𝑚

)︃
,

we have for 𝑖 ∈ 𝐺𝑎 that 𝑓𝑖 ≥ 𝑓𝜖′(𝑛𝑖), and taking 𝑓 = 𝑓𝜖′(𝑛), properties (4) and (5)

hold. We need only check that property (3) holds.

Then take 𝐺 = 𝐺𝑎 ∩𝐺𝑇,𝑇 ′ .

We have

∑︁
𝑗∈𝐺

𝑛𝑗 ≥ 𝑛−
∑︁
𝑗 ̸∈𝐺𝑎

𝑛𝑗 −
∑︁

𝑗 ̸∈𝐺𝑇,𝑇 ′

𝑛𝑗 ≥
(︃(︂

𝑟

2

)︂−1

/2 − 𝛿1

)︃
𝑛 ≥

(︃(︂
𝑟

2

)︂−1

/4

)︃
𝑛. (3.3)

Take 𝑔𝑖 =
∏︀

𝑆 ̸∈{𝑇,𝑇 ′} 𝑔𝑆,𝑖 , 𝑜𝑖 = 𝑔
𝑇,𝑖
, 𝑝𝑖 = 𝑔

𝑇 ′,𝑖 and 𝑔 =
∏︀

𝑆 ̸∈{𝑇,𝑇 ′} 𝑔𝑆 , 𝑜 = 𝑔
𝑇
, 𝑝 = 𝑔

𝑇 ′ .

We have:

∑︁
𝑗

(𝑔𝑗𝑜𝑝)
1/(𝑟−2

𝑠−2) ≥
∑︁
𝑖

∑︁
𝑗∈𝐺∩Φ(𝑖)

(𝑔𝑗𝑜𝑝)
1/(𝑟−2

𝑠−2)

≥
∑︁
𝑖

∑︁
𝑗∈𝐺∩Φ(𝑖)

(︃
𝑔𝑗𝑜𝑗𝑝𝑗

log2((log1/4𝑚)2(𝜏−𝑖)/2)

32

)︃1/(𝑟−2
𝑠−2)

≥
∑︁
𝑖

∑︁
𝑗∈𝐺∩Φ(𝑖)

𝑛𝑗𝑓𝑗 log2/(𝑟−2
𝑠−2)((log1/4𝑚)2(𝜏−𝑖)/2)32−1/(𝑟−2

𝑠−2)

≥
∑︁
𝑖

∑︁
𝑗∈𝐺∩Φ(𝑖)

𝑛𝑗𝑓𝜖′(𝑛𝑗) log2/(𝑟−2
𝑠−2)((log1/4𝑚)2(𝜏−𝑖)/2)32−1/(𝑟−2

𝑠−2)

≥
∑︁
𝑖

∑︁
𝑗∈𝐺∩Φ(𝑖)

𝑛𝑗𝑓𝜖′(2
𝑖) log2/(𝑟−2

𝑠−2)((log1/4𝑚)2(𝜏−𝑖)/2)32−1

≥
∑︁
𝑖

∑︁
𝑗∈𝐺∩Φ(𝑖)

8

(︂
𝑟

2

)︂
𝑛𝑗𝑓𝜖′(2

𝜏 )

≥
∑︁
𝑖

∑︁
𝑗∈𝐺∩Φ(𝑖)

8

(︂
𝑟

2

)︂
𝑛𝑗𝑓𝜖′(𝑛 log−1/2𝑚)

≥
∑︁
𝑖

∑︁
𝑗∈𝐺∩Φ(𝑖)

4

(︂
𝑟

2

)︂
𝑛𝑗𝑓𝜖′(𝑛) ≥ 𝑛𝑓𝜖′(𝑛) = 𝑛𝑓,

where the second inequality follows from 𝐺 ⊆ 𝐺𝑇,𝑇 ′ , the sixth inequality follows by

106



the third fact about 𝑓𝜖′ , the eighth inequality follows by the fourth fact about 𝑓𝜖′ , and

the ninth inequality follows from (3.3).

Note that here we used only one pair 𝑇, 𝑇 ′; we can afford to do this because we

gain a large amount due to 𝐵′′ being small. In the next case, we will use all of the

relevant pairs.

Case 4: 𝛼1 ≤ log−1/2𝑚 and
∑︀

𝑖∈𝐵′′
∑︀

𝑗∈Φ(𝑖) 𝑛𝑗 ≥ 𝑛/2. In this case there are many

vertices contained in very small parts; this is the case where we will not simply take

𝒫 to be some 𝒫𝑖.

The idea behind this case is to choose a set 𝐺𝑎 of many indices 𝑗 with similar

values of 𝒫𝑗, 𝑤𝑃,𝑗, and 𝜖𝑗. We will be able to take 𝑤𝑄 =
∑︀

𝑗∈𝐺𝑎
𝑤𝑄,𝑗, which is a

significant improvement over simply taking for some 𝑗 each 𝑤𝑃 = 𝑤𝑃,𝑗. We will

intersect 𝐺𝑎 with some collection of 𝐺𝑇,𝑇 ′ where each 𝑇 with 𝑇 ∩𝑄 = {𝑄1} and each

𝑇 ′ with 𝑇 ′ ∩ 𝑄 = {𝑄2} will occur exactly once (so we pair up the sets 𝑇, 𝑇 ′ with

𝑇 ∩𝑄 = {𝑄1} and 𝑇 ′∩𝑄 = {𝑄2}; if an index is in 𝐺𝑇,𝑇 ′ , then we have gained a large

factor on that index). This allows us to lower bound
∏︀

𝑆 𝑔𝑆 .

We may partition [0, 1] into at most 𝛿−1
0 + 1 intervals 𝐽𝑖 of length at most 𝛿0. Fur-

thermore, we may partition [1,𝑚] into at most 𝛿−1
0 +1 intervals𝐻𝑖 with sup(𝐻𝑖)/ inf(𝐻𝑖)

≤ 𝑚𝛿0 .

We partition the indices in
⋃︀

𝑖∈𝐵′′ Φ(𝑖) by saying two indices 𝑗, 𝑗′ are in the same

part if and only if 𝜖𝑗, 𝜖𝑗′ are in the same interval 𝐽𝑖, 𝒫𝑗 = 𝒫𝑗′ , and for each 𝑃 ∈ 𝒫𝑗 =

𝒫𝑗′ , 𝑤𝑃,𝑗 and 𝑤𝑃,𝑗′ are in the same interval 𝐻𝑖.

Then the total number of possible partitions is at most 2(𝑟
2)(𝛿−1

0 + 1)(
𝑟
2)+1. There-

fore, there is some part 𝐺𝑎 ⊆
⋃︀

𝑖∈𝐵′′ Φ(𝑖) where

∑︁
𝑗∈𝐺𝑎

𝑛𝑗 ≥ 2−(𝑟
2)(𝛿−1

0 +1)−(𝑟
2)−1

∑︁
𝑖∈𝐵′′

∑︁
𝑗∈Φ(𝑖)

𝑛𝑗 ≥ 2−(𝑟
2)−1(𝛿−1

0 +1)−(𝑟
2)−1𝑛 = 2

(︂
𝑟 − 2

𝑠− 1

)︂
𝛿1𝑛.

Then take 𝜖0 = max𝑖∈𝐺𝑎 𝜖𝑖. Take 𝑤𝑄 =
∑︀

𝑖∈𝐺𝑎
𝑤𝑄,𝑖 and for 𝑃 ̸= 𝑄 take 𝑤𝑃 =

min𝑖∈𝐺𝑎 𝑤𝑃,𝑖. Take 𝒫 = 𝒫𝑖 ∪ {𝑄} for any 𝑖 ∈ 𝐺𝑎. Take 𝑎 = |𝒫| and note 𝑎 ≤ 𝑎𝑖 + 1

for any 𝑖 ∈ 𝐺𝑎. We check that property (1) holds. For each 𝑆 with 𝑄 ⊆ 𝑆,
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𝑔
𝑆
≥
∑︁
𝑖

𝑔
𝑆,𝑖

≥
∑︁
𝑖

∏︁
𝑃⊆𝑆

𝑤𝑃,𝑖 ≥
∑︁
𝑖∈𝐺𝑎

𝑤𝑄,𝑖

∏︁
𝑃⊆𝑆,𝑃 ̸=𝑄

min
𝑖∈𝐺𝑎

𝑤𝑃,𝑖 = 𝑤𝑄

∏︁
𝑃⊆𝑆,𝑃 ̸=𝑄

𝑤𝑃 =
∏︁
𝑃⊆𝑆

𝑤𝑃 .

For each 𝑆 with 𝑄 ̸⊆ 𝑆, fixing any 𝑖 ∈ 𝐺𝑎,

𝑔
𝑆
≥ 𝑔

𝑆,𝑖
≥
∏︁
𝑃⊆𝑆

𝑤𝑃,𝑖 ≥
∏︁
𝑃⊆𝑆

min
𝑖∈𝐺

𝑤𝑃,𝑖 =
∏︁
𝑃⊆𝑆

𝑤𝑃 .

Now, we choose 𝜖 =
(︀
𝑟
2

)︀
𝛿0 + 𝜖0 and check that property (2) holds:

∏︁
𝑃

𝑤𝑃 =
∑︁
𝑖∈𝐺𝑎

𝑤𝑄,𝑖

∏︁
𝑃 ̸=𝑄

𝑤𝑃 ≥
∑︁
𝑖∈𝐺𝑎

𝑤𝑄,𝑖

∏︁
𝑃 ̸=𝑄

(𝑚−𝛿0𝑤𝑃,𝑖)

= 𝑚−((𝑟
2)−1)𝛿0

∑︁
𝑖∈𝐺𝑎

∏︁
𝑃

𝑤𝑃,𝑖 ≥ 𝑚−((𝑟
2)−1)𝛿0−𝜖0

∑︁
𝑖∈𝐺𝑎

𝑛𝑖

≥ 𝑚−((𝑟
2)−1)𝛿0−𝜖02

(︂
𝑟 − 2

𝑠− 1

)︂
𝛿1𝑛 ≥ 𝑚−(𝑟

2)𝛿0−𝜖0𝑛,

where the first inequality is valid since for 𝑗, 𝑗′ ∈ 𝐺𝑠 we have 𝑤𝑃,𝑗/𝑤𝑃,𝑗′ ≤ 𝑚𝛿0 , the

second inequality follows by choice of 𝜖0 = max𝑗∈𝐺𝑎 𝜖𝑗, and the last inequality uses

𝑚𝛿0 ≥ 2
(︀
𝑟−2
𝑠−1

)︀
𝛿1 which follows from 𝑚 ≥ 𝑚0 (𝑚0 is defined in Equation 3.1) and the

choices of 𝛿0 and 𝛿1.

Fix a bijection 𝜋 between {𝑆 ∈
(︀
𝑅
𝑠

)︀
: 𝑆∩𝑄 = {𝑄1}} and {𝑆 ∈

(︀
𝑅
𝑠

)︀
: 𝑆∩𝑄 = {𝑄2}}

(one such bijection takes any 𝑆 in the first set and removes 𝑄1 and adds 𝑄2.) Take

𝐺 to be the intersection of 𝐺𝑎 and all sets of the form 𝐺𝑆,𝜋(𝑆) where 𝑆 ∈
(︀
𝑅
𝑠

)︀
satisfies

𝑆 ∩𝑄 = {𝑄1}. There are
(︀
𝑟−2
𝑠−1

)︀
pairs 𝑆, 𝜋(𝑆), so by Claim 3.2 we have

∑︁
𝑗∈𝐺

𝑛𝑗 ≥
∑︁
𝑗∈𝐺𝑎

𝑛𝑗 −
∑︁

𝑆:𝑆∩𝑄={𝑄1}

∑︁
𝑗 ̸∈𝐺𝑆,𝜋(𝑆)

𝑛𝑗 ≥
(︂

2

(︂
𝑟 − 2

𝑠− 1

)︂
𝛿1 −

(︂
𝑟 − 2

𝑠− 1

)︂
𝛿1

)︂
𝑛

≥
(︂
𝑟 − 2

𝑠− 1

)︂
𝛿1𝑛 ≥ 𝛿1𝑛.

Note that, if 𝑗 ∈ 𝐺, then for any 𝑆 with 𝑆 ∩ 𝑄 = {𝑄1}, since 𝐺 ⊆ 𝐺𝑆,𝜋(𝑆), we
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have 𝑔
𝑆
𝑔
𝜋(𝑆)

≥ 𝑔
𝑆,𝑗
𝑔
𝜋(𝑆),𝑗

log2((log1/4𝑚)2(𝜏−𝑖)/2) ≥ 𝑔
𝑆,𝑗
𝑔
𝜋(𝑆),𝑗

log2(2(𝜏−𝑖)/2) where 𝑖 is

such that 𝑗 ∈ Φ(𝑖). However, if 𝑗 ∈ 𝐺 then 𝑖 ∈ 𝐵′′, so

2(𝜏−𝑖)/2 =

(︂
2𝜏

2𝑖

)︂1/2

≥
(︃
𝑛 log−1/2𝑚

𝑛𝑚−𝛿

)︃1/2

≥ 𝑚𝛿/4.

Therefore, log(2(𝜏−𝑖)/2) ≥ 𝛿(log𝑚)/4.

This gives:

∑︁
𝑗

(︃ ∏︁
𝑆:𝑄⊆𝑆

𝑔
𝑆,𝑗

∏︁
𝑆:𝑄 ̸⊆𝑆

𝑔
𝑆

)︃1/(𝑟−2
𝑠−2)

≥
∑︁
𝑗∈𝐺

(︃ ∏︁
𝑆:𝑄⊆𝑆

𝑔
𝑆,𝑗

∏︁
𝑆:𝑄 ̸⊆𝑆

𝑔
𝑆

)︃1/(𝑟−2
𝑠−2)

≥
∑︁
𝑗∈𝐺

⎛⎝ ∏︁
𝑆:|𝑄∩𝑆|̸=1

𝑔
𝑆,𝑗

∏︁
𝑆:|𝑄∩𝑆|=1

𝑔
𝑆

⎞⎠1/(𝑟−2
𝑠−2)

=
∑︁
𝑗∈𝐺

⎛⎝ ∏︁
𝑆:|𝑄∩𝑆|̸=1

𝑔
𝑆,𝑗

∏︁
𝑆:𝑄∩𝑆={𝑄1}

𝑔
𝑆
𝑔
𝜋(𝑆)

⎞⎠1/(𝑟−2
𝑠−2)

≥
∑︁
𝑗∈𝐺

⎛⎝ ∏︁
𝑆:|𝑄∩𝑆|̸=1

𝑔
𝑆,𝑗

∏︁
𝑆:𝑄∩𝑆={𝑄1}

𝛿2

16
(log2𝑚)𝑔

𝑆,𝑗
𝑔
𝜋(𝑆),𝑗

⎞⎠1/(𝑟−2
𝑠−2)

=
∑︁
𝑗∈𝐺

(︃
(𝛿(log𝑚)/16)2(

𝑟−2
𝑠−1)

∏︁
𝑆

𝑔
𝑆,𝑗

)︃1/(𝑟−2
𝑠−2)

≥
∑︁
𝑗∈𝐺

𝑛𝑗𝑓𝑗 (𝛿(log𝑚)/4)2(
𝑟−2
𝑠−1)/(

𝑟−2
𝑠−2)

=
∑︁
𝑗∈𝐺

𝑛𝑗𝑓𝑗 (𝛿(log𝑚)/4)2𝑑 .

Take 𝑓 ′ = (log𝑚)𝐶𝜖, 𝑓 ′′ = (𝑐 log2𝑚)𝑎𝑑 and 𝑓 = max(𝑓 ′, 𝑓 ′′). Note that 𝑓 ≥ 𝑓 ′

guarantees that property (4) holds and 𝑓 ≥ 𝑓 ′′ guarantees that property (5) holds, so

we need only check that property (3) holds. There will be two cases, that in which
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𝑓 = 𝑓 ′ and that in which 𝑓 = 𝑓 ′′.

If 𝑓 = 𝑓 ′, for each 𝑗 ∈ 𝐺𝑎 we have 𝜖𝑗 ≥ 𝜖0 − 𝛿0, so 𝑓𝑗 ≥ (log𝑚)𝐶(𝜖0−𝛿0). Then we

get:

∑︁
𝑗∈𝐺

𝑛𝑗𝑓𝑗 (𝛿(log𝑚)/4)2𝑑 ≥
∑︁
𝑗∈𝐺

𝑛𝑗(log𝑚)𝐶(𝜖0−𝛿0) (𝛿(log𝑚)/4)2𝑑

≥
∑︁
𝑗∈𝐺

𝑛𝑗(log𝑚)𝐶(𝜖0+(𝑟
2)𝛿0)

(︁
𝛿(log1/2𝑚)/4

)︁2𝑑
≥ 𝛿1𝑛(log𝑚)𝐶(𝜖0+(𝑟

2)𝛿0)
(︁
𝛿(log1/2𝑚)/4

)︁2𝑑
≥ 𝑛(log𝑚)𝐶(𝜖0+(𝑟

2)𝛿0) = 𝑛(log𝑚)𝐶𝜖 = 𝑛𝑓 ′ = 𝑛𝑓.

Otherwise, 𝑓 = 𝑓 ′′. For each 𝑗 ∈ 𝐺𝑎 we have 𝑓𝑗 ≥ (𝑐 log2𝑚)(𝑎−1)𝑑, as 𝑎 ≤ 𝑎𝑗 + 1.

This gives:

∑︁
𝑗∈𝐺

𝑛𝑗𝑓𝑗 (𝛿(log𝑚)/4)2𝑑 ≥
∑︁
𝑗∈𝐺

𝑛𝑗(𝑐 log2𝑚)(𝑎−1)𝑑 (𝛿(log𝑚)/4)2𝑑

= (𝛿/4)2𝑑𝑐−𝑑(𝑐 log2𝑚)𝑎𝑑
∑︁
𝑗∈𝐺

𝑛𝑗 ≥ (𝛿/4)2𝑑𝑐−𝑑(𝑐 log2𝑚)𝑎𝑑𝛿1𝑛

≥ 𝑛(𝑐 log2𝑚)𝑎𝑑 = 𝑛𝑓 ′′.

2

Take 𝑎0 to be
(︀
𝑟
2

)︀
if 𝑠 < 𝑟 − 1, 𝑟/2 if 𝑠 = 𝑟 − 1 and 𝑟 is even, and (𝑟 + 3)/2 if

𝑠 = 𝑟 − 1 and 𝑟 is odd. Take 𝑓0 = (𝑐 log2𝑚)𝑎0𝑑. The following theorem states that

either some 𝑔
𝑆
is large or their product is large.

Theorem 3.8.6. If 𝑚 ≥ 𝑚0, either
∏︀

𝑆 𝑔𝑆 ≥ (𝑚𝑓0)
(𝑟−2
𝑠−2) or there is some 𝑆 ⊆ 𝑅 of

size 𝑠 with 𝑔
𝑆
≥ (𝑚𝑓0)

(𝑠
2)/(

𝑟
2).

Proof: Choose 𝑓, 𝜖,𝒫 , 𝑤𝑃 as given by the previous theorem, then we need only show

𝑓 ≥ 𝑓0. If 𝜖 ≥
(︁

16𝑟
(︀
𝑟
2

)︀2)︁−1

then we have 𝐶𝜖 ≥ 2
(︀
𝑟
2

)︀
𝑑 ≥ 2𝑎0𝑑 so 𝑓 ≥ (log𝑚)𝐶𝜖 ≥

(log𝑚)2𝑎0𝑑 ≥ 𝑓0.
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Otherwise, 𝜖 <
(︁

16𝑟
(︀
𝑟
2

)︀2)︁−1

. Define a weighted graph on vertex set 𝑅 where an

edge 𝑒 ∈
(︀
𝑅
2

)︀
has weight log𝑤𝑒. Note that this graph has non-negative edge weights

and if an edge is not in 𝒫 , then it has weight 0.

By Lemma 3.8.1, either this graph has at least 𝑎0 edges or there is some set 𝑆 on

𝑠 vertices with

∑︁
𝑃⊆𝑆

log𝑤𝑃 ≥

⎛⎝1 +

(︃
4𝑟

(︂
𝑟

2

)︂2
)︃−1

⎞⎠ (︀𝑠2)︀(︀
𝑟
2

)︀∑︁
𝑃

log𝑤𝑃 .

If the graph has at least 𝑎0 edges, then |𝒫| ≥ 𝑎0 so 𝑓 ≥ (𝑐 log2𝑚)𝑎𝑝0𝑑, as desired.

Otherwise, there is some 𝑆 so that

∑︁
𝑃⊆𝑆

log𝑤𝑃 ≥

⎛⎝1 +

(︃
4𝑟

(︂
𝑟

2

)︂2
)︃−1

⎞⎠ (︀𝑠2)︀(︀
𝑟
2

)︀∑︁
𝑃

log𝑤𝑃 .

Then we have

∏︁
𝑃⊆𝑆

𝑤𝑃 ≥
∏︁
𝑃

𝑤

(︂
1+

(︁
4𝑟(𝑟

2)
2
)︁−1

)︂(𝑠
2)

(𝑟
2)

𝑃 ≥ 𝑚
(1−𝜖)

(︂
1+

(︁
4𝑟(𝑟

2)
2
)︁−1

)︂(𝑠
2)

(𝑟
2)

≥ 𝑚

(︂
1−

(︁
16𝑟(𝑟

2)
2
)︁−1

)︂(︂
1+

(︁
4𝑟(𝑟

2)
2
)︁−1

)︂(𝑠
2)

(𝑟
2) ≥ 𝑚

(︂
1+

(︁
8𝑟(𝑟

2)
2
)︁−1

)︂(𝑠
2)

(𝑟
2) ≥ (𝑚𝑓0)

(𝑠
2)/(

𝑟
2),

where the second to last inequality follows from (1 + 𝑏)(1 − 𝑏/4) ≥ 1 + 𝑏/2 for any

𝑏 ∈ [0, 1]. 2

The previous theorem easily implies a general lower bound for the largest value

of 𝑔
𝑆
.

Theorem 3.8.7. If 𝑚 ≥ 𝑚0, there is some 𝑆 ⊆ 𝑅 of size 𝑠 with 𝑔
𝑆
≥ (𝑚𝑓0)

(𝑠
2)/(

𝑟
2).

Proof: By the previous theorem, either such an 𝑆 exists or
∏︀

𝑆⊆𝑅 𝑔𝑆 ≥ (𝑚𝑓0)
(𝑟−2
𝑠−2).

In this latter case, since this is the product of
(︀
𝑟
𝑠

)︀
numbers, there must be some 𝑆

with 𝑔
𝑆
≥ (𝑚𝑓0)

(𝑟−2
𝑠−2)/(

𝑟
𝑠) = (𝑚𝑓0)

(𝑠
2)/(

𝑟
2). 2
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Before we proceed, note that:

𝑑 =

(︂
𝑟 − 2

𝑠− 1

)︂
/

(︂
𝑟 − 2

𝑠− 2

)︂
=
𝑟 − 𝑠

𝑠− 1
.

We now simply rewrite the statement of the previous theorem in more familiar

notation.

Theorem 3.8.8. Every Gallai coloring of a complete graph on 𝑚 vertices has a vertex

subset using at most 𝑠 colors of order Ω
(︁
𝑚(𝑠

2)/(
𝑟
2) log𝑐𝑟,𝑠 𝑚

)︁
, where

𝑐𝑟,𝑠 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑠(𝑟 − 𝑠) if 𝑠 < 𝑟 − 1,

1 if 𝑠 = 𝑟 − 1 and r is even,

(𝑟 + 3)/𝑟 if 𝑠 = 𝑟 − 1 and r is odd.

Proof: If 𝑠 < 𝑟− 1 and 𝑚 ≥ 𝑚0, by Theorem 3.8.7 the coloring has a subchromatic

set of order at least 𝑚(𝑠
2)/(

𝑟
2)
(︀
𝑐 log2𝑚

)︀(𝑠
2)𝑑. As 2

(︀
𝑠
2

)︀
𝑑 = 𝑠(𝑠 − 1) 𝑟−𝑠

𝑠−1
= 𝑠(𝑟 − 𝑠), this

gives the desired bound in this case.

If 𝑠 = 𝑟 − 1, 𝑟 is even, and 𝑚 ≥ 𝑚0, by Theorem 3.8.7, the coloring has a

subchromatic set of order at least 𝑚(𝑠
2)/(

𝑟
2)
(︀
𝑐 log2𝑚

)︀(𝑟/2)𝑑
. As

2(𝑟/2)

(︂
𝑠

2

)︂(︂
𝑟

2

)︂−1

𝑑 = 𝑟
𝑠(𝑠− 1)

𝑟(𝑟 − 1)

𝑟 − 𝑠

𝑠− 1
= 𝑟

(𝑟 − 1)(𝑟 − 2)

𝑟(𝑟 − 1)

1

𝑟 − 2
= 1,

this gives the desired bound in this case.

If 𝑠 = 𝑟 − 1, 𝑟 is odd, and 𝑚 ≥ 𝑚0, by Theorem 3.8.7, the coloring has a

subchromatic set of order at least 𝑚(𝑠
2)/(

𝑟
2)
(︀
𝑐 log2𝑚

)︀((𝑟+3)/2)𝑑
. As

2((𝑟+3)/2)

(︂
𝑠

2

)︂(︂
𝑟

2

)︂−1

𝑑 = (𝑟+3)
𝑠(𝑠− 1)

𝑟(𝑟 − 1)

𝑟 − 𝑠

𝑠− 1
= (𝑟+3)

(𝑟 − 1)(𝑟 − 2)

𝑟(𝑟 − 1)

1

𝑟 − 2
= (𝑟+3)/𝑟,

this gives the desired bound in this case. 2

3.9 Proof of Lemma 3.4.1

Lemma 3.9.1. For all 𝑘, ℓ ≥ 1 we have
(︀
𝑘+ℓ
ℓ

)︀
≤ 22

√
𝑘ℓ
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Proof: We first observe that
(︀
𝑘+ℓ
ℓ

)︀
≤ (𝑘+ℓ)𝑘+ℓ

𝑘𝑘ℓℓ
, or equivalently that 𝑘𝑘

𝑘!
ℓℓ

ℓ!
≤ (𝑘+ℓ)𝑘+ℓ

(𝑘+ℓ)!
.

To see this, note that the function 𝑓(𝑛) = 𝑛 log 𝑛− log(𝑛!) is super-additive (over the

positive integers), that is it satisfies 𝑓(𝑛1)+𝑓(𝑛2) ≤ 𝑓(𝑛1+𝑛2). This follows from using

Stirling’s formula, which is equivalent to 𝑓(𝑛) = 𝑛 log 𝑒− 1
2

log 𝑛− 1
2

log 2𝜋+𝑜(1), and

known estimates on the 𝑜(1) term as well as the sub-additive nature of the logarithm

function. Taking 𝑛1 = 𝑘, 𝑛2 = ℓ gives

(𝑘 log 𝑘 − log(𝑘!)) + (ℓ log ℓ− log(ℓ!)) ≤ (𝑘 + ℓ) log(𝑘 + ℓ) − log((𝑘 + ℓ)!).

Exponentiating both sides gives 𝑘𝑘

𝑘!
ℓℓ

ℓ!
≤ (𝑘+ℓ)𝑘+ℓ

(𝑘+ℓ)!
, as desired.

Therefore, it now suffices to show that (𝑘+ℓ)𝑘+ℓ

𝑘𝑘ℓℓ
≤ 22

√
𝑘ℓ. This is equivalent to

showing that, for all 𝑘, ℓ ≥ 1,

(︂
𝑘 + ℓ

𝑘

)︂𝑘/
√
𝑘ℓ(︂

𝑘 + ℓ

ℓ

)︂ℓ/
√
𝑘ℓ

≤ 4.

Taking 𝑥 = 𝑘/ℓ, note that 𝑥 > 0 and that we may rewrite the left hand side of

the above as

𝑔(𝑥) :=
(︀
1 + 𝑥−1

)︀√𝑥
(1 + 𝑥)

√
𝑥−1
.

Note that 𝑔(𝑥) = 𝑔(1/𝑥), so it now suffices to show that, for all 𝑥 ≥ 1, we have

𝑔(𝑥) ≤ 4. Note that 𝑔′(1) = 0. We claim that, for 𝑥 ∈ [1, 1.5] we have 𝑔′′(𝑥) < 0 and

for 𝑥 ∈ [1.5, 5] we have 𝑔′(𝑥) < 0. These claims may be verified numerically, as the

inequalities are strict and the relevant functions are uniformly continuous over their

respective compact sets. This gives that, in the interval [1, 5], 𝑔(𝑥) is maximized at

𝑔(1) = 4. Then, for 𝑥 > 5, since 1+𝑥−1 ≤ 𝑒𝑥
−1

we have (1+𝑥−1)
√
𝑥 ≤ 𝑒

√
𝑥−1

< 1.6 and,

in this range, 1+𝑥 ≤ 2.5
√
𝑥 so we have (1+𝑥)

√
𝑥−1 ≤ 2.5, giving that 𝑔(𝑥) ≤ 2.5·1.6 = 4

for 𝑥 > 5. 2
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3.10 Proof of Lemma 3.5.3

For convenience, we restate both the definition of 𝑓 and the statement of the lemma

here:

𝑓(𝑛) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑐 log2(𝐶𝑛) if 0 < 𝑛 ≤ 𝑚4/9

𝑐2 log2(𝑚4/9) log2(𝐶𝑛𝑚−4/9) if 𝑚4/9 < 𝑛 ≤ 𝑚8/9

𝑐3 log4(𝑚4/9) log2(𝐶𝑛𝑚−8/9) if 𝑚8/9 < 𝑛 ≤ 𝑚,

,

where 𝐷 = 22048, 𝐶 = 2𝐷8
, and 𝑐 = log−2(𝐶2) = 𝐷−16/4.

Lemma 3.10.1. If 𝑚 ≥ 𝐶, then the following statements hold about 𝑓 for any integer

𝑛 with 1 < 𝑛 ≤ 𝑚.

1. For any 𝛼 ∈
[︀
1
𝑛
, 1
]︀
, we have 𝑓(𝛼𝑛) ≥ 𝛼𝑓(𝑛).

2. For any 𝛼1, 𝛼2, 𝛼3 ∈
[︀
1
𝑛
, 1
]︀
such that

∑︀
𝑖 𝛼𝑖 = 1 we have, taking 𝑛𝑖 = 𝛼𝑖𝑛,

𝑛𝑓(𝑛) −
∑︁
𝑖

𝑛𝑖𝑓(𝑛𝑖) ≤
8

log𝐶
𝑛𝑓(𝑛).

3. For 𝑖 ≥ 0 and 𝑚7/18 ≥ 2𝑗 ≥ 1, we have 𝑓(2𝑖) log2(𝐷2𝑗) ≥ 512𝑓(2𝑖+ 8
7
𝑗).

4. For 1 ≤ 𝜏 ≤ 𝑛 ≤ 𝐷3𝜏 , we have 𝑓(𝜏) ≥ 𝑓(𝑛)/2.

5. For any 𝛼 ∈
[︀
1
𝑛
, 1
32

]︀
, we have 𝑓(𝛼𝑛) ≥ 16𝛼𝑓(𝑛).

Proof: Observe that 𝑓(𝑛) has two points of discontinuity: 𝑝0 = 𝑚4/9 and 𝑝1 = 𝑚8/9.

Recall that the three intervals of 𝑓 are (0, 𝑝0], (𝑝0, 𝑝1], (𝑝1,𝑚]; name these 𝐼0, 𝐼1, 𝐼2,

respectively.

If 𝑡 is either 𝑝0 or 𝑝1, then we have 𝑓+(𝑡) := lim𝑛→𝑡+ 𝑓(𝑛) ≤ lim𝑛→𝑡− 𝑓(𝑛) =: 𝑓−(𝑡).

Observe further that, if 𝑛 is in some interval 𝐼 of 𝑓 , then for any 𝑡 ∈ 𝐼 we have

𝑓(𝑡) = 𝛾 log2(𝛿𝑡) for constants 𝛾, 𝛿 with 𝛿𝑡 ≥ 𝐶.

Proof of Fact 1: We first argue that it is sufficient to show Fact 1 in the case that

both 𝑛 and 𝛼𝑛 are in the same interval of 𝑓 . Intuitively, the points of discontinuity
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only help us. If 𝑛 is in 𝐼1, 𝛼𝑛 is in 𝐼0, and we have shown that Fact 1 holds when 𝑛

and 𝛼𝑛 are in the same interval, then

𝑓(𝛼𝑛) ≥ 𝛼𝑛

𝑝0
𝑓+(𝑝0) ≥

𝛼𝑛

𝑝0
𝑓−(𝑝0) ≥

𝛼𝑛

𝑝0

𝑝0
𝑛
𝑓(𝑛) = 𝛼𝑓(𝑛).

The case where 𝑛 is in 𝐼2 and 𝛼𝑛 is in 𝐼1 and the case where 𝑛 is in 𝐼2 and 𝛼𝑛 is in

𝐼0 hold by essentially the same argument.

We next show Fact 1 in the case that both 𝑛 and 𝛼𝑛 are in the same interval 𝐼 of

𝑓 . We have, choosing 𝛾 and 𝛿 to be such that 𝑓(𝑡) = 𝛾 log2(𝛿𝑡) on 𝐼, that

𝑓(𝛼𝑛) = 𝛾 log2(𝛼𝛿𝑛),

𝛼𝑓(𝑛) = 𝛾𝛼 log2(𝛿𝑛) = 𝛾(
√
𝛼 log(𝛿𝑛))2.

Thus, it is sufficient to show that log(𝛼𝛿𝑛) − √
𝛼 log(𝛿𝑛) ≥ 0. Note that equality

holds if 𝛼 = 1. We consider the first derivative with respect to 𝛼; we will show that

it is negative for 𝛼 ≥ 4
ln2(𝛿𝑛)

. The first derivative is:

1

𝛼 ln(2)
− 1

2
√
𝛼

log(𝛿𝑛) =
2 −√

𝛼 ln(𝛿𝑛)

𝛼 ln(4)
.

Note that the above is negative if 2 − √
𝛼 ln(𝛿𝑛) ≤ 0, which is equivalent to

𝛼 ≥ 4
ln2(𝛿𝑛)

.

Therefore, for 𝛼 ∈
[︁

4
ln2(𝛿𝑛)

, 1
]︁
, assuming 𝛼𝑛 ∈ 𝐼, we have 𝑓(𝛼𝑛) ≥ 𝛼𝑓(𝑛). If

𝛼 < 4
ln2(𝛿𝑛)

with 𝛼𝑛 ∈ 𝐼 then,

𝛼𝑓(𝑛) <
4

ln2(𝛿𝑛)
𝛾 log2(𝛿𝑛) =

4

ln2(2)
𝛾 ≤ log2𝐶𝛾 ≤ 𝛾 log2(𝛿𝛼𝑛) = 𝑓(𝛼𝑛),

where the first inequality follows by the assumed upper bound on 𝛼 and the last one

by 𝛼𝑛 in 𝐼 (and so 𝛿𝛼𝑛 ≥ 𝐶).

Proof of Fact 2: Let 𝛾, 𝛿 be such that for 𝑡 in the interval 𝐼𝑗 containing 𝑛 we have

𝑓(𝑡) = 𝛾 log2(𝛿𝑡). We define a new function 𝑓2 whose domain is [𝑛 log−1𝐶, 𝑛]. For any

𝑡 in the domain of 𝑓2 that is in 𝐼𝑗, we define 𝑓2(𝑡) = 𝑓(𝑡), and for any 𝑡 in the domain of
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𝑓2 that is not in 𝐼𝑗, we define 𝑓2(𝑡) = 𝛾 log2𝐶. If there is some point 𝑡 in [𝑛 log−1𝐶, 𝑛]

that is not in 𝐼𝑗, then 𝑡 must be in 𝐼𝑗−1, as 𝑡 ≥ 𝑛 log−1𝐶 ≥ 𝑝𝑗−1 log−1𝐶 > 𝑝𝑗−2. Then

note that we have chosen, for 𝑡 not in 𝐼𝑗, 𝑓2(𝑡) = 𝑓+(𝑝𝑗−1). Therefore, 𝑓2 is continuous.

Also, 𝑡𝑓2(𝑡) is convex (this is easy to see by looking at the first derivative). The main

idea behind the proof will be to replace 𝑓 by 𝑓2 and then apply convexity to get the

bounds.

We claim 𝑓(𝑡) ≥ 𝑓2(𝑡) for all 𝑡 in the domain of 𝑓2. If 𝑡 is in 𝐼𝑗, then 𝑓2(𝑡) = 𝑓(𝑡).

Otherwise, 𝑡 is in 𝐼𝑗−1. For any 𝑡 ∈ [𝑛 log−1𝐶, 𝑛], note that 𝛿𝑡 ≥ 𝛿𝑛 log−1𝐶 ≥
𝐶 log−1𝐶. Therefore,

𝑓(𝑡) =
𝛾

𝑐 log2(𝑚4/9)
log2(𝛿𝑡𝑚4/9) ≥ 𝛾

𝑐 log2(𝑚4/9)
log2

(︀
𝑚4/9𝐶 log−1𝐶

)︀
≥ 𝛾

𝑐
≥ 𝛾 log2𝐶 = 𝑓2(𝑡),

where the first equality follows by 𝑡 ∈ 𝐼𝑗−1 and the first inequality by 𝛿𝑡 ≥ log−1𝐶.

Take 𝑆 = {𝑖 : 𝛼𝑖 ≥ log−1𝐶}. For 𝑖 ∈ 𝑆 we have that 𝛼𝑖𝑛 is in the domain of 𝑓2.

Take 𝜅 such that
∑︀

𝑖∈𝑆 𝛼𝑖 = 𝜅. Since
∑︀

𝑖 𝛼𝑖 = 1, 𝜅 = 1 −∑︀𝑖 ̸∈𝑆 𝛼𝑖 ≥ 1 − 3 log−1𝐶.

Hence,

∑︁
𝑖

𝑛𝑖𝑓(𝑛𝑖) ≥
∑︁
𝑖∈𝑆

𝑛𝑖𝑓(𝑛𝑖) ≥
∑︁
𝑖∈𝑆

𝑛𝑖𝑓2(𝑛𝑖) ≥
∑︁
𝑖∈𝑆

𝜅

|𝑆|𝑛𝑓2
(︂
𝜅

|𝑆|𝑛
)︂

= 𝜅𝑛𝑓2

(︂
𝜅

|𝑆|𝑛
)︂

≥ 𝜅𝑛𝑓2

(︂
1 − 3 log−1𝐶

3
𝑛

)︂
≥ 𝜅𝑛𝑓2(𝑛/4) ≥ 𝜅𝛾𝑛 log2(𝛿𝑛/4),

where the third inequality follows Jensen’s inequality applied to the convex function

𝑡𝑓2(𝑡) and the fourth inequality holds since 𝑓2 is an increasing function.

This gives

𝜅𝑛𝑓(𝑛)−
∑︁
𝑖∈𝑆

𝑛𝑖𝑓(𝑛𝑖) ≤ 𝜅𝛾𝑛 log2(𝛿𝑛)−𝜅𝛾𝑛 log2(𝛿𝑛/4) = 𝜅𝛾𝑛(log2(𝛿𝑛)− log2(𝛿𝑛/4)).
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We now consider

log2(𝛿𝑛) − log2(𝛿𝑛/4) = (log(𝛿𝑛) + log(𝛿𝑛/4))(log(𝛿𝑛) − log(𝛿𝑛/4))

≤ 2 log(𝛿𝑛) log 4 = 4 log(𝛿𝑛).

Noting that log(𝛿𝑛) ≥ log𝐶, we get

𝜅𝛾𝑛(4 log(𝛿𝑛)) ≤ 4

log𝐶
𝛾𝑛 log2(𝛿𝑛) =

4

log𝐶
𝛾𝑛𝑓(𝑛).

Thus,

𝑛𝑓(𝑛) −
∑︁
𝑖

𝑛𝑖𝑓(𝑛𝑖) ≤ (1 − 𝜅)𝑛𝑓(𝑛) + 𝜅𝑛𝑓(𝑛) −
∑︁
𝑖∈𝑆

𝑛𝑖𝑓(𝑛𝑖)

≤ 1

2 log𝐶
𝑛𝑓(𝑛) +

4

log𝐶
𝑛𝑓(𝑛) ≤ 8

log𝐶
𝑛𝑓(𝑛).

Proof of Fact 3: Take 𝛾, 𝛿 such that for 𝑡 in the interval of 𝑓 containing 2𝑖 we have

𝑓(𝑡) = 𝛾 log2(𝛿𝑡). Take 𝑗′ = 8
7
𝑗. If 2𝑖 and 2𝑖+𝑗′ are in the same intervals of 𝑓 , then we

get

𝑓(2𝑖) log2(𝐷2𝑗) = 𝛾 log2(𝛿2𝑖) log2(𝐷2𝑗) = 𝛾 log2(2𝑖+log 𝛿) log2(2𝑗+log𝐷)

= 𝛾 log2(2(𝑗+log𝐷)(𝑖+log 𝛿)) ≥ 512𝛾 log2(𝛿2𝑖+𝑗′) = 512𝑓(2𝑖+ 8
7
𝑗),

where the last inequality follows from 𝑖+log 𝛿 ≥ log𝐶 ≥ log𝐷 and 𝑗+log𝐷 ≥ log𝐷.

Therefore,

(𝑗+log𝐷)(𝑖+log 𝛿) ≥ log𝐷

2
(𝑗+ 𝑖+log 𝛿) ≥ log𝐷

4
(2𝑗+ 𝑖+log 𝛿) ≥ 512(𝑗′ + 𝑖+log 𝛿).

If 2𝑖 and 2𝑖+𝑗′ are in different intervals of 𝑓 , then they are in adjacent intervals
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since 2𝑗′ ≤ 𝑚4/9. Therefore,

𝑓(2𝑖+ 8
7
𝑗) = 𝑓(2𝑖+𝑗′) = 𝑐𝛾 log2(𝑚4/9) log2(𝛿𝑚−4/92𝑖+𝑗′) ≤ 𝑐𝛾 log2(𝛿2𝑖) log2(2𝑗′)

≤ 2𝑐
(︀
𝛾 log2(𝛿2𝑖)

)︀
log2(2𝑗) ≤ 1

512
𝑓(2𝑖) log2(2𝑗) ≤ 1

512
𝑓(2𝑖) log2(𝐷2𝑗),

where the first inequality follows by the fact that if 𝑎0 ≥ 𝑎1 ≥ 𝑏1 ≥ 𝑏0 ≥ 2 and

if 𝑎0𝑏0 = 𝑎1𝑏1 then (log 𝑎0)(log 𝑏0) ≤ (log 𝑎1)(log 𝑏1). To see this last fact about

logarithms, one may take the logarithm of both sides and apply the concavity of the

logarithm function.

Proof of Fact 4: Choose 𝛾, 𝛿 such that for 𝑡 in the same interval 𝐼𝑗 as 𝜏 we have

𝑓(𝑡) = 𝛾 log2(𝛿𝑡). If 𝑛 and 𝜏 are in different intervals of 𝑓 , then 𝑛 must be in 𝐼𝑗+1

as 𝑛/𝜏 ≤ 𝐷3 < 𝑚4/9. Furthermore, for 𝑛 and 𝜏 to be in different intervals, we must

have 𝐷3𝛿𝜏 ≥ 𝐶𝑚4/9 and so 𝛿𝜏 ≥ 𝑚4/9. This gives:

𝑓(𝜏) = 𝛾 log2(𝛿𝜏) ≥ 𝛾 log2(𝑚4/9) ≥ 𝑐 log2(𝑚4/9)𝛾 log2(𝐶𝐷3)

≥ 𝑐 log2(𝑚4/9)𝛾 log2(𝛿𝑚−4/9𝑛) = 𝑓(𝑛),

where the second inequality follows by 𝐶𝐷3 ≤ 𝐶2 and 𝑐 = log−2(𝐶2).

Otherwise, 𝜏 and 𝑛 are in the same interval. Then

𝑓(𝑛) = 𝛾 log2(𝛿𝑛) ≤ 𝛾 log2(𝛿𝐷3𝜏) ≤ 𝛾 log2((𝛿𝜏)4/3) ≤ 2𝛾 log2(𝛿𝜏) = 2𝑓(𝜏),

where the second inequality follows by 𝛿𝜏 ≥ 𝐶 and 𝐶1/3 ≥ 𝐷.

Proof of Fact 5: Let 𝛼 ≤ 1
32

be given. Consider:

16𝛼𝑓(𝑛) =
1

2
(32𝛼𝑓(𝑛)) ≤ 1

2
𝑓(32𝛼𝑛) ≤ 𝑓(𝛼𝑛),

where the first inequality is by the first fact about 𝑓 and the second inequality is by

the fourth fact about 𝑓 .

2
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3.11 Proof of Lemma 3.8.1

We argue that if a weighted graph on 𝑟 vertices deviates in structure from the complete

graph with edges of equal weight and if 𝑠 < 𝑟 − 1, then there is some set of vertices

𝑆 of size 𝑠 so that the sum of the weights of the edges contained in 𝑆 is substantially

larger than average.

Lemma 3.11.1. Given weights 𝑤𝑃 for 𝑃 ∈
(︀
𝑅
2

)︀
with 𝑤𝑃 ≥ 0, take 𝑤 =

∑︀
𝑃 𝑤𝑃 .

Then if 𝑠 < 𝑟 − 1, if some 𝑤𝑃 differs from
(︀
𝑟
2

)︀−1
𝑤 by at least 𝐹 , then there is some

𝑆 ⊆ 𝑅 of size 𝑠 satisfying

∑︁
𝑃⊆𝑆

𝑤𝑃 ≥
(︀
𝑠
2

)︀(︀
𝑟
2

)︀𝑤 +

(︀
𝑠
2

)︀
𝐹

𝑟
(︀
𝑟
2

)︀2 .

Proof: We will directly handle the case 𝑠 = 𝑟 − 2, from which the other cases will

follow. We are interested in finding an 𝑆 ⊆ 𝑅 of size 𝑟 − 2 with a large value for the

total weight of edges in 𝑆. For each 𝑆 we give this value a name: 𝑍𝑆 =
∑︀

𝑃⊆𝑆 𝑤𝑃 .

Note that 𝑍𝑆 is closely related the following: for 𝑄 ∈
(︀
𝑅
2

)︀
, define 𝑌𝑄 to be the weight

of edges incident to at least one vertex of 𝑄: 𝑌𝑄 =
∑︀

𝑃∈(𝑅
2):𝑃∩𝑄 ̸=∅𝑤𝑃 . Then, if we

take 𝑆 to be 𝑅∖𝑄, we have 𝑌𝑄+𝑍𝑆 is the total weight of all the edges. Thus, to show

that there is a large 𝑍𝑆, it is sufficient to show that there is a small 𝑌𝑄. Towards this

end, choose 𝑄 ∈
(︀
𝑅
2

)︀
uniformly at random; we will now compute the variance of 𝑌𝑄.

Take, for 𝑃 ∈
(︀
𝑅
2

)︀
, 𝑋𝑃 to be 𝑤𝑃 if 𝑃 ∩ 𝑄 ̸= ∅ and 0 otherwise. Then, taking

𝑤 =
∑︀

𝑃 𝑤𝑃 , we get

E [𝑋𝑃 ] = Pr[𝑃 ∩𝑄 ̸= ∅]𝑤𝑃 =
2𝑟 − 3(︀

𝑟
2

)︀ 𝑤𝑃 .

By linearity of expectation, we have

E [𝑌𝑄] =
∑︁

𝑃∈(𝑅
2)

E [𝑋𝑃 ] =
2𝑟 − 3(︀

𝑟
2

)︀ ∑︁
𝑃∈(𝑅

2)

𝑤𝑃 =
2𝑟 − 3(︀

𝑟
2

)︀ 𝑤,
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and

E
[︀
𝑌 2
𝑄

]︀
=
∑︁

𝑃∈(𝑅
2)

∑︁
𝑃 ′∈(𝑅

2)

E [𝑋𝑃𝑋𝑃 ′ ]

=
∑︁

𝑃∈(𝑅
2)

E
[︀
𝑋2

𝑃

]︀
+
∑︁
𝑣∈𝑅

∑︁
(𝑃,𝑃 ′)∈(𝑅

2)
2
:𝑣∈𝑃,𝑣∈𝑃 ′,𝑃 ̸=𝑃 ′

E [𝑋𝑃𝑋𝑃 ′ ]

+
∑︁

(𝑃,𝑃 ′)∈(𝑅
2)

2
:𝑃∩𝑃 ′=∅

E [𝑋𝑃𝑋𝑃 ′ ] ,

where the last equality follows by partitioning the pairs 𝑃, 𝑃 ′ into those which are

equal, those which are distinct but intersect in some vertex 𝑣, and those which are

disjoint.

We now look at these terms individually.

E
[︀
𝑋2

𝑃

]︀
= Pr[𝑃 ∩𝑄 ̸= ∅]𝑤2

𝑃 =
2𝑟 − 3(︀

𝑟
2

)︀ 𝑤2
𝑃 .

For 𝑃 = {𝑣, 𝑢}, 𝑃 ′ = {𝑣, 𝑢′} distinct and intersecting, the event 𝑃 ∩ 𝑄 ̸= ∅ and

𝑃 ′ ∩𝑄 ̸= ∅ can occur if either 𝑣 ∈ 𝑄 or 𝑄 = {𝑢, 𝑢′}; the first of these has probability
𝑟−1

(𝑟
2)

and the second has probability 1

(𝑟
2)
, and they are disjoint events. So, if 𝑃 and 𝑃 ′

intersect in a vertex we get:

E [𝑋𝑃𝑋𝑃 ′ ] =
𝑟(︀
𝑟
2

)︀𝑤𝑃𝑤𝑃 ′ .

If 𝑃, 𝑃 ′ are disjoint, then for 𝑋𝑃𝑋𝑃 ′ to be non-zero we must have that 𝑄 has an

element from 𝑃 and an element from 𝑃 ′, which occurs with probability 4

(𝑟
2)
, so in this

case:

E [𝑋𝑃𝑋𝑃 ′ ] =
4(︀
𝑟
2

)︀𝑤𝑃𝑤𝑃 ′ .

Therefore, taking for 𝑣 ∈ 𝑅 the (weighted) degree 𝑑(𝑣) to be
∑︀

𝑃∈(𝑅
2):𝑣∈𝑃

𝑤𝑃 ,

E
[︀
𝑌 2
𝑄

]︀
is equal:
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∑︁
𝑃∈(𝑅

2)

2𝑟 − 3(︀
𝑟
2

)︀ 𝑤2
𝑃 +

∑︁
𝑣∈𝑅

∑︁
(𝑃,𝑃 ′)∈(𝑅

2)
2
:𝑣∈𝑃,𝑣∈𝑃 ′,𝑃 ̸=𝑃 ′

𝑟(︀
𝑟
2

)︀𝑤𝑃𝑤𝑃 ′ +
∑︁

(𝑃,𝑃 ′)∈(𝑅
2):𝑃∩𝑃 ′=∅

4(︀
𝑟
2

)︀𝑤𝑃𝑤𝑃 ′

=
2𝑟 − 3(︀

𝑟
2

)︀ ∑︁
𝑃∈(𝑅

2)

𝑤2
𝑃 +

𝑟(︀
𝑟
2

)︀∑︁
𝑣∈𝑅

⎛⎜⎝𝑑(𝑣)2 −
∑︁

𝑃∈(𝑅
2):𝑣∈𝑃

𝑤2
𝑃

⎞⎟⎠
+

4(︀
𝑟
2

)︀
⎛⎜⎝
⎛⎜⎝ ∑︁

𝑃∈(𝑅
2)

𝑤𝑃

⎞⎟⎠
2

−
∑︁
𝑣∈𝑅

𝑑(𝑣)2 +
∑︁

𝑃∈(𝑅
2)

𝑤2
𝑃

⎞⎟⎠
=

2𝑟 − 3(︀
𝑟
2

)︀ ∑︁
𝑃∈(𝑅

2)

𝑤2
𝑃 +

𝑟(︀
𝑟
2

)︀∑︁
𝑣∈𝑅

𝑑(𝑣)2 − 2
𝑟(︀
𝑟
2

)︀ ∑︁
𝑃∈(𝑅

2)

𝑤2
𝑃 +

4(︀
𝑟
2

)︀𝑤2 − 4(︀
𝑟
2

)︀∑︁
𝑣∈𝑅

𝑑(𝑣)2 +
4(︀
𝑟
2

)︀ ∑︁
𝑃∈(𝑅

2)

𝑤2
𝑃

=
4(︀
𝑟
2

)︀𝑤2 +
1(︀
𝑟
2

)︀ ∑︁
𝑃∈(𝑅

2)

𝑤2
𝑃 +

𝑟 − 4(︀
𝑟
2

)︀ ∑︁
𝑣∈𝑅

𝑑(𝑣)2

Note that
∑︀

𝑣∈𝑅 𝑑(𝑣)2 is minimized subject to the constraint
∑︀

𝑣∈𝑅 𝑑(𝑣) = 2𝑤

when the 𝑑(𝑣) are pairwise equal by the Cauchy-Schwarz inequality, so
∑︀

𝑣∈𝑅 𝑑(𝑣)2 ≥∑︀
𝑣∈𝑅

(︀
2𝑤
𝑟

)︀2
, so the above is at least

4(︀
𝑟
2

)︀𝑤2 +
1(︀
𝑟
2

)︀ ∑︁
𝑃∈(𝑅

2)

𝑤2
𝑃 +

𝑟 − 4(︀
𝑟
2

)︀ ∑︁
𝑣∈𝑅

(︂
2𝑤

𝑟

)︂2

=
4(︀
𝑟
2

)︀𝑤2 +
1(︀
𝑟
2

)︀ ∑︁
𝑃∈(𝑅

2)

𝑤2
𝑃 + 𝑟

𝑟 − 4(︀
𝑟
2

)︀ (︂2𝑤

𝑟

)︂2

=
8𝑟 − 16

𝑟
(︀
𝑟
2

)︀ 𝑤2 +
1(︀
𝑟
2

)︀ ∑︁
𝑃∈(𝑅

2)

𝑤2
𝑃 .

The variance of 𝑌𝑄 satisfies:

Var (𝑌𝑄) = E
[︀
𝑌 2
𝑄

]︀
− E [𝑌𝑄]2 ≥ 8𝑟 − 16

𝑟
(︀
𝑟
2

)︀ 𝑤2 +
1(︀
𝑟
2

)︀ ∑︁
𝑃∈(𝑅

2)

𝑤2
𝑃 −

(︃
2𝑟 − 3(︀

𝑟
2

)︀ 𝑤

)︃2
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=
1(︀
𝑟
2

)︀ ∑︁
𝑃∈(𝑅

2)

𝑤2
𝑃 − 1(︀

𝑟
2

)︀2𝑤2.

Note we may rewrite the variance as:

Var (𝑌𝑄) ≥ 1(︀
𝑟
2

)︀ ∑︁
𝑃∈(𝑅

2)

𝑤2
𝑃 − 1(︀

𝑟
2

)︀2𝑤2 = Var (𝑤𝑄) .

If some 𝑤𝑃 is far from 𝑤/
(︀
𝑟
2

)︀
= E [𝑤𝑄], then the variance will be large. As-

sume that for some 𝑃 ′ there is a non-zero real 𝐹 so that 𝑤𝑃 ′ = 𝑤/
(︀
𝑟
2

)︀
+ 𝐹 . Note

Var (𝑌𝑄) ≥ Var (𝑤𝑄) = E
[︀
(𝑤𝑄 − 𝑤/

(︀
𝑟
2

)︀]︀
and that (𝑤𝑄 − 𝑤/

(︀
𝑟
2

)︀
)2 is a non-negative

random variable. If 𝑄 = 𝑃 ′ (which occurs with probability
(︀
𝑟
2

)︀−1
), then this random

variable has value 𝐹 2, so its expectation is at least
(︀
𝑟
2

)︀−1
𝐹 2. That is, the variance of

𝑤𝑄 is at least
(︀
𝑟
2

)︀−1
𝐹 2.

Thus, there must be some 𝑄 so that⃒⃒⃒⃒
⃒𝑌𝑄 − 2𝑟 − 3(︀

𝑟
2

)︀ 𝑤

⃒⃒⃒⃒
⃒ ≥

(︂
𝑟

2

)︂−1/2

𝐹 ≥ 𝐹/𝑟.

If 𝑌𝑄− (2𝑟−3)𝑤

(𝑟
2)

≥ 𝐹/𝑟, since there are
(︀
𝑟
2

)︀
different 𝑌𝑄 and the average is (2𝑟−3)𝑤

(𝑟
2)

, there

must be some 𝑄′ so that

𝑌𝑄′ − 2𝑟 − 3(︀
𝑟
2

)︀ 𝑤 ≤ −𝐹
𝑟
(︀(︀

𝑟
2

)︀
− 1
)︀ ≤ −

(︂
𝑟

(︂
𝑟

2

)︂)︂−1

𝐹.

The other case is that

𝑌𝑄 − 2𝑟 − 3(︀
𝑟
2

)︀ 𝑤 ≤ −𝐹/𝑟 ≤ −
(︂
𝑟

(︂
𝑟

2

)︂)︂−1

𝐹.

Therefore, there is some 𝑄 with 𝑌𝑄 ≤ (2𝑟−3)𝑤−𝐹/𝑟

(𝑟
2)

.

Define 𝑆 = 𝑅 ∖𝑄. We get 𝑍𝑆 + 𝑌𝑄 = 𝑤 so 𝑍𝑆 = 𝑤 − 𝑌𝑄. By the above, there is

some 𝑆 with

𝑍𝑆 ≥ 𝑤 − (2𝑟 − 3)𝑤 − 𝐹/𝑟(︀
𝑟
2

)︀ =

(︀
𝑟−2
2

)︀
𝑤 + 𝐹/𝑟(︀
𝑟
2

)︀ .
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Taking 𝑆 as above, choosing a random 𝑆 ′ ∈
(︀
𝑆
𝑠

)︀
, we get that E [𝑍𝑆′ ] ≥ (𝑠

2)
(𝑟−2

2 )
(𝑟−2

2 )𝑤+𝐹/𝑟

(𝑟
2)

.

Therefore, there must be some 𝑆 ′ ∈
(︀
𝑆
𝑠

)︀
with

𝑍𝑆′ ≥
(︀
𝑠
2

)︀(︀
𝑟
2

)︀𝑤 +

(︀
𝑠
2

)︀
𝐹

𝑟
(︀
𝑟
2

)︀(︀
𝑟−2
2

)︀ ≥
(︀
𝑠
2

)︀(︀
𝑟
2

)︀𝑤 +

(︀
𝑠
2

)︀
𝐹

𝑟
(︀
𝑟
2

)︀2 .
2

The case where 𝑠 < 𝑟 − 1 in Lemma 3.8.1 is an immediate corollary.

Lemma 3.11.2. Given weights 𝑤𝑃 for 𝑃 ∈
(︀
𝑅
2

)︀
with 𝑤𝑃 ≥ 0, take 𝑤 =

∑︀
𝑃 𝑤𝑃 . If

𝑠 < 𝑟− 1, then either there are at least
(︀
𝑟
2

)︀
pairs 𝑃 (i.e. all of them) with 𝑤𝑃 > 0 or

there is some 𝑆 ⊆ 𝑅 of size 𝑠 satisfying

∑︁
𝑃⊆𝑆

𝑤𝑃 ≥

⎛⎝1 +

(︃
4𝑟

(︂
𝑟

2

)︂2
)︃−1

⎞⎠ (︀𝑠2)︀(︀
𝑟
2

)︀𝑤.
Proof: Assume there is some 𝑃 ′ with 𝑤𝑃 ′ = 0. We may apply the previous lemma

with 𝐹 = 𝑤/
(︀
𝑟
2

)︀
, since 𝑤𝑃 ′ differs from 𝑤/

(︀
𝑟
2

)︀
by 𝐹 . This gives that there is some set

𝑆 ⊆ 𝑅 of size 𝑠 satisfying:

∑︁
𝑃⊆𝑆

𝑤𝑃 ≥
(︃(︀

𝑠
2

)︀(︀
𝑟
2

)︀ +

(︀
𝑠
2

)︀
𝑟
(︀
𝑟
2

)︀3
)︃
𝑤 ≥

⎛⎝1 +

(︃
4𝑟

(︂
𝑟

2

)︂2
)︃−1

⎞⎠ (︀𝑠2)︀(︀
𝑟
2

)︀𝑤.
2

The following lemma states that if in a weighted graph there is a vertex whose

degree deviates from the average, then there is a set 𝑆 ⊆ 𝑅 of size 𝑟 − 1 so that the

sum of the weights of the edges contained in 𝑆 is substantially larger than average.

Lemma 3.11.3. Given weights 𝑤𝑃 for 𝑃 ∈
(︀
𝑅
2

)︀
with 𝑤𝑃 ≥ 0, take 𝑤 =

∑︀
𝑃 𝑤𝑃 . For

𝑣 ∈ 𝑅, define 𝑑(𝑣) :=
∑︀

𝑃 :𝑣∈𝑃 𝑤𝑃 . If there is some 𝑣 ∈ 𝑅 for which 𝑑(𝑣) differs from

2𝑤/𝑟 by at least 𝐹 , then there is some 𝑆 ⊆ 𝑅 of size 𝑟 − 1 with

∑︁
𝑃⊆𝑆

𝑤𝑃 ≥
(︀
𝑟−1
2

)︀(︀
𝑟
2

)︀ 𝑤 + 𝐹/𝑟.
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Proof: Choose a vertex 𝑣 for which |𝑑(𝑣) − 2𝑤/𝑟| ≥ 𝐹 . If 𝑑(𝑣) ≤ 2𝑤/𝑟 − 𝐹 , then

we may take 𝑆 = 𝑉 ∖ {𝑣}. This gives:

∑︁
𝑃⊆𝑆

𝑤𝑃 = 𝑤 − 𝑑(𝑣) ≥ 𝑤 − (2𝑤/𝑟 − 𝐹 ) =

(︀
𝑟−1
2

)︀(︀
𝑟
2

)︀ 𝑤 + 𝐹 ≥
(︀
𝑟−1
2

)︀(︀
𝑟
2

)︀ 𝑤 + 𝐹/𝑟.

Otherwise, we have 𝑑(𝑣) ≥ 2𝑤/𝑟 + 𝐹 . Since
∑︀

𝑢 𝑑(𝑢) = 2𝑤,

∑︁
𝑢̸=𝑣

𝑑(𝑢) ≤ 2𝑤 − (2𝑤/𝑟 + 𝐹 ) = ((𝑟 − 1)/𝑟)2𝑤 − 𝐹.

Since the average is 2𝑤/𝑟, there is some 𝑢 with

𝑑(𝑢) ≤
(︂
𝑟 − 1

𝑟
2𝑤 − 𝐹

)︂
/(𝑟 − 1) = 2𝑤/𝑟 − 𝐹/(𝑟 − 1) ≤ 2𝑤/𝑟 − 𝐹/𝑟.

We may take 𝑆 = 𝑉 ∖ {𝑢}. We get:

∑︁
𝑃⊆𝑆

𝑤𝑃 = 𝑤 − 𝑑(𝑢) ≥ 𝑤 − (2𝑤/𝑟 − 𝐹/𝑟) =

(︀
𝑟−1
2

)︀(︀
𝑟
2

)︀ 𝑤 + 𝐹/𝑟.

2

A strengthening of the case 𝑠 = 𝑟− 1 and 𝑟 is even in Lemma 3.8.1 is a corollary.

Lemma 3.11.4. Given weights 𝑤𝑃 for 𝑃 ∈
(︀
𝑅
2

)︀
with 𝑤𝑃 ≥ 0, take 𝑤 =

∑︀
𝑃 𝑤𝑃 .

Either there are at least 𝑟/2 pairs 𝑃 for which 𝑤𝑃 ≥ 𝑤/𝑟2 or there is some 𝑆 ⊆ 𝑅 of

size 𝑟 − 1 with ∑︁
𝑃⊆𝑆

𝑤𝑃 ≥

⎛⎝1 +

(︃
4𝑟

(︂
𝑟

2

)︂2
)︃−1

⎞⎠ (︀𝑟−1
2

)︀(︀
𝑟
2

)︀ 𝑤.

Proof: If there are fewer than 𝑟/2 pairs 𝑃 for which 𝑤𝑃 ≥ 𝑤/𝑟2, then we must

have that there is some vertex 𝑣 not adjacent to any such pair. For this 𝑣, 𝑑(𝑣) ≤
(𝑟 − 1)𝑤/𝑟2 ≤ 𝑤/𝑟. The previous lemma gives that there is some set 𝑆 of size 𝑟 − 1

with: ∑︁
𝑃⊆𝑆

𝑤𝑃 ≥
(︃(︀

𝑟−1
2

)︀(︀
𝑟
2

)︀ +
1

𝑟2

)︃
𝑤 ≥

⎛⎝1 +

(︃
4𝑟

(︂
𝑟

2

)︂2
)︃−1

⎞⎠ (︀𝑟−1
2

)︀(︀
𝑟
2

)︀ 𝑤.
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2

Finally, we prove a strengthening of the case 𝑠 = 𝑟 − 1 and 𝑟 is odd in Lemma

3.8.1:

Lemma 3.11.5. Given weights 𝑤𝑃 for 𝑃 ∈
(︀
𝑅
2

)︀
with 𝑤𝑃 ≥ 0, take 𝑤 =

∑︀
𝑃 𝑤𝑃 . If 𝑟

is odd either there are at least (𝑟 + 3)/2 pairs 𝑃 for which 𝑤𝑃 > 0 or there is some

𝑆 ⊆ 𝑅 of size 𝑟 − 1 with

∑︁
𝑃⊆𝑆

𝑤𝑃 ≥

⎛⎝1 +

(︃
4𝑟

(︂
𝑟

2

)︂2
)︃−1

⎞⎠ (︀𝑟−1
2

)︀(︀
𝑟
2

)︀ 𝑤.

Proof: Assume there is no 𝑆 ⊆ 𝑅 of size 𝑟−1 with
∑︀

𝑃⊆𝑆 𝑤𝑃 ≥
(︂

1 +
(︁

4𝑟
(︀
𝑟
2

)︀2)︁−1
)︂

(𝑟−1
2 )

(𝑟
2)
𝑤.

In this case there is no 𝑆 ⊆ 𝑅 of size 𝑟 − 1 with
∑︀

𝑃⊆𝑆 𝑤𝑃 ≥ (𝑟−1
2 )

(𝑟
2)
𝑤 + 𝑤/(4𝑟3), as

this latter term is larger than

(︂
1 +

(︁
4𝑟
(︀
𝑟
2

)︀2)︁−1
)︂

(𝑟−1
2 )

(𝑟
2)
𝑤.

We define an unweighted graph 𝐺 = (𝑉,𝐸) by taking 𝑉 = 𝑅 and a possible edge

𝑒 ∈
(︀
𝑅
2

)︀
is in 𝐸 if and only if 𝑤𝑒 ≥ 𝑤/(4𝑟3). By the previous lemma, 𝐺 has at least

𝑟/2 edges 𝑒 satisfying 𝑤𝑒 ≥ 𝑤/𝑟2, and, indeed, the proof of the previous lemma shows

that every vertex must have degree at least 1. Since 𝑟 is odd, 𝐺 must have at least

(𝑟+ 1)/2 edges 𝑒 with 𝑤𝑒 ≥ 𝑤/𝑟2, and so it must have some vertex 𝑣 incident to two

such edges.

Fix two neighbors 𝑣1, 𝑣2 of 𝑣 so that 𝑤{𝑣,𝑣1} and 𝑤{𝑣,𝑣2} both have weight at least

𝑤/𝑟2. We claim that both 𝑣1 and 𝑣2 have degree at least 2 in 𝐺. Assume at least one

of them, without loss of generality 𝑣1, has degree one. We must have 𝑑(𝑣) ≤ 2𝑤/𝑟 +

𝑤/(2𝑟2), for otherwise we have a contradiction by Lemma 3.11.3. However, this gives

that, since 𝑤{𝑣,𝑣2} ≥ 𝑤/𝑟2, we must have 𝑤{𝑣,𝑣1} ≤ 𝑑(𝑣) − 𝑤{𝑣,𝑣2} ≤ 2𝑤/𝑟 − 𝑤/(2𝑟2).

Then all other 𝑃 incident to 𝑣1 have weight at most 𝑤/(4𝑟3), so

𝑤{𝑣,𝑣1} ≤ 𝑤{𝑣,𝑣1} + (𝑟 − 2)𝑤/(4𝑟3) ≤ 2𝑤/𝑟 − 𝑤/(2𝑟2) + 𝑟𝑤/(4𝑟3) = 2𝑤/𝑟 − 𝑤/(4𝑟2).

Then by Lemma 3.11.3 we have reached a contradiction.
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Therefore, we must have that there are at least 3 vertices of degree 2 in 𝐺 and

that every vertex has degree at least 1. Then the sum of the degrees is at least

6 + (𝑟 − 3) = 𝑟 + 3 and so the number of edges of 𝐺 must be at least (𝑟 + 3)/2, as

desired. 2

3.12 Proof of Lemma 3.8.3

For convenience, we restate both the lemma and definition of 𝑓𝜖 here:

𝑓𝜖(ℓ) = (log𝑚)
𝐶
(︁

log(𝛼𝑚𝜖)
log𝑚

)︁
, where 𝛼 = ℓ/𝑛. Recall also 𝑚0 from Equation 3.1.

Lemma 3.12.1. The following statements hold about 𝑓𝜖 for every choice of 𝜖 ≥ 0,

𝑛 > 1, and 𝑚 ≥ 𝑚0.

1. For any 𝛼 ∈ [ 1
𝑛
, 1], we have

𝑓𝜖(𝛼𝑛) ≥ 𝛼1/(2(𝑟−2
𝑠−2))𝑓𝜖(𝑛).

In particular, 𝑓𝜖(𝛼𝑛) ≥ 𝛼𝑓𝜖(𝑛).

2. For any 𝛼1, 𝛼2, 𝛼3 ∈ [ 1
𝑛
, 1] with 𝛼1 + 𝛼2 + 𝛼3 = 1, taking 𝑛𝑖 = 𝛼𝑖𝑛 we have

𝑛𝑓𝜖(𝑛) ≤
∑︁
𝑖

𝑛𝑖𝑓𝜖(𝑛𝑖) + 3(log−3/4𝑚)𝑛𝑓𝜖(𝑛).

3. For 𝑖 ≥ 0 and𝑚𝛿 ≥ 2𝑗 ≥ 1, we have 𝑓𝜖(2
𝑖) log2/(𝑟−2

𝑠−2)((log1/4𝑚)2𝑗) ≥ 256
(︀
𝑟
2

)︀
𝑓𝜖(2

𝑖+2𝑗).

4. For any 𝛼 ≥ log−1𝑚, we have 𝑓𝜖(𝛼𝑛) ≥ 𝑓𝜖(𝑛)/2.

Proof of 1: Note

𝑓𝜖(𝛼𝑛) = (log𝑚)𝐶(𝜖+ log𝛼
log𝑚) = (log𝑚)𝐶

log𝛼
log𝑚 (log𝑚)𝐶𝜖 = 𝛼𝐶 log log𝑚

log𝑚 𝑓𝜖(𝑛).

Since 0 < 𝛼 ≤ 1, it is sufficient to show that 𝐶(log log𝑚)/ log𝑚 ≤
(︀
2
(︀
𝑟−2
𝑠−2

)︀)︀−1
. This

holds because 𝐶, log log𝑚 and 2
(︀
𝑟−2
𝑠−2

)︀
are at most log1/3𝑚, since 𝑚 ≥ 𝑚0.
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Proof of 2: Note that the function ℓ𝑓𝜖(ℓ) is a convex function of ℓ. Indeed,

𝑓𝜖(ℓ) = (log𝑚)𝐶𝜖(log𝑚)(log ℓ)/ log𝑚 = (log𝑚)𝐶𝜖ℓ(log log𝑚)/ log𝑚.

That is, 𝑓𝜖(ℓ) is a polynomial of degree greater than 0 in ℓ, so ℓ𝑓𝜖(ℓ) is a polynomial

of degree greater than 1 in ℓ and so is convex.

Take 𝑆 = {𝑖 : 𝛼𝑖 ≥ log−3/4𝑚}. Take 𝜅 such that
∑︀

𝑖∈𝑆 𝛼𝑖 = 𝜅. Note 𝜅 ≥
1 − 2 log−3/4𝑚.

∑︁
𝑖

𝑛𝑖𝑓𝜖(𝑛𝑖) ≥
∑︁
𝑖∈𝑆

𝑛𝑖𝑓𝜖(𝑛𝑖) ≥
∑︁
𝑖∈𝑆

𝜅

|𝑆|𝑛𝑓𝜖
(︂
𝜅

|𝑆|𝑛
)︂

= 𝜅𝑛𝑓𝜖

(︂
𝜅

|𝑆|𝑛
)︂

≥ 𝜅𝑛𝑓𝜖

(︂
1 − 2 log−1𝑚

3
𝑛

)︂
≥ 𝜅𝑛𝑓𝜖(𝑛/4),

where the second inequality follows by Jensen’s inequality applied to the convex

function ℓ𝑓𝜖(ℓ).

This gives

𝜅𝑛𝑓𝜖(𝑛) −
∑︁
𝑖∈𝑆

𝑛𝑖𝑓𝜖(𝑛𝑖) ≤ 𝜅𝑛𝑓𝜖(𝑛) − 𝜅𝑛𝑓𝜖(𝑛/4) = 𝜅𝑛(𝑓𝜖(𝑛) − 𝑓𝜖(𝑛/4)).

We now consider

𝑓𝜖(𝑛) − 𝑓𝜖(𝑛/4) = (log𝑚)𝐶𝜖 − (log𝑚)𝐶(𝜖+ log(1/4)
log𝑚 ) = (log𝑚)𝐶𝜖

(︀
1 − (log𝑚)−2𝐶/ log𝑚

)︀
.

The second factor satisfies:

1 − (log𝑚)−2𝐶/ log𝑚 = 1 − 2−2𝐶(log log𝑚)/ log𝑚

≤ 1 − (1 − 2𝐶(log log𝑚)/ log𝑚) = 2𝐶(log log𝑚)/ log𝑚 ≤ log−3/4𝑚,

where the first inequality follows by 2𝑥 ≥ 1 + 𝑥 for 𝑥 ≤ 0.

Thus,
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𝑛𝑓𝜖(𝑛) −
∑︁
𝑖

𝑛𝑖𝑓𝜖(𝑛𝑖) ≤ (1 − 𝜅)𝑛𝑓𝜖(𝑛) + 𝜅𝑛𝑓𝜖(𝑛) −
∑︁
𝑖∈𝑆

𝑛𝑖𝑓(𝑛𝑖)

≤ 2(log−3/4𝑚)𝑛𝑓𝜖(𝑛) + (log−3/4𝑚)𝑛𝑓𝜖(𝑛) ≤ 3(log−3/4𝑚)𝑛𝑓𝜖(𝑛).

Proof of 3: We prove a slightly stronger statement. Take 𝑗′ = 𝑗 + 1
4
(log log𝑚) so

that 2𝑗′ = (log𝑚)1/42𝑗. We will show that

𝑓𝜖(2
𝑖) log2/(𝑟−2

𝑠−2)(2𝑗′) ≥ 𝑓𝜖(2
𝑖+2𝑗′).

This is indeed stronger than the original statement as 𝑓𝜖(ℓ) is an increasing function

of ℓ.

Consider

𝑓𝜖(2
𝑖) = (log𝑚)

𝐶

(︂
𝜖+

log(2𝑖/𝑛)
log𝑚

)︂
= (log𝑚)𝐶𝜖(log𝑚)𝐶

𝑖
log𝑚 (log𝑚)−𝐶 log𝑛

log𝑚 .

Similarly,

𝑓𝜖(2
𝑖+2𝑗′) = (log𝑚)𝐶𝜖(log𝑚)𝐶

𝑖+2𝑗′
log𝑚 (log𝑚)−𝐶 log𝑛

log𝑚 .

Therefore, it is sufficient to show that

(log𝑚)𝐶
𝑖

log𝑚 log2/(𝑟−2
𝑠−2)(2𝑗′) ≥ 256

(︂
𝑟

2

)︂
(log𝑚)𝐶

𝑖+2𝑗′
log𝑚 ,

or equivalently that

log2/(𝑟−2
𝑠−2)(2𝑗′) ≥ 256

(︂
𝑟

2

)︂
(log𝑚)𝐶

2𝑗′
log𝑚 .

Taking logarithms of both sides, we see that it is sufficient to have

2(log 𝑗′)/

(︂
𝑟 − 2

𝑠− 2

)︂
≥ 2𝐶𝑗′(log log𝑚)/(log𝑚) + log

(︂
256

(︂
𝑟

2

)︂)︂
,
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or equivalently

2(log 𝑗′)/

(︂
𝑟 − 2

𝑠− 2

)︂
− 2𝐶𝑗′(log log𝑚)/(log𝑚) − log

(︂
256

(︂
𝑟

2

)︂)︂
≥ 0.

We consider the first derivative of this with respect to 𝑗′: it is 2(ln(2)𝑗′)−1/
(︀
𝑟−2
𝑠−2

)︀
−

2𝐶(log log𝑚)/(log𝑚). Note that this derivative is monotone decreasing for 𝑗′ ∈
[1,∞), so the minimum of 2(log 𝑗′)/

(︀
𝑟−2
𝑠−2

)︀
− 2𝐶𝑗′(log log𝑚)/(log𝑚) − log

(︀
256
(︀
𝑟
2

)︀)︀
must be achieved at either the largest or smallest possible value of 𝑗′. We have

assumed 𝑚𝛿 log1/4𝑚 ≥ 2𝑗′ ≥ log1/4𝑚, so 2𝛿 log𝑚 ≥ 𝛿(log𝑚) + (log log𝑚)/4 ≥ 𝑗′ ≥
(log log𝑚)/4. We consider the two extrema.

If 𝑗′ = (log log𝑚)/4, we have

2 log((log log𝑚)/4)/

(︂
𝑟 − 2

𝑠− 2

)︂
− 𝐶

2
log2(log𝑚)/(log𝑚) − log

(︂
256

(︂
𝑟

2

)︂)︂
≥2 log((log log𝑚)/4)/

(︂
𝑟 − 2

𝑠− 2

)︂
− 1 − log

(︂
256

(︂
𝑟

2

)︂)︂
≥ 0,

where the last inequality follows from 𝑚 ≥ 𝑚0.

If 𝑗′ = 2𝛿 log𝑚:

2 log(2𝛿 log𝑚)/

(︂
𝑟 − 2

𝑠− 2

)︂
− 4𝛿𝐶(log log𝑚) − log

(︂
256

(︂
𝑟

2

)︂)︂
=2 log(2𝛿 log𝑚)/

(︂
𝑟 − 2

𝑠− 2

)︂
− (log log𝑚)/

(︂
𝑟 − 2

𝑠− 2

)︂
− log

(︂
256

(︂
𝑟

2

)︂)︂
≥ 0,

where the last inequality follows from 𝑚 ≥ 𝑚0.

Proof of 4: Since 𝑓𝜖 is increasing, it is sufficient to show this for 𝛼 = log−1𝑚. Then

𝑓𝜖(log−1𝑚) = (log𝑚)𝐶(𝜖−(log log𝑚)/(log𝑚))

= (log𝑚)𝐶𝜖2−(log log𝑚)2/ log𝑚

≥ (log𝑚)𝐶𝜖2−1 = 𝑓𝜖(𝑛)/2.

129



130



Chapter 4

Packing Vertex-Disjoint

Monochromatic Copies of Sparse

Graphs

4.1 Introduction

Let 𝐾𝑛 be a complete graph on 𝑛 vertices whose edges are colored with 𝑟 colors

(𝑟 ≥ 1). How many monochromatic cycles (single vertices and edges are considered

to be cycles) are needed to partition the vertex set of𝐾𝑛? This question received much

attention in the last few years. Let 𝑝(𝑟) denote the minimum number of monochro-

matic cycles needed to partition the vertex set of any 𝑟-colored 𝐾𝑛. It is not obvious

that 𝑝(𝑟) is a well-defined function. That is, it is not obvious that there always is a

partition whose cardinality is independent of 𝑛. However, in [33] Erdős, Gyárfás and

Pyber proved that there exists a constant 𝐶 such that 𝑝(𝑟) ≤ 𝐶𝑟2 log 𝑟 (throughout

this chapter log denotes the natural logarithm). Furthermore, in [33] (see also [53])

the authors conjectured that 𝑝(𝑟) = 𝑟.

The special case 𝑟 = 2 of this conjecture was asked earlier by Lehel and, for 𝑛 ≥ 𝑛0,

was first proved by Łuczak, Rödl, and Szemerédi [73]. Allen improved on the value of

𝑛0 [1] and recently Bessy and Thomassé [6] proved the original conjecture for all values
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of 𝑛 with 𝑟 = 2. For general 𝑟 the current best bound is due to Gyárfás, Ruszinkó,

Sárközy, and Szemerédi [54] who proved that, for 𝑛 ≥ 𝑛0(𝑟), we have 𝑝(𝑟) ≤ 100𝑟 log 𝑟.

For 𝑟 = 3, in [55] it was proved that all but 𝑜(𝑛) of the vertices may be covered by 3

monochromatic cycles. Surprisingly, Pokrovskiy [77] found a counterexample to the

conjecture for all 𝑟 ≥ 3. However, in the counterexample, all but one vertex can be

covered by 𝑟 vertex-disjoint monochromatic cycles. Thus, a slightly weaker version of

the conjecture still can be true, say that, apart from a constant number of vertices,

the vertex set can be covered by 𝑟 vertex-disjoint monochromatic cycles.

Let us also note that the above problem was generalized in various directions; for

hypergraphs (see [57] and [84]), for complete bipartite graphs (see [33] and [61]), for

graphs which are not necessarily complete (see [4] and [83]), and for vertex partitions

by monochromatic connected 𝑘-regular subgraphs (see [85] and [86]).

Another area that attracted much interest is the study of Ramsey numbers for

bounded degree graphs. For a graph 𝐺, the Ramsey number 𝑅(𝐺) is the smallest

positive integer 𝑁 such that, if the edges of a complete graph 𝐾𝑁 are partitioned into

two color classes, then one color class has a subgraph isomorphic to 𝐺. The existence

of such a positive integer is guaranteed by Ramsey’s classical result [79]. Determining

𝑅(𝐺) even for very special graphs is notoriously hard (see e.g. [50] or [78]).

In 1975, Burr and Erdős [11] raised the problem that every graph 𝐺 with 𝑛 vertices

and maximum degree ∆ has a linear Ramsey number, so 𝑅(𝐺) ≤ 𝐶(∆)𝑛, for some

constant 𝐶(∆) depending only on ∆. This was proved by Chvátal, Rödl, Szemerédi

and Trotter [20] in one of the earliest applications of Szemerédi’s celebrated Regularity

Lemma [89]. Because the proof uses the Regularity Lemma, the bound on 𝐶(∆) is

quite weak; it is of tower type in ∆. This was improved by Eaton [30] who proved,

using a variant of the Regularity Lemma, that the function 𝐶(∆) can be taken to be

of the form 22𝑂(Δ)
.

Soon after, Graham, Rödl, and Ruciński [49] improved this further to 𝐶(∆) ≤
2𝑂(Δ log2 Δ) and for bipartite graphs 𝐶𝐵(∆) ≤ 2𝑂(Δ logΔ). They also proved that there

are bipartite graphs with 𝑛 vertices and maximum degree ∆ for which the Ramsey

number is at least 2Ω(Δ)𝑛. Recently, Conlon [22] and, independently, Fox and Su-
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dakov [45] have shown how to remove the log ∆ factor in the exponent, achieving

an essentially best possible bound of 𝐶𝐵(∆) = 2Θ(Δ) in the bipartite case. For the

non-bipartite graph case, the current best bound is due to Conlon, Fox, and Sudakov

[25] 𝐶(∆) ≤ 2𝑂(Δ logΔ). Similar results have been proven for hypergraphs: [26, 27, 75]

use the hypergraph regularity lemma and [24] improves the bounds by avoiding the

regularity lemma.

Similar results also hold for 𝑎-arrangeable graphs. An 𝑎-arrangeable graph is one

in which the vertices may be ordered as 𝑣1, . . . , 𝑣𝑛 such that, for any index 𝑖, if we

consider those neighbors of 𝑣𝑖 in the set {𝑣𝑖+1, . . . , 𝑣𝑛}, they have at most 𝑎 neighbors

in the set {𝑣1, . . . , 𝑣𝑖}. Chen and Schelp [16] proved that, for every 𝑎, there is some

constant 𝐶(𝑎) so that the Ramsey number of any 𝑎-arrangeable graph on 𝑛 vertices

is at most 𝐶(𝑎)𝑛. The best bound that is known for 𝐶(𝑎), again due to Graham,

Rödl, and Ruciński [49], is 𝐶(𝑎) ≤ 2𝐶𝑎 log2 𝑎.

It is a natural question (initiated by András Gyárfás) to combine the studies of

packing monochromatic cycles and of computing Ramsey numbers of sparse graphs

and ask how many monochromatic members from a bounded-degree graph family are

needed to partition the vertex set of a 2-edge-colored 𝐾𝑁 . In this chapter we study

this problem and related questions. Given ℱ = {𝐹1, 𝐹2, . . .} a sequence of graphs,

we say it is a proper graph sequence if 𝐹𝑛 is a graph on 𝑛 vertices. We say it has

some graph property if every graph of ℱ has that property (e.g. ℱ is bipartite if 𝐹𝑛

is bipartite for every 𝑛).

We derive the following lower bound from the result that, for 𝑛 sufficiently large,

there are bipartite graphs on 𝑛 vertices of maximum degree at most ∆ with Ramsey

number 2Ω(Δ)𝑛 [49]. We prove this bound in Section 4.6.

Theorem 4.1.1. There exists an absolute constant 𝑐 such that, for every ∆, there is

a bipartite proper graph sequence ℱ with maximum degree at most ∆ and, for every

𝑛 sufficiently large, there is a 2-edge-coloring of 𝐾𝑛 so that covering the vertices of

𝐾𝑛 using monochromatic copies of graphs from ℱ requires at least 2𝑐Δ such copies.

This matches the upper bound we find.
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Theorem 4.1.2. There exists an absolute constant 𝐶 such that, for every ∆ and ev-

ery bipartite proper graph sequence ℱ with maximum degree at most ∆, every 2-edge-

colored complete graph can be partitioned into at most 2𝐶Δ vertex-disjoint monochro-

matic copies of graphs from ℱ .

We can actually prove that if ℱ has chromatic number at most 𝑘 then the bound

above may be taken to be 2𝐶𝑘Δ. If 𝑘 ≤ log ∆, then this is the best bound we know

how to get. However, for larger values of 𝑘, we can get a better bound that depends

only on ∆.

Theorem 4.1.3. There exists an absolute constant 𝐶 such that, for every ∆ and

every proper graph sequence ℱ with maximum degree at most ∆, every 2-edge-colored

complete graph can be partitioned into at most 2𝐶ΔlogΔ vertex-disjoint monochromatic

copies of graphs from ℱ .

If we are interested in graphs with bounded arrangeability rather than bounded

degree, we get a slightly weaker bound, assuming the graphs satisfy an additional

degree-bound, which is required for one of the tools we use.

Theorem 4.1.4. There exists an absolute constant 𝐶 such that, for every 𝑎 there

and every 𝑎-arrangeable proper graph sequence ℱ = {𝐹1, 𝐹2, . . .} satisfying that the

maximum degree of 𝐹𝑛 is at most
√
𝑛/ log 𝑛, every 2-edge-colored complete graph on

at least 𝑁 vertices can be partition into at most 2𝐶𝑎6 vertex-disjoint monochromatic

copies of graphs from ℱ .

Theorems 4.1.2 and 4.1.3 give, perhaps surprisingly, that we have the same phe-

nomenon for these classes of graphs as for cycles; we can partition into monochromatic

graphs from ℱ such that the average size of the parts (which are each monochromatic

copies of graphs from ℱ) is roughly as large as the size of the single largest monochro-

matic graph we know how to find (i.e. the one given by our best bounds for Ramsey

numbers). It is particularly interesting to note that the conditions of Theorem 4.1.4

are satisfied with high probability by 𝐹𝑛 = 𝐺(𝑛, 𝑑/𝑛) for 𝑑 a constant, as Fox and

Sudakov [46] showed that, with high probability, the arrangeability of 𝐺(𝑛, 𝑑/𝑛) is

Θ(𝑑2).
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It would be desirable to close the gap between the upper bound given by Theorem

4.1.3 and the lower bound in Theorem 4.1.1, though doing so may require improved

bounds for the Ramsey numbers of bounded degree graphs.

Finally, let us mention one interesting special case of Theorem 4.1.3. The 𝑘𝑡ℎ

power of a cycle 𝐶 is the graph obtained from 𝐶 by joining every pair of vertices with

distance at most 𝑘 in 𝐶. Density questions for powers of cycles have generated a lot

of interest; in particular the famous Pósa-Seymour conjecture (see e.g. [15, 37, 38,

39, 40, 65, 68, 69, 71]). Theorem 4.1.3 implies the following result on the partition

number by monochromatic powers of cycles.

Corollary 4.1.5. There exists an absolute constant 𝐶 so that, for every 𝑘, ev-

ery 2-colored complete graph can be partitioned into at most 2𝐶𝑘 log 𝑘 vertex-disjoint

monochromatic 𝑘th powers of cycles.

4.2 Notation

𝑉 (𝐺) and 𝐸(𝐺) denote the vertex-set and the edge-set of the graph 𝐺. (𝐴,𝐵,𝐸)

denotes a bipartite graph 𝐺 = (𝑉,𝐸), where 𝑉 = 𝐴∪𝐵 and 𝐸 ⊂ 𝐴×𝐵. For a graph

𝐺 and a subset 𝑈 of its vertices, 𝐺|𝑈 is the restriction to 𝑈 of 𝐺. 𝑁(𝑣) is the set of

neighbors of 𝑣 ∈ 𝑉 . Hence, |𝑁(𝑣)| = 𝑑𝑒𝑔(𝑣) = 𝑑𝑒𝑔𝐺(𝑣), the degree of 𝑣. 𝛿(𝐺) stands

for the minimum and ∆(𝐺) for the maximum degree in 𝐺. When 𝐴,𝐵 are subsets of

𝑉 (𝐺), we denote by 𝑒(𝐴,𝐵) the number of edges of 𝐺 with one endpoint in 𝐴 and

the other in 𝐵. We write 𝑑𝑒𝑔(𝑣, 𝑈) = 𝑒({𝑣}, 𝑈) for the number of edges from 𝑣 to 𝑈 .

For non-empty 𝐴 and 𝐵,

𝑑(𝐴,𝐵) =
𝑒(𝐴,𝐵)

|𝐴||𝐵|

is the density of the graph between 𝐴 and 𝐵.

Definition 4.2.1. The bipartite graph 𝐺 = (𝐴,𝐵,𝐸) is 𝜀-regular if

𝑋 ⊂ 𝐴, 𝑌 ⊂ 𝐵, |𝑋| > 𝜀|𝐴|, |𝑌 | > 𝜀|𝐵| imply |𝑑(𝑋, 𝑌 ) − 𝑑(𝐴,𝐵)| < 𝜀.
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We will often say simply that “the pair (𝐴,𝐵) is 𝜀-regular” with the graph 𝐺

implicit.

Definition 4.2.2. (𝐴,𝐵) is (𝜀, 𝑑, 𝛿)-super-regular if it is 𝜀-regular, satisfies 𝑑(𝐴,𝐵) ≥
𝑑, and

𝑑𝑒𝑔(𝑎) > 𝛿|𝐵| ∀ 𝑎 ∈ 𝐴, 𝑑𝑒𝑔(𝑏) > 𝛿|𝐴| ∀ 𝑏 ∈ 𝐵.

Definition 4.2.3. Given a 𝑘-partite graph 𝐺 = (𝑉,𝐸) with 𝑘-partition 𝑉 = 𝑉1 ∪
. . .∪ 𝑉𝑘, the 𝑘-cylinder 𝑉1 × . . .× 𝑉𝑘 is 𝜀-regular ((𝜀, 𝑑, 𝛿)-super-regular) if all the

(︀
𝑘
2

)︀
pairs of subsets (𝑉𝑖, 𝑉𝑗), 1 ≤ 𝑖 < 𝑗 ≤ 𝑘, are 𝜀-regular ((𝜀, 𝑑, 𝛿)-super-regular). If we

wish to say a cylinder is (𝜀, 𝛿, 𝛿)-super-regular, we simply say it is (𝜀, 𝛿)-super-regular,

and in this case it is not necessary to check the density condition. Given 𝛼 ≥ 0, the

𝑘-cylinder 𝑉1× . . .×𝑉𝑘 is 𝛼-balanced if, for every 𝑖 < 𝑗, ||𝑉𝑖|−|𝑉𝑗|| ≤ 𝛼min(|𝑉𝑖|, |𝑉𝑗|).

We say a graph 𝐺 on 𝑛 vertices is 𝑎-nicely-arrangeable if it is 𝑎-arrangeable and

satisfies that ∆(𝐺) ≤ √
𝑛/ log 𝑛. We say it is 𝜒-chromatically equitable if there is a

proper 𝜒-coloring of the vertices of 𝐺 (one where no two adjacent vertices have the

same color) in which the size of any two color classes differs by at most 1. We say it

is 𝑅-linearly-Ramsey if 𝑅(𝐺) ≤ 𝑅𝑛.

4.3 Regularity and blow-up lemmas

Some of our main tools for finding monochromatic copies of graphs are regularity and

blowup lemmas. Regularity lemmas allow us to find monochromatic regular cylinders,

and blowup lemmas allow us to cover the vertices of such a cylinder with a sparse

graph.

Instead of the Regularity Lemma of Szemerédi [89], we will use the following

lemmas which Conlon and Fox [23] argued as consequences of the Duke, Lefmann,

and Rödl weak Regularity Lemma [29].

Lemma 4.3.1 ([29] and Lemma 5.3 in [23]). For each 0 < 𝜀 < 1/2, given any graph

𝐺 = (𝑉,𝐸) on 𝑛 ≥ 𝑘 vertices we may find disjoint sets of vertices 𝑉1, . . . , 𝑉𝑘 so that
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the induced 𝑘-partite cylinder is 0-balanced and 𝜀-regular; the size of each part is at

least 1
2𝑘
𝜀𝑘

2𝜀−5
𝑛.

We will use the following corollary of this lemma.

Lemma 4.3.2 (Lemma 5.4 in [23]). For each 0 < 𝜀 < 1/2, given any 2-colored

complete graph on 𝑛 ≥ 22𝑘 vertices we may find vertex-disjoints sets 𝑉1, . . . , 𝑉𝑘 so

that the induced multipartite graph is, in one of the colors (say in red), an (𝜀, 1/2, 0)-

super-regular 0-balanced cylinder (i.e. one with no minimum degree constraint and

parts of equal size), where the size of each part is at least 1
2(22𝑘)

𝜀2
4𝑘𝜀−5

𝑛.

Indeed, to get this one applies Lemma 4.3.1 for the red subgraph with 22𝑘 in place

of 𝑘 to get an 𝜀-regular 22𝑘-cylinder. Then we may consider the complete graph whose

vertices 𝑖 correspond to the parts of the cylinder 𝑉𝑖 and we color the edge (𝑖, 𝑗) by

the majority color in the pair (𝑉𝑖, 𝑉𝑗). We then apply 𝑅(𝐾𝑘) ≤ 22𝑘 and use the fact

that, if (𝑉𝑖, 𝑉𝑗) is regular in one color, then it is also regular in the other color.

Our main tool for dealing with bounded degree graphs is a quantitative version

of the Blow-up Lemma (see [66, 67, 82]).

Lemma 4.3.3 (Quantitative Blow-up Lemma). For every constant 𝛼 there exists a

constant 𝐶 = 𝐶(𝛼) such that, given a graph 𝑅 of order 𝑟 ≥ 2 and positive parameters

𝛿, 𝑑, and ∆, for any 0 < 𝜀 <
(︀

𝛿
𝑟Δ
𝑑Δ
)︀𝐶

the following holds. Let us replace the vertices

of 𝑅 with pairwise disjoint 𝛼-balanced sets 𝑉1, 𝑉2, . . . , 𝑉𝑟 (blowing up). We construct

two graphs on the same vertex set 𝑉 =
⋃︀
𝑉𝑖. The graph 𝑅′ is obtained by replacing

all edges of 𝑅 with copies of the complete bipartite graph, and a sparser graph 𝐺 is

constructed by replacing the edges of 𝑅 with some (𝜀, 𝑑, 𝛿)-super-regular pairs. If a

graph 𝐻 with ∆(𝐻) ≤ ∆ is embeddable into 𝑅′, then it is embeddable into 𝐺.

To deal with 𝑎-nicely-arrangeable graphs, we use a version of the blowup lemma

due to Böttcher, Kohayakawa, Taraz, and Würfl [9]. It is worth noting that, in their

paper, the authors of [9] allow more parameters and compute more explicit bounds

than what we state below.
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Theorem 4.3.4 (Blow-up Lemma for Arrangeable Graphs [9]). For every constant 𝛼

there exists a constant 𝐶 = 𝐶(𝛼) such that, given a graph 𝑅 of order 𝑟 ≥ 2 and positive

parameters 𝛿 and 𝑎, if we take ∆𝑅 to be a bound on the maximum degree of 𝑅, then,

for any 0 < 𝜀 < 𝛿−𝐶𝑎2Δ𝑅 · 2−𝐶𝑎4Δ2
𝑅, taking 𝑛0 := 22𝐶𝑎4𝑟𝐶𝛿−𝐶𝑎2𝜖−𝐶, the following holds.

Let us replace the vertices of 𝑅 with pairwise-disjoint 𝛼-balanced sets 𝑉1, 𝑉2, . . . , 𝑉𝑟

(blowing up) each of size at least 𝑛0. We construct two graphs on the same vertex

set 𝑉 =
⋃︀
𝑉𝑖. The graph 𝑅′ is obtained by replacing all edges of 𝑅 with copies of

the complete bipartite graph, and a sparser graph 𝐺 is constructed by replacing the

edges of 𝑅 with some (𝜀, 𝛿)-super-regular pairs. If an 𝑎-nicely-arrangeable graph 𝐻 is

embeddable into 𝑅′, then it is embeddable into 𝐺.

4.4 Proofs of Theorems 4.1.2, 4.1.3, and 4.1.4

We basically follow the greedy-absorbing proof technique that originated in [33] and

is used in many papers in this area (e.g. [54], [61], [86]).

Given an 𝑅-linearly-Ramsey proper graph sequence ℱ , we will show how to de-

compose any 2-edge-coloring of a 𝐾𝑛 into useful structures, in pursuit of the goal of

eventually decomposing it into monochromatic copies of graphs from ℱ .

The structures we will use are monochromatic copies from ℱ , monochromatic

super-regular cylinders, and something resembling a union of almost-complete mul-

tipartite graphs. Such a decomposition is useful as we will use a blow-up lemma to

cover the super-regular cylinders and it is easy to greedily embed graphs into almost-

complete multipartite graphs. For technical reasons, we don’t actually use complete

multipartite graphs, but a structure that will serve a similar purpose that we call a

branching degree cylinder.

Definition 4.4.1. Given positive integers 𝑘1, . . . , 𝑘ℓ, the (𝑘1, . . . , 𝑘ℓ)-branching tree is

a rooted tree defined recursively as follows: the ()-branching tree is a single vertex, the

root, and the (𝑘1, . . . , 𝑘ℓ+1)-branching tree is the graph obtained from the (𝑘1, . . . , 𝑘ℓ)-

branching tree by adding 𝑘ℓ+1 neighbors to each leaf (and the root vertex remains the

same). If 𝑘 := 𝑘1 = 𝑘2 = · · · = 𝑘ℓ, we simply say it is a 𝑘-branching tree with ℓ levels.
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In other words, the branching tree is a full and complete rooted tree, and the

parameters (𝑘1, . . . , 𝑘ℓ) determine the branching factor at each level.

Definition 4.4.2. Given a 2-edge-coloring of a 𝐾𝑛 and positive integers 𝑘1, . . . , 𝑘ℓ, a

(𝑘1, . . . , 𝑘ℓ)-branching (1 − 𝛾) degree cylinder with scaling 𝜀 assigns to every vertex 𝑣

of the (𝑘1, . . . , 𝑘ℓ)-branching tree a collection of vertices from the 𝐾𝑛; if 𝑣 and 𝑤 are

not ancestors of each other in the branching tree, then 𝑉𝑣 and 𝑉𝑤 are disjoint, and

otherwise, if 𝑤 is an ancestor of 𝑣, then 𝑉𝑣 ⊆ 𝑉𝑤. Furthermore, for every pair 𝑤 and

𝑣 with 𝑤 the parent of 𝑣, there is some color and some set 𝑆𝑣 ⊆ 𝑉𝑤 ∖ 𝑉𝑣 so that every

vertex in 𝑉𝑣 has degree at least (1− 𝛾)|𝑆𝑣| to 𝑆𝑣 in that color; we call 𝑆𝑣 the parental

neighborhood of 𝑉𝑣. Finally, |𝑉𝑣| ≤ 𝜀|𝑆𝑣|. If 𝑘 := 𝑘1 = 𝑘2 = · · · = 𝑘ℓ, then we say it

is a 𝑘-branching cylinder with ℓ levels.

We are now ready to state the way in which we will decompose the vertices of a

2-edge-colored 𝐾𝑛.

Lemma 4.4.3. There exists an absolute constant 𝐶 such that, given any 2-edge-

coloring of a complete graph, any 𝑘, ℓ > 0, any 0 < 𝜀 < 1/2 and any 0 < 𝛿 < 1/2− 𝜀,

and any 𝑅-linearly-Ramsey proper graph sequence ℱ , we may find

∙ ∑︀ℓ−1
𝑖=0 𝑘

𝑖𝑅2𝐶𝑘𝜀−𝐶 vertex-disjoint monochromatic copies of graphs from ℱ

∙ A 𝑘-branching (1 − 𝛿 − 𝑘𝜀) degree cylinder with scaling 𝑘𝜀 and with ℓ levels in

which, for 𝑣 a vertex of the underlying branching tree, 𝑉𝑣 is the corresponding

set of vertices with parental neighborhood 𝑆𝑣, and

∙ Inside of each 𝑉𝑤 with 𝑤 not a leaf of the branching tree, a (2𝑘𝜀, 1/2−2𝑘𝜀, 𝛿−𝑘𝜀)
super-regular cylinder 𝐶𝑤 with 𝑘 parts which are 𝑘𝜀-balanced and which satisfies

that, for any 𝑣 a child of 𝑤, 𝑆𝑣 ⊆ 𝐶𝑤.

The above structures satisfy two additional properties. The first is that every vertex of

the complete graph is contained in one of the monochromatic copies of a graph from

ℱ , one of the super-regular cylinders, or in 𝑉𝑣 for 𝑣 a leaf in the branching tree. The

second is that, for every 𝑉𝑤 with 𝑤 not a leaf of the branching tree, the associated
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super-regular cylinder 𝐶𝑤 does not intersect 𝑉𝑣 for any 𝑣 a descendant of 𝑤 and 𝐶𝑤

does not intersect any of the monochromatic copies of graphs from ℱ .

We first prove the above decomposition lemma, and then we show how to apply

it to prove Theorems 4.1.2, 4.1.3, and 4.1.4.

4.4.1 Proof of Lemma 4.4.3

To prove the above theorem, we will proceed by induction on ℓ. One essential part

of the inductive step is the following lemma.

Lemma 4.4.4. There exists an absolute constant 𝐶 such that, given any 𝑅-linearly-

Ramsey proper graph sequence ℱ , any 𝜀 > 0, any positive integer 𝑘, and any 2-edge-

coloring of a 𝐾𝑛, we may partition the vertices into at most 𝑅2𝐶𝑘𝜀−𝐶 monochromatic

copies of graphs from ℱ and sets 𝑉1, . . . , 𝑉𝑘 so that the multipartite graph induced by

one of the colors is a 0-balanced, (𝜀, 1/2 − 𝜀, 0)-super-regular cylinder.

To prove Lemma 4.4.4, we first find a monochromatic 𝜀/2-regular cylinder so that

the density between any two pairs is at least 1/2 by Lemma 4.3.2; then, we will cover

most of the remaining vertices with monochromatic copies of graphs from ℱ . We

simply add the uncovered vertices to the cylinder; they do not significantly harm the

regularity. To this end, we prove the following observation about 𝑅-linearly-Ramsey

proper graph sequences.

Lemma 4.4.5. For any 𝑅-Ramsey proper graph sequence, given a 2-edge-colored 𝐾𝑛

and an 𝛼 > 0, we may cover all but an 𝛼 fraction of the vertices of the 𝐾𝑛 using at

most 2𝑅 log(𝑒/𝛼) vertex-disjoint monochromatic copies of graphs from ℱ .

Proof. Given any 2-coloring of a 𝐾𝑛 for 𝑛 ≥ 2𝑅 we may find a monochromatic

copy of 𝐹⌊𝑛/𝑅⌋. Removing the vertices of this copy leaves a 2-edge-coloring of a clique

on ⌈(1 − 1/𝑅)𝑛⌉ ≤ (1 − 1/(2𝑅))𝑛 vertices; iterating this procedure 𝑎 := 2𝑅 log(𝑒/𝛼)

times gives a 2-edge coloring on at most (1 − 1/(2𝑅))𝑎𝑛 ≤ 𝑒𝑎/(2𝑅)𝑛 ≤ 𝛼𝑛 vertices,

assuming that at each iteration the graph had at least 2𝑅 vertices. If at any point the

graph failed to have at least 2𝑅 vertices, then we may remove each of the remaining
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vertices as monochromatic copies of 𝐹1; in either case, the total number of monochro-

matic copies of graphs from ℱ used was at most 𝑎 + 2𝑅 = 2𝑅 log(1/𝛼) + 2𝑅 =

2𝑅 log(𝑒/𝛼). 2

Proof of Lemma 4.4.4.

By Theorem 4.3.2, either 𝑛 < 22𝑡 or we may find a monochromatic (𝜀/2, 1/2, 0)-

super-regular, 0-balanced cylinder where each part is at least an 𝛼 := 1
2(22𝑘)

(𝜀/2)2
4𝑘(𝜀/2)−5

fraction of the vertices. In the former case, we may simply take each vertex to

be a monochromatic copy of 𝐹1 and take the cylinder to be empty. In the lat-

ter case, we find a 0-balanced cylinder on vertex set 𝑉1, . . . , 𝑉𝑘 in which each part

has size at least 𝛼𝑛. Take 𝜀′ := 𝜀2𝛼/4. Then, by Lemma 4.4.5, using at most

2𝑅 log(𝑒/𝜀′) = 𝑅2𝑂(𝑘)𝜀−𝑂(1) copies of graphs from ℱ , we may cover all but an 𝜀′ frac-

tion of those vertices of the 𝐾𝑛 that are outside of 𝑉1, . . . , 𝑉𝑘. There are 𝑛′ vertices

remaining outside of 𝑉1, . . . , 𝑉𝑘; we wish to assume 𝑛′ is divisible by 𝑘, which we

may do by covering up to 𝑘 vertices by copies of 𝐹1. Then, we simply add 𝑛′/𝑘 of

the remaining vertices to each of 𝑉1, . . . , 𝑉𝑘; since we are adding fewer than 𝜀2𝛼𝑛/4

vertices to each part (each part has size 𝛼𝑛), the new cylinder is (𝜀, 1/2− 𝜀, 0)-super-

regular. 2

Proof of Lemma 4.4.3. We proceed by induction on ℓ. If ℓ = 0, then we may take

the whole vertex set of the 𝐾𝑛 to be a 𝑘-branching cylinder with 0 levels. Otherwise,

if ℓ > 0, by induction we may decompose the 𝐾𝑛 into at most
∑︀ℓ−2

𝑖=0 𝑘
𝑖𝑅2𝐶𝑘𝜀−𝐶

vertex-disjoint monochromatic copies from ℱ where 𝐶 is the constant from Lemma

4.4.4, into a 𝑘-branching 𝑘𝜀-scaling (1 − 𝛿 − 𝑘𝜀) degree cylinder with ℓ − 1 levels

with vertex sets 𝑉𝑣 where 𝑣 is a vertex of the corresponding branching tree and their

corresponding parental neighborhoods 𝑆𝑣, and in each 𝑉𝑤 for 𝑤 not a leaf of the

branching tree there is a (2𝑘𝜀, 1/2 − 2𝑘𝜀, 𝛿 − 𝑘𝜀)-regular cylinder 𝐶𝑤 satisfying that

it does not intersect 𝑉𝑣 for any descendant 𝑣 of 𝑤, that it does not intersect any of

the monochromatic copies of graphs from ℱ , and that it contains 𝑆𝑣 for any 𝑣 a child

of 𝑤.

In order to prove Lemma 4.4.3 with ℓ levels rather than with ℓ− 1 levels, we wish

to extend the branching degree cylinder. To do so, for each of the 𝑘ℓ−1 leaves 𝑤 of the
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𝑘-branching tree with ℓ-1 levels we apply Lemma 4.4.4 to decompose 𝑉𝑤 into at most

𝑅2𝐶𝑘𝜀−𝐶 monochromatic copies of graphs from ℱ and into vertex-disjoint 0-balanced

sets 𝐶 ′
1, . . . , 𝐶

′
𝑘 so that the induced cylinder 𝐶 ′ in one of the colors is (𝜀, 1/2 − 𝜀, 0)-

super-regular. We now extract low-degree vertices from this cylinder. We define

sets 𝐷𝑖 recursively; 𝐷𝑖 is the set of vertices in 𝐶 ′ ∖ 𝐶 ′
𝑖 that have degree at most

(𝛿− 𝜀)|𝐶 ′
𝑖| to 𝐶 ′

𝑖, minus those vertices that appear in 𝐷1, . . . , 𝐷𝑖−1. We then take the

sets corresponding to the children of 𝑤 in the ℓ-level 𝑘-branching tree to be 𝐷𝑖 with

parental neighborhoods 𝐶𝑖 := 𝐶 ′
𝑖 ∖𝐷𝑖 and take 𝐶𝑤 := 𝐶1×· · ·×𝐶𝑘 to be the cylinder

corresponding to 𝑉𝑤. Note that, for each 𝑗 ̸= 𝑖, by 𝜀-regularity at most an 𝜀-fraction

of the vertices of 𝐶 ′
𝑗 fail to have degree at least (𝛿 − 𝜀)|𝐶 ′

𝑖| to 𝐶 ′
𝑖. Therefore, each 𝐷𝑖

has size at most (𝑘− 1)𝜀|𝐶 ′
𝑖|. This implies the cylinder 𝐶𝑤 is (𝑘− 1)𝜀 < 𝑘𝜀-balanced.

Furthermore, since each pair 𝐶 ′
𝑖, 𝐶

′
𝑗 was (𝜀, 1/2 − 𝜀, 0)-super-regular and we removed

all vertices that had degree to 𝐶 ′
𝑖 less than (𝛿 − 𝜀)|𝐶 ′

𝑖|, in the process we removed at

most (𝑘− 1)𝜀|𝐶 ′
𝑗| vertices from 𝐶 ′

𝑗 and so 𝐶𝑣 is (2𝑘𝜀, 1/2− 2𝑘𝜀, 𝛿− 𝑘𝜀)-super-regular,

as desired. 2

4.4.2 Applying Lemma 4.4.3

We use the three structures found in Lemma 4.4.3, namely the monochromatic copies

of graphs from ℱ , the super-regular cylinders, and the branching degree cylinder, to

cover all of the vertices with monochromatic graphs from ℱ . We now explain how to

use the latter two structures to do this.

To cover vertices in a super-regular cylinder, we will apply one of the blow-up

lemmas. To that end, we wish to show how to embed few copies of graphs from ℱ
into a balanced complete multipartite graph. It is easier to embed graphs that are,

in some sense, balanced.

Definition 4.4.6. A graph 𝐺 is 𝑘-chromatically equitable if it has a proper 𝑘-vertex-

coloring (i.e. one in which no two adjacent vertices receive the same color) in which

every color class has the same size.

Note that, if a graph 𝐺 is 𝑘-colorable, then the graph obtained by taking 𝑘 disjoint
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copies of 𝐺, which we denote by 𝑘𝐺, is 𝑘-chromatically equitable. To see this, we may

take any 𝑘-coloring of 𝐺 and cyclically permute the colors throughout the 𝑘 copies

to get a chromatically equitable coloring.

Lemma 4.4.7. Given a proper graph sequence ℱ = {𝐹1, 𝐹2, . . .} with chromatic

number at most 𝑘 and given a complete 1/(𝑘+1)-balanced 𝑘+1-partite graph, we can

cover the vertices using at most (𝑘 + 1)2 vertex-disjoint copies of graphs from ℱ .

Proof. Let 𝐶1, . . . , 𝐶𝑘+1 be the parts of the complete graph. For each index

𝑖 ∈ [𝑘 + 1], define 𝑣𝑖 = |𝐶𝑖| and take 𝑣 = max𝑖(𝑣𝑖). Then, for each set 𝑆 ⊆ [𝑘 + 1] of

size 𝑘, define 𝑤𝑆 := 𝑣 − 𝑣𝑖 where 𝑖 is the unique index not contained in 𝑆. For each

such set 𝑆, we take a copy of 𝑘𝐹𝑤𝑆
(disjoint from all the copies chosen so far) that

uses 𝑤𝑆 vertices from each 𝑉𝑖 with 𝑖 ∈ 𝑆. We use 𝑘 + 1 such graphs, one for each 𝑆.

Note that, because the structure is 1/(𝑘 + 1)-balanced, for every step corresponding

to some 𝑆 with 𝑖 ∈ 𝑆 we remove at most a 1/(𝑘 + 1) fraction of 𝐶𝑖, so there are

always enough vertices in 𝐶𝑖 to choose the next graph to be vertex-disjoint from the

previous ones, and so the procedure does not fail.

After this procedure, the number of uncovered vertices in 𝐶𝑖 is

𝑣𝑖 −
∑︁
𝑆:𝑖∈𝑆

𝑤𝑆 = 𝑣𝑖 −
∑︁
𝑆

𝑤𝑆 + 𝑤[𝑘+1]∖{𝑖} = 𝑣 −
∑︁
𝑆

𝑤𝑆.

That is, after this procedure, each 𝐶𝑖 has the same number of uncovered vertices, say

𝑛. We cover these with a copy of (𝑘 + 1)𝐹𝑛. We use a total of (𝑘 + 1)2 copies of

graphs from ℱ . 2

Finally, we wish to show how, given a branching degree cylinder, to cover the

vertices of the 𝑉𝑣 with 𝑣 a leaf in the corresponding branching tree.

Lemma 4.4.8. Given a 2-edge-coloring of a 𝐾𝑛, a 𝑑-degenerate 𝑘-chromatically equi-

table proper graph sequence ℱ , and a 𝑘-branching (1/(32𝑘2𝑑2))-scaling (1−1/(32𝑘2𝑑2))

degree cylinder with 2𝑘 − 3 levels which assigns the set 𝑉𝑣 to a vertex 𝑣 of the corre-

sponding branching tree with 𝑆𝑣 the parental neighborhood, we may cover all the 𝑉𝑣

with 𝑣 a leaf of the branching tree using at most 𝑘2𝑘 monochromatic copies of graphs
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from ℱ the vertices of which are contained entirely in the various 𝑆𝑣 or in some 𝑉𝑣

with 𝑣 a leaf, and, in doing so, for any 𝑣 with parent 𝑤 we use either at most a 𝜀

fraction of the vertices of 𝑆𝑣 or we use all of 𝑉𝑤.

Proof. For every path 𝑃 = (𝑣0, . . . , 𝑣2𝑘−3) from the root to a leaf in the branching

tree, we define, for every vertex 𝑣𝑖 with 0 ≤ 𝑖 < 2𝑘 − 3, a corresponding color: this

color is red if the vertices of 𝑉𝑣𝑖+1
all have red-degree at least (1− 1/(32𝑘2𝑑2))|𝑉𝑣𝑖 | to

𝑉𝑣𝑖 , and otherwise they all have blue-degree at least (1 − 1/(32𝑘2𝑑2))|𝑆𝑣𝑖 | to 𝑆𝑣𝑖 and

the color is blue. This gives a sequence of 2𝑘− 3 colors; exactly one of the two colors

must occur at least 𝑘− 1 times in this sequence. Then take, for 0 ≤ 𝑗 < 𝑘− 1, 𝑣𝑃𝑗
to

be the vertex of the path 𝑃 corresponding to the 𝑗th occurrence of the more common

color in the color sequence. Take 𝑣𝑃𝑘−1
to be 𝑣2𝑘−3. Take 𝑉𝑃𝑗

:= 𝑉𝑣𝑃𝑗
.

Now, we claim that, given any vertex sets 𝑉0 ⊇ 𝑉1 ⊇ · · · ⊇ 𝑉𝑘−1 with |𝑉𝑖| ≥ 4|𝑉𝑖+1|
and satisfying that, for every 𝑖 > 0, we have that the vertices of 𝑉𝑖 have degree at

least (1 − 1/(16𝑘𝑑2))|𝑉𝑖−1| to 𝑉𝑖−1, there is a 𝑘-partite subgraph with vertex-disjoint

parts 𝑉 ′
𝑖 ⊆ 𝑉𝑖 with 𝑉

′
𝑘−1 = 𝑉𝑘−1 where each part has size at least |𝑉𝑘−1| in which, for

any pair 𝑖 ̸= 𝑗, we have that the vertices of 𝑉𝑖 have degree larger than (1−1/(2𝑑))|𝑉𝑗|
to 𝑉𝑗. To see this, note that, for any 𝑖 and for every 𝑗 > 𝑖, the average degree of a

vertex in 𝑉𝑖 to 𝑉𝑗 is at least (1 − 1/(16𝑘𝑑2))|𝑉𝑗|. By Markov’s inequality, at most a

1/(4𝑘𝑑) fraction of the vertices of 𝑉𝑖 fail to have degree at least (1 − 1/(4𝑑))|𝑉𝑗| to
𝑉𝑗. We now proceed as follows: for each 𝑖, starting with 𝑖 = 0 and proceeding in

increasing order, we may remove at most a 1/(4𝑑) fraction of the vertices of 𝑉𝑖 to

ensure that every vertex of 𝑉𝑖 has degree more than (1 − 1/(4𝑑))|𝑉𝑗| to 𝑉𝑗 for every
𝑗 > 𝑖. For every pair of distinct 𝑖, 𝑗, at some point in this process 𝑉𝑖 has satisfied that

every vertex has degree more than (1 − 1/(4𝑑))|𝑉𝑗| to 𝑉𝑗. After this point, at most a

1/(4𝑑) fraction of the vertices of 𝑉𝑗 were removed by the process, so at the end of the

process we must have that the vertices of 𝑉𝑖 have degree more than (1 − 1/(2𝑑))|𝑉𝑗|
to (what remains of) 𝑉𝑗. Given this structure, we may simply greedily embed a copy

of 𝑘𝐹|𝑉𝑘−1| into this structure, using all of 𝑉𝑘−1 and at most (𝑘 − 𝑖)|𝑉𝑘−1| vertices of
each 𝑉𝑖.

We now proceed as follows. Iterate over the various distinct paths 𝑃 in an arbitrary
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order. We wish to cover the vertices of 𝑣𝑃𝑘−1
by few graphs from ℱ . By the previous

argument, we may do so if, for each 𝑗 > 𝑖, we have that each vertex of 𝑉𝑃𝑗
has degree

at least (1 − 1/(16𝑘𝑑2))|𝑉𝑃𝑖
| to 𝑉𝑃𝑖

; this was true before we started iterating. If this

is true, we will then use the previous argument to find a graph that covers 𝑉𝑃𝑘−1
and

uses at most (𝑘 − 𝑖)|𝑉𝑃𝑘−1
| vertices from 𝑉𝑃𝑖

. Throughout this process, we remove at

most a

𝜀𝑘−𝑗−1

(︃
𝑘−𝑗−1∑︁
𝑖=0

𝑘𝑖

)︃
≤ 2(𝜀𝑘)𝑘−𝑗−1 ≤ 2𝜀𝑘 < 1/(16𝑘𝑑2)

fraction of any 𝑉𝑃𝑗
for 𝑗 < 𝑘 − 1. Therefore, we will remove at most a 1/(16𝑘𝑑2)

fraction of the vertices from each 𝑉𝑃𝑖
throughout the process, and so the necessary

condition will hold and we will cover each 𝑉𝑃𝑘−1
. 2

We now prove Theorem 4.1.2 and Theorem 4.1.3.

Proof. Let a proper graph sequence ℱ with maximum degree at most ∆ and chro-

matic number at most 𝑘 be given. We know that ℱ is 𝑅-Ramsey linear for some 𝑅,

and we know by [45] that 𝑅 is at most 2𝐶1𝑘Δ and by [25] that 𝑅 is at most 2𝐶2ΔlogΔ.

Take 𝑅 to be the minimum of 2𝐶1𝑘Δ and 2𝐶2ΔlogΔ. Take, for some sufficiently large

constant 𝐶, 𝜀 = 𝑅−𝐶 . Take ℓ = 2𝑘− 3. Take 𝛿 = 1/(64𝑑2𝑘2). Apply Lemma 4.4.3 to

obtain 𝑘𝑂(𝑘)𝑅2𝑂(𝑘)𝜀−𝑂(1) = 𝜀−𝑂(1) copies of graphs from ℱ , a 𝑘-branching 𝑘𝜀-scaling

(1−𝛿−𝑘𝜀) ≥ (1−2𝛿) cylinder with ℓ levels, and, for each 𝑤 in the underlying branch-

ing tree, a (2𝑘𝜀, 1/2− 2𝑘𝜀, 𝛿− 𝑘𝜀) super-regular 0-balanced cylinder 𝐶𝑤, where these

structures have the properties described in Lemma 4.4.3. We now apply Lemma 4.4.8

to the branching cylinder; this allows us to cover all of the vertices of the 𝑉𝑣 where 𝑣

is leaf of the branching tree and 𝑉𝑣 is the corresponding vertex set of the branching

cylinder using at most 𝑘2𝑘 monochromatic copies of graphs from ℱ . Furthermore, for

any 𝑤 in the branching tree, either 𝑉𝑤 is entirely covered, or the only vertices from

𝑉𝑤 that are used are from 𝐶𝑤 and we use at most a 𝑘𝜀 fraction of 𝐶𝑤. At this point,

the only vertices that we have not covered with monochromatic copies of graphs from

ℱ are those vertices in the various 𝐶𝑤 from which we’ve used at most a 𝑘𝜀 fraction of

the vertices. Notice that, because each 𝐶𝑤 is a (2𝑘𝜀, 1/2 − 2𝑘𝜀, 𝛿 − 𝑘𝜀) super-regular

0-balanced 𝑘 + 1-partite cylinder, after removing at most a 𝑘𝜀 fraction of 𝐶𝑤, the
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result is at least a (1/(𝑘 + 1))-balanced (𝑅−Ω(𝐶), 1/4, 𝛿/2)-cylinder, so if 𝐶 is large

enough we may apply Lemma 4.3.3 and Lemma 4.4.7 to cover the remainder of the

cylinder using at most (𝑘 + 1)2 monochromatic copies of graphs from ℱ . We used a

total of 𝑅𝑂(𝐶) monochromatic copies of graphs from ℱ when applying Lemma 4.4.3,

we used at most 𝑘𝑂(𝑘) ≤ 𝑅𝑂(1) copies of graphs from ℱ when applying Lemma 4.4.8,

and we used at most (𝑘 + 1)2 monochromatic copies of graphs from ℱ from each of

the 𝑘𝑂(𝑘) vertices of the branching tree when applying Lemma 4.4.7, so we used a

total of 𝑅𝑂(𝐶) monochromatic copies of graphs from ℱ . If 𝑘 ≤ log ∆, then this value

is 2𝑂(𝐶𝑘Δ); in particular, when 𝑘 = 2 as in the case of Theorem 4.1.2, we use 2𝑂(𝐶Δ)

monochromatic copies from ℱ . For all values of 𝑘, we use 2𝑂(𝐶ΔlogΔ) monochromatic

copies of graphs from ℱ , giving the bound in Theorem 4.1.3. 2

The proof of Theorem 4.1.4 is very similar, though it has some additional compli-

cations.

Proof. Let a proper graph sequence ℱ which is 𝑎-nicely-arrangeable with chromatic

number at most 𝑘 be given. We know that ℱ is 𝑅-Ramsey linear for some 𝑅 =

2𝑂(𝑎 log2 𝑎). Take, for some sufficiently large constant 𝐶, 𝜀 = 2−𝐶𝑎4𝑘2 . Take ℓ = 2𝑘− 3.

Take 𝛿 = 1/(64𝑑2𝑘2). Apply Lemma 4.4.3 to obtain 𝑘𝑂(𝑘)𝑅2𝑂(𝑘)𝜀−𝑂(1) = 𝜀−𝑂(1) copies

of graphs from ℱ , a 𝑘-branching 𝑘𝜀-scaling (1 − 𝛿 − 𝑘𝜀) ≥ (1 − 2𝛿) cylinder with ℓ

levels, and, for each 𝑤 in the underlying branching tree, a (2𝑘𝜀, 1/2 − 2𝑘𝜀, 𝛿 − 𝑘𝜀)

super-regular 0-balanced cylinder 𝐶𝑤, where these structures have the properties de-

scribed in Lemma 4.4.3. We now apply Lemma 4.4.8 to the branching cylinder; this

allows us to cover all of the vertices of the 𝑉𝑣 where 𝑣 is leaf of the branching tree

and 𝑉𝑣 is the corresponding vertex set of the branching cylinder using at most 𝑘2𝑘

monochromatic copies of graphs from ℱ . Furthermore, for any 𝑤 in the branching

tree, either 𝑉𝑤 is entirely covered, or the only vertices from 𝑉𝑤 that are used are

from 𝐶𝑤 and we use at most a 𝑘𝜀 fraction of 𝐶𝑤. At this point, the only vertices

that we have not covered with monochromatic copies of graphs from ℱ are those

vertices in the various 𝐶𝑤 from which we’ve used at most a 𝑘𝜀 fraction of the vertices.

Notice that, because each 𝐶𝑤 is a (2𝑘𝜀, 1/2 − 2𝑘𝜀, 𝛿 − 𝑘𝜀) super-regular 0-balanced

𝑘 + 1-partite cylinder, after removing at most a 𝑘𝜀 fraction of 𝐶𝑤, the result is at

146



least a (1/(𝑘+1))-balanced (2−Ω(𝐶𝑎4𝑘2), 1/4, 𝛿/2)-cylinder, so if 𝐶 is large enough and

𝐶𝑤 has enough vertices, we may apply Lemma 4.3.4 and Lemma 4.4.7 to cover the

remainder of the cylinder using at most (𝑘+1)2 monochromatic copies of graphs from

ℱ . However, if 𝐶𝑤 doesn’t have enough vertices, that is it has 22𝑂(𝑎4)
vertices, then

we may cover it using 2𝑂(𝑎4) monochromatic copies of graphs from ℱ using Lemma

4.4.5. We used a total of 2𝑂(𝐶𝑘2𝑎4) = 2𝑂(𝐶𝑎6) monochromatic copies of graphs from

ℱ when applying Lemma 4.4.3, we used at most 𝑘𝑂(𝑘) copies of graphs from ℱ when

applying Lemma 4.4.8, and we used at most 2𝑂(𝑎4) monochromatic copies of graphs

from ℱ from each of the 𝑘𝑂(𝑘) vertices of the branching tree when applying Lemma

4.4.7, so we used a total of 2𝑂(𝐶𝑎6) monochromatic copies of graphs from ℱ , giving

the bound in Theorem 4.1.4.

4.5 Concluding Remarks

There are various interesting potential generalizations of Theorem 4.1.3. One may

ask if the theorem holds for 𝑟 colors for any positive integer 𝑟.

Conjecture 4.5.1. For every positive integer 𝑟 there exists a constant 𝐶𝑟 (depending

on 𝑟) such that, for every ∆-bounded sequence ℱ , every 𝑟-edge-colored complete graph

can be partitioned into at most 2Δ𝐶𝑟
vertex-disjoint monochromatic graphs from ℱ .

Since bounds on Ramsey numbers were key in proving the theorem for 𝑟 = 2, it is

worth noting that Conlon, Fox, and Sudakov [25] proved that, for any fixed number

of colors 𝑟, for any graph 𝐺 on 𝑛 vertices of maximum degree ∆ the Ramsey number

on 𝑟 colors 𝑅𝑟(𝐺) is at most 2𝐶𝑟Δ2
𝑛. The primary difficulty in adapting our proof to

this setting is in constructing a (1− 𝛾) branching cylinder when there are more than

2-colors.

Finally, let us mention that since by now both the Regularity Lemma and the

Blow-up Lemma have been generalized to hypergraphs (see [81] and [62], respec-

tively), perhaps we can generalize our result to hypergraphs as well.
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4.6 Lower Bound

We wish to show that there exists a ∆-bounded sequence ℱ = {𝐹1, 𝐹2, . . .} and, for 𝑛

sufficiently large, a two-edge-coloring of𝐾𝑛 that cannot be partitioned into fewer than

2Ω(Δ) monochromatic copies of graphs from ℱ . To see this, for every 𝑛 take 𝐺𝑛 to be

a graph on 𝑛 vertices of degree at most ∆ and, for 𝑛 sufficiently large, with Ramsey

number at least 2Ω(Δ)𝑛, as given by the result of Graham, Rödl and Ruciński [49]. We

define 𝐹2𝑖 recursively; take 𝐹20 = 𝐺1. Then define 𝐹2𝑖 to be the disjoint union of 𝐹2𝑖−1

with 𝐺2𝑖−1 . For integers of the form 2𝑖 + 𝑗 with 𝑗 < 2𝑖, define 𝐹2𝑖+𝑗 to be the disjoint

union of 𝐹2𝑖 with an independent set on 𝑗 vertices. Under this definition, each 𝐹𝑛 is

a graph on 𝑛 vertices with maximum degree at most ∆. Furthermore, for 𝑛0 < 𝑛1,

𝐹𝑛0 is a subgraph of 𝐹𝑛1 . Finally, taking 𝑖 to be the largest integer with 2𝑖 ≤ 𝑛, 𝐹𝑛

contains a copy of 𝐺2𝑖−1 and so has Ramsey number at least 2Ω(Δ)2𝑖−1 = 2Ω(Δ)𝑛 (for

𝑛 sufficiently large). Take ℱ = {𝐹1, 𝐹2, . . .}. Now, for 𝑁 sufficiently large, take a 2-

edge-coloring of a complete graph on 2Ω(Δ)𝑁 vertices without a monochromatic copy

of 𝐹𝑁 (this is possible by the condition on the Ramsey number). Since the sequence

of graphs is increasing, this coloring also does not contain a monochromatic copy of

any 𝐹𝑛 for 𝑛 > 𝑁 . Therefore, any partition of the vertex set into monochromatic

copies of graphs from ℱ must use at least 2Ω(Δ) such copies.
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