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Abstract

Real-time cooperation between autonomous vehicles can enable time-critical missions
such as tracking and pursuit of a dynamic target or environmental feature, but
relies on wireless communications. Underwater, communication over distances be-
yond about one hundred meters is almost exclusively accomplished through acoustics,
which bring challenges such as propagation delays, low data rates, packet loss, and
scheduling constraints due to interference and limited bandwidth. These limitations
make underwater pursuit missions preeminent applications of networked control. Mo-
tivated by such applications, this thesis presents contributions towards multi-vehicle
feedback control in the presence of severe communication constraints.

The first major area of work considers the formulation and solution of new un-
derwater multi-vehicle tracking and pursuit problems using closed-loop control. We
begin with a centralized robust optimization approach for multicast routing and power
control which is suitable for integration with vehicle control. Next, we describe field
experiments in range-based target pursuit at high tracking bandwidths in a chal-
lenging shallow-water environment. Finally, we present a methodology for pursuit of
dynamic ocean features such as fronts, which we validate using hindcast ocean model
data. The primary innovation is a projection algorithm which carries out linearization
of ocean model forecast dynamics and uncertainty directly in vehicle coordinates via
a forward model technique. The resulting coupled linear stochastic system is suitable
for networked control.

The second area of work presents a unified formalism for multi-vehicle control
and estimation with measurement, control, and acknowledgment packets all subject
to scheduling, delays and packet loss. The modular framework we develop is built
around a jump linear system description incorporating receding horizon optimization
and buffering at actuators. Integration of these elements enables synthesis of a novel
technique for estimation using delayed and lossy control acknowledgments—a desir-
able and practical capability of fielded systems that has not been considered to date.
Simulations and field experiments demonstrate the effectiveness of our approach.
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Chapter 1

Introduction

1.1 Motivation and Problem Overview

The ocean plays a crucial role in the global climate and ecosystem, and understand-
ing the complex interactions between humans and the ocean is important for the
long-term prosperity of society. However, the ocean is incredibly difficult to study,
as remote sensing below the surface is difficult, measurements from ships are very
expensive, and stationary or drifting platforms do not provide dense coverage.

Robotic systems have emerged as important tools for efficient, low-cost, and low-
risk study of the ocean. Early robotic vehicles used tethers to a ship for power
and remote-controlled operation. While remotely operated vehicles (ROVs) are still
workhorses of marine industry and research, their connection to the ship makes them
expensive for monitoring missions, and additionally their large size limits maneuver-
ability and speed. For many survey applications, autonomous underwater vehicles
(AUVs) can cover more ground and deliver a more desirable data product.

In recent years, technology for underwater propulsion, sensing, energy storage,
imaging, and navigation has been maturing—resulting in highly capable vehicles.
Many flavors of AUVs have been invented, ranging from slow yet efficient gliders, to
large survey vehicles featuring many sensors, to highly maneuverable vehicles meant
for operating in tight near ships or seafloor structures [170]. Basic water proper-

ties are routinely measured today from mobile robots, while sophisticated chemical
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and biological analyses in situ are becoming mature technologies, for example DNA
probes [216] and mass spectrometers [37]. AUVs themselves as well as components are
increasingly becoming commercialized, resulting in lower costs and more widespread
use. These systems have made an impact in naval operations, undersea oil and gas,

underwater archeology, and ocean research.

With the successes of single-vehicle AUV operations, the focus has begun to move
towards more advanced team behavior and collaboration [18]. Already exploited reg-
ularly in the terrestrial and air domains, networks of mobile agents are an attractive
means for tracking and pursuit of dynamic processes over mixed spatial scales [68],
although wireless communication inevitably brings fundamental challenges in net-
worked control [14]. Surfacing to use satellite comms is very expensive in terms of
time and energy, and while optical communications are a great new technology, at
present they are only suitable for links up to one or two hundred meters in clear wa-
ter. For longer distances, acoustics are the preferred method of wireless underwater
communication, however, there are fundamental limitations to this channel: limited
and distance-dependent bandwidth, time-varying multipath propagation that makes
decoding packets difficult, and the low speed of sound in water (1500 m/s as opposed
to the speed of light) [116]. For multiple vehicle networks, acoustics are subject to

scheduling constraints due to interference and limited bandwidth.

These communication constraints have limited the use of acoustic communications
in high-performance, real-time tasks. This is for good reason—assets are expensive,
the ocean environment is risky, and large benefits can come from even basic uses of
communications. For example, integrated data assimilation has been aided by coordi-
nated adaptive sampling at slow update rates via surfacing and satellite comms [195].
Non-time-critical acoustic communications has increased the effectiveness of many
missions, both via uplink of sensor info to operators on a ship, and downlink of basic
commands such as updated waypoint lists. However, this thesis argues that in order
to enable new dynamic missions in the ocean, we must consider closed-loop control
with acomms in the feedback loop. Some examples of such missions are tight forma-

tion flying, cooperative pursuit of targets such as marine animals, or pursuit of an
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oceanographic feature like a plume from an oil well or underwater volcano eruption.
In such scenarios, multiple cooperating vehicles can be highly effective, even neces-
sary, for achieving spatial and temporal resolution simultaneously. To enable these

capabilities, communication constraints must be at the forefront of control design.

Much work in acoustic communications has been aimed at traditional communica-
tion systems, which focus on achieving reliable transmission at high throughput. With
any error correction scheme, the price to be paid for increased reliability is increased
latency due to coding delay, and decreased throughput due to added redundancy. In
practical communication systems, handshaking and retransmissions are usually used
for reliable transport, such as the TCP protocol often used in the internet. However,

due to the propagation delays of acomms, TCP is not effective underwater.

For feedback control, the needs of a communication system are different. Con-
trol systems operate in real-time, so latency becomes arguably the most important
consideration. Long coding delays and/or retransmissions are not effective, as old
information is not very useful to a controller. Instead, it is often desirable to sacrifice
reliability and/or throughput for short delays. Of course, traditional feedback control
assumes that information moves around the control loop with no constraints or errors.
The field of communication-constrained control is also known as networked control,
and has received considerable theoretical attention. Motivated by the challenges laid
out so far related to dynamic underwater missions, this work aims to bring advanced

networked control algorithms into the field of marine robotics.

We believe that dynamic control of multiple underwater vehicles communicat-
ing with acoustics is a preeminent application of networked control. To this end,
this thesis presents contributions towards centralized multi-vehicle feedback control
in the presence of severe communication constraints typical of underwater acoustics.
A block diagram of such a scenario is shown in Figure 1-1. The first major area
of work considers the formulation and solution of new underwater pursuit problems
using closed-loop control, namely field experiments in multi-vehicle target pursuit,
and “oceanographic pursuit” of dynamic ocean features. The second area of work

presents a unified formalism for multi-vehicle control and estimation with measure-
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ment, control, and acknowledgment packets all subject to scheduling, delays and

packet loss.

|
Vehicle Network | Centralized Controller
1
Measurements
Multi-vehicle system M Estimator
I N
Includes: | Commynlcatlons
Environment or target SDCTEd““”g Outside
Vehicle dynamics | Pelays . .
information
Vehicle low-level control Packet. LOS'S
Disturbances I Quantization
Measurement model
Sensor noise Controller
Controls

Figure 1-1: Networked control system with centralized estimator/controller and mul-
tiple vehicles, connected via constrained communication links.

1.2 Background and Prior Work

The vision of a dynamic multi-vehicle cooperative ocean monitoring system builds
on a number of diverse topics: vehicle autonomy, navigation and control, underwater
communications, numerical ocean models, and networked control. In this section,
we present background and prior work in these topics, as well as relevant vehicle
operations underwater. We provide an overview here and give more detailed literature
review in the specific chapters. Chapter 3 discusses a collection of experimental
works in the specific context of target pursuit, Chapter 4 includes more background
on numerical ocean models, and Chapter 5 reviews some specific networked control

work in more detail.

1.2.1 Vehicle Control and Navigation

Onboard flight control is developed and tuned specific to the vehicle design (shape,

control surfaces, thruster placement), and ranges from simple PID controllers to
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highly nonlinear MIMO control systems for vehicles with complex dynamics. Of-
ten vehicles use trackline-following, path-planning, or trajectory-generation methods
as an outer loop around low-level thrust and attitude control [84]. Above these low-
level controllers there is some form of an autonomous decision-maker. This software
ranges from simple modules that execute preplanned missions (for example, visiting
a series of waypoints), to powerful adaptive mission planners such as MOOS-IvP [25],
or T-REX [159]. Additionally, due to acoustic links to a ship, many AUVs rely on
some aspect of human-in-the-loop decision making for low-frequency high-level plan-
ning, leveraging the economical mobility and data-gathering capabilities of the AUV

combined with the experience and knowledge of human scientists [30,215,257].

The primary impediment to navigation underwater is that GPS does not work be-
low the ocean surface. Depth, magnetic heading, and orientation are relatively easily
obtained underwater in the open ocean, however methods for accurately determining
geo-referenced position are challenging. Advanced odometry-based navigation can be
quite accurate when expensive sensors are used. Navigation systems relying on inertial
measurement units (IMU) and Doppler velocimetry (DVL) are frequently used in the
underwater environment [132]. These systems have been reported to give sub-meter
navigational accuracy, and also work well when combined with low frequency updates
from a global navigation system (such as the acoustic methods described in the next
section). However, these systems have significant drawbacks. A high-end IMU costs
$150,000, while a DVL costs $30,000 or more depending on depth-rating, and Doppler
velocimetry is only useful within range of a solid boundary. DVL bottom-lock range
is frequency-dependent and is inversely proportional to the accuracy of measured ve-
locities. As with very high-end IMUs, these units are prohibitively expensive and
large in size for use in small, economical AUVs. Price and form factor aside, inertial
and Doppler methods suffer from drift over time—errors accumulate as acceleration
and velocity are integrated to give position. The latest high performance inertial
and Doppler methods have drift rates as low as 0.1% of distance traveled, a ‘good’
system could have drift on the order of 0.5%, and obviously, as cheaper and smaller

components are used, performance degrades further.
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Acoustics can provide GPS-like drift-free globally referenced navigation underwa-
ter, albeit with other limitations. There are two main classes of acoustic navigation
underwater that provide drift-free global reference: Long baseline (LBL) [162] and
Ultra-short baseline (USBL) [243]. These systems use the travel time of sound in
water to determine distance and therefore track acoustic pingers.

The most effective underwater navigation is achieved using drift-free acoustic sys-
tems combined with IMUs and DVLs to achieve accuracy on the order of one me-
ter [132, 136,203, 248]. With multiple-vehicle fleets, collaborative navigation using

inter-vehicle ranging can help improve position estimation accuracy [13,73,75].

1.2.2 Underwater Communications

Radio-frequency wireless communications, the workhorse of terrestrial systems, are
infeasible underwater due to severe attenuation. Attenuation is less dramatic at low
frequencies, however systems running as low as 433 MHz have only been reported
to propagate just over one meter underwater [7]. Transmissions at extremely low
frequencies (ELF, 30-300 Hz) can propagate through conductive seawater, and are
commonly used for communications by US Navy submarines [113], however trans-
mission at these frequency bands requires large antennas and high power, making
it impractical for use by small autonomous vehicles. Optical communications using
lasers or LEDs have also been considered for high-bandwidth underwater communi-
cations [137] and can offer high throughput in certain conditions (several Mbits/sec
at ranges up to 100-200 m [65, 76, 77, 130]), however optical links are affected by
high scattering due to particles in the water and have limited range. They are also
challenged by ambient light in shallow water operations.

Similarly to navigation, underwater communications are primarily accomplished
through acoustic links. Acoustics are unique due to distance-dependent bandwidth
[228] and long propagation delays. Various technologies exist for acoustic modems,
usually operating in the 10-30 kHz range. Performance of acoustic modems varies
significantly based on the modulation type used and the channel characteristics. Fre-

quency shift keying is a simple noncoherent modulation technique which is relatively
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reliable and low-power, but offers low communication throughput. Phase-shift key-
ing (PSK) with channel equalization is a more complex coherent modulation method
that requires more processing but offers the possibility of orders of magnitude higher
throughput [87]. Channel characteristics can vary in different ocean applications
based on the water depth, bottom topography, oceanographic water properties, sea
surface conditions, ambient noise, and the direction of communication [229]. Deep
water vertical channels offer the best conditions for acoustic communication due to
low ambient noise and scattering in the mid-water column, less difficulty with multi-
paths, and lower variance on delays [221]. The shallow water channel is much more
difficult due to multipaths from surface and bottom effects, high delay spreads, and
a high Doppler spread [7]. A rough performance limitation for vertical channels in
deep water is 100 km - kbps for the range-rate product [131], while in shallow horizon-
tal channels achievable throughput can be as low as 80 bps, and sometimes channel
availability can completely vanish for tens of minutes [179]. Recent work has focused
on signal processing such as multiple input-multiple output channel estimation and
spread-spectrum techniques for improving the performance of phase-coherent meth-
ods [47].

There are a number of commercial off-the-shelf acoustic modems available [6],
such as the WHOI micromodem [85], models by Teledyne Benthos [5], LinkQuest
3], EvoLogics [2] and DSPComm [1]. Additionally, USBL navigation units include
acoustic modem capabilities integrated into the transceiver and transponders, such
as with the Sonardyne Ranger USBL system used with the NDSF vehicle Sentry
[4]. These USBL units support transmission of position data obtained by the USBL

interleaved with short data or control packets.

Acoustic communications are half duplex, as transducers can not send and receive
at the same time [150]. Additionally, due to collisions of acoustic packets at the re-
ceiver, great care must be taken with acoustic modem systems if communications with
multiple nodes must be achieved. Research is being conducted with multiple access
(MAC) schemes, however the most widely used method in practice is simple Time

Division Multiple Access (TDMA), where a time slot is allocated for each transponder
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to communicate [116]. Specialized “spatial reuse” geographic routing and scheduling
techniques exist for TDMA where improved performance can be obtained by con-
sidering interference caused by distant transmissions, instead of requiring a strictly
collision-free schedule [64,125,180].

Finally, we note that the use of acoustic communications for dynamic control pur-
poses has a different set of requirements and goals compared to the traditional view
of communication theory and networking. Since control is real-time, time-averaged
throughput is not the primary metric of interest. Old packets are not as useful to a
control system, and long block codes cannot be used to improve throughput because
they increase the latency of the measurements and commands in the control loop.
This affects choices of packet size, forward error correction codes, as well as transport
protocols. Much of the research on optimization of these choices for communica-
tion networks is not relevant for networked control systems, where communication

constraints are incorporated into control design in an integrated manner.

1.2.3 Ocean Science and Numerical Ocean Models

Similar to numerical weather prediction (NWP) for the atmosphere [200], numerical
ocean models now play a major role in our understanding of ocean science [106].
Originally, these models were global-scale, and did not have resolution sufficient to
study smaller and more dynamic features. As models improve, the situation is chang-
ing. The behavior of ocean fronts and similar features such as plumes and filaments
has long been of interest to oceanographers [79,92]. Recent measurements in a front
off Japan have revealed sub-mesoscale structure that figures unexpectedly large in
the energy balance [62]. Fronts and plumes are implicated in foundational work on
Lagrangian coherent structures [173], and can show dramatic physical, chemical, and
biological variability that is critical to understanding ocean-atmospheric coupling,
ecological systems, and pollution [37,78]. Despite continual advances in modeling of
complex natural processes, ocean fronts at the mesoscale and smaller remain chal-
lenging [41,111], and hence have emerged as a primary focus area for mobile sensing

systems.
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The quality of predictions is of course a perennial concern in modeling any stochas-
tic, nonlinear process [133,144,177,204,230]. Large-scale data assimilation is often ac-
complished using ensemble Kalman filter techniques [74,120]. An ensemble of monte-
carlo model runs with variable forcing and initial conditions is a popular means for

describing forecast uncertainty [209]; we use such forecast techniques in Chapter 4.

1.2.4 Relevant Vehicle Operations Underwater

We lay out some background in vehicle operations in the ocean in the following
sections. Prior work with multiple-vehicle operations is the most directly related to
this thesis, however, we also give background on some single-vehicle operations where
relevant sampling, path-planning, and control designs are used. We focus primarily
on experimental work here, although notable theoretical and simulation works are

included as well.

Multiple Vehicles

An overview of multi-vehicle operations in the ocean is given in Figure 1-2, showing
two axes: reliance on communications, and use of environmental models. A selection
of particularly relevant works are placed in appropriate locations within this two-
dimensional space. These works as well as more are described in more detail below.
Early references on the benefits of multiple vehicles for ocean surveys include
Willcox et al. [251] and Curtin et al. [59]. Leonard et al. have studied coordinated
control with multiple gliders extensively, including field experiments in Monterey
Bay [83,142,143,176]. Coordination was performed via surfacing and satellite com-
munication with a centralized control center on shore, often including human input.
Schneider and Schmidt present a command and control architecture for coordinat-
ing multiple vehicles from a ship using both RF and acoustic communications [215].
Multi-vehicle relays using acoustics were studied by Murphy et al. [167] and Cheung et
al. [46]. Various acoustic communication infrastructures for multi-vehicle deployments

have been presented, e.g. Grund et al. for PLUSNet [107], the GREX project [8,33],
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and Caiti et al. for the Underwater Acoustic Network (UAN) project [35,36]. Packet

loss rates in mobile networking experiments are studied in [34, 38].

Distributed navigation using acoustic ranging is studied in [13,58,75,129], while
formation control and leader-follower experiments at relatively slow speeds are pre-
sented in [17,33,53,226]. Advanced control approaches for leader-follower missions
are studied via simulations in Cui et al. [56]. Coordinated tracking of acoustic signals
using multiple vehicles and arrays is considered experimentally in [69,151,152]. Das
et al. consider coordinated deployments of vehicles and drifters for Lagrangian track-
ing, including field results [61]. Petillo & Schmidt give experimental results with two

AUVs performing coordinated adaptive surveys for detecting internal waves in [181].

Sampling and path-planning

There has been considerable work studying advanced planning optimizations for mul-
tiple vehicles via simulations. Sampling strategies for data assimilation are presented
by Heaney et al. [114], and related path-planning optimization is considered by Yil-
maz et al. [256]. Collaborative control for tracking Lagrangian coherent structures is
studied by Michini et al. [160]. Petillo et al. present a distributed simulation approach

for plume and thermocline tracking in [182].

Although not multi-vehicle, there has been related experimental work with single
vehicles that make reactive decisions based on measurements. A single vehicle has
successfully tracked a plankton bloom [98]. Tracking of internal waves and the ther-
mocline has been performed by Cruz & Matos [54], Cazenave et al. [43], and Zhang
et al. [260]. Similarly, Zhang et al. present tracking of upwelling fronts in Monterey
Bay [259,261,262].

Path-planning under knowledge of current forecasts has been studied extensively,
for example by Smith et al. [225] and Lolla et al. [149]. Lagrangian coherent structures

have also been used for path-planning in currents [124].
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Teleoperation

While not directly related to autonomous vehicles, underwater teleoperation is a rel-
evant field [201]. ROVs of course are remotely controlled via the fiber optic tether,
which offers lossless high bandwidth communication with very low latency. However,
when vehicles are remote controlled via acoustic communications, communication
constraints are a very important aspect of the system. Interest has been increasing
for using un-tethered AUVs for manipulation tasks. While autonomous manipula-
tion is in its early phases [153], the possibility of supervised or semi-autonomous
manipulation via wireless communication is intriguing.

Most approaches for acoustic-based remote control do not perform closed-loop
dynamic control (such as force-feedback teleoperation). The human operator gives
open-loop commands, possibly with some local closed-loop assistance to avoid dis-
turbances [212]. Often, model-based prediction is used to reduce the effects of the
communication delays and give the operator an up-to-date representation of the pose
of a manipulator, an example of such a system is described by Sayers [211].

More recently, there have been experiments with wireless operation of the NEREUS
vehicle, both over acoustic and optical links [32,249]. In these experiments, feedback
loops for the manipulator arms were closed onboard the vehicle, with only joint posi-
tions and parameter settings sent over the wireless link to avoid stability issues. Still,
the pilots reported latency as the most challenging aspect of controlling the vehicle

and manipulator.

1.2.5 Networked Control

Traditional control theory assumes that signals between sensors, controllers and actu-
ators are perfect, e.g. there are no communication constraints. When communication
is not ideal, such as with wireless communications, challenges arise for control [14].
There are many ways of representing communication constraints, ranging from fun-
damental information-theoretic bounds on channel capacity to practical abstractions

that model the behavior of specific packet-based protocols as seen by the control
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system.

Theoretical questions of performance and stability of even very simple plants sub-
ject to communication constraints have been the subject of seminal papers in net-
worked control. The famous Witsenhausen counterexample [252] was an early result
in networked control, and has attracted considerable research interest even to this
day. Regarding stability, Tatikonda & Mitter related the channel capacity to the un-
stable eigenvalues of a dynamic system, and presented design techniques for encoding
and decoding [232]. Martins & Dahleh studied disturbance rejection and present a
new Bode-like integral relating unstable dynamics and channel capacity [154]. Sahai
& Mitter present the notion of anytime capacity and discuss the relationship between

coding delay and control performance in [208].

For application to real-life systems, the theoretical bounds of information theory
are less useful, and most work considers some variation of the packet-based network
abstraction. While specific network protocol stacks can become very complex, a sim-
plified explanation is as follows. Packets include a certain amount of information and
take a certain amount of time to transmit. Usually, the field of networked control does
not consider the physical layer in detail, working instead with higher level abstrac-
tions. After encoding and transmission across a lossy channel, packets are decoded
successfully with some probability, and dropped if decoding is unsuccessful. Delay in-
cludes the time to encode, transmit, and decode the packet, on top of the propagation
delay through the wireless medium (much longer in water than air!). The packet size
and schedule for a particular link in the network determines the throughput of that
communication link; packet size, encoding, and modulation are determined based on
a tradeoff between bit rate and packet loss. The quantization of the information (e.g.

sensor measurements, or actuator commands) depends on the packet size chosen.

This thesis (and the majority of the work described below) uses the abstraction
of packet loss, delay (and scheduling if multiple communication links are used), and
quantization to describe a communication link. We first will give an overview of
constructive techniques for networked control, and then discuss Model Predictive

Control and its application to networked control. Figure 1-3 shows the relationships
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and differences between some major results in networked control, focusing on the main
elements of our jump linear system (JLS) control technique developed in Chapter

5, namely Model Predictive Control, scheduling and delays, and robustness to packet

loss.
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Figure 1-3: Literature review of networked control techniques, focusing on Model
Predictive Control, scheduling and delays, and robustness to packet loss. The works in
purple consider fundamental information-theoretic limits, and the works shown in blue
develop constructive techniques using packet-based abstractions. Constructive works

shown in bold consider losses in both the sensor-estimator and controller-actuator
links of a feedback loop.

Constructive Techniques

While literature on networked control is extensive, the focus of this thesis is on con-

necting advanced control techniques to real-world applications. The literature re-

viewed in this section is relevant to this goal.
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Signal delays are commonly considered in control design; deterministic delays are
easily handled with standard techniques, and there is extensive literature on stochastic
delays (see Nilsson et al. for a survey [172]). Similarly, estimation subject to delays

has been addressed in [139,227].

Related to delays, deterministic scheduling is an aspect of networked control sys-
tems that arises when multiple vehicles must share a communication medium. As
mentioned in Section 1.2.2, interference considerations and bandwidth limitations of
underwater acoustic networks mean that the most common approach for multiple
access is TDMA scheduling. This scenario results in a multirate control system,
where measurements and commands are sent at different times, and possibly at dif-

ferent rates. Some results in multirate control include the ¢; optimization approach

of Dahleh et al. [60] and the LMI approach of Lall & Dullerud [138].

Packet loss when there are no delays or rate limits has been studied extensively
for the case of quadratic cost. The Kalman Filter is easily set up to handle intermit-
tent measurements; performance in this situation is analyzed in [222]. Gupta et al.
present the Modified Information Filter for the scenario where there are packet losses
between the sensor and controller in an LQG control loop [108]. Alternative encoding
schemes for dealing with packet loss include multiple-description coding [126, 175]
and temporal packet coding [205], although each of these increases latency due to
coding delay. Control techniques for the scenario with lossy channels between the
sensor and controller and the controller and actuator have been presented by Schen-
ato et al. [214] using linear matrix inequalities (LMIs), and by Imer et al. [123] using
dynamic programming; Imer’s dynamic programming approach results in a highly
tractable recursion. We extended the work of Imer et al. to the case of independent
multi-channel packet losses [196]. A major consideration in these schemes is whether
or not control packet acknowledgments are available. If they are, then the usual sep-
aration principle holds and estimation and control can be designed independently. If
they are not, then the “dual effect” is present—control packet uncertainty affects es-
timation. A middle ground is lossy control acknowledgments, studied in [93,94,134].

With underwater acoustic networks subject to long propagation delays and interfer-
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ence constraints, acknowledgments may be very costly in time. Notably, the case of
delayed and lossy acknowledgments has not been considered in the networked control
literature, motivating our treatment of this case in Chapter 5.

Many works consider quantized control where all packets are successful without
delay. Fu presents a sector bound approach where a logarithmic quantizer is treated
as a norm-bounded uncertainty within a robust control scheme [80,88]. An alternate
approach is to use dynamic quantizers that adjust the quantization window based
on the plant state [10,11,163]. These sort of dynamic quantizers rely on lossless
communication, and synchronization issues can arise if packet loss is present.

The Markov jump linear systems (MJLS) community has studied control within
Ho and H,, frameworks. MJLS descriptions can incorporate complicated jump be-
havior, including packet loss. The usual assumption is that the “mode” or “jump
variable” is available to the controller, which in the networked control setting means
that control packet acknowledgments are available. MJLS approaches based on LMIs
for this case are studied in [52,82,96,99,217,218]. The case with no mode obser-
vations is significantly more difficult and has received limited attention, often via
difficult and suboptimal iterative optimizations [238]. MJLS approaches can also
handle deterministic schedules, but the tractability of the LMI solutions does not
scale well with problem size/schedule length [218].

There have been limited works in networked control that consider more than
one of the above communication constraints simultaneously, as theory becomes quite
complex. Results have been limited to stability tradeoffs, as opposed to performance
bounds. Tsumura et al. study tradeoffs between packet loss and quantization [234],
Chiuso et al. study packet loss and delay [48], Donkers et al. study scheduling con-
straints and delays [66], and Heemels et al. consider packet loss, quantization, and

delays [115].

1.2.6 Model Predictive Control

Model Predictive Control (MPC) is a control approach that leverages real-time on-

line optimization to compute a trajectory of optimal control commands over a finite
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horizon. Traditionally, the first command is executed each step, and the process is
repeated with a rolling horizon. The primary advantage of MPC over linear control
is that the optimization approach allows for state and input constraints as well as
certain types of nonlinearities to easily be handled [158]. The drawback is compu-
tational complexity, however as computing power improves and optimization solvers
become more efficient, MPC can be used effectively in many applications [26]. MPC is
widely used in industry, although the constraints and rolling horizon make theoretical

analysis more difficult [121,187].

One disadvantage to MPC is that it assumes perfect state information. A common
approach is certainty equivalence (CE-MPC): use an estimator and design control
under the assumption that the estimate is the true state and there will be no future
disturbances. In this case, the cost function is deterministic. The logic follows from
the separation principle in LQG control, and often works well in practice [49,223,247].
Various approaches for robust MPC have been presented, e.g. [21,103,104,118, 157,
174,253]. These techniques are discussed in more detail in Section 5.9.5, however

they are often considerably more computationally intensive than deterministic MPC.

MPC has also been applied to networked control, most often to the case of packet
loss between the controller and actuator. For this scenario, a natural approach called
packetized predictive control (PPC) is to send an entire trajectory of commands
to a buffer at the actuator [19,109,193]. If future packets are lost, the actuator
executes commands from the buffered trajectory. Obviously, disturbances cannot be
rejected if packets are lost, however, this approach offers many advantages compared
to the usual approaches of zero or hold-input control. Variations on PPC study
the rate-distortion tradeoff when quantization is present [192], and formulate the
optimization to generate sparse control trajectories using the ¢; norm [168]. The
PPC idea of sending buffered trajectories has been applied in a number of networked
control settings [57,81,100,146,161,183,184,241]. These approaches are discussed in

more detail in Section 5.2.4.

Quantized MPC is a related area of research. Explicitly including quantization

levels in the optimization is an option, however this results in an intractable com-
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binatorial optimization problem. In a series of related works, Goodwin et al. derive
optimal closed-form solutions for quantized MPC with vector codebooks, and study
the partition of the state space that characterizes the solutions [102,189-191, 219].
These approaches scale poorly with long trajectories, as the number of codebook
entries scales with the trajectory length and lookup becomes an expensive operation.

MPC is quite flexible for modification to different problems, with the tractabil-
ity of the underlying optimization being the most important consideration. Other
extensions of MPC include hybrid autonoma [20], MJLS [239,240], and distributed
MPC [169,213].

1.3 Field Experiment Setup

The field experiments in Chapter 3 and Chapter 6 both use our autonomous surface
craft and acoustic modem testbed, with operations in the Charles River. We describe

this testbed here.

1.3.1 Autonomous Surface Vehicles

We use autonomous kayaks as shown in Figure 1-4 for our experiments; they are
also described in [97]. Each craft is 1.8m long, weighs about 40 kg, and has a rotating
thruster near the bow for propulsion and steering. The maximum speed of the vehicles
is approximately 1.7 m/s. The relevant navigation sensors available on each vehicle
are a tilt-compensated compass and RTK GPS. We use Novotel GPS antennas, uBlox
GPS receivers, and the RTKIib software package [231], and have observed position
variances on the order of 107* m2. Raw compass measurements are passed through a
first-order low-pass filter with time constant 2 s, and the noise variance on this signal
is estimated as 10 deg®.

The vehicles run MOOS-IvP autonomy software [25] integrated with custom con-
trol algorithms and modem interfaces. We rely on the the MOOS heading PID con-
troller, which runs at five Hz, and the MOOS trackline controller, which runs at two

Hz. Step response experiments with the kayak under closed-loop heading control
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indicate a rise time of roughly four seconds, and 30% overshoot; we also note the
kayaks are able to turn 180 degrees in approximately three seconds. The MOOS
trackline controller is an inner-outer loop that modulates the desired vehicle heading
so as to steer it toward a point on the trackline, some lead distance [; ahead. When
the waypoint is closer than the lead distance, the vehicle simply drives towards the
waypoint. For longer distances the result for small errors is a proportional map for
desired heading: ¢? ~ e,/l;, where e, is the cross-track error in meters and ¢? is in

radians.!

Figure 1-4: The Charles River Basin in Cambridge/Boston, MA, and the autonomous
kayak Nostromo. Water depth is 2-12 m.

1.3.2 Acoustic Communications

We use the WHOI Micro-Modem [85], a well-established and commercially available
technology for underwater acoustic communication. Modems are towed by the vehi-

cles, suspended at a depth of about 1.5 meters; this gives us realistic shallow-water

!The linear form written is based on approximation of the tangent function. For errors less than
one meter, the MOOS Trackline controller increases the lead distance proportionally, effectively
lowering the gain to limit oscillations.
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acoustic performance, but with direct access to GPS and RF wireless connectivity at
the surface for conducting controlled tests. Along with messaging, we use the modem
for one-way travel-time ranging [73]. For messaging, the Micro-Modem has six differ-
ent packet types with different lengths and data capacities. In Chapter 3 we use the
FSK mini-packet (“MP”), which is regarded as the most robust of the packet types,
but contains only thirteen bits of information. The mini-packets take slightly over
one second to transmit. We also use the full-sized Rate 0 FSK packets (“FSK0”),
which carry thirty-two bytes of information and take approximately five seconds to
transmit. All Micro-Modem packets are sent with an acoustic source level of 190 dB

rel pPa.

We note that the upcoming MicroModem 2 will include new flexible PSK mini-
packets, which are available at different PSK data rates and are flexible in terms of
the packet size. This capability will help give more options when designing a system,
as it fills the gap between the 13-bit minipacket and the full-sized FSK and PSK

packets in terms of latency, packet size, and reliability.

The experimental work in this thesis took place in the Charles River Basin, shown
in Figure 1-4. This domain has fresh water 2-12 m deep, a complex bathymetry,
and some hard surfaces on the boundaries (seawalls and bridges); our working space
is about 1500 m long and 500 m wide. Acoustic performance in this environment is
different from an open-water deep ocean scenario, where multipath and reverberation
are much lower, but the ranges are higher. Operations in the Basin can have highly
variable acoustic performance, as shown in Figure 1-5. Our conditions are multipath-

limited and travel times are short.

We use TDMA scheduling for multi-vehicle communications. Scheduling and tim-
ing is especially important for closed-loop control. We enforce the fixed time slots with
a number of timeouts, as indicated in Figure 1-6. We synchronize clocks using the
network time protocol; in the absence of clock synchronization, we note that precision

clocks are becoming increasingly practical for use on underwater vehicles [73].
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Figure 1-5: Micro-Modem performance data in the Charles River Basin, an environ-
ment limited by multipath, not power. The left plot shows transmissions from the
source to a mobile relay, and the right plot shows transmissions from the relay to the
destination. The SNR value indicates sound pressure level relative to ambient noise.
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Figure 1-6: The internal state machine used on each vehicle to maintain consistent
timing with respect to predefined transmission and reception slots. Thick arrows
distinguish acoustic events that initiate state changes or other actions from normal
logic flow. Special operations are indicated to handle detection of erroneous multipath
receptions, which frequently occur in this environment. For example, a good reception
for a time slot T; will follow the “Receive complete” path (bottom) to a good signal.
A trailing multipath reception will return to the receiving state, but the end of time
slot T; will arrive before the end of the packet. In the top right, slot T; is already
taken by the good reception, so we return to the ready state with no action taken.
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1.4 Overview of Approach

This thesis considers networked control of multiple-vehicle ocean systems, presenting
contributions towards truly dynamic integrated missions in the presence of severe
communication constraints. The contributions are aimed towards implementation

and experimentation with real-world testbed systems.

Although navigation is challenging and important for all underwater vehicles,
we focus on the multi-vehicle control aspects and consider navigation as a given.
The uncertainty of whatever navigation system may be used is incorporated into
our estimation approach as measurement noise for vehicle positions. Similarly, we
consider abstract models of vehicle motion that capture high bandwidth low-level
dynamic control onboard the vehicle. The effects of disturbances as well as unmodeled
dynamics (of the vehicle under low-level control) are considered process noise for our

estimation purposes.

We consider communication constraints using the abstraction of packet loss, de-
lays, scheduling, and quantization. We do not consider optimization of the lower
layers of the communication system—choices such as modulation, channel equaliza-
tion, and error correction coding. Except for the specific range-based target pursuit
experiments in Chapter 3, we do not consider quantization of sensor commands,
as this is a highly application-specific problem. In Chapters 5-6, our main focus
with quantization is the tradeoff between different control packet types (broadcast vs.
individual), as well as the tradeoff between control quantization and control packet

loss.

We use a centralized control architecture (as diagrammed in Figure 1-1) for a
number of reasons. First, our vision for a comprehensive ocean monitoring system
involves integration of networked control with lower-frequency procedures in data
assimilation and model forecasting. These procedures are computationally-intensive
and draw on data from many sources, making a centralized computation center at-
tractive. Second, ocean systems are expensive, and operation is risky. Operators

prefer to have the ability to watch over the system and intervene if necessary, which
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is much more difficult with decentralized control architectures. Additionally, it is
often beneficial to blend expert human input (e.g. from oceanographers) with au-
tonomous capabilities. The third reason is that many decentralized control schemes
are designed based on centralized methods as starting points. As multi-vehicle sys-
tems grow in numbers and spatial coverage, network constraints will begin to drive
control in a more decentralized direction.

Regarding control techniques, we note that many more theoretical results of net-
worked control consider stability, versus performance. The ocean monitoring systems
we consider are not unstable in the traditional sense—vehicles will not be accelerating
arbitrarily fast across the ocean. These systems are more concerned with estimation
accuracy, reference following and disturbance rejection. If performance in these met-
rics is low, a form of practical instability can be observed where the feature or target
to be tracked is lost. However, networked control results on stabilizing unstable sys-
tems are not directly relevant. Due to this reason, as well as the lack of networked
control results that consider all of the communication constraints present in acoustic
communication networks, our control approach is to build a practical and effective
framework that handles all of the aspects we desire, while sacrificing some theoretical
rigor in order to do so. We demonstrate the effectiveness of our approach empirically

in field experiments and simulations.

1.5 Summary of Contributions

While the rest of this thesis focuses on dynamic missions with multiple cooperating ve-
hicles, Chapter 2 introduces some fundamental aspects of acoustic communications,
and presents a robust approach to a major acoustic networking problem: multicast
routing and power control. Specifically, we consider the minimum energy wireless
transmission problem [MET], augmented by the practical condition that constraints
on link power must be satisfied in probability. For this, we formulate the robust
counterpart of the multicommodity mixed-integer linear programming (MILP) model

from Haugland and Yuan [112], and derive scaled power levels that account for uncer-
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tainty. While not undertaken in this thesis, the optimization approach for routing and
power control is suitable for future integration with control and scheduling design.

This chapter is based on work published in [199].

In Chapter 3 we address through experiments the capability of acoustics to
sustain highly dynamic, multi-agent missions, in particular range-only pursuit in a
challenging shallow-water environment. As opposed to a traditional control and esti-
mation design scenario, the mission here is accomplished through a highly integrated
vehicle system performing full joint estimation and coordination through lossy, rate-
limited acoustic communications underwater. The three experimental configurations
studied show the effects of cycle time, quantization, and acomms performance on the
frequency response of the system. In particular, we show that for tracking highly
dynamic targets it is beneficial to trade-off quantization for low cycle time. These
outcomes show definitively that aggressive dynamic control of multi-agent systems

underwater is tractable today. This chapter is based on work published in [198].

Chapter 4 presents an integrated framework for “Oceanographic Pursuit”—joint
estimation and pursuit of dynamic features in the ocean, over large spatial scales
and with multiple collaborating vehicles relying on limited communications. We
present a unique multi-vehicle frontal point description and control methodology that
leverages numerical ocean model forecast ensembles. Our primary innovation is a
projector algorithm that carries out linearization of ocean model forecast uncertainty
directly in vehicle coordinates via a forward model technique. The outcome is a clean
stochastic system representation that captures coupling between sites and is suitable
for advanced techniques in networked control. Simulations using three model datasets
demonstrate the proof-of-concept. This chapter is based on work published in [196]
and [197].

Chapter 5 presents a unified formalism for multi-vehicle control and estimation
with control, measurement, and acknowledgment packets all subject to schedules, de-
lays and packet loss. The modular framework is built around a jump linear system
(JLS) description that includes Packetized Predictive Control (PPC), a technique

that combines the receding horizon optimization of Model Predictive Control with
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buffering at the actuator. Integration of these elements enables synthesis of a novel
technique for estimation using delayed and lossy control acknowledgments—a desir-
able and practical capability of fielded systems that has not been considered in work
to date. This chapter describes the framework, the estimation and control technique,
a simple illustrative example, and a few possible extensions.

In Chapter 6 we present simulation and field experiments demonstrating the
JLS-PPC controller in pursuit missions. The field experiments use three autonomous
surface vehicles towing acoustic modems, tracking a simulated feature. To focus
on control performance, “hybrid” measurements are created using the vehicles posi-
tions and simulated gradients. The acoustic communications are fully realistic, using
TDMA scheduling and quantized packets, and subject to packet loss. We also present
simulation results demonstrating the performance improvements of JLS-PPC over in-
dependent vehicles, comparison of two schedule paradigms, and scalability to larger
fleet sizes. A design tradeoff study between control quantization and packet loss is
demonstrated using the simulation framework, and finally, we present results showing
the benefits of using piggybacked ACKs.

We conclude and summarize the contributions of the thesis in Chapter 7, along

with a discussion of areas of future work.
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Chapter 2

A Centralized Optimization
Approach for Robust Minimum
Energy Multicast Routing and

Power Control

Most uses of acoustic modems have been in static or quasi-static deployments, where
energy, range, and time-averaged throughput are the major considerations. While the
rest of this thesis focuses on dynamic missions with multiple cooperating vehicles, this
chapter presents a robust approach to a major acoustic networking problem: multicast
routing and power control. Multicast is an important component of vehicle networks
as it is often beneficial to send commands to many vehicles at once to save both
time and energy. The multiplexed schedule in Chapter 5 is an example of the use
of broadcast in a multi-vehicle control system. Furthermore, acoustic modems have
recently become more prevalent on small low-power vehicles such as gliders, where

energy considerations are very important [86].

In this chapter, we consider the minimum energy wireless transmission problem
[IMET], augmented by the practical condition that constraints on link power must

be satisfied in probability. For this, we formulate the robust counterpart of the mul-
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ticommodity mixed-integer linear programming (MILP) model from Haugland and
Yuan [112], and derive scaled power levels that account for uncertainty. Our main
result is that the deterministic formulation with these scaled power levels recovers
exactly the optimal robust solution in the absence of correlations, and therefore al-
lows for efficient solution via MILP. The approach developed here relies on centralized
global optimization, which is more amenable to mobile networks than iterative algo-
rithms where convergence may be difficult while nodes are constantly moving. While
not undertaken in this thesis, the optimization approach for routing is suitable for

future integration with control and scheduling design.

2.1 Introduction and Prior Work

With underwater acoustic communications, range and data throughput depend on
modem power and carrier frequency [228], and as a result, ocean network deployments
are often over-powered or limited in scale to improve robustness. However, excess
power causes interference and depletes limited energy sources in untethered vehicles
and nodes [180].

This chapter considers underwater acomms routing with power control via a cen-
tralized robust approach, with emphasis on multicast. While the large size and ad-hoc
nature of many RF wireless applications motivate distributed routing methods based
on network discovery [206], the high latency and unreliability of acomms suggests
that these algorithms could exhibit poor convergence in the underwater domain.
However, centralized optimization requires that all data go to the central location
which itself uses communications resources. Considering large-scale ocean missions,
data assimilation and planning are typically centralized today and the marine as-
sets are expensive and tracked carefully [195]. These aspects of acomms and ocean
missions motivate optimization methods which can take into account motion plans,
global channel information, and operator input [119].

Wireless network design via centralized approaches is of course a rich and active

area of research. Convex optimization for routing in multi-hop RF wireless networks
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is presented in [55]; see also [12] for an approach specific to acomms. These works do
not consider robustness, however. Most prior work in robust network design, e.g. [9],
has considered uncertainty in traffic demands. Chang et. al. consider robustness
to uncertain packet success rates in lossy network coding subgraph generation [44].
Regarding power control in routing, several non-robust, acoustics-focused approaches
have been proposed, including [127]. Quek et. al. consider robust power allocation
for two-hop RF wireless relay networks [188] for a single source to single destination,
using multiple two-hop relay channels. Our approach shares the idea that power can
be traded off for robustness; we note that for acoustic communications, this tradeoff
is most clear with low-rate FSK modulation. Other factors such as time-varying
multipath become more important for higher rate techniques.

In this work, we consider multicast over arbitrary numbers of hops using acoustic
channel models. Although acomms possesses the broadcast advantage, multicast has
received little attention in underwater acoustic networks [171]. We base our approach
on the multicommodity MET-F2 formulation by Haugland and Yuan [112], and the
main idea is to use robust convex optimization to account for uncertainty in required
power levels for acomms. We give the problem statement in Section 2.2. Stochastic
acomms models motivated by data are discussed in Section 2.3. The supporting
formulations are outlined in Section 2.4, and our new approach for Robust MET is
presented in Section 2.5. Section 2.6, we show that the deterministic formulation
with properly-scaled power data can be used to solve the robust problem. We present
computational results in Section 2.7, and discuss conclusions and some realistic

extensions to our formulation in Section 2.8.

2.2 Approach and problem definition

We consider a single source transmitting to multiple destinations, and design minimum-
power broadcast trees and node power levels which meet individual connectivity re-
quirements with a specified probability. Node locations are considered static and

known; the primary sources of uncertainty are in transmission loss and noise at the
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receiver and transmitter. While we recognize the importance of protocol effects, we
do not consider link throughput rates, impacts of interference on medium access, nor
correlated uncertainty across links in this work in order to focus on the key aspects of
robust minimum-power routing. However, the formulation of Robust MET via con-
vex optimization is a key underlying construction onto which protocol aspects may

be added and analyzed.

Since we are designing power levels at the nodes, we choose to model uncertainty
in the transmit power necessary to achieve a minimum SNR at the receiver: p;; =
Dij + Pij. The mean power for link (i, j) to have successful transmission is p;; (the
no-uncertainty power), and the normal random variable describing the uncertainty

1

in the power is p;;.- The mean and variance for each link, along with the desired

probability of link connectivity, are inputs to the optimization.

Robust optimization considers the worst-case realization of the random variable
pi;; under the assumption of a Gaussian distribution we use the mean power plus
a properly-scaled addition to account for uncertainty. Our solution is thus feasible
for the worst-case realization within a certain probabilistic bound. We call the mean
power plus the scaled power p;; and will show in Section 2.6 that it can be set

deterministically.

2.2.1 Definitions

The wireless network is described by a graph G(V, E), where E is set of possible
(undirected) edges and V' is the set of nodes. The set of directional arcs derived from

F is A. The multicast source node is s and the set of destinations is D. The transmit

! As will be discussed in Section 2.4.2, the assumption of a Gaussian distribution is simply used
to formally size the uncertainty sets used in the optimization. Other distributions can be better-
suited for acoustic channel variability, and the size of the uncertainty sets could be approximated
under different distributions or based directly on data.
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power of node 7 is P;. Additionally,

x;; = Flow on arc (4, j) € A for commodity t € D

1 if the power of node ¢ > p;;

0 otherwise

The x variables are binary and an arc is included in the routing if it has flow for any

commodity.

2.2.2 Deterministic Minimum Energy Transmission [MET]

The minimum energy transmission [MET] problem was first introduced in [250], and
concerns the optimal node transmission powers and associated routing tree for a wire-
less single-source broadcast or multicast network. To be consistent with our notation

we use p;; to denote the deterministic power model. The formal problem statement is:

[MET] Find a power vector (Pi, Py, ..., Py) € RY of minimum sum, such that
the induced graph (V, EY), where EY = {(i,j) € A: P, > p;;}, has a path from s to
eacht € D.

Broadcast has D=V'\{s} while multicast has D C V\{s}. The MET problem can be

transformed into an equivalent Steiner tree problem and is thus NP-complete [112].

2.2.3 Robust Minimum Energy Transmission [Robust MET]

The robust formulation of MET requires the power constraints, which relate the power

P; at anode to the inter-node minimum power levels p;;, to be satisfied in probability:
E” ={(i,j) € A: prob (P; > p;;) > n} (2.1)

Successful transmission occurs when the power at the receiver exceeds a minimum

SNR threshold.
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2.3 Acoustic communications model

The unique characteristics of the acoustic communications channel leave many trans-
mission parameters to be optimized, such as center-frequency, bandwidth, frequency
allocation, power level, and modulation schemes [228]. Our models are aimed towards
practical implementation using currently available hardware. We assume center fre-
quencies, bandwidth, and frequency allocation to be fixed in our propagation models.
New versions of the WHOI MicroModem allow for transmit power to be set in the

range of 140-150 dB, whereas the standard source level is 185 dB [91].

2.3.1 Mean power model

For our mean power model we use classical descriptions of underwater acoustic prop-
agation, as well as the conversion from sound pressure level (traditionally denoted in
acoustics in dB rel pPa) to absolute power in Watts. To reach a threshold SNR of
SNR, decibels, with ambient noise Ngx dB rel uPa, the transmit power in Watts as

a function of distance r meters is approximated as
ﬁo,,) — ArF (10(ar)/10) (10(SNR0+NRx+60—185)/10) +B (22)

The first term (r") is due to spreading (k = 2 for spherical), while the second term is
a linear approximation of absorption loss in seawater [12]. Following the literature,
at 10 kHz, o = 1073 (this corresponds to attenuation of one dB per kilometer). The
constant factor that is a function of SNRy and Ngx represents the desired power at
the receiver, and (60 — 185) represents the conversion from dB rel uPa to W, the
(—185) is the conversion from dB to W, and the (+60) is due to the 1uPa reference
for sound pressure. The linear gain in the transmission loss model A and zero-mean
additive term B will be used in the next section. As an example, with SN Ry = 20,
and ambient noise of Ny = 40, 25 W of transmit power is required to transmit r = 5
km. This approximation roughly matches performance which has been observed with

the WHOI MicroModem [85].
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2.3.2 Uncertainty Models

Uncertainty derives from different types of nodes (static sensor nodes, AUVs, surface
ships), different operating locations (harbor, open-ocean, shipping lane) and differ-
ent ocean conditions (mixing water masses, varying wind/wave conditions, varying
bathymetry). These can all affect both the ambient noise at the receiver and the
transmission loss. Consequently, we define multiplicative and additive uncertainty on
each link: A;; =1+ /L-j, and B;; = 0+ Bij, with /L-j and Bij as zero-mean (Gaus-
sian random variables. To first order, multiplicative uncertainty can approximate
uncertainty in path loss (large-scale fading), or uncertainty in distance. Additive

uncertainty corresponds to ambient noise at the receiver.

References [119, 186] discuss two specific MicroModem datasets which are sup-
portive of the mean power model in Equation 2.2, and have a path loss variance
in decibels which is constant with distance. Constant variance in decibels roughly
equates with our multiplicative uncertainty model in Watts. These data were taken in
moderately deep water and in relatively good channel conditions. Conversely, Figure
1-5 shows data with higher variability obtained in experiments with MicroModems
in the Charles River (Boston, MA), a very shallow acoustic environment. Statistical
analysis of modem performance in this environment is ongoing work; we note that

our formulation can accommodate link-by-link means and variances from any model.

2.4 Supporting Formulations

2.4.1 MET-F2 MILP formulation

Here we summarize a compact integer programming model for MET introduced by
Haugland and Yuan [112]; our notation matches theirs. The strength of “MET-

F2” over previous formulations comes from multi-commodity flows: each commodity
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corresponds to a unique destination. We define a multicommodity flow vector «:

. 1 if flow to destination ¢t € D\{s} on arc (,7) 2.3)
0 otherwise

Continuity is defined in a standard way by relating the flows of each commodity, =,

the graph G, and the supply /demand vector by: ' € F(G,by),t € D\{s}, where F

is the set of admissible flows. For each commodity, the source has a supply of one,

and the destination has a demand of one. Supplies and demand for each commodity

t and node ¢ are set according to:

1 ifi=t
bst(i) - —1 ifi=s

0 otherwise

The multicommodity flow formulation allows for the broadcast advantage to be
represented compactly, using constraints which relate the y;; variables to the flows :Efj
using a specific ordering of power levels. For any nodei € V) let m; : {1,... ,N—1} —
V\{i} be a bijection such that p; 1), .-, Dix(v-1) is monotonically non-decreasing.
As shorthand, the subscript (i, k) defines the variables in non-decreasing order of
power required, where k refers to the kth-closest node to node i. The formal problem

[IMET-F2] is given below [112]:

miniymize Z PijYij (2.4)
{i,j}€A
subject to z' € F(G,by),t € D\{s}, (2.5)
N-1 N-1
Ty <D Y,
I=k 1=k
ieVikel,...,N—1,t e D\{s}, (2.6)
y € {0, 1}, (2.7)
x € {0,1}AIP (2.8)
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where the minimum mean link powers p;;, the sets A and D, the source s, and the

ordering m;; are given. The node powers are then set as P, = ) jev PijYij-

2.4.2 Robust LP

We start with a standard linear program:

minimize 'z
¥ (2.9)
subject to alx <b;, i=1,...,m

A deterministic LP uses constraints of the form alx < b;, where a! and b; are
known. The robust optimization framework of Ben-Tal and Nemirovski [24] requires
the solution to hold for all constraint parameters in an uncertainty set. We use
the second-order cone program (SOCP) formulation from [148], which models a; as
Gaussian random variables and sizes the uncertainty sets such that the constraints

are met in probability. We desire:
prob(alx < b;) > . (2.10)
The corresponding SOC constraint is:

alz+ 07 (n)||Q)/*2

< (2.11)
2

where ®~! is the inverse cdf of the standard normal distribution. The probability 7
must be > 0.5, which results in ®~!(n) > 0, making (2.11) a valid SOC constraint.
(); is the covariance matrix of the independent Gaussian random vectors a;; there
are no correlations between a,; and a; represented. Notice that this formulation uses
continuous decision variables, while there are binary variables in MET-F2. We will

address this in the next section.
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2.5 Robust LP for MET-F2

In the deterministic MET-F2 formulation, the P; variables are not used, since they
are redundant with p;; and y;;. In order to pose the problem as a robust LP, we
re-introduce them, which allows for P; to become larger than the mean minimum

powers:

P> pijyij. (2.12)

JEV
Substituting the stochastic definition of p;; from Section 2.3, and enforcing the

power constraint probabilistically, we require

P > Z(@j + Pij) i, with probability 7. (2.13)
jev
We define the vector of decision variables, with N P; variables, |A[|D| zf; variables,

and |A| y;; variables:

z = [Ph ooy Pryxig, o N N, Y2, - ,nyl,N] (2~14)

Following the procedure of Section 2.4.2, we can manipulate the constraints of

[MET-F2] into the form a!z < b;, and arrive at a new set of SOC constraints:

N
—P+ Y (Biyi) + 27 () HQ?ZHQ <0, i=1,...,N (2.15)

Jj=1

For the Robust MET-F2 problem, Q); is a large matrix with blocks corresponding to

the constituents of z (P, :Eﬁj, and y;;). For a given node i, y;; is a singleton vector
which we denote y;. Since uncertainty is modeled in the parameter p;;, multiplying
the variables y;;, the only nonzero block of @); is the one corresponding to y;. We

denote this block @);,,, and restrict it to be diagonal.

2

With inter-node variances of p;; denoted as o7, we define the vector of variances

from node ¢ to each other node o = [¢07,...,0%]. Thus, Q;,, = diag(c?).

The full robust MET-F2 optimization problem is:
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[Robust MET-F2]

minimize Z P, (2.16)
ieV
subject to (2.5),(2.6), (2.7),(2.8),
N
— P+ Y (pijyii) + @ (ol y <0,
j=1
i=1,...,N, (2.17)

PM < P < P™ i=1,...,N (2.18)
This model has two major features. First, the diagonal @);,, restriction reduces the
second-order cone constraint of the robust counterpart to a linear constraint. In
addition to the robust constraint (2.17), we have added maximum and minimum
node power levels to this formulation to more accurately describe constraints due to
real hardware. Second, the ordering based on power used in constraint (2.6) must be
modified to use p;; instead of the deterministic (or mean) powers in order to account

for the effects of uncertainty. In the next section we show exactly how to set p;;.

2.6 Analysis and determination of scaled powers

2.6.1 Determination of p;;

We show that the scaled powers p;; are a function of the mean and variance of p;;, and
further, that if p;; is used as input to the deterministic MET-F2 MILP formulation,
the results are the optimal solution to Robust MET.

We assume that the optimal routing y;; has been determined, and define j*(i) =
J s.t. yij = 1; j%(¢) is the node in the routing which requires the largest power for

connectivity with node 7. The robust constraint (2.17) reduces to:

Py > pijey + (I)_l(n)aij*(i)a (2.19)
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where 0;-(;) is the standard deviation of the uncertainty for the transmit power of
link i5%(7). Since the objective is to minimize the sum of the node powers P;, and P,
appear only in this constraint, the inequality (2.19) is tight. The resulting equality
relation for P; allows for substitution of the RHS of (2.19) in the objective,? which

becomes:

N N
i=1

i=1 i
The added robust constraint (2.17) has been moved to the objective.®> The only
remaining difference between the constraint sets of the deterministic MET-F2 formu-
lation and the robust version is that the ordering used in constraint (2.6) is different.?
Robust MET requires ordering based on the scaled powers p;;, while ordering in de-
terministic MET-F2 is set based on the deterministic (or mean) powers. However, by

the same equality argument as for (2.19), it is clear that:
Dij = Dij + (I)*l('r])aij. (2.21)

Substituting p;; for p;; in deterministic MET-F2 results in an equivalent formulation
to Robust MET. This is important computationally because MET-F2 (a MILP) solves
much faster than the general robust counterpart of a MILP (a MISOCP). We refer to
[112] for solution times; networks up to fifty nodes are tractable to solve to optimality

today.

The case of a nondiagonal @);,, represents correlations, which is outside our cur-
rent scope. However, correlations could be treated approximately by solving the

MISOCP with constraint (2.15), using the ordering based on p;; as given above. If it

2Substituting the robust definition of P; into the objective can also be viewed as a special case of
the robust optimization approach for cost coefficients with ellipsoidal uncertainty sets by Bertsimas
and Sim [28].

3This is a simple variable substitution since the inequality is argued to be tight, however this
procedure can also be interpreted via Lagrangean duality.

4Additionally, if maximum and minimum node power levels are desired, the P; variables must be
retained; the effect on overall problem size and tractability is negligible.
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is desired, a fully linear approximation could also be made through the relation:

1/2
’ ‘Qi,yyyi

1/2
2 = HQZ{W

- (2.22)

2.6.2 Special case: constant multiplicative uncertainty

Multiplicative uncertainty (described by A in Section 2.3) which is constant across
all links is amenable to further analysis. This model would be valid if all nodes have
similar characteristics and the ocean conditions are approximately uniform across the
operating region. The uncertainty for link ¢j in absolute power [W] at the sender
becomes a simple fraction of the mean power for the link in [W]:
i Dij

o <A1J> =045 = E? (223)
We show that under these conditions the optimal routing solution (zj; and y;;) ob-
tained through the deterministic MET-F2 program with the mean powers p is in fact
optimal for the robust formulation as well. The node powers are set with a simple

linear scaling of p;;«(;y that depends on 7, and that the scaling is the same across all

nodes.

We insert this model for o;; into the objective as defined in (2.20) and collect

terms:
; . (1 + ‘D_T(")) (;pﬁ*(iJ (2.24)

Since ®~!(n) and C are both constants, it is clear that this objective is the same as the
deterministic MET-F2 objective, with a constant scaling factor. With the constant
multiplicative uncertainty, the ordering based on p;; is the same as the ordering based
on p;;. Thus, this formulation has the same feasible set as deterministic MET-F2 and

the optimal solution to Robust MET is:

e The optimal routing xﬁj and y;; from deterministic MET-F2
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e Node powers set according to:
I_l(’r]) N -

The optimal topology and routing are invariant, but the power levels change with the
uncertainty level. This is important practically as only changes in the power scaling
parameter must be broadcast to all the nodes as conditions change, as opposed to a

complete routing table.

2.7 Computational Results

We ignore absorption losses and present results for the spherical spreading model
Dij = Grfj in order to be consistent with literature on MET. Results were computed
using AMPL/CPLEX. The results we show are all for a single multicast instance
with N = 30 nodes, and |D| = 15 destinations randomly located in the unit square.
We present example results for multiplicative and additive uncertainty separately, all
with n = 0.99. We normalize the powers such that the deterministic objective (o = 0)
has total power of one. We did not set maximum or minimum power levels for any

of these cases, in order to focus on the effects of the robust constraints.

2.7.1 Multiplicative uncertainty

The left side of Figure 2-1 shows the deterministic routing, and the right side shows
a scenario where all links going into destinations have a multiplicative uncertainty
of 0;; = p;;/2 and all links going into optional router nodes have a multiplicative
uncertainty of o;; = p;;/20. The routing is notably different between the two cases.

The deterministic case would be infeasible with uncertainty.
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Deterministic Multiplicative uncertainty
Objective = 1.00 Objective = 1.82

Figure 2-1: The left plot is the deterministic solution (shown for reference). The red
node labeled s is the source. The right plot is the solution when destination nodes
(blue) have multiplicative uncertainty of 0;; = p;;/2 and optional routers (black) have
multiplicative uncertainty of o;; = p;;/20. Note that the deterministic solution would
be infeasible for the scenario with uncertainty.

2.7.2 Constant additive uncertainty

We consider next uncertainties in transmit power for all links as a single constant:
O’(BZ‘]‘) = 0;; = oc. Figure 2-2 shows three cases. The uncertainty is normalized
such that a standard deviation of one is equal to the power required to transmit the
edge length of the domain. The optimal solutions are compared to the prior heuristic,
which takes the deterministic design and increases node power levels in order to meet
the robust constraints. The heuristic applied in this case is very poor. As uncertainty
increases, the true solution moves from the optimal deterministic solution towards
a star network. We present results up to large uncertainties to show the extreme
behavior of the routing trees. Figure 2-3 shows a summary comparison. Even at
low uncertainty, for o = 1/50 shown in Figure 2-2b, Robust MET achieves an
objective which is 41% better than that of the heuristic. We note that the optimal
solution is piecewise-linear in between changes in routing and topology, although

Figure 2-3 does not directly show each discrete change.
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Objective = 1.63

Objective = 2.09

Objective = 1.87

Objective = 4.36

(c) oc =

(S

Figure 2-2: Robust MET solution (left) compared to baseline heuristic (right) for
three different values of constant additive uncertainty. oo = 1 corresponds to un-
certainty equal to the power to transmit the distance of an edge of the box. The

objective is normalized such that the optimal deterministic objective (o = 0) is equal
to one.
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Figure 2-3: Normalized sum of transmit powers as a function of constant additive
uncertainty for N = 30 and D = 15. The total power with no uncertainty is 1.
Uncertainty with a standard deviation equal to the mean power required to transmit
the edge length of the domain is one.

2.8 Summary

Robust MET provides a tractable means for designing efficient geographic rout-
ing subject to power uncertainty, a capability which is especially useful in power-
constrained marine robotic networks that rely on unreliable acoustic communications.
We have shown that with proper scaling of input power levels, a deterministic MILP
formulation may be used to find the optimal robust solution; MILP solvers are faster
than mixed-integer SOCP solvers. Additionally, in the case of constant multiplicative
uncertainty the deterministic routing solution plus a linear scaling of node powers is
optimal. This suggests that the routing table does not always need to be updated as
conditions change. In this case or between shifts in topology for arbitrary uncertainty
scenarios, adaptive power-control schemes using feedback, such as in [185], could be

used for additional performance benefits as the routing is locally optimal.
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Chapter 3

Field Experiments in Multi-vehicle

Dynamic Target Pursuit

In this chapter we address through experiments the capability of acoustics to sustain
highly dynamic, multi-agent missions, in particular range-only pursuit in a challeng-
ing shallow-water environment. As opposed to a traditional control and estimation
design scenario, the mission here is accomplished through a highly integrated vehi-
cle system performing full joint estimation and coordination through lossy acoustic
communications underwater. The waypoint-based control used in this chapter does
not consider detailed vehicle dynamics or timing aspects that we focus on in Chap-
ter 5. Nevertheless, the three experimental configurations studied show the effects
of cycle time, quantization, and acomms performance on the frequency response of
the closed-loop system. In particular, the MP and FSKO experiments demonstrate
that for tracking highly dynamic targets it is beneficial to trade-off quantization for
low cycle time. These outcomes show definitively that aggressive dynamic control of
multi-agent systems underwater is tractable today. More broadly, the pursuit mission
presented in this chapter is one special case of a much larger picture where multi-
ple vehicles track features in the ocean, as opposed to point targets. We discuss an

approach for such missions in Chapter 4.
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3.1 Introduction

Truly dynamic missions of interest in the ocean include networked ocean vehicles
following a submarine or a marine animal; the latter has been a dream of biologists
for decades. Major gaps exist in our understanding of the life cycles of many important

marine animals, such as jellyfish [202], sharks [224,245], lobsters [242], and more.

In an effort to lay some groundwork for exploiting advanced algorithms in a real-
world ocean application, this chapter addresses with experiments an approach for
joint estimation and pursuit of a moving target using acoustic communications; see
Figure 3-1. Needless to say, the general pursuit problem has held high interest for
decades; it is a canonical mission in space and air, on land, and at sea. Probabilistic
pursuit-evasion games have been studied extensively in the robotics literature [244],
and pursuer and evader dynamics as well as nonlinear estimation are important factors
in these algorithms [145,263]. The effects of communication constraints have not
received much attention [166]. These are often addressed indirectly via decentralized
approaches that require minimal exchange of information between agents [50]; see

[70,89] for ocean-specific implementations.

There have been some recent experimental works that are related to our pursuit
scenario. Perhaps most intriguing is tracking a leopard shark in extremely shallow
water, using a single autonomous vehicle with a hydrophone array of 2.4 m spread [51].
The system was successful but the shark evidently moved only 200 m or so in 48
minutes reported. Bean et al. (2007) studied range-based leader—follower regulation
with Micro-Modem mini-packets and 1 m/s speeds [17], while Brignone et al. (2009)
study a similar problem with DSPComm modems and two vehicles operating at 0.7
and 3 m/s [33]. Both works present data from proof-of-concept field trials with mostly
straight trajectories. Soares et al. (2013) consider a vehicle following two leaders in
a triangle formation, with ranges of about fifteen meters, speeds around 0.5 m/s,
and a total loop time of four seconds [226]. In contrast, Cruz et al. (2012) consider
a complete feedback system—in the sense of two-way communications—for which a

stationary controller transmits commands for two mobile followers, who then transmit
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Figure 3-1: Screenshot from an active localization and pursuit experiment with acous-
tic communications. The two vehicles jointly estimate the target location based on
range measurements, and move to stay in formation relative to it.

back their positions [53]. The vehicle speeds are slow, in the neig