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Abstract

Many large financial, news, and social media companies process and stream large
quantities of data to customers, either through the public Internet or on their own
internal networks. These customers often depend on that data being delivered in a
timely and resource-efficient manner. In addition, many customers subscribe to the
same or similar data products (e.g., particular types of financial feeds, or feeds of
specific social media users). A naive implementation of a data dissemination network
like this will cause redundant data to be processed and delivered repeatedly, wasting
CPU and bandwidth, increasing network delays, and driving up costs.

In this dissertation, we present SPRAWL, a distributed stream processing layer to
address the wide-area data processing and dissemination problem. SPRAWL provides
two key functions. First, it is able to generate a shared and distributed multi-query
plan that transmits records through the network just once, and shares the compu-
tation of streaming operators that operate on the same subset of data. Second, it
is able to compute an in-network placement of complex queries (each with dozens
of operators) in wide-area networks (consisting of thousands of nodes). This place-
ment is optimal within polynomial time and memory complexity when there are no
resource (CPU, bandwidth) or query (latency) constraints. In addition, we develop
several heuristics to guarantee the placement is near optimal when constraints are
violated, and experimentally evaluate the performance of our algorithms versus an
exhausting algorithm. We also design and implement a distributed version of the
SPRAWL placement algorithm in order to support wide-area networks consisting of
thousands of nodes, which centralized algorithms cannot handle. Finally, we show
that SPRAWL can make complex query placement decisions on wide-area networks
within seconds, and the placement can increase throughput by up to a factor of 5 and
reduce dollar costs by a factor of 6 on a financial data stream processing task.

Thesis Supervisor: Samuel R. Madden
Title: Professor
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Chapter 1

Introduction

Modern financial and Internet services need to process and disseminate streams of
data to thousands or millions of users spread around the globe. This is accomplished
not only via massive centralized compute clusters consisting of hundreds of machines,
but by a complex wide-area network of routers and caches. Applications of such net-
works include real-time financial service systems, news feed systems, and social media
networks. News and financial feed services, like Thomson Reuters [7], Bloomberg [3],
and Dow Jones have to process and stream massive quantities of data feeds both over
the public Internet as well as over their private networks to subscribers who have
various requirements as quickly and efficiently as possible. Social media networks
such as Twitter [8] and Facebook [4] may receive updates at data centers worldwide,
subsets of which need to be processed and disseminated efficiently to users and servers
all over the world, using both their own data centers and caches provided by caching
services like Akamai [1]. Delivering information while at the same time processing it
in a cost effective and efficient manner is of critical importance. In addition to the
need for efficient data processing, the cost of simply transmitting this data can be
quite significant. For example Amazon charges $.09/GB for data transferred out from

EC2 to the public Internet, when transferring more than 1 GB of data per month.
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1.1 New Challenges

The applications described above introduce a number of new challenges, including;:
e geographically distributed data feeds, users, and network infrastructure,
e global data feeds with potentially high data rates,

e massive numbers of user subscriptions, which may include complex queries like

pattern detection and require short latency, and

e heterogeneous wide-area networks with thousands of machines and varied net-

work connectivity.

To address the special challenges of wide-area distributed stream processing and
dissemination problems outlined above, we need a simple, effective and scalable so-
lution to deliver results of user subscriptions in a timely manner (satisfy latency
requirements), while minimizing usage of network resources and accommodating CPU

and bandwidth constraints in order to support as many queries as possible.

1.2 Contributions

In this dissertation, we describe SPRAWL, a data stream distribution layer designed to
efficiently distribute data processing across hundreds or thousands of nodes. Specifi-

cally,

1. SPRAWL employs a decomposition and placement (DP) algorithm similar to
Nonserial Dynamic Programming (NSDP) [33] that, given a network of servers,
with measurements of CPU, bandwidth and latency between servers, and an
operator graph, optimizes placement of the operators on the servers to minimize
some objective function (e.g., total bandwidth cost or CPU cost). The SPRAWL
DP algorithm can guarantee an optimal placement within polynomial time and

memory complexity when resources and latency are unconstrained.
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2. SPRAWL includes extensions to SPRAWL DP algorithm to deal with cases where
resource and latency constraints are included. We experimentally show that
these extensions perform near-optimally. This is important because many ap-
plications need to run on commodity machines with limited CPU capacity
and network bandwidth. In addition, latency concerns are often significant

in streaming settings.

3. SPRAWL extends SPRAWL DP algorithm with a distributed version that parti-
tions the query plan and assigns sub-plans to network clusters. Each cluster is
responsible for placing its local sub-plan partition, and collaborates with each
other to optimize the overall placement. This extension makes SPRAWL scalable

to thousands of network nodes and queries each with dozens of operators.

4. SPRAWL includes multi-query sharing strategies that identify opportunities to
share the transmission of data through the network, as well as the shared exe-
cution of operators. SPRAWL extends SPRAWL DP algorithm to support multi-
output DAG query plans in this case since a shared operator is very likely to
have multiple outputs and the original SPRAWL DP algorithm may not apply

any more.

5. Finally, SPRAWL make items 1 — 4 possible in a variety of stream processing
systems (single node or distributed) [28, 13, 44, 6]. SPRAWL is not a full featured
stream processing system. Instead, we have designed SPRAWL to work with
different stream processing engines via a unified interface, as long as the system
provides the capability to implement a DAG of stream processing operators and

supports the appropriate operator implementations.

1.3 Related Work

There has been prior work on distributed stream processing and in-network multi-
query placement [41, 37, 58, 10, 47| that closely related to SPRAWL. However, previous
work lacks key features SPRAWL provides. Min-Cut [41] and SODA [58] are both

21



centralized placement algorithms, and are not scalable to wide-area networks with
hundreds or thousands of nodes. In addition, Min-Cut [41] does not handle CPU costs
or resource/query constraints. SQPR[37] is more focused on multi-query sharing,
and uses a mized integer linear program (MILP) [5] to solve the operator placement
problem, which has exponential time complexity if resource and query constraints
are considered. Finally, SBON [47] and SAND [10] both provide distributed query
placement solutions, but offer no guarantee on the quality of the placements, even
in the unconstrained case, and (as we show in our experiments) generate placements
that are substantially inferior to those produced by SPRAWL. Besides, SBON and
SAND may take long time to converge to a stable placement. More related work will

be investigated in Chapter 7.

1.4 Dissertation Outlines & Main Results

Chapter 2 describes the SPRAWL system designs, highlights the special requirements
of wide-area networks, and defines the type of queries SPRAWL supports. SPRAWL
is designed as a multi-query optimization layer for various stream processing systems
over wide-area networks. To achieve this goal, SPRAWL contains two parts: a cen-
tral control module and an individual control module. The central control module
is responsible for multi-query optimization and placement, while individual control
modules provide a unified interface for underlying stream processing systems.

Chapter 3 discusses the cost model SPRAWL used by the optimization and
placement algorithms, and provides guidance and benchmarks for cost estimates.
SPRAWL’s cost objectives are designed to minimize overall network resource usage,
while simultaneously satisfying resource and query constraints.

Chapter 4 introduces the design and implementation of the SPRAWL decomposition
and placement (DP) algorithm, proves the optimality of the SPRAWL DP algorithm
without resource and query constraints, provides solutions when constraints are con-
sidered, and extends the SPRAWL DP algorithm with a scalable version where no

global information is necessary for each local central control module to make opti-
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mization and placement decisions.

Chapter 5 introduces the SPRAWL data-oriented multi-query sharing strategies
to extend SPRAWL DP algorithm for support for multiple queries, and proves that
the SPRAWL DP algorithm can always find an optimal placement solution no matter
which operator in the query plan is chosen as a root.

Chapter 6 contains four sets of experiments. It shows that in the Amazon Elastic
Compute Cloud (EC2) [2], SPRAWL can increase throughput by up to a factor of 5
and reduce dollar costs by a factor of 6 on a financial data feed processing benchmark
compared to a random placement strategy. It also demonstrates that SPRAWL can
make complex query placement decisions on wide-area networks (with thousands of
network nodes) within seconds and reduce the (latency or bandwidth) cost by a factor
of 3 relative to an existing scalable distributed relaxation algorithm called SBON [47].
In addition, it experimentally shows that SPRAWL DP with constraints can perform
almost as well as an exhaustive algorithm, even in highly constrained settings. Finally,
it shares some experiences on how cost estimates are chosen, and how throughput and
dollars spent relate to the choices of cost estimates.

Chapter 7 is a literature review, Chapter 8 describes future work and Chapter 9

concludes the dissertation.
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Chapter 2

SPRAWL System Design

In this chapter, we provide an overview of the design and architecture of SPRAWL,

including the network model and queries it supports. We begin with a few definitions.

2.1 Definitions

To distinguish networks of physical nodes from graphs of operations, we use the

following terms in this dissertation:

Network Node : a server used to generate and /or process data across the physical

network.
e Network Link : a physical connection between network nodes.

e Query Operator : a block of code that applies a specific operation to data,
e.g., “filter”, “aggregate”, or “join”. Some operators are pinned to particular
network nodes, and others are unpinned and are free to execute anywhere in

the network.
e Data Edge : an edge between two operators that carries data.

e Query DAG : a directed acyclic graph composed of operators for query planning
and execution. A query DAG is typically a tree for a single query, but can be
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non-tree when multiple queries are merged together because shared operators

may have multiple outputs.

2.2 Wide-Area Network Properties

\ ( Asia

siks | N s~ (
{ | \ H / A

1 Wide-area Data Link 2 |
\ \
NA

routers '

[ Intra Data Link |/ | V i
i 2 EU

sources

(a) Wide-Area Network Topology with Three Clusters

(b) Internal Network Structure in each Data Cluster

Figure 2-1: Ilustrative Wide-Area Network Model

Since SPRAWL is designed to be scalable to wide-area networks, we begin with a
brief description of the properties of such networks. Wide-area networks have clusters

of nodes (e.g., Amazon availability zones, or data centers in large organizations),
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connected via wide-area links, as shown in Figure 2-1a. Within each data cluster,
network nodes are connected via high-bandwidth, low-latency local-area links, as
shown in Figure 2-1b.

Compared to wide-area links, local-area links typically have much lower latency
(1 ms or less) and much higher network bandwidth (1-10 Gbps), with very low (or
free) per-byte transmission costs. Since wide-area links have to traverse the public
Internet, service providers often charge on a per-byte basis, and throttle the maximum
allowed data rate per connection. Wide area cluster latencies range from 10s to 100s
of milliseconds. Network nodes in wide-area networks can be categorized based on

their functionality:
e sources (data feeds) produce data to be processed,
e routers (switches) process data and disseminate it to other network nodes, and
e sinks deliver query results to users.

A network node can be a source. router and sink at the same time.

Transit Domains Multi-homed Stub
-y |
| 4 .
‘ . . - . +
o

\

‘, / # ..f Stub-Stub edge

Stub Domains

Figure 2-2: Illustrative Transit-Stub Network Model (reproduced from [61])

Wide-area network structures are often modeled by a Transit-Stub model, as shown

in Figure 2-2 [61]. In a transit-stub model, data clusters are connected via a network

27



of border nodes (transit domains), marked as gray areas in the figure. These border
nodes route data from inside the cluster to the wide-area Internet, and from the wide-
area Internet into the cluster. SPRAWL distributed sharing strategies and placement
algorithms are designed based on this structure.

We assume that network links are symmetric. The routing path between network
nodes is the shortest path calculated based on the routing information maintained
by border nodes. We assume network topologies are relatively stable, so we do not
discuss fault-tolerance issues in this dissertation. The network is not required to be

fully connected.

2.3 Input Query DAG

SPRAWL is designed to support a collection of stream operators similar to those that
appear in stream processing engines (filters, windowed aggregates, and windowed
joins). Currently, SPRAWL only accepts inputs as a DAG of operators rather than
as SQL query (i.e., it doesn’t have a query parser). Specifically, an input DAG of
operators is provided in XML files as was done in Borealis [13].

Query 1 is an example streaming query over a financial data stream written in
StreamSQL [6], and its input DAG is illustrated in Figure 2-3. It comparcs the 5
minute average prices of IBM stock trades in US and Asian markets. Notice that
COM is a user defined function (UDF) that implements the COMPARE operator.
SPRAWL does not need to know implementation details of such UDFs, as long as

operator statistics are provided, as we discuss in Chapter 3.

Query 1. Compare (using a user-defined comparison function) the 5 minute average

prices of IBM stock trades in US and Asian markets.

SELECT COMPARE(avg(Asia.price), avg(US.price))
WHERE Asia.symbol = ’*IBM’ AND US.symbol = ’IBM’
FROM AsiaStocks as Asia, USStocks as US

WITHIN 5 min
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Com{alBM, uIEM) :

"~ Avg(alBM, 5m)

Avg(ulBM, 5m)

Filter(alBM) Filter{ulBM)

Figure 2-3: DAG Plan for Query 1

As another example, Query 2 finds all stock trades with the same company from
Asia, US and European markets, with trading volume greater than X within 1 hour.

One of the corresponding query DAG plans is shown in Figure 2-4.

Query 2. Find all stock trades for the same company from Asia. US and European

markets. with trading volume greater than X within 1 hour.

SELECT Asia.symbol, US.symbol, EU.symbol
WHERE  Asia.symbol = US.symbol = EU.symbol AND

Asia.volume > X AND US.volume > X AND EU.volume > X
FROM AsiaStocks as Asia, USStocks as US, EUStocks as EU
WITHIN 1 hour

2.4 System Architecture

SPRAWL provides a unified interface to make multi-query sharing and placement
optimization transparent to the underlying stream processing system. As such, a
SPRAWL system has two parts: a central control module, an instance of which runs
in each network cluster, and an individual control module that runs on each network
node, as shown in Figure 2-5. Central control modules collect and deploy user sub-

scriptions across the network. Individual modules are designed to communicate with
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Equal Join
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Stocks

Figure 2-4: DAG Plan for Query 2

the underlying query processors.

2.4.1 Control Module Clusters

A single centralized control module is not a scalable solution for wide-area networks
with thousands of network nodes. It may take several minutes for a centralized
algorithm to make a placement decision for complex queries over such networks as we
will show in Chapter 6, not to mention tracking network resource and routing updates.
Hence, SPRAWL partitions wide-area networks into smaller clusters. SPRAWL models
wide-area networks based on the Transit-Stub structure [61] described in Section 2.2,
in which case each cluster only needs to communicate with neighbor border nodes
(transit domains) to decide network routing.

Each network cluster in SPRAWL has a central control module, as shown in Fig-
ure 2-5. Central control modules in each network cluster act as peers. Peer central
control models collaborate with each other to apply multi-query sharing strategies
and make final placement decisions. Each central control model deploys a placement
by sending messages to the individual control modules on each network node within
the cluster. These messages specify the other nodes in the cluster the node should
communicate with and which operators it should instantiate.

An individual control module on each network node is very light-weight. It decodes

messages from the central controller, and reconstructs sub-plans to execute on the
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Figure 2-5: SPRAWL System Architecture

underlying stream processing system. Individual control modules support data trans-
mission between network nodes, in the event that the underlying stream processing
system is a single-node system which does not support distributed data transfer. In
this case, the individual control module redirects the inputs and outputs of sub-plans
to its own input and output sockets. In addition, individual control modules track the
local computer and network conditions and send updates to the peer central control
module within the same cluster. The peer central control module uses these updates
to make placement decisions.

Our experiments show that a peer central control module is able to respond within
reasonable time delay (seconds) for complex queries in a transit-stub network with
fewer than 500 nodes. SPRAWL can scale to thousands of network nodes as long as the

average number of nodes in each cluster is bounded (not more than a few hundred).

2.4.2 Example Distributed Query Placement

Figure 2-6 illustrates how SPRAWL places Query 1 over a three-cluster wide-area

network. In SPRAWL, queries are registered in the cluster where results are delivered.
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Figure 2-6: Query 1 Placed on Wide-Area Networks with Three Clusters

We call this cluster the root cluster for the query. The root cluster is responsible
for partitioning registered queries into sub-queries, and deciding which cluster each
sub-query should be forwarded to. Query 1 in Figure 2-6 is registered with the EU
cluster, so the EU cluster is the root cluster for Query 1. SPRAWL processes Query 1

as follows:

1. The EU central control module accepts Query 1, applies SPRAWL multi-query

sharing strategies and partitions Query 1 into three sub-plans.

2. The EU central control module forwards the two Avg sub-plans to the US and

Asia clusters, respectively, and keeps the C'om sub-plan for itself.

3. The US and Asia central control modules accept forwarded sub-plans, apply
SPRAWL multi-query sharing strategies to these sub-plans the same way as
normal input query DAGs, and then use SPRAWL DP algorithm to calculate

placement information.
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4. The US and Asia central control modules report calculation results of their sub-
plans back to the EU root cluster. The reported results are a list of (node, cost)
pairs indicating the optimal cost of the sub-plan on each network node within

the cluster.

5. The EU root cluster chooses the placement for Com based on the calculated

results from US and Asia, and notifies US and Asia of its decision.

6. The US and Asia central control modules finalize their local sub-plan placement

after receiving these notifications.

A central module only needs knowledge of border nodes from other clusters to
compute query partitioning and sub-plan placement. and does not need global infor-

mation of the entire network.

2.4.3 Central Control Module

PPP
Generator

Message
Processor

Figure 2-7: Central Control Module

The central control module includes four components, as shown in Figure 2-7:
e PPP Generator: a plan/partition/placement generator;

e Message Processor: a messenger to communicate with local individual modules

and peer central modules in other clusters;
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e Resource Map : a network resource allocation map for the cluster;

e Query Catalog : a query/sub-query catalog recording queries/sub-queries run-

ning in the cluster.

The PPP generator (abbreviation for plan/partition/placement generator) is the
core unit of a central module. It generates a shared query plan by applying SPRAWL
multi-query sharing strategies, partitions the plan to sub-plans, and makes placement
decisions for the plan. A message processor is used to share calculated placement
results with other peer clusters and notify individual modules for deployment. As we
show in Section 4.5, the number and total bytes of the messages exchanged through
the network are small. SPRAWL implements the messenger using efficient remote
procedure calls (RPCs). A resource map maintains resource allocation information for
network nodes and links in the cluster, based on which the PPP generator calculates
plan placement. A query catalog records queries/sub-queries that are already running
in the cluster, based on which the PPP generator decides how to apply multi-query

sharing strategies.

2.4.4 Individual Control Module

.l * MODULE1

Resource
Monitor

Resource
Monitor
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Processor
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Figure 2-8: Individual Control Module

Each individual control module also contains four parts, as shown in Figure 2-8:
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e API Interface : an interface for different underlying stream processing engines.

e Resource Monitor : a monitor that periodically updates network node and link

resource states.

e Message Processor : a messenger to communicate with the central module in

the cluster.

e Data Sockets: for data transmission if the underlying stream processing engine

does not support distributed execution.

An individual module decodes deployment messages from a central module, and
re-constructs a DAG of stream processing operators executable on underlying stream
processing engines through unified API interfaces. We will show how these interfaces
work by two cases in Appendix A. An individual module monitors local machine and
network conditions through a resource monitor. The monitor periodically samples
CPU and network link usages and sends updates to central module through the mes-
senger unit. A data socket unit is necessary when the underlying stream processing
system does not support distributed communication, like Wavescope [28]. In that

case, input and output data is redirected to the data socket unit.
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Chapter 3

Cost Model

Before introducing SPRAWL optimization and placement algorithms, we first present
the cost model these algorithms are based on. The SPRAWL cost model captures the
total execution “cost” of a particular placement of operators on a network of nodes. It
is used to measure the overall quality of a particular placement of operators. The goal
of SPRAWL is thus to generate a minimum cost plan and placement. In this chapter,
we define a specific cost function, called the Network Resource Cost Function, used
by default in SPRAWL and suggest cost estimation methods. We note, however, that
SPRAWL is suitable to support a family of cost functions and allows users to write

their own cost objectives, as we will show later in Section 4.4.3.

3.1 Cost Objective

Cost objectives need to capture a trade-off between the quality of service (QoS)
delivered to end users and the operational costs of the service. From an end user’s

perspective, the service provider should
e correctly deliver results of user subscriptions, and
e deliver results within a certain latency.

Users in financial and news data services are willing to pay more for lower latency.

If the query latency is longer than a user wants, he may be unhappy and stop using
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the service. Of course, minimizing query latency can be one of the cost objectives,
but latency lower than certain thresholds may make no difference for users. Hence,
we decide to set query latency as a constraint for the cost objectives.

From a service provider’s perspective, SPRAWL is designed to
e minimize the overall usage of network resources (CPU and bandwidth), and
e deliver results with low latency for the majority of end users.

In this way, SPRAWL can satisfy most user requirements while simultaneously
supporting as many queries as possible. The Network Resource Cost Function is

designed based on these criteria.

3.2 Network Resource Cost Function

The Network Resource Cost Function is modeled as a combination of multiple net-
work resource criteria. Specifically, we define the Network Resource Cost Function as

follows:

Min {3 wfFY x CPU; + 8% wP" x Lat; x BW; }
Such that, CPU; < CPU;, BW; < BW; and Lat, < L,

(3.1)

The cost model consists of two sub-expressions: the left models CPU cost (C PUCost
for short), and the right bandwidth and latency cost (BWCost for short). Here, z
denotes a placement of operators throughout the network.

Although the Network Resource Cost Function is designed based on network re-
sources, it also tends to generate query placements with low-latency. Latency depends
on a variety of network features, including network congestion, computational load,
and the aggregate latency in the overlay network between sources, routers, and sinks.

In SPRAWL, we mainly consider three features:
1. network congestion — related to network bandwidth consumption.

2. node load — related to CPU usage.
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3. path latency — related to latency of each link in the routing path and the

number of hops.

Network traffic will delay network transmission, increasing latency. For the same
reason, over-loading a machine may delay data processing, also leading to longer
latency. Last but not least, longer routing paths also introduce delays. The Network
resource cost function guarantees no network nodes or links are over-loaded by en-
forcing CPU and bandwidth constraints. In addition, SPRAWL always picks up the

shortest latency path suggested by border nodes (having routing information).

3.2.1 CPUCost

S wEPY x CPU; measures compute costs. CPU; indicates the total CPU usage on
network Node;, which is the sum of the CPU usage for each operator placed on Node;.
wSTU is the weighted cost of each unit of CPU computation on Node;. This value may
vary depending on the type of machines available in the network (e.g., different sized
Amazon EC2 instances), and may also vary as a node becomes more or less loaded

to encourage the movement of computation between network nodes. For instance, if
CPU

Node; is already heavily loaded, we can increase w; so that the cost to use this

node for new subscriptions is relatively high.

3.2.2 BWCost

Similarly, 8 wP" x Lat; x BW; measures network costs. w?" is the weighted
cost of each unit of bandwidth on network Link;. The price for transmitting data
over different networks may be hugely variable (e.g., on Amazon Web Services, wide
area bandwidth may cost as much as $0.18/GB, while intra-data center bandwidth
is essentially free). Increasing the weight cost (price) of bandwidth can also move
communication to other links to avoid network congestion.

Lat; denotes the latency of Link;. BW; denotes the sum of bandwidth con-
sumption for each operator transmitting data over Link;. Lat; x BW; measures the

saturation of Link;. It increases if the latency or bandwidth consumption of Link;
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increases. Of course, the cost functions can also be a simple weighted sum of latency
and bandwidth, rather than a product. We choose product instead of sum in this
dissertation in keeping with previous research 10, 47] that used a similar methodology.

Finally, 8 is a parameter to vary the relative weight of C PUCost and BW Cost.

3.2.3 Constraints

CPU; < CPU; is a CPU constraint to ensure Node;’s CPU usage does not exceed its
capacity, BW; < BW is a bandwidth constraint to ensure that Link; is not saturated,
and Lat, < L, is a latency constraint to keep the latency of a query ¢ within a user’s

specified latency requirement L.

3.3 Cost Estimates

In this section, we discuss how to estimate the parameters in Formula 3.1.

3.3.1 BWC(Cost Estimates

Lat; can be estimated and updated easily by periodically pinging between pairs of
network nodes. If needed more sophisticated network measurement techniques could
be employed, e.g. Vivaldi [20].

BW; can be estimated by measuring each source’s data rate and each operator’s
selectivity, using standard database cost estimates. For example, the output band-
width consumed by a filter with selectivity s and input data rate R tuples/s is RxBxs
bytes/s, where B is the bytes used by each input tuple.

wBW

;" is the weighted unit cost for bandwidth, which is a provider-dependent value.

For example, in Amazon EC2, data transmission between different AWS regions costs
$0.02/GB for first 1 GB of data, and $0.18/GB up to 10 TB every month. We will

also show how we experimentally determine this weight in Section 6.5.2.
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3.3.2 CPUCost Estimates

CPU; is more complicated, because it depends not only on the data and logical
query, but also on the query operator implementation. Much of the previous research
on network-aware stream processing [10, 47, 41] has excluded CPU cost and CPU
constraints due to either methodological limitations or to simplify the optimization
formulation. This may be reasonable when running queries with light computation
demands. However, in other cases, CPU cost does matter. Specifically, many clouds
consist of commodity machines and service providers charge for machines by hour.
For example, an Amazon EC2 M3.Xlarge machine (64-bit 4 Core, 3.25 units each
core, 13 units in total and 15 GB Memory) costs $0.500/hour. The SPRAWL cost
model uses the percentage of a machine’s CPU used when running an operator to

measure the operator’s CPU usage. This method is easy to model and extend if an
cP

operator’s input and output data rates are known. w&Y is the weighted unit cost

w

for CPU, and can be set similarly in the way w?% is set.

3.3.3 [ Estimates

Finally, we need to decide 8 in Formula 3.1. /3 is the relative weight of C PUCost
and BW Cost, varying in different networks and stream processing systems. Users
need to profile their own g value based on network conditions and stream processing
systems they are using. SPRAWL provides profiling benchmarks to help users choose
their own S value.

SPRAWL profiles 8 based on dollars spent. Suppose we pay $cpy to reserve a
machine for a period of time, and $pw to transmit 1 unit of data through the network
($cpy and $pw can be quoted easily from cloud providers). Suppose that during a
certain period of time, the total amount of data transmitted through network is G.

We then get:

CPUCost ~ $cpu
BXBWCOSt ~ $BWXG

(3.2)
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The left side of Formula 3.2 is the cost calculated from Formula 3.1, and the right

side of Formula 3.2 is the corresponding US dollars paid. We say C'PUCost and

BW Cost is equivalent if the same amount of money is paid for computation and for

data transmission. Hence,

C'PUCost _ $CPU
BxBWCost ~—  $pwxG
X A —  S$pwxGxCPUCost

$C.PU x BW(Cost

3.3.4 Example § Estimation Benchmark

Node0 Node1

y
Sending Data @ Operator

| A | S

Figure 3-1: Example 3 Estimation Benchmark

Figure 3-1 illustrates an example benchmark setting for 3 estimation. We run

simple source — filter queries on network Nodeg and Node,, with sources configured

to produce random data at a maximum rate. The price to reserve a machine for a

period of time is $¢py. During the period of time, the source — filter queries send

G G B of data between Nodey and Node;. The price to transmit 1 GB of data between

Nodey and Node, is $gw. So, we can estimate 3 easily according to Equation 3.3:

B __ $SpwxGx(CPUCostog+CPUCosty)
 (ScruotScpur)xBWCosto,
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CPUCost is measured as the percentage of CPU units used. Assume the source —

filter queries use py% and p;% CPU capacity of Nodey and Node, respectively, then

/3 _ $pwxGx(po%+p1%) (35)
- 28cpu x BW Costo,1

The remaining job is to calculate BW Cost between Nodeg and Node;:

BWCostyy = Lat x BW
= Lat x G/time

(3.6)
Finally,

__ 8w xtimex(p1%+p2%)
ﬂ - 28¢cpy x Lat (37)

43



44



Chapter 4

Query Plan Decomposition and

Placement

In this chapter, we consider the problem of placing a query plan (tree) on a physical
network topology. The problem of multi-query plan generation will be discussed
in Chapter 5. Even in the single query case, however, there are an exponential
number of operator placements, since any operator can be placed on any node, and
we have to consider all such possible placements. In this chapter, we show that it
is possible to efficiently compute optimal placements within polynomial time and

memory complexity, and with few network messages.

This chapter is organized as follows: Section 4.1 introduces the SPRAWL decompo-
sition and placement (SPRAWL DP for short) algorithm; Section 4.2 proves optimality
of SPRAWL DP without constraints; Section 4.3 extends SPRAWL DP to include net-
work resource and query constraints; Section 4.4 extends SPRAWL DP to a distributed
version so that SPRAWL can scale to wide-area networks with thousands of network
nodes; finally, Section 4.5 provides an analysis of the time, memory and message

complexities of SPRAWL DP.
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4.1 SPRAWL Decomposition and Placement Algo-

rithm

The placement problem can be formulated as discrete programmaing that can be solved
efficiently by algorithms like Non-serial Dynamic Programming (NSDP). NSDP is
a general technique that aims to solve optimization problems in stages, with each
stage calculated from the result of previous stages. SPRAWL employs an NSDP-like
algorithm we call decomposition and placement (DP for short) that is based on the

observation that the total cost of each plan can be accumulated from its sub-plans.

4.1.1 Sub-Plan Cost Accumulation

Execution
" Plan

— Physical
Network

Figure 4-1: Query | Placed onto a Physical Network

Figure 4-1 shows how Query 1 is placed onto a physical network. For notational
purposes, we denote a subtree by its root operator. For example, subtree ops in
Figure 4-1 refers to “src; — op; — ops”, and subtree ops refers to the whole tree. If
a subtree’s root operator op; is placed on Node;, we denote it as the subtree op; on
Node;. Using the network resource cost function given in Formula 3.1, the cost of the

subtree op; on Node; is the sum of:

e the total cost of op;’s children’s subtrees,
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e the total BW(Cost from each child to op;, and

e the CPUCost of op; on Node;.

For example, in Figure 4-1, given that ops is on Node; and op, is on Node,, the

subtree cost of ops on Nodes is equal to the sum of:

o Child subtree cost : the subtree cost of ops on Node; + the subtree cost of op4

on Nodes

o BW cost : ﬂ X [wf},’v X Lat1,5 X BW(3’5) + wfgv X Lat2,5 X BW(4,5)]
Here, w%w indicates the unit weight cost to transfer data from Node; to Node;;,
Lat; ; is the latency from Node; to Node;j, and BW; ) indicates the data rate

from op, to op,.

e CPU cost : the CPU cost to process ops on Nodes

4.1.2 SPRAWL Decomposition Function

We can write the decomposition function as follows:

OPCOSti,J’ =

Néi)l(l{ZteT(SubCostt,x(t) + BWCostyy ;) + CPUCost; ;}
¥ [a] (] [c]

where X is the set of all possible node assignments for (4.1)
each operator, T is the set of op;’s children, and z(t) is

the physical placement of each child ¢ in T.

OPCost; ; denotes the optimal subtree cost of the subtree op; on Node;, SubCost,; 41
denotes the subtree cost of op; on Node,), given a assignment z; BWCostyy ;
represents latency x bandwidth cost (BW Cost for short) of sending data from op;’s
child op; to op; via network link from Node,;) to Node;; CPUCost; ; stands for CPU
cost (CPUCost for short) of executing op; on Node;.
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4.2 Optimality of SPRAWL DP without Constraints

We first consider the case where there are no bandwidth, CPU, or latency constraints
on network nodes, links or queries, i.e., if the constraint clauses in Formula 3.1 are

not considered. In this case, the decomposition function has an optimal substructure.

4.2.1 Optimal Substructure

Theorem 4.2.1. For a gwen tree-structured plan with op; on Node;, its optimal
subtree placement with cost OPCost; ; must contain an optimal placement of each of

its children’s subtrees.

Proof. We prove this by contradiction. Suppose we have an optimal subtree placement
with cost OPC'ost;j. Consider one of op;’s children op; on Nodegy). If op;’s subtree
on Nodeg ) (with subtree cost SubCost, () does not have an optimal cost, we can
replace SubCost, ) with OPCost, 4+) to get a better solution for OPCost, ;, since
no constraints apply. This contradicts the fact that OPCost; ; is optimal. O

Hence, in the unconstrained case, SubCost; ;1) = OPCost, 5(1), and we can rewrite

Equation 4.1 as follows:

OPCOStiyj =

I\/éi)l(l{zteT(OPCOStt,m(t) + BWCOStz(t),j) -+ CPUCOSti,j}
¥ [a] (o] [c]

(4.2)

Equation 4.2 indicates OPCost; ; can be accumulated using its immediate chil-
dren’s optimal subtree cost (Part [a]). Part [b] of Equation 4.2 is the BW Cost from
op; to op; via the link from Node,) to Node; , which can be estimated easily as long
as we know the output data rate from the child op; to op;. The output data rate can
be estimated based on the plan structure and data source rate. Part [c] represents the
CPUCost of executing op; on Node;, which can also be estimated easily because it

is only related to the number of CPU units needed to process operator op; on Node;.
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Without the CPU constraint clauses in Formula 3.1, C PUCost (Part [c]) is inde-

pendent from the rest of Equation 4.2. Hence, Equation 4.2 can be rewritten as:

OPCOSti’j =

I\/éi)r(l{zteT(OPCostt,x(t) + BWCost, )} + CPUCost; ;
* [a] (] (]

(4.3)

Without bandwidth constraint clauses, each of op;’s children’s optimal subtree
costs plus BWCost (Part[a] + Part [b]) are independent of each other. So we can
further reduce Equation 4.3 to:

OPCOStiJ =

(4.4)
ZteT{%an(OPCOStM(t) + BWCostyp ;) } + CPUCost;

Equation 4.4 indicates that OPCost;; can be calculated as long as every
child’s OPCost, ;) is known.We can ensure this property easily by calculating each
OPCost; ; in a postorder traversal of the query tree to make sure that before calculat-
ing OPCost; j, OPCost, 1) has already been calculated and cached for each of op;’s
children op;, on each possible placement of op; in X. This property guarantees the
optimality of the entire query tree placement generated by SPRAWL DP algorithm.

Continuing with the example shown in Figure 4-1, a feasible postorder traversal
of the qeury plan (shown in the left) is “srcy, opy, ops, srce, opa, opa, ops”. When
calculating the optimal subtree cost O PCost,p, j; of the subtree rooted from ops on
each possible network Nodej, (Node; ... Nodeg), OPCostop, ;, and OPCostgp, ;,
for each jsz, 74 € (1...6) have already been calculated and cached. To calculate each
OPCostyp, js With js € (1...6), we only needs to calculate ops’s (and op4’s) network
position z(ops) that minimizes the optimal subtree cost rooted from opz plus band-

width cost BW Costy(ops).js-

4.2.2 Pseudocode for SPRAWL DP Algorithm

The SPRAWL DP algorithm for the unconstrained case is shown in Algorithm 1

(pseudocode). The plan Tree to be deployed and the physical network Net (in-
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Algorithm 1: SPRAWL DP Algorithm with No Constraints

Input: operator plan T'ree and physical network Net
Output: optimal placement OPT

1 Initialize two dimensional matrices OPCost, and COPT

2 foreach operator op € Tree (in postorder) do

3 if op is leaf then

4 foreach n € Net do

5 | OPCostop)[n] = CPUCostop,n;

6 L continue;

7 foreach n € Net do

8 OPCostlop|[n] = CPUCostop,n; COPT|op][n] = &;

9 foreach c € children of op do

10 MinC = oo; MinP = —1;

11 foreach k € Net do
12 if MinC > OPCostlc][k] + BWCosty ,, then
13 | MinC = OPCost[c|[k] + BW Costy n; MinP =k
14 OPCost|op][n]+ = MinC;
15 COPT(op][n] "€ (¢, MinP)
16 MinRC = oo; MinRP = —1
17 foreach n € Net do
18 if MinRC > OPCostroot][n] then
19 | MinRC = OPCost[root][n]; MinRP =n

20 return deploy(root, MinRP, COPT)
21 def deploy(op, node, COPT):

insert

22 OPT "< (op, node)

23 if op is leaf then return OPT;

24 foreach c € children of op do

25 | merge(OPT, deploy(c, COPT[op][node].c, COPT))
26 return OPT

cluding topology and resource information) are input parameters to the algorithm.
The output is an optimal placement of T'ree over Net. Algorithm 1 traverses Tree in
postorder, from leaf to root. If the operator is a leaf, the minimal cost to put operator
op on Node, is just the corresponding CPU cost (lines 3 — 6). If an operator op can
not be put on some particular Node, in the network (e.g., source operators may only
be allowed to put on the source nodes), we can make C'PUCost,,, = 0o to avoid

executing op on Node,.

Non-leaf operators are considered starting from line 7. OPCost[op][n] is used to
store the minimal cost of the subtree rooted from operator op on Node,,. COPT [op][n]
is used to store each of op’s children’s positions when the minimal cost is reached. This
is used later by deploy (line 20) to recursively lookup each child’s optimal placement

when the subtree root’s position is determined. Lines 9 — 15 calculates MinC' (the
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minimal subtree cost plus BWCost) for each child of the current operator op on
Node,, under consideration, and records the minimal-cost position of each child as
MinP. Note that OPCost[c|[k] must have already been calculated when op is under
consideration, since the algorithm visits operators in postorder.

After the entire tree has been traversed, all the optimal cost information is
recorded in OPCost, and all the optimal placement information is recorded in COPT'.
Lines 16 — 19 uses this information to search for MinRC (the minimal subtree cost
from root) and MinRP (root's optimal position). After fixing the root’s optimal
position, we can use information stored in COPT to recursively find the entire tree’s

optimal placement, as shown in lines 21 — 26.

4.3 SPRAWL DP with Constraints

When the constraint clauses in Formula 3.1 are considered, Algorithm 1 may no longer
guarantee an optimal solution if any of the constraints is reached. For example, in
Figure 4-1, when considering the placement of op5, it may not be feasible to place
children op3 and op4 on nodes chosen by Algorithm 1 because of the constraint clauses.
Constraints in Formula 3.1 can be categorized into two types: resource constraints
(CPU and bandwidth) and query constraints (latency).

Resource constraints can be checked in each calculation stage. To avoid violating
resource constraints, we can gradually increase the (weight) cost of the resource unit
as the resource becomes scarce or make the resource unavailable when it is fully
consumed. In contrast, latency constraints are query oriented. They cannot be
checked until the entire plan is built. We show how SPRAWL handles these two types

of constraints in this section.

4.3.1 SpPrawL DP with Resource Constraints

To check resource constraints, we maintain an extra ResourceMap;; to record
the CPU and link bandwidth usage for each subtree rooted from op;, on Node;.

ResourceMap; ; is calculated and accumulated the same way as OPCost; ;. CPU
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Algorithm 2: SPRAWL DP Algorithm with Resource Constraints

1
2
3

N oM

[+]

10
11

12

13
14
15
16
17
18
19
20
21
22
23
24

25
26

27

28
29
30
31
32
33
34

356
36

Input: operator plan Tree and physical network Net
Output: optimal placement OPT

Initialize two dimensional matrices OPCost, COPT, and ResourceMap;
foreach operator op € Tree (in postorder) do

place.OK = false;

foreach n € Net do

Resource Map[op][n).addCPU (n, op);

if ResourceMap|op|[n].valid() then

insert

|__ NetC +— n; place. OK = true;

if place OK == false then return null;
if op is leaf then
foreach n € NetC do

| OPCostlop|[n] = CPUCostop,n;

continue;

foreach n € NetC do
OPCostop)[n] = CPUCostop,n; COPT|op|ln] = @;
foreach c € children of op do
MinC = oo; MinP = —1; cplace.OK = false;
foreach k € Net do
if !ResourceMaplc](k].valid() then continue ;
tempRM = ResourceMapl|c]lk] + Resource Map(op](n];
tempRM.addBW (¢, k, op,n);
if tempRM valid() then continue ;
cplace_.OK = true;
if MinC > OPCost[c|[k] + BW Costy, ,, then
L MinC = OPCost|c][k] + BWCostg n; MinP =k

if eplace . OK == false then
| ResourceMap(op][n].valid = false; break;

OPCost|op][n]+ = MinC; COPT|op|[n] =" (¢, MinP)
Resource Map|op|[n].add(Resource Map|c]{MinP]);
ResourceMap(op][n].addBW (¢, MinP, op,n);

place OK = false;

MinRC = oo; MinRP = -1

foreach n € Net do

if ResourceMap|root][n].valid()

and MinRC > OPCost{root][n] then
MinRC = OPCost|root][n]; MinRP = n;
place OK = true;

if place_ OK == false then return null;
else return deploy(root, MinRP, COPT);
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and bandwidth resources can be allocated only if the allocation does not violate
resource constraints.

Algorithm 2 shows the pseudocode for SPRAWL DP with resource constraints.
Lines 3 — 8 check whether each Node,, can provide enough CPU units for operator op
to run on it. Lines 9 — 12 initialize the cost of leaf operators just as in Algorithm 1.
Non-leaf operators are considered starting from line 13. When calculating operator
op’s children’s minimal cost position, the corresponding Resource Map must also be
validated, as shown in line 18 and line 21. If any of operator op’s children cannot
be placed because of resource violations (line 25), then op can not be placed on
Node,, (line 26). Finally, the ResourceMap of operator op on Node, is updated if
the child’s minimal cost position is found (line 27). Lines 28 — 30 look for the optimal
node position for the root of Tree. The function deploy in line 36 is the same as in
Algorithm 1.

Instead of setting hard constraints on resources as we did in Algorithm 2, we can
adjust the weights w¢FY and wB" defined in Formula 3.1 to encourage the movement
of computation and network traffic between network nodes and links. If a network

CPU

node or link is heavily loaded, we can increase its w or wBW. Similarly, we can

CPU and wB" when nodes or links are underutilized. In reality, machines

decrease w
don’t stop running when their resources are over-utilized but simply become slower.
Network links do not stop transmitting data when they are congested but lead to

longer latency. By making resource constraints soft, we can still achieve optimality.

P BW

This does, however, require choosing w“*Y and wPW carefully.

4.3.2 SPrRAWL DP with Latency Constraints

Latency constraints are different from resource constraints because they are query-
oriented instead of network-oriented. They cannot be checked until the entire plan
is built. For CPU and bandwidth constraints, if a server or a link is saturated, we
can avoid violating constraints by not using the server or link in a later deployment.
However, we can not avoid latency constraints in a similar way since latency continues

to increase as the deployment proceeds. To solve this problem, we pre-allocate a
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latency bound to each subtree of a query, called latency bound pre-allocation. Before
discussing details of latency bound pre-allocation, we first describe how latency is

calculated within the placement procedure.

Latency Calculation

Latency calculation is based on Equation 4.5, and can be done while SPRAWL DP

traverses the query tree, so no additional pass of tree traversal is needed.

LCLtq = Mbax{Latsub + Latlmk} + La,tpmc (45)
subeg

Equation 4.5 indicates that the latency of a query tree ¢ is accumulated recur-
sively as the maximum latency of any sub-tree sub of ¢ (Latsy) plus the link latency
between the root of sub and the root of q (Latynk), plus the processing latency of
the root of ¢ (Latpo). In most cases, Lat,,. can be treated as a constant, and is
often negligible, especially with simple operators in wide-area networks where network

latency dominates.

Latency Bound Pre-Allocation

To satisfy latency constraints, we pre-allocate a latency bound to each subtree of a
query q based on ¢’s overall latency constraint. The pre-allocation of latency bounds
must be done carefully. Setting each subtree’s latency constraint too tightly could
lead to a bad placement, while setting it too loosely may lead to a placement that
violates ¢’s overall latency constraint. For each subtree op placed on Node,, its

latency bound pre-allocation is set as follows:

Lat0p7n < %ilél{llatq - Latn,client - Latproc} (46)

As illustrated in Figure 4-2, Lat, is the overall query latency requirement,
Lat, ciient is the network latency from Node, to the client node Nodejen: on which

query q is delivered, and Lat,,,. is the operator processing time (from op to ¢’s root).
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Figure 4-2: Latency Bound Pre-Allocation

As above, in most cases, Lat,... can be treated as a constant, and is often negligible.

If multiple queries share the same op, the minimal latency bound is chosen.

This latency bound pre-allocation criterion is chosen based on two observations:

1. Every query placement that does not violate the latency constraint and that
places op on Node, must also satisfy the subtree latency requirement Lat,, ,, set
by Equation 4.6. This is because the latency between the node of the subtree
root operator’s placement Node, and the node where query results are delivered
Nodegient 18 Lat y cient). leaving a quota of at most Lat, — Lat(, cqient) latency

for the subtree.

2. Subtrees op on Node, that satisfy the subtree latency requirement Lat,,, can
obtain at least one latency-valid query placement, simply by putting operators

between op and the query root onto Node jien:-

The two observations ensure the latency criteria set by Equation 4.6 is neither
too tight (every placement that does not violate latency constraints will have already
followed the criteria) nor too loose (at least one placement can be found). Latency
bound pre-allocation can be done at the same time as the SPRAWL DP traverses the
DAG for placement calculation, and does not require an extra traversal of the tree.

Pseudocode for the SPRAWL DP algorithm with latency constraints is shown in
Algorithm 3. Algorithm 3 works for latency constraints by including subtree latency
bound pre-allocation and latency checks in ResourceMap.valid(). Line 28 updates

the latency of the subtree op on Node, to its longest path latency.
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Algorithm 3: SPRAWL DP Algorithm with Constraints

® O R W N

10
11
12

13

14
15
16
17
18
19
20
21

22
23
24

25
26

27

28
29

30
31
32
33
34
35
36

37
38

Input: operator plan Tree and physical network Net
Output: optimal placement OPT

Initialize two dimensional matrices OPCost, COPT, and ResourceM ap;
foreach operator op € Tree (in postorder) do

place_.OK = false;

foreach n € Net do

ResourceMap|op][n].addC PU (n, op);

ResourceMap|op][n].lat = 0;

if ResourceMap|op|[n].valid() then

L L NetC Erﬁ; place_OK = true;

if place.OK == false then return null;
if op is leaf then
foreach n € NetC do

| OPCost[op][n] = CPUCostop,n;

continue;

foreach n € NetC do
OPCost|op|[n] = CPUCostop,n; COPT[op][n] = @;
foreach c € children of op do
MinC = oo; MinP = —1; cplace_.OK = false;
foreach k € Net do
if !ResourceM ap|c]{k].valid() then continue ;
tempRM = ResourceMap|c][k] + Resource Map|op|[n]; tempRM.addBW (c, k,op,n);
tempRM.lat = ResourceMap|c](k].lat + linklat(k,n) if 'tempRM valid() then
continue ; ’
cplace OK = true;
if MinC > OPCostlc|[k] + BWCosty, , then
| MinC = OPCost|c][k] + BW Cost, n; MinP =k

if cplace OK == false then
| ResourceMaplopl[n].valid = false; break;

OPCostlop][n]+ = MinC; COPT[op][n] T (o, MinP)
Resource Map|op|[n].add(Resource Map|[c|[MinP]);
Resource Map|op|[n].addBW (¢, MinP, op, n);
templat = ResourceMap|c]|k].lat + linklat(k, n)
if ResourceMap[op][n].lat < templat then

L ResourceM aplop|[n].lat = templat;

place.OK = false;
MinRC = oo; MinRP = —1
foreach n € Net do
if ResourceMap[root][n].valid()
and MinRC > OPCost[root][n] then
MinRC = OPCost[root|[n]; MinRP = n;
place OK = true;

if place . OK == false then return null;
else return deploy(root, MinRP, COPT);
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4.4 Distributed SPrRAWL DP

The observation that SPRAWL DP divides the query placement problem into subcom-
ponents, which can be solved and combined to arrive at a globally optimal solution
inspires a natural extension to make the SPRAWL DP algorithm distributed: each
central control module works on a subset of the plan, and then collaborates with

other central control modules to determine the final placement.

As shown in Section 2.4.2, queries are registered in the cluster where results are
delivered in SPRAWL. We call this cluster the root cluster for the query. The root
cluster is responsible for partitioning registered queries into sub-queries, and deciding
which cluster each sub-query should be forwarded to. Figure 2-6 illustrates how
Query 1 is placed in a three-cluster wide-area network. Query 1 is registered with the
EU cluster. The EU control module partitions Query 1 into three sub-plans, placing
the two Awvg sub-plans in the US and Asia clusters, respectively, and keeps the Com
sub-plan for itself. We will describe this partitioning problem in Section 4.4.1.

To determine the placement of each operator, each cluster (US, Asia and EU)
applies the SPRAWL DP algorithm on its assigned sub-plans in parallel. The results
of the computation on the US and Asia clusters are sent to the parent (root) cluster
(EU), which uses the results of US and Asia to determine the optimal placement of
its own operators, and to report back to the child US and Asia clusters the final

placement they should use. The details of this algorithm are given in Section 4.4.2.

4.4.1 Query DAG Partition and Assignment

We start with discussing how plans are partitioned and assigned. Distributed
SPRAWL DP is designed for wide-area networks where data transmission through
wide-area links is costly. Hence our goal is to minimize wide-area bandwidth con-
sumed. The DAG partitioning and assignment problem is similar to the discrete
programming problem discussed in Section 4.2, with operators assigned to clusters

instead of individual network nodes. Hence, we can design the objective function as
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follows:

Mpin {3 wPV x BW; } (4.7)

Formula 4.7 minimizes the overall bandwidth sent through wide-area data links.
p denotes a partition of operators over all clusters, BW; stands for the sum of band-
width consumption for each operator transmitting data over wide-area Link;, and

wBW

7" is the weighted cost of each unit of bandwidth on Link;. The partitioning

problem with cost objective Formula 4.7 can be solved using a DP algorithm similar
to Algorithm 1. If desired, SPRAWL also allows users to write their own cost objectives
in unconstrained cases, as we will discuss in Section 4.4.3.

Wide-area network structures can be modeled by a Transit-Stub model [61], where
clusters are connected via a network of border nodes as discussed in Section 2.2. The
border nodes route data from inside the cluster to the wide-area Internet, and from
the wide-area Internet into the cluster. Hence, the control module in each cluster
only needs knowledge of its border nodes to compute partitioning, and does not need

global information of the whole network.

4.4.2 SPRAWL Distributed DP Algorithm

After a query plan is partitioned and sub-plans are assigned to clusters, the distributed
placement process can begin.

Consider a sub-plan S with its root operator r placed on a child cluster C', with
an edge to an operator o in its parent cluster P. To calculate O PCost, for Nodey, in
cluster P, the central control module in P needs to know OPCost, ; for each Node;
in cluster C' as well as the cost to transmit data from r to o, that is BWCost, ), as

shown in Formula 4.8:

OPCostor =
Min{Zreo.children()(OPCOStTJ + BWCOSt(T’O)) - CPUCOStO’k} (48)
for each Node; € r.cluster()

In distributed SPRAWL, BW Cost,, o) from operator 7 to operator o can be divided
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into three parts: BWCost from r on Node; to the border node in C, between the
border node of C' and P, and from the border node of P to o on Node,. The first
part of this BWCost will be added to O PCost, ; (denoted as O PCost, ;) and sent to
cluster P. All of these quantities can be computed locally by the central module of
C simply by running Algorithm 1 (or Algorithm 3) on S. Hence, the message sent
to P is an array of OPC’ost’m for each Node; in cluster C, indicating the optimal
subtree costs of placing S at each Node; in C. This process continues upward until
the root cluster collects all the messages from its child clusters. The root cluster then
sends the placement decision back to each of its child clusters, which in turn send
placement decisions to their children, and so on.

The message sent back to each child C includes the node information where C’s
sub-plan should be rooted. This backward process is similar to the deploy() function
in Algorithm 1. The deployment process is completed when each child cluster receives
the decision made by its parent cluster.

Resource constraint checking and latency bound pre-allocation can be done sim-
ilarly as described in Section 4.3. Again, the central control module in each cluster
only needs to know the local sub-plan and networks within the cluster and does not

need any global information.

4.4.3 User-Defined Cost Objectives

The SPRAWL DP algorithm decomposes the placement problem into stages,with costs
calculated (lines 12 — 13 in Algorithm 1) and accumulated (line 14) in each stage.
SPRAWL allows users to define cost objectives by writing their own Calculate and
Accumulate functions. SPRAWL implements a template for users to instantiate (line
5), calculate and accumulate OPCost, and provides APIs to access CPU, bandwidth
and latency estimates in unconstrained cases.

As an example, if we want to apply SPRAWL DP to the cost objective shown in
Formula 4.7, we should initiate OPCost = 0 since no CPU cost is considered, and
keep the rest of the algorithm unchanged, except that BW Cost calculation should be

adjusted accordingly. Users must be careful when designing cost objectives to make
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sure their cost objectives still have optimal substructure.

4.5 Complexity Analysis

In this section, we analyze time, memory and network message complexity of SPRAWL

DP with and without constraints as well as the distributed SPRAWL DP.

4.5.1 Time Complexity

The time complexity of SPRAWL DP without constraints (Algorithm 1) and with
constraints (Algorithm 3) are bounded by the four loops (lines 2 — 11 in Algorithm 1,
lines 2 — 18 in Algorithm 3). The third loop (line 9 in Algorithm 1, line 16 in
Algorithm 3) is negligible because, although arbitrary size queries are allowed, the
number of children each operator has is limited. This is true because machines can
not handle an unlimited number of input or output sockets. Hence, the entire time
complexity is bounded by O(M N?), where M is the number of the operators in a
query plan and N is the number of physical nodes in a network. SPRAWL has better
time complexity than Min-Cut [41] (O(N?)) in large networks since M is much smaller
than N in such cases.

For the distributed SPRAWL DP algorithm, the time complexity is ©(c * M N?),
where ¢ is the number of clusters which can be considered as a constant, M, is the
average number of operators in each sub-plan and N, is the average number of nodes
in each cluster. Although the upper bound is still O(M N?), distributed SPRAWL DP
works much better in reality because it divides the wide-area network into smaller

clusters, and allows computation in parallel within these clusters.

4.5.2 Memory Complexity

The memory complexity of SPRAWL DP with no constraints (Algorithm 1) is re-
lated to two matrices OPCost and COPT. The memory complexity for OPCost
is ©(MN), and O(MN) for COPT. Hence, the total memory complexity of the

60



algorithm is bounded by O(M N).

SPRAWL DP with constraints (Algorithm 3) has one more data structure
ResourceMap. ResourceMap is with ©(M N) memory complexity, so the total mem-
ory complexity is still bounded by O(MN).

The memory complexity of distributed SPRAWL DP is bounded by O(M;N,.). The

message complexity is negligible, as will be shown in the next section.

4.5.3 Message Complexity

For centralized SPRAWL DP, messages are sent between the central control module and
each individual module. The central control module sends sub-plan configurations to
each corresponding individual module, with message format similar to the API code
shown in Appendix A. The overall number of messages sent from the central module
to individual modules is bounded by O(M) per query. Each individual module sends
machine and network resource updates to the central module after each sub-plan is
deployed. Hence the number of network resource update messages is also bounded
by O(M).

Besides the messages sent between central modules and individual modules, dis-
tributed SPRAWL DP sends additional messages between central modules in different
clusters. The number of messages sent between clusters is equal to the number of sub-
plans the query DAG is partitioned into, which is bounded by the number of clusters
c¢. The message sent from a child cluster to a parent cluster consists of an array of
costs, one for each Node; in the child cluster, which is around O(N.) bytes. N is
normally smaller than 1000, so the size of each message is less than 1KB, and can
be implemented efficiently via RPCs. The message sent back from a parent cluster
to a child cluster is a single id number that is used to identify the sub-plan root’s

placement. Hence, the overall message cost is negligible.
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Chapter 5

Multi-Query Plan Generation

In Chapter 4, we addressed the problem of operator placement assuming a query
DAG (tree) is given. In this chapter, we show how query DAGs are constructed for
multiple concurrent queries.

Previous work [31, 30, 50] in database research on multi-query sharing focused
mainly on sharing operator processing and reusing intermediate results, since data
transmission between operators (except for disk I/0) is not costly in traditional local-
area/single-node databases. However, in a wide-area streaming scenario, saving band-
width is critically important. Because of this, our sharing strategy is oriented around
sharing data transmission (reducing bandwidth consumption), rather than just shar-
ing operators. This is significant because it means that even if operators share no
computation, they can still share data (tuples) sent over the network, if they operate
on the same input streams. Of the related distributed stream processing systems,
SQPR [37] also shares streams between operators. However, it uses a mixed integer
linear program (MILP) solver, which is not scalable as the number of operators per

query and the network size increase.

5.1 Definitions

Before introducing the SPRAWL multi-query sharing strategy, we introduce a few

definitions (similar to those in [50], but modified to be data oriented):
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Definition 1. An operator o; is covered by operator o; (0; = 0;) iff 0;’s result is a

subset of 0;’s result.

Definition 2. An operator o; is equivalent to operator o; (0; = 0;) iff 0; = 0; and

0; = 0;.
From the definitions given above, we can easily derive two more properties:

Property 1. If operator o; = o; and operator p; = p;, then o; Ap; = 0; A\ p;

Property 2. If operator o; = o; and operator p; = p;, then o; V p; = 0; V p,

Here, A and V represent AND and OR, respectively.

5.2 Multi-Query Sharing Strategy

As mentioned in Chapter 2.3, queries are input as directed acyclic graphs (DAGs) of
operators. The SPRAWL multi-query sharing strategy identifies sharing opportunities

between these DAGs in three steps:

1. SPRAWL uses standard optimization techniques (e.g., a Selinger-style opti-

mizer [49]) to locally optimize these DAGs.

2. SPRAWL identifies operators with the same inputs that perform the same com-

putation in these locally optimized DAGs, and merges them together.
3. SPRAWL identifies opportunities to reuse existing data links.

Steps 1 and 2 are either well-known or straightforward [18, 43], so we focus here
on Step 3. Step 3 enables a data-oriented sharing strategy. It not only captures
operators that have shared computation, but also avoids disseminating unnecessary

copies of data even when operators don’t perform shareable computation.
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Figure 5-1a shows two locally optimal example plans for two join queries. As-
suming the left plan is currently running in SPRAWL, and the right plan is newly
inserted, we show how SPRAWL can merge the right plan into the left, and how the
corresponding costs are updated so that the SPRAWL DP algorithm can work with

the SPRAWL sharing strategy.
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(b) Merging the Right Plan with the Left

Figure 5-1: SPRAWL Multi-Query Sharing Strategy

5.2.1 Covered and Equivalent Operators Identification

First, SPRAWL finds all the covered and equivalent operators in these two plans. This

can be done using a bottom-up search for common subexpressions, similar to what is
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done in prior work on finding subexpressions [25, 40, 48].

In our example, F3 = F1, so we can add an edge from F1 to F'3 and remove
F3’s original input S1, as shown in Figure 5-1b. Also notice that F2 = F4, but F2
from the left plan has already been deployed. Hence, adding an edge from F4 to F2
must not affect the placement of either F'2 or F'4, since we do not want interfere with

existing running plans.

5.2.2 Cost Adjustment

Second, we identify all data links that carry the same data, shown as orange and
green flower markers in Figure 5-1b, and adjust the costs of these shared data links

so the SPRAWL DP algorithm can perform placement properly.

For example, when calculating O PCostps j, operator F'3’s input can come from F£'1
as shown in the figure, but could also be provided by J1 or S1. Thus, F3’s bandwidth
cost should be updated to Min{BW Cost(p1,r3), BWCost(s1 g3, BWCostsi,rs},
where BW Cost; jy denotes the bandwidth cost to transmit output of op; to op;. The
amount of data sent between operator (F1, F3) and (J1, F'3) is equal to the size of
output of F'1, and that between (S1, F3) is the amount of source data produced by
S1. Note that if F'3 is placed on the same Node; as F'1 or J1, then BWCostps; = 0,
since the BW Cost to put F'3 on Node; has already been “paid” by F'1 or J1. This
indicates OPCostps; = CPUCostps; in this case. Furthermore, since F'3 shares
some of the computation from F1 (price < 40 already been filtered out) if F'3 uses
F1’s output as input, C PUCost 3 ; should also be adjusted accordingly; specifically,
if F3 = F1, then CPUCostpz; = 0.

As a second example, consider OPCostpy;. Here, operator F4 can
get input data from S2 or F2, so the bandwidth cost is updated to
Min{BW Cost (s pa), BWCost(para}. If F4 is placed on the same Node; as F2,
BW CCostry; = 0 because of link sharing.
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5.2.3 Operator Placement

After CPUCosts and BWCosts are adjusted according to the query sharing strate-
gies introduced above, the SPRAWL DP algorithm can be applied to complete the
placement process. In Figure 5-1b, rectangles in gray represent pre-existing oper-
ators, ovals stand for sources, and blue rectangles are new operators to be placed.
The SPRAWL DP algorithm traverses these blue rectangle operators in postorder and

computes an optimal placement for them, as described in Chapter 4.

5.2.4 Plan Reordering

Note that the right plan with three joins in Figure 5-1a may not be the best single-
node plan for merging with the left plan since J1 and J2 have the same join predicate,
and have input data from the same source. Currently, SPRAWL only shares operator
computations if they have covered or equivalent relations. So, if F'3 = F1, F4 = F2,
and thus J2 = J1, we decide to share the computation of J1 and J2. In the case when
we decide to share J1 and J2, the right plan p of Figure 5-1a needs to be reordered
to p/: join J2 first, and then J3. We then apply SPRAWL placement algorithm to

both p and p/, and pick up the one having smaller optimal operator placement cost.

5.2.5 Distributed SPRAWL Multi-Query Sharing Strategy

The SPRAWL sharing strategies can also work in a distributed setting. For each input
DAG, its root cluster’s central control module first applies SPRAWL sharing strategies
on it, and then partitions the generated shared plan. Other peer clusters only need to
apply SPRAWL sharing strategies on the sub-plans assigned to them, in the same way
they deal with normal input DAGs. Neither the root cluster nor any peer clusters

needs global information.
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5.2.6 SPRAWL Multi-Query Plan Generation and Placement

Summarization

In summary, a central control module applies SPRAWL multi-query sharing and place-

ment strategies following four steps:

1. Find all the covered and equivalent relations from the newly subscribed query’s
locally optimal plan p with all existing plans in the deployed network. Add or

remove data links between them if necessary.

2. If there are join covered or equivalent relations, p needs to be reordered to p/

so that join computation can be shared.

3. Mark all data links that send the same copy of data, and adjust CPUCost,
BWCost and OPCost accordingly.

4. Apply SPRAWL DP algorithm to p (and p/ if generated in step 2), and pick the

optimal placement.

5.3 Multi-Output Plans

SPRAWL DP algorithm calculates O PCost[op][n] during a postorder traversal of a tree
plan, and decides the optimal placement in a top-down fashion once the root’s optimal
position is determined. However, if a plan has multi-output operators, Algorithm 1
— 3 can no longer be applied directly. Multi-output plans arise when several queries
share an operator after the SPRAWL multi-query sharing strategy is applied. Such
queries have to split results from a shared operator somewhere in the plan, leading

to a multi-output structure.

The left side of Figure 5-2 shows an example of a multi-output plan. User 1 and
user 2 share the join operator, and then split the outputs after the join. Hence,
there are two roots delivering results in the direction of data flow in this DAG: userl

and user2. If we traverse this DAG in postorder just as in Algorithm 1 — 3, both
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Figure 5-2: Example of Multi-Output Plans

O PCostluserl][*] and OPCostuser2][x] depend on the position of split, where *
indicates any physical network node. If OPCost[userl][x] and OPCost[user2][x|
choose a different placement for split, then we need a way to decide which position
should be chosen for split. In addition it is possible neither of these is an optimal

choice.

5.3.1 Naive Solution

An intuitive solution based on Algorithm 1 - 3 is to consider userl and user2 together,

as follows:

OPCOSt(uLi)(uQQj) =
%T{OPCOSI&SPMMSPW + BW'COStI(sp[i;)J; -+ BWCOStI(Splﬂ}_j (51)
+ CPUCOStuLi + CPUCOStug’j}

where OPCost(y1,i)(u2,j) Stands for the optimal sub-DAG cost when userl is on node;

and user2 is on node;. OPCost (1 )2 18 composite of:
e the optimal sub-DAG cost rooted from split,
e BW Cost from split to Node; and Node;, and
e C'PUCost of userl on Node; and user2 on Node;.
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However, this naive solution has two limitations:

1. The complexity of this solution is exponential as the number of users U sharing
the same operator goes up: O(NVY). This is because we need to consider each

user’s possible physical position together as in Equation 5.4.

2. If the outputs of userl and user2 in Figure 5-2 are further shared and split, it

is difficult to decide the set of operators that should be considered together.

5.3.2 Undirected Graph Solution

We develop an undirected graph solution to the multi-output plan problem based on
the observation that the cost accumulation (subgraph — entire graph) is independent
of the direction of data flow. The direction of data flow only affects the cost calculation
of each edge (w]BW may be different in different directions) and latency accumulation
(we need direction information to calculate latency). Once the cost is calculated, it
does not matter which direction the cost is accumulated from. Hence, we do not need
to consider the data flow direction when accumulating the cost of the plan, as shown
on the right side of Figure 5-2. This plan is an undirected graph and any node can
be picked up as the unique root (e.g., user! or user2). The SPRAWL DP can work
on this undirected graph after picking a root and traverse the undirected graph in a
postorder, as long as remembering the edge direction for purposes of cost and latency

calculation.

5.3.3 Undirected Graph with Different Roots

Now a new question arises as we have several possible choices of root: will an undi-
rected graph with different roots end up with the same optimal subtree cost? Figure 5-
3 shows two corresponding undirected trees of the query DAG in Figure 5-2. On the
left side is a tree rooted from user2, and on the right side is a tree rooted from split.
We claim that OPCost***™? = OPCost®" in unconstrained cases, where O PCost’

means the optimal subtree cost rooted from op; with op; as the entire tree root.
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Figure 5-3: Multi-Output Plan with Different Roots

Theorem 5.3.1. Suppose Ty and Ty are two undirected query trees derived from an
acyclic DAG plan T, rooted at operators ry and ry, respectively. Then OPCost™ =
OPCost™ in unconstrained cases, where OPCost' is the cost of the optimal subtree

rooted at op; with op; as the entire tree root.

Proof. We prove this by contradiction. Suppose the theorem is not true; e.g.,
that (without loss of generality) OPCost™ > OPCost™. Setting r, as root,
and using Algorithm 1, we can find an optimal placement x for each operator:
{z(1),2(2),...,z(r1), ..., z(r2) }, with total cost equal to OPCost". According to the
cost function, Formula 3.1, the total cost of a placement is just the sum of CPUCost
and BW Cost. Thus, given a placement x, the total cost of the placement will be the
same, no matter what order costs are accumulated in.

Now, suppose we use the same placement configuration = on each operator, but
calculate and accumulate cost in the order that results from setting r; as the root
(in postorder just as line 2 in Algorithm 1). Because the order in which we add up
the costs does not affect the overall sum, we will get Cost™ (x) = OFPCost™, where
Cost™ () stands for the cost of the subtree rooted at 7, with r, as the entire tree
root, given the placement z. Since OPCost™ > OPCost™, this means OPCost™ >
Cost™ (x), which contradicts the fact that OPCost™ is the optimal subtree cost rooted

at ry, with r, as the entire tree root. O
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5.3.4 Undirected Graph Solution with Postponed Latency

Calculation

Latency calculation is sensitive to the choice of root. For example, in Figure 5-3,
choosing user2 versus split as the root will affect how latency is accumulated. As
discussed in Chapter 4.3.2, in a tree-based plan, the latency of a subtree rooted from

op placed on Node, is calculated as:

Lat,,, = Mt&X{Latt,Minp + Latpinpn} (5.2)

where t iterates through the set of children of op, Nodeps;np is the minimal-cost
network node for ¢’s position calculated by line 13 in Algorithm 1, and Latysinpy, is
the latency between Nodeys;,p and Node,.

In the example, Formula 5.2 indicates the latency of the subtree userl in the right
plan should be 0 because it is a leaf (and has no children). However, the real latency
of the query rooted on userl is the latency of the subtree split plus the latency
between userl and split. We can address this problem by storing the direction of
data flow from the original DAG, and postponing latency calculation. When the
SPRAWL DP visits the operator split, it notices split has a child whose direction of
data flow is different from the traversal order. It must then return to userl (and

user2) to re-update the latency estimate for userl (and user2).

Postponed Latency Calculation

The latency calculation problem arises when a query root r is different from the
root 7°F chosen for SPRAWL DP traversal, in which case some of the edge (data flow)
directions are different from the direction of traversal order. We solve this problem by

postponing latency calculation for operators with the opposite direction until SPRAWL

DP reaching r5%.

Figure 5-4 shows how postponed latency calculation works. The query plan is the

same as that in Figure 5-2, but using split (left) and filter2 (right) as the traversal
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filter2

Figure 5-4: Illustration of Postponed Latency Calculation

root 7°F respectively. Subtrees with edges whose data flow direction is different than

the cost accumulation direction are shown in gray.

For the left DAG, SPRAWL DP processes the subtree rooted from join as usual
since each edge in the subtree rooted from join agrees with the SPRAWL DP traversal
direction. In contrast, userl and user2’s latency calculations are postponed till root
split is reached by SPRAWL DP because they are connected to edges with opposite

direction. After split is reached, userl and user2’s latencies are updated as follows :

Latspiw = Latjoin + Lat(join,spiit)
Latul = Latspl?'.t & Lat(splimtl) (53)
Latu‘z = Latsplit + Lat(split,u?)

where Lat,, stands for the latency of the subtree rooted from operator op, and

Lat, y stands for the latency between operator op; and op..

op1.0p2

As a more complicated example, the right DAG of Figure 5-4 chooses filter2 as
the traversal root. Similarly, SPRAWL DP processes the blue subtrees as before. Gray
operators’ latency calculation is delayed until the root filter2 is reached. After that,

gray operators’ latencies are updated backwards as follows:
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LatfilterQ = Latsrc?+Lat(src2,filter2)

Latjoin, = Max { Latfigers + Lat(futer1 join),
Lat gitrers + Latfiera,join) } (5.4)
Latsgyy = Latjoin + Latjoin,spiit)
Lat,,; = "Latspir + Lat (spiit )
Lat, = Latsu + Lat(spiitu2)

5.4 Query Adaptation

The SPRAWL DP Algorithms discussed in Chapter 4 and the multi-query sharing
strategies introduced in this chapter can initiate an (near) optimal placement on
wide-area networks. However, as new queries are added/deleted, the existing query
deployment over the network may not be suitable any more. We can re-optimize the
deployment by applying SPDP algorithms on the existing queries. However, when
and how often to initiate the re-optimization are difficult to decide, and we leave these
problems to future work.

In addition, varied input data rates and link bandwidth availability may lead to
violation of network/latency constraints, and network topology changes may cause
existing routing paths and network nodes to become unavailable. Hence we need to
fix the constraint violation issues in such situations. We will discuss the solution in

Section 5.4.1.

5.4.1 Fixing Constraint Violation

In Formula 3.1, the network constraints are calculated based on the estimated average
input data rates. However, input data rates may vary to a great extent with time.
If the input data rate is higher than expected at some point, some of the bandwidth
constraints may not hold any more, and the corresponding network links may be-
come bottlenecks. Similarly, as the network topology changes or network node/link
availability varies, the original placement may not work any more.

One solution is to re-optimize the existing queries based on the new statistics
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and re-deploy them. However, re-optimization of the entire query plan is very costly.
Hence, SPRAWL only re-optimizes the operators and data links that violate the con-
straints.

Based on feedback it receives from individual modules, the central module of
each cluster periodically identifies operators and data links that violate network con-
straints, removes the violated operators and data links from existing query plans, and
re-deploys the removed parts using SPDP algorithms discussed in previous chapters.

We can also use this method to deal with network link or node failures.

5.5 Query Deletion

Deleting a query from the network is a little tricky in SPRAWL. Since Queries share
operator computation and data transmission amongst each other, operators and data
links can only retire after the last query uses the operators (or links) is unsubscribed.
We define a query uses an operator if the query gets data from the operator. As an
example, if the left query in Figure 5-1a stops running, J1 and F2 can be marked as
deleted, while F'1 can not because the right query in Figure 5-1a uses data from F'1
in the shared plan. If an operator can not retire, all the operators that have a data
flow path connecting to the operator can not retire either.

Hence, the query deleting process starts from the root operator in a pre-order
traversal of the query plan (top-down). If the visiting operator is not shared by other
queries, we can mark the operator as deleted and continues to its children. Otherwise,

the entire subtree rooted from the visiting operator can not be deleted.
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Chapter 6

Experiments

In this chapter, we describe experiments we performed to evaluate three aspects of

SPRAWL:

The effectiveness of the SPRAWL DP algorithm and multi-query sharing tech-
niques in a real world setting, in terms of its ability to optimize system perfor-

mance, resource usage, and cost (in dollars).

. The efficiency and effectiveness of the SPRAWL DP algorithm for complex

queries in very large (wide-area) networks.

. How close to optimal the SPRAWL DP algorithm can be when constraints are

reached.

Key takeaways of our experiments include:

1.

The SPRAWL DP algorithm can reduce real-world (dollar) costs versus a random
deployment strategy by a factor of 5 or more, when considering deployments on

wide-area Amazon AWS networks.

The SPRAWL cost model accurately predicts the dollar cost of SPRAWL deploy-

ments.

Versus previous systems that perform wide-area operator placement [47],

SPRAWL can perform 2-3x better.
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4. The SPRAWL distributed DP algorithm performs nearly as well as the SPRAWL
centralized DP algorithm in wide-area networks, and allows SPRAWL to place
complex queries on networks of thousands of nodes in just a few seconds while

the centralized algorithm takes several minutes.

5. In a resource constrained setting, where SPRAWL’s DP is not provably optimal,
SPRAWL performs nearly as well as an exhaustive algorithm, while scaling to

much larger networks and more complex queries.

6.1 Experiment Settings

Our first set of experiments was run on Amazon EC2 clusters [2], using M3.Xlarge
(64-bit 4 Core, 3.25 units each core, 13 units in total and 15 GB Memory) instances in
several different “a\}ailability zones” around the world (US, Asia, and Europe). The
underlying streaming processing system used in these experiments is ZStream [44], a
stream processing system for efficient composite event pattern matching.

The second set of experiments runs on randomly generated, simulated Transit-
Stub networks generated by GTITM [61]. We configure these networks to be similar
in structure and size to the network settings used in the experimental evaluation of
SBON [47]. SBON is a distributed placement algorithm that uses a relaxation algo-
rithm for placing operators, which we compare directly against below. See Section 6.3
for a more detailed qualitative comparison between SPRAWL and SBON.

The third set of experiments runs on smaller random networks, in order to allow us
to generate an optimal baseline in constrained cases for comparison with an optimal
placement (generated by using an ILP solver or simply exhaustive search). These
optimal algorithms are very slow and cannot scale to larger networks. Simulations
were run on a MacBook Pro, with 2.9 GHz Intel Core i7 Processor and 8 GB memory.

Finally, we share some experiences in Section 6.5 on how cost estimates are chosen,
how throughput and dollars spent relate to the choice of cost estimates, and how to
quantify this relationship based on studies over Amazon EC2 clusters.

We ran queries over stock market data with the schema:
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stocks : (timestamp, name, volume, price)

We generate synthetic data according to this schema and measure the maximum rate
at which operators can process it. Queries are random combinations of selects, joins
and aggregations; we explicitly vary the mixture and number of operators to control
plan complexity and the amount and degree of operator sharing that is possible.
Details of the structure and complexity of queries are given in individual experiments
below.

The SPRAWL DP algorithm and multi-query sharing strategies are implemented
in Java and complied as a library that can be called externally. Control Modules

(central/individual) are implemented in C++, and run on Linux or MacOS.

6.2 Amazon EC2 Experiment

In our first experiment, we run an end-to-end test on Amazon EC2 clusters to demon-

strate the overall effectiveness and performance of SPRAWL.

6.2.1 Network Settings

The network topology is similar to that shown in Figure 2-1a. Data is generated,
transmitted and processed through three EC2 clusters: NA.Virginia, Asia.Singapore
and EU.Ireland. In each cluster, there are 6 network nodes that act as sources (2 in
each cluster), 24 as routers of which 12 can also be sinks (30 nodes in total). Although
this is not a particularly large network, this real-world wide area configuration will
allow us to assess the overall effectiveness of SPRAWL’s cost estimates, DP algorithms
and multi-query sharing strategies, and to measure our ability to minimize real-world
operating costs (like dollars). We evaluate scalability on simulated networks in the
next section.

As described in Section 2.2, nodes within the same cluster are connected by local

links, and nodes between different clusters are connected by wide-area links. These
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differ in two ways:
1. wide-area links have lower single-link bandwidth capacity than local links, and

2. wide-area links are more expensive (in terms of $/GB data sent) than local

links.

BW used in Formula 3.1. We discuss data

These differences affect the weighted price w
links and weighted price estimation in more detail in Section 6.5.

We do not compare with SBON in this experiment because SBON relies on network
node coordinates to map from the cost space to corresponding network nodes, which

likely will not be accurate in the EC2 virtualized environment.

6.2.2 Query Settings

The experiment is run as follows: a new, randomly generated query subscribes to
each cluster every 120 seconds, until 100 queries have been created. Queries are
random combinations of selects and joins that filter on name and price attributes,
and perform equi-joins over name, each with 8-12 operators.

Streams are generated at the maximum rate from all 6 network source nodes.
Source nodes produce data with varying distributions on name and price. We choose
queries such that at least 30% of the queries can be shared. For each shareable query,

it can be shared with at most 15% of the other shareable queries.

6.2.3 Deployment Settings
We experiment with three different deployments:

1. SPDPS uses both SPRAWL DP algorithmm and the SPRAWL multi-query sharing
strategy;

2. SPDP only uses the SPRAWL DP algorithm without sharing strategies;

3. Random is a random placement strategy where operators are initially placed on

the source node, then on a router in the cluster of the source, then on a router
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in the cluster of the destination, and finally on the destination node, where

transitions between these different nodes are randomly chosen.

6.2.4 Output Throughput Performance

Througheut - Qutput Throughput Summary (Node ec2-16)
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(a) Output Throughput Summary of Node EC2-16
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(b) Output Throughput Summary with all Sink Nodes

Figure 6-1: Output Throughput of Wide Area Experiment

Figure 6-1a shows the output throughput of a single sink node, Figure 6-1b shows
the output throughput in aggregate over all sink nodes.The X-axis shows the elapsed

time running of the experiment. Throughput climbs as new queries start, one after
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the other.

Figure 6-1 indicates that SPDPS placement outperforms the other two placements
significantly, obtaining overall throughput that is roughly 3x SPDP and 5x Random.
We also notice that SPDP performs roughly the same as Random at the beginning,
but outperforms Random significantly after about 70 queries are added to the system.
This is because initially network resources are roughly symmetric, e.g., each machine
has about the same CPU and network capacity and weights. However, after a number
of queries have been added, when some of the machines are more loaded than others,
and data links are at different levels of saturation, the SPRAWL DP algorithm is
better able to make use of available resources, even when no sharing strategy is used.

Overall, SPDP is able to achieve about 1.8x output throughput of Random.

6.2.5 Dollar Cost

SPDPS SPDP Random
$20.85 $98.62 $135.33

Table 6.1: US Dollars Paid for Running 60GB Data

Table 6.1 shows the US dollars we paid for processing all of these queries. We
have 6 source nodes, 10 GB of input data, amounting to about 60 GB total data sent
per query, with 100 queries running in total on AWS. These experiments were run
in AWS during 2011; these costs are dominated by wide-area networking costs (at
the time inter-zone bandwidth cost about $.20/GB). From the table we can see that
SPDPS placement costs 6x fewer dollars in comparison to the Random strategy. We
discuss how our cost model is related to the system performance and to the dollars

paid in detail in Section 6.5.

6.3 SPRAWL on Wide Area Networks

In this section, we compare the centralized and distributed SPRAWL DP algorithm

with our own implementation of the placement algorithm described in the SBON
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paper [47] on wide area networks.

6.3.1 Network Settings

We simulate the placement algorithms on 5 randomly generated transit-stub networks
with 1550 nodes each. These networks each have 10 transit domains, each with 5
transit nodes. Each transit node has 3 stub domains, each with 10 stub nodes. This

configuration is similar to that used in the original SBON paper [47].

6.3.2 Query Settings

Input queries are random combinations of selects, joins and aggregations of varying
number of operators per query (between 4 and 12). Source and sink operators are
uniformly distributed throughout the 10 clusters. Queries are registered to the cluster
where the results are delivered one by one until the network is slightly saturated (we

describe a test with different levels of network saturation in Section 6.4).

6.3.3 Deployment Settings

We compare against four types of deployment in this experiment:
1. SP-Central is the centralized SPRAWL DP algorithm,;
2. SP-Distribute is the distributed SPRAWL DP algorithm;
3. Relazation is the placement algorithm used in SBON;

4. Random is the same as that in the Amazon EC2 experiment (in Section 6.2).

Relaxation is one of the classic algorithms used to solve discrete optimization
problems. We ran the relaxation algorithm in these experiments until it converged.
For fairness of comparison, we do not employ the SPRAWL multi-query sharing strate-
gies (since SBON employs different multi-query strategies, targeting reusing existing
operators) and adjust our cost objectives to be the same as SBON’s, since SBON

does not consider CPU cost, as follows:
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Min{}" wP" x BW; x Lat?}
such that, CPU; < CPU;, BW; < BW;, and Lat, < L,

(6.1)

SBON applies the relaxation placement on a virtualized cost space, and then maps
the placement on the cost space onto the real physical network nodes. Since the
real routing path is different from the virtual path in the cost space, it is difficult to
include weights and constraints in the virtual cost space. This is the reason we choose

to stop registering more queries when the network becomes slightly saturated.

6.3.4 Placement Cost on Wide-Area Networks

cost

|0t Placement on Wide-Area
i SP-Central Netowrks
[ 800 SP-Distribute
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Figure 6-2: Cost Per Query on 1550-Node Transit-Stub Networks

Figure 6-2 shows the normalized average placement cost of each query placed by
the four deployments. The cost is calculated based on the adjusted cost objectives
in Formula 6.1. The X axis shows the number of operators in each query. We ensure
that there is at least one join in 4-op and 6-op queries and at least three joins in 10-op
and 12-op queries, because pure single input/output operators are not interesting in
a cost model that only considers bandwidth cost (we can simply put them on one
network node and avoid network transmission as much as possible). Note that the

6-op queries outperform the 4-op queries because both usually have just one join, and
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the 6-op queries include additional filters. The 12-op queries do better than the 10-op
queries for similar reasons.

Figure 6-2 shows that SP-Distribute can almost always make placement decisions
as well as SP-Central. This is because the cost objectives used for SP-Distribute sub-
plan partitioning are well-suited to the wide-area network (Transit-Stub) structure.
For a random network topology, SP-Distribute may not work as well.

Figure 6-2 also shows that SP Distribute performs 2-3 times better than Relaz-
ation, and 2-5 times better than Random. We notice that Relazation is very sensitive
to the number of edges in a network, as we will discuss more in Section 6.3.7. For
a complete graph, it is only 10% — 15% worse than SP Distribute, but for transit-
stub networks that usually have low edge connectivity, it does not work well. This is
because the mapping from cost space to network nodes is more accurate in a more
highly connected network, and because relaxation has more degrees of freedom when

the network is highly connected.

6.3.5 Similarity of SP-Central & SP-Distribute

Same Placement %
4-op 51.7%
6-op 83.0%
10-op 27.6%
12-op 37.0%

Table 6.2: Similarity of SP-Central & SP-Distribute placement

If a query plan is partitioned correctly, SP-Distribute should ideally have the
same placement as SP-Central. Correctly means if a sub-plan is partitioned by SP-
Distribute to a cluster C, every operator in the sub-plan should be placed into C' by
SP- Céntml.

Table 6.2 shows the percentage of the queries for which SP-Distribute chooses
the same placement as SP-Central. The rates shown are not high, which means the

sub-plan partitions are not too good, suggesting that the second-level SPRAWL DP in
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SP-Distribute is doing something useful. Especially as, overall, the actual placement

found by the SPRAWL DP algorithms is not far from the optimal.

6.3.6 Placement Time on Wide-Area Networks

SP-Central SP-Distribute
4-op 0.21 s 0.02 s
6-op 1.66 m 1.68 s
10-op 3.11m 3.57 s
12-op 5.26 m 4.96 s

Table 6.3: Placement Time Per Query on 1550-Node Transit-Stub networks

Table 6.3 shows the average placement time per query on the 1550-node transit-
stub networks by centralized SPRAWL DP and distributed SPRAWL DP, respectively.
We simulate a 150 ms round-trip message time on wide-area links to account for

increased communication cost.

The placement time increases rapidly as the number of operators in a query in-
creases. The placement time of the centralized SPRAWL DP increases to 3 — 5 minutes
when deploying a 10-op query, which is not acceptable in real time streaming pro-
cessing networks. In contrast, the distributed SPRAWL DP only takes 3 — 4 seconds
to make a placement decision. This is exactly the reason why we need the distributed
version of SPRAWL. As we will show in Table 6.4 in Section 6.4, an exhaustive
algorithm searching for optimal placement takes more than 5 hours to place a 7-op
query on a network with only 30 nodes. We expect exhaustive placement time is

much longer with larger networks.

Our evaluation of SBON is a centralized simulation of a distributed algorithm
and takes only a few seconds to converge; SBON does not report the distributed
version convergence time in the paper. In reality, we believe the distributed relaxation

algorithm would take much longer to execute.
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6.3.7 Network Edge Connectivity

As stated in Section 6.3.4, the relaxation algorithm is sensitive to edge connectivity
and it does not perform well on networks with low edge connectivity. Transit-Stub
networks usually have edge connectivity around 0.01. Hence in this section, we study
the placement performance of SPRAWL and the relaxation algorithm on more con-
nected networks.

We use GTITM to generate 50-node random networks in 100 x 100 scale in this
experiment. A fully connected network has N(IN—1)/2 edges, where N is the number
of network nodes. For example, a 1550-node network has more than 1.1 million edges,
which may not fit in the memory. Hence, we choose small networks in this experiment.

Query settings and deployment settings are the same as before, except that SP-
Distribute is not tested in this case because random networks do not have border
nodes to provide routing information and it is difficult to partition random networks

reasonably. We ran 10 randomized trials for each edge connectivity rate.

Figure 6-3a and Figure 6-3b show normalized average placement cost of each query
placed by the SP-Central, Relazation and Random deployment, with edge connectivity
rate equal to 1.0 and 0.1 respectively. In the case of a fully connected network
(Figure 6-3a with edge connectivity rate equal to 1.0), Relazation performs much
better than it does on Transit-Stub networks as shown in Figure 6-2. It uses 15%
more network resources per query than SP-Central on average, which is consistent
with the results reported in the SBON paper [47]. In the case of a less connected
network as shown in Figure 6-3b (edge connectivity rate equal to 0.1), Relazation
performs similar to that of Transit-Stub networks. It uses 2x — 3x more network

resources per query than SP-Central.

6.4 SPRAWL With Constraints

As noted in Section 4.2, SPRAWL can generate an optimal placement without con-

straints on CPU, bandwidth, or latency (Algorithm 1). We showed this can be ex-
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Figure 6-3: Placement Cost with Different Network Edge Connectivity
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tended to handle the case with constraints in Section 4.3 (Algorithm 2 — 3). In
our third set of experiments we measure how well SPRAWL performs in a resource
constrained setting in comparison to an exhaustive algorithm.

We compare SPRAWL DP to the exhaustive algorithm in two settings:

1. In aresource-constrained network where resources are easily violated, checking if
SPRAWL can fit as many queries into the network as an exhaustive enumeration

algorithm.

2. In a wide area network where a number of queries are to be deployed, checking

if SPRAWL can adequately allocate resources amongst queries.

The optimal algorithm we compare SPRAWL DP to is simply an exhaustive search
(Exhaustive for short) that iterates through each possible placement and chooses the
optimal one. The time complexity of Exhaustive is ©(N™), where N is the number
of network nodes, and M is the number of unpinned operators. Table 6.4 shows the
runtime of SPRAWL and Exhaustive to generate a placement over a 3 cluster wide-area
network similar to that we use in Section 6.2. Exhaustive’s running time increases

rapidly as the number of unpinned operators grows.

SPRAWL  Exhaustive
6-op 2 ms 56 ms
10-o0p 4 ms 1m
12-op | 10 ms >5h

Table 6.4: Runtime of SPRAWL vs Exhaustive on 3-Cluster Network

6.4.1 Resource-Constrained Network

In this experiment, we deploy a single query onto a resource-constrained network
to compare the percentage of queries we can place and the placement cost between

SPRAWL and Exhaustive. Placement cost is calculated according to Formula 3.1.
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Query Settings

As illustrated in Table 6.4, Exhaustive’s running time becomes very long when the
number of unpinned operators exceeds 5. Hence in this experiment, we choose a 10-
operator query as our benchmark: 3 unpinned joins, 1 unpinned filter, 1 unpinned
aggregation, 4 pinned sources, and 1 pinned sink. Exhaustive can not work on any
bigger queries, while smaller quéries are easier to fit in and are less interesting.
Operator connections and filter selectivity (in the range [0,1]) on these connections,
as well as latency bounds are all randomly generated. Latencies are chosen to range

between the shortest to the longest path latency from network source to sink.

Network Settings

The network topology we use in these experiments are similar to a single cluster of
Figure 2-1a. Network node CPU capacity, link capacity, weight(1, 3), and latency are
also randomly selected. We choose these so that each network node can support 1 to
10 source operators, and each network link can handle the output of 0.5 to 3 sources.
Network source links (from a source to other nodes) are guaranteed to have capacity

to support at least one source link.

Deployment Settings

We ran 5 randomized trials, placing 1000 queries per trial, and computed the aver-
age percentage of successfully placed queries and corresponding placement cost for
SPRAWL and Exhaustive. Numbers in this experiment were selected to make the
placement quite difficult, such that only a small fraction of the total queries could
actually fit. We expect in practice that real deployments would not be so heavily

constrained.

Query Fit Rate & Placement Cost

Table 6.5 and 6.6 shows the average percentage of queries fit onto the network and

average per query placement cost. Table 6.5 is with all types of constraints and
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SprawL  Exhaustive
Avg. Query Fit Rate 29.7% 34.2%
Per Query Placement Cost | 236.4  226.3 (232.3)

Table 6.5: Query Fit Rate & Placement Cost in Resource-Constrained Networks with
all Constraints

SPRAWL  Exhaustive
Avg. Query Fit Rate 37.4% 43.0%
Per Query Placement Cost | 235.8  226.8 (236.1)

Table 6.6: Query Fit Rate & Placement Cost in Resource-Constrained Networks with
CPU, BW Constraints

Table 6.6 is only with CPU and BW constraints. Since Table 6.5 is with more
constraints, the fraction of queries that fit is lower than that in Table 6.6.

In a resource-constrained network (only 34.2% queries are successfully placed),
SPRAWL can fit in about 88% (SPRAWL rate/ Exhaustive rate) of the queries Ex-
haustive can fit. The number in brackets in Table 6.5 and 6.6 is the real per query
cost for Exhaustive. However, Exhaustive may fit in some costly queries that can not
be fit by SPRAWL, so we adjust this number by excluding those queries that SPRAWL
cannot fit.

From Table 6.5 and 6.6, we can see that the SPRAWL per query cost is just
4% higher than Exhaustive, and that it is able to place most queries, even in this
demanding, highly constrained case. We say a network is heavily resource-constrained
to a type of query if the network has high probablity (> 50%) not able to find
a placement for a single query of that type by Exhaustive. We show in the next
experiment that SPRAWL can do as well as Exhaustive when the network is not so

heavily resource-constrained.

6.4.2 Network Resource Allocation

In this experiment, we want to show that SPRAWL can efficiently allocate network
resource to multiple queries, and show that SPRAWL can do as well as Exhaustive

when the network is not heavily resource-constrained.
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Query & Network Settings

Queries are continuously deployed onto a wide area network similar to Figure 2-1a,
until no more queries can be supported by the network. We compare the number of
queries successfully placed by SPRAWL and Exhaustive, and compare their average
placed query cost. We use the same type of queries used in last experiment. Again,
all queries are generated randomly, and no sharing strategies are considered in this
case. To make the network not heavily resource-constrained, we only choose randomly

generated networks able to fit more than 100 queries by Exhaustive.

Number of Queries Supported & Placement Cost

SPrRAWL Exhaustive
Total No. Query Supported 128 129
First Stop Avg. Cost 258.7 257.8
Five-seq. Stop Avg. Cost 297.1 295.8

Table 6.7: Multi-Query With All Constraints

SPrRAWL Exhaustive
Total No. Query Support 128 127
First Stop Avg. Cost 271.6 270.7
Five-seq. Stop Avg. Cost | 297.1 296.5

Table 6.8: Multi-Query With CPU and BW Constraints

Table 6.7 shows results with all types of constraints and Table 6.8 shows results
without latency constraints. Table 6.7 and 6.8 show that SPRAWL and Exhaustive
can support roughly the same number of queries. This indicates SPRAWL can allocate
resources as efficiently as Exhaustive.

First Stop Avg Cost shows the average deployed query cost until either SPRAWL
or Exhaustive fails to find a placement for a query. This indicates the network is
slightly saturated. Five-seq. Stop Avg Cost shows the average query cost when either

SPRAWL or Exhaustive first fails to place five successive queries. In this case, the
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network is near saturation. We terminate the experiment when the system fails to
place 20 successive queries.

As we can see from Table 6.7 and 6.8, the average placed query cost of SPRAWL
and Exhaustive are almost always the same. This is because most queries placed
do not saturate any constraints, in which case, SPRAWL generates the same optimal
placement as Exhaustive. Even if a query reaches constraints, SPRAWL can often gen-
erate a good placement, as we have already demonstrated in the previous experiment
(Section 6.4.1).

First Stop Avg. Cost in Table 6.7 is smaller than that in Table 6.8 because Ta-
ble 6.7’s first stop is due to latency constraints, while Table 6.8’s is due to CPU or
BW saturation. Before first stop, the sets of queries supported by SPRAWL and Ex-
haustive are the same. From first stop to five-seq stop, the network becomes more and
more resource-constrained, and the sets of queries supported by these two algorithms
differ. Note, however, that the two algorithms can support roughly the same number

of queries with the same average placement cost.

6.5 Amazon EC2 Cost Estimates Study

In this section, we share some experiences on how cost estimates are chosen, and how

throughput and dollars spent relate to the choice of cost estimates.

6.5.1 Join Placement

The first experiment is designed to place a join query in between amazon EC2 zones

from different areas to check the impacts of different input rates and join selectivities.

Query & Network Settings

The join query is similar to that shown in Figure 2-3, with one source (srcl) located
in US.Virginia and the other (src2) in Asia.Singapore, and results delivered to the

Asia.Singapore availability zone. The ratio of input data rate of srcl to src2 is around
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10 : 1. We vary the selectivity of the join by varying the number of src2 tuples that

join with each srcl tuple (we call this the window size).

Deployment Settings

SPRAWL identifies two optimal deployments (PlaceA and PlaceB). PlaceA is optimal
when windowsize=20, and PlaceB is optimal when windowsize=1. The difference
between the two placements is the node on which the join operator is placed. In
PlaceA, the join runs in the Asia.Singapore zone. In PlaceB, the join runs in the
US.Virginia zone. PlaceA is better than PlaceB if the cost of transmitting join output

and src2 over the wide-area network is higher than that of transmitting srcl.

Throughput & Bandwidth Usage

Figure 6-4 shows the input and output throughput as well as intra and inter bandwidth
usages of these two placements, with window size equal to 1 in Figure 6-4a and 20 in
Figure 6-4b.

In Figure 6-4a, PlaceB uses much more total bandwidth than PlaceA, but since
most of its bandwidth usage is within zones, its overall cost is low because intra-link
bandwidth costs are negligible in AWS. Since data transmission between different
zones is much slower and more expensive than within the same zone, PlaceB is actually
cheaper than PlaceA in this case.

In Figure 6-4b, when the join window size is set to 20, the join output size is about
7.6x the size of srcl. In this case, PlaceA has much lower bandwidth usage between

zones than PlaceB, making it preferable.

Estimate Cost & Dollar Cost

Figure 6-5a shows the bandwidth cost estimated from our cost model (Function 3.1).
Here, the weight wB%W for each link within the same zone is the same. We show how

to determine the weight of links between different zones and within the same zone by
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using results in the next experiment (Section 6.5.2).

As we will show in Section 6.5.2, a local link within Asia or US can provide about
16.3 MB/s bandwidth, and a wide-area link between Asia and US about 7.2 MB/s.
Hence, the weight of a link between zones is 16.3 7.2 = 2.26. We also need to adjust
this weight according to the real price to send data through links. For example, if the
price to send data between Asia and US is twice as much as that to send data within

Asia or US, the weight of wide area link versus a local link is 2.26 x 2 = 4.52x.

Figure 6-5b illustrates the cost in dollars for running the join experiment and
processing around 50 GB srcl input data. By comparing Figure 6-5b to Figure 6-5a
and Figure 6-4, we can see that our cost model does a good job of tracking system

performance and total money cost.

6.5.2 Link Sharing

The goal of this experiment is to study and quantify the performance improvement
of local and wide-area data link sharing, where data link sharing means only a single
copy of each tuple is transmitted to a node even if many operators process it. We can
use the results from this section to calculate network parameters in the cost model,

as we did in Section 6.5.1.

Query, Network and Deployment Settings

The experimental setup is as follows: the data generator runs on one EC2 node, and
produces data as fast as possible. This data is sent over the network to another EC2
node, which runs a variable number of clients, each of which subscribes to the same
set of stock symbols. Data is either sent without link sharing (No Link Sharing),
resulting in multiple copies being sent, or with sharing (Link Sharing), where one
copy is sent and then split amongst the clients once it arrives. This experiment is

network-bound (neither node’s CPU is overloaded).
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Throughput & Bandwidth Usage within the Same Zone

Figure 6-6 shows the performance improvement of local link sharing within the same
zone. Figure 6-6a shows the average throughput on a single client in MB /sec; Figure 6-
6b shows the overall system throughput; and finally, Figure 6-6¢ shows bandwidth
usage.

From these three graphs, we can see that the throughput is improved significantly
by local link sharing, both from the perspective of a single client and the entire system.
Figure 6-6b shows that the overall throughput of the No Link Sharing strategy in all
cases (2-4 clients) is roughly the same, about 16.3 MB/s. This is because the No Link
Sharing strategy sends multiple copies of data through network, and is bounded by
the network bandwidth. This experiment shows that local link bandwidth is capped
at 16.3 MB/s.

Throughput & Bandwidth Usage in between Different Zones

Figure 6-7 shows the results of the same experiment setting as in Figure 6-6, but with
wide-area link sharing. As expected, the results are somewhat different than with
local link sharing.

Comparing Figure 6-6 and Figure 6-7, we can see that wide-area link sharing does
not offer as much performance improvement as local link sharing when sending two
or three copies of data (with two or three clients). This is because transmitting data
through a single socket between different zones is limited by Amazon at around 7.2
MB/s, but multiple sockets can achieve higher throughput (up to the 16.3 MB/s as
measured in the previous experiment). Hence, the throughput of the Link Sharing
and No Link Sharing strategies is similar until the No Link Sharing strategy reaches
network saturation (16.3 MB/s).

As shown in Figure 6-7a, the throughput of both the No Link Sharing and Link
Sharing strategics is around 7.2 MB/s when sending two copies of data. The through-

put gap between those two strategies increases quickly as more copies of data are sent
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(when the network is saturated). Figure 6-7c shows the bandwidth usage of the
No Link Sharing and Link Sharing strategies between different zones. Since data
transmission between zones is expensive, the No Link Sharing strategy is particularly

costly in this case.
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Figure 6-8: Cost in US Dollars for Processing 50 GB Data

Figure 6-8 shows the total US dollars we paid to process about 50 GB of data in
this experiment. The cost consists of two parts: the cost to rent machines, and the

cost to transmit data. System throughput determines how long the machines need to
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be reserved, and bandwidth usage determines the payment for data transmission.
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Chapter 7

Related Work

Distributed database systems have been studied extensively since the 1970s [57, 14,
53]. At that time, the research topics are mainly focused on distributed data man-
agement collaborating at different locations for large corporations. Ever since then,
many different architectures and technologies have been proposed and developed,
like distributed query optimization [26, 29], stream processing [9, 13, 12, 17, 18],
sensor network data propagation [42, 16, 22], publish/subscribe systems [15, 24, 45],
graph partitioning [38, 32, 11], overlay networks [52, 35, 62], and network awareness
data/stream processing [10, 47, 39, 46].

In this chapter, We will first have a brief review of such systems, and then describe
and compare with SPRAWL the five closely related systems mentioned in Chapter 1
(Min-Cut [41], SBON [47], SAND [10], SQPR [37] and SODA [37]) in detail.

7.1 Distributed Query Optimization

Distributed query optimization becomes important ever since distributed data man-
agement is popular and commercialized [26, 29]. The distributed query optimization
techniques are designed to solve the client-sever site selection problem for query op-
erators in the context of heterogeneous environment. They also includes special join
techniques(like horizontally partitioned joins, semijoins [14], double-pipelined hash

joins [56]), intra-query parallelism architectures(MapReduce [21}), and dynamic data
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replication algorithms [19, 59] to reduce communication costs and improve query
performance.

However, none of these researches consider resource-aware in-network processing.
In addition, all these techniques are designed for stored data, hence many of them

are not suitable for dealing with streaming data.

7.2 Stream Processing Systems

A number of stream processing systems [9, 13, 12, 17, 18] have been developed as real
time data processing becomes a critical requirement for applications like financial data
services, social networks, and real time monitoring. However, most of these systems
are centralized: data is streamed from different data sites into a central cluster or
warehouse where these streams are processed according to the continuous queries
issued by users.

Some of the stream processing systems have been extended to distributed versions
to solve the problem of adaptive load-shedding for long-running continuous queries,
like Borealis [13, 54] and Flux [51].

Other distributed stream processing systems address the problem of supporting
huge number of queries in a large scale Internet. NiagaraCQ [18] achieved so by
grouping continuous queries sharing similar structures. However, it is not network

resource-aware either.

7.3 Sensor Networks

In-network data dissemination has been studied in sensor networks [42, 16, 22] for a
long time because resource-efficient data propagation is critical in sensor networks.
Sensors usually have very limited resources (like power and bandwidth). Hence, data
propagation efficiency determines the period of time sensor networks can last and the
overall amount of data sensor networks can collect.

However, different from normal distributed data systems, sensor networks are
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usually self-organized, and highly dynamic, with each sensor node having limited
resources and restricted network topology information. In addition, sensor nodes
themselves are unstable and can be unavailable at any time.

Hence, data dissemination research in sensor networks is mainly focused on issues
like optimal routing path search based on limited information and fault-tolerance
if some sensor nodes are suddenly broken. Such issues are not the focus in this
dissertation since wide-area data centers as shown in Chapter 2.2 are configured in

advance and stable most of the time.

7.4 Pub-Sub Systems

Pub-sub systems are stream processing systems specifically designed for message up-
dating [15, 24, 45]. They collect data from publishers, and deliver updated results
to subscribers according to their subscriptions in a timely fashion. Most of these
pub-sub systems are centralized. Some of them are extended to distributed model to
solve Internet-scale message delivering [23].

Pub-sub systems mainly focus on massive message updating. Generally it supports
XPath queries or simple XML-based filtering instead of computational-heavy opera-
tors like joins and aggregations. Besides, the first importance in pub-sub systems is to
deliver message updates as fast as possible. Hence pub-sub systems are not network
resource-aware either.

We can also consider SPRAWL as a distributed network resource-aware pub-sub

System.

7.5 Graph Partitions in Parallel Computation

The problem of partitioning irregular graphs and allocating distributed tasks in a
heterogeneous environment has been long studied in the parallel computation com-
munity [38, 32, 11]. Graph partitions in parallel computation is designed for compute-

intensive applications in scientific and engineering domains, like computational fluid
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dynamics(CFD) [55] and VLSI testing [36].

These applications are modeled as a weighted undirected graph G = (V, E), re-
ferred to as a workload graph. Each vertex has computational weight which reflects
CPU units it needs, and each edge has a communication weight which reflects data
transit on it. So the partition problem is to find a good partition for graph G so as

to minimize the resulting data flow between partitions.

Graph partitions is network resource-aware, however, it differs from our scenario

in three ways:

e it does not allow application-specific features like selectivity and data rate of

streams,

e it does not designed for wide-area networks (it is designed for parallel compu-

tation), and

e it does not support pinned vertices, while stream data sources and sinks are

usually pinned.

7.6 Overlay Networks

Overlay networks [52, 35, 62] like peer-to-peer networks focus on the problem of
locating the network node that stores a particular data item in large-scale dynamic

networks as nodes are added to or leave networks.

Message routing in overlay networks is similar to data flow routing in SPRAWL.
However, instead of supporting expressive and complicated operators, overlay net-
works only support limited message processing. We can consider SPRAWL as working
on top of such overlay networks so as to support more complicated optimal “message

routing”.
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7.7 SPRAWL Vs. Network Resource-Aware Data

Processing Systems

Network awareness data processing systems [47, 41, 10, 37, 58, 39, 46] are closely
related to SPRAWL. However, SPRAWL has fundamental advantages in three aspects

overall:

1. SPRAWL supports distributed decision making for query sharing and placement
and does not need global network information, while most existing systems do
it in a centralized way [41, 37, 58, 46, 39], and are not scalable for wide-area
networks. As shown in Chapter 2.2, a centralized placement algorithm may
spend 3-4 minutes to place a query in a 1550-node wide-area network, not to

mention tracking global network resource and topology changes.

2. SPRAWL supports flexible cost objectives, including CPU cost, resource con-
straints, and query constraints, as discussed in Chapter 3. Most sys-
tems [41, 47, 10, 39] only consider network bandwidth cost and do not include
constrained clauses due to either methodological limitations or to simplify the

optimization formulation.

3. Compared to existing distributed multi-query placement systems [47, 10],
SPRAWL has better placement performance and converge time as shown in

Chapter 2.2.

We will discuss and compare SPRAWL with these network resource-aware systems

in detail in this section.
7.7.1 Min-Cut

Min-Cut [41] is a centralized algorithm that generates an operator assignment that
minimizes the overall communication cost for distributed queries. The algorithm

generates a hyper-graph Hp for a set of input query plans, and computes a minimal
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Figure 7-1: Example Hyper-graph in Min-Cut (reproduced from [41])

cut on Hp for each link (z,¥) in the communication (physical) network Go. Figure 7-
1b is a hyper-graph constructed for all three queries in Figure 7-1a. The circle in
Figure 7-1b is a hyper-edge for S2 since all three queries share the same data source
S52.

The minimal communication cost incurred over the link (z,y) is exactly the trans-
mission cost over the cut. After finding all the locally optimal solution for each link
in G, it proves and generates a global optimal solution under the assumption that
Ge is a tree and each Hp for link (z,y) has a unique solution (minimal cut). Min-Cut
algorithm has a O(log(n)) approximation for a general non-tree network Ge.

Min-Cut is theoretically sound, but with strong restrictions, which may not be

practical in real world:

1. Min-Cut needs global information to merge each local minimal cut to a global
optimal solution, and is not straightforward to extend to a distributed version,

so it may not be suitable for wide-area networks.

2. To obtain an optimal solution, Min-Cut requires the communication (physical)

network to be a tree, which is not the case in practice.

3. Min-Cut only considers network communication cost, and it is not clear how to
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include CPU cost, latency requirements, and resource constraints since Min-Cut

is based on edge cut costs.

7.7.2 SBON

(a) Before Relaxation (b) After Relaxation

Figure 7-2: Spring Relaxation in SBON Cost Space (reproduced from [47])

SBON (Stream-Based Overlay Network) [47] is a decentralized adaptive frame-
work for operator placement using a spring relaxation algorithm to minimize network
impacts. In SBON, the query plan is considered as a collection of operators connected
by springs (operator edges), and properties of physical networks (latency for example)
is mapped onto a cost space.

As shown in Figure 7-2, the average force of spring 7 is F = %kisﬁ where s; is
latency Lat; and k; is the data rate DR; (similar to Latency and BW in SPRAWL).
Based on this, the optimal operator placement is one with the lowest energy state of
the system (i.e., with the lowest sum of the potential energies stored in the system). If
a spring has higher energy than necessary, unpinned operators will be pulled/pushed
to lower the overall system energy. After a number of relaxation iterations, the system
gradually converges to a low and stable energy state. Then SBON maps the converged
placement from the cost space onto underlying physical networks.

SBON scales well in wide-area networks, however,

1. The convergence properties of SBON is unclear. In the case where multiple op-

erators are unpinned, it is hard to chose which operator to migrate and making
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an incorrect choice can result in back and forth migration, causing the system

to converge slowly or not at all.

2. Mapping the placement from the cost space to the real physical network is not
accurate. It is also difficult to include link weights and resource constraints in

the cost space since real routing path can not be mapped onto the cost space.

3. Since each SBON instance does not have global view, it is easy to ‘stuck” in
local minima. In addition, the cost function for relaxation algorithm must agree

with the form E’i :F;- x §;, making SBON’s cost model restricted.

7.7.3 SAND

SAND (Scalable Adaptive Network Database) includes a set of distributed opera-
tor placement strategies to develop a highly-scalable and adaptive network-oriented
database system on top of a Distributed Hash Table (DHT) [52, 62].

SAND is a greedy algorithm that deploys a query plan bottom-up in postorder,
similar to ours. When encountering a new operator, SAND chooses to place the

operator in one of the following four candidate locations,

one of its children’s locations,

e a common location,

the end-user’s location, or

a location meeting a certain distance criterion.

The total cost of a query plan is the sum of each edge cost. Here edge costs refer
to costs transmitting data between operators, and is calculated as BW x Distance.
BW is the output date rate of that edge, and Distance is the network distance of
the physical link the edge uses to send data.

A common location refers to a physical node where a placed operator and all its

children can potentially be co-located. A location meeting a certain distance criterion
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is used to select configurations to optimize for total cost by reducing distances between
operator-child mappings. SAND has proved the probability it improves over the
baseline bandwidth cost theoretically. The baseline deployment is a centralized one
which places all operators on client(sink) side.

SAND experiments on top of Tapestry using Transit-Stub network topologies
obtained from the GTITM [61], and show effects of different placement strategies
on bandwidth consumption ratio (the ratio of the overall bandwidth) and latency
stretch (the ratio of the longest path length on the network to the longest path length
from the sources to the sink).

However,

1. SAND does not always generate a good placement and has no guarantee upon

the efficiency of placement solution.

2. The distributed version of SAND placement does not provide a solution for
sub-query placement and assignment. Instead, it only investigates one extreme

of subtree assignment, a single operator is a subtree.

3. SAND does not include multi-query sharing because sharing may introduce
multi-output query DAG, which can not be handled by the SAND placement

algorithm.

7.7.4 SQPR

SQPR (Stream Query Planning with Reuse) [37] combines query admission, opera-
tor allocation and reuse together as a single inter-related constrained optimisation

problem. To achieve so, it proposes an query planning model with four objectives:

1. Oy: maximize the number of satisfied queries
2. Oy: minimize the system-wide network usage
3. Os3: minimize the usage of computational resources, and

4. Oy4: potentially balance the load between network hosts
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Due to the conflicting nature of these objectives, SQPR generates Pareto efficient

solutions by maximizing a weighted sum of

AMO1 — X202 — A303 — M0y
subject to constraints

for some constants Ay, Ay, Az, Ay >=10

The constraints mentioned in the above function include demand constraints, avail-
ability constraints, resource constraints and acyclicity constraints. The first three
constraints are similar to ours described as CPU constraints and BW constraints in
Chapter 3. Acyclicity constraints requires no self-feedback loops. SQPR formulates
the query assignment problem as a mixed integer linear program (MILP), which can
be solved by standard branch and bound algorithm [34].

The discussion and analysis of query planning and placement in SQPR is complete.
However, the solution to the optimisation problem is based on mixed integer linear
program (MILP), which is exponential in time and memory as the size of communi-
cation networks and the number of query operators grow. This MILP solution is not
at all scalable even to hundreds of network nodes. Their simulation results are based

on 50 hosts and one (two-way/three-way /four-way) join per query.

7.7.5 SODA

SODA (Scheduling Optimizer for Distributed Applications) [58] is an optimizing
scheduler for System S [27], a streaming processing system that assumes offered load
exceeds system capacity most of the time. Hence, SODA is designed to fully utilize
each processing node in System S.

SODA scheduler divides the problem into two stages:

1. admission control stage: decides which jobs to admit and which template to

choose for each job.

2. operator placement stage: generates placement for jobs admitted and templates

chosen.
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SODA uses Non-Serial Dynamic Programming (NSDP) [33] to solve operator
placement problem, and treat objective functions as “black boxes”, but no mention of
how objective functions are constructed, how constraints are solved, and how network<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>