
The SPRAWL Distributed Stream Dissemination System

by

Yuan Mei

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering Z C g
at the

.k- co
MASSACHUSETTS INSTITUTE OF TECHNOLOGY <O0

February 2015

Massachusetts Institute of Technology 2015. All rights reserved.

Signature redacted
A uth or

Department of Electrical Engineering and Computer Science
January 30, 2015

Signature redacted
C ertified by

Samuel R. Madden
Professor

Thesis Supervisor

Signature redacted
A ccepted by

ULkdslie A. Kolodziejski
Chairman, Department Committee on Graduate Theses

The SPRAWL Distributed Stream Dissemination System

by

Yuan Mei

Submitted to the Department of Electrical Engineering and Computer Science
on January 30, 2015, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract

Many large financial, news, and social media companies process and stream large
quantities of data to customers, either through the public Internet or on their own
internal networks. These customers often depend on that data being delivered in a
timely and resource-efficient manner. In addition, many customers subscribe to the
same or similar data products (e.g., particular types of financial feeds, or feeds of
specific social media users). A naive implementation of a data dissemination network
like this will cause redundant data to be processed and delivered repeatedly, wasting
CPU and bandwidth, increasing network delays, and driving up costs.

In this dissertation, we present SPRAWL, a distributed stream processing layer to
address the wide-area data processing and dissemination problem. SPRAWL provides
two key functions. First, it is able to generate a shared and distributed multi-query
plan that transmits records through the network just once, and shares the compu-
tation of streaming operators that operate on the same subset of data. Second, it
is able to compute an in-network placement of complex queries (each with dozens
of operators) in wide-area networks (consisting of thousands of nodes). This place-
ment is optimal within polynomial time and memory complexity when there are no
resource (CPU, bandwidth) or query (latency) constraints. In addition, we develop
several heuristics to guarantee the placement is near optimal when constraints are
violated, and experimentally evaluate the performance of our algorithms versus an
exhausting algorithm. We also design and implement a distributed version of the
SPRAWL placement algorithm in order to support wide-area networks consisting of
thousands of nodes, which centralized algorithms cannot handle. Finally, we show
that SPRAWL can make complex query placement decisions on wide-area networks
within seconds, and the placement can increase throughput by up to a factor of 5 and
reduce dollar costs by a factor of 6 on a financial data stream processing task.

Thesis Supervisor: Samuel R. Madden
Title: Professor

3

4

To my dear husband and parents,

Wen and Guangquan & Yu

Acknowledgments

It's snowing again, just like the winter I started my journey of doctoral study at MIT.

This is a moment I have dreamed for years - when my life met setbacks, when my

research lost momentums, and when my career faced difficult choices, I always told

myself, you must keep faith and stand on. This is an unforgettable moment for me

to thank all the people I am deeply indebted to.

First, I want to thank my advisor, Professor Sam Madden, who is beyond com-

parable. There are so many things I want to thank him that I do not know where to

start. Words can not express my gratitude to him with so many years' help. Since

the first day I came to MIT, Sam has put enormous trust on my research. Under his

leadership, I have been so lucky to witness the emergence of big data as an exciting

new field, and from him, I have learned the imperativeness for engineers to integrate

academic knowledge with industrial practice. In addition to research, Sam has also

provided lots of help on my student life and career development - from the bottom

of my heart, he is not only an advisor and a role model, but a good friend and a

family member. He has not only taught me the knowledge to be a good researcher,

but the virtues to be a great person. I am really proud of having been his student,

and sincerely hope one day I can also make him proud.

Second, I want to thank my committee members, Professors Michael Stonebraker

and Hari Balakrishnan. As prominent scholars in computer science and engineering,

Michael and Hari have very busy schedules, but they can always find time to patiently

listen to my research talk and tirelessly help me find the right answers. Every time I

met with them, I was amazed by the breadth and depth of their knowledge and skills.

It has been such an honor to have both of them on my doctoral committee.

Next, I want to thank my lab mate, Eugene Wu. He kindly provided many details

on the SASE project and helped me walk through the slides again and again before

my dissertation defense. I also want to thank all other members in the DB group and

many of my friends on campus and throughout the world. No matter where your are

after graduation, I will definitely remember our friendship and hope our paths can

7

cross again in the future.

Finally, I want to dedicate my dissertation to my husband, Wen Feng, and my

parents, Guangquan Mei and Yu Wang, for their unconditional, endless, and eternal

love - my parents gave me life, brought me up, and influenced me to be a person of

integrity, and meanwhile, the Cupid made a special arrangement for me to meet the

best boy in our best age and at the best place - any language in the world cannot

completely express my deep appreciation to and tremendous love for my family.

8

Contents

1 Introduction 19

1.1 New Challenges 20

1.2 Contributions . 20

1.3 R elated W ork . 21

1.4 Dissertation Outlines & Main Results 22

2 SPRAWL System Design 25

2.1 D efinitions . 25

2.2 Wide-Area Network Properties . 26

2.3 Input Query DAG. 28

2.4 System Architecture . 29

2.4.1 Control Module Clusters . 30

2.4.2 Example Distributed Query Placement 31

2.4.3 Central Control Module . 33

2.4.4 Individual Control Module . 34

3 Cost Model 37

3.1 Cost O bjective . 37

3.2 Network Resource Cost Function . 38

3.2.1 C P U C ost . 39

3.2.2 B W C ost . 39

3.2.3 Constraints . 40

3.3 Cost Estimates . 40

9

3.3.1

3.3.2

3.3.3

3.3.4

BWCost Estimates

CPUCost Estimates

/ Estim ates

Example / Estimation Benchmark

4 Query Plan Decomposition and Placement

4.1 SPRAWL Decomposition and Placement Algorithm

4.1.1 Sub-Plan Cost Accumulation

4.1.2 SPRAWL Decomposition Function

4.2 Optimality of SPRAWL DP without Constraints

4.2.1 Optimal Substructure

4.2.2 Pseudocode for SPRAWL DP Algorithm

4.3 SPRAWL DP with Constraints

4.3.1 SPRAWL DP with Resource Constraints

4.3.2 SPRAWL DP with Latency Constraints

4.4 Distributed SPRAWL DP

4.4.1 Query DAG Partition and Assignment

4.4.2 SPRAWL Distributed DP Algorithm

4.4.3 User-Defined Cost Objectives

4.5 Complexity Analysis .

4.5.1 Time Complexity

4.5.2 Memory Complexity

4.5.3 Message Complexity

5 Multi-Query Plan Generation

5.1 D efinitions .

5.2 Multi-Query Sharing Strategy

5.2.1 Covered and Equivalent Operators Identification .

5.2.2 Cost Adjustment

5.2.3 Operator Placement

5.2.4 Plan Reordering

10

40

41

41

42

45

. 46

. 46

. 47

. 48

. 48

. 49

. 51

. 51

. 53

. 57

. 57

. 58

. 59

. 60

. 60

. 60

. 61

63

. 63

. 64

. 65

. 66

. 67

. 67

5.2.5 Distributed SPRAWL Multi-Query Sharing Strategy

5.2.6 SPRAWL Multi-Query Plan Generation and Placement Summa-

rization .

5.3 Multi-Output Plans .

5.3.1 Naive Solution .

5.3.2 Undirected Graph Solution .

5.3.3 Undirected Graph with Different Roots

5.3.4 Undirected Graph Solution with Postponed Latency Calculation

5.4 Query Adaptation .

5.4.1 Fixing Constraint Violation

5.5 Query Deletion .

6 Experiments

6.1 Experiment Settings

6.2 Amazon EC2 Experiment

6.2.1 Network Settings

6.2.2 Query Settings

6.2.3 Deployment Settings

6.2.4 Output Throughput Performance

6.2.5 Dollar Cost

6.3 SPRAWL on Wide Area Networks

6.3.1 Network Settings

6.3.2 Query Settings

6.3.3 Deployment Settings

6.3.4 Placement Cost on Wide-Area Networks

6.3.5 Similarity of SP-Central & SP-Distribute

6.3.6 Placement Time on Wide-Area Networks

6.3.7 Network Edge Connectivity

6.4 SPRAWL With Constraints

6.4.1 Resource-Constrained Network

11

67

68

68

69

70

70

72

74

74

75

77

. 78

. 79

. 79

. 80

. 80

. 8 1

. 82

. 8 2

. 83

. 83

. 83

. 84

. 85

. 86

. 8 7

. 8 7

. 89

6.4.2 Network Resource Allocation

6.5 Amazon EC2 Cost Estimates Study

6.5.1 Join Placement

6.5.2 Link Sharing

7 Related Work

7.1 Distributed Query Optimization

7.2 Stream Processing Systems

7.3 Sensor Networks

7.4 Pub-Sub Systems

7.5 Graph Partitions in Parallel Computation .

7.6 Overlay Networks

7.7 SPRAWL Vs. Network Resource-Aware Data

7.7.1 M in-Cut

7.7.2 SBO N

7.7.3 SAND

7.7.4 SQ PR

7.7.5 SO DA

7.7.6 Other Network Awareness Systems

8 Future Work

9 Conclusions

A API for Underlying Stream Processing Syst

A .1 ZStream .

A.1.1 Example API Calls for Nodeo

A.1.2 Example API Calls for Node1

A.1.3 Example API Calls for Node 2

A.2 W avescope

A.2.1 Example API Calls for Nodeo

A.2.2 Example API Calls for Node1

12

Processing Systems

91

93

93

97

103

103

104

104

105

105

106

107

107

109

110

111

112

113

115

117

119

119

120

121

121

122

122

123

ems

A.2.3 Example API Calls for Node2 123

13

14

List of Figures

2-1 Illustrative Wide-Area Network Model

2-2 Illustrative Transit-Stub Network Model (reproduced from [61])

2-3 DAG Plan for Query 1

2-4

2-5

2-6

DAG Plan for Query 2

SPRAWL System Architecture

Query 1 Placed on Wide-Area Networks with Three

2-7 Central Control Module

2-8 Individual Control Module

3-1 Example 3 Estimation Benchmark . . .

4-1 Query 1 Placed onto a Physical Network

4-2 Latency Bound Pre-Allocation

5-1

5-2

5-3

SPRAWL Multi-Query Sharing Strategy

Example of Multi-Output Plans.....

Multi-Output Plan with Different Roots

5-4 Illustration of Postponed Latency Calculation . . .

6-1 Output Throughput of Wide Area Experiment . . .

6-2 Cost Per Query on 1550-Node Transit-Stub Network

6-3

6-4

6-5

6-6

Placement Cost with Different Network Edge Connec

Join Placement Performance in between Different Zo

Join Placement Cost in between Different Zones . .

Link Sharing Within the Same Zone

Clusters

. . . 30

. . . 31

. . . 32

. . . 33

. . . 34

. 42

. 46

. 55

. 65

. 69

. 7 1

. 73

. 8 1

s 84

tivity 88

nes 95

. 96

. 98

15

26

27

. 2 9

6-7 Link Sharing in between Different Zones 100

6-8 Cost in US Dollars for Processing 50 GB Data 101

7-1 Example Hyper-graph in Min-Cut (reproduced from [41]) 108

7-2 Spring Relaxation in SBON Cost Space (reproduced from [47]) 109

A-i An Example Placement for Query 1 120

16

List of Tables

6.1 US Dollars Paid for Running 60GB Data 82

6.2 Similarity of SP-Central & SP-Distribute placement 85

6.3 Placement Time Per Query on 1550-Node Transit-Stub networks . . . 86

6.4 Runtime of SPRAWL vs Exhaustive on 3-Cluster Network 89

6.5 Query Fit Rate & Placement Cost in Resource-Constrained Networks

with all Constraints . 91

6.6 Query Fit Rate & Placement Cost in Resource-Constrained Networks

with CPU, BW Constraints . 91

6.7 Multi-Query With All Constraints . 92

6.8 Multi-Query With CPU and BW Constraints 92

17

18

Chapter 1

Introduction

Modern financial and Internet services need to process and disseminate streams of

data to thousands or millions of users spread around the globe. This is accomplished

not only via massive centralized compute clusters consisting of hundreds of machines,

but by a complex wide-area network of routers and caches. Applications of such net-

works include real-time financial service systems, news feed systems, and social media

networks. News and financial feed services, like Thomson Reuters [7], Bloomberg [3],

and Dow Jones have to process and stream massive quantities of data feeds both over

the public Internet as well as over their private networks to subscribers who have

various requirements as quickly and efficiently as possible. Social media networks

such as Twitter [8] and Facebook [4] may receive updates at data centers worldwide,

subsets of which need to be processed and disseminated efficiently to users and servers

all over the world, using both their own data centers and caches provided by caching

services like Akamai [1]. Delivering information while at the same time processing it

in a cost effective and efficient manner is of critical importance. In addition to the

need for efficient data processing, the cost of simply transmitting this data can be

quite significant. For example Amazon charges $.09/GB for data transferred out from

EC2 to the public Internet, when transferring more than 1 GB of data per month.

19

1.1 New Challenges

The applications described above introduce a number of new challenges, including:

e geographically distributed data feeds, users, and network infrastructure,

e global data feeds with potentially high data rates,

e massive numbers of user subscriptions, which may include complex queries like

pattern detection and require short latency, and

e heterogeneous wide-area networks with thousands of machines and varied net-

work connectivity.

To address the special challenges of wide-area distributed stream processing and

dissemination problems outlined above, we need a simple, effective and scalable so-

lution to deliver results of user subscriptions in a timely manner (satisfy latency

requirements), while minimizing usage of network resources and accommodating CPU

and bandwidth constraints in order to support as many queries as possible.

1.2 Contributions

In this dissertation, we describe SPRAWL, a data stream distribution layer designed to

efficiently distribute data processing across hundreds or thousands of nodes. Specifi-

cally,

1. SPRAWL employs a decomposition and placement (DP) algorithm similar to

Nonserial Dynamic Programming (NSDP) [33] that, given a network of servers,

with measurements of CPU, bandwidth and latency between servers, and an

operator graph, optimizes placement of the operators on the servers to minimize

some objective function (e.g., total bandwidth cost or CPU cost). The SPRAWL

DP algorithm can guarantee an optimal placement within polynomial time and

memory complexity when resources and latency are unconstrained.

20

2. SPRAWL includes extensions to SPRAWL DP algorithm to deal with cases where

resource and latency constraints are included. We experimentally show that

these extensions perform near-optimally. This is important because many ap-

plications need to run on commodity machines with limited CPU capacity

and network bandwidth. In addition, latency concerns are often significant

in streaming settings.

3. SPRAWL extends SPRAWL DP algorithm with a distributed version that parti-

tions the query plan and assigns sub-plans to network clusters. Each cluster is

responsible for placing its local sub-plan partition, and collaborates with each

other to optimize the overall placement. This extension makes SPRAWL scalable

to thousands of network nodes and queries each with dozens of operators.

4. SPRAWL includes multi-query sharing strategies that identify opportunities to

share the transmission of data through the network, as well as the shared exe-

cution of operators. SPRAWL extends SPRAWL DP algorithm to support multi-

output DAG query plans in this case since a shared operator is very likely to

have multiple outputs and the original SPRAWL DP algorithm may not apply

any more.

5. Finally, SPRAWL make items 1 - 4 possible in a variety of stream processing

systems (single node or distributed) [28, 13, 44, 6]. SPRAWL is not a full featured

stream processing system. Instead, we have designed SPRAWL to work with

different stream processing engines via a unified interface, as long as the system

provides the capability to implement a DAG of stream processing operators and

supports the appropriate operator implementations.

1.3 Related Work

There has been prior work on distributed stream processing and in-network multi-

query placement [41, 37, 58, 10, 47] that closely related to SPRAWL. However, previous

work lacks key features SPRAWL provides. Min-Cut [41] and SODA [58] are both

21

centralized placement algorithms, and are not scalable to wide-area networks with

hundreds or thousands of nodes. In addition, Min-Cut [41] does not handle CPU costs

or resource/query constraints. SQPR[37] is more focused on multi-query sharing,

and uses a mixed integer linear program (MILP) [5] to solve the operator placement

problem, which has exponential time complexity if resource and query constraints

are considered. Finally, SBON [47] and SAND [10] both provide distributed query

placement solutions, but offer no guarantee on the quality of the placements, even

in the unconstrained case, and (as we show in our experiments) generate placements

that are substantially inferior to those produced by SPRAWL. Besides, SBON and

SAND may take long time to converge to a stable placement. More related work will

be investigated in Chapter 7.

1.4 Dissertation Outlines & Main Results

Chapter 2 describes the SPRAWL system designs, highlights the special requirements

of wide-area networks, and defines the type of queries SPRAWL supports. SPRAWL

is designed as a multi-query optimization layer for various stream processing systems

over wide-area networks. To achieve this goal, SPRAWL contains two parts: a cen-

tral control module and an individual control module. The central control module

is responsible for multi-query optimization and placement, while individual control

modules provide a unified interface for underlying stream processing systems.

Chapter 3 discusses the cost model SPRAWL used by the optimization and

placement algorithms, and provides guidance and benchmarks for cost estimates.

SPRAWL's cost objectives are designed to minimize overall network resource usage,

while simultaneously satisfying resource and query constraints.

Chapter 4 introduces the design and implementation of the SPRAWL decomposition

and placement (DP) algorithm, proves the optimality of the SPRAWL DP algorithm

without resource and query constraints, provides solutions when constraints are con-

sidered, and extends the SPRAWL DP algorithm with a scalable version where no

global information is necessary for each local central control module to make opti-

22

mization and placement decisions.

Chapter 5 introduces the SPRAWL data-oriented multi-query sharing strategies

to extend SPRAWL DP algorithm for support for multiple queries, and proves that

the SPRAWL DP algorithm can always find an optimal placement solution no matter

which operator in the query plan is chosen as a root.

Chapter 6 contains four sets of experiments. It shows that in the Amazon Elastic

Compute Cloud (EC2) [2], SPRAWL can increase throughput by up to a factor of 5

and reduce dollar costs by a factor of 6 on a financial data feed processing benchmark

compared to a random placement strategy. It also demonstrates that SPRAWL can

make complex query placement decisions on wide-area networks (with thousands of

network nodes) within seconds and reduce the (latency or bandwidth) cost by a factor

of 3 relative to an existing scalable distributed relaxation algorithm called SBON [47].

In addition, it experimentally shows that SPRAWL DP with constraints can perform

almost as well as an exhaustive algorithm, even in highly constrained settings. Finally,

it shares some experiences on how cost estimates are chosen, and how throughput and

dollars spent relate to the choices of cost estimates.

Chapter 7 is a literature review, Chapter 8 describes future work and Chapter 9

concludes the dissertation.

23

24

Chapter 2

SPRAWL System Design

In this chapter, we provide an overview of the design and architecture of SPRAWL,

including the network model and queries it supports. We begin with a few definitions.

2.1 Definitions

To distinguish networks of physical nodes from graphs of operations, we use the

following terms in this dissertation:

" Network Node: a server used to generate and/or process data across the physical

network.

" Network Link: a physical connection between network nodes.

* Query Operator : a block of code that applies a specific operation to data,

e.g., "filter", "aggregate", or "join". Some operators are pinned to particular

network nodes, and others are unpinned and are free to execute anywhere in

the network.

" Data Edge : an edge between two operators that carries data.

* Query DA G: a directed acyclic graph composed of operators for query planning

and execution. A query DAG is typically a tree for a single query, but can be

25

non-tree when multiple queries are merged together because shared operators

may have multiple outputs.

2.2 Wide-Area Network Properties

y

(Asia

Sinks

Wide-area Data Unk

NA

routers

Intra Data Link V
EU

sources

(a) Wide-Area Network Topology with Three Clusters

;110 Nsrbudon
Router Sink ?"t',k

(b) Internal Network Structure in each Data Cluster

Figure 2-1: Illustrative Wide-Area Network Model

Since SPRAWL is designed to be scalable to wide-area networks, we begin with a

brief description of the properties of such networks. Wide-area networks have clusters

of nodes (e.g., Amazon availability zones, or data centers in large organizations),

26

connected via wide-area links, as shown in Figure 2-la. Within each data cluster,

network nodes are connected via high-bandwidth, low-latency local-area links, as

shown in Figure 2-1b.

Compared to wide-area links, local-area links typically have much lower latency

(1 ms or less) and much higher network bandwidth (1-10 Gbps), with very low (or

free) per-byte transmission costs. Since wide-area links have to traverse the public

Internet, service providers often charge on a per-byte basis, and throttle the maximum

allowed data rate per connection. Wide area cluster latencies range from 10s to 100s

of milliseconds. Network nodes in wide-area networks can be categorized based on

their functionality:

* sources (data feeds) produce data to be processed,

" routers (switches) process data and disseminate it to other network nodes, and

" sinks deliver query results to users.

A network node can be a source, router and sink at the same time.

Transit Domains Multi-homed Stub

Stub-Stub edge

Stub Domains

Figure 2-2: Illustrative Transit-Stub Network Model (reproduced from [61])

Wide-area network structures are often modeled by a Transit-Stub model, as shown

in Figure 2-2 [61]. In a transit-stub model, data clusters are connected via a network

27

of border nodes (transit domains), marked as gray areas in the figure. These border

nodes route data from inside the cluster to the wide-area Internet, and from the wide-

area Internet into the cluster. SPRAWL distributed sharing strategies and placement

algorithms are designed based on this structure.

We assume that network links are symmetric. The routing path between network

nodes is the shortest path calculated based on the routing information maintained

by border nodes. We assume network topologies are relatively stable, so we do not

discuss fault-tolerance issues in this dissertation. The network is not required to be

fully connected.

2.3 Input Query DAG

SPRAWL is designed to support a collection of stream operators similar to those that

appear in stream processing engines (filters, windowed aggregates, and windowed

joins). Currently, SPRAWL only accepts inputs as a DAG of operators rather than

as SQL query (i.e., it doesn't have a query parser). Specifically, an input DAG of

operators is provided in XML files as was done in Borealis [13].

Query 1 is an example streaming query over a financial data stream written in

StreamSQL [6], and its input DAG is illustrated in Figure 2-3. It compares the 5

minute average prices of IBM stock trades in US and Asian markets. Notice that

COM is a user defined function (UDF) that implements the COMPARE operator.

SPRAWL does not need to know implementation details of such UDFs, as long as

operator statistics are provided, as we discuss in Chapter 3.

Query 1. Compare (using a user-defined comparison function) the 5 minute average

prices of IBM stock trades in US and Asian markets.

SELECT COMPARE(avg(Asia.price), avg(US.price))

WHERE Asia.symbol = 'IBM' AND US.symbol = 'IBM'

FROM AsiaStocks as Asia, USStocks as US

WITHIN 5 min

28

Figure 2-3: DAG Plan for Query 1

As another example, Query 2 finds all stock trades with the same company from

Asia, US and European markets, with trading volume greater than X within 1 hour.

One of the corresponding query DAG plans is shown in Figure 2-4.

Query 2. Find all stock trades for the same company from Asia. US and European

markets. with trading volume greater than X within 1 hour.

SELECT Asia.symbol, US.symbol, EU.symbol

WHERE Asia.symbol = US.symbol = EU.symbol AND

Asia.volume > X AND US.volume > X AND EU.volume > X

FROM AsiaStocks as Asia, USStocks as US, EUStocks as EU

WITHIN 1 hour

2.4 System Architecture

SPRAWL provides a unified interface to make multi-query sharing and placement

optimization transparent to the underlying stream processing system. As such, a

SPRAWL system has two parts: a central control module, an instance of which runs

in each network cluster, and an individual control module that runs on each network

node, as shown in Figure 2-5. Central control modules collect and deploy user sub-

scriptions across the network. Individual modules are designed to communicate with

29

Figure 2-4: DAG Plan for Query 2

the underlying query processors.

2.4.1 Control Module Clusters

A single centralized control module is not a scalable solution for wide-area networks

with thousands of network nodes. It may take several minutes for a centralized

algorithm to make a placement decision for complex queries over such networks as we

will show in Chapter 6, not to mention tracking network resource and routing updates.

Hence, SPRAWL partitions wide-area networks into smaller clusters. SPRAWL models

wide-area networks based on the Transit-Stub structure [61] described in Section 2.2,

in which case each cluster only needs to communicate with neighbor border nodes

(transit domains) to decide network routing.

Each network cluster in SPRAWL has a central control module, as shown in Fig-

ure 2-5. Central control modules in each network cluster act as peers. Peer central

control models collaborate with each other to apply multi-query sharing strategies

and make final placement decisions. Each central control model deploys a placement

by sending messages to the individual control modules on each network node within

the cluster. These messages specify the other nodes in the cluster the node should

communicate with and which operators it should instantiate.

An individual control module on each network node is very light-weight. It decodes

messages from the central controller, and reconstructs sub-plans to execute on the

30

-~~~~ ~ ~ -

ndi Central
Node Modue Module

w1a e he suste af
IndiNode Modue

Central
soe. Module

ClusterO

Figure 2-5: SPRAWL System Architecture

underlying stream processing system. Individual control modules support data trans-

mission between network nodes, in the event that the underlying stream processing

system is a single-node system which does not support distributed data transfer. In

this case, the individual control module redirects the inputs and outputs of sub-plans

to its own input and output sockets. In addition, individual control modules track the

local computer and network conditions and send updates to the peer central control

module within the same cluster. The peer central control module uses these updates

to make placement decisions.

Our experiments show that a peer central control module is able to respond within

reasonable time delay (seconds) for complex queries in a transit-stub network with

fewer than 500 nodes. SPRAWL can scale to thousands of network nodes as long as the

average number of nodes in each cluster is bounded (not more than a few hundred).

2.4.2 Example Distributed Query Placement

Figure 2-6 illustrates how SPRAWL places Query 1 over a three-cluster wide-area

network. In SPRAWL, queries are registered in the cluster where results are delivered.

31

Subscribe Query 1 E

[node, cost(Avg)] Repo [node, cost(Avg)] Report

Plan Forwarding

US Asi

/I
___"7

Figure 2-6: Query 1 Placed on Wide-Area Networks with Three Clusters

We call this cluster the root cluster for the query. The root cluster is responsible

for partitioning registered queries into sub-queries, and deciding which cluster each

sub-query should be forwarded to. Query 1 in Figure 2-6 is registered with the EU

cluster, so the EU cluster is the root cluster for Query 1. SPRAWL processes Query 1

as follows:

1. The EU central control module accepts Query 1, applies SPRAWL multi-query

sharing strategies and partitions Query 1 into three sub-plans.

2. The EU central control module forwards the two Avg sub-plans to the US and

Asia clusters, respectively, and keeps the Com sub-plan for itself.

3. The US and Asia central control modules accept forwarded sub-plans, apply

SPRAWL multi-query sharing strategies to these sub-plans the same way as

normal input query DAGs, and then use SPRAWL DP algorithm to calculate

placement information.

32

4. The US and Asia central control modules report calculation results of their sub-

plans back to the EU root cluster. The reported results are a list of (node, cost)

pairs indicating the optimal cost of the sub-plan on each network node within

the cluster.

5. The EU root cluster chooses the placement for Corn based on the calculated

results from US and Asia, and notifies US and Asia of its decision.

6. The US and Asia central control modules finalize their local sub-plan placement

after receiving these notifications.

A central module only needs knowledge of border nodes from other clusters to

compute query partitioning and sub-plan placement, and does not need global infor-

mation of the entire network.

2.4.3 Central Control Module

MODULE

Figure 2-7: Central Control Module

The central control module includes four components, as shown in Figure 2-7:

" PPP Generator- a plan/partition/placement generator;

" Message Processor: a messenger to communicate with local individual modules

and peer central modules in other clusters;

33

" Resource Map: a network resource allocation map for the cluster;

" Query Catalog: a query/sub-query catalog recording queries/sub-queries run-

ning in the cluster.

The PPP generator (abbreviation for plan/partition/placement generator) is the

core unit of a central module. It generates a shared query plan by applying SPRAWL

multi-query sharing strategies, partitions the plan to sub-plans, and makes placement

decisions for the plan. A message processor is used to share calculated placement

results with other peer clusters and notify individual modules for deployment. As we

show in Section 4.5, the number and total bytes of the messages exchanged through

the network are small. SPRAWL implements the messenger using efficient remote

procedure calls (RPCs). A resource map maintains resource allocation information for

network nodes and links in the cluster, based on which the PPP generator calculates

plan placement. A query catalog records queries/sub-queries that are already running

in the cluster, based on which the PPP generator decides how to apply multi-query

sharing strategies.

2.4.4 Individual Control Module

7 ~ ~~~ i6ML- ~ MAL
MODULEIMODUME

Figure 2-8: Individual Control Module

Each individual control module also contains four parts, as shown in Figure 2-8:

34

" API Interface : an interface for different underlying stream processing engines.

" Resource Monitor: a monitor that periodically updates network node and link

resource states.

" Message Processor : a messenger to communicate with the central module in

the cluster.

" Data Sockets: for data transmission if the underlying stream processing engine

does not support distributed execution.

An individual module decodes deployment messages from a central module, and

re-constructs a DAG of stream processing operators executable on underlying stream

processing engines through unified API interfaces. We will show how these interfaces

work by two cases in Appendix A. An individual module monitors local machine and

network conditions through a resource monitor. The monitor periodically samples

CPU and network link usages and sends updates to central module through the mes-

senger unit. A data socket unit is necessary when the underlying stream processing

system does not support distributed communication, like Wavescope [28]. In that

case, input and output data is redirected to the data socket unit.

35

36

Chapter 3

Cost Model

Before introducing SPRAWL optimization and placement algorithms, we first present

the cost model these algorithms are based on. The SPRAWL cost model captures the

total execution "cost" of a particular placement of operators on a network of nodes. It

is used to measure the overall quality of a particular placement of operators. The goal

of SPRAWL is thus to generate a minimum cost plan and placement. In this chapter,

we define a specific cost function, called the Network Resource Cost Function, used

by default in SPRAWL and suggest cost estimation methods. We note, however, that

SPRAWL is suitable to support a family of cost functions and allows users to write

their own cost objectives, as we will show later in Section 4.4.3.

3.1 Cost Objective

Cost objectives need to capture a trade-off between the quality of service (QoS)

delivered to end users and the operational costs of the service. From an end user's

perspective, the service provider should

9 correctly deliver results of user subscriptions, and

e deliver results within a certain latency.

Users in financial and news data services are willing to pay more for lower latency.

If the query latency is longer than a user wants, he may be unhappy and stop using

37

the service. Of course, minimizing query latency can be one of the cost objectives,

but latency lower than certain thresholds may make no difference for users. Hence,

we decide to set query latency as a constraint for the cost objectives.

From a service provider's perspective, SPRAWL is designed to

" minimize the overall usage of network resources (CPU and bandwidth), and

" deliver results with low latency for the majority of end users.

In this way, SPRAWL can satisfy most user requirements while simultaneously

supporting as many queries as possible. The Network Resource Cost Function is

designed based on these criteria.

3.2 Network Resource Cost Function

The Network Resource Cost Function is modeled as a combination of multiple net-

work resource criteria. Specifically, we define the Network Resource Cost Function as

follows:

Min {EwPU x CPU+,E ww x Lat, x BW }
X i W (3.1)

Such that, CPU, CPU, BW BW and Latq Lq

The cost model consists of two sub-expressions: the left models CPU cost (CPUCost

for short), and the right bandwidth and latency cost (BWCost for short). Here, x

denotes a placement of operators throughout the network.

Although the Network Resource Cost Function is designed based on network re-

sources, it also tends to generate query placements with low-latency. Latency depends

on a variety of network features, including network congestion, computational load,

and the aggregate latency in the overlay network between sources, routers, and sinks.

In SPRAWL, we mainly consider three features:

1. network congestion - related to network bandwidth consumption.

2. node load - related to CPU usage.

38

3. path latency - related to latency of each link in the routing path and the

number of hops.

Network traffic will delay network transmission, increasing latency. For the same

reason, over-loading a machine may delay data processing, also leading to longer

latency. Last but not least, longer routing paths also introduce delays. The Network

resource cost function guarantees no network nodes or links are over-loaded by en-

forcing CPU and bandwidth constraints. In addition, SPRAWL always picks up the

shortest latency path suggested by border nodes (having routing information).

3.2.1 CPUCost

E wCPU x CPU measures compute costs. CPU indicates the total CPU usage on

network Nodej, which is the sum of the CPU usage for each operator placed on Nodej.

WCPU is the weighted cost of each unit of CPU computation on Nodes. This value may

vary depending on the type of machines available in the network (e.g., different sized

Amazon EC2 instances), and may also vary as a node becomes more or less loaded

to encourage the movement of computation between network nodes. For instance, if

Nodej is already heavily loaded, we can increase wcpu so that the cost to use this

node for new subscriptions is relatively high.

3.2.2 BWCost

Similarly, 3 Z wE w x Latj x BWj measures network costs. w1W is the weighted

cost of each unit of bandwidth on network Linkj. The price for transmitting data

over different networks may be hugely variable (e.g., on Amazon Web Services, wide

area bandwidth may cost as much as $0.18/GB, while intra-data center bandwidth

is essentially free). Increasing the weight cost (price) of bandwidth can also move

communication to other links to avoid network congestion.

Latj denotes the latency of Linkj. BWj denotes the sum of bandwidth con-

sumption for each operator transmitting data over Link. Latj x BW measures the

saturation of Linkj. It increases if the latency or bandwidth consumption of Link,

39

increases. Of course, the cost functions can also be a simple weighted sum of latency

and bandwidth, rather than a product. We choose product instead of sum in this

dissertation in keeping with previous research [10, 47] that used a similar methodology.

Finally, #3 is a parameter to vary the relative weight of CPUCost and BWCost.

3.2.3 Constraints

CPU, CPU1 is a CPU constraint to ensure Nodei's CPU usage does not exceed its

capacity, BWj BW is a bandwidth constraint to ensure that Link, is not saturated,

and Latq ! Lq is a latency constraint to keep the latency of a query q within a user's

specified latency requirement Lq.

3.3 Cost Estimates

In this section, we discuss how to estimate the parameters in Formula 3.1.

3.3.1 BWCost Estimates

Latj can be estimated and updated easily by periodically pinging between pairs of

network nodes. If needed more sophisticated network measurement techniques could

be employed, e.g. Vivaldi [20].

BW can be estimated by measuring each source's data rate and each operator's

selectivity, using standard database cost estimates. For example, the output band-

width consumed by a filter with selectivity s and input data rate R tuples/s is R * B * s

bytes/s, where B is the bytes used by each input tuple.

PW is the weighted unit cost for bandwidth, which is a provider-dependent value.

For example, in Amazon EC2, data transmission between different AWS regions costs

$0.02/GB for first 1 GB of data, and $0.18/GB up to 10 TB every month. We will

also show how we experimentally determine this weight in Section 6.5.2.

40

3.3.2 CPUCost Estimates

CPU is more complicated, because it depends not only on the data and logical

query, but also on the query operator implementation. Much of the previous research

on network-aware stream processing [10, 47, 41] has excluded CPU cost and CPU

constraints due to either methodological limitations or to simplify the optimization

formulation. This may be reasonable when running queries with light computation

demands. However, in other cases, CPU cost does matter. Specifically, many clouds

consist of commodity machines and service providers charge for machines by hour.

For example, an Amazon EC2 M3.Xlarge machine (64-bit 4 Core, 3.25 units each

core, 13 units in total and 15 GB Memory) costs $0.500/hour. The SPRAWL cost

model uses the percentage of a machine's CPU used when running an operator to

measure the operator's CPU usage. This method is easy to model and extend if an

operator's input and output data rates are known. w"U' is the weighted unit cost

for CPU, and can be set similarly in the way w is set.

3.3.3 3 Estimates

Finally, we need to decide # in Formula 3.1. / is the relative weight of CPUCost

and BWCost, varying in different networks and stream processing systems. Users

need to profile their own / value based on network conditions and stream processing

systems they are using. SPRAWL provides profiling benchmarks to help users choose

their own / value.

SPRAWL profiles / based on dollars spent. Suppose we pay $CPU to reserve a

machine for a period of time, and $BW to transmit 1 unit of data through the network

($CPU and $Bw can be quoted easily from cloud providers). Suppose that during a

certain period of time, the total amount of data transmitted through network is G.

We then get:

CPUCost $CPU (3.2)

3x BWCost $BWx G

41

The left side of Formula 3.2 is the cost calculated from Formula 3.1, and the right

side of Formula 3.2 is the corresponding US dollars paid. We say CPUCost and

BWCost is equivalent if the same amount of money is paid for computation and for

data transmission. Hence,

CPUCost _ $CPU
OxBWCost $BWxG

(3.3)

_ $BWxGxCPUCost
$Cpu x BWCost

3.3.4 Example / Estimation Benchmark

NodeO Nodel

OI erator
Sending Data

Figure 3-1: Example / Estimation Benchmark

Figure 3-1 illustrates an example benchmark setting for / estimation. We run

simple source -+ filter queries on network Nodeo and Node1 , with sources configured

to produce random data at a maximum rate. The price to reserve a machine for a

period of time is $cpu. During the period of time, the source - filter queries send

G GB of data between Nodeo and Node1. The price to transmit 1 GB of data between

Nodeo and Node1 is $BW. So, we can estimate /3 easily according to Equation 3.3:

$BWxGx(CPUCosto+CPUCosti) (3.4)
($Cpuo+$cpul) x BWCosto,1

42

CPUCost is measured as the percentage of CPU units used. Assume the source -4

filter queries use po% and p1% CPU capacity of Nodeo and Node1 respectively, then

_ $BwxGx(po%+p1%)
2$cpuxBWCosto,1 (3.5)

The remaining job is to calculate BWCost between Nodeo and Node1 :

BWCostO,1 = Lat x BW

= Lat x G/time
(3.6)

Finally,

= $BW xtiMex(pi%+p 2 %)
2$Cp x Lat (3.7)

43

44

Chapter 4

Query Plan Decomposition and

Placement

In this chapter, we consider the problem of placing a query plan (tree) on a physical

network topology. The problem of multi-query plan generation will be discussed

in Chapter 5. Even in the single query case, however, there are an exponential

number of operator placements, since any operator can be placed on any node, and

we have to consider all such possible placements. In this chapter, we show that it

is possible to efficiently compute optimal placements within polynomial time and

memory complexity, and with few network messages.

This chapter is organized as follows: Section 4.1 introduces the SPRAWL decompo-

sition and placement (SPRAWL DP for short) algorithm; Section 4.2 proves optimality

of SPRAWL DP without constraints; Section 4.3 extends SPRAWL DP to include net-

work resource and query constraints; Section 4.4 extends SPRAWL DP to a distributed

version so that SPRAWL can scale to wide-area networks with thousands of network

nodes; finally, Section 4.5 provides an analysis of the time, memory and message

complexities of SPRAWL DP.

45

4.1 SPRAWL Decomposition and Placement Algo-

rithm

The placement problem can be formulated as discrete programming that can be solved

efficiently by algorithms like Non-serial Dynamic Programming (NSDP). NSDP is

a general technique that aims to solve optimization problems in stages, with each

stage calculated from the result of previous stages. SPRAWL employs an NSDP-like

algorithm we call decomposition and placement (DP for short) that is based on the

observation that the total cost of each plan can be accumulated from its sub-plans.

4.1.1 Sub-Plan Cost Accumulation

Execut
Plan

ion
Physical

Node Network

6

3

Figure 4-1: Query 1 Placed onto a Physical Network

Figure 4-1 shows how Query 1 is placed onto a physical network. For notational

purposes, we denote a subtree by its root operator. For example, subtree OP3 in

Figure 4-1 refers to "src 1 -+ op1 -> op3", and subtree Op5 refers to the whole tree. If

a subtree's root operator opi is placed on Nodes, we denote it as the subtree opi on

Nodes. Using the network resource cost function given in Formula 3.1, the cost of the

subtree opi on Nodes is the sum of:

e the total cost of opi's children's subtrees,

46

e the total BWCost from each child to opi, and

e the CPUCost of opi on Nodes.

For example, in Figure 4-1, given that OP3 is on Node1 and Op4 is on Node2 , the

subtree cost of Op5 on Node5 is equal to the sum of:

" Child subtree cost : the subtree cost of OP3 on Node, + the subtree cost of Op4

on Node2

* BW cost: 3 x [w Bw x Lat1,5 x BW(3 ,s) + ww x Lat2 ,5 X BW(4,)]

Here, wPW indicates the unit weight cost to transfer data from Nodej to Nodes,

Lati,, is the latency from Nodej to Nodej, and BW(p,q) indicates the data rate

from opp to OPq.

* CPU cost : the CPU cost to process OP5 on Node5

4.1.2 SPRAWL Decomposition Function

We can write the decomposition function as follows:

OPCosti,, =

Min{ E T(SubCostt, (t) + BWCost,(t),j) + CPUCostj,,}
XEX [a] [b] [c]

where X is the set of all possible node assignments for (4.1)

each operator, T is the set of opi's children, and x(t) is

the physical placement of each child t in T.

OPCostij denotes the optimal subtree cost of the subtree opi on Nodes, SubCostt,x(t)

denotes the subtree cost of opt on Nodex(t), given a assignment x; BWCostx(t),j

represents latency x bandwidth cost (BWCost for short) of sending data from opi's

child opt to opi via network link from Nodex(t) to Nodej; CPUCosti,j stands for CPU

cost (CPUCost for short) of executing opi on Node.

47

4.2 Optimality of SPRAWL DP without Constraints

We first consider the case where there are no bandwidth, CPU, or latency constraints

on network nodes, links or queries, i.e., if the constraint clauses in Formula 3.1 are

not considered. In this case, the decomposition function has an optimal substructure.

4.2.1 Optimal Substructure

Theorem 4.2.1. For a given tree-structured plan with opi on Node, its optimal

subtree placement with cost OPCost ,g must contain an optimal placement of each of

its children's subtrees.

Proof. We prove this by contradiction. Suppose we have an optimal subtree placement

with cost OPCost ,. Consider one of opi's children opt on Node_(t). If opt's subtree

on Node_(t) (with subtree cost SubCostt,x(t)) does not have an optimal cost, we can

replace SubCostt,x(t) with OPCostt,x(t) to get a better solution for OPCostij, since

no constraints apply. This contradicts the fact that OPCost is optimal. E

Hence, in the unconstrained case, SubCostt,x(t) = OPCostt,x(t), and we can rewrite

Equation 4.1 as follows:

oPcostij =

Min{ZtET(OPCostt,X(t) + BWCost(t),j) + CPUCostj} (4.2)
X X[a] [b] [c]

Equation 4.2 indicates OPCost,, can be accumulated using its immediate chil-

dren's optimal subtree cost (Part [a]). Part [b] of Equation 4.2 is the BWCost from

opt to opi via the link from Nodex(t) to Node , which can be estimated easily as long

as we know the output data rate from the child opt to opi. The output data rate can

be estimated based on the plan structure and data source rate. Part [c] represents the

CPUCost of executing opj on Node,, which can also be estimated easily because it

is only related to the number of CPU units needed to process operator opi on Nodej.

48

Without the CPU constraint clauses in Formula 3.1, CPUCost (Part [c]) is inde-

pendent from the rest of Equation 4.2. Hence, Equation 4.2 can be rewritten as:

OPcostij =

Min{Z ET(OPCosttX(t) + BWCost(t),j)}} + CPUCosti,i (4.3)
XEX [a] [b] [c]

Without bandwidth constraint clauses, each of opi's children's optimal subtree

costs plus BWCost (Part[a] + Part [b]) are independent of each other. So we can

further reduce Equation 4.3 to:

OPcostij -

ZtC{ Min(OPCostt,xt) + BWCost(t),,j)} + CPUCstj,(
XEX

Equation 4.4 indicates that OPCostij can be calculated as long as every

child's OPCostt,x(t) is known.We can ensure this property easily by calculating each

OPCostij in a postorder traversal of the query tree to make sure that before calculat-

ing OPCosti,3 , OPCost,x(t) has already been calculated and cached for each of opi's

children opt, on each possible placement of opt in X. This property guarantees the

optimality of the entire query tree placement generated by SPRAWL DP algorithm.

Continuing with the example shown in Figure 4-1, a feasible postorder traversal

of the qeury plan (shown in the left) is "srci, OPI, OP3, src2 , op2, OP4, OP5". When

calculating the optimal subtree cost OPCostOP5 ,j5 of the subtree rooted from OP5 on

each possible network Nodej5 (Node1 ... Node6), OPCostOP,3 3 and OPCostop,4

for each j3, j 4 E (1.. .6) have already been calculated and cached. To calculate each

OPCostOP5 J 5 with j5 E (1...6), we only needs to calculate OP3's (and Op4's) network

position x(op3) that minimizes the optimal subtree cost rooted from OP3 plus band-

width cost BWCostX(OP3)J5 .

4.2.2 Pseudocode for SPRAWL DP Algorithm

The SPRAWL DP algorithm for the unconstrained case is shown in Algorithm 1

(pseudocode). The plan Tree to be deployed and the physical network Net (in-

49

cluding topology and resource information) are input parameters to the algorithm.

The output is an optimal placement of Tree over Net. Algorithm 1 traverses Tree in

postorder, from leaf to root. If the operator is a leaf, the minimal cost to put operator

op on Noden is just the corresponding CPU cost (lines 3 - 6). If an operator op can

not be put on some particular Noden in the network (e.g., source operators may only

be allowed to put on the source nodes), we can make CPUCostop,n = 0) to avoid

executing op on Noden.

Non-leaf operators are considered starting from line 7. OPCost[op][n] is used to

store the minimal cost of the subtree rooted from operator op on Noden. COPT[op][n]

is used to store each of op's children's positions when the minimal cost is reached. This

is used later by deploy (line 20) to recursively lookup each child's optimal placement

when the subtree root's position is determined. Lines 9 - 15 calculates MinC (the

50

Algorithm 1: SPRAWL DP Algorithm with No Constraints
Input: operator plan Tree and physical network Net
Output: optimal placement OPT

1 Initialize two dimensional matrices OPCost, and COPT
2 foreach operator op E Tree (in postorder) do
3 if op is leaf then
4 foreach n E Net do

5 L OPCost[op][n] = CPUCostop,,;

6 L continue;

7 foreach n E Net do
8 OPCost[op][n] = CPUCostop,n; COPT[op][n] = 0;
9 foreach c C children of op do

10 MinC = oc; MinP = -1;
11 foreach k E Net do
12 if MinC > OPCost[c][k] + BWCostk,n then
13 L L MinC OPCost[c][k] + BWCostk,,; MinP k

14 OPCost[op][n]+ MinC;
isert

15 COPT [op] [n] "*- (c, MinP)

16 MinRC = oc; MinRP = -1
17 foreach n E Net do
18 if MinRC > OPCost[root] [n] then
19 L L MinRC = OPCost[root] [n]; MinRP n

20 return deploy(root, MinRP, COPT)

21 def deploy(op, node, COPT):
I insert

22 OPT <- (op, node)
23 if op is leaf then return OPT;;
24 foreach c E children of op do
25 L merge(OPT, deploy(c, COPT[op][node].c, COPT))

26 return OPT

minimal subtree cost plus BWCost) for each child of the current operator op on

Node, under consideration, and records the minimal-cost position of each child as

MinP. Note that OPCost[c] [k] must have already been calculated when op is under

consideration, since the algorithm visits operators in postorder.

After the entire tree has been traversed, all the optimal cost information is

recorded in OPCost, and all the optimal placement information is recorded in COPT.

Lines 16 - 19 uses this information to search for MinRC (the minimal subtree cost

from root) and MinRP (root's optimal position). After fixing the root's optimal

position, we can use information stored in COPT to recursively find the entire tree's

optimal placement, as shown in lines 21 - 26.

4.3 SPRAWL DP with Constraints

When the constraint clauses in Formula 3.1 are considered, Algorithm 1 may no longer

guarantee an optimal solution if any of the constraints is reached. For example, in

Figure 4-1, when considering the placement of op5, it may not be feasible to place

children op3 and op4 on nodes chosen by Algorithm 1 because of the constraint clauses.

Constraints in Formula 3.1 can be categorized into two types: resource constraints

(CPU and bandwidth) and query constraints (latency).

Resource constraints can be checked in each calculation stage. To avoid violating

resource constraints, we can gradually increase the (weight) cost of the resource unit

as the resource becomes scarce or make the resource unavailable when it is fully

consumed. In contrast, latency constraints are query oriented. They cannot be

checked until the entire plan is built. We show how SPRAWL handles these two types

of constraints in this section.

4.3.1 SPRAWL DP with Resource Constraints

To check resource constraints, we maintain an extra ResourceMapi,j to record

the CPU and link bandwidth usage for each subtree rooted from opi on Nodej.

ResourceMapi,j is calculated and accumulated the same way as OPCostij. CPU

51

Algorithm 2: SPRAWL DP Algorithm with Resource Constraints
Input: operator plan Tree and physical network Net
Output: optimal placement OPT

1 Initialize two dimensional matrices OPCost, COPT, and ResourceMap;
2 foreach operator op E Tree (in postorder) do
3 place-OK = false;
4 foreach n E Net do
5 ResourceMap[op] [n].addCPU(n, op);
6 if ResourceMap[op] [n].valid() then

7 L NetC (-n; placeOK = true;

8 if placeOK == false then return null;
9 if op is leaf then

10 foreach n E NetC do
11 L OPCost[op] [n] = CPUCostop,a;

12 L continue;

13 foreach n E NetC do
14 OPCost[op][n] = CPUCostp,,; COPT[op][n] = 0;
15 foreach c E children of op do
16 MinC = oc; MinP = -1; cplaceOK = false;
17 foreach k E Net do
18 if !ResourceMap[c][k].valid() then continue
19 tempRM = ResourceMap[c] [k] + ResourceMap[op] [n];
20 tempRM.addBW(c, k, op,n);
21 if !tempRM.valid() then continue
22 cplace-OK = true;
23 if MinC > OPCost[c] [k] + BWCostk,, then
24 L MinC = OPCost[c] [k] + BWCostk,n; MinP = k

25 if cplace-OK == false then
26 L ResourceMap[op][n].valid = false; break;

insert
27 OPCost[op][n]+ = MinC; COPT[op][n] <- (c, MinP)

ResourceMap[op] [n].add(ResourceMap[c] [MinP]);

_ ResourceMap[op] [n].addBW(c, MinP, op,n);

28 placeOK = false;
29 MinRC = oo; MinRP = -1
30 foreach n E Net do
31 if ResourceMap[root] [n].valid()
32 and MinRC > OPCost [root] [n] then
33 MinRC = OPCost [root] [n]; MinRP =n;

4 L place-OK = true;

35 if placeOK == false then return null;
36 else return deploy(root, MinRP, COPT);

52

and bandwidth resources can be allocated only if the allocation does not violate

resource constraints.

Algorithm 2 shows the pseudocode for SPRAWL DP with resource constraints.

Lines 3 - 8 check whether each Node, can provide enough CPU units for operator op

to run on it. Lines 9 - 12 initialize the cost of leaf operators just as in Algorithm 1.

Non-leaf operators are considered starting from line 13. When calculating operator

op's children's minimal cost position, the corresponding ResourceMap must also be

validated, as shown in line 18 and line 21. If any of operator op's children cannot

be placed because of resource violations (line 25), then op can not be placed on

Node, (line 26). Finally, the ResourceMap of operator op on Node, is updated if

the child's minimal cost position is found (line 27). Lines 28 - 30 look for the optimal

node position for the root of Tree. The function deploy in line 36 is the same as in

Algorithm 1.

Instead of setting hard constraints on resources as we did in Algorithm 2, we can

adjust the weights wcpu and wBW defined in Formula 3.1 to encourage the movement

of computation and network traffic between network nodes and links. If a network

node or link is heavily loaded, we can increase its wCPU or BW. Similarly, we can

decrease wCPU and w BW when nodes or links are underutilized. In reality, machines

don't stop running when their resources are over-utilized but simply become slower.

Network links do not stop transmitting data when they are congested but lead to

longer latency. By making resource constraints soft, we can still achieve optimality.

This does, however, require choosing wcpu and wBW carefully.

4.3.2 SPRAWL DP with Latency Constraints

Latency constraints are different from resource constraints because they are query-

oriented instead of network-oriented. They cannot be checked until the entire plan

is built. For CPU and bandwidth constraints, if a server or a link is saturated, we

can avoid violating constraints by not using the server or link in a later deployment.

However, we can not avoid latency constraints in a similar way since latency continues

to increase as the deployment proceeds. To solve this problem, we pre-allocate a

53

latency bound to each subtree of a query, called latency bound pre-allocation. Before

discussing details of latency bound pre-allocation, we first describe how latency is

calculated within the placement procedure.

Latency Calculation

Latency calculation is based on Equation 4.5, and can be done while SPRAWL DP

traverses the query tree, so no additional pass of tree traversal is needed.

Latq = Max{ Latsub + Latink} - Latproc (4.5)
subeq

Equation 4.5 indicates that the latency of a query tree q is accumulated recur-

sively as the maximum latency of any sub-tree sub of q (Latub) plus the link latency

between the root of sub and the root of q (Latifk), plus the processing latency of

the root of q (Latproc). In most cases, Latproc can be treated as a constant, and is

often negligible, especially with simple operators in wide-area networks where network

latency dominates.

Latency Bound Pre-Allocation

To satisfy latency constraints, we pre-allocate a latency bound to each subtree of a

query q based on q's overall latency constraint. The pre-allocation of latency bounds

must be done carefully. Setting each subtree's latency constraint too tightly could

lead to a bad placement, while setting it too loosely may lead to a placement that

violates q's overall latency constraint. For each subtree op placed on Noden, its

latency bound pre-allocation is set as follows:

Latop,n < Min{Latq - Latn,cient - Latproc} (4.6)
qCQ

As illustrated in Figure 4-2, Latq is the overall query latency requirement,

Latn,cient is the network latency from Noden to the client node Nodecdient on which

query q is delivered, and Latproc is the operator processing time (from op to q's root).

54

.. Node Client
L a tq - L a t C l e n L a tq

Figure 4-2: Latency Bound Pre-Allocation

As above, in most cases, LatP,,oc can be treated as a constant, and is often negligible.

If multiple queries share the same op, the minimal latency bound is chosen.

This latency bound pre-allocation criterion is chosen based on two observations:

1. Every query placement that does not violate the latency constraint and that

places op on Node, must also satisfy the subtree latency requirement Latop,, set

by Equation 4.6. This is because the latency between the node of the subtree

root operator's placement Node, and the node where query results are delivered

Nodecijent is Lat(n,client) leaving a quota of at most Latq - Lattnclent) latency

for the subtree.

2. Subtrees op on Noden that satisfy the subtree latency requirement Latop,, can

obtain at least one latency-valid query placement, simply by putting operators

between op and the query root onto Nodecient.

The two observations ensure the latency criteria set by Equation 4.6 is neither

too tight (every placement that does not violate latency constraints will have already

followed the criteria) nor too loose (at least one placement can be found). Latency

bound pre-allocation can be done at the same time as the SPRAWL DP traverses the

DAG for placement calculation, and does not require an extra traversal of the tree.

Pseudocode for the SPRAWL DP algorithm with latency constraints is shown in

Algorithm 3. Algorithm 3 works for latency constraints by including subtree latency

bound pre-allocation and latency checks in ResorceMap.valid(. Line 28 updates

the latency of the subtree op on Noden to its longest path latency.

55

Algorithm 3: SPRAWL DP Algorithm with Constraints
Input: operator plan Tree and physical network Net
Output: optimal placement OPT

1 Initialize two dimensional matrices OPCost, COPT, and ResourceMap;
2 foreach operator op E Tree (in postorder) do
3 placeOK = false;
4 foreach n E Net do
5 ResourceMap[op][n].addCPU(n, op);
6 ResourceMap[op][n].lat = 0;
7 if ResourceMap[op][n].valid() then

I I insert
8 L NetC (- n; place-OK = true;

9 if place.OK == false then return null;
10 if op is leaf then
11 foreach n E NetC do

12 L OPCost[op][n] = CPUCost,p,,;

13 L continue;

14 foreach n G NetC do
15 OPCost[op][n] = CPUCostop,n ; COPT [op] [n] 0;
16 foreach c C children of op do
17 MinC = oc; MinP = -1; cplaceOK = false;
18 foreach k G Net do
19 if !ResourceMap[c][k].valid() then continue
20 tempRM = ResourceMap[c] [k] + ResourceMap[op] [n]; tempRM.addBW(c, k, op, n);
21 tempRM.lat = ResourceMap[c][k].lat + linklat(k,n) if !tempRM.valid() then

continue ;
22 cplaceOK = true;
23 if MinC > OPCost[c][k] + BWCostk,n then
24 L| MinC = OPCost[c][k] + BWCostk,,; MinP = k

25 if cplace.OK == false then
26 L ResourceMap[op] [n]. valid = false; break;

ins ert
27 OPCost[op][n+ = AiinC; COPT[op][n] - (c, MinP)

ResourceMap[op] [n].add(ResourceMap[c] [MinP]);
ResourceMap[op] [n].addBW(c, MinP, op, n);
templat = ResourceMap[c] [k].lat + linklat(k, n)

28 if ResourceMap[op] [n] lat < templat then
29 L ResourceMap[op][n].lat = templat;

30 placeOK false;
31 MinRC = oc; MinRP = -1
32 foreach n E Net do
33 if ResourceMap[root] [n].valid()
34 and MinRC > OPCost [root] [n] then
35 MinRC = OPCost[root] [n]; MinRP =n;

36 L placeOK = true;

37 if place-OK == false then return null;
38 else return deploy(root, MinRP, COPT);

56

4.4 Distributed SPRAWL DP

The observation that SPRAWL DP divides the query placement problem into subcom-

ponents, which can be solved and combined to arrive at a globally optimal solution

inspires a natural extension to make the SPRAWL DP algorithm distributed: each

central control module works on a subset of the plan, and then collaborates with

other central control modules to determine the final placement.

As shown in Section 2.4.2, queries are registered in the cluster where results are

delivered in SPRAWL. We call this cluster the root cluster for the query. The root

cluster is responsible for partitioning registered queries into sub-queries, and deciding

which cluster each sub-query should be forwarded to. Figure 2-6 illustrates how

Query 1 is placed in a three-cluster wide-area network. Query 1 is registered with the

EU cluster. The EU control module partitions Query 1 into three sub-plans, placing

the two Avg sub-plans in the US and Asia clusters, respectively, and keeps the Com

sub-plan for itself. We will describe this partitioning problem in Section 4.4.1.

To determine the placement of each operator, each cluster (US, Asia and EU)

applies the SPRAWL DP algorithm on its assigned sub-plans in parallel. The results

of the computation on the US and Asia clusters are sent to the parent (root) cluster

(EU), which uses the results of US and Asia to determine the optimal placement of

its own operators, and to report back to the child US and Asia clusters the final

placement they should use. The details of this algorithm are given in Section 4.4.2.

4.4.1 Query DAG Partition and Assignment

We start with discussing how plans are partitioned and assigned. Distributed

SPRAWL DP is designed for wide-area networks where data transmission through

wide-area links is costly. Hence our goal is to minimize wide-area bandwidth con-

sumed. The DAG partitioning and assignment problem is similar to the discrete

programming problem discussed in Section 4.2, with operators assigned to clusters

instead of individual network nodes. Hence, we can design the objective function as

57

follows:

Min {ZEwfW x BWj } (4.7)
P

Formula 4.7 minimizes the overall bandwidth sent through wide-area data links.

p denotes a partition of operators over all clusters, BWj stands for the sum of band-

width consumption for each operator transmitting data over wide-area Linkj, and

WBW is the weighted cost of each unit of bandwidth on Linkj. The partitioning

problem with cost objective Formula 4.7 can be solved using a DP algorithm similar

to Algorithm 1. If desired, SPRAWL also allows users to write their own cost objectives

in unconstrained cases, as we will discuss in Section 4.4.3.

Wide-area network structures can be modeled by a Transit-Stub model [61], where

clusters are connected via a network of border nodes as discussed in Section 2.2. The

border nodes route data from inside the cluster to the wide-area Internet, and from

the wide-area Internet into the cluster. Hence, the control module in each cluster

only needs knowledge of its border nodes to compute partitioning, and does not need

global information of the whole network.

4.4.2 SPRAWL Distributed DP Algorithm

After a query plan is partitioned and sub-plans are assigned to clusters, the distributed

placement process can begin.

Consider a sub-plan S with its root operator r placed on a child cluster C, with

an edge to an operator o in its parent cluster P. To calculate OPCOSt,k for Nodek in

cluster P, the central control module in P needs to know OPCost,j for each Node,

in cluster C as well as the cost to transmit data from r to o, that is BWCost(,,o), as

shown in Formula, 4.8:

OPCOStO --

Min{ Ero.chidren((OPCost,j + BWCost(rO)) + CPUCOStok } (4.8)

for each Node E r.cluster()

In distributed SPRAWL, BWCost,,o) from operator r to operator o can be divided

58

into three parts: BWCost from r on Nodej to the border node in C, between the

border node of C and P, and from the border node of P to o on Nodek. The first

part of this BWCost will be added to OPCostr, (denoted as OPCost' j) and sent to

cluster P. All of these quantities can be computed locally by the central module of

C simply by running Algorithm 1 (or Algorithm 3) on S. Hence, the message sent

to P is an array of OPCost' for each Nodej in cluster C, indicating the optimal

subtree costs of placing S at each Nodej in C. This process continues upward until

the root cluster collects all the messages from its child clusters. The root cluster then

sends the placement decision back to each of its child clusters, which in turn send

placement decisions to their children, and so on.

The message sent back to each child C includes the node information where C's

sub-plan should be rooted. This backward process is similar to the deploy() function

in Algorithm 1. The deployment process is completed when each child cluster receives

the decision made by its parent cluster.

Resource constraint checking and latency bound pre-allocation can be done sim-

ilarly as described in Section 4.3. Again, the central control module in each cluster

only needs to know the local sub-plan and networks within the cluster and does not

need any global information.

4.4.3 User-Defined Cost Objectives

The SPRAWL DP algorithm decomposes the placement problem into stages,with costs

calculated (lines 12 - 13 in Algorithm 1) and accumulated (line 14) in each stage.

SPRAWL allows users to define cost objectives by writing their own Calculate and

Accumulate functions. SPRAWL implements a template for users to instantiate (line

5), calculate and accumulate OPCost, and provides APIs to access CPU, bandwidth

and latency estimates in unconstrained cases.

As an example, if we want to apply SPRAWL DP to the cost objective shown in

Formula 4.7, we should initiate OPCost = 0 since no CPU cost is considered, and

keep the rest of the algorithm unchanged, except that BWCost calculation should be

adjusted accordingly. Users must be careful when designing cost objectives to make

59

sure their cost objectives still have optimal substructure.

4.5 Complexity Analysis

In this section, we analyze time, memory and network message complexity of SPRAWL

DP with and without constraints as well as the distributed SPRAWL DP.

4.5.1 Time Complexity

The time complexity of SPRAWL DP without constraints (Algorithm 1) and with

constraints (Algorithm 3) are bounded by the four loops (lines 2 - 11 in Algorithm 1,

lines 2 - 18 in Algorithm 3). The third loop (line 9 in Algorithm 1, line 16 in

Algorithm 3) is negligible because, although arbitrary size queries are allowed, the

number of children each operator has is limited. This is true because machines can

not handle an unlimited number of input or output sockets. Hence, the entire time

complexity is bounded by O(MN 2), where M is the number of the operators in a

query plan and N is the number of physical nodes in a network. SPRAWL has better

time complexity than Min-Cut [41] (O(N3)) in large networks since M is much smaller

than N in such cases.

For the distributed SPRAWL DP algorithm, the time complexity is &J(c * MSN2)

where c is the number of clusters which can be considered as a constant, M, is the

average number of operators in each sub-plan and Nc is the average number of nodes

in each cluster. Although the upper bound is still O(MN 2), distributed SPRAWL DP

works much better in reality because it divides the wide-area network into smaller

clusters, and allows computation in parallel within these clusters.

4.5.2 Memory Complexity

The memory complexity of SPRAWL DP with no constraints (Algorithm 1) is re-

lated to two matrices OPCost and COPT. The memory complexity for OPCost

is E(MN), and O(MN) for COPT. Hence, the total memory complexity of the

60

algorithm is bounded by O(MN).

SPRAWL DP with constraints (Algorithm 3) has one more data structure

ResourceMap. ResourceMap is with 0(MN) memory complexity, so the total mem-

ory complexity is still bounded by O(MN).

The memory complexity of distributed SPRAWL DP is bounded by O(MNc). The

message complexity is negligible, as will be shown in the next section.

4.5.3 Message Complexity

For centralized SPRAWL DP, messages are sent between the central control module and

each individual module. The central control module sends sub-plan configurations to

each corresponding individual module, with message format similar to the API code

shown in Appendix A. The overall number of messages sent from the central module

to individual modules is bounded by O(M) per query. Each individual module sends

machine and network resource updates to the central module after each sub-plan is

deployed. Hence the number of network resource update messages is also bounded

by O(M).

Besides the messages sent between central modules and individual modules, dis-

tributed SPRAWL DP sends additional messages between central modules in different

clusters. The number of messages sent between clusters is equal to the number of sub-

plans the query DAG is partitioned into, which is bounded by the number of clusters

c. The message sent from a child cluster to a parent cluster consists of an array of

costs, one for each Nodej in the child cluster, which is around O(Nc) bytes. N, is

normally smaller than 1000, so the size of each message is less than 1KB, and can

be implemented efficiently via RPCs. The message sent back from a parent cluster

to a child cluster is a single id number that is used to identify the sub-plan root's

placement. Hence, the overall message cost is negligible.

61

62

Chapter 5

Multi-Query Plan Generation

In Chapter 4, we addressed the problem of operator placement assuming a query

DAG (tree) is given. In this chapter, we show how query DAGs are constructed for

multiple concurrent queries.

Previous work [31, 30, 50] in database research on multi-query sharing focused

mainly on sharing operator processing and reusing intermediate results, since data

transmission between operators (except for disk I/O) is not costly in traditional local-

area/single-node databases. However, in a wide-area streaming scenario, saving band-

width is critically important. Because of this, our sharing strategy is oriented around

sharing data transmission (reducing bandwidth consumption), rather than just shar-

ing operators. This is significant because it means that even if operators share no

computation, they can still share data (tuples) sent over the network, if they operate

on the same input streams. Of the related distributed stream processing systems,

SQPR [37] also shares streams between operators. However, it uses a mixed integer

linear program (MILP) solver, which is not scalable as the number of operators per

query and the network size increase.

5.1 Definitions

Before introducing the SPRAWL multi-query sharing strategy, we introduce a few

definitions (similar to those in [50], but modified to be data oriented):

63

Definition 1. An operator oi is covered by operator oj (o == oj) iff o's result is a

subset of oj 's result.

Definition 2. An operator oi is equivalent to operator oj (o, - oj) iff o = oj and

oj * oi.

From the definitions given above, we can easily derive two more properties:

Property 1. If operator oi = oj and operator pi j P, then oi A pi e oj A p

Property 2. If operator oi e oj and operator pi p, then oi V pi oj V pj

Here, A and V represent AND and OR, respectively.

5.2 Multi-Query Sharing Strategy

As mentioned in Chapter 2.3, queries are input as directed acyclic graphs (DAGs) of

operators. The SPRAWL multi-query sharing strategy identifies sharing opportunities

between these DAGs in three steps:

1. SPRAWL uses standard optimization techniques (e.g., a Selinger-style opti-

mizer [49]) to locally optimize these DAGs.

2. SPRAWL identifies operators with the same inputs that perform the same com-

putation in these locally optimized DAGs, and merges them together.

3. SPRAWL identifies opportunities to reuse existing data links.

Steps 1 and 2 are either well-known or straightforward [18, 43], so we focus here

on Step 3. Step 3 enables a data-oriented sharing strategy. It not only captures

operators that have shared computation, but also avoids disseminating unnecessary

copies of data even when operators don't perform shareable computation.

64

Figure 5-1a shows two locally optimal example plans for two join queries. As-

suming the left plan is currently running in SPRAWL, and the right plan is newly

inserted, we show how SPRAWL can merge the right plan into the left, and how the

corresponding costs are updated so that the SPRAWL DP algorithm can work with

the SPRAWL sharing strategy.

S1.id=s2.id

31

price
>40 Fl

A

vol>20

F2

S1 S2

S1.id=s2Jd

J2

J3

price F3
>50 A

S1

F4 voi>io
AN

S3 S2

(a) Two Locally Optimal Query Plans

vol>20

F2

price F3
>50 A

Sl.id=s2.id

32

33

S3

S1

(b) Merging the Right Plan with the Left

Figure 5-1: SPRAWL Multi-Query Sharing Strategy

5.2.1 Covered and Equivalent Operators Identification

First, SPRAWL finds all the covered and equivalent operators in these two plans. This

can be done using a bottom-up search for common subexpressions, similar to what is

65

Sl.id=s2.id

price
>40 F1

F4 vo>10

S2

done in prior work on finding subexpressions [25, 40, 48].

In our example, F3 > F1, so we can add an edge from F1 to F3 and remove

F3's original input S1, as shown in Figure 5-1b. Also notice that F2 #4 F4, but F2

from the left plan has already been deployed. Hence, adding an edge from F4 to F2

must not affect the placement of either F2 or F4, since we do not want interfere with

existing running plans.

5.2.2 Cost Adjustment

Second, we identify all data links that carry the same data, shown as orange and

green flower markers in Figure 5-1b, and adjust the costs of these shared data links

so the SPRAWL DP algorithm can perform placement properly.

For example, when calculating OPCoStF3,J, operator F3's input can come from F1

as shown in the figure, but could also be provided by J1 or S1. Thus, F3's bandwidth

cost should be updated to Min{BWCost(F1,F3), BWCost(J1,F3), BWCost(S1,F3)}

where BWCost(ij,) denotes the bandwidth cost to transmit output of opi to opj. The

amount of data sent between operator (Fl, F3) and (Ji, F3) is equal to the size of

output of F1, and that between (Si, F3) is the amount of source data produced by

S1. Note that if F3 is placed on the same Nodej as F1 or J1, then BWCOStF 3,j = 0,

since the BWCost to put F3 on Nodej has already been "paid" by F1 or J1. This

indicates OPCoStF3,J = CPUCOStF 3,J in this case. Furthermore, since F3 shares

some of the computation from F1 (price < 40 already been filtered out) if F3 uses

Fl's output as input, CPUCOStF 3J should also be adjusted accordingly; specifically,

if F3 = F1, then CPUCostF 3 , j 0.

As a second example, consider OPCOStF 4,j. Here, operator F4 can

get input data from S2 or F2, so the bandwidth cost is updated to

Min{BWCost(S2 ,F4), BWCost(F2 ,F4)}. If F4 is placed on the same Nodej as F2,

BWCostF4,J = 0 because of link sharing.

66

5.2.3 Operator Placement

After CPUCosts and BWCosts are adjusted according to the query sharing strate-

gies introduced above, the SPRAWL DP algorithm can be applied to complete the

placement process. In Figure 5-1b, rectangles in gray represent pre-existing oper-

ators, ovals stand for sources, and blue rectangles are new operators to be placed.

The SPRAWL DP algorithm traverses these blue rectangle operators in postorder and

computes an optimal placement for them, as described in Chapter 4.

5.2.4 Plan Reordering

Note that the right plan with three joins in Figure 5-1a may not be the best single-

node plan for merging with the left plan since J1 and J2 have the same join predicate,

and have input data from the same source. Currently, SPRAWL only shares operator

computations if they have covered or equivalent relations. So, if F3 F1, F4 > F2,

and thus J2 => J1, we decide to share the computation of J1 and J2. In the case when

we decide to share J1 and J2, the right plan p of Figure 5-la needs to be reordered

to p/: join J2 first, and then J3. We then apply SPRAWL placement algorithm to

both p and p/, and pick up the one having smaller optimal operator placement cost.

5.2.5 Distributed SPRAWL Multi-Query Sharing Strategy

The SPRAWL sharing strategies can also work in a distributed setting. For each input

DAG, its root cluster's central control module first applies SPRAWL sharing strategies

on it, and then partitions the generated shared plan. Other peer clusters only need to

apply SPRAWL sharing strategies on the sub-plans assigned to them, in the same way

they deal with normal input DAGs. Neither the root cluster nor any peer clusters

needs global information.

67

5.2.6 SPRAWL Multi-Query Plan Generation and Placement

Summarization

In summary, a central control module applies SPRAWL multi-query sharing and place-

ment strategies following four steps:

1. Find all the covered and equivalent relations from the newly subscribed query's

locally optimal plan p with all existing plans in the deployed network. Add or

remove data links between them if necessary.

2. If there are join covered or equivalent relations, p needs to be reordered to p/

so that join computation can be shared.

3. Mark all data links that send the same copy of data, and adjust CPUCost,

BWCost and OPCost accordingly.

4. Apply SPRAWL DP algorithm to p (and p/ if generated in step 2), and pick the

optimal placement.

5.3 Multi-Output Plans

SPRAWL DP algorithm calculates OPCost[op] [n] during a postorder traversal of a tree

plan, and decides the optimal placement in a top-down fashion once the root's optimal

position is determined. However, if a plan has multi-output operators, Algorithm 1

- 3 can no longer be applied directly. Multi-output plans arise when several queries

share an operator after the SPRAWL multi-query sharing strategy is applied. Such

queries have to split results from a shared operator somewhere in the plan, leading

to a multi-output structure.

The left side of Figure 5-2 shows an example of a multi-output plan. User 1 and

user 2 share the join operator, and then split the outputs after the join. Hence,

there are two roots delivering results in the direction of data flow in this DAG: user1

and user2. If we traverse this DAG in postorder just as in Algorithm 1 - 3, both

68

Figure 5-2: Example of Multi-Output Plans

OPCost[user] [*] and OPCost[user2][*] depend on the position of split, where *

indicates any physical network node. If OPCost[user1] [*] and OPCost[user2][*]

choose a different placement for split, then we need a way to decide which position

should be chosen for split. In addition it is possible neither of these is an optimal

choice.

5.3.1 Naive Solution

An intuitive solution based on Algorithm 1 - 3 is to consider user1 and user2 together,

as follows:

OPCost(ui,i)(2,j)=

Min{1 PCostsplit,, (split) + BWCostx (split),i + BWCostx(,pult)j, (5.1)
xEX

+ CPUCostul,i + CPUCostu2,j}

where OPCost(ul,i)(u2,j) stands for the optimal sub-DAG cost when user1 is on nodel

and user2 is on nodej. OPCOSt(uli)(u2,j) is composite of:

* the optimal sub-DAG cost rooted from split,

* BWCost from split to Node and Nodej, and

" CPUCost of user1 on Node and user2 on Nodej.

69

However, this naive solution has two limitations:

1. The complexity of this solution is exponential as the number of users U sharing

the same operator goes up: O(NU). This is because we need to consider each

user's possible physical position together as in Equation 5.4.

2. If the outputs of user1 and user2 in Figure 5-2 are further shared and split, it

is difficult to decide the set of operators that should be considered together.

5.3.2 Undirected Graph Solution

We develop an undirected graph solution to the multi-output plan problem based on

the observation that the cost accumulation (subgraph -+ entire graph) is independent

of the direction of data flow. The direction of data flow only affects the cost calculation

of each edge (wfw may be different in different directions) and latency accumulation

(we need direction information to calculate latency). Once the cost is calculated, it

does not matter which direction the cost is accumulated from. Hence, we do not need

to consider the data flow direction when accumulating the cost of the plan, as shown

on the right side of Figure 5-2. This plan is an undirected graph and any node can

be picked up as the unique root (e.g., useri or user2). The SPRAWL DP can work

on this undirected graph after picking a root and traverse the undirected graph in a

postorder, as long as remembering the edge direction for purposes of cost and latency

calculation.

5.3.3 Undirected Graph with Different Roots

Now a new question arises as we have several possible choices of root: will an undi-

rected graph with different roots end up with the same optimal subtree cost'? Figure 5-

3 shows two corresponding undirected trees of the query DAG in Figure 5-2. On the

left side is a tree rooted from user2, and on the right side is a tree rooted from split.

We claim that OPCostuser2 = OPCostsPlt in unconstrained cases, where OPCost

means the optimal subtree cost rooted from opi with opi as the entire tree root.

70

Figure 5-3: Multi-Output Plan with Different Roots

Theorem 5.3.1. Suppose T and T2 are two undirected query trees derived from an

acyclic DAG plan T, rooted at operators r1 and r2, respectively. Then OPCostr =

OPCostr2 in unconstrained cases, where OPCost' is the cost of the optimal subtree

rooted at opi with op, as the entire tree root.

Proof. We prove this by contradiction. Suppose the theorem is not true; e.g.,

that (without loss of generality) OPCostr, > OPCostr2 . Setting r2 as root,

and using Algorithm 1, we can find an optimal placement x for each operator:

{x(1), x(2), ... , x(ri), ... , x(r2)}, with total cost equal to OPCoStr2 . According to the

cost function, Formula 3.1, the total cost of a placement is just the sum of CPUCost

and BWCost. Thus, given a placement x, the total cost of the placement will be the

same, no matter what order costs are accumulated in.

Now, suppose we use the same placement configuration x on each operator, but

calculate and accumulate cost in the order that results from setting r1 as the root

(in postorder just as line 2 in Algorithm 1). Because the order in which we add up

the costs does not affect the overall sum, we will get Costrl(x) = OPCostr2, where

Costri (x) stands for the cost of the subtree rooted at r1 with r, as the entire tree

root, given the placement x. Since OPCostrl > OPCostr2 , this means OPCost" >

Costri (x), which contradicts the fact that OPCostr is the optimal subtree cost rooted

at rl, with r1 as the entire tree root. E

71

5.3.4 Undirected Graph Solution with Postponed Latency

Calculation

Latency calculation is sensitive to the choice of root. For example, in Figure 5-3,

choosing user2 versus split as the root will affect how latency is accumulated. As

discussed in Chapter 4.3.2, in a tree-based plan, the latency of a subtree rooted from

op placed on Node, is calculated as:

Lat,n = Max{Latt,Mufp + LatAinnp} (5.2)
t

where t iterates through the set of children of op, NodeMinP is the minimal-cost

network node for t's position calculated by line 13 in Algorithm 1, and LatMinPn is

the latency between NodeMisp and Noden.

In the example, Formula 5.2 indicates the latency of the subtree user1 in the right

plan should be 0 because it is a leaf (and has no children). However, the real latency

of the query rooted on user1 is the latency of the subtree split plus the latency

between user1 and split. We can address this problem by storing the direction of

data flow from the original DAG, and postponing latency calculation. When the

SPRAWL DP visits the operator split, it notices split has a child whose direction of

data flow is different from the traversal order. It must then return to user1 (and

user2) to re-update the latency estimate for user1 (and user2).

Postponed Latency Calculation

The latency calculation problem arises when a query root r is different from the

root rsp chosen for SPRAWL DP traversal, in which case some of the edge (data flow)

directions are different from the direction of traversal order. We solve this problem by

postponing latency calculation for operators with the opposite direction until SPRAWL

DP reaching rSP.

Figure 5-4 shows how postponed latency calculation works. The query plan is the

same as that in Figure 5-2, but using split (left) and filter2 (right) as the traversal

72

of Postponed Latency Calculation

root rSP respectively. Subtrees with edges whose data flow direction is different than

the cost accumulation direction are shown in gray.

For the left DAG, SPRAWL DP processes the subtree rooted from join as usual

since each edge in the subtree rooted from join agrees with the SPRAWL DP traversal

direction. In contrast, user1 and user2's latency calculations are postponed till root

split is reached by SPRAWL DP because they are connected to edges with opposite

direction. After split is reached, user1 and user2's latencies are updated as follows :

L ats,it

Latu1

Latu2

- Latjoin+ Lat oinsplit)

= Latpist + Latspist,u12)

= Latsplit + Lat(split,u2)

(5.3)

where LatO stands for the latency of the subtree rooted from operator op, and

Lat(op, OP2) stands for the latency between operator op, and oP2.

As a more complicated example, the right DAG of Figure 5-4 chooses filter2 as

the traversal root. Similarly, SPRAWL DP processes the blue subtrees as before. Gray

operators' latency calculation is delayed until the root filter2 is reached. After that,

gray operators' latencies are updated backwards as follows:

73

Figure 5-4: Illustration

Latfilter2 = Latsrc2 + Lat(src2,filter2)

Lat oin = Max { Latfilterl + Lat (filterjoin),

Latfilter2 + Lat(filter2,join) }(54)

Latsplit =Latjoin + L attjoin,split)

Lat,1 = Latsplit + Lattsplitul)

Latu2 Latspijt + Lat(split,u2)

5.4 Query Adaptation

The SPRAWL DP Algorithms discussed in Chapter 4 and the multi-query sharing

strategies introduced in this chapter can initiate an (near) optimal placement on

wide-area networks. However, as new queries are added/deleted, the existing query

deployment over the network may not be suitable any more. We can re-optimize the

deployment by applying SPDP algorithms on the existing queries. However, when

and how often to initiate the re-optimization are difficult to decide, and we leave these

problems to future work.

In addition, varied input data rates and link bandwidth availability may lead to

violation of network/latency constraints, and network topology changes may cause

existing routing paths and network nodes to become unavailable. Hence we need to

fix the constraint violation issues in such situations. We will discuss the solution in

Section 5.4.1.

5.4.1 Fixing Constraint Violation

In Formula 3.1, the network constraints are calculated based on the estimated average

input data rates. However, input data rates may vary to a great extent with time.

If the input data rate is higher than expected at some point, some of the bandwidth

constraints may not hold any more, and the corresponding network links may be-

come bottlenecks. Similarly, as the network topology changes or network node/link

availability varies, the original placement may not work any more.

One solution is to re-optimize the existing queries based on the new statistics

74

and re-deploy them. However, re-optimization of the entire query plan is very costly.

Hence, SPRAWL only re-optimizes the operators and data links that violate the con-

straints.

Based on feedback it receives from individual modules, the central module of

each cluster periodically identifies operators and data links that violate network con-

straints, removes the violated operators and data links from existing query plans, and

re-deploys the removed parts using SPDP algorithms discussed in previous chapters.

We can also use this method to deal with network link or node failures.

5.5 Query Deletion

Deleting a query from the network is a little tricky in SPRAWL. Since Queries share

operator computation and data transmission amongst each other, operators and data

links can only retire after the last query uses the operators (or links) is unsubscribed.

We define a query uses an operator if the query gets data from the operator. As an

example, if the left query in Figure 5-1a stops running, J1 and F2 can be marked as

deleted, while F1 can not because the right query in Figure 5-la uses data from F1

in the shared plan. If an operator can not retire, all the operators that have a data

flow path connecting to the operator can not retire either.

Hence, the query deleting process starts from the root operator in a pre-order

traversal of the query plan (top-down). If the visiting operator is not shared by other

queries, we can mark the operator as deleted and continues to its children. Otherwise,

the entire subtree rooted from the visiting operator can not be deleted.

75

76

Chapter 6

Experiments

In this chapter, we describe experiments we performed to evaluate three aspects of

SPRAWL:

1. The effectiveness of the SPRAWL DP algorithm and multi-query sharing tech-

niques in a real world setting, in terms of its ability to optimize system perfor-

mance, resource usage, and cost (in dollars).

2. The efficiency and effectiveness of the SPRAWL DP algorithm for complex

queries in very large (wide-area) networks.

3. How close to optimal the SPRAWL DP algorithm can be when constraints are

reached.

Key takeaways of our experiments include:

1. The SPRAWL DP algorithm can reduce real-world (dollar) costs versus a random

deployment strategy by a factor of 5 or more, when considering deployments on

wide-area Amazon AWS networks.

2. The SPRAWL cost model accurately predicts the dollar cost of SPRAWL deploy-

ments.

3. Versus previous systems that perform wide-area operator placement [47],

SPRAWL can perform 2-3x better.

77

4. The SPRAWL distributed DP algorithm performs nearly as well as the SPRAWL

centralized DP algorithm in wide-area networks, and allows SPRAWL to place

complex queries on networks of thousands of nodes in just a few seconds while

the centralized algorithm takes several minutes.

5. In a resource constrained setting, where SPRAWL's DP is not provably optimal,

SPRAWL performs nearly as well as an exhaustive algorithm, while scaling to

much larger networks and more complex queries.

6.1 Experiment Settings

Our first set of experiments was run on Amazon EC2 clusters [2], using M3.Xlarge

(64-bit 4 Core, 3.25 units each core, 13 units in total and 15 GB Memory) instances in

several different "availability zones" around the world (US, Asia, and Europe). The

underlying streaming processing system used in these experiments is ZStream [44], a

stream processing system for efficient composite event pattern matching.

The second set of experiments runs on randomly generated, simulated Transit-

Stub networks generated by GTITM [61]. We configure these networks to be similar

in structure and size to the network settings used in the experimental evaluation of

SBON [47]. SBON is a distributed placement algorithm that uses a relaxation algo-

rithm for placing operators, which we compare directly against below. See Section 6.3

for a more detailed qualitative comparison between SPRAWL and SBON.

The third set of experiments runs on smaller random networks, in order to allow us

to generate an optimal baseline in constrained cases for comparison with an optimal

placement (generated by using an ILP solver or simply exhaustive search). These

optimal algorithms are very slow and cannot scale to larger networks. Simulations

were run on a MacBook Pro, with 2.9 GHz Intel Core i7 Processor and 8 GB memory.

Finally, we share some experiences in Section 6.5 on how cost estimates are chosen,

how throughput and dollars spent relate to the choice of cost estimates, and how to

quantify this relationship based on studies over Amazon EC2 clusters.

We ran queries over stock market data with the schema:

78

stocks : (timestamp, name, volume, price)

We generate synthetic data according to this schema and measure the maximum rate

at which operators can process it. Queries are random combinations of selects, joins

and aggregations; we explicitly vary the mixture and number of operators to control

plan complexity and the amount and degree of operator sharing that is possible.

Details of the structure and complexity of queries are given in individual experiments

below.

The SPRAWL DP algorithm and multi-query sharing strategies are implemented

in Java and complied as a library that can be called externally. Control Modules

(central/individual) are implemented in C++, and run on Linux or MacOS.

6.2 Amazon EC2 Experiment

In our first experiment, we run an end-to-end test on Amazon EC2 clusters to demon-

strate the overall effectiveness and performance of SPRAWL.

6.2.1 Network Settings

The network topology is similar to that shown in Figure 2-la. Data is generated,

transmitted and processed through three EC2 clusters: NA.Virginia, Asia.Singapore

and EU.Ireland. In each cluster, there are 6 network nodes that act as sources (2 in

each cluster), 24 as routers of which 12 can also be sinks (30 nodes in total). Although

this is not a particularly large network, this real-world wide area configuration will

allow us to assess the overall effectiveness of SPRAWL'S cost estimates, DP algorithms

and multi-query sharing strategies, and to measure our ability to minimize real-world

operating costs (like dollars). We evaluate scalability on simulated networks in the

next section.

As described in Section 2.2, nodes within the same cluster are connected by local

links, and nodes between different clusters are connected by wide-area links. These

79

differ in two ways:

1. wide-area links have lower single-link bandwidth capacity than local links, and

2. wide-area links are more expensive (in terms of $/GB data sent) than local

links.

These differences affect the weighted price wBW used in Formula 3.1. We discuss data

links and weighted price estimation in more detail in Section 6.5.

We do not compare with SBON in this experiment because SBON relies on network

node coordinates to map from the cost space to corresponding network nodes, which

likely will not be accurate in the EC2 virtualized environment.

6.2.2 Query Settings

The experiment is run as follows: a new, randomly generated query subscribes to

each cluster every 120 seconds, until 100 queries have been created. Queries are

random combinations of selects and joins that filter on name and price attributes,

and perform equi-joins over name, each with 8-12 operators.

Streams are generated at the maximum rate from all 6 network source nodes.

Source nodes produce data with varying distributions on name and price. We choose

queries such that at least 30% of the queries can be shared. For each shareable query,

it can be shared with at most 15% of the other shareable queries.

6.2.3 Deployment Settings

We experiment with three different deployments:

1. SPDPS uses both SPRAWL DP algorithm and the SPRAWL multi-query sharing

strategy;

2. SPDP only uses the SPRAWL DP algorithm without sharing strategies;

3. Random is a random placement strategy where operators are initially placed on

the source node, then on a router in the cluster of the source, then on a router

80

in the cluster of the destination, and finally on the destination node, where

transitions between these different nodes are randomly chosen.

6.2.4 Output Throughput Performance

Output Throughput Summary (Node ec2-16)
20

- SPDPS

SPDP
216 Random

12

8

4

0
0 200 400 600 800 1000 1200 1400

Time(s)

(a) Output Throughput Summary of Node EC2-16

Throughput Output Throughput Summary (All Sink Nodes)
(MB/s)

250

200

150

100

50

0 200 400 600 800 1000 1200 1400
Time(s)

(b) Output Throughput Summary with all Sink Nodes

Figure 6-1: Output Throughput of Wide Area Experiment

Figure 6-la shows the output throughput of a single sink node, Figure 6-lb shows

the output throughput in aggregate over all sink nodes.The X-axis shows the elapsed

time running of the experiment. Throughput climbs as new queries start, one after

81

the other.

Figure 6-1 indicates that SPDPS placement outperforms the other two placements

significantly, obtaining overall throughput that is roughly 3x SPDP and 5x Random.

We also notice that SPDP performs roughly the same as Random at the beginning,

but outperforms Random significantly after about 70 queries are added to the system.

This is because initially network resources are roughly symmetric, e.g., each machine

has about the same CPU and network capacity and weights. However, after a number

of queries have been added, when some of the machines are more loaded than others,

and data links are at different levels of saturation, the SPRAWL DP algorithm is

better able to make use of available resources, even when no sharing strategy is used.

Overall, SPDP is able to achieve about 1.8x output throughput of Random.

6.2.5 Dollar Cost

SPDPS SPDP Random
$20.85 $98.62 $135.33

Table 6.1: US Dollars Paid for Running 60GB Data

Table 6.1 shows the US dollars we paid for processing all of these queries. We

have 6 source nodes, 10 GB of input data, amounting to about 60 GB total data sent

per query, with 100 queries running in total on AWS. These experiments were run

in AWS during 2011; these costs are dominated by wide-area networking costs (at

the time inter-zone bandwidth cost about $.20/GB). From the table we can see that

SPDPS placement costs 6x fewer dollars in comparison to the Random strategy. We

discuss how our cost model is related to the system performance and to the dollars

paid in detail in Section 6.5.

6.3 SPRAWL on Wide Area Networks

In this section, we compare the centralized and distributed SPRAWL DP algorithm

with our own implementation of the placement algorithm described in the SBON

82

paper [47] on wide area networks.

6.3.1 Network Settings

We simulate the placement algorithms on 5 randomly generated transit-stub networks

with 1550 nodes each. These networks each have 10 transit domains, each with 5

transit nodes. Each transit node has 3 stub domains, each with 10 stub nodes. This

configuration is similar to that used in the original SBON paper [47].

6.3.2 Query Settings

Input queries are random combinations of selects, joins and aggregations of varying

number of operators per query (between 4 and 12). Source and sink operators are

uniformly distributed throughout the 10 clusters. Queries are registered to the cluster

where the results are delivered one by one until the network is slightly saturated (we

describe a test with different levels of network saturation in Section 6.4).

6.3.3 Deployment Settings

We compare against four types of deployment in this experiment:

1. SP-Central is the centralized SPRAWL DP algorithm;

2. SP-Distribute is the distributed SPRAWL DP algorithm;

3. Relaxation is the placement algorithm used in SBON;

4. Random is the same as that in the Amazon EC2 experiment (in Section 6.2).

Relaxation is one of the classic algorithms used to solve discrete optimization

problems. We ran the relaxation algorithm in these experiments until it converged.

For fairness of comparison, we do not employ the SPRAWL multi-query sharing strate-

gies (since SBON employs different multi-query strategies, targeting reusing existing

operators) and adjust our cost objectives to be the same as SBON's, since SBON

does not consider CPU cost, as follows:

83

Min{E wBw x BWj x LatJ}
X i -7(6.1)

such that, CPU, < CPU, BW < BW j, and Latq < Lq

SBON applies the relaxation placement on a virtualized cost space, and then maps

the placement on the cost space onto the real physical network nodes. Since the

real routing path is different from the virtual path in the cost space, it is difficult to

include weights and constraints in the virtual cost space. This is the reason we choose

to stop registering more queries when the network becomes slightly saturated.

6.3.4 Placement Cost on Wide-Area Networks

cos Placement on Wide-Area1000
hSP-Central Netowrks

800 SP-Distribute

Relaxation
6001

a Random

400

200

4-op 6-op 10-op 12-op

Figure 6-2: Cost Per Query on 1550-Node Transit-Stub Networks

Figure 6-2 shows the normalized average placement cost of each query placed by

the four deployments. The cost is calculated based on the adjusted cost objectives

in Formula 6.1. The X axis shows the number of operators in each query. We ensure

that there is at least one join in 4-op and 6-op queries and at least three joins in 10-op

and 12-op queries, because pure single input/output operators are not interesting in

a cost model that only considers bandwidth cost (we can simply put them on one

network node and avoid network transmission as much as possible). Note that the

6-op queries outperform the 4-op queries because both usually have just one join, and

84

the 6-op queries include additional filters. The 12-op queries do better than the 10-op

queries for similar reasons.

Figure 6-2 shows that SP-Distribute can almost always make placement decisions

as well as SP-Central. This is because the cost objectives used for SP-Distribute sub-

plan partitioning are well-suited to the wide-area network (Transit-Stub) structure.

For a random network topology, SP-Distribute may not work as well.

Figure 6-2 also shows that SP Distribute performs 2-3 times better than Relax-

ation, and 2-5 times better than Random. We notice that Relaxation is very sensitive

to the number of edges in a network, as we will discuss more in Section 6.3.7. For

a complete graph, it is only 10% - 15% worse than SP Distribute, but for transit-

stub networks that usually have low edge connectivity, it does not work well. This is

because the mapping from cost space to network nodes is more accurate in a more

highly connected network, and because relaxation has more degrees of freedom when

the network is highly connected.

6.3.5 Similarity of SP-Central & SP-Distribute

Table 6.2: Similarity of SP-Central & SP-Distribute placement

If a query plan is partitioned correctly, SP-Distribute should ideally have the

same placement as SP-Central. Correctly means if a sub-plan is partitioned by SP-

Distribute to a cluster C, every operator in the sub-plan should be placed into C by

SP- Central.

Table 6.2 shows the percentage of the queries for which SP-Distribute chooses

the same placement as SP-Central. The rates shown are not high, which means the

sub-plan partitions are not too good, suggesting that the second-level SPRAWL DP in

85

Same Placement %
4-op 51.7%
6-op 83.0%
10-op 27.6%
12-op 37.0%

SP-Distribute is doing something useful. Especially as, overall, the actual placement

found by the SPRAWL DP algorithms is not far from the optimal.

6.3.6 Placement Time on Wide-Area Networks

Table 6.3: Placement Time Per Query on 1550-Node Transit-Stub networks

Table 6.3 shows the average placement time per query on the 1550-node transit-

stub networks by centralized SPRAWL DP and distributed SPRAWL DP, respectively.

We simulate a 150 ms round-trip message time on wide-area links to account for

increased communication cost.

The placement time increases rapidly as the number of operators in a query in-

creases. The placement time of the centralized SPRAWL DP increases to 3 - 5 minutes

when deploying a 10-op query, which is not acceptable in real time streaming pro-

cessing networks. In contrast, the distributed SPRAWL DP only takes 3 - 4 seconds

to make a placement decision. This is exactly the reason why we need the distributed

version of SPRAWL. As we will show in Table 6.4 in Section 6.4, an exhaustive

algorithm searching for optimal placement takes more than 5 hours to place a 7-op

query on a network with only 30 nodes. We expect exhaustive placement time is

much longer with larger networks.

Our evaluation of SBON is a centralized simulation of a distributed algorithm

and takes only a few seconds to converge; SBON does not report the distributed

version convergence time in the paper. In reality, we believe the distributed relaxation

algorithm would take much longer to execute.

86

SP-Central SP-Distribute
4-op 0.21 s 0.02 s
6-op 1.66 m 1.68 s
10-op 3.11 m 3.57 s
12-op 5.26 m 4.96 s

6.3.7 Network Edge Connectivity

As stated in Section 6.3.4, the relaxation algorithm is sensitive to edge connectivity

and it does not perform well on networks with low edge connectivity. Transit-Stub

networks usually have edge connectivity around 0.01. Hence in this section, we study

the placement performance of SPRAWL and the relaxation algorithm on more con-

nected networks.

We use GTITM to generate 50-node random networks in 100 x 100 scale in this

experiment. A fully connected network has N(N- 1)/2 edges, where N is the number

of network nodes. For example, a 1550-node network has more than 1.1 million edges,

which may not fit in the memory. Hence, we choose small networks in this experiment.

Query settings and deployment settings are the same as before, except that SP-

Distribute is not tested in this case because random networks do not have border

nodes to provide routing information and it is difficult to partition random networks

reasonably. We ran 10 randomized trials for each edge connectivity rate.

Figure 6-3a and Figure 6-3b show normalized average placement cost of each query

placed by the SP-Central, Relaxation and Random deployment, with edge connectivity

rate equal to 1.0 and 0.1 respectively. In the case of a fully connected network

(Figure 6-3a with edge connectivity rate equal to 1.0), Relaxation performs much

better than it does on Transit-Stub networks as shown in Figure 6-2. It uses 15%

more network resources per query than SP-Central on average, which is consistent

with the results reported in the SBON paper [47]. In the case of a less connected

network as shown in Figure 6-3b (edge connectivity rate equal to 0.1), Relaxation

performs similar to that of Transit-Stub networks. It uses 2x - 3x more network

resources per query than SP-Central.

6.4 SPRAWL With Constraints

As noted in Section 4.2, SPRAWL can generate an optimal placement without con-

straints on CPU, bandwidth, or latency (Algorithm 1). We showed this can be ex-

87

(a) Cost Per Query
Equal to 1

with Network Edge Connectivity Rate

Cost Network Edge Connectivity = 0.1
1600

1400

1200

1000

800

6nn J

i SP-Central

Relaxation

m Random

0
4-op 6-op 10-op 12-op

(b) Cost Per Query with Network Edge Connectivity Rate
Equal to 0.1

Figure 6-3: Placement Cost with Different Network Edge Connectivity

88

cost
Cost Network Edge Connectivity 1

i SP-Central

Relaxation

600 a Random

400

200

0
4-op 6-op 10-op 12-op

tended to handle the case with constraints in Section 4.3 (Algorithm 2 - 3). In

our third set of experiments we measure how well SPRAWL performs in a resource

constrained setting in comparison to an exhaustive algorithm.

We compare SPRAWL DP to the exhaustive algorithm in two settings:

1. In a resource-constrained network where resources are easily violated, checking if

SPRAWL can fit as many queries into the network as an exhaustive enumeration

algorithm.

2. In a wide area network where a number of queries are to be deployed, checking

if SPRAWL can adequately allocate resources amongst queries.

The optimal algorithm we compare SPRAWL DP to is simply an exhaustive search

(Exhaustive for short) that iterates through each possible placement and chooses the

optimal one. The time complexity of Exhaustive is e(NM), where N is the number

of network nodes, and M is the number of unpinned operators. Table 6.4 shows the

runtime of SPRAWL and Exhaustive to generate a placement over a 3 cluster wide-area

network similar to that we use in Section 6.2. Exhaustive's running time increases

rapidly as the number of unpinned operators grows.

SPRAWL Exhaustive

6-op 2 ms 56 ms

10-op 4 ms I m
12-op 10 Ms > 5 h

Table 6.4: Runtime of SPRAWL vs Exhaustive on 3-Cluster Network

6.4.1 Resource-Constrained Network

In this experiment, we deploy a single query onto a resource-constrained network

to compare the percentage of queries we can place and the placement cost between

SPRAWL and Exhaustive. Placement cost is calculated according to Formula 3.1.

89

Query Settings

As illustrated in Table 6.4, Exhaustive's running time becomes very long when the

number of unpinned operators exceeds 5. Hence in this experiment, we choose a 10-

operator query as our benchmark: 3 unpinned joins, 1 unpinned filter, 1 unpinned

aggregation, 4 pinned sources, and 1 pinned sink. Exhaustive can not work on any

bigger queries, while smaller queries are easier to fit in and are less interesting.

Operator connections and filter selectivity (in the range [0,1]) on these connections,

as well as latency bounds are all randomly generated. Latencies are chosen to range

between the shortest to the longest path latency from network source to sink.

Network Settings

The network topology we use in these experiments are similar to a single cluster of

Figure 2-la. Network node CPU capacity, link capacity, weight(1, 3), and latency are

also randomly selected. We choose these so that each network node can support 1 to

10 source operators, and each network link can handle the output of 0.5 to 3 sources.

Network source links (from a source to other nodes) are guaranteed to have capacity

to support at least one source link.

Deployment Settings

We ran 5 randomized trials, placing 1000 queries per trial, and computed the aver-

age percentage of successfully placed queries and corresponding placement cost for

SPRAWL and Exhaustive. Numbers in this experiment were selected to make the

placement quite difficult, such that only a small fraction of the total queries could

actually fit. We expect in practice that real deployments would not be so heavily

constrained.

Query Fit Rate & Placement Cost

Table 6.5 and 6.6 shows the average percentage of queries fit onto the network and

average per query placement cost. Table 6.5 is with all types of constraints and

90

SPRAWL Exhaustive
Avg. Query Fit Rate 29.7% 34.2%

Per Query Placement Cost 236.4 226.3 (232.3)

Table 6.5: Query Fit Rate & Placement Cost in Resource-Constrained Networks with
all Constraints

Table 6.6: Query Fit Rate & Placement Cost in Resource-Constrained Networks with
CPU, BW Constraints

Table 6.6 is only with CPU and BW constraints. Since Table 6.5 is with more

constraints, the fraction of queries that fit is lower than that in Table 6.6.

In a resource-constrained network (only 34.2% queries are successfully placed),

SPRAWL can fit in about 88% (SPRAWL rate/ Exhaustive rate) of the queries Ex-

haustive can fit. The number in brackets in Table 6.5 and 6.6 is the real per query

cost for Exhaustive. However, Exhaustive may fit in some costly queries that can not

be fit by SPRAWL, so we adjust this number by excluding those queries that SPRAWL

cannot fit.

From Table 6.5 and 6.6, we can see that the SPRAWL per query cost is just

4% higher than Exhaustive, and that it is able to place most queries, even in this

demanding, highly constrained case. We say a network is heavily resource-constrained

to a type of query if the network has high probablity (> 50%) not able to find

a placement for a single query of that type by Exhaustive. We show in the next

experiment that SPRAWL can do as well as Exhaustive when the network is not so

heavily resource-constrained.

6.4.2 Network Resource Allocation

In this experiment, we want to show that SPRAWL can efficiently allocate network

resource to multiple queries, and show that SPRAWL can do as well as Exhaustive

when the network is not heavily resource-constrained.

91

SPRAWL Exhaustive
Avg. Query Fit Rate 37.4% 43.0%

Per Query Placement Cost 235.8 226.8 (236.1)

Query & Network Settings

Queries are continuously deployed onto a wide area network similar to Figure 2-la,

until no more queries can be supported by the network. We compare the number of

queries successfully placed by SPRAWL and Exhaustive, and compare their average

placed query cost. We use the same type of queries used in last experiment. Again,

all queries are generated randomly, and no sharing strategies are considered in this

case. To make the network not heavily resource-constrained, we only choose randomly

generated networks able to fit more than 100 queries by Exhaustive.

Number of Queries Supported & Placement Cost

SPRAWL Exhaustive
Total No. Query Supported 128 129

First Stop Avg. Cost 258.7 257.8
Five-seq. Stop Avg. Cost 297.1 295.8

Table 6.7: Multi-Query With All Constraints

SPRAWL Exhaustive
Total No. Query Support 128 127

First Stop Avg. Cost 271.6 270.7
Five-seq. Stop Avg. Cost 297.1 296.5

Table 6.8: Multi-Query With CPU and BW Constraints

Table 6.7 shows results with all types of constraints and Table 6.8 shows results

without latency constraints. Table 6.7 and 6.8 show that SPRAWL and Exhaustive

can support roughly the same number of queries. This indicates SPRAWL can allocate

resources as efficiently as Exhaustive.

First Stop Avg Cost shows the average deployed query cost until either SPRAWL

or Exhaustive fails to find a placement for a query. This indicates the network is

slightly saturated. Five-seq. Stop Avg Cost shows the average query cost when either

SPRAWL or Exhaustive first fails to place five successive queries. In this case, the

92

network is near saturation. We terminate the experiment when the system fails to

place 20 successive queries.

As we can see from Table 6.7 and 6.8, the average placed query cost of SPRAWL

and Exhaustive are almost always the same. This is because most queries placed

do not saturate any constraints, in which case, SPRAWL generates the same optimal

placement as Exhaustive. Even if a query reaches constraints, SPRAWL can often gen-

erate a good placement, as we have already demonstrated in the previous experiment

(Section 6.4.1).

First Stop Avg. Cost in Table 6.7 is smaller than that in Table 6.8 because Ta-

ble 6.7's first stop is due to latency constraints, while Table 6.8's is due to CPU or

BW saturation. Before first stop, the sets of queries supported by SPRAWL and Ex-

haustive are the same. From first stop to five-seq stop, the network becomes more and

more resource-constrained, and the sets of queries supported by these two algorithms

differ. Note, however, that the two algorithms can support roughly the same number

of queries with the same average placement cost.

6.5 Amazon EC2 Cost Estimates Study

In this section, we share some experiences on how cost estimates are chosen, and how

throughput and dollars spent relate to the choice of cost estimates.

6.5.1 Join Placement

The first experiment is designed to place a join query in between amazon EC2 zones

from different areas to check the impacts of different input rates and join selectivities.

Query & Network Settings

The join query is similar to that shown in Figure 2-3, with one source (srcl) located

in US.Virginia and the other (src2) in Asia.Singapore, and results delivered to the

Asia.Singapore availability zone. The ratio of input data rate of srcl to src2 is around

93

10 : 1. We vary the selectivity of the join by varying the number of src2 tuples that

join with each srcl tuple (we call this the window size).

Deployment Settings

SPRAWL identifies two optimal deployments (PlaceA and PlaceB). PlaceA is optimal

when windowsize=20, and PlaceB is optimal when windowsize=1. The difference

between the two placements is the node on which the join operator is placed. In

PlaceA, the join runs in the Asia.Singapore zone. In PlaceB, the join runs in the

US.Virginia zone. PlaceA is better than PlaceB if the cost of transmitting join output

and src2 over the wide-area network is higher than that of transmitting srcl.

Throughput & Bandwidth Usage

Figure 6-4 shows the input and output throughput as well as intra and inter bandwidth

usages of these two placements, with window size equal to 1 in Figure 6-4a and 20 in

Figure 6-4b.

In Figure 6-4a, PlaceB uses much more total bandwidth than PlaceA, but since

most of its bandwidth usage is within zones, its overall cost is low because intra-link

bandwidth costs are negligible in AWS. Since data transmission between different

zones is much slower and more expensive than within the same zone, PlaceB is actually

cheaper than PlaceA in this case.

In Figure 6-4b, when the join window size is set to 20, the join output size is about

7.6x the size of srcl. In this case, PlaceA has much lower bandwidth usage between

zones than PlaceB, making it preferable.

Estimate Cost & Dollar Cost

Figure 6-5a shows the bandwidth cost estimated from our cost model (Function 3.1).

Here, the weight wW for each link within the same zone is the same. We show how

to determine the weight of links between different zones and within the same zone by

94

MB/s Join Placement -- Window Size = 1
16

I ws = 1, PlaceA
12 ws = 1, PlaceB

8

4

0
Input Throughput Output BW Usage BW Usage Within

Throughput Between Zone Zone

(a) Join Placement with Window-Size Equal to 1

MB/s Join Placement - Window Size 20
40

32
ws =20, PlaceA

24 ws = 20, PlaceB

16

0
Input Throughput Output BW Usage BW Usage Within

Throughput Between Zone Zone

(b) Join Placement with Window-Size Equal to 20

Figure 6-4: Join Placement Performance in between Different Zones

95

cost
40 - Join Placement

32

a placeA PlaceB
24

16

8

0
ws =1

-- BW Cost

ws =20

(a) Bandwidth Cost Estimated by Cost Model

$ Join Placement -- Dollar Cost
40

32 b placeA PlaceB

24

16

0
ws=1 ws=20

(b) US Dollars Paid for Processing 50GB Data

Figure 6-5: Join Placement Cost in between Different Zones

96

using results in the next experiment (Section 6.5.2).

As we will show in Section 6.5.2, a local link within Asia or US can provide about

16.3 MB/s bandwidth, and a wide-area link between Asia and US about 7.2 MB/s.

Hence, the weight of a link between zones is 16.3 + 7.2 = 2.26. We also need to adjust

this weight according to the real price to send data through links. For example, if the

price to send data between Asia and US is twice as much as that to send data within

Asia or US, the weight of wide area link versus a local link is 2.26 * 2 = 4.52x.

Figure 6-5b illustrates the cost in dollars for running the join experiment and

processing around 50 GB srcl input data. By comparing Figure 6-5b to Figure 6-5a

and Figure 6-4, we can see that our cost model does a good job of tracking system

performance and total money cost.

6.5.2 Link Sharing

The goal of this experiment is to study and quantify the performance improvement

of local and wide-area data link sharing, where data link sharing means only a single

copy of each tuple is transmitted to a node even if many operators process it. We can

use the results from this section to calculate network parameters in the cost model,

as we did in Section 6.5.1.

Query, Network and Deployment Settings

The experimental setup is as follows: the data generator runs on one EC2 node, and

produces data as fast as possible. This data is sent over the network to another EC2

node, which runs a variable number of clients, each of which subscribes to the same

set of stock symbols. Data is either sent without link sharing (No Link Sharing),

resulting in multiple copies being sent, or with sharing (Link Sharing), where one

copy is sent and then split amongst the clients once it arrives. This experiment is

network-bound (neither node's CPU is overloaded).

97

Throughput
(M2/s)

20 1

Throughput per Query
Same Zone

15 -

10

5

0

i No Link Sharing
1 Link Sharing

2 Clients 3 Clients 4 Clients

(a) Throughput per Query in the Same Zone

Throughput Throughput All Queries(MB/s)

40 Same Zone
' No Link Sharing

30 Link Sharing

20

10

2 Clients 3 Clients 4 Clients

(b) Throughput all Query in the Same Zone

BW (MB/s)
an "w t sa

Same Zone A No Link Sharing
Link Sharing

2 Clients 3 Clients 4 Clients

(c) Bandwidth Usage in the Same Zone

Figure 6-6: Link Sharing Within the Same Zone

98

20

15

10

5

0

Throughput & Bandwidth Usage within the Same Zone

Figure 6-6 shows the performance improvement of local link sharing within the same

zone. Figure 6-6a shows the average throughput on a single client in MB/sec; Figure 6-

6b shows the overall system throughput; and finally, Figure 6-6c shows bandwidth

usage.

From these three graphs, we can see that the throughput is improved significantly

by local link sharing, both from the perspective of a single client and the entire system.

Figure 6-6b shows that the overall throughput of the No Link Sharing strategy in all

cases (2-4 clients) is roughly the same, about 16.3 MB/s. This is because the No Link

Sharing strategy sends multiple copies of data through network, and is bounded by

the network bandwidth. This experiment shows that local link bandwidth is capped

at 16.3 MB/s.

Throughput & Bandwidth Usage in between Different Zones

Figure 6-7 shows the results of the same experiment setting as in Figure 6-6, but with

wide-area link sharing. As expected, the results are somewhat different than with

local link sharing.

Comparing Figure 6-6 and Figure 6-7, we can see that wide-area link sharing does

not offer as much performance improvement as local link sharing when sending two

or three copies of data (with two or three clients). This is because transmitting data

through a single socket between different zones is limited by Amazon at around 7.2

MB/s, but multiple sockets can achieve higher throughput (up to the 16.3 MB/s as

measured in the previous experiment). Hence, the throughput of the Link Sharing

and No Link Sharing strategies is similar until the No Link Sharing strategy reaches

network saturation (16.3 MB/s).

As shown in Figure 6-7a, the throughput of both the No Link Sharing and Link

Sharing strategics is around 7.2 MB/s when sending two copies of data. The through-

put gap between those two strategies increases quickly as more copies of data are sent

99

Throughput Throughput per Query
(MB/s)

8 Different Zones *No Link Sharing
Link Sharing

6

2

0
2 Clients 3 Clients 4 Clients

(a) Throughput per Query in between Different
Zones

Thrughput

(MB/s) Throughput All Queries
30 Different Zones

a No Link Sharing
25

Link Sharing
20

15

10

2 Clients 3 Clients 4 Clients

(b) Throughput all Query in between Different
Zones

BW (MB/s) Bandwidth Usage
24 Different Zones

am No Link Sharing
20 Link Sharing

16

12

8

0
2 Clients 3 Clients 4 Clients

(c) Bandwidth Usage in between Different Zones

Figure 6-7: Link Sharing in between Different Zones

100

(when the network is saturated). Figure 6-7c shows the bandwidth usage of the

No Link Sharing and Link Sharing strategies between different zones. Since data

transmission between zones is expensive, the No Link Sharing strategy is particularly

costly in this case.

Total US Dollar Cost

Money
M Total Money Paid

6 Same Zone
5

A No Link Sharing
4 Link Sharing

3

2

1

2 Clients 3 Clients 4 Clients

(a) US Dollar Cost within the Same Zone

Money

Mn Total Money Paid
6 Different Zones

5 No Link Sharing

4 Link Sharing

2

0
2 Clients 3 Clients 4 Clients

(b) US Dollar Cost in between Different Zones

Figure 6-8: Cost in US Dollars for Processing 50 GB Data

Figure 6-8 shows the total US dollars we paid to process about 50 GB of data in

this experiment. The cost consists of two parts: the cost to rent machines, and the

cost to transmit data. System throughput determines how long the machines need to

101

be reserved, and bandwidth usage determines the payment for data transmission.

102

Chapter 7

Related Work

Distributed database systems have been studied extensively since the 1970s [57, 14,

53]. At that time, the research topics are mainly focused on distributed data man-

agement collaborating at different locations for large corporations. Ever since then,

many different architectures and technologies have been proposed and developed,

like distributed query optimization [26, 29], stream processing [9, 13, 12, 17, 18],

sensor network data propagation [42, 16, 22], publish/subscribe systems [15, 24, 45],

graph partitioning [38, 32, 11], overlay networks [52, 35, 62], and network awareness

data/stream processing [10, 47, 39, 46].

In this chapter, We will first have a brief review of such systems, and then describe

and compare with SPRAWL the five closely related systems mentioned in Chapter 1

(Min-Cut [41], SBON [47], SAND [10], SQPR [37] and SODA [37]) in detail.

7.1 Distributed Query Optimization

Distributed query optimization becomes important ever since distributed data man-

agement is popular and commercialized [26, 29]. The distributed query optimization

techniques are designed to solve the client-sever site selection problem for query op-

erators in the context of heterogeneous environment. They also includes special join

techniques(like horizontally partitioned joins, semijoins [14], double-pipelined hash

joins [56]), intra-query parallelism architectures(MapReduce [21]), and dynamic data

103

replication algorithms [19, 59] to reduce communication costs and improve query

performance.

However, none of these researches consider resource-aware in-network processing.

In addition, all these techniques are designed for stored data, hence many of them

are not suitable for dealing with streaming data.

7.2 Stream Processing Systems

A number of stream processing systems [9, 13, 12, 17, 18] have been developed as real

time data processing becomes a critical requirement for applications like financial data

services, social networks, and real time monitoring. However, most of these systems

are centralized: data is streamed from different data sites into a central cluster or

warehouse where these streams are processed according to the continuous queries

issued by users.

Some of the stream processing systems have been extended to distributed versions

to solve the problem of adaptive load-shedding for long-running continuous queries,

like Borealis [13, 54] and Flux [51].

Other distributed stream processing systems address the problem of supporting

huge number of queries in a large scale Internet. NiagaraCQ [18] achieved so by

grouping continuous queries sharing similar structures. However, it is not network

resource-aware either.

7.3 Sensor Networks

In-network data dissemination has been studied in sensor networks [42, 16, 22] for a

long time because resource-efficient data propagation is critical in sensor networks.

Sensors usually have very limited resources (like power and bandwidth). Hence, data

propagation efficiency determines the period of time sensor networks can last and the

overall amount of data sensor networks can collect.

However, different from normal distributed data systems, sensor networks are

104

usually self-organized, and highly dynamic, with each sensor node having limited

resources and restricted network topology information. In addition, sensor nodes

themselves are unstable and can be unavailable at any time.

Hence, data dissemination research in sensor networks is mainly focused on issues

like optimal routing path search based on limited information and fault-tolerance

if some sensor nodes are suddenly broken. Such issues are not the focus in this

dissertation since wide-area data centers as shown in Chapter 2.2 are configured in

advance and stable most of the time.

7.4 Pub-Sub Systems

Pub-sub systems are stream processing systems specifically designed for message up-

dating [15, 24, 45]. They collect data from publishers, and deliver updated results

to subscribers according to their subscriptions in a timely fashion. Most of these

pub-sub systems are centralized. Some of them are extended to distributed model to

solve Internet-scale message delivering [23].

Pub-sub systems mainly focus on massive message updating. Generally it supports

XPath queries or simple XML-based filtering instead of computational-heavy opera-

tors like joins and aggregations. Besides, the first importance in pub-sub systems is to

deliver message updates as fast as possible. Hence pub-sub systems are not network

resource-aware either.

We can also consider SPRAWL as a distributed network resource-aware pub-sub

system.

7.5 Graph Partitions in Parallel Computation

The problem of partitioning irregular graphs and allocating distributed tasks in a

heterogeneous environment has been long studied in the parallel computation com-

munity [38, 32, 11]. Graph partitions in parallel computation is designed for compute-

intensive applications in scientific and engineering domains, like computational fluid

105

dynamics(CFD) [55] and VLSI testing [36].

These applications are modeled as a weighted undirected graph G = (V, E), re-

ferred to as a workload graph. Each vertex has computational weight which reflects

CPU units it needs, and each edge has a communication weight which reflects data

transit on it. So the partition problem is to find a good partition for graph G so as

to minimize the resulting data flow between partitions.

Graph partitions is network resource-aware, however, it differs from our scenario

in three ways:

* it does not allow application-specific features like selectivity and data rate of

streams,

" it does not designed for wide-area networks (it is designed for parallel compu-

tation), and

" it does not support pinned vertices, while stream data sources and sinks are

usually pinned.

7.6 Overlay Networks

Overlay networks [52, 35, 62] like peer-to-peer networks focus on the problem of

locating the network node that stores a particular data item in large-scale dynamic

networks as nodes are added to or leave networks.

Message routing in overlay networks is similar to data flow routing in SPRAWL.

However, instead of supporting expressive and complicated operators, overlay net-

works only support limited message processing. We can consider SPRAWL as working

on top of such overlay networks so as to support more complicated optimal "message

routing".

106

7.7 SPRAWL Vs. Network Resource-Aware Data

Processing Systems

Network awareness data processing systems [47, 41, 10, 37, 58, 39, 46] are closely

related to SPRAWL. However, SPRAWL has fundamental advantages in three aspects

overall:

1. SPRAWL supports distributed decision making for query sharing and placement

and does not need global network information, while most existing systems do

it in a centralized way [41, 37, 58, 46, 39], and are not scalable for wide-area

networks. As shown in Chapter 2.2, a centralized placement algorithm may

spend 3-4 minutes to place a query in a 1550-node wide-area network, not to

mention tracking global network resource and topology changes.

2. SPRAWL supports flexible cost objectives, including CPU cost, resource con-

straints, and query constraints, as discussed in Chapter 3. Most sys-

tems [41, 47, 10, 39] only consider network bandwidth cost and do not include

constrained clauses due to either methodological limitations or to simplify the

optimization formulation.

3. Compared to existing distributed multi-query placement systems [47, 10],

SPRAWL has better placement performance and converge time as shown in

Chapter 2.2.

We will discuss and compare SPRAWL with these network resource-aware systems

in detail in this section.

7.7.1 Min-Cut

Min-Cut [41] is a centralized algorithm that generates an operator assignment that

minimizes the overall communication cost for distributed queries. The algorithm

generates a hyper-graph 'D for a set of input query plans, and computes a minimal

107

ship t C

(5)S1 NS2NS4

(7) S1 N 82
S4 (100)

(10)Si S2(10)

Query I

Ship Ao D

(5) S2 N S

Shp to B

()S2 N S5

(10)S2 S6 (100) (10) S2

Query 2 Query 3

(a) Example Queries in Min-Cut

D

(5)

(10) S236 c
00)

S6
(5)

(10) (100)

2B S1S2
84

35(8) ()(10)

85 82 S1

(b) Hyper-graph for Query 1-3

Figure 7-1: Example Hyper-graph in Min-Cut (reproduced from [41])

cut on 7 D for each link (x, y) in the communication (physical) network !C. Figure 7-

lb is a hyper-graph constructed for all three queries in Figure 7-la. The circle in

Figure 7-1b is a hyper-edge for S2 since all three queries share the same data source

S2.

The minimal communication cost incurred over the link (x, y) is exactly the trans-

mission cost over the cut. After finding all the locally optimal solution for each link

in g, it proves and generates a global optimal solution under the assumption that

9C is a tree and each 7 D for link (x, y) has a unique solution (minimal cut). Min-Cut

algorithm has a O(log(n)) approximation for a general non-tree network gC.

Min-Cut is theoretically sound, but with strong restrictions, which may not be

practical in real world:

1. Min-Cut needs global information to merge each local minimal cut to a global

optimal solution, and is not straightforward to extend to a distributed version,

so it may not be suitable for wide-area networks.

2. To obtain an optimal solution, Min-Cut requires the communication (physical)

network to be a tree, which is not the case in practice.

3. Min-Cut only considers network communication cost, and it is not clear how to

108

include CPU cost, latency requirements, and resource constraints since Min-Cut

is based on edge cut costs.

7.7.2 SBON

(a) Before Relaxation (b) After Relaxation

Figure 7-2: Spring Relaxation in SBON Cost Space (reproduced from [47])

SBON (Stream-Based Overlay Network) [47] is a decentralized adaptive frame-

work for operator placement using a spring relaxation algorithm to minimize network

impacts. In SBON, the query plan is considered as a collection of operators connected

by springs (operator edges), and properties of physical networks (latency for example)

is mapped onto a cost space.

As shown in Figure 7-2, the average force of spring i is F 1 = ki where si is

latency Lati and ki is the data rate DRj (similar to Latency and BW in SPRAWL).

Based on this, the optimal operator placement is one with the lowest energy state of

the system (i.e., with the lowest sum of the potential energies stored in the system). If

a spring has higher energy than necessary, unpinned operators will be pulled/pushed

to lower the overall system energy. After a number of relaxation iterations, the system

gradually converges to a low and stable energy state. Then SBON maps the converged

placement from the cost space onto underlying physical networks.

SBON scales well in wide-area networks, however,

1. The convergence properties of SBON is unclear. In the case where multiple op-

erators are unpinned, it is hard to chose which operator to migrate and making

109

an incorrect choice can result in back and forth migration, causing the system

to converge slowly or not at all.

2. Mapping the placement from the cost space to the real physical network is not

accurate. It is also difficult to include link weights and resource constraints in

the cost space since real routing path can not be mapped onto the cost space.

3. Since each SBON instance does not have global view, it is easy to 'stuck" in

local minima. In addition, the cost function for relaxation algorithm must agree

with the form E2 =F, x si, making SBON's cost model restricted.

7.7.3 SAND

SAND (Scalable Adaptive Network Database) includes a set of distributed opera-

tor placement strategies to develop a highly-scalable and adaptive network-oriented

database system on top of a Distributed Hash Table (DHT) [52, 62].

SAND is a greedy algorithm that deploys a query plan bottom-up in postorder,

similar to ours. When encountering a new operator, SAND chooses to place the

operator in one of the following four candidate locations,

" one of its children's locations,

* a common location,

" the end-user's location, or

" a location meeting a certain distance criterion.

The total cost of a query plan is the sum of each edge cost. Here edge costs refer

to costs transmitting data between operators, and is calculated as BW x Distance.

BW is the output date rate of that edge, and Distance is the network distance of

the physical link the edge uses to send data.

A common location refers to a physical node where a placed operator and all its

children can potentially be co-located. A location meeting a certain distance criterion

110

is used to select configurations to optimize for total cost by reducing distances between

operator-child mappings. SAND has proved the probability it improves over the

baseline bandwidth cost theoretically. The baseline deployment is a centralized one

which places all operators on client(sink) side.

SAND experiments on top of Tapestry using Transit-Stub network topologies

obtained from the GTITM [61], and show effects of different placement strategies

on bandwidth consumption ratio (the ratio of the overall bandwidth) and latency

stretch (the ratio of the longest path length on the network to the longest path length

from the sources to the sink).

However,

1. SAND does not always generate a good placement and has no guarantee upon

the efficiency of placement solution.

2. The distributed version of SAND placement does not provide a solution for

sub-query placement and assignment. Instead, it only investigates one extreme

of subtree assignment, a single operator is a subtree.

3. SAND does not include multi-query sharing because sharing may introduce

multi-output query DAG, which can not be handled by the SAND placement

algorithm.

7.7.4 SQPR

SQPR (Stream Query Planning with Reuse) [37] combines query admission, opera-

tor allocation and reuse together as a single inter-related constrained optimisation

problem. To achieve so, it proposes an query planning model with four objectives:

1. 01: maximize the number of satisfied queries

2. 02: minimize the system-wide network usage

3. 03: minimize the usage of computational resources, and

4. 04: potentially balance the load between network hosts

111

Due to the conflicting nature of these objectives, SQPR generates Pareto efficient

solutions by maximizing a weighted sum of

A101 - A202 - A 30 3 - A40 4

subject to constraints

for some constants A,, A2, A3 , A4 >= 0

The constraints mentioned in the above function include demand constraints, avail-

ability constraints, resource constraints and acyclicity constraints. The first three

constraints are similar to ours described as CPU constraints and BW constraints in

Chapter 3. Acyclicity constraints requires no self-feedback loops. SQPR formulates

the query assignment problem as a mixed integer linear program (MILP), which can

be solved by standard branch and bound algorithm [34].

The discussion and analysis of query planning and placement in SQPR is complete.

However, the solution to the optimisation problem is based on mixed integer linear

program (MILP), which is exponential in time and memory as the size of communi-

cation networks and the number of query operators grow. This MILP solution is not

at all scalable even to hundreds of network nodes. Their simulation results are based

on 50 hosts and one (two-way/three-way/four-way) join per query.

7.7.5 SODA

SODA (Scheduling Optimizer for Distributed Applications) [58] is an optimizing

scheduler for System S [27], a streaming processing system that assumes offered load

exceeds system capacity most of the time. Hence, SODA is designed to fully utilize

each processing node in System S.

SODA scheduler divides the problem into two stages:

1. admission control stage: decides which jobs to admit and which template to

choose for each job.

2. operator placement stage: generates placement for jobs admitted and templates

chosen.

112

SODA uses Non-Serial Dynamic Programming (NSDP) [33] to solve operator

placement problem, and treat objective functions as "black boxes", but no mention of

how objective functions are constructed, how constraints are solved, and how network

latency can be included. In addition, SODA is a centralized scheduler which is not

scalable for wide-area networks.

7.7.6 Other Network Awareness Systems

Papaemmanouil et al [46] designed a network awareness system focusing on mak-

ing all queries running in the system satisfy network QoS requirements. Initially, a

new operator is placed on the node closest to it's input. This placement may cause

violation of some network QoS requirements (similar to constraints in SPRAWL).

Then operators are periodically moved around to adjust to the QoS requirements

and network condition changes. The experiment is taken on PlanetLab deployment

of S3 [60]. It shows that by adaptively updating the global plan and deployment,

they can improve the number of queries that meet QoS expectations by 39%-58%, on

average. The system is target for highly dynamic networks and QoS-based services,

however, it does not guarantee how good the adjusted placement is, and how long

the adjustment procedure may take.

Kumar et al [39] constructs a three-layer architecture for the placement prob-

lem: application layer, middleware layer and underlay layer. Application layer is a

declared data-flow graph expression of the query needed to be placed. Middleware

layer compiles data-flow graph into separated operators and getting network resource

information. Underlay layer partitions the underlay network to recursively place the

operators. However, the paper neither mentions how to compile the declared data-

flow graph into separate operators in details, nor describes how cost estimates are

assigned. [39] includes a simulation with real data from Delta Airlines, showing that

dynamic operator deployment can save on average around 15 - 18% end-to-end delay

time. However, the data only contains 4 airport (network) nodes.

113

114

Chapter 8

Future Work

There are several interesting directions in our future research. As proved in Theo-

rem 5.3.1, an undirected graph is able to achieve the same optimal cost placement

no matter which operator is chosen as a root in the unconstrained case. However, in

constraint cases, this theorem does not hold any more and we need to find suitable

roots for the undirected graph. For example, traversing the most costly subtree first,

and setting an operator with minimal CPU + 4 * BW as the root may result in a

smaller cost because higher-cost subtrees may have more chances to be optimally

placed. In addition, choosing different operator as roots will affect individual querys

cost. Hence how to balance the cost between different user queries is a challenge.

Another interesting direction is how to partition the network and queries. Cur-

rently, SPRAWL partitions networks based on the Transit-Stub network model. Al-

though most of the wide area networks are based on this model, We would like to

extend SPRAWL to more generalized networks without this Transit-Stub limitation.

As stated in Section 5.4, when more and more queries are added into the net-

works, the existing deployment may no longer be (near) optimal To achieve better

performance, we need to re-optimize the deployment by applying SPDP algorithms

on the existing queries. Re-optimization may lead to operator migration, which in

most cases is costly. The benefits of re-optimization will depend on how much the

new deployment saves the overall cost and on how long this strategy remains optimal

for. How to measure and balance between the benefits and the costs is a challenge.

115

116

Chapter 9

Conclusions

In this dissertation, we presented SPRAWL, a resource-aware stream processing op-

timization and placement layer to optimize stream processing programs distributed

across wide area networks. SPRAWL is able to compute an optimal in-network place-

ment of operators in a given query plan that can minimize the overall plan cost when

no constraints are present. We presented extensions to make this work in constrained

cases.

We also showed how to distribute SPRAWL to optimize placements on networks

with thousands of nodes, significantly beyond what the centralized algorithm can

handle in reasonable time limits.

SPRAWL is also able to share execution of operators and data transmission, trans-

mitting records through the network just once, and combining streaming operators

that operate on the same subset of data.

Overall, we showed that this can increase throughput by up to a factor of 5 on

complex mixtures of stream processing queries, and reduce overall costs (using AWS

prices as a guide) by a factor of 6.

117

118

Appendix A

API for Underlying Stream

Processing Systems

As mentioned in Chapter 1, SPRAWL is a stream dissemination layer that can make

query optimization and placement transparent to stream processing systems. SPRAWL

achieves this through unified API interfaces. In this chapter, we use two cases to show

how these interfaces are used, one for distributed stream processing engines, and the

other for single-node engines.

A.1 ZStream

SPRAWL uses ZStream [44] as its default stream processing system. ZStream is a

distributed stream processing engine that allows stream processing operators to be

connected and compiled as an executable DAG. It supports basic stream processing

operators such as, filter, windowed join, and windowed aggregation as well as more

complicated operators like sequence, conjunction, kleene closure, and negation for

pattern detection.

Figure A-1 is an example operator placement for Query 1: the left Avg sub-plan is

placed on Clustero.Nodeo, the right sub-plan is on Cluster1 .Node1 , and COM is on

Cluster2 .Node 2. We show example API calls generated by each individual module

below.

119

Node2

NodeO Nodel

Figure A-1: An Example Placement for Query 1

A.1.1 Example API Calls for Nodeo

> plan = createplan.init(0)

> plan.addop('O', 'src', 'Asia Stocks', null, '0')

> plan.addop('1', 'filter', 'name:=:aIBM', '0', '1')

> plan.addop('2', 'agg', 'avg:price:5m', '11, '2')

> plan.addop('3', 'output', null, '2', 'ip2:port0')

> plan.start()

> plan.end()

" createplan.init(nodeid):

Createplan creates and initializes a new plan on a physical network node, given

nodeid.

" addop(opid, optype, oppara, opinput, opoutput)

Addop attaches an operator to the plan. Opid indicates the internal operator

id, optype indicates the operator type, oppara is a list of operator parameters,

opinput is a list of input data edge ids, and opoutput is a list of output data

120

edge ids.

" start(time):

It starts the plan with the running period specified as time. If no time is

specified, the plan will keep running forever.

" end():

It terminates a plan execution.

All parameters of the APIs are strings. A query plan(sub-plan) is created and

initialized with a physical network nodeid, and constructed by adding operators one

by one. If two operators are connected, the downstream operator's input id is set to

the upstream's output id. For example, the Avg operator's input id is equal to the

filter operator's output id on Nodeo. Finally, the output operator delivers results

from Nodeo to Node2 (ip2 : portO). A plan (continuous query) keeps running forever if

no time constraint is specified. It can be terminated explicitly by an endO function.

A.1.2 Example API Calls for Node,

> plan = createplan.init(1)

> plan.addop('O', 'src', 'US Stocks', null, 'C 0)

> plan.addop('1', 'filter', 'name:=:uIBM', '0', '11)

> plan.addop('2', 'agg', 'avg:price:5m', '1', '21)

> plan.addop('3', 'output', null, '2', 'ip2:portl')

> plan.start()

> plan.end()

The API calls for Node1 are similar to that for Nodeo, since the right sub-plan is

symmetric to the left.

A.1.3 Example API Calls for Node2

> plan = createplan.init(2)

121

> plan.addop('0','input', '0:3', 'portO', '0')

> plan.addop('1','input', '1:3', 'porti', '1')

> plan.addop('2', 'compare', null, '0:1), '2')

> plan.start()

> plan.end()

On Node2 , two input operators accept data streams coming from Nodeo and

Node1 respectively. The parameters of the input operator specifies where the input

stream comes from ('Nodeid:operatorid'). The compare operator has two inputs

('0:1'), with one connected to the first input with outputid 0, and the other to the

second input with outputid 1.

A.2 Wavescope

In this section, we show how SPRAWL interfaces work with a single-node stream pro-

cessing system Wavescope [28] in this section. WaveScope is a system for developing

high-rate stream processing applications using a combination of signal processing and

database (event processing) operations developed in MIT CSAIL Database Group.

Example API calls are shown below. We use the same query placement example as

in Figure A-1.

A.2.1 Example API Calls for Nodeo

> plan = createplan.init(0)

> plan.addop('O', 'src', 'Asia Stocks', null, '0')

> plan.addop('1', 'filter', 'name:=:aIBM', '0', '1')

> plan.addop('2', 'agg', 'avg:price:5m', '1', '2')

> datasocketsend = createsenddatasocket.init(plan.id)

> datasocketsend.bind(ip2, portO)

122

> datasocketsend.start()

> plan.start()

The API calls are similar to that of ZStream, except output of sub-plans are

redirected to a socket provided by the SPRAWL individual module on Nodeo.

" createsenddatasocket.init (planid):

to create and initialize a data socket to transmit output of a plan with planid.

" bind(ip, port):

to bind the socket to the given ip and port

" start(: to start sending data

A.2.2 Example API Calls for Node,

Similarly, API calls for Node1 are as follows:

> plan = createplan.init(1)

> plan.addop('O', 'src', 'US Stocks', null, '0')

> plan.addop('1', 'filter', 'name:=:uIBM', '0', '1')

> plan.addop('2', 'agg', 'avg:price:5m', '1', '2')

> datasocketsend = createsenddatasocket.init(plan.id)

> datasocketsend.bind(ip2, porti)

> datasocketsend.start()

> plan.start()

A.2.3 Example API Calls for Node2

Correspondingly, the COM operator reads input data from sockets provided by the

individual module on Node 2.

> datasocketrecv0 = createrecvdatasocket.init()

123

> datasocketrecvO.listen(portO)

> datasocketrecvO.start()

> datasocketrecvl = createrecvdatasocket.init()

> datasocketrecvl.listen(port1)

> datasocketrecvl. start ()

> plan = createplan.init(2)

> plan.addop('0','src', 'datasocketrecv0.id', 'portO', 'O')

> plan.addop('1','src', 'datasocketrecvl.id', 'porti', '1')

> plan.addop('2', 'compare:price:left.name=right.name', ' 0 : 1 ', '2')

> plan.start()

* createrecvdatasocket. init (planid) : to create and initialize a data socket

to receive data.

124

Bibliography

[1] Akamai. http://www.akamai.com/.

[2] Amazon elastic compute cloud. http://aws.amazon.com/ec2/.

[3] Bloomberg. http://www.bloomberg.com/.

[4] Facebook. https://www.facebook.com/.

[5] Ilog cplex. https://www.software.ibm.com/.

[6] sqlstream. http://www.sqlstream.com/.

[7] Thomson reuters. http://thomsonreuters.com/.

[8] Twitter. https://twitter.com/.

[9] Daniel J. Abadi, Don Carney, U'ur Qetintemel, Mitch Cherniack, Christian

Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik.

Aurora: a new model and architecture for data stream management. The VLDB

Journal(The International Journal on Very Large Data Bases), 12(2):120-139,
August 2003.

[10] Yanif Ahmad and U'ur Qetintemel. Network-aware query processing for stream-

based applications. In VLDB '04 Proceedings of the 30th international conference

on Very Large Data Bases, volume 30, pages 456-467, Toronto, Canada, August

2004.

[11] Bill Allcock, Joe Bester, John Bresnahan, Ann L. Chervenak, Ian Foster, Carl

Kesselman, Sam Meder, Veronika Nefedova, Darcy Quesnel, and Steven Tuecke.

Data management and transfer in high-performance computational grid environ-

ments. Parallel Computing - Parallel data-intensive algorithms and applications,
28(5):749-771, May 2002.

[12] Shivnath Babu and Jennifer Widom. Continuous queries over data streams.

ACM SIGMOD Record(ACM Special Interest Group on Management of Data),
30(3):109-120, September 2001.

[13] Magdalena Balazinska, Hari Balakrishnan, Samuel Madden, and Michael Stone-

braker. Fault-tolerance in the borealis distributed stream processing system. In

125

Proceedings of the 2005 A CM SIGMOD international conference on Management
of data (SIGMOD '05), pages 13-24, Baltimore, MD, USA, June 2005.

[14] Philip A. Bernstein, Nathan Goodman, Eugene Wong, Christopher L. Reeve, and
Jr. James B. Rothnie. Query processing in a system for distributed databases
(sdd-1). ACM Transactions on Database Systems (TODS), 6(4):602-625, Dec
1981.

[15] Kenneth P. Birman and Thomas A. Joseph. Exploiting virtual synchrony in
distributed systems. In SOSP '87 Proceedings of the 11th ACM Symposium on
Operating systems principles, pages 123-138, Austin, Texas, USA, November
1987.

[16] Boris Jan Bonfils and Philippe Bonnet. Adaptive and decentralized operator
placement for in-network query processing. In IPSN '03 Proceedings of the 2nd
international conference on Information processing in sensor networks, pages
47-62, Palo Alto, California, USA, April 2003.

[17] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,
Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel R. Madden,
Fred Reiss, and Mehul A. Shah. Telegraphcq: continuous dataflow processing. In
SIGMOD '03 Proceedings of the 2003 ACM SIGMOD international conference
on Management of data, pages 668-668, San Diego, California, USA, June 2003.

[18] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. Niagaracq: a
scalable continuous query system for internet databases. In SIGMOD '00 Pro-
ceedings of the 2000 ACM SIGMOD international conference on Management of
data, pages 379-390, Dallas, Texas, USA, May 2000.

[19] George Copeland, William Alexander, Ellen Boughter, and Tom Keller. Data
placement in bubba. In SIGMOD '88 Proceedings of the 1988 ACM SIGMOD
international conference on Management of data, pages 99-108, Chicago, Illinois,
USA, June 1988.

[20] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: A decen-
tralized network coordinate system. In Proceedings of SIGCOMM, 2004.

[21] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing
on large clusters. Communications of the ACM-50th anniversary issue: 1958-
2008, 51(1):107-113, January 2008.

[22] Amol Deshpande, Suman Nath, Phillip B. Gibbons, and Srinivasan Seshan.
Cache-and-query for wide area sensor databases. In SIGMOD '03 Proceedings of
the 2003 ACM SIGMOD international conference on Management of data, San
Diego, California, USA, June 2003.

126

[23] Yanlei Diao, Shariq Rizvi, and Michael J. Franklin. Towards an internet-scale xml
dissemination service. In VLDB '04 Proceedings of the 30th international con-
ference on Very large data bases- Volume 30, pages 612-623, Toronto, Canada,
August 2004.

[24] Frangoise Fabret, H. Arno Jacobsen, Frangois Llirbat, Joao Pereira, Kenneth A.
Ross, and Dennis Shasha. Filtering algorithms and implementation for very
fast publish/subscribe. In SIGMOD '01 Proceedings of the 2001 ACM SIGMOD
international conference on Management of data, pages 115-126, Santa Barbara,
California, USA, June 2001.

[25] Sheldon Finkelstein. Common expression analysis in database applications. In
SIGMOD '82 Proceedings of the 1982 ACM SIGMOD international conference
on Management of data, pages 235-245, Orlando, Florida, USA, June 1982.

[26] Michael J. Franklin, Bj6rn Th6r J6nsson, and Donald Kossmann. Performance
tradeoffs for client-server query processing. In SIGMOD '96 Proceedings of the
1996 ACM SIGMOD international conference on Management of data, pages
149-160, Montreal, Quebec, Canada, June 1996.

[27] Bugra Gedik, Henrique Andrade, Kun-Lung Wu, Philip S Yu, and Myungcheol
Doo. Spade: the system s declarative stream processing engine. In SIGMOD '08.
Proceedings of the 2008 ACM SIGMOD international conference on Management
of data, pages 1123-1134, Vancouver, Canada, June 2008.

[28] Lewis Girod, Yuan Mei, Ryan Newton, Stanislav Rost, Arvind Thiagarajan, Hari
Balakrishnan, and Samuel Madden. Xstream: a signal-oriented data stream man-
agement system. In ICDE '08. Proceedings of the 24nd international conference
on Data Engineering, 2008, pages 1180-1189, Cancun, Mexico, April 2008.

[29] Laura M. Haas, Donald Kossmann, Edward L. Wimmers, and Jun Yang. Op-
timizing queries across diverse data sources. In VLDB '97 Proceedings of the
23rd international conference on Very Large Data Bases, pages 276-285, Athens,
Greece, August 1997.

[30] Moustafa A. Hammad, Walid G. Aref, and Ahmed K. Elmagarmid. Query pro-
cessing of multi-way stream window joins. The VLDB Journal(The International
Journal on Very Large Data Bases), 17(3):469-488, May 2008.

[31] Moustafa A. Hammad, Michael J. Franklin, Walid G. Aref, and Ahmed K. El-
magarmid. Scheduling for shared window joins over data streams. In VLDB
'03 Proceedings of the 29th international conference on Very Large Data Bases,
pages 297-308, Berlin, Germany, September 2003.

[32] Bruce Hendrickson and Robert Leland. A multi-level algorithm for partitioning
graphs. In Supercomputing, 1995. Proceedings of the IEEE/ACM SC95 Confer-
ence, pages 28-41, San Diego, California, USA, December 1995.

127

[33] Toshihide Ibaraki and Naoki Katoh. Resource allocation problems: algorithmic
approaches. MIT Press, Cambridge, Massachusetts, USA, 1988.

[34] IBM. "ilog cplex", 2010.
http://www.ibm.com.

[35] John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans Kaashoek, and Jr.
James W. O'Toole. Overcast: Reliable multicasting with an overlay network. In
OSDI'00 Proceedings of the 4th conference on Symposium on operating system
design & implementation - Volume 4, pages 14-29, San Diego, California, USA,
October 2000.

[36] Wen-Ben Jone and Christos A. Papachristou. A coordinated circuit partition-
ing and test generation method for pseudo-exhaustive testing of vlsi circuits.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 14(3):374-384, March 1995.

[37] Evangelia Kalyvianaki, Wolfram Wiesemann, Quang Hieu Vu, Daniel Kuhn,
and Peter Pietzuch. Sqpr: Stream query planning with reuse. In ICDE '11.
Proceedings of the 27nd international conference on Data Engineering, 2011,
pages 840-851, Hannover, Germany, April 2011.

[38] Shailendra Kumar, Sajal K. Das, and Rupak Biswas. Graph partitioning for par-
allel applications in heterogeneous grid environments. In IPDPS '02: Proceedings
of the 16th International Parallel and Distributed Processing Symposium, pages
167-173, Fort Lauderdale, Florida, USA, April 2002.

[39] Vibhore Kumar, Brian F. Cooper, Zhongtang Cai, Greg Eisenhauer, and Karsten
Schwan. Resource-aware distributed stream management using dynamic over-
lays. In Proceedings of 25th IEEE international conference on Distributed Com-
puting Systems, 2005. ICDCS 2005, pages 783-792, Columbus, Ohio, USA, June
2005.

[40] Per-Ake Larson and H. Z. Yang. Computing queries from derived relations.
In VLDB'85, Proceedings of 11th international conference on Very Large Data
Bases, pages 259-269, Stockholm, Sweden, August 1985.

[41] Jian Li, Amol Deshpande, and Samir Khuller. Minimizing communication cost
in distributed multi-query processing. In ICDE '09. Proceedings of the 25nd
international conference on Data Engineering, 2009, pages 772-783, Shanghai,
China, March 2009.

[42] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. Tag:
a tiny aggregation service for ad-hoc sensor networks. ACM SIGOPS Operat-
ing Systems Review(OSDI '02: Proceedings of the 5th Symposium on Operating
systems design and implementation), 36(SI):131-146, December 2002.

128

[43] Samuel Madden, Mehul Shah, Joseph M. Hellerstein, and Vijayshankar Raman.
Continuously adaptive continuous queries over streams. In SIGMOD '02 Pro-
ceedings of the 2002 ACM SIGMOD international conference on Management of
data, pages 49-60, Madison, Wisconsin, USA, June 2002.

[44] Yuan Mei and Samuel Madden. Zstream: A cost-based query processor for
adaptively detecting composite events. In Proceedings of the 2009 A CM SIGMOD
international conference on Management of data (SIGMOD '09), pages 193-206,
Providence, Rhode Island, USA, June 2009.

[45] Benjamin Nguyen, Serge Abiteboul, Gregory Cobena, and Mihai Preda. Monitor-
ing xml data on the web. In SIGMOD '01 Proceedings of the 2001 ACM SIGMOD
international conference on Management of data, pages 437-448, Santa Barbara,
California, USA, June 2001.

[46] Olga Papaemmanouil, Sujoy Basu, and Sujata Banerjee. Adaptive in-network
query deployment for shared stream processing environments. In ICDEW 2008.
IEEE 24th international conference on Data Engineering Workshop, pages 206-
211, Cancun, Mexico, April 2008.

[47] Peter Pietzuch, Jonathan Ledlie, Jeffrey Shneidman, Mema Roussopoulos, Matt
Welsh, and Margo Seltzer. Network-aware operator placement for stream-
processing systems. In ICDE '06. Proceedings of the 22nd international con-

ference on Data Engineering, 2006, pages 49-60, Atlanta, GA, USA, April 2006.

[48] Daniel J. Rosenkrantz and Harry B. Hunt III. Processing conjunctive predicates
and queries. In VLDB '80 Proceedings of the 6th international conference on Very
Large Data Bases, volume 6, pages 64-72, Montreal, Quebec, Canada, October
1980.

[49] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lore, and T. G.
Price. Access path selection in a relational database management system. In
SIGMOD '79 Proceedings of the 1979 ACM SIGMOD international conference
on Management of data, pages 23-34, Boston, Massachusetts, USA, May 1979.

[50] Timos K. Sellis. Multiple-query optimization. ACM Transactions on Database
Systems (TODS), 13(1):23-52, March 1988.

[51] Mehul A. Shah, Joseph M. Hellerstein, Sirish Chandrasekaran, and Michael J.
Franklin. Flux: An adaptive partitioning operator for continuous query sys-
tems. In ICDE '03. Proceedings of the 19th international conference on Data
Engineering, 2003, pages 25-36, Bangalore, India, March 2003.

[52] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet applications.
In SIGCOMM '01 Proceedings of the 2001 conference on Applications, technolo-
gies, architectures, and protocols for computer communications, pages 149-160,
San Diego, California, USA, August 2001.

129

[53] Michael Stonebraker. The Design and Implementation of Distributed INGRES,
pages 187-196. Addison-Wesley Longman Publishing Co., Inc., Boston, Mas-
sachusetts, USA, 1986.

[54] Nesime Tatbul, Ugur Qetintemel, and Stan Zdonik. Staying fit: Efficient load
shedding techniques for distributed stream processing. In VLDB '07 Proceedings
of the 33rd international conference on Very Large Data Bases, pages 159-170,
Vienna, Austria, September 2007.

[55] Joe F. Thompson, Bharat K. Soni, and Nigel P. Weatherill. CRC Press, Boca
Raton, Florida, 1999.

[56] Tolga Urhan and Michael J. Franklin. Xjoin: Getting fast answers from slow and
bursty networks. Technical report CS-TR-3994(Feb.), University of Maryland,
College Park; UMIACS-TR-99-13, February 1999.

[57] R. Williams, D. Daniels, L. M. Haas, G. Lapis, B. G. Lindsay, P. Ng, R. Ober-
marck, P. G. Selinger, A. Walker, P. F. Wilms, and R. A. Yost. R*: An overview
of the architecture. In JCDKB 1982 Proceedings of the 2nd international confer-
ence on Databases, pages 1-27, Jerusalem, Israel, June 1982. Reprinted in: M.
StoneBraker(ed.), Readings in Database Systems, Morgan Kaufmann Publishers,
1994, pages, 515-536.

[58] Joel Wolf, Nikhil Bansal, Kirsten Hildrum, Sujay Parekh, Deepak Rajan, Ro-
hit Wagle, Kun-Lung Wu, and Lisa Fleischer. Soda: an optimizing scheduler
for large-scale stream-based distributed computer systems. In Middleware '08.
Proceedings of the 9th ACM/IFIP/USENIX International Conference on Mid-
dleware, pages 306-325, Leuven, Belgium, December 2008.

[59] Ouri Wolfson, Sushil Jajodia, and Yixiu Huang. An adaptive data replication
algorithm. ACM Transactions on Database Systems (TODS), 22(2):255-314,
June 1997.

[60] Praveen Yalagandula, Puneet Sharma, Sujata Banerjee, Sujoy Basu, and Sung-
Ju Lee. s3 : a scalable sensing service for monitoring large networked systems.
In INM '06 Proceedings of the 2006 SIGCOMM workshop on Internet network
management, pages 71-76, Pisa, Italy, September 2006.

[61] Ellen W. Zegura, Kenneth L. Calvert, and Samrat Bhattacharjee. How to model
an internetwork. In INFOCOM'96 Proceedings of the 15th annual joint con-
ference of the IEEE computer and communications societies conference on The
conference on computer communications, volume 2, pages 594-602, San Fran-
cisco, California, USA, March 1996.

[62] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph,
and John D. Kubiatowicz. Tapestry: a resilient global-scale overlay for service
deployment. IEEE Journal on Selected Areas in Communications, 22(1):41-53,
January 2004.

130

