Process Improvement Applied to Product Development:
An Approach to Control of Development Lead Time

by
Carey W. Mar

B. S. Mechanical Engineering, University of Waterloo 1994

Submitted to the Sloan School of Management and the
Department of Mechanical Engineering in partial fulfillment
of the requirements for the degrees of

Master of Science in Management
and
Master of Science in Mechanical Engineering

in conjunction with the
Leaders for Manufacturing Program

At the
Massachusetts Institute of Technelogy
June 1999

©1999 Massachusetts Institute of Technology, All rights/ reserved

Signature of Author A A Kk g
“Slodn Schifpl bf Management
Department of Mecfjanical Engineering
Certified by . i
Steven D. Eppinger, Thesis Advisor
Associate Professor of Management Science
Certified by

Daniel E. WhitneN@QVAdvisor
Senior Research Scientist, CTPID, Lecturer, Department of Mechanical Engineering

Accepted by
Ain Sonin, Chairman. Graduate Committee
Department of Mechanical Engineering
Accepted by : - -
i e e LawrencelS. Abeln, Director of the Masters Program
; B A Sloan School of Management
LT R
o LS A A] }
LU T e ! %ARCHNES
- -
|

This page is intentionally blank.

Process Improvement Applied to Product Development:
An Approach to Control of Development Lead Time

by
Carey W. Mar

Submitted to the Sloan School of Management and the Department of Mechanical Engineering
on May 7, 1999
in partial fulfillment of the requirements for the degrees of

Master of Science in Management and
Masters of Science in Mechanical Engineering

Abstract

Speed and flexibility in product development will be the differentiators that determine which companies
will have competitive advaatages in the next decade. To this end, many authors have advanced
frameworks and tools for streamlining product development processes, all with the objective of reducing
the time required to engineer and deliver a quality product. Frameworks such as concurrent engineering
describe what the process should evolve to, while tools such as cross-functional teams address
implementation. But one element that has not been clearly addressed is the measurement and
improvement of the development process during the pursuit of this goal.

The focus of this thesis is on the design of an approach to improve the product development process,
based on applying established process improvement techniques and project simulation. The objective of
the improvement effort is to increase control over development lead time. Achieving this control
promotes efficient product development by allowing the development team to: i) improve speed and
flexibility, and ii) confidently evaluate the trade-off between them when necessary.

A “Voice of the Customer” study of the product development process at a large American automobile
manufacturer was used to determine inhibitors of this control and efficiency. Considering the relationship
between these inhibitors, three improvement efforts were identified:

e Track and address the causes of delay

» Optimize schedule recovery actions, and

e Develop a more representative measure of project progress.

To implement these efforts, two tools are discussed. A delay tracking framework was designed to collect
and analyze activity delays. This analysis focuses the reduction of controllable causes of delay and aids
in the determination of the efficacy of schedule recovery actions.

A project simulation was used to illustrate the expected effects of implementing the three improvement
efforts. The simulation can be used to generalize the learnings from tracking delay to aid in making
project management decisions. More specifically, the use of the simulation for evaluating schedule
recovery actions and the effect of proposed changes in design requirements is discussed.

Thesis Advisors:
Steven D. Eppinger, Associate Professor of Management Science
Daniel E. Whitney, Senior Research Scientist, CTPID, Lecturer, Department of Mechanical Engineering

Acknowledgements

Given that the motivation and basis for this study were the numerous interviews with various product
development staff at the internship company, I would like to express my sincere appreciation to those
who donated their time and insight into the company’s product development process. Their experience
and candid comments were invaluable.

I would also like to thank my classmates for making the Leaders for Manufacturing Program a rich and
exciting learning experience. Ican only hope that in my career I will be fortunate enough to work with
such talented, inspiring, and dedicated peers.

Thank you also to my advisors, Steven Eppinger and Daniel Whitney for their support of this work and
for their valuable insight.

Table of Contents

1. DEFINING THE GOAL: THE IDEAL PRODUCT DEVELOPMENT PROCESS 7
LLLSPEED ...ttt et teiseseasistssss s ssa s s seste s s et sa st ssassotssssnessesssesassesesesssesasssnssessassssesesessssnsesesesessseseses 7
L2 FLEXIBILITY .oviuiuiiiiiiiisisisisesesessesesmsessesssansssssassssessasesssnsessssesssnssossssssesessssessessssssssnsssssssssssessessssssesessessssssses 9
1.3 THE BUSINESS INITIATIVEccucurinimunrneeeesntnssesnssesssssssssssssssssssssenesssessensassenssesessesssssassssesssssesssssssssessssssssssns 10
1.4 SUMMARY OF THE BUSINESS INITIATIVE & STRUCTURE OF THE THESIS ...evuvveveveterereseeesteseseeeessesseesssesess s 11

2. IDENTIFYING THE ISSUES: VOICE OF THE CUSTOMER 13
2.1 PROACTIVE PROCESS IMPROVEMENT........ccuetrineeetereeissnssniessersssssiesesssesesensassesenensssenssssesssssesssssssssssssssssssssssees 13
2.2 IDENTIFYING OBSTACLES TO IMPROVEMENT OF THE P PROCESS.......cueveereveeeeeesesseesesereresesesssssssssessssssssssssses 13

2.2.1 Existing Project Management: BacKgrOUNG............coeueuiveiririeneriereesinnsisieesssseseseessesssesssssssssssesssssssssessens 14
2.2.2 Identifying the Customer Base and Focussing the ANalysiscc.occeurueveeoreseeeneereesesseseesessesessssesesns 15
2.3 PROCESS ISSUEScciicririiineerirrnsnsssersaesesssesessesesesssesestesssessasesessssse soseseesssessssasssesssssesssessssssnsssssssesssessssssesessssns 15
2.3.1 The “Design Churning” PRENOMENON............evuevevrrerereenistcieieessesesseseseeeeresssesesesesessssssssessessessesssssssens 17
2.3.2 POOL PrOEIESS MEASUTEcvevvrererirenceininsesnanaesesesesesenssssesesssssnssssssssstsststssssseosesssessssssssssssenssessesssssssssass 28
2.3.3 Reactive SChEdUIE RECOVETY......cuvuieeuiririierertceer ettt nesssessss st st se st etere s sssnssseae e snneeseessssseasane 31
2.4 ORGANIZATIONAL ISSUES.......c.cciiurierriieersnetetisssetaesstesenesesessssssssnssesstessenensssssaseeasasesasessssssssnssesssessssesssssssssssns 32
2.4.1 Low Credibility SCRhedUIES.......cccvvveeirririreccininiiietiectese ettt v sstenes et e se e e sasssenssse s esasasaes 34
2.4.218CK O UTEEICY ...eceiuiiiitcrnencrctseeistecss st ssses st e s ses s ssse s s sesss e e sossssssns s essennsesnsssesssssesassssesans 35
2.5 CHAPTER SUMMARY....coucutrireruiieeriitsteseseensasssesstesssesssesssssesssssssssessssosossssssneesesssstasesssessssssssasessssassssssssssssssns 37

3. DEFINING THE PROBLEM: DEFINING IMPROVEMENT EFFORTS 39
3.1 LINKING THE PROCESS AND ORGANIZATIONAL ISSUESccvevevvverenrieerenrereiesssessessenessossnsssesssssasessessssesesssssasesnes 39
3.2 ADDRESSING THE PROBLEM: 3 IMPROVEMENT EFFORTS.......cvvveveviietenrereiserissensenensessesssesessessessenssnesesssssssesnes 42

3.2.1 Track and Address Controllable Delaycceccveeeereereririeneeininenisisisisesesiinereenssereseseeesessssessssserssssssssssenes 44
3.2.2 Optimize Effectiveness 0f RECOVEIY ACHONScccoeverereeeiinieiereisiisinesistseseessesseeeesesesesesessesssssessssssans 47
3.2.3 Develop a More Representative Measure 0f Project PrOGIESSveeiueviirimeeeeeeereeeeeeneeesesseneseesesssssesens 48
3.3 CHAPTER SUMMARYoviiitiiiniritstiietsiaiie s tssssssse et ssstsssessssssesesassssesesssesssassssssensssosssosssssasssasssmmssssrnensnes 49

4. SOLVING THE PROBLEM: TOOLS FOR IMPROVEMENT 51

4.1 PROCESS IMPROVEMENT: THE TQM FRAMEWORKcccveviruiririieniireeniresieesssssesseseseseessesesesssssasessesessessessssons 51
4.1.1 PrOCESS COMITOL......cuviiiiniieiniienteinininistietetesie et s s st s s s sees bbb s as s sasse e et eueseseessesnsssesanes 51
4.1.2 Reactive IMPIOVEMENL.......c.cciviiieececniiiieieieeerere e etere s tessss e s s esase sttt sessetasseeseesesenesesenssesensassseseen 52

4.2 A DATA COLLECTION TOOL: THE KEY TO PROCESS IMPROVEMENTccveviieeetereereesstessasseseseessessessssssnssssssns 55
A2 1 INPULS c.coviiitcteincisses ettt se sttt a s s se e as s e b s s e s s et sbesebebesenesessssaosesessseeneenemtoeetseseneenansnenanes 56
B.2.2 OULPULS.....c.cuercncirceicreiit st st cas b es st eae s s st et ae s e s aessesessssesseosasasesssassaensaseenensetessenssensesesesssnras 62

4.3 A SIMULATION TO DEMONSTRATE THE IMPROVEMENT APPROACHES.........cecreetemeeeeererseessssesssssesssesessessesssessss 69
4.3.1 DESCIIPHON.cvvereiiiti ittt ettt et st s s b s bbb s b b s e be st s et e st et eeaseenese e aneees 69
4.3.2 Modeling the APPrOACHEScecvvueurreririrtriniee e tet ettt se st esene s eeease et esessesesee s serasasans 73
4.3.3 Discussion of Results: Demonstrating the Improvement APproaches................coccoveveeeesusereecessssrererns 81

5. CONCLUSIONS & RECOMMENDATIONS 103
S.TCONCLUSIONSovietentiacisisiiscsesstisscsessscsssesessesssssessssssesss s sssssasssssessasssssesestessesassssssssssssssssassssessesssssons saveee 103
5.2 RECOMMENDATIONScoucotruterinmiursiiarineseseinsesensessssessenssessessensossasssassssasessossntonsesensasesessessnsassesssssssessssssssssses 105
S.3FURTHER WORKcuiuuiiiiiiniieintesestiinsieisisesasasstasssssasssssssesesessssssssssssssssssonssossssssssssssssessensssnsesenssssnssssessassses 107

5.3.1 Improving the SIMUIALIONccccviriririeiieee ettt st ene et aa s s e e re e e seneas 107
5.3.2 A More-Leading Indicator Of Project PTOZIESS.......cccccvvueriririeeeneeeseseesesisssnseeseaesssseseseneessssessnssssses 109

REFERENCES 113

APPENDIX A: SOURCE CODE FOR SCHEDULE RECOVERY EXTENSION 115

APPENDIX B: CALCULATIONS 117

This page is intentionally blank.

1. Defining the Goal: The Ideal Product Development Process

This thesis represents the culmination of observations and ideas from an internship at a large American

automobile manufacturer, hereafter referred to as “the company”.

Product development faces heightened challenges in today’s environment of rapid change and intense
competition. The automotive industry, as well as many others, has witnessed an important shift in
strategic needs. As cost and quality have been relegated from competitive advantages to prerequisites for
competition, attention has turned toward rapid product development. More recently it has been
recognized that flexibility in product development is valuable in reducing the cost and time of meeting

changing customer needs.

Thus speed and fle.-ibility in product development will be the new differentiators that determine which
companies will have competitive advantages in the next decade. The remaining sections of this chapter

discuss speed and flexibility in more detail and then integrate these needs to propose a business initiative.

1.1 Speed

In response to this shift in strategic needs, concurrent engineering has been embraced as an approach to
reducing the time to market for product development. In its simplest sense, concurrent development
involves the solicitation and use of information from downstream activities by upstream activities, i.e.
getting early input. In most cases, concurrent development means that the activities are overlapped, i.e.
that the downstream activity begins its work before the upstream activity has completely finished its
work. This is a conceptually simple departure from the serial model of development where the
downstream activity does not start until the upstream activity is completely finished. Theoretically, by
overlapping activities, it is possible to reduce the start to finish duration of the project by the amount of

overlap.

Howecver, in reality the implementation is not so simple and the reduction in development lead time may
be less than expected, or may not be realized at all. In most development projects there are numerous
dependencies between the activities that create potential rework. Some of these relationships will be one-
way dependencies where activity B depends on activity A but A does not depend on B. In this case, if
activity A changes information used by B after B starts, activity B is forced to do rework. Other

relationships will be inferdependencies, i.e. activity B depends on A and activity A depends on B. In this

type of relationship, there is the potential for feedback. For example, say activity A passes information to
activity B allowing B to proceed; but as B proceeds, information on which A depends may be changed,

forcing activity A to do rework.

Regardless of the type of dependency though, the potential for rework reduces the predictability of project
duration and the project can end up taking much longer to complete than scheduled. The overlapping that
forms the basis for concurrent development adds to this uncertainty by increasing the probability that the
information exchanged between these dependent activities will change, requiring activities that have used

this information to re-do some or all of the work done since the original transfer of information.

Determining the optimal amount of overlap between two activities is not a trivial task. Krishnan et al.
propose a model for determining when development activities should and should not be overlapped based
on concepts they call evolution and sensitivity (Krishnan et al., 1997). The term evolution refers to the
rate at which the range for a particular design parameter is narrowed by the upstream activity, i.e. as the
design activity proceeds, the design parameter is defined as a progressively narrow range and is finalized
when a nominal value is reached. The term sensitivity refers to how much rework the downstream
activity must perform as a function of the size of the change in the design parameter made by the
upstream activity. The more the amount of rework increases with the size of the change, the greater the

sensitivity.

The most important, and possibly most challenging requirement of concurrent development is
communication. Not only is it important that the actual transfer of information is defined and agreed to,

any changes past the original transfer must be carefully coordinated.

To meet the need for rich and timely communication, cross-functional teams are typically established.
These teams are typically organized to conduct a project and include representatives from each of the
required functional groups. By increasing allegiance to the project (as opposed to the function), this
organizational structure promotes more frequent and earlier communication between the functional
representatives. In addition, these teams are typically co-located to facilitate frequent informal

communication, which is as or even more important for avoiding problems than formal meetings.

If the benefit of concurrent development is to be realized, i.e. project lead time is consistently less than
serial development, the relationships between the activities must be understood. Research in this area has

identified two dimensions of the relationship between two activities: the probability that rework will be

required, and the impact of that rework (how much work has to be re-done in the event that rework is
required) (Carrascosa et al., 1998). Understanding these dimensions for the activities in the project allows
activities to be planned and executed in such a way as to reduce the probability and impact of rework
(Eppinger et al., 1994).

Secondly, recognizing the potential effect of these activity relationships on project duration, there are
numerous causes of delay that can be associated with increased probability of rework and impact of
rework. These must be understood and managed if development lead time is to be reduced. Thus it is

these causes of delay that are the subject of this thesis.

1.2 Flexibility

More recently it has become recognized that in addition to increasing the speed of the development
process, maintaining flexibility in design throughout as much of the process as possible, is a valuable
advantage. In today’s environment of rapidly changing technology, customer needs are subject to change
and there is an increasing degree of market fragmentation (Wheelright and Clark, 1992, p.2). If
development time could be reduced to be commensurate with the rate of this change, customer needs
could be timely met — providing development costs can be reduced to the point where shorter product

runs are profitable.

However, in many cases the development time required to meet the rate of change of customer needs
and/or the fragmentation of the market into different niches is far less than the shortest development cycle
that could reasonably be striven for. In these cases, it would be highly desirable to have a development
process that allows changes to be made to the design in response to market changes — without severe time

and cost penalties.

Approaches such as set-based design (Sobek et al., 1999) and intentional decision delay (Ward et ai.,
1997) are means by which this flexibility can be achieved. Providing this flexibility places additional
demands on project management. In set-based design where a set of initial designs is progressively
narrowed down to a single design, project management must facilitate the rate at which the set is

narrowed in order to keep the project on schedule.

Because of the dependencies between activities described above, intentional decision delays upstream can

affect many other downstream activities — directly delaying them or increasing the probability that they

-9.

will require rework because they are forced to start with incomplete information. Thus when using
intentional decision delay Prograra Management must evaluate and minimize the consequences of

postponing these decisions.

Another approach to flexibility is to simply allow the proposed changes in design requirements to be
made. Because of the relationships between activities, making these upstream changes can have profound
effects on downstream activities. Thus it is important that program management understand these
relationships so that the implications of a such a change on project duration can be weighed against the

benefit of making the change.

It is interesting to note that this objective of flexibility can be somewhat at odds with the objective of
speed. As discussed above, reducing development lead time using concurrent development involves
overlapping activities. While this offers the potential to reduce project duration, there is often a trade-off
in flexibility since in order to overlap, the upstream activity generally finalizes information early to allow
the downstream activity to proceed. Finalizing this information early can restrict the freedom of the
upstream activity to change. The degree to which overlapping restrict flexibility depends on the
characteristics of the activities being overlapped, and has been studied by Krishnan et al. (Krishnan et al.,
1997).

1.3 The Business Initiative

Given these two requirements for the product development process, an overall objective can be defined.
To achieve both speed and flexibility, the objective should first be to achieve control over development
lead time. Note that this concept of control over development lead time is broader than the more
commonly stated objective of reducing development lead time. A controlled development process is one
where reduction of the incidence of unnecessary, unexpected but controllable delays increases the
predictability of project duration. With control over development lead time, efficient product
development can be achieved. An efficient development process is one in which:

* Development lead time is reduced by minimizing causes of unnecessary, controllable delay

o Flexibility is accommodated in activities where it is valuable (i.e. where market-driven changes are

common but where any negative effect on project duration is low)
 Effects of a design change can be predicted, allowing trade-off decisions between responsiveness to a

market change and lead time to be made with confidence

-10-

To achieve this overall objective, the causes of delay must be determined and the relationships between
the activities must be understood. Knowing these causes and relationships, process improvement can be
applied to reduce the delay and optimize the management of the project schedule. Hence the purpose of
this thesis is to apply process improvement to the product development process in order to achieve control

over development lead time.

1.4 Summary of the Business Initiative & Structure of the Thesis

Summarizing the discussion above, the need for speed and flexibility in product development can be
integrated into an overall objective of increasing the efficiency of product development. Essential to
reaching this objective is control over development lead time: reduced unnecessary, unexpected but

controllable delays, and increased predictability of project duration.

Process improvement is an approach to achieving this control. Although it is more familiar in the context
of improving quality of manufacturing processes, process improvement can be applied to product
development. Shiba et al. describe process improvement in four iterative phases: Plan-Do-Check-Act, or
PDCA (Shiba et al., 1993, p. 57). The structure of this thesis follows the PDCA framework and is

outlined below.

The first phase of process improvement is PLANNING (Defining the goal and problems). Chapter 1
discussed the business need for efficient product development. Chapter 2 discusses proactive
improvement, a type of process improvement used to establish direction for improvement efforts. The
findings of a proactive improvement study to find inhibitors of efficient product development at a large
automotive company are described. Chapter 3 describes how these issues are related and suggests three
improvement efforts:

e track and address the causes of delay

e optimize schedule recovery actions, and

e develop a more representative measure of project progress.

The second phase of process improvement is DOING (Developing a solution). The first half of Chapter 4
outlines two implementation tools aimed at achieving the desired control aud efficiency in product
development. The first is a delay tracking and analysis tool to gather data about activity delays and their
causes. The outputs of this tool contribute to the first two of the aforementioned improvement efforts.

They also help determine parameters for the second tool which is the use of a project simulation to

-11-

analyze schedule recovery strategies, determine the effect of a change in design requirements, and
improve the assessment of project progress. This simulation thus generalizes and applies the learnings

from the delay tracking tool to future development projects.

The third phase of process improvement is CHECKING (Expected results). The second half of Chapter 4
discusses several simulation scenarios that were run to demonstrate the expected results of the three

improvement efforts.

The last phase of the process improvement loop is ACTING on the results (Continuous improvement).
Chapter 5 states conclusions and recommendations and then outlines opportunities for further work.
Specific ways in which the functionality and accuracy of the simulation can be improved are described.
And, in relation to the identified need for a more representative measure of project progress, the concept

for a more leading indicator of project progress is proposed.

-12-

2. Identifying the Issues: Voice of the Customer

Having established the motivation for efficient product development in Chapter 1, this chapter outlines
the method used to determine inhibitors to control of development lead time at a large American

automobile manufacturer, and the results of the study.

2.1 Proactive Process Improvement

Proactive improvement is one of three types of process improvement (Shiba et al., 1993, p. 53). Th.
objective of proactive improvement is to gain insight into the problems in a process and to identify
general direction for improvement based on these problems. Having identified the problems, an objective
and corresponding metric can be established. This metric is tracked using process control and then
continually improved using reactive improvement. These latter two types of process improvement will be
discussed in section 4.1 where the suggested solution to the problems in the development process are

outlined.

A key tool for proactive improvement is “Voice of the Customer” analysis (Center for Quality
Management, 1996). This tool is an approach to interviewing customers, organizing findings from those
interviews, abstracting those findings, and then drawing conclusions and insights from them. A summary
of the analysis method and the findings from its application to the product development process at the

company are described in the following sections.
2.2 Identifying Obstacles to Improvement of the PD Process

In an effort to identify issues that inhibit control of development lead time, a voice-of-the-customer
analysis was conducted among different vehicle development programs. Particular emphasis was placed

on identifying problems related to project management.

This analysis involved:

e gaining an understanding of the existing project management process (by reviewing process
documentation)

o identifying “customers” or stakeholders of the project management process

o identifying two key questions to focus the analysis:

1. What are the problems/issues that affect the timing of a program?
2. What are the problems/issues related to supporting the workplanning function?

e conducting interviews with the stakeholders
e grouping the interview comments (by similarity in meaning/thought)
e determining cause and effect relationships between the groups of comments

e drawing conclusions from these relationships to answer the two key questions.

2.2.1 Existing Project Management: Background

With the rollout of a revised product development process, the company also introduced formal project
management roles and responsibilities. Each vehicle development team is led by a chief engineer (CE).
Reporting to the CE is the program manager (PM). The PM’s staff is responsible for tracking schedule,
cost, and engineering changes. While the program management staff is dedicated to specific programs, a
central process development group provides support in the form of standard development schedules and

processes.

Schedule management is the responsibility of the workplanning staff that reports to the program manager.
The workplanning staff includes a program schedule coordinator (PSC) and a number of schedule
analysts (SAs). The workplanning staff is provided by a central workplanning group. The program
schedule coordinators and analysts are responsible for different levels of project schedules as described

below.

Formally, three levels of schedules are maintained, each with decreasing level of detail. Level 3 schedules
coordinate activities at the system level (e.g. body, chassis) for each of the various engineering groups.
They are maintained by the SAs with input from the engineering group supervisors. The level 2 schedule
monitors linkages between the numerous level 3 plans and is used by the program’s steering committee.
It is the responsibility of the PSC to maintain this schedule. The level 1 schedule tracks selected high
level activities and milestones for review by executive management. The PSC is responsible for
preparing this schedule from the level 2 schedule. These plans are now being electronically linked so that

activity status input need only be made at level 3.
Although not part of the formal program management role, there is typically a level 4 schedule that tracks

commodities/groups of components (e.g. underbody, closures) or single, key components. These

schedules are maintained and used by some of the engineering groups.

-14-

Schedule reviews occur at each of the three levels. The staff responsible for the particular schedule
identifies current or potential near future issues prior to the review meeting. At each meeting, resolution

plans are made to address these issues. Following the meeting, the PSC and SAs update their schedules.

2.2.2 Identifying the Customer Base and Focussing the Analysis

The stakeholders or customers of program management included: the engineering groups, SAs, PSC,
program manager and chief engineer. Although they may use different levels of the project plan for
different reasons, each customer can affect the integrity and therefore the utility of the plan. For this

reason it was important to ensure that representatives from each role were interviewed.

A second consideration in the scheduling of interviews was the variation in complexity among different
vehicle development programs. The scale of a vehicle development project reflects the degree or amount
of new design in it and can range from minor “refreshening”, to the development of a completely new
vehicle platform. Clearly the project scale has an effect on the amount of project management required
and the number of complications that can arise. For this reason it was important to ensure that

representatives from projects of various scales were interviewed.

In order to focus the analysis and differentiaie between issues directly and indirectly related to the product
development process, two key questions were used as the basis for generating interview discussion:

1. What are the problems/issues that affect the timing of a program? and

2. What are the problems/issues related to supporting the workplanning function?
The first question was aimed at finding issues related to the product development process itself. The
second question was aimed at finding related organizational issues. With this distinction, the two

analyses will be referred to as Process and Organizational respectively.

The following sections summarize the comments from the interviews and the conclusions that were drawn

from their analysis.

2.3 Process Issues

Figure 1 summarizes the key interview comments related to the first key question, and the conclusion

drawn from the cause and effect relationships identified between them.

-15-

< =\

JUAIPIP UO SIYR}SAU AULS I Sunyew
PloAR pue Ja01dun ues am oS (sysu
‘suoneinp Ananoe) sweiford Suoure
sasuduadxa Fumm) y) 19)suen) pue
‘aAes ‘“Amuapt 01 st dnoid yuauaSeuep
wesold jenuad i Jo o1 uF_.t

~\

. dn yojes 0) skem
puy 03 3mAr un; jo 101 e puads M.)

1TP3YI$ 3y ut Joj |
tou st yey) awn saxes unuued L1moday

ansean
ssa8ard 1004

o STIEju
AWAnow 31 18YyM puB;SI2pUn 0) PI2U
nox JnogyIp S saAnAnoe Sussmels,

$5255€ 07 NI 51 $531303g

*Aejep pioAe 0} uonoe aanpoeosd Bunje} o) pasoddo se — Aejap ejnpayss
0} Bunoeas piemo) wieibousd ayj asodsipaid ssaibosd Aiagoe Bulnsesw Ajajeanase ul Anaiyip ayy pue Bujuanyo ubisag

B
1sed anumu0d X SUOISIR A 1€ pazyeiy
2q 03 pasoddns are yep syses Auepy,

h . Pauyap Ang Jou a1e 53222y =m_mun_g

*}10M31 JO JUNOIIE 31} ISBIIIU] UBD 5373345 u1sIP yEI AN

sxzaag
udisop yeam

J18p __2:5)

aewi 0] 3{qe 29 Juom A3y} sAes suoAuos
[IUN S[TE IN0 3SBYD pue winyd 3sul oM

\

—

o ss21301d Funyew

\\

« PAJUIOU U23q ARy pinoys oym sjdoad Surs
pue swa3u0d Suudawn§us qd 11no Sumpuas w synsa1 Juy

)

SANAOE JUINP u1) sAEjap Jo .ouuuw

L YSU Saseasu
Yorym ‘wayy inoynm wess sdays
JANIPPE 2Y) PUL)SIIPUN JUOP M,

JWOS ‘37| AL SIQRIFANIP UIYM,,

100 3 nok uaym Fumouy st W
wesBo1g w Ansiue a1 jo ueq,

Bununys usisaq

Plonuodun 10pue

(au_:ucuo.:.: uo 08 ued Juuanyd _._u_no(

sa3ueys Juswannbar udisag

\\

2/

/12218 001 2q 01 pa3pnf

st 32edun Suum 3y Jey puyy
0) Ajuo apyme 10j pansind
3B ST 38 J[qEUIE3U0D
seadde yey) saSueys awog,

N2 ="7

“poojsaapun
j0u ¢ 5a3ueys udisop

[13831431y go sasuanbasuo)

.

Swuuerd 1009 /

1004

Jwqord € yoeq m.._n_oag ﬁ
1

sAem[e Jou 18 ANPIYIS
30 3933992 ayy mowy Juop ydoayg,,

sajye Aeut Jeyy swagqoid [enusjod,

K

*340M24 10§ JU3WIInbIL IY) SISEIIIUI UOYJBULIONUT JO NI

T
ﬁ
N

/

L« Y8noua papeiap 1uate A2y} SISO W APYM
‘(nounIng JUBISUOCD U SNY) PUE) P TRIIP 001 18 SHNPIYIS
YY) SISBI HUOS T IDWS YNIUFIP e SISA[BUB I-IBY M,

. deur ajeys1om ve Suisn And
3y} 01128 no& myun dewr Ayd

. STTRIIP 2Y1 1B} 03 9ARY NOA

P3{Ie13p € Juem JUOp Nox , ‘punyaq s 3myk1aas uayM.

\-

uo 3upuadap sarsea [12)3p INPaYIS Jo {3y eadoadde ayg

*snye}s yuasand pue L>uarbaiy 23usyd

Jwesboud e jo Buiug ayj jo9ye jey) senssiswajqosd ayj ase Jeum

SONSSI §53001J] danBLf

The issues in Figure 1 are related to the product development process itself. The following
sections describe the conclusion in more detail, highlighting the issues inhibiting control of
development lead time that were raised during the interviews. More specifically, the three parts of
this conclusion will be discussed: the “design chuming” phenomenon, poor progress

measurement, and reactive schedule recovery. For each of these topics, the specific issues are

described, the causes identified, and the consequences explained. The JIRGKMMNANY headings

refer to the box titles in Figure 1.

2.3.1 The “Design Churning”’ Phenomenon

In many of the interviews, “design churning” was a commonly cited cause of project delay.
While this term can have many different interpretations and meanings, the term is used here to
refer to avoidable rework. In other words, design chumning is a situation where factors over
which program management has some degree of control, cause increased design iteration or

rework. This rework contributes to prolonged project durations.

- Causes of Design Churning -

Based on the voice-of-the-customer analysis, four causes of design churning (factors that increase
the probability and/or amount of rework and consequently the amount of delay) were identified:

e Design requirement changes

e Poor communication

e Poor planning

e Weak design freezes.

Each of these causes of design churning is discussed in more detail below. Note that a common
connection between these causes is that they are all related to functions of Program Management
and are to varying degrees, controllable by Program Management. This idea of control will be

further developed in Chapter 3 when the improvement efforts for the development process are
defined.

-17-

- Causes of Design Churning: Design Requirement Changes -

T maereamnes The definition of design requirements occurs at the beginning of
Conseyitences of high-))
- ‘ a project. Thus changes in design requirements after detailed

Aevel design changes are

- design work has begun can cause significant amounts of rework,
not-undersiood.
o = as the effects of the change ripple through the completed

activities. Design requirement changes are changes in design
objectives — as opposed to changes in the design itself. In other words, a design requirement
change causes design changes. Such changes in requirements can be motivated by changes in
custorer needs or by design, manufacturing, or cost infeasibilities. These requirement changes
may affect any of the concept phases in product development. In vehicle development for
example, there are concept phases for appearance (styling), package (overall dimensions and

proportions), and internal systems (powertrain, climate control, steering, etc.).

Of course these vehicle aspects are not independent of each other, but the development of each
does have a distinct concept phase and design requirements could change for any of these. It
should also be noted that many of the vehicle attributes of interest to the customer (such as fuel
economy, safety, and vehicle handling) imply design requirements for more than one of
appearance, package, and internal systems. Thus it is highly likely that a change in customer
needs could affect several of these and have significant consequences on project completion time

by causing rework for completed or on-going activities.

The general perception among the development teams at the company was that there is a high
potential for changes in design requirements, and that these often originate in management
reviews. Furthermore, the consequences of these changes on project schedule are not necessarily
communicated to management and there tends to be a higher priority given to accommodating the

changes.

Regardless of the priority between maintaining schedule and accommodating change, knowledge
and communicatior: of the consequences of a proposed change are valuable. In assessing these
consequences, it is clearly important to identify which activities the change will affect and what

the impact of the change will be on those activities. This information allows the proposed change

- 18-

to be carefully evaluated and, if the decision is made to accept the change, appropriate plans to be

made to reduce the impact and risk of the accommodating it.
- Causes of Design Churning: Poor Communication -

Many types of information are exchanged in a product
- Lackof information: - ISR project including design requirements, design
PR TR YT decisions, and test results. Information flow between and

for restork. SRR Within project activities is the critical “glue” that enables

concurrent product development and determines to a large
extent, how much rework will be necessary. Browning describes the objective of synchronized
information transfer in a design project as ensuring that all related activities have and are using

the latest information.

He identifies three attributes of successful communication: making information available at the
required time, place and format (Browning, 1998a). Implicit in this definition is that the
information being transferred is indeed the required information. Another important attribute of
successful communication is coordination, i.e. the information is transferred to all those affected

by it.

Thus there are several ways in which the quality of communication can be reduced. Two forms
of poor communication were cited at the company: late discovery of problems and poorly
defined information exchanges. The relatively late discovery of problems with the design allows
the consequences of them to grow, increasing the amount of rework that may be required. This
can be seen by considering the concepts of information evolution in an upstream activity and the
sensitivity to this information of a downstream activity (Krishnan et al., 1997) introduced in

section 1.1.

In general, as time progresses, the design continaes to evolve. Consider the evolution of a design
as the narrowing of the range for a given design parameter X. As the range for X narrows, the
flexibility to accommodate different values decreases. Now consider a problem with the design
as the need to have a certain value of X, say X;. As time progresses, the gap between X; and the
current state of X increases (see Figure 2). Since sensitivity (the amount of rework caused by a
change in X) generally increases with the size of change, the impact of the design problem

increases.

-19-

Current range of X Size of change required

inX

Value of Design
Parameter X

— |

Xy
| Value of X necessitated / T
i by the design problem

>

Time

Design probiem can
be easily
accommodated

Accommodating design
problem will require increasing

|
1
]
< P —>
:
[}
1
}
}
!
| amount of rework

Figure 2: How impact of a design problem grows with time

There could be many reasons for this late discovery of problems, but the tendency to hold back
communication of a potential problem, and inadequate schedule update frequency, are two

possible explanations.

The second form of poor communication was poorly defined information exchanges. The
standardized product development process at the company identifies and defines a set of “give-
gets” between activities. These are agreed deliverables between an upstream and downstream
activity. For example, in vehicle development the Design Studio agrees to release (give) vehicle
surface dimensions within an agreed range of accuracy to Manufacturing (get) at a specified point

in the development timeline.

However, despite the documented exchanges, incidents where differences in interpretation of a
give-get, or where one or both activities were not aware of the give-get can, and do occur. In
either case, the probability of delay is increased. In the former case, the probability of rework for
one or both of the activities is increased, depending on which activity requires input from the

other. In the latter case, when the date that the downstream activity expects the information from

-20-

the upstream activity arrives and the information is not available, due to the importance of
keeping the project on schedule, it is likely that the downstream activity will proceed with
preliminary data. In other words, an overlapping recovery action will be used. Use of this
preliminary data increases the risk of rework for the activity using it. So when give-gets are

poorly defined, the probatility of rework is increased.

A give-get can be considered to have different degrees of definition that could be arranged on a
continuum as shown in Figure 3. As a minimum, one of the parties defines and announces what
information it requires. Strictly speaking, this is not a “give-get” since it is a one-sided definition,
but since this scenario could conceivably occur, it should be considered as one end of the
continuum of definition. Moving in the direction of increasing definition, the single party defines
both what information it requires and the date by which it is required. The third degree of

definition would be agreement on this information and date by the two parties.

No Increasing detail Complete
Definition Increasing agreement Definition
L i L 1
I i 1 1 H
0 1 2 3 4

Figure 3: Continuum of give-get definition

Beyond this, agreement on these intermediate information transfers by both parties could be
considered the highest degree of definition. This scale of give-get definition will be used in the
implementation of process improvement described in section 4.2, but it is outlined here to
illustrate the many ways in which poor communication can occur, even if so-called give-gets

exist.

Regardless of the reason for it, poor communication increases potential rework, which increases
expected project duration. In less-than optimal communication, the requirement for rework is
created by the fact that related activities use “old” information to perform their work, often

without even knowing how unstable the information may be.

-21-

- Causes of Design Churning: Poor Activity and Resource Planning -

Two fundamental planning aspects of any project that can directly affect the potential for delay
are activity definition and resource planning. Errors or omissions in either of these plans can
obviously add delay to the project. Thus having a reliable process to aid in the development of
these plans is important. To this end, the company makes use of standard development schedule
that details activities for a generic program, and resource planning models. However, there are
two particular challenges associated with the complex, large-scale nature of projects such as
vehicle development: determining the appropriate level of schedule detail, and dealing with the
many give-gets (deliverables) between activities. These two challenges complicate activity and

resource planning respectively and are discussed in turn below.

Activity Planning

After establishing a work breakdown structure (detailed project deliverables) corresponding to the
scope statement of the project (objectives and major deliverables), the next step in project
planning is to define activities to achieve the deliverables (PMI, 1996). The definition of these
activities is closely related to the level of detail tracked in the schedule. A schedule’s level of
detail is characterized by the smallest aggregate of the design that the schedule tracks, i.e. the
schedule may track the systems, subsystems, and/or components of the design. A schedule that
tracks the components of a design has many more items than one that tracks only the systems of a

design and thus has a higher level of detail.

With respect to determining the appropriate level of detail, the challenge is to balance the desire
to avoid missing an activity — and subsequently having to change the schedule to accommodate it
— with the demands on workplanning resources that increase with the schedule’s level of detail.
Poor activity planning misses important activities and/or expends workplanning resources (time

required to monitor and update schedules) to track unimportant activities.

In a small project, it would be relatively simple to track activities down to the component level of
detail. In a large project however, the sheer number of components makes this much more
difficult — given a limited number of workplanning staff. Thus there is a non-trivial question as to
what the appropriate level of detail should be. If the lowest level schedule is maintained at say
the sub-system level, the team risks the possibility of missing or forgetting about an important

component-level activity.

-22.-

However, tracking all component-level activities in a vehicle program could quickly become an
overwhelming amount of work. At the company, schedules that track activities down to the
system level already involve 1500 activities! Here the concept of rolling up schedules of
increasing levels of detail becomes useful as a way of managing this complexity. However,
although this reduces the complexity for the schedule manager at each level, it is still true that the

greater the level of detail, the greater the amount of resources required to manage the schedules.

If the requisite resources cannot be provided, the poor communication problems describzd above
become more likely, increasing the probability of project delay. For example, if workplanners are
asked to manage detailed schedules, the time required to track the large number of activities may
result in a lower schedule update frequency which discourages early problem recognition, which
in turn increases the impact of a potential delay. Or, the large number of activities may mean that

the definition and coordination of “give-gets” suffers, which increases the probability of delay.

Given that the objective of program management is to ensure the timely and cost-controlled
execution of a project — as opposed to tracking the lowest level of activities just for the sake of
tracking them — the solution to the level of detail dilemma should be to identify appropriate levels
of detail for each group of activities. This appropriate level of detail may differ for the various
types of activities and for the different phases of the project. For example, early in the project, it
may be relevant and useful to track the development of each component of a system to ensure that
all the necessary components are developed and that no “last minute additions” arise to cause
rework. Later in the project, say in the manufacturing phase, it may be sufficient to track the state

of the system as a whole.

. ey The schedule’s level of detail and closely associated parameter
- The appropriate level of . o
: : N ‘ ' of update frequency, have a large effect on its credibility and
. schedile detail veries.
o e SO uscfulness. Low detail and infrequently updated schedules
“depending on chuange . . .
') . ' increase the probability of missing a required activity. They

frequency and current

A also decrease the schedule’s sensitivity to early delays, and
Status.

hence the team’s ability to react to the problem before it grows.
On the other hand, too much detail and/or very frequent updates result in a constantly changing

schedule that is overly sensitive to minor changes in activity status, or worse, a schedule that

-23.

never gets updated because the task is so onerous. A primary role of program management is to

help the project subgroups develop a schedule with an appropriate, useful level of detail.

The determination of this appropriate level of detail depends on at least three factors: the team’s
relevant project experience, the frequency of change for the activity, and the impact of the
consequences of missing the activity. The team’s relevant experience depends on the past
experience of the team members, the stability of the development process definition, and the
similarity of the project to past projects. The frequency of change for an activity depends on the
evolution of its data, the sensitivity of its relationships to other activities (see section 1.1) and the
particular phase of the project. The consequences of missing an activity are two-fold: in addition
to directly increasing the schedule duration, it is very likely that accommodating the missed
activity will force rework on dependent activities. The impact of these consequences obviously
depend on the sensitivity of activities related to it, and the how far into the project the missing

activity is discovered.

While it would be reasonable to assume that level of detail should increase with decreased
relevant experience, and increased potential impact, the relationship with frequency of change is
not clear. The desire to provide early warning of delays, while avoiding inordinate amounts of
work to update schedules suggests that the level of schedule detail should be matched with the
amount of possible change. Thus the optimum level of detail will be different for different
activities in the project. In activities with short iteration cycles or many input activities, the level
of detail and update frequency should be higher than in activities with longer iteration cycles or

few inputs.

Note however, a reasonable counter-argument would be that increasing the level of detail in an
environment of constant change means that the schedule will be in constant turmoil and will lose
value unless the resources to continually maintain it can be afforded. So, given this dilemma and
the fact that the assessment of these factors is not straightforward, it is not clear that there are
obvious rules for determining the appropriate level of detail. Rather than attempting to fit a
general rule, one solution could be to base the amount of schedule detail for different activities on
historical occurrences of missed activities: a high incidence of missed activities would suggest

the need for greater detail.

.24 .

Resource Plannin

With respect to resource planning, the challenge presented by a large, complex project such as a
vehicle development program, is to coordinate priorities and resource availability between
activities that typically have numerous give-gets (deliverables) with other activities. The
potential for rework in a product development project complicates this matter even further. Poor
resource planning results in multi-tasking and mismatched priorities between dependent

activities.

Although the members of a “heavyweight” project team are dedicated to one project, the
numerous relationships between activities makes managing priorities and resource availability
within the program team more than a trivial task. A single activity can easily have multiple give-
gets that it is responsible for providing, which means that the group performing the activity must
be working on more than a single task at vnce. Goldratt demonstrates that this multi-tasking is
inefficient because it delays all of the tasks and because the switching time reduces the
productivity of the group (Goldratt, 1997). And, given that the group is multi-tasking, there must
be a priority established for these tasks. If two activities that must exchange deliverables do not

agree on priorities, the likelihood of that exchange occurring on time is low.

An additional factor that makes resource planning difficult in vehicle development projects is the
increasing reliance on outside suppliers. When an outside supplier is involved, the likelihood of
delay is even higher since in addition to this multi-tasking, the program has a lesser degree of
control over the group performing the activity. While the supplier relationships being formed in
today’s development projects could be considered stronger and more cooperative than in the past,
the project must still deal with the probability that the supplier will have restricted flexibility to

shift jobs around, due to its objective of maximizing its utilization of capacity.

And even if compression and prioritization of a particular job is possible, this will almost
certainly come at a premium. Thus it becomes extremely important that the potential for delay of
an activity that feeds an activity to an outside supplier is low. To make matters even more
uncertain, the possibility also exists that despite advance planning, the supplier may not be ready

when the program is ready.

.25.

- Causes of Design Churning: Weak Design Freezes -

Another factor that contributes to the probability of rework — and

“Weak design freezes can -

i A in turn project delay — is poorly defined design freezes. A design
increase the amoynt of
' ' freeze is a declaration by the team that particular design
Feworh,
. parameters will be finalized in their current state. The function

of a design freeze is to constrain aspects of the design to permit
the progress of related downstream activities. For example, the team may decide to freeze the
outside dimensions of a particular component shortly after achieving what appears to be a
working design. Finalizing these allows designers of related components to position their

components around it and design any attachments.

Allowing a design freeze to “drift” beyond its announced date can increase the probability of
rework in the following way. When the freeze is announced the related downstream activities
begin their work based on the frozen design information. If the upstream design work continues,
the potential for rework of the downstream activities is created since these downstream activities

may now be using invalid design information.

In the case that the downstream activity is dependent on the upstream activity, the worst case
associated with a change in the upstream activity would be that the downstream activity must
repeat all the work since the declared design freeze. If we make the reasonable assumption that
the downstream activity has an increasing sensitivity to change, the amount of rework will
increase with the length of time by which the freeze is allowed to drift. This is the same

reasoning used in explaining the effect of late problem discovery in section 2.3.1.

However, if the upstream and downstream activities are interdependent (Eppinger et al., 1990),
the downstream activity could cause changes for the upstream activity. Drift in a design freeze
creates the potential for an extended number of iterations between the activities. One would
expect that these iterations would gradually converge on a final solution. In the interdependent
case though, if no agreement is established between the activities as to what should be frozen,

there is a potential, however small, that the iteration will not converge.

Build on the example given above. At the agreed freeze date the upstream activity freezes the

outside dimensions of its component X. The downstream activity then proceeds to design the

-26-

attachment of its component Y to component X. Now say that for some reason the design of
component X must be modified. If designers of X heed the freeze and are able to modify the
design in such a way that maintains the attachment point used by component Y, Y designers will
not be affected. If however, they do not heed the freeze, the designers of Y will be forced to

rework their design.

If in reworking their design, the designers of Y unknowingly cause the need for a change in X
(either for lack of understanding, or because X is still changing) that may affect the attachment
point of Y on X, the potential for non-converging iteration is created. While this example may
seem like an extreme case — since it is difficult to believe that designers of X and Y would not
quickly recognize and address the problem — its existence should be recognized. This is because
in the context of a complex project with many activities that each have multiple interdependent

relationships, the problem can be obscured.

The argument is not whether a design freeze is adhered to or not. Sometimes this is not possible.
Thus the real issue is how to determine what design freezes can be adhered to and would be
valuable to set. In either the dependent or interdependent case described above, the assumption
by the downstream activity that the upstream activity was finished (and therefore that the
transferred information was accurate), creates a higher potential for rework. If the downstream
activity did not make that assumption it would be forced to communicate with the upstream

activity to get up-to-date information.

If a design freeze is not going to be adhered to, the argument can be made that the project is better
off not declaring it, thereby discouraging related downstream activities from proceeding with
unstable information. The value of a design freeze should be assessed by the tradeoff between

constraint on the design and the effect on progress along the critical path of the project.

- Consequences of Design Churning -

When design churning (avoidable rework) occurs engineering resources are being expended
without realizing the desired project progress, i.e. the rate of increase in the degree of design
definition slows or regresses. The net effect of design churning is a longer activity duration
compared to a design activity without it. In turn, longer activity durations increase the potential

for delay in completion of the project.

-27-

: wams Also, when the project suffers from design churning, it san be
Desis I CHITIIR € Re difficult to discern whether design changes are contributing to

o unrecognized aie/ér . . .
LCORNTEA A B progress (increased design definition), or whether they are due to

uncontrolled. . -

one of the factors that cause design churning. This allows these

factors to continue to add rework and drive iteration. Moreover,
the development process at the company appeared to lack a sufficiently proactive trigger to stop
this churning. It is not until later in the program that the increasing risk of missing the project

deadline became a powerful trigger.

Design iteration is a necessary and inherent aspect of the product development process.
However, design churning causes avoidable rework. This unnecessary, unexpected rework can
easily slow the development process.

2.3.2 Poor Progress Measure

The assessment of activity and project progress is important to

Progressis difficilr 7

detecting potential delay problems. This allows any required
remedial action to be taken as early as possible, before the impact

of the problem becomes serious. However, for the reasons

discussed below, the current activity and progress measures are
not entirely ideal in that they are poorly defined, do not provide a composite, holistic assessment

of status, are not leading indicators, and/or do not account for potential rework.

- Causes Contributing to Poor Progress Measurement -

The two prevalent quantitative status measures in use at the company were “negative float” and
“percent complete”. “Float” or “slack” refers to the amount of time before an activity becomes
part of the critical path of the project and is determined by estimating activity finish dates.
“Negative float” then implies that the activity is on the critical path and is lengthening it beyond
the original project completion date. Determining this metric for each activity, the project
management strategy is to concentrate efforts on completing activities with negative float as

quickly as possible to avoid further delaying project completion.

-28 -

There are four shortcomings of this metric. The first has to do with defining the activity.
Assessing the status of an activity requires definitions of the start and finish of the activity, and
some method of estimating the finish date of the activity based on interim progress. While
defining the start and finish of an activity may seem to be a simple and straightforward task,

further consideration reveals that with dependent activities, it may in fact not be trivial.

When a successor activity depends on a predecessor activity, if there is not an agreed definition of
what constitutes completion of the predecessor, a potential for delay is created. A primary role of
program management is to help the project subgroups identify, define and communicate their
“give-gets” (deliverables) between other each other, i.e. to work out agreed activity start and end

definitions.

The estimation of the activity’s finish date is even less trivial. There are in general two
approaches: determine the projected finish date by estimating the current percent complete, or
estimate the projected finish date directly. Due to its apparent simplicity, the percent complete
approach is often used despite its significant drawback. Consider as an example, the development
of a product where the percentage of total required drawings is used to assess percent complete.
While this is a relatively straightforward determination, it can be very misleading. It implicitly
assumes that progress is linear, ie. if 50% of the drawings were completed in 2 weeks, the
estimated finish date is 2 weeks hence. The alternative approach, explicitly estimating time
required to finish an activity, overcomes this problem, but requires more thought on the part of

the people performing the activity.

Secondly, “negative float” a metric associated with each activity — it is not a composite metric
that can be used to report the status of the project as a whole, i.e. adding or otherwise combining
the negative floats for each activity is not meaningful. Thirdly, “negative float” is not a
particularly leading indicator of activity delay. Because it focuses on activity starts and finishes,
the project manager cannot use interim status to identify the need for remedial action. Thus there
is a tendency to wait until it is more apparent that the estimated activity finish date is late.
Finally, this metric does not account for potential rework. If iteration is required the duration of
an activity is increased. Ignoring the potential for this clearly reduces the accuracy of the

evaluation of project progress.

-29.

Perhaps the most intuitive and traditional project progress metric is “percent complete”. For each
activity, intermediate deliverables are defined a-priori. The percent complete of an activity at any
point in time is determined by assessing what proportion of those intermediate deliverables has
been achieved. Each activity is also assigned a weighting a-priori, based on the activity’s
significance to the project (the activity weights sum to one). The project status is then the

weighted sum of each activity’s percent complete.

This metric overcomes the second shortcoming of “negative float” since it is a weighted sum of
the percent complete of each activity. In this sense “percent complete” is a composite yet “dive-
able” metric. It gives a holistic assessment of project status in a single value and it can be easily
dissected to show the reasoning behind that value. By capturing project status in a single

quantity, progress can be tracked over time.

This metric is also more of a leading indicator of delay than “negative float” because it monitors
the achievement of defined intermediate deliverables. The definition of intermediate deliverables
provides a reference for assessing how much time is still required. Then, by comparing actual

percent complete to scheduled percent complete, this metric can provide early warning of delays.

Although it still suffers from the difficulty in defining the start, end and intermediate deliverables
of an activity mentioned in the discussion of “negative float”, the primary shortcoming of

“percent complete” is that it does not account for potential rework in its measurement of progress.

Combined with the uncertainty in project progress due to design chuming, the inability to

accurately measure the completion status of an activity creates a large potential for delay.

- Consequences of a Poor Progress Measure -

Despite the fact that the shortcomings of these project status metrics contribute to delay, they are
commonly used. However, a poorly defined, non-composite or late progress metric results in a
misleading assessment of project status. In an iterative design project, the potential for rework
adds to this inaccuracy. This inaccuracy can promote delay by not providing early warning of
potential delay, or by allowing design changes to proceed under the false pretense that there is

adequate time in the schedule.

-3G-

2.3.3 Reactive Schedule Recovery

There are two generally accepted options that can be employed to

Recovery planming takes-

time tharis ot accounted. R from a schedule delay: compression and overlapping.

By activity compression, we mean that overtime or other

: /;’nf‘j.;/ f/‘rr'::w/u"(/u[(", ,
R measures are taken to reduce the standard, scheduled duration of

an activity. This is a very typical and commonly accepted practice.

The primary cost associated with this recovery option is the overtime premium paid to those
involved in the activity. However, there is the possibility of an additional indirect cost associated
with compression. The risk in using compression is that in an effort to hurry progress, the
potential of making design mistakes is increased. For example, detailed analyses and tests may

be compromised, which in turn increases the probability of rework.

Of course, use of this option assumes that the resources (both people and funding) are available,
which may or may not be the case. While it is relatively common for internal staff on the team to
work whatever overtime is required, there is no definite obligation. And if the activity involves
external resources, the ability to use compression may be further restricted by obligations that the

supplier has to other customers.

Perhaps an ever: more important assumption is that the activity can actually be compressed.
While longer days and more resources may reduce the time required for activities such as drafting
and issuing part drawings, they are not likely to be effective in reducing the time required for a
60-day fatigue test that is already run 24 hours-a-day. Thus there is a limit to the amount by
which an activity can be compressed, and it is not likely (nor desirable) to rely solely on

compression as a recovery OptiOIl.

The other option for schedule recovery is to use activity overlapping. This approach involves
starting a downstream activity prior to the completion of the upstream activity. Depending on the
amount of overlap, this tactic offers the potential to keep the project on schedule. However, the
risk is that for the duration of the overlap, the downstream activity is subject to rework caused by

changes in the still active upstream activity.

-31-

As described above in the discussion of weak design freezes, the amount of rework depends on
the nature of the relationship between the activities. If it is only that the downstream activity is
dependent on the upstream activity, the maximum rework for the downstream activity will be the
amount of overlap with the upstream activity, i.e. in the worst case, the downstream activity will
have to repeat all the work since it started. If the activities are interdependent, then there is not
necessarily a limit to the number of iterations. The cost associated with overlapping is the cost of
expending resources on rework. There may also be other costs such as facilities and material

costs.
- Causes of Reactive Schedule Recovery -

By increasing the probability of delay, design churning and the difficulty in quantifying activity
status make late, reactive schedule recovery action more common than proactive action to avoid
the delay in the first place. While it is clear that the need for schedule recovery action is
undesirable, it is nevertheless highly probable that it will be required at some point in the project.
One way to capitalize and learn from this however, would be to capture why the delay arose and
how it was handled. This information can be used for planning of future programs. The
historical requirements for recovery, and how effective the recovery actions were, are valuable

aids in deciding appropriate recovery strategy when delay does occur.

- Consequences of Reactive Schedule Recovery -

The consequence of having to continually expend time and money to recover from late activities
is the reduced opportunity to take proactive action. But it is proactive action (such as taking steps

to prevent delay and identifying opportunities to reduce activity durations) that is the key to

reducing development lead time.

2.4 Organizational Issues

Figure 4 summarizes the key interview comments related to the second key question, and the

conclusion drawn from the cause and effect relationships identified between them.

-32-

lmml

*A13A0231 JINPaYIs aARIeaL 10} paau a3y} sajenjadiad Jey) Aouabin Jo)oer| e sajeald AjiqIpald ajnpayIs Jo }oe

\ T .E_)

are 2uoIsImM Y Jo syuamannba agy yaym

- NP g
pu3 g 1d20e - SunBuno 01 9dap 3y INQ pAuned are SIUCISA,
skempe 51 qnpayas gL,
wae
“ioualin o yout 7 ssauas awns s sondoramy, | | B oqyim nog - k)50 s o
2mp wopagkod 33afoad , paxy,, v PIMIYS St UOHA ASEL, 150 39 A e ieyaqy Mo
(“sipes RO 8.1 130)SP D SUOHIIYIP PISpUm S pure suoFeydadxy \
unpeap pary,
\ 1/ @ WAUSSISST SMELS
u Ananoalqng
1URAIFIP UO SHYCISAL res s Junpan <0l ® se paataasad are salep ANpayds, \ /
PloAR pue aarden ued wm Os (Sysu "1sngos Lust n3o]
nosT ..:.v.» :wn““.nu-”no.m ue”” ﬁ +(Aqe2A73p © 10J) pyse A nok sum Q ay) asnesaq aiskeue gied eonus
4 Auan moy £q paouw219p 1 Awiouq,
‘anes @:..u_u o1 5 dnard uamaSevely AU g AqQ P P oud, © un yues om suresdard awos uQ,
wresdond enusd I JO Ros AL,
/ L TRIANLIR ST SIUOISAMU pue
~ £ouadm sanande jo Keprdu o sases Avaw uf, Lmaqpard T IANDQ LUOP | “ABjap 1T Yith
'dn gores 01 sem joxxel ANpIYIS aannaxg w1 01 3uod 10u AN,
puy o) $wAn aun jo 101 e puads am . Joxwy
- ! Isuas ap u.._..lr Liqpasd x| sapq ‘3upupnuod
0 a5 ampayas pfoxd ap

[CPRPS Xy Uy 20) p f
PP Kejap & Jo 5232 yj,
(s Jug sy Sopmed Laoony pooissapun (\
10u safeyury saAnuRUSg
\ - syopouw
_ &:Ew - 10} pAAUB0A 3 aanviuasadatun

K
u2am13q saeyn jo daupec v paou dm LUOM ROA TEG! 310K 0} PAIEIOTE 3

Aan nok 10 *Aress309u sIW032q U0

 93ueyd udisap e 2jupouxu0IE 0) \ J
1S OU 1 a1 - Uels A1 A0jaq payse dnad 1515 9yt 2q L nOK :Apred EIATS
wmad Fogm Y IUBM SARAIIIC WEANSUMOQ.,, r(48y 01 anuDUSp e st gy, moy _ {1 1e1ead atam
- "
ﬁ 1 p2au Ao UIYM pUE PIdu (—
3doad 2o reym Apoex woiny yuop doag, 941 011 01 2210) SPLEINC UE .« suTidytom ay1 w pfapow
0] Wem pue JWYSILY O) MUPE/IIILOD 9Q LUED SPUNCITHOA,,
WORIPII A0 IPL [KGIQU) _ 01 3y {uop ydoad awos,, TSRpAPS
(“. MouY N, PP win jo youy " y29fosd us 2amded 0) 3y

e Kynnoe o
Ue ySTUY 0) BOREAGOW OU 5 u.u.:.\ r 218 5255920 E..Esv%(

¢uonduny Bujuuejdyiom ayy Bunioddns o) pajejal sanssyswajqold ayy ate Jeum

sanss| [euoneziueSiQ :p aandiy

The issues in Figure 4 are related to organizational dynamics. The following sections describe this
conclusion in more detail, highlighting the issues inhibiting control of development lead time that were
raised during the interviews. More specifically, the two parts of this conclusion will be discussed: low
credibility schedules and lack of urgency. For each of these topics, the specific issues are described, the

white on hlack

causes identified, and the consequences cxplained. The headings refer to the box titles in

Figure 4.
2.4.1 Low Credibility Schedules

_ The value of a schedule is two-fold. In the first instance, the
RSV RVREEEIIRN dcvelopment of a schedule forces the project team to identify and
UGUAEEERITGUEEANN scquence the activities required to achieve the project deliverables.

ST GO Sccondly, the schedule provides a basis for project control, i.e. it tracks

f‘”('W"’_“""v’_’.,‘-!z SRR :ctivity progress and predicts effects of delay. While most would agree
with the value of the first function of a schedule, the study found that people were less convinced of the
efficacy of the predictive function. It seemed that among the team there was a lack of convincing links

between delays in low level activities and their effect at the project level.
- Causes Contributing to Low Schedule Credibility -

The difficulty in conveying potential or real delay problems was attributed to two factors: the existence

of “workarounds” for delay, and subjectivity in measuring activity status.

Workarounds refer to the actions that the program can employ to recover

"_“'\"“'1":”“’“1” rdpr OCENSES from a delay in the schedule. In general there are two alternatives:
are difficuls 1o cupture'in -

overlapping and compression, discussed above in section 2.3.3. One or

p project “‘5/"”‘1’?["-“'-” both of these “workarounds” may be used to react to a delay in the

schedule, and although they are not explicitly modeled in the project

schedule, management has assumptions about their ability to recover from delay.

This may be an explanation for management’s apparent tendency to discount the seriousness of delays

predicted by the schedules. The acceptance of these recovery actions then perpetuates their use.

.34 -

However, as discussed in section 2.3.3 the risks associated with use of these recovery actions can increase

project duration.

: — The subjectivity in assessment of the status of a given activity is another
Eapeetations aned
S R source of low schedule credibility. Differences in definitions and
Stanclare definitions can - . . .)
R : IR interpretations of activity completeness add uncertainty to the schedule.

distort véal activity,

The study also found that standard as opposed to actual estimates of

- Sratns.
, . activity duration, and subjective interpretations of milestone definitions

make it difficult to determine the status of a given activity or milestone.
- Consequences of Low Credibility Schedules -

The consequence of the low credibility of project schedules is the lack of urgency to complete the

activities in them.
2.4.2 Lack of Urgency

: , : ey The lack of credibility in the project schedule contributes to a lack of
Dates lack credibiliny " . . e . .
4 ~ urgency in current and upcoming activities. If the project schedule is

reducing the senise of

almost continually being changed, the pressure to work towards the latest

irgency. - o
fryeney. deadline is reduced.

Consider two problems that may arise when using a schedule that cannot reliably predict the effect of a
delay in a current activity on the project. In one case the schedule may actually point out a legitimate or
real delay to the project, but because the schedule historically lacks credibility, the warning is ignored.
Or, in another case the schedule may be missing an activity or link between activities and fail to provide
the required warning of potential delay. Whichever the case, the value of the schedule is questioned and

there is a tendency to ignore it, “dulling” the team’s motivation to recognize potential delay.

The lack of urgency to work toward the scheduled deadline is particularly true if there are no visible
consequences of missing an activity or milestone completion. Thus when the project schedule and
milestones lose their credibility, the urgency to complete an activity is determined by pressure from other
activities depending on it. This pressure is a function of the intensity and frequency with which requests

for completion of the activity are made.

-35-

- Causes Contributing to the Lack of Urgency -

In addition to low schedule credibility, there were three other important factors that affect the amount of
urgency to complete an activity: lack of upstream and downstream knowledge, lack of motivation to

finish an activity early, and a fixed project completion date.

- o In any development project, but particularly in one as large and complex
‘/,r,er of upstream and

. T as a vehicle program, each group will have its own priorities, many of
Cdovwnsiream knénvledie

which will be different from those of its upstream and downstream

Cintubits oyele tme

groups. It is difficult to justify urgency unless these priorities are

re'z///}'u'w}.
- —— understood. While the company has identified and documented many

give-gets (deliverables) between activities, there still seemed to be some uncertainty on the part of the
“giving” activity as to why the information was important, and exactly what information was required.
This uncertainty reduces the motivation of a given group to provide a deliverable required by another

group.

As an example of this uncertainty, phases of information transfer with increasingly narrow ranges for
dimensions have been established, but these are general or “blanket” specifications. Further discussion
among the upstream and downstream groups might reveal that the downstream group really only requires
“tight” specifications for a few particular aspects of the design. The upstream groups would therefore be
wasting time by holding back the required information until they had refined specifications for all the

design aspects.

Without a detailed and agreed understanding of the information to be passed between activities, there can
be a tendency for downstream groups to wait for complete and detailed information before proceeding
with their activity. This tendency is even stronger if their experience with the upstream group has been
that the upstream group “always makes changes”. However, waiting for complete information opposes

the overlapping of development activities, the goal of which is to reduce the total development time.
Overcoming this opposition requires not only that the upstream and downstream groups define and agree

on detailed information to be transferred and in what phases it will be transferred, but also on a cultural

change that makes rework acceptable, and to some extent expected.

-36-

S Besides the apparent lack of convincing motivation for urgency, it was
Thore s mo motivation to . . L. .
e B surprising to find that in some cases, there can actually be a disincentive

finishccon activiry eoardy

PR to finish early. There were two potential reasons to discourage finishing

an activity early. By committing to a solution, a group might believe that

it forfeits its opportunity to continue optimizing, i.e. the “perfectionist
syndrome” dictates that a group use as much time as it is given. While this optimization may contribute
to a performance improvement, the improvement should be weighed against the value to the customer and

the consequence of possible changes and rework for downstream groups.

The second disincentive to finish early has to do with work scope and responsibilities. A group that
finishes early is more likely to be forced to accommodate changes since it has extra time. Since
accommodating changes typically means rework, there is no motivation to finish early. This phenomenon

suggests that a review of the incentive structure might be useful.

_ The desire to avoid delaying the original project completion date
Al project ‘ counteracts this lack of urgency. As the threat of missing the date
ompletion ’-_‘/“/“"‘ﬁ”f""("""; becomes more apparent, priorities become more established and

this lack of urgesy’

schedule recovery actions will be taken. Unfortunately, this urgency

“trigger” does not become active until later in the project when delays

have become real problems.
- Consequences of Lack of Urgency -

The consequence of this lack of urgency is an increased probability of delay. This in turn

predisposes the program toward reactive schedule recovery action rather than proactive action to avoid
the delay in the first place. As noted above in section 2.3.3, a program that must spend all of its time
recovering from schedule problems has little time to devote to proactive schedule improvement which a

key to reducing development lead time.

2.5 Chapter Summary

A voice-of-the-customer analysis conducted among various vehicle development programs at the
company found both process-related and organizational issues that inhibit the control of development lead

time. From the perspective of the development process itself, it was concluded that design churning and

-37.

the difficulty in accurately measuring project progress predispose the project toward reacting to schedule
delay. Design churning was defined as a situation where factors over which Program Management has
some degree of control cause increased design iteration or rework. Four causes of design churning were
identified: changes in design requirements, poor communication, poor activity and resource planning,

and weak design freezes.

From an organizational perspective, it was concluded that low credibility project schedules contribute to a

lack of urgency ainong the team, which again predisposes the project toward reacting to schedule delay.

The focus of Chapter 3 is the definition of improvement efforts based on the root causes of these issues.

-38-

3. Defining the Problem: Defining Improvement Efforts

Having identified the key issues inhibiting the achievement of control vver development lead time, the
next step was to determine any links between these isnes. An understanding of these links then allowed

the root causes of these issues to be identified and appropriate improvement efforts to be defined.
3.1 Linking the Process and Organizational Issues

The voice-of-the-customer analysis discussed in Chapter 2 uncovered two phenomena that frustrate

control over product development lead time:

e Design churning and the difficulty in accurately measuring activity progress predispose the
program toward reacting to schiedule delay — as opposed to taking proactive action to avoid
delay.

e Lack of schedule credibility creates a lack of urgency that perpetuates the need for reactive

schedule recovery.

The obvious commonality between these phenomena is the predominant need for reactive schedule
recovery. However, by dissecting the problem and making some logical extensions it was found that the
two phenomena are quite closely linked. Figure 5 illustrates the extensions and how the phenomena are
related in the form of a causal loop diagram. In the diagram, the arrows indicate cause and effect, i.e. the
base and head of the arrow. The +/- signs indicate the “polarity” of the cause and effect, i.e. “+” indicates
that increasing the cause increases the effect while “-” indicates that increasing the cause decreases the
effect. With respect to the distinction between process and organizational issues made earlier, the
process-related issues are shown with solid arrows and the organizational issues are shown with dashed

arrows.

-39.

Poor
Progress .

I P
Controllable ~ Measure y Credibility
Causes of Lack of of Schedule
Delay /Urgcncy + A
Uncontrollable / /
+
Ca];:f:’ of Need for
y \—>DELAY ® Schedule

+ Recovery
+) \+\
Direct Causes Use of Use of ‘
of Delay Overlapping Compression

Low Overlap
Recovery
C;mpress10n Efficacy
ecovery
Efficacy

Figure 5: The causes and consequences of delay

Three key extensions were made that allowed these phenomena to be related. Given that schedule
recovery was a common point, this was a logical point from which to extend. In asking the question,
“What generates the need for recovery?” the obvious answer was schedule delay. Thus the first extension
was to define delay as a variable of interest. The second extension was made after asking the question
“What does schedule recovery mean in practice?” As described above in section 2.3.3, when an activity
is delayed because of an incomplete predecessor activity, there are two typical recovery options: activity
compression and activity overlap. Thus the second extension was to include these alternative recovery

actions and treat the effectiveness each as modifiers of the rate at which delay is reduced.

The third extension was to define three general causes of delay:

e ‘“uncontrollable” or natural probability for design iteration

e “controllable” probability for rework, and

e amisleading or lacking measure of project progress.

Specific examples of these types of delay are outlined in section 4.2, but the definition of these types of
delay provides a basis for defining the objective for improvement of the development process. Separating

controllable and uncontroliable sources of delay permits design churning to be defined as the delay over

-40-

and above the expected duration of an “efficient” project, which is not afflicted by any controllz2ble causes

of delay. These concepts are explained in further detail below.

- Design Churning Defined -

The distinction between ‘“controllable” and “uncontroliable” factors is made on the basis that a
development process with dependent or interdependent activities will always require some degree of
rework due to the information dependencies between design activities. Let us define an “efficient”
development process in which there are no changes in design requirements, communication between
dependent activities is rich and timely, no important activities are left out of the schedule, and design
freezes are defined and adhered to. In this case rework is solely due to the iteration inherent in
engineering design. This inherent rework arises from the trial-and-error element and the “chicken vs. the

egg” problems in engineering design and cannot be directly controlled by program management.

In the design churning situation however, factors within the control of program management (changes in
design requirements, poor communication, poor pianning, weak design freezes) increase rework causing
design progress/definition to slow or regress. These controllable factors were discussed in section 2.3.1,

but there are two general points that should be made here.

While the objective is clearly to reduce as much as possible the rework caused by these factors, the
motivation behind the associated changes is not necessarily undesirable. For example, a management-
driven change in design requirements may better position the product to a change in the market. Hence

the potential conflict between reducing development lead time and maintaining flexibility in design.

Secondly, while these factors were classed as “controllable” by program management, the degree of
control varies and is not by any means complete. For example, while the promotion and coordination of
communication among the team is a primary role for program management, successful communication
also relies on the willingness of the team members to share information. Similarly, while program
management has input in the decision of whether or not to accept a design change, market requirements

may prevail as a more significant force.

The important points are the distinction between controllable and uncontrollable factors and that while
some of the iteration in the development process is due simply to the depsndencies between activities,

program management has the ability to affect the amount of potential rework beyond this inherent

-41 -

iteration. From a process improvement perspective, it would be valuable to know what the active
controllable factors are, how much delay they add to the project, and where in the project duration they

become active.

This knowledge provides focus for improvement efforts. But, unlike process improvement in
manufacturing where the objective is to eliminate variation in process output due to controllable causes,
in product development we should seek to: i) eliminate rework due to controllable causes thzi do not
have a benefit associated with them, and ii) understand and consciously control the causes that do have a

benefit associated with them.
The Relationship between the Extended Phenomena

Summarizing the discussion of this section so far, the insights gained from the voice-of-the-customer

analysis suggest that the schedule-related problems in a project can be described by two causal loops:

Controllable and uncontrollable causes of delay result in the need for schedule recovery that can
take the form of compression or overlapping of activities. These recovery actions may not be
sufficient to make up the delay, perpetuating the need for recovery. The lack of a progress
measure that takes the possibility of rework into account and predicts delay is another cause of
delay.

The seemingly continual need for recovery reduces the credibility of the project schedule, which
in turn causes a lack of urgency in activity execution and/or sub-optimal prioritization of
activities. This lack of urgency increases the probability of delay, which in turn increases the
need for recovery, creating a second loop.

The first loop consists of factors in the execution of a project that can be affected by process design and
policy, i.e. actions can be taken to modify them. The second loop describes a “second order” response to
the first loop. It is “second order” in the sense that by reducing the need for recovery in the first loop, the

effect of the second loop can be eliminated, i.e. the second loop only exists because the first loop exists.
3.2 Addressing the Problem: 3 Improvement Efforts

Given this distinction between first and second order loops of delay, the most effective approach to
process improvement will be to concentrate efforts on “breaking” the first loop. Reducing the occurrence
of controllable delay in the primary loop reduces the need for recovery, which in addition to reducing the

propagation of delay in the primary loop also lessens the delay added by the second loop.

-42.

Then, in order to increase control over development lead time, three improvement efforts targeted at the
primary loop were proposed:

* Track and address the controllable causes of delay to reduce design churning

e Optimize effectiveness of schedule recovery

s Develop a more representative measure of project progress

In any improvement effort, the selection of a metric to monitor the effort is key. In attempting to quantify
the effects of the loops of delay on a development project, activity delay (actual duration minus planned
duration) presents itself as an obvious metric. In other words, as the causal loops illustrate, delay in an
activity can be used to gauge the degree to which the loops are active, and to determine whether

improvement efforts have had any effect.

However, before accepting this as the metric to drive improvement of the product development process,
there are several criteria that this choice should be checked against. In his discussion of process control,
Reinertsen suggests that a metric should possess three characteristics: simplicity, relevance, and be a
leading indicator. By simplicity, he means that a metric should be easy to generate and understand.
Ideally he says, a metric should be “self-generating”, i.e. not require extra work outside the normal course
of business (Reinertsen, 1997, p. 203). A test for ease of understanding is whether the metric means the
same thing to all those who are affected by it and/or affect it. Activity delay fulfills this criteria in that it
is easy to determine, is an inherent part of program management, and subject to the agreement of what

deliverables constitute the completion of an activity, is universally understood among the team.

Secondly, a metric that is well-suited to an objective must be relevant to that objective. As obvious as
this may seem, cases where the use of a metric resulted in unexpected results are certainly not uncommon.
Reinertsen points out that the selection of relevant metrics should be driven by the economics of the
business, i.e. the metric should be relevant at the business level (Reinertsen, 1997, p- 197). In the
automotive industry, while the precise dollar cost is difficult to determine, the significance of the

consequences of a delay in project completion are well accepted.

As a reference point, Clark et al. estimate the marginal cost of development lead time for a vehicle to be
at least $1 million per day (Clark et al., 1987). For activity delay to be relevant however, the activities for
which delay is tracked must be on the critical path, i.e. a delay in the activity implies a direct delay in the

project.

-43.-

Another test of relevance is the degree of control over the metric possessed by the people being measured.
People are more motivated to control a metric if they believe they are empowered to control it. While this
would suggest locally-focussed metrics, it is also true that such a focus could compromise global
optimization (Reinertsen, 1997, p. 204). In this regard, Reinertsen suggests a strategy that blends local
and global metrics. Thus in measuring activity delay, the activities for which delay is tracked should be

selected and defined in such a way that there are defined deliverables and clear accountability.

Also in regard to relevance, in order to make the process improvement applicable to future projects, the
activities for which delay is tracked should be chosen so that they are common to all projects, although
their durations may have to be normalized to account for projects of different scales. Alternatively, the
activities could be selected in a modular way so that the knowledge for them can be “mixed and matched”

to apply to any program.

Thirdly, for real-time control purposes, an effective metric should be a leading indicator of performance,
i.e. it should aid in the prediction of future performance, as opposed to reporting on past performance.
Having said this though, lagging indicators are generally more accurate (Reinertsen, 1997, p. 204). Delay
is inherently a lagging indicator. However, in this case since the objective is process improvement, the
report of an actual delay is more relevant. And note that delay in one project has a predictive use in future

projects.

Having identified the three improvement efforts and a process improvement metric, the details of each

improvement effort will now be discussed.

3.2.1 Track and Address Controllable Delay

The first step toward the objective of achieving the ideal, efficient development process described in
Chapter 1 is to make the delay caused by controllable factors visible, i.e. by measuring it. Only then can
steps be taken to reduce this delay. In addition to making these controllable delays visible, measuring
them also provides a reference point to assess any improvement efforts against. Despite this seemingly
obvious point, Reinertsen notes that it is surprising how many companies do not collect data on activity
durations (Reinertsen, 1997, p. 59). Section 4.2 details a proposed teol for tracking and analyzing activity
delays, but briefly it involves the identification and measurement of delays in activity starts and a method

for determining the root cause of the delay.

-44 -

Once delay data has been collected, it can be used for two purposes. The consequences of a delay in an
activity to its related activities can be used to help plan and evaluate decisions in future programs. More
specifically, this data can be used to determine realistic parameters for the project simulation described in
section 4.3. In turn, this simulation can be used to evaluate changes in the project schedule and as a basis

for determining project progress.

Secondly, analyzing the delay data for root causes allows the determination of which causes are most
significant, i.e. a Pareto chart can be constructed. Having identified the significant causes of delay,
improvement action can be taken — the emphasis being on controllable delays. The remainder of this

section will discuss improvement actions for these controllable delays.

The focus for improvement actions will vary according to the type of controllable delay (changes in
design requirements, poor communication, poor planning, weak design freezes). For delay associated
with poor communication or planning, the objective is to reduce the occurrence of these delays. To this
end, the delay analysis tool in section 4.2 was designed to not only identify these causes, but also to

suggest how the delay might have been prevented.

For delays associated with design requirement changes, the improvement objective is somewhat different.
Understanding the implications of a design requirement change and weighing the costs (time, resource
costs and capital costs) with the benefits of making the change (increased sales and/or profitability per
vehicle) is an important key to reducing design churning. While changes to design requirements typically
cause delay, the objective is not necessarily to reduce them since they may be necessitated by changes in
market demands. Rather the goals should be to: i) make the change and its effects visible to the team, and

ii) reduce the effect of the change on the project.

Increased visibility of the effects of the requirement change can be achieved by recording the delay
associated with the change and by communicating the need for the change. Recording the delay (what
activities were affected and by how much they were delayed) increases understanding of the
consequences of the change. This develops the ability to make decisions as to whether or not to accept
similar changes in the future, since downstream consequences are now known. By generalizing this
experience to avoid design changes driven by lack of knowledge of the consequences and, to the extent

possible coordinating these changes, control of development lead time can be improved.

-45 -

If it is decided to proceed with a change, communication is important. When the reasoning for a
requirement change and the anticipated effects of it are communicated throughout the team, the various
groups on the team — and particularly those far downstream of the change — are more likely to be
motivated to accommodate it. This is much more desirable than the current perception of a random,
unconnected stream of changes with no particular motivation, which generates frustration among the

team.

Recording the consequences of a change in design requirements also directs efforts to increase flexibility
of the design process, or in other words to reduce the effect of a design requirement change on the
process. Reducing the effect of a change on completed and on-going activities of a project involves
making the design robust to changes, i.e. allowing greater flexibility in design parameters further into the

project

For example, if changes in appearance requirements consistently cause delay in the design activity,
finding an approach to make the design activity more robust to appearance changes would be extremely
valuable. Robust and set-based design are two emerging areas of study in product development that
appear to be keys to being competitive in today’s environment of rapid change and increased
customization. Understanding the effects of design requirement changes, where in the project they occur,
why they occur, and how often they occur points to areas where the application of robust and set-based

design would be most beneficial in terms of reducing development lead time.

Given these needs, the delay analysis tool in section 4.2 was designed to track and illustrate the

consequences of a change in design requirements in one activity to its related activities.

For delays associated with weak design freezes, the objectives are to eliminate freezes that cannot
realistically be adhered to, and to identify where a design freeze would be helpful in reducing
development lead time. These objectives follow from the discussion in section 2.3.1 where it was
proposed that the value of a design freeze can be determined by assessing the tradeoff between flexibility

to change the design and the reduction of development lead time.

Given that the primary function of a design freeze is to fix the design so that dependent activities can
proceed, key considerations in establishing design freezes are definition and timing. In order to define
valuable design freezes, a method for determining which design activities are important in driving

subsequent activities is required. Furthermore, it is necessary to determine the optimum level of

- 46 -

completion at which to freeze the design, such that it balances the need for flexibility and the desire to
allow subsequent activities to proceed. Finally, the sequencing of design freezes must be planned to

minimize rework.

Design freezes are related to the more general concept of activity overlapping. As discussed in section
1.1, Krishnan et al. have proposed a model for determining when development activities should and
should not be overlapped based on concepts they call evolution and sensitivity (Krishnan et al., 1997).
They recommend that a design freeze (or in their terms, “pre-emptive overlapping”) is most effective in
reducing project lead time when it is used between a fast evolution upstream activity and a high
sensitivity downstream activity. A fast evolution activity is one where the activity rapidly narrows the
range of the design parameter for which it is responsible. A high sensitivity activity is one where the
amount of rework caused by a change in upstream information increases rapidly with the size of the

change.

To this end, the delay analysis tool in section 4.2 was designed to track those delays associated with
“violated” design freezes. Checking the collected delay data for these violated design freezes, the
evolution and sensitivity of the involved activities can then be considered to determine if the design freeze
is valuable. If the freeze is deemed valuable, the optimum freeze point can be determined using the
evolution-sensitivity framework and the delay data relevant to that freeze which has been collected from

past programs.
3.2.2 Optimize Effectiveness of Recovery Actions

As the causal loop diagram in section 3.1 illustrates, there are many factors that add delay to a project.
However, there are only two ways in which delay is reduced: negative variation in activity durations
(activity takes less time than planned), and recovery actions. Given the importance of completing the
project on time, relying on negative variation is clearly not desirable. The objective should therefore be
to maximize the effectiveness of recovery actions. In other words, given a delay in a particular activity
and the options of compression and overiapping, it would be valuable for project management to know
which is likely to be most effective in minimizing deviation from the original project completion date,

and what the expected costs will be.

Given this need, the delay analysis tool described in section 4.2 was designed to track rework delay

associated with the use of these recovery actions. Comparing collected delay data to the amount of

-47 -

overlap and compression used, the effectiveness of these actions can be determined. This data can then
be used to determine realistic parameters for the project simulation described in section 4.3. In turn, the

simulation can be used to test different recovery strategies.

3.2.3 Develop a More Representative Measure of Project Progress

As discussed in section 2.3.2, a poor measure of project progress contributes to delay by providing a
misleading assessment of project status. This poor assessment of project status is an obstacle to gaining

early warning of potential delays and contributes to misguided project control decisions.

Recall that an idcal measure of project progress would:

¢ Be objectively and unambiguously defined

e Combine the status of each activity into a composite measure to capture project status in a single
quantity that can be tracked over time

e Identify activities that jeopardize on-time project completion

e Account for potential rework

e Be aleading indicator of delay

Note that these characteristics follow from the characteristics for effective metrics in general (simplicity,

relevance, and leading indicator), discussed above in section 3.2.

The “percent complete” measure of project progress was described in section 2.3.2. While it meets most
of these criteria, its primary shortcoming was its lack of consideration for potential rework, which can
affect project duration. To address this shortcoming, the project simulation described in section 4.3 can
be used to determine more representative estimates of expected activity (and therefore project) durations,
i.e. ones that include potential rework. These estimates can then be used to determine a more realistic

measure of percent complete.
Even when the potential for rework is accounted for, “percent complete” could be further improved by

making it more of a leading indicator of project progress — so that potential delays can be identified

earlier. This will be discussed in section 5.3 in the context of further work.

-48 -

3.3 Chapter Summary

Linking the process-related and organizational issues that inhibit control over development lead time, the

process-related issues were found to be the root of the problem. To this end, three improvement efforts

were defined:

e Track and address controllable causes of delay to reduce d=sign churning

e Optimize effectiveness of schedule recovery actions, and

e Develop a more representative measure of project progress.

The objectives of tracking controllable causes of delay are: to determine and take action to reduce the
most significant causes of delay, and to provide data for simulating projects. With respect to schedule
recovery, the objective is to collect data to determine the effectiveness of these actions and to provide data
to simulate different recovery strategies. As for project progress, the objective is to improve the current

“percent complete” measure of project progress by including the potential for rework.

Chapter 4 outlines two tools for the implementation of these improvement efforts.

-49 -

This page is intentionally blank.

-50-

4. Solving the Problem: Tools for Improvement

Having defined three improvement efforts aimed at increasing control of development lead time in
Chapter 3, the next step was to develop tools for implementing them. This chapter begins with an outline
of two more types of process improvement. They are used as a basis for the design of a delay tracking
and analysis tool. The use of a project simulation to demonstrate the expected effects of the improvement

efforts is then described.
4.1 Process Improvement: The TQM Framework

TQM theory (Shiba, S., A. Graham, D. Walden, p. 49) describes three types of process improvement,
including:

e Process Control

e Reactive Improvement and

e Proactive Improvement.

Each of these types of process improvement has different objectives. As discussed in Chapter 2, the
objective of proactive improvement is to identify general direction for improvement. The use of a
proactive process improvement tool called “Voice of the Customer” to identify inhibitors to control of
development lead time was described. Where proactive improvement is focussed on setting direction for
improvement, process control and reactive improvement are more implementation-oriented. The
following sections discuss the application of process control and reactive improvement to the product

development process.
4.1.1 Process Control

The objective of process control is to determine the variation of the output of a process and identify when
corrective action is required, i.e. when the process is out of control. It involves measuring the output of
the process and comparing it to the desired output — on a continuous basis. A familiar example of the
application of process control would be the tracking of a product dimension in a manufacturing process.
However, this idea can apply to any process. In the context of product development, in section 3.2 the

case was made for tracking activity delay.

-51-

The idea behind process control is that the actual process output will vary within a range. By tracking the
process output over time a comparison can be made with the desired output range. If the range of actual
output is outside the desired range, the need for action is identified. The objective of the action can be to

i) improve the process by reducing the variation, or ii) reset the nominal or average value of the output.

With regard to reducing variation, TQM recognizes two types of variation: controlled and uncontrolled.
Controlled variation is variation inherent in the process and is due to what Deming refers to as “common”
causes. It results in a stable pattern of outputs over time. Uncontrolled variation is variation due to
abnormal changes to the process, or what Deming refers to as “special” causes. The first step to
improving a process is to understand and remove the uncontrolled variation so that the controlled

variation — which is typically smaller — can be made visible and then addressed.

In the context of this thesis, the objective of process control is to improve control of development lead
time by identifying controllable and uncontrollable delay. Recall from section 3.1 that controllable causes
of delay referred to causes of delay over which Program Management had some degree of control. The
“efficient project” was defined as one in which rework is due solely to uncontrollable causes of delay.
Thus the definitions of “controllable” and “uncontrollable” delay causes in this thesis are the reverse of
the standard TQM terminology described above. However, it was felt that these definitions would be

more intuitive for the purposes of this thesis.

After collecting activity delay data and separating it into controllable and uncontrollable causes, reactive

improvement can be used to reduce the controliable causes of delay.

4.1.2 Reactive Improvement

The objective of reactive improvement is to improve a process by determining root causes of the
problem(s) and then implementing appropriate solutions to prevent their recurrence. Reactive
improvement is the approach by which undesired variation in process output — identified using process
control - can be reduced. The tool used in for reactive improvement of weak processes is known in TQM
as the 7 steps (Shiba, S., A. Graham, D. Walden, p. 53). Shiba et al. describe these steps as:

1. Select a theme (a specific improvement, such as “decrease after-shipment bugs reported in

product X”).
2. Collect and analyze data (to discover what types of bugs occur most often).

Analyze causes (to discover the root cause of the most frequent type of bug).

-52-

Plan and implement solution (to prevent the root cause from recurring).
Evaluate effects (to check the new data to make sure the solution worked).

Standardize solution (to permanently replace the old process with the improved process).

N o wn s

Reflect on the process and the next problem (to consider how the problem-solving process could
have been better executed and to decide which problem to work on next, such as the next most
frequent type of bug from step 2).

Note that these steps are common to the basic problem-solving processes now part of many corporations.
In the context of product development and this thesis, reactive improvement means analyzing the activity
delay data and determining the significant controllable causes of delay. After identifying these

controllable causes of delay, action can be taken to prevent their occurrence in future projects.

Given the context of these types of process improvement it is interesting to recognize that the approach to
improvement described above closely parallels that of reducing variability in a manufacturing process.
Given the high degree of familiarity with process improvement in manufacturing and its acceptance as a
competitive necessity, it may be helpful to compare how the process applies in manufacturing and product
development contexts. Figure 6 illustrates the reactive improvement process, showing examples of its

application in manufacturing and program management (in product development).

-53-

WORKPLANNING| | MANUFACTURING

Collect data
Describe the Delay Defects
Problem
[Examples: |
Collect data l
Define Root Cause l{v::lomtmumcated Misaligned tool
and Escape Point gherge
Define and Correct tool
Choose & Verify review give/gets i
Corrective Action) e alignment
Collect data
i Update Lock in correct
Implement & Validate development setting
Corrective Action process
l description
Lewerage Further reduce
Continual leaming into variation
monitoring/improvement future programs

Figure 6: Reactive process improvement methodology in product development and manufacturing
contexts

The key observation is that after defining activity delay in product development as the equivalent problem
of product defects in manufacturing, the remainder of the process follows naturally. An important
difference that should be noted however is that product development is a one-time process as opposed to
the more repetitive nature of manufacturing processes. However, as Reinertsen argues, there is some
level at which product development process can be considered standard (Reinertsen, 1997, pp. 119-120).
He points out that while attempting to standardize a development process at high levels of detail will
result in endless frustration, at a low enough level of detail, common modules can be put together in a

variety of ways to “build” any project.

He defines modules as building blocks of the development process with standardized interfaces (inputs

and outputs to upstream and downstream modules). The internal sub-processes in the module can vary

-54.

with the project. In the context of the delay analysis tool and simulation described in this thesis, the
modules are the development activities for which delay is tracked. The module interfaces are defined by

the “give-gets” or deliverables between the upstream and downstream activities.

In order to leverage the knowledge gained from the delay analysis tool and simulation across all current
and future development projects, the selected modules (development activities) should be sufficient to
“construct” projects of varying scale. This remains to be seen, but the activities used in this thesis fit the
most typical scale project at the company. Ful‘ther discussion may find that this activity set could be

expanded to slightly greater detail to make it relevant to smaller scale projects.
4.2 A Data Collection Tool: the Key to Process Improvement

This section describes a tool for tracking and analyzing activity delays in a project. In the context of the
preceding discussion of th- different types of process improvement, this tool fulfills the process control
function of collecting and separating controllable and uncontrollable delays. It also identifies significant

controllable delay causes, a key step in reactive process improvement.

There are two overall objectives for the delay analysis tool:

e Identify controllable causes of delay that can then be addressed, and

e Gather real data on the relationships (dependencies) between activities.

Tracking and analyzing delay due to controllable causes provides data that can be used to: i) identify
problematic delay causes, ii) monitor the effect of improvement efforts, and iii) assess the efficacy of

recovery strategies.

By tracking linkages between delays associated with dependencies between activities, the delay analysis
tool can be used to: i) give visibility to the effect of changes in design requirements, and ii) facilitate the
determination of parameters describing the dependencies between activities (probability and impact of

rework), with which a more accurate project model can be built.

The details of how the output of the tool can be used to achieve these results are described below in

section 4.2.3.

Figure 7 illustrates the delay analysis tool as a schematic showing inputs and outputs. To achieve the two

overall objectives described above, the tool has the following functions:

-55-

¢ Distinguish between root delays and delays linked to these roots

¢ Distinguish between delays associated with rework/changes in design and those that are not
e Separate delays associated with recovery actions

e Track level of detail for missed activities

e Track degree of definition for failed give-gets

¢ Identify opportunities in which delays can be detected earlier

INPUTS: OUTPUTS:
Collected Data: Primary Outputs:

M DELAY in completing —/

deliverable of activity under .
consideration (actual - planned ;:' eto Chart S:"“"“B

duration) [delays] ot Causes of Delay
) . ——IDelay Chain Charts
l : [|[mued fwtxvum]o] Showing Delays
- - poor give-gets Linked to Each Root

Appomo:el])ELAY 5.:: LHT!I [wesk design freezes] Cause

activi (und:' :::sidemytio:) [when delay was found]

Y [costs of overlapping) Secondary Outputs:
[costs of compression]
Data to aid in determining:
> -schedule detail

A””m"?dzm“":s:‘;“fn“‘l give-get (deliverable) definition

e ::ﬁvity)y .valuable design freezes

P -how to recognize defays earlier
-optimum schedule recovery action
Record speed with which the
delay was discovered.
y
Record efficacy of any schedule
recovery action taken.

Figure 7: Schematic of delay tracking and analysis tool

The following describes the step-by-step application of the tool in two phases: input and output. It is

envisioned that this tool would be implemented in a web-based format to facilitate easy data entry and
analysis.

4.2.1 Inputs

Each activity has one or more give-gets or deliverables that when met, define the completion of the
activity. The delay analysis tool was designed to be applied at the completion of each of these

deliverables. When a deliverable is completed, the first step is to quantify the size of the delay, i.e. actual

-56-

activity duration minus planned duration. The next step is to apportion the total delay to various causes.
Note that the inputs are divided into 4 groups: internal cause, external cause, recovery, and discovery.
These are related to the functions outlined above. Internal causes are those causes of delay that are within
the control of the activity under consideration. External causes refer to causes of delay attributed to an
activity upstream of the activity under consideration.

In order to allow the effects of recovery actions to be tracked, the tool provides for the recording of the
amount and cost of compression and/or overlapping applied. As in the simulation model, compression
refers to the use of overtime to reduce the duration of the activity under consideration and overlapping

refers to the start of a downstream activity prior to the completion of the activity under consideration.

In order to promote the early detection of delays, the tool solicits ideas for identifying similar problems in
the future earlier.

The following flowchart in Figure 8 describes the input process and identifies the data collected.

-57-

Figure 8: Flowchart for delay analysis and tracking (Inputs)

1:

At the completion of an activity deliverable, how many weeks
more than the planned duration did the deliverable take to
complete?

Apportion dalay to INTERNAL Causes

(it applicable):

A

2:
What % of the delay was due to resource unavailability
(resource not ready at planned date)?

3:

What % of the delay was due to technical infeasibility (design
required more time than planned, but not because of changing
or late inputs)?

A

4:

(delay,], Resource

Unavailable

What % of the delay was due to a postponed decision (design

not available when required)?
5.

What % of the delay was due to a a change in design
requirements (management-driven change that directly changed

the specifications required of the activity under consideration)?

y

6:
Was a subtask missed in the development of the original
schedule?

A

6a:
What % of the delay was due to a subtask that was
missed in the original schedule?

6b: I

Record what subtask was missed

y

6c:
Record the duration of the missed subtask

Infeasibility
[delay,),
p{ Decision
Unavailable
{delay,],
o~ Design
Requirement
Change
[delaye,), -
I—— Missed
Activity
-~ [subtask 6b};
-3 {duration 6c],

&

-58-

[delay v

[delay],

LEGEND:

[delay),

delay =

amount by which activity give-get
(deliverable) is delayed:

actual duration - planned duration
X=

type of delay (corresponds to

numbered questions in flowchart)

i=
activity in which delay occurred
(activity # 1,2, 3,...,n)

Apportion delay to EXTERNAL Causes (if applicable):

Did the activity under consideration wait for a give-get
(other than those required to start the activity)?

Ta:

Was there a fully-defined give-get (see scale of
definition in Table 7a at right)?

y

Table 7a: Give-Get Definition Scale

CRITERIA: The give-get. ..

DEGREE

Was not identified by either the
| _upstream or downstream activity

Was identified by both of the
activities

Had a definition (of what final
information would be transferred) set
by one activity

Had a definition agreed by both
activities

Had a richer definition (what
preliminary as well as final
information would be transferred)
agreed by both activities

&1

What % of the delay was due to the lack of a fully-
defined give-get?

Te: ‘

Record the degree to which the give-get was defined
(see Table 7a for definition scale)

pp. [BiVeE-get definition, J;

7d:

Find the relevant upstream activity causing delay in the
activity under consideration and link this delay to:
- a root cause documented for the immediate upstream

activity, or

- a chain of delays which the immediate upstream
activity is linked to (i.e. root cause of this chain is in an
activity further upstream of the immediate upstream

activity)

-59-

[delay,];

? 9

Did an input (give-get) to the activity under
consideration change (after the agreed give-get transfer

date)?

[~]

Was the change the result of a "violated" design freeze
(change made after scheduled freeze date) in the
immediate predecessor?

]

8b:

Record the violated freeze and reason.

8c:

'|Did the immiediate predecessor violate the freeze as the
result of a change forced on it?

M

e [fECZER);

8d:

upstream activity)

Find the relevant upstream activity causing the violated
freeze and link the delay in the activity under
consideration to the chain of delays which the
immediate upstream activity is linked to (i.e. root cause
of this chain is fusther upstream of the immediate

B [delaygq);

y

8e:

What % of the delay was due to the violated design
freeze in the immediate predecessor?

8f:

Was the change the result of a change forced on the
predecessor?

[~]

y

[delayy,);

8g:

Find the relevant upstream activity causing delay in the
activity under consideration and link this delay to:

- aroot cause documented for the immediate upstream
activity, or

- a chain of delays which the immediate upstream
activity is linked to (i.e. root cause of this chain is in an
activity further upstream of the immediate upstream

[delay,,);

activity)

-60 -

Linked Delay

8h:

Did the change occur during overlap with an
incomplete predecessor?

[~]

[v]

What % of the delay was due to a change that occurred
during the time the activity under consideration was
overlapped with an incomplete predecessor?* (see 11)

v

[delayy),

Rework from
Overlapping

Delay Discovery Efficlency:

18):
Record costs (manpower, facilities, materials, T— (N)
equipment) associated with this rework.
y
8k:
Ask 2 through 8 at predecessor to determine root
cause. Start new delay chain.
v 47 E
@_’ Is all delay accounted for? . |Reassess 2 - 8
9:
Could any of these delays have been detected any s > [early detectiony);
earlier? When? How?

Recovery Effectiveness:

10:

What part of the activity under consideration was
compressed? By how much? For what cost?

11:

What successor activity was overlapped with the
incomplete activity under consideration? By how
lmuch? Tag this activity as being overlapped*.

REPEAT for next
activity delay

-61-

eepp [compression,,];

e [overlap,,},

4.2.2 Outputs

There are two primary outputs from the delay analysis tool related to the functions outlined above:

e Pareto chart relating delays to root causes

¢ Linked delay charts showing the delays related to root delay

The tool also has 4 seondary outputs related to suggestions for improving the process:

e Activity-specific charts showing the number of delays due to missed subtasks as a function of the
level of detail in the schedule

® Give-get specific charts showing the number of delays due to incompletely defined give gets as a
function of the degree of definition

e Opportunities for earlier detection of delays

e Problematic weak design freezes

The generation of these outputs from the inputs and the relationship of these outputs to the stated

objectives of the tool are discussed below. Terms enclosed in [] refer to inputs from the various steps of

the flowchart.

- Root Delays -

A root delay in an activity is a delay that originates in the activity, i.e. it is not due to a delay in an
upsiream activity. These root delays can be the result of any of the root causes identified in the flowchart

of Figure 8 (and also shown in Figure 9).
By grouping the delays for all activities in the project [delay x]; by type of root cause, a Pareto chart in the

form of Figure 9 can be constructed. Note that delays from all inputs except the linked delays (7d, 8d, 8g)

are included in this chart.

-62-

Root Causes of Delay: Pareto Chart
Example of chart that could be developed from data gathered over 2 projects:

(hypothetical data)
A
)
85
s g
EE
—
% [delay ,];
L o5 [delay ,];
£ [delay ,J;
sl <L [delay
o, = delay .1 lidelay .1
E > [delay,]; |[delay J;
2
< [delay ,]; |[delay,]; |(delay,); |[delay); |(delay,); |ldelayJ; |{delay); |(delay,);
E fnd
£ .] E s
2 2 2 5 8
s ¥ g% fs § ¢ & &%
e 23 8T ZEF 3 5 s if
Q o 2 - B o
=5 f£F5 A5 5 2 " I §-
A = B
Controllable Root Cause: X X X X X X X
Uncontrollable Root Cause: X
Type of Delay: | "Direct" | Associated with Rework/Design Changes I

Legend: [delay],

delay = amount by which activity deliverable is delayed:

= actual duration - planned duration
x = type of delay (corresponds to numbered questions in flowchart)
i = activity in which delay occurred

Figure 9: Root cause Pareto chart

In relation to the overall objectives of the delay analysis framework described above, this chart can be

used to:

o Focus improvement efforts by identifying consistently problematic causes of delay
e Monitor the effect of improvement efforts

e Assess the efficacy of recovery actions

-63-

The Pareto chart concisely illustrates the problematic causes of delay, i.e. those that recur frequently

and/or have long delays associated with them. The cumulative delay over all projects for a root cause of

Cumulative DELAY, = E E [delay,];

all projects i
where i = any activity in a project that was delayed by a root cause of type ‘x’.

type ‘X’ is:

The larger DELAY, the more problematic the type of delay. Identification of consistently problematic
delay causes provides focus for process improvement efforts and provides future programs with an idea of

which activities have a high-risk of extended duration.

Collecting and comparing this data across projects allows the effect of any improvement efforts to be
quantified. Note that to apply this tool to different scale projects, an agreed method of normalizing the

activity delays needs to be established so that they are comparable between large and small-scale projects.

This may be as simple as declaring a reference scale project with standard activity durations. Projects that
are larger or smaller in scale would have correspondingly higher and lower target activity durations. The
observed activity delays for a larger-scale project would then be decreased by the ratio of the target
activity duration to the standard activity duration. Similarly the observed activity delays for a smaller-
scale project would be increased by the ratio of the target activity duration to the standard activity
duration. Alternatively, project delays could all be converted to and tracked as percentages of the target

activity duration.

By linking observed activity delays to recovery actions taken, the delay analysis tool allows the efficacy
of compression and overlapping to be tracked. This efficacy will be measured in terms of ability to

reduce delay and the cost associated with using the recovery action.

As a minor note, the root causes can be broadly grouped into those associated with rework or a design
change, and those that are not. The latter group will be referred to as “direct” delay. This distinction is a
useful way of characterizing a project and is also related to the parameters used in the simulation model.
In the model, the delay associated with rework is captured by the probabilities and impacts of rework in
the DSM, whereas the “direct” delay is captured in the variation in initial duration of each activity (before

the addition of any rework).

The secondary outputs are related to the root causes and are useful for focussing improvement of project
management functions: coordinating communication, scheduling activities, and coordinating design

freezes.

For delay due to subtasks of an activity that were missed during the development of the original project
schedule, a chart in the form of Figure 10 can be generated. This chart is specific to a particular activity
in the project, but would be added to as data from the same activity in future projects is gathered. The
chart illustrates the relationship (if any) bctween the level of detail for the activity in a schedule and the
number of delays and can thus be used to help determine the appropriate level of detail with which to

schedule a given activity.

Delay Occurrencess and Level of Detai!
Example chart that could be developed from data gathered over multiple projects:
(hypothetical data)

A

of Delays

1 >

Level of Detail: Subtask Duration
Activity Duration

Figure 10: Chart to analyze relationship between number of delays and level of schedule detail

When a missed subtask of an activity ‘i’ causes delay in a project, it is captured by input 6. The particular
subtask [subtask 6b]; and amount of the delay [duration 6a]; are recorded. To establish a measure of the
level of detail of a subtask, the duration of the subtask as a fraction of

the duration of the activity of which it is part, can be determined, i.e.

duration of subtask ;

duration of activity,

level of detail (of subtask ; of activity,) =

- 65 -

If each time a subtask of activity; in any project is missed it is added to this chart, the data can be analyzed
for patterns. Finding many of instances of missed subtasks associated with high level of detail would
suggest that using a greater level of detail in the schedule would be beneficial, i.e. activity; could be

divided into smaller activities.

For delay due to poorly defined give-gets, a chart in the form of Figure 11 can be generated. This chart is
associated with a specific give-get between a pair of activities, but would be added to as data about the
same give-get in future projects is gathered. The chart shows the relationship (if any) between the degree
of give-get definition [degree 7c]; and the number of delays. If a particular give-get has a high number of

delays associated with it, its definition (see Figure 11) should be reviewed to reduce ambiguity.

Delay Occurrencess and Give-Get Definition
Example chart that could be developed from data gathered over multiple projects:

(hypothetical data)
A
&
3]
Q
Gt
=]
I
l >
0 1 2 3 4

Degree of Give-Get Definition:

Not identified by upstream nor
downstream activity

Definition set by one activity
Definition agreed by both activities
Definition of final and preliminary
information agreed by both activities

Identified by both activities

Figure 11: Chart to analyze relationship between number of delays and give-get definition

- 66 -

To promote the early detection and recognition of delays, the tool solicits and records suggestions as to
how much earlier and by what mechanism a similar delay in future programs could be detected [early

detection 9];.

To identify design freezes that are difficult to adhere to, the tool records the activities affected by these
“drifting” freezes [delay 8d); and what aspect of the frozen design was changed [freeze 8b};,. Patterns in
this data can be used to help establish what freezes are valuable. As discussed in section 2.3.1, a design

freeze that is consistently difficult to adhere to may be more of a disadvantage than a benefit.

- Linked Delay Charts -

The analysis tool was designed to link any activity delays associated with a previously recorded root
delay in an upstream activity. By charting all the delay associated with a particular root delay, a chart in
the form of Figure 12 can be constructed. This chart thus illustrates the consequences of a particular root
delay, i.e. a chain of all the delays related to the root. This type of chart would be generated for each root
delay (should the effects go beyond the activity in which the root delay occurred).

-67-

Linked Delays
Example delay "chain" for one project:
(hypothetical data)

A

Activity Delay
[Time Units]

[delay], [delay], |[delay], [delay],

Activity i Activity j Activity k Activity] Activity m

|Root |Downstream Effects > |

Figure 12: Chart showing delays linked to a particular root delay

The total delay associated with one particular instance of a root delay ‘Y’ in a project is:
Total Linked DELAYy = Root [delayy]; + E [delay,];
i

where i = all activities where delays linked fo the root delay ‘Y’ occurred.

In relation to the objectives described above, this chart can be used to illustrate and quantify the effect of
a change in design requirements (one type of root cause) by showing all the delays linked to it. Secondly,
by analyzing the frequency of occurrence and the size of the linked delays, historically-based parameters
for the simulation model can be determined. This more accurate model can then be used for three real-

time project control analyses. These applications of the model are described in the next section.

- 68 -

4.3 A Simulation to Demonstrate the Improvement Approaches

4.3.1 Description

This section describes a project simulation that was used to investigate the following:
e The effect of controllable causes of rework on project completion date
e The efficacy of various schedule recovery strategies

e The effect of rework on project progress.

Note that these simulation applications can be interpreted in two contexts. In the context of this thesis,
they illustrate the expected results of the three improvement efforts outlined in section 3.2. In the context
of application in an actual project, they demonstrate how the simulation can be used to: i) evaluate the
effect of a proposed change in design requirements on project duration, ii) determine optimal schedule
recovery strategies when a delay occurs, and iii) determine a more representative basis against which to

measure project progress, i.e. one in which expected activity durations include potential rework.

The objective of this section is to illustrate how the simulation can be used and to draw general
conclusions — not necessarily to determine detailed operating policies. The point is made here since the
simulation parameters (outlined below) were based on general estimates — as relevant historical data
proved to be difficult to obtain. The sensitivity of the simulation to these parameter choices is addressed

in the discussion of results.

However, as described above, the vision is that by implementing the delay analysis tool described in
section 4.2, relevant data can be collected to determine more accurate parameter values for the simulation.
With parameters based on real historical data, the output of the simulation could conceivably be used for
more detailed operational planning. In this way, the simulation would generalize the learnings from the
delay analysis tool. Furthermore, given a validated model, such a simulation could be used in real time,
i.e. to monitor project progress and analyze schedule recovery actions during a project — as opposed to
using the model for general planning a-priori. This idea will be discussed further in section 5.3 in the

context of further work.

The simulation used for this thesis was an extended version of a DSM-based, Monte-Carlo development
project simulator developed by Browning (Browning, 1998b, chapter 6). In this model, a development
project is described using an activity-based Design Structure Matrix (DSM). This method of representing

-69 -

and analyzing systems was introduced by Steward (Steward, 1981) and extended by others (Eppinger et
al., 1994).

The DSM captures 3 types of dependencies between activities: independent, dependent, aad
interdependent. Independent activities do not depend on each other in any way and can thus be executed
in parailel without consequence. A dependent activity requires information from an upstream activity and
must therefore follow the upstream activity. The information flow is forward through sequential
activities. This “feedforward” relationship is shown as a sub-diagonal entry in the DSM. Interdependent
activities are coupled and since they require information from each other, usually resuit in iteration. The
information flow is both forward from activity A to B and backward from B to A. The “feedback”

relationship is shown as a super-diagonal entry in the DSM.

A set of 26 activities was selected to represent a generic vehicle development program. These activities
and their execution sequence were based on the company’s standard work breakdown structure and the
associated give/gets or deliverables traded between these activities. This work breakdown structure was
developed for a program of typical complexity, i.e. carry-over platform with new body. Note that several
of the activities have been divided into sub-activities. This was to allow the timing of the give/gets
between upstream and downstream activities to be matched. For example, the activity “Set
Specifications” spans 11 time intervals in the standard plan. However, this activity feeds information to 3
other activities at different times during this time period. Thus, the activity is divided into three sub-

activities: “Set Specs-1”, “Set Specs-2”, and “Set Specs-3".

Note that one of the benefits of developing a DSM representation of a project is the ak.ility to determine
activity sequences that minimize the potential for rework (Eppinger et al., 1994). The intent of this thesis
was to model the existing process so the sequence in the company’s standard development process was
used. Given the many dependencies between the rather high-level activities used in this model of the
project, it is likely that further dividing the activities into more-detailed activities with fewer

dependencies would improve the chance of finding more optimal sequencing.

There are two dimensions to the relationship between any two activities: the probability of rework and
the impact or amount of rework should rework be required. These two dimensions are documented in two
DSM matrices: a rework probability matrix and a rework impact matrix. Each cell in the probability
matrix is filled by answering the question “What is the probability (between zero and 1) that activity ‘i’

causes rework for activity ‘j’?”, i.e.

-70-

DSM;; = P(activity i causes rework for activity j).
Each cell in the impact matrix is filled by answering the question “if activity ‘i’ does cause a change in
activity ‘j°, how much of activity ‘j’ must be reworked?”, i.e.

DSM;i= % of activity ‘j’ that must be reworked, given that activity ‘i’ changes.
Following are the DSM matrices (probability of rework and impact) showing the activities and the
various relationships used to model a vehicle development program in this thesis. It is worth noting that
the feedback loops in this DSM are relatively small, i.e. with the exception of feedback from “CP

Testing” to “Design-2", none of the feedbacks go back more than 3 activities.

dimension k = 1 (rework probabilities)
Activities

1234567 8 91011121314151617181920212223 242526

Establish Target Ranges
Set Specifications
Preliminary Package
Appearance Concepts
Mfg Specs

Specs2

Specs3

Validate Targets
Design

Mfg Design
Production Tool Build
Design2

Validate Design
Prototype Tool Build
Final Package

Final Appearance
Engineering Release
Final Package2

Final Appearance2

O 00) O\ h B W N e

bt bt e g bbbt bt e e
\O 00 ~1 O\ th & LW N~ O

AP2 20
ER2 21
ER3 22
Production Tool Build2 23
cp 24
£ngineering Sign Off 25
Ramp to J1 26

Figure 13: DSM matrix: rework probabilities

-71-

dimension k = 2 (rework impacts)
Activities

12 3 4 56 7 8 91011121314 151617 18 19 20 21 22 23 24 25 26

Establish Target Ranges !
Set Specifications 2.
Preliminary Package ki B
Appearance Concepts 41.
Mfg Specs S
Specs2 6
Specs3 7
Validate Targets 8
Design 9
Mig Design 10
Production Tool Build 11
Design2 12
Validate Design 13
Prototype Tool Build 14
Final Package 15
Final Appearance 16
Engineering Release 17
Final Package2 18
Final Appearance2 19
AP2 20
ER2 21
ER3 22
Production Tool Build2 23
cP 24
Engineering Sign Off 25
Ramp to J1 26

Figure 14: DSM matrix: rework impacts

In line with the point made earlier that the objective of this thesis is to illustrate how such a simulation
could be used in planning and managing a concurrent development project, this rather general set of
activities could be expanded as the need for greater detail becomes apparent. However, the goal is to
make the learnings gained by using the delay analysis tool and the simulation in a specific program
relevant to all future programs. Thus the activities used in them should be selected based on the ability to

use these activities as “building blocks” to construct a model for any program.

Following is a brief explanation of the structure and operation of the simulation. For a more detailed
description see Browning (Browning 1998b, chapter 6). The required inputs for the simulation include:
e Sequenced activities and their dependencies (DSM)

e Activity durations (min, most likely, and maximum)

-72-

Given these inputs the simulation randomly determines a duration for each activity (within the specified
minimum and maximum) and then steps through the project in user-specified time intervals. At each time
step the following occurs:
¢ Do work on each activity that does not have incomplete predecessor activities
e If an activity, say ‘A’ is completed during this time step, if feedback is possible (superdiagonal entries
in DSM), randomly determine whether rework occurs for the related upstream activity, say ‘B’.
- If rework does occur, add the amourt specified in the DSM to the affected upstream activity ‘B’.
This is referred to as “first-order” rework.
- If rework does occur in ‘B’, if feedforward is possible (sub-diagonal entries in DSM), add the
amount specified to the related activities downstream of this activity, e.g. rework in ‘B’ causes
rework in ‘C’ and ‘D’. This is referred to as “second-order” rework.

* Advance to next time step and repeat until project is complete (no activities with work remaining).

The output of the simulation is total project duration for each run. Each scenario in this thesis was run

300 times allowing histograms and probability vs. project duration plots to be drawn.
4.3.2 Modeling the Approaches

This section describes how the simulation was used to model the three improvement efforts described in

section 3.2.
- Modeling: Effect of rework on project completion -

In the simulation, project completion date can be affected by two general factors: variation in the initial
activity durations, and potential rework. Initial activity duration is the duration before the addition of any
rework and is randomly selected from a user-specified distribution. The effect of rework was assessed by
determining the sensitivity of project completion date to various probability and impact DSMs. This
analysis was useful for two reasons. Not only did it give an indication of the sensitivity of the results to
uncertainty in the benchmark DSM, it could also be interpreted as effects of some of the previously

described controllable delay causes. These interpretations are discussed below.

The controllable delay causes can be related to the probability and impact DSMs. The effect of a change
in design requirements on project completion date can be modeled as a feedback loop with probability of

occurrence 100%. For example, consider a project where design requirements are established in activity

-73.

‘j’. If at a later activity ‘i’ a decision is made to change these design requirements, activity ‘j’ is forced to
do rework. The potential for rework of activities dependent on activity ‘j’ is also created. A change in
requirements that occurs at the end of activity ‘i’ and directly affects activity ‘j’ would thus be entered
into the probability matrix as: DSMj; = 1. Note that the timing of such changes in design requirements

would likely coincide with design reviews scheduled into the project.

In section 2.3.1 two types of poor communication were described as causes of controllable delay: late
discovery of design problems, and poorly defined information exchanges. As described in earlier, when a
design problem is discovered late, the consequence is that the amount of rework is typically increased.
Thus the effect of late discovery of problems on project completion date can be modeled as increased

impact, i.e. larger entries in the impact matrix.

When an information exchange is poorly defined (what is to be exchanged and when), the probability of
delay is increased. As explained in 2.3.1, this can be the result of one of two general failure modes:
differences between what each party believes to be accurate information, or the upstream activity not
being aware that the downstream activity is expecting information from it. In either case, the probability
of rework is increased and the effect of poorly defined information exchanges can be modeled using

larger entries in the probability matrix.

As described in 2.3.1, a weak design freeze, i.e. one that allows the design to “drift” beyond the declared
finalization date, increases the likelihood of rework for the activity using information it believes to be
finalized, but in fact is not. If we make the reasonable assumption that the rework is not discovered until
some time after the declared freeze, the amount of rework required increases. Thus the effect of a weak
design freeze can be modeled as increased probability of rework and impact, i.e. larger entries in the

probability and impact matrices.

- Modeling: Efficacy of recovery actions -

Given the schedule recovery options of compression and activity overlapping, the simulation was used to
determine the ability of these actions to maintain scheduled project completion date and to estimate the
costs of using them. Also of interest with regard to schedule recovery was the identification of activities
for which delay should be expected, given the variation in initial activity durations (durations before the

addition of any rework) and the possibility of rework.

-74 -

In order to model schedule recovery actions, it was necessary to extend the simulation developed by
Browning (Browning, 1998b, chapter 6). For the purposes of this model, it was assumed that schedule
recovery actions are not implemented until the start of an activity is delayed, i.e. there is no proactive
identification of delay. While this is certainly not ideal, it is not unrealistic given that the complexity of a
vehicle development project can easily obscure the downstream effects of a delay. This complexity is due
to the large number of dependencies between tasks, a significant proportion of which are
interdependencies which make feedback a risk. The relaxation of this assumption is discussed in section
5.3 in the context of further work.

It should also be noted that the model only checks for delay in activity start on the activity’s scheduled
start date. Thus schedule recovery action can only be motivated by a given activity once. While in reality
the delayed start of an activity can persist beyond the first implementation of recovery action, this

decision was made to make the model conservative in its ability to eliminate delay.

A subtle but important point that should be made is that these recovery actions are driven by delays in the
start of an activity, as opposed to the delay in the finish of an activity. This allows delays in the
completion of an activity to persist so long as they do not affect the start of a downstream activity, i.e.

activities not on the critical path can tolerate some degree of delay.

When an incomplete upstream activity prevents the scheduled start of an activity, the model checks to see
if compression is to be used, and if so, what fraction of the delay can be eliminated using it. The model
then reduces the work remaining of the upstream activity by the lesser of: the delay in the completion of
the upstream activity and the maximum allowable amount of compression. The maximum amount of
allowable compression is specified as .the fraction by which the delay in completion of the upstream

activity can be reduced using compression.

This raises another simplification of the model. The model makes the assumption that if compression is
permissible, the resources to perform it are available. And, while different physical limitations mean that
the maximum allowable compression will vary by activity, the model assumes that all activities can be

treated similarly. This will be discussed in section 5.3 in the context of further work.

The incremental cost of the compression is the premium paid for overtime work. For example, if
overtime is paid at “time and a half”, the premium is 50% of the time worked at the overtime rate. The

amount of time worked at the overtime rate is equal to the size of the delay, less the fraction of that delay

-75-

eliminated by compression. Thus to compress an upstream activity delaying the scheduled start of a

related downstream activity, the incremental manpower cost, in units of time is:

Costeompression = Overtime premium x (Delay ~ Fraction of delay reduced by compression)

If, after implementing compression the incomplete upstream activity is still delaying the scheduled start
of the downstrearn activity (or if compression is not permitted), the model checks to see if overlapping is
allowed. If it is, the model reduces the amount of work required for the downstream activity, by an
amount equal to the lesser of: the delay in the upstream activity and the maximum allowable overlap. In
the simulation, this has the same effect as allowing the downstream activity to proceed prior to the finish

of the upstream activity. But using this approach allowed more of the original code to be retained.

The maximum allowable overlap is specified as a fraction of the downstream activity duration. Again, in
the interest of simplification, the model uses the same maximum overlap for all activities. If overlapping
is permitted, the model assumes that the conditions that facilitate it are present: activities can be
overlapped (i.e. physical constraints do not prevent overlapping), and that the required communication
between the overlapped activities can be achieved (i.e. through co-location, frequent updates, and a high

degree of relevant experience among the group members).

The incremental cost of overlapping is the use of resources (staff, facilities, and materials), for rework,
only if it is required. Overlapping involves starting an activity with unfinalized information. So while it
is possible that overlapping an activity will not incur any rework, it is more likely that rework will be
necessary. In the model, the need for rework is determined probabilistically using the same probability
matrix used to specify the probability of rework due to feedback. In practice, the probability of requiring
rework due to overlapping activities that were not originally intended to be overlapped, could be expected

to be higher than that due to feedback. This will be discussed in section 5.3.

Should it be found that rework is required, the model reverses the overlap reduction. In other words, if
rework is required the net benefit of overlapping is zero and the manpower cost is equal to the amount of
time of the overlap. This model is conservative in that when rework is required, it is possible that some
portion of the original work can be salvaged. This simplification will also be addressed in 5.3. Thus the

expected incremental cost of overlapping is:

Costoverap = P(rework required for downstream activity) x amount of time overlapped

-76 -

This check for delayed activity starts and the implementation of allowed recovery action is repeated for

each activity at every time step of the simulation.

Table 1 summarizes the relevant variables of the original simulation (shown in bold) and the key ones that

were added to model schedule recovery.

VARIABLE. .-
W(n)

CDESCRIPTION ’ Lo

Work vector containing the remaining amount of work for each activity,
measured as a fraction of the original activity duration, i.e. 0 < W(x) > 1

DSM(n, n, 2)

DSM (n x n matrix with third dimension k=1 or 2) where:

k=1 is the matrix of rework probabilities:
Superdiagonal entries (i.e. j > i represent the probability that
activity j causes feedback rework for activity i, at the time step
when activity j is completed). Subdiagonal entries (i.e.i>
represent the probability that activity j causes second-order or
feedforward rework for activity i, after activity j is reworked due
to feedback).

=2 is the matrix of rework impacts:

the amount of work (as a fraction of the activity’s original
duration) added to an activity given that feedback or feedforward
rework occurs.

Number of activities in the process

r

Current run number

S

Cumulative process duration (Sgy,, = project duration)

At

Time step used to proceed through process

t

Current time step

MAXCOMP

Maximum amount by which a delay in activity completion can be
compressed, specified as a fraction (0 to 1) of the delay

MAXOVERLAP

Maximum amount by which a start of an activity can be overlapped with
an incomplete upstream activity, specified as a fraction of the scheduled
duration of the downstream activity being overlapped

STARTDATE(n)

Array containing scheduled start time for each activity

OTPREMIUM

Premium paid for overtime work, specified as a fraction of the regular
wage rate, e.g. OTPREMIUM for overtime paid at “time-and-a-half” = 0.5

OVERLAP

Fraction of activity duration by which its start is overlapped with an
incomplete upstream activity, i.e. OVERLAP = min(delay in completion of
upstream activity, MAXOVERLAP)

Ccompress

Cumulative cost of compression for current run of the simulation (the
number of time units “paid” as a premium for using overtime work)

Coverlap

Cumulative cost of overlapping for current run of the simulation (the
amount of rework, in time units)

Table 1: Key Variables in the Project Simulation

The algorithm for the schedule recovery extension is shown in Figure 15. The source code can be found

in Appendix A.

-78 -

Read in scheduled start dates for each activity in the project.

Read in maximum allowable compression (% of activity delay can be eliminated using overtime) and
overtime premium

Read in maximum amount of activity overlap (% of downstream activity duration that can be overlapped
with an incomplete upstream activity)

Loop through all activities...
If current time is within one time step of the scheduled start date of the activity (say x)...
Loop through all predecessors of activity x...
If the predecessor activity (say y) is not finished...
If compression is allowed (maximum compression > 0)...

Then reduce the amount of work for activity y by maximum
compression efficiency

Add cost of using compression to cumulative compression cost
(number of time units paid as a premium for using overtime)

If activity y is still delayed and overlapping is allowed (maximum
overlap >0)...

Then determine the amount of overlap to be used (minimum of
remaining work for activity y and maximum overlap)

Reduce the work remaining of activity x by the amount of
overlap

Randomly determine if rework is required (based on specified
probability of occurrence). If required...

As rework, add the amount of overlap back to the work
remaining for activity x

Add cost of overlap to cumulative overlap cost (time
required for rework)

Check next predecessor activity for delay (y+1)

Check for delay in the start of the next activity (x+1)

Figure 15: Algorithm for schedule recovery extension to DSM project simulation

-79-

- Modeling: Effect of rework on project progress -

As discussed in section 2.3.2, the primary shortcoming of the traditional “percent complete” measure of
project progress is that it does not account for potential rework. An activity that depends on others is
subject to rework, and its actual duration will therefore be longer than an estimate that does not include
the potential for rework. The simulation can provide estimates for the expected duration of each activity
in the project that include rework, i.e. by running the simulation, the total amount of work for each
activity can be determined. Calculating the percent complete of an activity using this longer expected

duration is a more representative measure of project progress.

To assess the error of ignoring rework when measuring project progress, the “percent complete”
throughout the project was calculated (after running the simulation) in both ways: ignoring rework by
assuming that the duration of activity would be as scheduled, and then including rework by using the total

work done on each activity (determined by the simulation) as the expected duration.

Recall that the project simulation randomly samples the initial duration for each activity (from a user-
specified distribution of minimum, most likely, and maximum durations). This initial duration is the time
that the activity is expected to take, before the occurrence of any rework. To isolate the effect of rework
on project progress, the confounding effect of this variation in initial activity durations was eliminated by

fixing the initial duration of each activity to that used in the company’s standard development timeline.

At a broader level of analysis, the total project durations for various rework probability and impact
scenarios were compared to the no-rework case to determine the “shadow factor” for each scenario. This

shadow factor is simply:

Simulated Project Duration
Scheduled Project Duration

Shadow Factor =

Because the simulation models the effects of rework, the simulated project duration accounts for rework.
The scheduled project duration is simply the sum of the activity durations along the project’s critical path.
This shadow factor is then representative of the amount of time rework adds to the scheduled project

duration.

-80-

4.3.3 Discussion of Results: Demonstrating the Improvement Approaches

In order to make the following discussion more concise, some definitions would be helpful. The term

“project” refers to the standard vehicle development project described in section 4.3.1.

TERM: © DEFINITION: . o :
Scheduled project duration Sum of critical path activity durations from the company’s
standard timeline (49 time units)

Project with variation Initial activity durations (before any rework additions) are
randomly sampled from a user-specified triangular distribution
(minimum, most likely, and maximum duration)

Probability of rework (P) Probability that the completion of an activity forces rework for
a related activity

Impact of rework (I) Amount of rework added to an activity if rework is required
(as a fraction of the initial activity duration)

Feedforward (subscript ¢) A relationship where an upstream activity affects a related
downstream activity (subdiagonal entry in the DSM)
Feedback (subscript) A relationship where a downstream activity affects a related
upstream activity (superdiagonal entry in the DSM)
Benchmark project A project with variation (see above) and the following rework
probabilities and impacts:

P;=50% (feedforward probability of rework)

P,=10% (feedback probability of rework)

I,=It=10% (feedback and feedforward impact of rework)
(see DSM representation of this project in Figures 13 & 14 of
section 4.3.1.)

The benchmark project did not allow any schedule recovery
actions (compression or overlapping)

Activity delay Amount of work remaining (in time units) for the activity
when a dependent or interdependent downstream activity is
scheduled to start

On-time project completion Project completed within scheduled duration (49 months or
earlier)

90% confidence date Number of time units within which 90% of the simulation runs
complete the project (90" percentile project duration)

- Results: Effect of rework on project completion -
In order to provide a baseline for further scenarios of rework probability and impact, the project was run

with variation in the initial activity durations, but without allowing any rework or iteration. On a

percentage basis, the amount of variation allowed in each activity duration was the same.

-81-

The input parameters used in the simulation were:
PARAMETER: VALUE: -

Most likely activity duration Duration documented in company’s standard timeline
Minimum duration Most likely duration less 5%
Maximum duration Most likely duration plus 10%

It was felt that the skewed distribution was more representative of reality, given that the standard
durations were rather optimistic. The maximum duration variation of +10% was chosen to be on the
conservative side. Examples of four actual delays in past programs were cited for “Validate Designs”,
“Preliminary Package”, “Final Appearance”, and “CP Testing”. These delays ranged from +80% to
+400% of the scheduled activity duration.

Compared to a project without variation, a simulation allowing this amount of variation reduced the
probability of completing the project on schedule (i.e. at 49 time units) from 100% to only 12%. See
Chart 1 below. The 90% confidence completion date was 50.5 time units (measured from the beginning
of the first activity of the project), i.e. 90% of the time, the project duration can be expected to be 50.5
time units or less. Thus the addition of variation to the standard activity durations drastically reduces the

probability of meeting scheduled completion date.

To determine the effect of rework on project completion, the simulation was run for the benchmark
project which has feedback rework probabilities of 10%, feedforward rework probabilities of 50%, and
rework impacts of 10% (see definition at the beginning of this section). With this amount of potential
rework, the probability of completing the project on schedule was reduced from 12% to 8%. Thus even
with the small chance of feedback and “tight” feedback loops of the benchmark project, the probability of
meeting scheduled completion date is significantly reduced. Chart 1 summarizes the cumulative
probability of completing the project on or before a given number of time steps, for cases where potential
rework is ignored and where it is accounted for. Both projects allowed variation in the initial activity

durations.

-82-

Effect of Rework on Project Duration
Probability of Being Earlier than...

100% -
90%
) =]
E 8% g
E 70% E
e 60% B
& son 3 [L
(3]
B 40% 3 /> _
o 3 / / —&— Variation, no rework
E 30% E U —
3 20% ® , _
&) ~{— Benchmark Project
10% —
0% A r v v r r r
|
48 48.5 49 49.5 50 50.5 51 515 52 52.5

Time Units

Chart 1: The effect of potential rework on project duration

To determine the sensitivity of the model to changes in the DSM probabilities, the simulation was run
with different feedforward and feedback probabilities in the benchmark project. The same activity
dependencies in the benchmark DSM were used but the values were varied. The rework impacts of the
benchmark project were maintained. Chart 2 summarizes the cumulative probability of completing the
project on or before a given number of time steps for the benchmark case (feedbacks with 10%
probability, feedforwards with 50% probability, feedback and feedforward impacts 10%), higher
feedforward probability (60%), higher feedback probability (20%), and higher feedforward and feedback
(60% and 20% respectively).

-83-

Sensitivity ¢f Project Duration to Probability of Rework
Probability of Being Earlier than...

100% /__,_Jl,*“
oot ﬁﬁ;
80%

0 2
60% //K

Cumulative Probability

50% —#— Benchmark Project
40% ; —i— Pf=60%

20% / —A— Pb=20%

20% —o— Pf=60,Pb=20%
10%

0% +—e %

48.0 48.5 490 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0
Time Units

Chart 2: Sensitivity of project duration to probability of rework (Pf and Py)

The chart suggests that in general, project completion date is not highly sensitive to an increase in
feedback or feedforward probability. As expected, project completion date was more significantly
affected by feedback probability. This is because feedforward probabilities do not have the potential to
cause second-order rework until rework caused by feedback occurs. The combined effect of increases in
both feedback and feedforward probabilities was significant, reducing the probability of completing on

schedule from 8% to 4%. The 90% confidence completion date was increased from 51 to 51.5 time units.

It is worth noting that although the sensitivity of project completion date does not appear to be high, i.e.
the curves are close to each other, the high cost of lost sales associated with late project completion makes
small differences significant. To put this into perspective, the expected or mean value of lost profit can be
determined by integrating the area under the cumulative probability curve past the scheduled completion
date of 49 time units. An example calculation is detailed in Appendix B, but if it is assumed that lost
profit “costs” the program $1 million/day, the increase. in mean lost profit between the benchmark project

and one with increased feedback and feedforward prebabilities (60% and 20% respectively) is $6 million.

-84 -

As a reference point, the expected or mean lost profit for the benchmark project was $25 million, based
on the distribution of project completion dates from the simulation. As discussed in section 4.3.2, a
project with poorly defined give/gets (information exchanges between activities) could be an example of

such a situation where the probability of rework is increased.

As discussed in section 4.3.2, a change in design requirements can be modeled as a feedback loop with
probability one. In the scenario shown below, a change was made after “Set Specifications-3" requiring
25% of the “Appearance Concepts” work to be repeated (and any possible second order rework for “Final

Appearance”). The added loop is shown in the Figure 16 below.

dimension k = 1 (rework probabilities)
Activities
I 2 3 4 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Establish Target Ranges
Set Specifications
Preliminary Package
Appearance Concepts
Mfg Specs

Specs2

Specs3

Validate Targets
Design

Mfg Design
Production Tool Build
Design2

Validate Design
Prototype Tool Build
Final Package

Final Appearance
Engineering Release
Final Package2

Final Appearance2
AP2

ER2

ER3

Production Tool Build2
CP

Engineering Sign Off
Ramp tc J1

 Forced feedback representing
a change in design
requirements

W 0 N B W N e
wn

BN N NN o e o e e e e o e
BN = O O 0NNt W = O
[
n
in

~
n

~
(=)

Figure 16: DSM Rework probability matrix showing model for change in design requirement

Chart 3 illustrates the results of a simulated change in design requirements, compared to the benchmark
project. The change in design requirements reduces the probability of completing the project on time from

9% to 0%. The 90% confidence completion date is increased from 51 to 52 time units. The increase in

-85-

mean lost profit was $20 million. This conceivable change in the project clearly has a very significant

cost associated with it.

Effect of Change in Design Requirements on Project Duration
Probability of Being Earlier than...

100% r/,__.._a‘—/;____.‘i -
90%
80% / /

&

E 70% / //

S 60% / /

B 0% 4 P4 |

Z 40% / / —e&— Design Reqt. Change
=} (]

g 30% / 7 —#— Benchmark Project
Q

20% / /

10% : ,./
0% - . . : . . : : : :

Time Units

Chart 3: The effect of a change in design requirements on project duration

To determine the sensitivity of the model to changes in the DSM rework impacts, the simulation was run
with different feedforward and feedback impacts in the benchmark project (recall that impact is the
amount of rework added to a related task, as a fraction of the original duration). Chart 4 summarizes the
cumulative probability of completing the project on or before a given number of time steps for the
benchmark case (feedback and feedforward impacts 10%, feedback and feedforward probabilities 10%
and 50% respectively), higher feedback impact (20%), higher feedforward impact (20%), and higher
feedback and feedforward impacts {each 20%).

-86-

Sensitivity of Project Duration to Rework Impact
F robability of Being Earlier than...

100%

|

90%
& 2l
= 80% /s
s 0% /
=]
é 60%
o 0% ——1b=20% —
= 40% —
= ——If=20%
'E 30% —k— Ib=1f=20% T
3 20% —o— Benchmark Project
© 0%

0% A : ; . . .

48 485 49 495 50 505 51 515 52 525 53 535 54 545

Time Units

Chart 4: Sensitivity of project duration to impact of rework (I, and L))

The observed results are similar to those for variation in rework probability. The sensitivity to a change
in only one of feedback or feedforward impact is relatively insignificant. Increasing both however,
reduces the probability of completing the project on time from 8% to 6% and increases the 90%
confidence completion date from 51 to 51.5 time steps. The increase in mean lost profit between the
benchmark project and one with higher feedback and feedforward impacts (each 20%) is $1 million. As
discussed in section 4.3.2, a project with late problem discovery could be an example of such a situation

where the impact of rework is increased.

The fourth controilable cause of rework mentioned was weak design freezes. As discussed in section
4.3.2, a weak design freeze could be modeled as an increase in both the probability and impact of rework.
Chart 5 compares the cumulative probability of completing the project on or before a given number of
time units for the benchmark project and one in which the probability and impact of feedback rework is

higher (each 20%, compared to 10% in the benchmark project).

-87-

Effect of a Weak Design Freeze on Project Duration
Probability of Being Earlier than...

100% /-/.-—-—-
90%

80% 7 /

70%

60% //
50% / / —&— Weak Freeze
40%

/ / ~#— Benchmark Project
30%

20% L

10%

0% "‘_.'—I"*l/; T T T T T T T T T T

48 485 49 495 50 505 51 515 52 525 53 535 54 545
Time Units

-

Cumulative Probability

Chart 5: Effect of a weak design freeze on project duration

The weak freeze reduced the probability of completing the project on time from 8% to 49 and increased
the 90% confidence completion date from 51 to 51.5 time units. The increase in mean lost profit was $10
million. Thus the commonly accepted occurrence of design freezes that “drift” beyond their declared

finalization date can incur a rather significant cost.

Generalizing all the cases discussed above, two conclusions can be drawn from the simulation results.
Perhaps most significantly, the simulation shows that allowing for variation in activity durations and
ignoring rework, the likelihood of completing the project within the standard schedule is low. Secondly,
given the significant lost profit associated with small increases in project completion dates, the simulation
suggests that it would be valuable to reduce controllable causes of rework. While the simulations were
based on general estimates of the strength of the relationships between activities, using historically-based
parameters would make the results of the simulations more representative. The collection of real project

delay data to determine these parameters was the subject of section 4.2.

-88-

- Results: Efficacy of Recovery Actions -

Given the likelihood of a delay in the project, the next questions to answer were:
e What activities are likely to be delayed, and

® What is the probability that schedule recovery actions will be able to recoup the delay and keep the
project on schedule?

Chart 6 summarizes the range of delay (minimum, mean, and maximum observed in the simulation runs)
in each of the project activities from a 300-run simulation. The simulation was run with parameters set
for the benchmark project (feedforward and feedback probabilities 50% and 10% respectively,
feedforward and feedback impacts each 10%). Recall that activity delay equals the work remaining (in

time units) in the activity when a dependent or interdependent downstream activity is scheduled to start.

Activity Delay at Scheduled Finish Date

(in # of Time Units]
40
35
30l —— Max
825 M
520 @ Average
0'-_—-
E 15
= -,
1.0 | ¢
* ¢ ?
0.5 1 L] *
$ <>T
0.0‘:+: :T:Y:+:+:+: T e e B e B A S S RERS ERERN K
2 8 28 2 o 9 2 3 o S 3 g4 9 g 9 % & 5
B = £ 217 PPEepEliiiingRyEE
] g F e Fd 88 BEAG 8§ 8 % ¢ & B a
a g 8§ s @2 ° s 8% 8 G F 3 E S 2 E
E < §F = 3 s E 253 ¢ 3 E 24
e i o g g & 3 o~ s & "
-9 > a a & s e E
- i =~ 8

Chart 6: Delay in activities at their scheduled finish dates [in units of time]

As expected, the mean and maximum delay increases with original duration and the number of
predecessors. As the chart shows, the net effect is that the delay is “pushed” toward the end of the

program, which is clearly not the ideal situation. Delay late in the program means there is less time to

take remedial action and make contingency plans.

-89-

The second observation from the chart is that the means for each activity are skewed slightly toward the
minimum rather than the maximum of the delay range. This is consistent with the skewed variation in the

initial activity durations used in the simulation which was described at the beginning of this section.

Chart 7 shows the same data expressed as a fraction of the original activity durations. Normalizing the
delay in this way shows more clearly the effect of dependencies (feedforward and feedback) on the
various activities. Without dependencies, one would expect the delay ranges for each activity to be equal
since the same percentage variations were set for each activity in the simulation. The more direct
dependencies an activity has, or the more dependencies it has on activities which in turn have many direct

dependencies, the greater the expected delay.

Activity Delay at Scheduled Finish Date
[Fraction of Scheduled Work Remaining]

EI.OO
50.90
3 0.70 +— Min
E 0.60 1 o Average
2 050 o
% 040 PS
© 030 *
§ 020 L. T * ¢ *
= . *
@ 0.10 * ‘ * P p £y + Py
£ 0.00 T s s s e e L e
@ 173 o @ o @ - ~ -— g o ~ N o o - =
bif: i1 iePPEEPEELERYEREEECG
= § g eddgS o g0 8 88 3F g 5 8 =
= £ e & s 2
EF= § =3 232 ER5E 2 E 24
= =] 52 3 FE = B g 4 8 E &
= 3 2 > K 2 [B 4
[> o a k=) g e e
[£ a 8

Chart 7: Delay in activities at their scheduled finish dates [as fraction of original work]

To assess their ability to maintain scheduled project completion date, three different types of recovery
strategies were simulated: compression only, overlapping only, and combination strategies. The efficacy
of each strategy was determined by considering its ability to increase the likelihood of completing the

project on time, and the manpower costs associated with using it.

-90-

Charts 8 and 9 summarize the effect of various compression efficiencies on project completion date and
manpower cost. Recall from section 4.3.2 that maximum allowable compression refers to the fraction by
which a delay in an activity can be reduced using overtime. Simulations were run for maximum
allowable compressions of 10%, 15% and 20%. As a practical note, it is generally accepted that the
duration of an activity cannot be reduced by more than 20% using compression. The benchmark project

(which, as defined at the beginning of this section, does not allow any schedule recovery action) is shown

for comparison.
Effect of Compression Recovery on Project Duration
Probability of Being Earlier than...
100% W‘-
90%
g 80% =z~
g 70%) -
= /
P 60%
R
@ 50% 7 —e— Benchmark Project ~ ———
g 40% /4 —a— Compress20% —
g 30% —a&— Compress15%
5 20% —o— Compress10% -
© 0%
o% =1 U T L T 1 T T
48 485 49 49.5 50 50.5 51 51.5 52

Chart 8: Effect of compression recovery on project duration

-91 -

Effect of Compression Effectiveness on Overtime Cost
Probability of Costing Less than...

100%
90% R

80% 1/;'/.
0%
50%
50%
40%
30%
20%

10%
0% -

—e— Compress20%
—&— Compress15%

—a— Compress10%

Cumulative Probability

T T T T T T T T

6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Manpower Cost
[# of Time Units of work paid as overtime premium]

Chart 9: Effect of compression on overtime cost

Chart 8 shows that the probability of late project completion decreases with cornpression efficiency,
which was expected since the greater the fraction of delay that can be eliminated using compression, the
shorter the delay in the finish of a given activity. The shorter the delay in an activity, the lower the
impact on project duration and the shorter the time interval over which overtime premium is paid.
Increasing maximum allowable compression from 10% to 20% does not change the probability of
completing the project on schedule (8%) but reduces the 90% confidence completion date from 51 to 50.5

time units.

It is obvicus that manpower cost will decrease as maximum allowable compression increases. Recall

from section 4.3.2 that the incremental manpower cost (in units of time) of using compression is:
Costeompression = Overtime premium x (Delay — Fraction of delay reduced by compression).

Focussing on the relationship between project duration and manpower cost, we find that while the mean
(and maximum) project durations and manpower costs decrease as maximum allowable compression

increases, the percent change in project duration is relatively insignificant compared to the percent change

in manpower cost.

-92.

For example, increasing maximum allowable compression from 10% to 20% decreased mean and
maximum project durations by less than 1%, while mean and maximum manpower cost decreased by
27% and 31% respectively. As a reference point, the time step used in the simulation was 0.25 time units.
Thus the possible error associated with being off one time step would be 0.5% (0.25 + standard project
duration of 49 units). Clearly the maximum amount of compression that can be achieved has a significant

effect on manpower cost.

Charts 10 and 11 summarize the effect of various amounts of overiapping on project completion date and
manpower cost. Recall from section 4.3.2 that the amount of overlapping is specified as a percentage of
the downstream activity duration by which the start of that activity can be overlapped with an incomplete
upstream activity. The higher the percentage of overlapping, the more concurrent the execution of the
activities. Simulations were run for overlap percentages of 5%, 10%, and 15%. It was felt that overlap of
more than 15% for activities not originally planned to be overlapped would not be feasible. The
benchmark project (which, as defined at the beginning of this section, does not allow any schedule

recovery action) is shown for comparison.

Effect of Overlap Recovery on Project Duration
Probability of Being Earlier than...

100%

90%

80% _— :’7” %

70% v

60% f F/ /

0% / /;/ / —e— Overlap15%

o ~ —a&— Overlap 10%

30% /S S

20% / / / / —a&— Overlap 5% |
10% M/ —o— Benchmark Project

0% 4.4;/

48 48.5 49 49.5 50 50.5 51 51.5
Time Units

Cumulative Probability

Chart 10: Effect of overlap recovery on project duration

-93.-

Effect of Overlapping Recovery on Rework Cost
Probability of Costing Less than...

100% ¢ ¢
90%

/
o o
7

50% /4 —&— Overlap15%
40% —#&— Overlap 10%
30%

—a&— Overlap 5% ———————
20% —/{///
10% - /

0%‘ T T T T T T T T T T T T

Cumulative Probability

Manpower Cost
[# of Time Units paid for rework]

Chart 11: Effect of overlap recovery on rework cost

As seen in Chart 10, the effect of various amounts of overlapping on the project is more interesting thian
the compressior. case. This is because the use of overlapping carries with it a probability for rework. In
cases where rework is required, the model incurs the manpower cost but the delay is not reduced. Thus,
unlike the model of compression, it is not always true that increasing the amount of overlapping will
reduce project duration. Since this rework is probabilistic, simulation is a valuable tool for predicting
results. If it were possible to increase percent overlap from 5% to 15%, the probability of completing the
project on time would be increased from 16% to 40%. The 90% confidence completion date would be

reduced from 50.5 to 50 time units.

Recall from section 4.3.2 that the incremental manpower cost (in units of time) of using overlapping is:

Costoyeriap = P(rework required for downstream activity) x amount of time overlapped.

Considering the relationship between project duration and manpower cost, while mean project duration
decreases slightly for increasing amounts of overlap, the mean and maximum manpower cost increase
monotonically. For example, increasing overlap from 5% to 15% decreases mean and maximum durations

by less than 1% but increases mean and maximum manpower costs by 58% and 125% respectively.

-94 -

Further increasing overlap to 25% did not reduce project duration but mean and maximum manpower

costs continued to increase.

In selecting the best overlapping strategy, the maximum and expected lost profit were compared to
maximum and expected manpower cost. The best strategy was defined as the one with the lowest
expected sum of lost profit and cost of recovery and an acceptable maximum. An example calculation
can be found in Appendix B, but the results are summarized in the Chart 12. The largest portion of each
bar is the expected profit loss. The mean manpower costs associated with using the particular amount of
overlapping is stacked on top of (added to) the lost profit. The dollar value labels on top of each bar refer

to the manpower costs (in millions of dollars).

Expected Profit Loss + Mean Manpower Cost
for Different Amounts of Overlap Recovery

$30.0
Net Savings
$25.0
A $0.4

. $200 $0.6 _>_
E Manpower pe————
£ 8150 Cost L
B $0.6]
2 5100 B A

$5.0

$- ; . T

Benchmark Overlap15% Overlap10% Overlap 5%

0 Expected Profit Loss pg Mean Manpower Cost

Chart 12: Expected cost outcomes for different amounts of overlap recovery

Having tested the two “pure” strategies, several combinations were also simulated. Taking the best
(lowest project duration and lowest cost) feasible compression strategy which was 20% compression,

various amounts of overlapping were added to see if the duration and/or cost could be further improved.
Charts 13 and 14 summarize the effect of increasing amounts of overlap (5%, 10% and 15%) added to

20% compression on project duration and cost. The benchmark project (which, as defined at the

beginning of this section, does not allow any schedule recovery action) is shown for comparison.

-95.

Effect of Combined Recovery on Project Duration
Probability of Being Earlier than...

100%
90% ,f 3
| 70%
T 60% /v
© ° / / / / —«— Compress 20/Overlap 15%
& 40% C 20/Overlap 10% —
-] / / / / —#— Compress verlap o
g 30% / [/ —a— Compress 20/Overlap 5% —
O 20% e —&-— Benchmark Project —]
10%)z
0% = T T T 13 L
48 48.5 49 49.5 50 50.5 51 51.5
Time Units
Chart 13: Effect of combined recovery on project duration
Effect of Recovery Combination on Cost
Probability of Costing Less than...
100%
90%
B 8% A
:-E
S 70%
2 60%
R
o 50%
.E 0% —&— Compress 20/Overlap 15%
.%’ ? —a— Compress 20/Overlap 10%
§ 30% —&— Compress 20/Overlap 5%
O 20%
10%
0% n T T T T T T T T T T T
0 1 2 3 4 5 6 17 8 9 10 11 12 13 14 15 16 17

Manpower Cost
[# of Time Units of overtime premium and/or rework]

Chart 14: Effect of recovery combination on cost

- 96 -

Given 20% compression, increasing overlap from 5% to 15% increased the probability of completing the
project on time from 19% to 34% but did not change the 90% confidence complection date. And,
consistent with the “pure” recovery strategies discussed earlier, we see that the percent decrease in mean
and maximum project duration (less than 1%) is much smaller than the increase in mean and maximum
manpower cost (7% and 19% respectively). In selecting the best combination strategy, the maximum and

expected lost profit were compared to maximum manpower cost.

Chart 15 compares the best of each of the three strategies, showing the expected lost profit and recovery
costs. The maximums are shown in Table 2. Defining the optimal recovery strategy as the one with the
lowest sum of mean lost profit and manpower cost, and with an acceptable maximum, the optimal
strategy for the project described by the benchmark DSM is use of 15% overlapping and compression
(20% maximum allowable compression). Of course, with historically-determined parameters from the
delay analysis (see section 4.2) and activity-specific recovery strategies (see section 5.3.1), more

representative conclusions could be drawn using the approach outlined here.

Expected Profit Loss + Mean Manpower Cost
for Best of Each Recovery Strategy

$30.0

Net Savings Manpower

$25.0 — Cost
$0.9
$20.0

=
g
= $15.0 $06— $10. ___|
£ } }
£ 3100 _—_—__‘
$5.0
$- .

Benchmark Compress20% Overlapl5% Combo20/15%

OExpected Profit Loss M Mean Manpower Cost

Chart 15: Expected cost outcomes for best of each recovery strategy

-97-

RECOVERY STRATEGY - - MAXIMUM PROFIT LOSS MAX: MANPOWER COST

L ($ millionis] S [$millions] -

s

Benchmark Project: | $70 n/a

No Recovery

Compress 20% $50 $2.5
Overlap 15% $50 $2.0
Combination: $40 $2.9
20% Compression

15% Overlap

Table 2: Maximum profit loss and manpower costs for various recovery strategies

There were two key observations from this analysis of recovery strategies. Most significantly, even the
best strategy cannot achieve on-time project completion more than 34% of the time. This would suggest
that given the parameters used for the simulation, relying on recovery actions to keep a project on

schedule is a high-risk bet.

Whether the low probability of completing on time is due to unrepresentative relationship estimates, poor
activity duration estimates, or the contribution from controllable delay causes — most likely a combination
of these — the first step to improving the process is to understand what the primary causes of delay are.
This is the objective of the delay analysis tool described in section 4.2. Another factor that contributes to
the low probability of completing on time is the delay in implementing recovery action. In the model, as
is typically the case in reality, tracking only activity starts and finishes mean that recovery action is not
taken until an activity start is already delayed. The development of a more-leading measure of project

progress is described in section 5.3.2.

The second observation was that given the approximate costs of lost sales and extended manpower use,
the costs using recovery were much smaller than the costs of lost sales in the simulated projects. The size
of this differcice -~ arly depends on the strategic importance of completing on time and the relationship
parameters in the model. The key point is that given validated parameters for a particular company, the

model allows the trade-off analysis to be made quickly and easily.

-08.-

- Results: Effect of Rework on Project Progress -

Because it accounts for potential rework, another use for the project simulation would be to make the
“percent complete” measure of project progress a more representative metric. As described in section
4.3.2, the simulation can be used to estimate the amount of expected rework in the project activities,

which can in turn be used for a more accurate determination of percent complete.

Chart 16 illustrates the difference in the “percent complete” measure of project progress when the
potential for rewcrk is ignored and when it is included. The curves show the cumulative probability of
completing the project within a given number of time units for the project as scheduled (no potential
rework), and for the benchmark project (feedback and feedforward rework probabilities 10% and 50%
respectively, feedback and feedforward rework impacts 10% each). In either case, to isolate the effect of

rework on project progress, no variation in the initial activity durations were allowed (see section 4.3.2).

Project Progress
when Potential Rework Is and Is Not Accounted For

100%

80% jﬁfy/
70%

@
8 60% /277:/
g 50% .
S 40% /“Z —o—as Scheduled (no rework) _
X 30% _
20% / —=— Accounting for rework (usingthe —
10% / benchmark project) _
0% ». /"'} ; . [
0 20 40 60 80 100 120 140 160 180 200

Time Units

Chart 16: Project Progress when potential rework is and is not accounted for

Note that the benchmark project represents a relatively small potential for rework (only 10% probability

of feedback, and “tight” feedback loops, i.e. ones that do not jump back very many activities). But even

-99.

with this small potential of rework, there was a significant effect on project progress — as much as 9% (at
time step 116). It is interesting to note that for this project DSM, the difference in project progress was
only in the middle of the project, indicating that most of the rework occurred in the middle activities.
Given larger feedback loops (such as a change in design requirements), the difference would be even

greater.

Thus it can be seen that the effect of potential rework on project progress is significant. Ignoring
potential rework results in an inflated assessment of project progress which can lead to project
management decisions which would not have been made had the actual (lower) project progress been
known. Examples of such decisions would be accepting a change in design requirements under the
impression that there is more time available than there is, or deciding that recovery action is not

necessary, when in fact it is.

Another way in which the effect of potential rework on project duration can be assessed is by dividing the
mean project duration for a given scenario by the scheduled project duration to compute a “shadow
factor” for the scenario. Recall from section 4.3.2 that a project’s shadow factor (simulated project
duration + scheduled project duration) captures the amount of rework or iteration in the project. Table 3
summarizes the shadow factors for a selection of the various scenarios simulated. The effects of the three

types of recovery strategies are also included.

- 100 -

~ L MEAN o SHADOW

L. e . | DURATION

B T S o0 T \timeunits] -
Scheduled Project Duration: 49 1
e No duration variation
e No rework

Rework Effect: 49.24 1.005

e No duration variation

e Benchmark rework

Variation Effect: 49.85 1.017

e Duration Variation

e No Rework

Variation+Rework: 50.19 1.024

e Duration Variation

e Benchmark Rework Probability (Pf=50%, Pb=10%) and
Impact (1b=If=20%)

Poor Give/Get: 50.47 1.031

e Duration Variation

e Increased Rework Probability (Pf=60%, Pb=20%)

Design Requirement Change: 51.11 1.043

e Duration Variation

e Change in “Specs” requiring 25% rework in “Appearance Concepts”

Late Problem Discovery: 50.40 1.029

e Duration Variation

e Increased Rework Impact (If=Ib=20%)

Weak Design Freeze: 50.76 1.037

e Duration Variation

e Increased Rework Probability (Pb=20%) and Impact (Ib=20%)

Use of Compression Schedule Recovery: 49.79 1.016

e Duration Variation

¢ Benchmark Rework

e 20% Compression Efficiency (activity delays reduced by 20%)

Use of Overlapping Schedule Recovery: 49.34 1.007

e Duration Variation

o Benchmark Rework

e 15% Overlap (15% of downstream activity overlapped with incomplete
upstream activity)

\,_l"R().] T . FACTQR -

Use of Compression + Overlapping Schedule Recovery: 49.30 1.006
e Duration Variation
Benchmark Rework

[]

e 20% Compression Efficiency (activity delays reduced by 20%)

e 15% Overlap (15% of downstream activity overlapped with incomplete
__upstream activity)

Table 3: “Shadow factors” for various simulated project scenarios

To put the significance of the differences in project duration into perspective, consider that an estimate of

the profit loss associated with one time unit was $20 million.

- 101 -

This page is intentionally blank.

-102 -

5. Conclusions & Recommendations

5.1 Conclusions

Speed and flexibility in product development are becoming increasingly important bases for competition
in the automotive industry — as well as many others. Concurrent engineering has been accepted as an
approach to reducing development iead time while set-based design is being advanced as an approach to

maintaining flexibility during development.

Regardless of the stage of implementation of either or both of these approaches, control over development
lead time is key to being able to increase the efficiency of the development process. It provides direction

for reducing the probability of delay and reduces the uncertainty in speed-flexibility trade-off decisions.

Two broad issues that inhibit control of development iead time were found at the company:

e Design churning and the difficulty in accurately measuring activity progress predispose the program
toward reacting to schedule delay — as opposed to taking proactive action to avoid delay.

e Lack of schedule credibility creates a lack of urgency that perpetuates the need for reactive schedule

recovery

Based on the relationship between these issues, three improvement efforts were recommended:
o track and address the controllable causes of delay
e optimize schedule recovery actions, and

e develop a more representative measure of project progress.

Collection of data that describes the performance of the process and identifies the root causes of problems
is the first step in process improvement. It is the basis for the above improvement efforts. In the context
of the product development process, the proposed metric of interest was delay in activity starts. A tool for

collecting and analyzing this delay was developed.

A project simulation that includes the potential for iteration/rework in its determination of project
completion date was used to illustrate the expected effects of implementing the three improvement
efforts. All comparisons were made relative to a benchmark vehicle development project. The

parameters for this benchmark project were chosen conservatively: 10% chance of a given activity

- 103 -

causing rework in a related upstream activity (probability of feedback rework), and activity must repeat

10% of original work if rework occurs (impact of rework). Nominal or most likely activity durations

were taken from the company’s standard development schedule. ‘I'hese durations were allowed to vary

from most likely duration minus 5% to most likely duration + 10%. The key findings were:

e Allowing variation but no rework, the project had only a 12% chance of finishing on schedule

e The benchmark project (which allows for variation in activity duration and potential rework) had only
an 8% chance of completing on time

e Increasing the probability of rework (20% probability of feedback rework), due for example to poor
communication of required deliverables, reduced the probability of completing on time to 4%

e Increasing the impact of rework (rework impact 20%), due for example to late communication cf
problems, reduced the probability of completing on time to 6%

e Of the various recovery strategies simulated, a combination strategy (overlap and compression)
increased the chance of completing on time to 34% and had a slightly lower expected profit loss than
a “pure” overlap strategy

e The maximum difference between project progress determined by assuming no rework and by

accounting for potential rework was 9%.

The Role of Project Management in Process Improvement

From the recommended improvement efforts it is clear that project management plays a key role in
achieving control over development lead time. Given its role in maintaining project schedules, Program
Management has the network and activity status information required to find and track delay causes.
More significantly, there are controllable causes of delay associated with the functions of program
management: inaccurate assessment of the effects of a change in design requirements, poor
communication, poor planning, and weak design freezes. Thus Program Management wouid be a logical

choice to champion these improvement efforts.

This role in improving control of development lead time provides another approach to answering a
question that many companies have struggled with: “What is the value of project management?” This
has proven to be a difficult question to answer. The largest difficulty is the lack of a direct cause and
effect relationship between the degree of project management and the outcome (schedule, budget) of a
project. Despite the most conscientious planning and control efforts, there are factors outside the control

of Program Management that can affect the completion date and cost of a project. Thus comparing the

- 104 -

outcomes of one project with program management and another without is not necessarily an “apples-to-

apples” comparison.

Given Program Management’s role in implementing the improvement tools described in this thesis, the
value of program management can be assessed at two levels. At the activity level, the historical reduction
in cases of controllable delay and the improved efficacy of schedule recovery actions (compression and

overlapping) represent value. The data collected by the delay tracking tool facilitates this assessment.

At the project level, the value of program management can be assessed using the simulation tool. As
described in this thesis, the findings from the simulation scenarios outlined above can be considered
examples of effective and ineffective program management functions (evaluating changes in design
requirements, coordinating communication, planning activities and resources, and coordinating design
freezes). The simulation determines the probabilities of completing a project within various time frames.

As shown in the thesis, these can be translated into expected profit loss associated with late projects.

Simulating a project with the delay probabilities and schedule recovery efficacy determined from the
delay tracking tool data estimates the time required to complete the project. When the process
improvement efforts, (driven by Program Management) reduce delay probabilities and recovery efficacy,
the simulation can be rerun to determine the new, lower project duration. The simulation provides an
“apples-to-apples” comparison since the factors outside the control of Program Management can be kept
the same for both simulations. The difference between the earlier and later simulations can be considered

value added by Program Management.

5.2 Recommendations

1. Implement delay tracking and analysis in a web-based tool.
The inputs, outputs and processing of this data are described in section 4.2. The tool proposed in this
thesis was developed based on some conversation with the stakeholders (program management and
engineering groups). However, for effective and successful implementation, stakeholders should be
explicitly involved in developing the actual tool. Specifically, some of the parameters that should be
agreed upon include:

e What activities to track

e What give-gets/deliverables define those activities

- 105 -

e How to normalize this schedule for larger/smaller projects so that all programs can contribute to
and use the database

e What the causes of delay should be used to classify delays

e Who should be responsible for coordinating the input to the tool

e Who should be responsible for coord'nating action based on the output of the tool

Collecting data across all future programs, this data can be used to target the reduction of controllable
causes of delay. It can also be used to determine representative parameters (rework probabilities and

impacts) for the project simulation described in Recommendation 2.

2. Use project simulation to evaluate project management decisions.
The simulation adapted' in this thesis determines project completion time for projects where the potential
for rework exists. By changing input parameters, it can be used to evaluate the effect on project
completion time of:

e Changes in design requirements

o Different schedule recovery strategies (overlap, compression or combination)
The simulation can also be used to determine a more representative basis against which to measure
project progress, i.e. project progress (in terms of percent complete) should be measured against an

estimate of project duration that accounts for potential rework.

Possible Extension:
3. Utilize project simulation for real-time project management.
Currently the project model simulates the evolution of a project by using activity durations with randomly
determined variations and incrementing work done in equal steps as time progresses. In the simulation,
delays are detected after they have occurred, and then acted on. The software could be adapted to track a
current project in real time. The simulation could then be used to:

s predict delays based on current project progress, and

e determine optimum recovery strategy based on current project progress.

This idea is discussed more fully in section 5.3.1.

! A DSM-based simulation developed by Browning (Browning, 1998) was extended for application in this thesis.
See section 4.3.1.

- 106 -

5.3 Further Work

5.3.1 Improving the Simulation

It was proposed that the first step to improving the product development process is to implement a delay
analysis tool as described in section 4.2. Once this is in place and has collected the first significant
amount of activity delay data, the development of a more representative project simulation is facilitated.
And as outlined in 4.3, this project simulation can be used for project control analysis. Beyond increasing
the accuracy of the model parameters though, there are several opportunities for extending the model.

These are outlined briefly below.

Allow for activity-specific compression efficiencies

Recall that maximum allowable compression refers to the fraction of activity delay that can be reduced by
using overtime. Currently the model uses a general maximum allowable compression across all activities.
This is clearly a simplification given that different activities can be compressed by different amounts —
and some, like testing may not be “compressible” at all. The model could be made more representative
by allowing the input of different maximum compressions for each activity. The compression recovery

efficacy data from the delay analysis tool can then be used to determine these input parameters.

Allow for amounts of overlap specific to each activity couple

Recall that the amount of allowable overlap is the amount by which the start of 2 downstream activity can
be overlapped with its incomplete upstream activity. Note that unlike compression which is associated
with a particular activity, overlap is associated with a pair or couple of activities, i.e. one specifies the
overlap between two activities. Currently the model uses a general allowable overlap across all activity
couples. Like the case with general maximum allowable compressions, this simplification ignores the
fact that different activity couples can be overlapped by different amounts. Allowing the input of overlap
amounts specific to each of the activity couples would make the model more representative. These
parameters could be specified in a n x n matrix (where n = the number of activities in the project model),
i.e. matrix element;; = maximum allowable overlap between upstream activity i and downstream activity j,
expressed as a percentage of the downstream activity. The overlap recovery efficacy data from the delay

analysis tool can be used to determine these input parameters.

-107 -

Account for additional costs associated with recovery actions

Currently the model only accounts for incremental manpower costs associated with compression and
overlapping. Obviously there are other costs associated with these recovery actions that could be
significant and would therefore be valuable to incorporate into the model. For example, the compression
of a tooling build activity typically carries with it an increased cost for any design changes due to
accelerated reduction in flexibility. And, these cost of these changes increase as the tool build progresses.
As another example of additional cost, the use of compression typically means that the activity is carried
out with less-thorough checks than normal. This could be interpreted as an increase in the probability of
rework. Yet another example of costs not accounted for are any facility or equipment costs incurred when
rework due to overlapping is required. As a related note, while the simulation developed by Browning
(Browning, 1998b, chapter 6) allows for the specification of costs incurred when rework (not associated

with overlapping), they were not included in the simulations run for this thesis.

Make Overlap Recovery Model more Representative

Currently the model assumes that the probability of rework when overlap recovery is used is the same as
the “normal” probability of rework, i.e. the probability specified in the DSM probability matrix.
However, given a situation where the start of an activity is delayed and recovery action is taken in the
form of overlapping, the probability of rework is likely to be higher since the activities are being
overlapped more than they were originally intended to be. The accuracy of the model could be improved
by using a separate probability matrix to specify the rework probabilities due to the use of overlap
recovery. The overlap recovery efficacy data from the delay analysis tool can be used to determine these

input parameters.

Yet a further extension would be to determine the probability of rework (for the downstream activity)
based on how far along the upstream activity was when the overlap was implemented. The concept of
activity “evolution” proposed by Krishnan et al. (Krishnan et al., 1997) could be used to model this.
Similarly the amount or impact of the rework could be determined by how far along the downstream
activity is when the rework occurs. The “sensitivity” of an activity to change in a related upstream
activity could be used to model this (Krishnan et al., 1997). The probabilistic models for three activity
execution strategies (sequential, partial overlapping and concurrent) proposed by Yassine et al. may
provide an alternative approach to modeling the effects of rework due to overlap in greater detail (Yassine
etal.,, 1995).

- 108 -

Extend delay checking capability

Currently the model only checks for the delayed start of an activity once — at the activity’s scheduled start
date. Since recovery actions are only applied when a start delay is recognized, the model is conservative
in that it only allows one rcund of recovery action per activity. In reality however, if a delayed start is
found, on-going checks and recovery action would likely continue. Thus another extension of the model
could be to incorporate periodic checks for start delay beyond the activity’s scheduled start date.
Secondly, proactive delay checking could be incorporated into the model. In this case, at some time
before the scheduled start date of an activity, the model should pre:lict whether the start will be on time,
based on work remaining in the related upstream tasks and the rate at which the work is being done. If a
delay is predicted then recovery action can be implemented earlier, improving the chance that the delayed

start of the downstream task can be avoided.

Convert the simulation for functional real-time project control

Thus far it has been suggested that the role of the simulation in real-time project control is for analysis of
a change in design requirements, various recovery straiegies, and/or project progress for a hypothetical
project. However, with a conceptually simple modification, the software could be used to track the
project with real/current activity progress data (start date, work remaining). In other words, rather than
simulating the evolution of a project by incrementing work done in equal steps as time progresses, actual
activity progress data could be used up to the present date. The software would then be able to alert the
project manager of actual delays in activity starts. Then by simulating project evolution beyond the
current date, the three aforementioned analyses can be carried out. An even greater benefit could be
achieved by having the software alert the project manager of a potential delays in the start of upcoming
activities, as determined by simulation. To implement this last functionality, the proactive delay checking

described in the previous opportunity for improving the simulation would be required.
5.3.2 A More-Leading Indicator of Project Progress

The criteria for an effective project progress metric were outlined in section 3.2.3. It was suggested that

“percent complete’

was an attractive candidate for measuring project progress. In section 2.3.2 it was
suggested that the primary shortcoming of this metric was that it did not account for the possibility that

rework is required. The use of the project simulation to estimate the potential rework and incorporating

2 “percent complete” is a project progress measure based on the weighted sum of the “percent complete” of each of

the activities that comprise the project — see description in 2.3.2

- 109 -

this into the determination of “percent complete” was discussed in section 4.3. With this extension,

“percent complete” is a simple and useful progress metric.

However, there is opportunity to further develop this metric to make it even more useful. One of the key
criteria of an effective metric is that it functions as a leading indicator of the behavior that one seeks to
control (Reinertsen, 1997, p. 204). Having a leading indicator or prediction of the behavior allows
proactive action to be taken. While “percent complete” is somewhat leading in that it monitors the
achievement of intermediate deliverables rather than focussing only on activity starts and finishes, it can
be made even more leading by recognizing that the progress of a design activity is driven by the

development of design parameters.

Consider a design activity as being the action of evolving the various design parameters of the component
or product. In other words, the objective of a design activity is to find values for the design parameters
that define the product or component. The action of the design activity is thus to progressively narrow the
range of values for a given parameter to a nominal design point. It is changes in these design parameters
that drive iteration in the development process. Thus if project progress is based on the status of key
design parameters (as opposed to design activities), a more direct and therefore more leading assessment

of progress can be made.

The discussion below outlines how project progress based on the status of the key design parameters
might be determined. Consider the following example of a concurrent design project with three design

parameters (A, B, and C). It is represented in the format of a Design Structure Matrix or DSM.?

A B C % complete: | Potential
rework:
A * a
B X * X b b’
C X * c c’

The development of each parameter can be characterized by:

e Its “percent complete” assuming no changes occur in interdependent parameters, where percent
complete can be measured in one of several ways: the current width of a narrowing range of
dimensions, time spent as a fraction of estimated total duration, # of open design concemns, % of
required studies completed, or % of intermediate milestones completed (e.g. concept, detail drawing,

tests passed, final drawing release)

See section 4.3 for a description of the Design Structure Matrix (DSM) framework

-110-

e Potential for rework caused by interdependent parameters (denoted by X’s in the row of the activity

under consideration). For example, the potential rework for activity b is b’ where:

b’ =P(change in A) x P(change affects B) x impact (setback in B)
+ P(change in C) x P(change affects B) x impact
The probability of a change occurring in a parameter’s “percent complete”, depends on the degree to
which the parameters on which it depends has been defined or evolved®. Thus as various parameters
become more narrowly defined, the potential for rework in the project is reduced. The impact of a change
on a parameter, i.e. how much rework is required, is described by its sensitivity* to parameters it is

dependent on.

Potential rework creates uncertainty in the completion date of the project. Project progress could thus be

defined as the reduction in the sum of potential rework across all parameters (Progress = decrease in
b’+c¢’).

As an aside, an alternative determination of project progress that could be considered would be to simply
count the total number of potential changes associated with the design parameters that have not been
completely developed: Progress = 3 since parameter B can cause 2 changes (there are 2 “x’s” in row B of

the matrix) and parameter C can cause 1 change.

Having defined project progress, the project simulation can be used to develop a control strategy by
simulating the effects of various strategies on project progress. More specifically it can be used to
identify the “levers” of the project, i.e. the design parameters on which the progress of the project depend
heavily on. A change in one of these design parameters has a significant effect on the project progress
metric. These “levers” suggest that the development of design parameters could be prioritized in the

order that accelerates project progress.

The interesting point here is that the “levers™ at the design parameter level are more likely to change
within a project and between projects than those at the activity level. This would suggest that the value of
simulating a project to determine these “levers” is higher at the design parameter level than at the activity
level. The order in which parameters are developed, and therefore the design “levers” could be expected
to vary within a project and between projects for two reasons. Design parameter “levers” are a function

of the status of all the design parameters at any given moment in the project. Thus it is likely that they

4 See section 1.1 for discussion of the concepts of design “evolution” and “sensitivity” proposed by Krishnan et al.

-111-

would change as the project proceeds since the various design parameters will evolve at different rates.
Secondly, due to different carryover decisions (re-use of component or systems from existing products),
even projects of similar scale with the same design parameters are likely to start with different degrees of

definition in these parameters.

In contrast, the order in which activities should be executed is not likely to change between projects of
similar scale since it would be expected that these projects would have similar activities that have a more

constrained order of execution due to dependencies between the activities.

Given the progress metric and the concept of design parameter “levers”, two strategies for project control
arise: i) identify and use the “powerful” design parameters to drive project convergence, where a
parameter’s “power” is determined by the number of other parameters it could affect and the amount of
rework it could cause in those parameters, and ii) identify and use the “vulnerable” design parameters to
minimize design chuming, where a parameter’s “vulnerability” is determined by the number of other

parameters that affect it, and how much rework they could cause for it.

Other questions related to establishing this control policy include:

e What relationship do these “powerful” and “vulnerable” parameters have to the “design modes”
identified by Smith and Eppinger (Smith and Eppinger, 1997)?

e Do these “powerful” and “vulnerable” parameters change as the project evolves?

e Are they sensitive to initial conditions, i.e. does the identification of these parameters depend on the

order in the project’s design parameters are developed?

-112-

References

Browning, Tyson R. “Sources of Schedule Risk in Complex System Development,” Proceedings of 8"
Annual International Symposium of INCOSE, Vancouver, July 26-30, 1998a.

Browning, Tyson R. “Modeling and Analyzing Cost, Schedule, and Performance in Complex System
Product Development,” PhD Thesis, Massachusetts Institute of Technology, 1998b.

Carrascosa, Maria, Steven D. Eppinger, and Daniel E. Whitney. “Using the Design Structure Matrix to
Estimate Product Development Time,” 1998 ASME Design Engineering Technical Conferences,
Proceedings of DETC’98, Atlanta, Georgia, September 13-16, 1998.

Center for Quality Management (CQM). The Language Processing (LP) Method: A Tool for Organizing
Qualitative Data and Creating Insight. Cambridge, Massachusetts: Center for Quality

Management, 1996.

Clark, K. B., G. Chew, and T. Fujimoto, “Product Development in the World Auto Industry: Strategy,
Organization and Performance,” Brookings Papers on Economic Activity, 3, 1987.

Eppinger, Steven D., Daniel E. Whitney, Robert P. Smith, and David A. Gebala. “Organizing the Tasks
in Complex Design Projects,” ASME Design Theory and Methodolgy Conference, Chicago,
September 1990.

Eppinger, Steven D., Daniel E. Whitney, Robert P. Smith, and David A. Gebala. “A Model-Based
Method for Analyzing Tasks in Product Development,” Research in Engineering Design, Vol. 6,
1994, pp. 1-13.

Goldratt, Eliyahu M. Critical Chain. Great Barrington, Massachusetts: North River Press, 1997.

Krishnan, V., Steven D. Eppinger, and Daniel E. Whitney. “A Model-Based Framework to Overlap
Product Development Activities,” Management Science, Vol. 43, No. 4, April 1997.

Project Management Institute Standards Committee (PMI). A Guide to the Project Management Body of
Knowledge. Upper Darby, Pennsylvania: Project Management Institute, 1996.

Reinertsen, Donald G. Managing the design Factory: A Product Developer’s Toolkit. New York: The
Free Press, 1997.

Shiba, Shoji, Alan Graham, and David Walden. A New American TOM: Four Practical Revolutions in
Management. Portland, Oregon: Productivity Press, 1993.

Smith, Robert P., and Steven D. Eppinger. “Identifying Controlling Features of Engineering Design
Iteration,” Management Science, Vol. 43, No. 3, March 1997.

Sobek, Durward K., Allen C. Ward, and Jeffrey X. Liker. “Toyota’s Principles of Set-Based Concurrent
Engineering,” Sloan Management Review, Winter 1999, pp. 67-83.

Steward, Donald V. “The Design Structure System: A Method for Managing the Design of Complex
Systems,” IEEE Transactions on Engineering Management, Vol. 28, No. 3, 1981, pp. 71-74.

-113 -

Ward, Allen, Jeffrey K. Liker, John J. Cristiano, and Durward K. Sobek II. “The Second Toyota Paradox:
How Delaying Decisions Can Make Better Cars Faster,” Sloan Management Review, Spring
1995, pp. 43-61.

Wheelright, Steven C., and Kim B. Clark. Revolutionizing Product Development: Quantum Leaps in
Speed, Efficiency, and Quality. New York: The Free Press, 1992.

Yassine, Ali, Kenneth Chelst, and Donald Falkenburg. “A Decision Analytic Framework for Evaluating
Concurrent Engineering,” IEEE Transactions on Engineering Management, January 1998.

-114 -

Appendix A: Source Code for Schedule Recovery Extension

Variable Definitions:
>>>>> Variables for Schedule Recovery Subroutine:

Dim MAXCOMP As Single ’Amount by which activity duration can be reduced using
compression/overtime (as % of predecessor delay)

Dim MAXOVERLAP As Single ’Amount by which successor activity can be overlapped with
incomplete predecessor activity (as % of successor duration)

Dim STARTDATE() As Single "Array of scheduled start dates for all activities (time units)

Dim OTPREMIUM As Single ‘Overtime premium (wage multiplier)

Dim OVERLAP As Single Number of time units remaining in predecessor task when
successor task is allowed to proceed

Dim OLREWORK As Single ’Amount of rework for successor task as a result of overlapping
with an incomplete predecessor activity (time units)

Dim cCOMPRESS As Single ‘Cumulative incremental cost of using compression (overtime) in
time units; reinitialized below (at beginning of each run)

Dim cOVERLAP As Single ‘Cumulative incremental cost of using overlapping (in time
units); reinitialized below (at beginning of each run)

Dim COST_SAMPLES() ‘Dynamic array (2,r) containing compression and overlap cost
samples for all runs

Dim x As Integer ‘Counter

Dim y As Integer Counter

Schedule Recovery Subroutine:

Sub Recovery()
Application.StatusBar = "Recovery: Run #" & r ‘Display module progress
Ifr=1Andt=1Then ‘on first run only...
ReDim STARTDATE(n)
Forx=1Ton Loop through all activities and...

STARTDATE(x) = Worksheets("Recovery").Cells(4 + x, 11) Load start dates (in time steps)

from Recovery worksheet
Next x
MAXCCMP = Worksheets("Recovery").Cells(2, 2) ‘Get maximum compression (percentage of
delay that can be eliminated by compression)
MAXOVERLAP = Worksheets("Recovery").Cells(3,2) ’Get maximum overlap (amount by
which successor activity can be

overlapped with incomplete predecessor

as % of successor duration)
OTPREMIUM = Worksheets("Recovery").Cells(4, 2) ‘Get overtime premium (wage

multiplier)
End If
Forx=1Ton Loop thru all activities to find any that should
start now but have not (because predecessors
delayed):

-115 -

Application.StatusBar = "Recovery: Run #"' & r & "t=" & t & "Act=" & x Display module

progress
If (t - STARTDATE(x)) < delta_t And (t - STARTDATE(x)) >= 0 And W(x) = 1 Then
If within one time step of the activity’s start

date...
Fory=1To(x-1) Loop thru all possible predecessors
If DSM(x, y, 1) <> 0 And W(y) <> 0Then 'Check for unfinished predecessor
If MAXCOMP > 0 Then If compression (of unfinished predecessor) is
allowed...

W(y) = W(y) - W(y) * MAXCOMP 'Reduce amount of work for the delayed
predecessor W(y) by maximum compression
cCOMPRESS = cCOMPRESS + OTPREMIUM * W(y) * ActS(y) * delta_t

"add cost to cumulative compression cost
End If

If W(y) > 0 And MAXOVERLAP > 0 Then If predecessor still delayed and overlapping is
allowed...
OVERLAP = min(W(y) * ActS(y), MAXOVERLAP * ActS(x))
’Amount of overlap (in time steps) cannot

exceed the delay

W(x) = W(x) - OVERLAP * 1/ ActS(x) 'Reduce duration of successor by
amount of overlap

If Rnd <= DSM(x, vy, 1) Then If rework in successor is required
(randomly determined)...

W) = W(x) + OVERLAP * 1/ ActS(x) ’add overlap back
cOVERLAP = cOVERLAP + OVERLAP * delta_t 'add cost for this rework to
cumulative overlap cost

End If
End If
End If
Nexty ‘Check next predecessor for delay
End If
Next x ‘Check for delay in start delay of next activity
End Sub

-116 -

Appendix B: Calculations

B.1 Expected Profit Loss

One approach to attaching a cost to late project completion is to determine the lost profit due to forgone
sales. Lost profit per day may not be a particularly easy quantity to assess, but placing a value on time is
important for making informed project management decisions. Lost profit per day will depend on
whether a “fixed” or “open window” sales model is used, and on estimated sales rates. In an open
window sales model, the assumption is that late entry into the market does not affect total sales, only the
timing of them, i.e. the lifecycle of the product is shifted forward in time. In a fixed window sales model,
the assumption is that late entry costs market share and total sales and product lifecycle are reduced.
Based on the significant degree of competition and the relatively low purchase frequency (automobiles

are durable goods), the automobile industry could be represented by the latter sales model.

Sales rates are obviously company and vehicle specific. However, for the purposes of determining
comparative profit loss between various scenarios simulated in this thesis, a profit loss of $1 million/day
was used.’ Having determined the profit loss/time unit, the output of many runs of the project simulation
(probabilities of completing the project within increasing lengths of time) can be used to calculate the

expected or mean profit loss for the project:

(Probability that project is completed after y time units) x
Expected Profit Loss = (#of time units late)x

(Profit loss per time unit)
all late projects

where: # of time units late = (actual project duration) — (scheduled project duration).

Note that the sum is taken only over late projects, i.e. a profit loss is only incurred if the project takes

longer than scheduled.

Rather than treating the results of each run of the simulation separately, the project durations were

grouped into a histogram (ranges of project durations). The following spreadsheet illustrates the

3 Note that this value also corresponds to an estimate by Clark et al. that the marginal cost of development lead time
for a vehicle is at least $1 million/day (Clark et al., 1987).

-117 -

calculation of expected profit loss from the histogram of simulated project durations. The data is from the

simulation of the benchmark project (defined in section 4.3.3).

Simulation Output: Calculated Values:
Range Frequency Probability Expected Profit Loss
[in time units] [$ millions]
a b c d
48.0 1 0.1% n/a
48.5 8 0.8% n/a
|Scheduled Duration: 490 | 74 7.4% 0.0
49.5 174 17.4% 1.7
50.0 264 26.4% 53
50.5 212 21.2% 6.4
51.0 166 16.6% 6.6
51.5 70 7.0% 3.5
52.0 27 2.7% 1.6
52.5 3 0.3% 0.2
53.0 1 0.1% 0.1
53.5 0 0.0% 0.0
54.0 0 0.0% 0.0
More 0 0.0%
Totals: 1000 254

¢ = b/total # of runs

d = (a-scheduled duration) x ¢ x profit loss per time unit

-118 -

B.2 Cost of Recovery

The two schedule recovery actions are compression and overlapping. As discussed in section 4.3.2, the
incremental manpower cost of using these actions were modeled in the project simulation as follows:
Costeompression = Overtime premium x (Delay — Fraction of delay reduced by compression)

Expected Costgyeriap = P(rework required for downstream activity) x amount of time overlapped

These costs are in terms of the incremental amount of work (in number of time units) required to
implement the recovery and/or overlapping. To convert time units to dollar terms, the number of time

units was multiplied by a representative wage rate ($40/hr) and an average number of people involved in

the recovery (25 people), i.e.:

$40 8hr 9 20days

"Total Cost of Recovery = (Cost . +Cost P)% X
ry (compression overlappmg) hr day = month

X 25 people

-119 -

THESIS PROCESSING SLIP

FIXED FIELD: il name

index biblio

» COPIES: @ Aero @ Hum

Lindgren Music Rotch Science

TITLE VARIES: »[]

NAME VARIES: >m/ W! Mwm

IMPRINT: {(COPYRIGHT)

» COLLATION: l '949
|

» ADD: DEGREE: 3, /M »oEPT: _/M., E.

SUPERVISORS:

NOTES:

catr: date:

page:

woerr:_ AT ., 159/1”

7
» YEAR: |99 »DEGREE: 5. M,

onaME: MAR . Coypeny W
J 4

