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Abstract

In this thesis we study the design of robust decoupling matrices for coupled transmit
radio frequency arrays used in magnetic resonance imaging (MRI). In a coupled par-
allel transmit array, because of the coupling itself, the power delivered to a channel
is typically partially re-distributed to other channels. This power must then be dissi-
pated in circulators resulting into a significant reduction in the power efficiency of the
overall system. In this thesis, we propose an automated approach to design a robust
decoupling matrix interfaced between the RF amplifiers and the coils. The decoupling
matrix is optimized to ensure all forward power is delivered to the load. The decou-
pling condition dictates that the admittance matrix seen by power amplifiers with 50
Ohms output impedance is a diagonal matrix with matching 1 (or 0.02 Siemens)
at the diagonal. Our tool computes the values of the decoupling matrix via a non
linear optimization and generate a physical realization using reactive elements such
as inductors and capacitors. The methods presented in this thesis scale to any arbi-
trary number of channels and can be readily applied to other coupled systems such
as antenna arrays. Furthermore our tool computes parameterized dynamical models
and performs sensitivity analysis with respect to patient head-size and head-position
for MRI coils.

Thesis Supervisor: Luca Daniel
Title: Emanuel E. Landsman Associate Professor of Electrical Engineering and Com-
puter Science
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Chapter 1

Introduction

In coupled transmission RF arrays, the power delivered to a single channel is partially

transmitted to other channels because of coupling. This coupled power, along with

the reflected power (because of impedance mismatch), must then be dissipated in the

circulators. Consequently the overall power efficiency of the system is significantly

reduced [1]. Additionally parallel spacial encoding schemes require sufficient degrees

of freedom in the design of a parallel transmit array [2, 3, 4, 5, 6, 7]. This also requires

that the coils are decoupled. Over the past years, several methods have been proposed

to decouple coupled RF arrays. The effectiveness of these methods varies, and largely

depends on the application. Ref. [8] reviews some of these decoupling methods for

conventional antenna arrays and for magnetic resonance imaging coil arrays.

Several methods have been proposed to decouple antenna arrays and magnetic

resonance imaging coil arrays [8]. Conventional decoupling techniques such as partial

overlap of transmit loops [9] and capacitive and inductive decoupling [10, 11, 12, 13]

are well suited to small arrays but may fail for coils with many transmit elements

(i.e., > 8). This is because these approaches only allow decoupling of nearest-neighbor

loops, but in large parallel transmit arrays the most important coupling often occurs

between next and third-neighbor elements [14]. In order to decouple distant neighbor

channels, capacitive ladder networks have been proposed [15], but these networks are

difficult to build and are not robust to variations in the load as they are highly

sensitive to the specific tuning and matching of the array.
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Alternative approaches propose pre-correcting the digital waveforms to provide

uncoupled field patterns [16, 171. However pre-correction of the digital waveforms by

the inverse of the coupling matrix [16, 17] does not solve the power-loss problem

as it does not prevent power from going upstream in the transmit chain and into

the circulators where it is lost for excitation (this strategy is not needed anyway

as coupling between transmit channels is accurately reflected in their magnetic field

maps so that the pulse design algorithm already accounts for this effect). Recently,

Stang et al., [18] proposed to use active elements in a feedback loop to decouple coil

arrays by impedance synthesis. However the power dissipated in the active elements

may reduce the overall power efficiency.

It was shown in [19, 20, 21, 22] that a passive network can be connected between

an antenna array and its driving power amplificrs to achieve decoupling between

array elements. Such techniques have been applied only to antenna and have not

been extended to the problem of matching and decoupling of multichannel array used

for parallel transmission in magnetic resonance imaging. A similar approach was

proposed in [23] for MRI receive coils. However, [23] focuses only on a restrictive

class of degenerate solutions to the decoupling equation that may not be suitable for

MRI transmit arrays.

There is clearly a need for a robust and scalable decoupling strategy of parallel

transmission arrays. In this thesis, we propose an automated approach for the design

and realization a high-power decoupling matrix, inserted between power amplifiers

and a coupled parallel transmit array as shown in Figure 1-1. The decoupling matrix

decouples all array elements, minimizes the power lost in the circulators and ensures

maximum power transfer to the load. Our strategy robustly diagonalizes (in hard-

ware) the impedance matrix of the coils using hybrid coupler networks connected in

series. This was initially investigated by Lee et. al. [23] for receive arrays, we extend

the theory to transmit arrays and propose new methods to realize robust decoupling

matrices. We have shown in [24] and [251 that theoretically our decoupling ma-

trix can achieve near-perfect decoupling between all channels. We have tested our

algorithm on several examples. The methods presented in this thesis scale up to a

12



PA,

Zout V2

Decoupling
Matrix

Coil 1

Coil 2

Coil N

I I

V1

Figure 1-1: Block diagram of a parallel transmission RF array. A decoupling matrix
is connected between the power amplifiers and the array. V and V2 are the voltage
vectors at the array and the power amplifiers respectively. ZOUT is the impedance
matrix of the load seen by power amplifiers. Perfect decoupling and matching is
obtained when ZOUT is a diagonal matrix with diagonal entries equal to the output
impedance of the power amplifiers.

large number of channels and can be readily applied to other coupled systems such

as antenna arrays.

We summarize below the main contributions of this work:

" We propose an automated framework to design a decoupling matrix for parallel

transmit arrays

" Our strategy is independent of the geometrical configuration of the coils and

the number of array channels

" The performance of the decoupling matrices generated by our tool is robust to

component value variations

* Our decoupling matrix is comprised only of reactive elements. This implies a

low insertion loss.

13
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Chapter 2

Background

2.1 Decoupling Condition

The admittance matrix of a coupled N - channel array is described by a dense

symmetric complex matrix Yc = Gc+jBc E CNxN. The off-diagonal elements of Yc,

Yij(i # j) represent the coupling between the elements i and j of the array. Because

all sources are independent, the source admittance matrix is diagonal, with output

impedance of the corresponding power amplifier as the diagonal elements which is

typically 1 (or 0.02 Siemens).

The mathematical condition for achieving full decoupling is that the admittance

matrix of the load (Yut, shown in Figure 1-1) seen by the power amplifiers is a di-

agonal matrix with matched (typically 1) admittance values to those of the power

amplifiers. Let Y and Z. denote the admittance and impedance matrices for the

power amplifies respectively. For a 50Q system, the desired Yur and Zst are respec-

tively given by

0.02

Yout = Y (2.1)

0.02

15



and

Zout = Zg = [50

(2.2)

50

Consider an array with N - channels. To decouple N channels, the decoupling

matrix has 2N ports. Let Y E C2Nx2N denote the admittance matrix of the decou-

pling matrix.

FY Yl
Y = [ - . (2.3)

Following the derivation in [23] for impedance system, we arrive at the following

result the decoupling condition for admittance system.

Yout = Yn1 - Y12(Y22 + Yc) Y 2 1

I 0.02

(2.4)

(2.5)

0.02

Hence, in order to design a decoupling matrix, we need to compute the unknown

admittance for the decoupling matrix Y that satisfies the condition given in (2.5).

2.2 Properties of a Decoupling Matrix

Following sections describe the properties of a network realizing a passive decoupling

matrix.

16



2.2.1 Lossless Components

In order to ensure that the insertion loss introduced by the decoupling matrix is

minimal, the decoupling matrix must only be comprised of reactive elements. To

enforce this condition numerically, we require that real part of admittance matrix

(i.e. conductance matrix) is zero.

Y = RY + jY = jY, (2.6)

where RY and aY indicate the real and imaginary parts of Y respectively.

2.2.2 Reciprocal

Since the network is comprised only of lumped reactive elements, its admittance

matrix must be symmetric. If Y denotes the admittance for our decoupling matrix

then

y=yT (2.7)

Here YT represents the transpose of Y (and not conjugate-transpose).Computing

transpose of (2.3) results into

~1 =TY1 2 =Y1

Y = Y21

Y22 = Y.2

(2.8)

(2.9)

(2.10)

17
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Chapter 3

Design of a Decoupling Matrix

In this chapter, we explore several design aspects of the decoupling matrix, including

the network topology, robustness and sensitivity to component values.

3.1 Method

Given a parallel transmission coil with N channels, we design a 2N - port decoupling

matrix placed between the RF amplifiers and the coil in a way similar to [23].

The decoupling condition for this matrix is given in (2.5). We solve for an optimal

decoupling matrix (Y) by minimizing the least-square objective function gou -Y1

However, unlike [23], where the authors consider the special case Y = Y12 = Y21 =

Y22, we design Y in the most general way consistent with the condition that Y must be

realizable in practice using passive and non-resistive components. The condition for

being lossless is expressed mathematically as !RY = 0. Symmetry, required for passive

reciprocal networks, is expressed mathematically as Y12 = y2I, Y = Y , Y22 = Y2-

3.2 The Optimization Problem

To solve the problem numerically, we solve the following nonlinear optimization prob-

lem

19



minimizeYou g1 -2
Y

minimize |Y11 - Y12 (Y2 2 + Yc) Y 2 1 -
Y1 1 ,Y12,Y21,Y2 2

(3.1)

(3.2)

In order to solve (3.2) efficiently, we need to compute the Jacobian of the objective

function. Let

f(Y) = Y - Y12 (Y22 + YC)'Y 21 - Yg

Of

DY 21

Of
19Y12

Of
19Y22

I0I

-I® Y12(Y22

-(Y 22 + Yc) -

(YT ( Y12)((Y2 2 + YC) -

(3.3)

+YC) 

IY21 0 -1

T( (Y22 + YC) )

(3.4)

The problem (3.2) is overdetermined and admits multiple solutions. This is ad-

vantageous for our design since it provides us with more degrees of freedom to define

additional constraints enforcing structure and robustness, without compromising the

quality of the solution.

3.3 Enforcing Sparsity

Every entry in the decoupling matrix (Y) corresponds to either a capacitor or an in-

ductor. This means we can physically realize a decoupling matrix with smaller number

20
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Figure 3-1: Sparse decoupling matrices with similar performance for the same problem
computed with different values of A. Blue pixel indicates a zero.

of reactive elements by enforcing numerical sparsity on Y. One of the ways to enforce

sparsity on Y is by using an Li regularization term in the objective function (3.2).

f =| You -Y y| 2 + AHY|L1 (3.5)

We introduce a penalty (or regularization) term AllY|JL1 for every additional re-

active element. Combined with our optimization framework, Li regularization is

helpful to discover the underlying minimal representation for the decoupling matrix.

Figure 3-1 shows the structure of decoupling matrices generated by our tool for dif-

ferent values of the regularization parameter A. As expected, sparsity increases as we

increase the value of A.

3.4 Enforcing Structure

It is also possible to define a structure for the decoupling matrix from physical in-

tuition and functionality of the decoupling matrix, e.g. we observe that the power

amplifiers need not be connected to each other. Also we may not need to interconnect

the coils. This structure can be enforced in the form of a 'stencil' on Y as shown in

Figure 3-2 (a).

Similarly Figure, 3-3 shows the physical schematic of a 4 - channel decoupling

21
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Figure 3-2: Performance with a structured decoupling matrix
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P A 1

PA 2

P A
34 7

P2A 4

36 reactive elements

Figure 3-3: Schematic of a fully dense decoupling matrix. The elements Yi~ indicate
a reactive element connected between the nodes i and j.

matrix with 36 reactive elements. We enforce a structure on the decoupling matrix,

as shown in 3-4, reducing the number of reactive elements to only 20.

3.5 Robustness Criterion

We introduce a robustness criterion in the objective function such that the perfor-

mance of our decoupling matrix is robust and less sensitive to variations in the com-

ponent values. Objective function with a robustness term is given by

f = ||Y0ut - Y,||2 + \(||Yut - Yg| ~c-%+ ||YOUt - Yg| ~c+%. (.)

Here in is the manufacturer provided tolerance in the capacitance and inductance

values. Typically ,n = 5 for capacitors, and t' = 10 for inductors.

23
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Figure 3-4: Schematic of a structured decoupling matrix. The elements Yj indicate
a reactive element connected between the nodes i and j. Note that the number of
reactive elements decrease from 36 to 20.
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3.6 Sensitivity Analysis

In order to further verify the robust performance of the designs produced by our tool,

we run a sensitivity analysis on a designed decoupling matrix to identify sensitive

elements. We vary the values of the lumped components and observe their affect on

the performance of the decoupling matrix.
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Chapter 4

Results

4.1 A 16-Channel Array

We have tested our approach on a pTx 3T body coil with 16 channels distributed in

2 rows (Figure 4-1). We used HFSS to compute the fields and the frequency response

of this coil when loaded with the thirty-three tissue types Ansys body model. The

coils were individually tuned (123.2MHz) and matched (-30dB) [26, 27].

We used our algorithm to decouple this array. Figure 4-2 plots the norm of

residuals depicting convergence (in about 150 - 200 iterations) of our algorithm for

random initial guesses. The algorithm converges to distinct solutions depending on

the initial guess. Non-uniqueness of the solution matrices allows specification of

additional constraints such as limiting the capacitance and inductance values, and

robustness of the solution matrix to external factors. Figure 4-3 shows the structure

of one of the solution matrices (jYj). Y22(lower right block) has a specific structure

defined by the original coil assembly, where every coil is coupled to its neighbors.

Figure 4-4 and 4-5 show the nearly perfect decoupling (0=no coupling, =perfect

coupling) that results from application of the decoupling matrix (S12 was reduced

from -2dB to -200dB). Figure 4-6 and 4-7 show L-curves corresponding to RF-

shimming pulses designed (i) with the coupled array, (ii) the array decoupled using our

decoupling matrix and (iii) the array ideally decoupled in simulation. Least-square

pulses were computed while explicitly constraining local SAR and power [26]. The L-

27
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Figure 4-1: EM simulation of a pTx coil with 16 channels distributed in 2 rows.
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Figure 4-2: Convergence curves
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0.4

0.2

0

Figure 4-4: Coupling coefficient matrix WITHOUT the decoupling network

curves (Figure 4-6 and 4-7) show that the coupled array was able to achieve a similar

local SAR vs. fidelity tradeoff than the uncoupled ones however at the cost of greatly

increased power consumption. There was no significant difference in performance

between the ideally decoupled array and the array decoupled using our decoupling

matrix. This also shows that the decoupling matrix produces mixed outputs that are

non-degenerate and are therefore useful for pulse design (i.e., the singular values of

the mixing matrix S2 1 are all of the same magnitude).
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Figure 4-7: Power consumption of pulses shown in Figure 4-6

4.2 A 4-Channel Array

We fabricated a 4-channel parallel transmit head array (Figure 4-8). The array (tuned

and matched at 297.2MHz) demonstrates a significant coupling between the channels

as shown in Figure 4-9. This array requires an 8 port decoupling matrix. We enforced

the decoupling matrix to have the structure shown in Figure 4-10. We found that

this structure retained enough degrees-of-freedom needed to achieve good decoupling

while reducing the number of reactive elements from N(2N+ 1) required to implement

an arbitrary decoupling matrix, down to N(N + 1) (N is the number of channels).

We designed two decoupling matrices with and without a robustness criterion.

The non-robust decoupling matrix achieved ideal decoupling, Figure 4-12 (a), but

had an extremely sharp frequency response. Imposing robustness constraints in the

design of the decoupling matrix yielded a broader response, Figure 4-12 (b), making

the circuit more tolerant to component value variations. Additionally, Figure 4-12 (c)

shows that this robust design can be implemented in practice using standard C and L

values (see also Figure 4-11). Finally, we performed a sensitivity analysis of the final

circuit with respect to small variations of the lumped element values, Figure 4-12
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Figure 4-8: Picture of the coupled 4-channel 7T parallel transmit head array to be
decoupled.

(d), by studying the output S-parameters of the array with the decoupling matrix,

when the capacitors and inductors values where swept in a -5% to +5% range. Our

sensitivity analysis confirmed that the quality of the decoupling was indeed robust

to variation of most of the lumped elements values within 5% This analysis also

revealed 2 crucial elements of the matrix, the values of which need to be known

accurately to retain its performance (these may need to be implemented as variable

capacitors and inductors).

4.3 Discussion

We have presented a framework to design a decoupling and matching network, a

decoupling matrix, for parallel transmit arrays. Key advantages of our proposed

framework are that it is generic, automatic and scalable. This means that the pro-

posed decoupling strategy is independent of array's geometrical configuration and

the number of channels. Such a matrix could be used to decouple transmit coils with

many channels (i.e., > 16), which are difficult to decouple properly using existing

methods but have been shown to be beneficial for SAR reduction and manipulation

of the transverse magnetization signal.
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Figure 4-9: S-parameters of the array without a decoupling matrix. Sjj indicates the
reflection at port i, while Sij indicates the coupling between ports i and j.

The decoupling is achieved at the cost of only a small insertion loss mainly due to

the the parasitic loss of reactive lumped elements. A decoupling strategy is useful if

its performance is robust to component value variations. We enforce this by searching

for a decoupling matrix which is robust to variations via LI regularization.
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Figure 4-10: Schematic of the decoupling matrix. The elements Yj, indicate a reactive
element connected between the nodes i and j.
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Figure 4-12: (a) S-parameters of the array with the decoupling matrix S0st without
a robustness criterion. (b) S-parameters of the array with the decoupling matrix
Sost with a robustness criterion. (c) S-parameters of the robust matrix populated
with capacitors and inductors having only standard values. (d)Variation of the sum
of all S-parameters (Frobenius norm of the output S-matrix) with respect to -5%
to +5% variations of the lumped elements (1 curve per lumped element). The red
curves indicate lumped elements that are the most critical for good performance of
the decoupling matrix.
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Chapter 5

MRI Sensitivity Analysis

In this chapter we investigate the circuit level performance of an MRI coil with respect

to arbitrary axial head position.

5.1 Purpose

For a given excitation mode, head model, and head position, the excitation efficiency

over the entire brain shows good stability over a wide range of 7T MRI coils [28],

when the arrays are properly designed (excitation efficiency is defined as Bl+v/VPv,

where B1+v is B1+ averaged over the brain and Pv is the power deposited in the

brain). In order to maintain stable transmit performance for a wide range of human

head positions and sizes, care must be taken to avoid significant changes in the dis-

sipated energy that is wasted (transmit performance is defined as B1+V//Ptranmit,

where Ptransmit is the power transmitted to the coil). Energy wasting terms comprise:

the power radiated by the coils (Padiated); the inherent coil losses (Pinternai) produced

by lossy lumped elements (e.g. capacitors and inductors), by dielectrics and by con-

ductors; and the power reflected by the entire coil (Peflected). It is important to note

that once the coil geometry and fabrication design have been fixed, it is only possible

to influence Preflected by circuit level optimization of selected components of the coil

(e.g. tune and match capacitors, decoupling network, etc.). A multi-mode and multi-

objective optimization [29] can then be used to balance the transmit performance for
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a given set of excitation modes, head sizes and head positions. Finally, for a robust

coil design it is crucial to be able to validate the performance of the coil at the circuit

level for arbitrary axial head positions and head sizes within a given range.

Despite significant speed improvement in state-of-the-art commercial 3-D electro-

magnetic (EM) field solvers, from a practical point of view only a few dozen complete

3-D EM simulations can be performed for any particular RF coil geometry. It is

thus impossible in practice to obtain the required 3-D EM data for a large number

of arbitrary combinations of head positions and head sizes. Use of parameterized cir-

cuit models, generated from S-parameter data calculated by a 3-D EM solver, should

enable computation of circuit level MRI coil properties for arbitrary values of coil or

head geometry parameters. This solution has been successfully applied for several

integrated circuit applications [301, but not yet for MRI applications. The goals

of this study were: a) to generate a parameterized circuit model from a set of 3-D

EM simulations; and b) to perform circuit level performance analysis with respect to

arbitrary head position and head size.

5.2 Method

A 3-D EM model of a previously constructed 7T MRI coil [31] was simulated. In

our 3-D EM model we used the precise dimensions and material electrical properties

of the coil resonance elements. However, neither the RF cable traps, nor the coaxial

cable interconnections were included in the 3-D EM numerical model domain. The

loads utilized were the multi-tissue Ansys human body models, cut in the middle of

the torso: head #1 with scaling factors X = 0.9, Y = 0.9, Z = 0.9 (simulating an

average head), head #2 with scaling factors X = 0.85, Y = 0.85, Z = 0.9 (simulating

a small head), and head #3 with scaling factors X = 0.95, Y = 0.975, Z = 0.9

(simulating a large head). Each head was located at five axial positions so that the

distance between the crown of the head and the transceiver top was 0, 20, 40, 50,

and 60mm. We used the 3-D EM field solver HFSS (Ansys) to generate from the

3-D EM model fifteen 80-port S-parameter matrices, which were used to generate
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fifteen initial non-parameterized models. In our initial non-parameterized model, the

frequency response of each element in the S-parameter matrices was modeled using

rational transfer functions of the form [32]:

H(s)= Rk + D. (5.1)
k=1 s ak

Here ak and Rk describe the poles and residues respectively, and K is the total

number of poles used, which defines the model order. We took particular care to guar-

antee that the circuit-level parameterized model generated is physically consistent.

For instance, we ensured that the complex poles appeared in conjugate pairs and that

all the poles were stable i.e. they had a negative real part (Rak < 0) regardless of the

values of the parameters. Using an optimization framework as described in [32], for

each head position (i.e. 0mm, 20mm, 40mm, 50mm and 60mm) we generated initial

non-parameterized models minimizing the mismatch of the frequency responses with

the previously obtained HFSS data. We noted that the pole locations did not change

significantly with respect to different head positions. In order to combine the initial

non-parameterized models to generate a final parameterized model, we approximated

the parameter dependence using multivariate polynomials. Our final parameterized

model is of the form:

H(s, Z, H,) = Rk(Z, H +) + D(Z, Hs). (5.2)
k=1 s - ak

Here Rk(Z, Hs) and D(Z, Hs) are multivariate polynomials, Z is the head position

and Hs defines the scaling factor. The model was finally implemented both as an

hspice-netlist and as a Verilog-A module. In general, both of these interfaces are

supported by all the major circuit simulators. However, we have observed that the

Verilog-A format runs slower and may cause memory problems with a large number of

ports. When our hspice-netlist model was incorporated within the circuit simulator as
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a circuit object, the head size and location were represented by two object properties.

This allows accurate and convenient sweeping in an arbitrary way of those parameters

during the circuit level analysis.

5.3 Results and discussion

The error observed in the frequency response between the initial non-parameterized

models and 3-D EM frequency response of correspondent geometries was less than

0.1% at coil operation (Larmor) frequency of 297.2MHz. No noticeable difference

was observed between the transceiver circuit level properties (e.g. Preflected) com-

puted directly from the HFSS S-parameter at the 15 given dataset combinations of

parameter values and those computed from our parameterized circuit model, for 15

different combinations of head position and head size. Finally, Figure 5-1 shows the

computed reflected power Preflected as a function of arbitrary intermediate values of

the axial head position. The values of the parameters for the initial individual 3-D

EM simulations were chosen manually based on our previous numerical investigation

experience.
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Chapter 6

Conclusion

We have presented a framework to automatically design decoupling matrices for pTx

arrays with many channels (> 8). The algorithm optimally selects the component

values of the decoupling matrix by enforcing reciprocity, passivity and the lossless-

ness constraints on the network. The proposed framework also includes strategies

to discover the underlying topology and structures for the decoupling matrix. We

show that our algorithm converges and the decoupling matrix achieves near perfect

decoupling.

We have also generated parameterized models with a very large number of ports

for sensitivity analysis of existing transmit arrays with respect to head positions. The

parameterized models can be used to obtain any circuit level properties for arbitrary

head positions within the given range.
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