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Abstract

Given an inference problem, it is common that exact inference algorithms are com-
putationally intractable and one has to resort to approximate inference algorithms.
Monte Carlo methods, which rely on repeated sampling of the target distribution
to obtain numerical results, is a powerful and popular way to tackle difficult infer-
ence problems. In order to use Monte Carlo methods, a good sampling scheme is vital.

This thesis aims to propose a new sampling scheme based on Low Density Parity
Check codes and compare it with existing sampling techniques. The proposed sam-
pling scheme works for discrete variables only, but makes no further assumption of
the structure of target distribution.

The main idea of the proposed sampling method relies on the concept of typical-
ity. By definition, a strong typical sequence with respect to a distribution can closely
approximate the distribution. In other words, if we can find a strong typical sequence,
the symbols in the sequence can be used as samples from the distribution. According
to asymptotic analysis, the set of typical sequences dominates the probability and all
typical sequences are roughly equi-probable. Thus samples from the distribution can
be obtained by associating each typical sequence with an index, uniformly randomly
picking an index, and finding the typical sequence that corresponds to the chosen
index. The symbols in that sequence are the desired samples.

To simulate this process in practice, an LDPC code is introduced. Its parity check
values are uniformly randomly generated, and can be regarded as the index. Then
we look for the most likely sequence that satisfies all the parity checks, and it will be
proved that this sequence is a typical one with high probability if the LDPC has ap-
propriate rate. If the most likely sequence found is a typical one, it can be regarded
as the one corresponding to the chosen index. In practice, finding the most likely
sequence can be computationally intractable. Thus Belief Propagation algorithm is
implemented to perform approximate simulation of the sampling process.
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The proposed LDPC-based sampling scheme is formally defined first. After prov-
ing its correctness under maximum-likelihood simulation, we empirically examine the
performance of the scheme on several distributions, namely Markov chain sources, Sin-
gle loop sources, and 2-Dimensional Ising models. The results show that the proposed
scheme can produce good quality samples for the aforementioned distributions.

Thesis Supervisor: Gregory W. Wornell
Title: Sumitomo Professor of Engineering
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Chapter 1

Introduction

Inference-related problems arise in a wide range of fields such as control, communica-

tion, machine learning and signal processing. Generally speaking, we are interested in

learning about some hidden variable - let it be the codeword sent through a channel,

a command issued by a user, or the position of a spacecraft - from some observations

related to the hidden variable. We might ask questions like, given the observations,

what is the distribution of the hidden variable? Or, what is the most likely value of

the hidden variable? However, exact inference is provably hard and computationally

intractable unless the underlying problem has very special structure, and therefore we

often have to resort to approximate inference algorithms. One of the most powerful

and popular approximate inference algorithms is sampling.

Consider a random variables with probability distributions for which exact infer-

ence is infeasible. A common task in practice is to evaluate some quantities about

the variable, e.g. mean, marginals or some parameter of the model. Since prob-

ability distribution contains all information about the variable, these quantities of

interest can usually be written as expectation of some functions with respect to the

distribution. For example, given target distribution px(-) and a particular symbol

a, the marginal px(a) can be written as Ep[1(x = a)]. If samples can be generated

efficiently from the distribution, these expectations can then be approximated in a

reasonable amount of time. This is the basic idea of Monte Carlo methods, a class
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of computational algorithms that rely on repeated sampling of the target distribution.

The correctness of Monte Carlo methods in the limit of large number of good quality

samples is ensured by Law of Large Numbers: given any function f(-), and indepen-

dent, identically distributed samples x(), ... , x(s) from px(-), we have

1S
f (x0) - E[f(x)] as S -+ oc

That is, the expectation computed from the samples converges to the true value

asymptotically. Thus the problem becomes how to obtain independent good quality

samples from a given distribution at practically feasible computational costs. In some

situations where random bit generation is expensive, economic utilization of random-

ness is also important in addition to computational efficiency.

A large number of sampling techniques have been proposed and utilized, includ-

ing (but not limited to) Rejection Sampling, Importance Sampling, Markov Chain

Monte Carlo methods etc. Each has its own strengths and weaknesses, and thus is

suitable for different applications. Notice that one should not expect to find a 'per-

fect' sampling scheme, since no sampling scheme can generate exact and independent

samples from all given target distributions in polynomial time. The existence of such

a sampling technique would lead to polynomial time algorithms to solve the general

inference problem with arbitrary accuracy, which is provably NP-hard [5]. In other

words, compromises need to be made somewhere.

Among the commonly used sampling techniques, Importance Sampling and Rejection

Sampling both require the availability of an 'easy-to-sample-from' proposal distribu-

tion that is close enough to the target distribution, and lack the ability to deal with

high-dimensional data. Without a satisfactory proposal distribution, both methods

may require exponentially many iterations, as well as exponentially many random

bits to obtain the desired results. For Markov Chain Monte Carlo methods, on the

12



other hand, ensuring that the chain explores the distribution well and determining

when the algorithm converges are not straight-forward tasks. As a result, both com-

putational cost and usage of randomness can be difficult to quantify.

This thesis aims to devise a new sampling scheme which makes use of Low Den-

sity Parity Check codes (LDPC codes). The proposed sampling scheme will only

deal with discrete random variables with a finite-size alphabet, but the distribution

can be arbitrary otherwise. In fact, since any discrete random variable with finite

alphabet size can be represented as a sequence of binary random variables, without

loss of generality, we will focus on distribution over sequences of binary variables.

In particular, the proposed sampling technique scales well with dimension and thus

can deal with high-dimensional variables. It has provably polynomial computational

cost, both in time and space, in addition to making efficient use of random bits.

Moreover, in contrast to samples produced by Markov Chain Monte Carlo methods,

the ones obtained from the new sampling method have good independence properties.

LDPC codes were first introduced in the 1960s by Gallager in his doctoral thesis

[4] as a channel coding technique. It was largely forgotten for decades, until its redis-

covery in the mid 1990s by Mackay and Spielman (independently). Spielman proved

that in theory, LDPC codes could approach capacity of the channel with linear de-

coding complexity as block length goes to infinity [10]; while Mackay showed that

in practice LDPC codes with moderate block length could attain near-Shannon-limit

performance [9]. Nowadays, LDPC codes have found extensive use in various appli-

cations, and have been part of many channel coding standards.

There is a duality between channel coding and source coding. Thus it is not surpris-

ing that LDPC codes have also been applied to source coding problems. Examples

include [17], which looked at using LDPC codes for lossless data compression and

[15], which showed that in lossy compression settings, it is possible to approach the

binary rate-distortion bound using LDPC-like codes.
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Recently [29] proposed an architecture for compression that has 'model-free' encoders,

and LDPC code is used as a key component of the system. Basically, the source is

described by a factor graph and compression/encoding is accomplished by applying

an LDPC code with appropriate rate to the source variables. The decoder uses side

information of the source (provided by the source factor graph) together with the

compressed content (which can be seen as the output of a hashing function) to re-

cover the original message. The scheme proposed in this thesis is inspired by the

architecture in [29], but aims to solve a different task, namely that of obtaining sam-

ples from a given probability distribution.

In LDPC code, sending parity check bits in addition to the actual codeword enables

reliable transmission of the codeword over a noisy channel. Given enough parity check

bits and enough information about the codeword1 , it should not be surprising that

one can recover the codeword being sent. The basic idea of the proposed sampling

technique is to view the desired sample as an unknown 'codeword', apply an LDPC

code and use random coin flips to determine the values of 'parity check bits'. Then

rely on both the parity check bits and 'information about the codeword' (the struc-

ture of the source distribution) to recover the codeword and a sample is produced.

It will be proved that with adequately constructed system, the obtained samples are

from the strong typical set with respect to the target distribution, and thus provide

nice approximation of the target distribution.

This thesis is organized as follows: Chapter 2 will introduce the necessary back-

ground for understanding the LDPC-based sampling scheme, including Monte Carlo

methods, factor graphs, message passing algorithms, LDPC codes and Onsager's ex-

act solutions for 2-dimensional Ising model. A formal description of the problem

formulation, as well as the sampling scheme will be presented in Chapter 3. Chap-

ter 4 proves the correctness of the scheme assuming Maximum-likelihood simulation,

11n the channel coding context, the information being a corrupted version of the codeword
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while Chapter 5 discusses the relevant details of implementing the scheme in practice

where approximate simulation is performed via Belief Propagation algorithm. The

(approximate) simulation results on three different types of target distributions, fol-

lowed by an analysis of various phenomena observed, are reported in Chapter 6. A

range of discussions over more general topics, such as comparisons among different

sampling methods and how to choose a suitable one, or alternative ways to generate

the code graph, are included in Chapter 7. Finally, Chapter 8 concludes the thesis

and points to several directions of possible future work.
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Chapter 2

Preliminaries

This chapter introduces some relevant concepts and results that will be used later in

the thesis. Section 2.1 provides a brief review of several sampling methods that are

commonly used in practice, including Rejection Sampling, Importance Sampling and

Markov Chain Monte Carlo methods. Section 2.2 and Section 2.3 contain a descrip-

tion of factor graphs and a high-level introduction of message passing algorithms,

respectively. Section 2.4 serves as a short introduction to LDPC Codes. Section 2.5

presents Onsager's exact solution, which analytically computes various quantities,

such as entropy and partition function, for 2-dimensional Ising model.

2.1 Sampling Methods

Depending on the application, Monte Carlo methods aim to achieve one or both of

the following tasks:

1. Given a target distribution px(-), obtain independent samples x(, X(2, x(S)

from px(-).

2. Given a target distribution px(-) and a function f(-), estimate Ep.[f(x)].

If the first task is solved, i.e. there exists a sampling method that produces samples

that are independent of each other and can approximate the distribution closely, it
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will be straightforward to tackle task 2:

lS f(x(s)) -+ Ep[f(x)] as S + o,
S-=1

according to Law of Large Numbers. On the other hand, some applications only

require estimation of some expectation and task 2 may be accomplished without wor-

rying about task 1.

Recall from previous discussion that one should not expect to find a 'perfect' sam-

pling scheme. Different sampling techniques will make different compromises. In this

section, several sampling techniques that are commonly used in practice are briefly

described. Since the results are well known, relevant proofs are omitted here. A

discussion on their relative pros and cons, and a comparison with the LDPC-based

sampling technique proposed in this thesis, will be deferred to Section 7.1.

2.1.1 Rejection Sampling

Rejection sampling assumes the availability of a proposal density q,(-), which can be

efficiently sampled from1 . Assume

*(x) q*(x)
p(x) = and qx(x) = Z(

ZP Zq

where Z, and Zq are constants, and p* (x) and q* (x) are easy to evaluate. Furthermore,

assume there exists a constant c > 0, such that for any x, cq*(x) ;> p*(x). Samples

from px(-) will be generated in 2 steps:

1. Generate x from q,(.), and compute cq*(x).

2. Generate a sample u from the uniform distribution on [0, cq*(x)]. Accept x as

a sample of px(.) if u < p*(x), otherwise reject.

It can be proved that the above procedure results in independent samples from px(-).

1A naive examples of 'easy-to-sample-from' distributions is the uniform distribution.
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2.1.2 Importance Sampling

Importance sampling is a method to accomplish task 2 without actually generating

samples from px(-). Importance sampling also assumes a proposal distribution q,()

that can be sampled from efficiently.

Let x(l), X(2, ..., x(s) be independent samples from distribution qx(.). Epx[f(x)] will

be estimated by:

S
E ( X(s)) ( S)

S=1 where w(s) - Pfx) is known as the weight.
E '(S qx (x (s))

s=1

It can be proved that as S -+ 00,

S

8=1 s Ep E,[f (x)]
E W(S)
s=1

The intuition here is that the weights w(l), ... , w(s) are used to compensate for the

difference between the target distribution and the proposal distribution, by regarding

some samples as more important than others.

2.1.3 Markov Chain Monte Carlo Methods

Markov Chain Monte Carlo methods generate samples from target distributions px(-)

by constructing a Markov chain whose stationary distribution happens to be px(-).

There are many algorithms that fall in this category, and two most famous variants

are briefly described here.

Metropolis-Hastings algorithm

Metropolis-Hastings algorithm again makes use of a proposal distribution q(.; -) where

q(x'; x) denotes the probability of proposing new state x' given that current state is

19



x. The proposal distribution can be chosen arbitrarily, as long as q(x, x) > 0 for any

x, and from any state x, any other state x' can be reached in a finite number of steps.

Basically, these regularity conditions are sufficient conditions for the corresponding

Markov chain to be irreducible and aperiodic. The algorithm proceeds as follows:

1. Start in some arbitrary initial state x(O).

2. At time step t + 1, propose a new state x' according to distribution q(.; x(t)).

p* (x') q(x(t); x')
3. Compute r = .

x*(x(1)) q(x'; x(t))

4. If r > 1, always accept the new state by setting x(t+) - x'.

If r < 1, accept and set x(t+) = x' with probability r, otherwise reject and set

x(t+') - x(t) with probability 1 - r.

5. Increase t and go back to step 2.

It can be shown that the Markov Chain constructed this way has unique stationary

distribution px(-). Thus in theory, as the number of iterations goes to infinity, the

empirical distribution of the obtained samples converges to px(-).

Gibbs Sampling

Gibbs Sampling algorithm can be viewed as a special case of Metropolis-Hastings

algorithm where the proposal distribution is chosen in a particular way:

1. Start in some initial state x( = (x0 , 0

2. At time step t + 1, sample each variable in turn:

(t+1) P (t+1) (M1 (0
x ~(X2x ,x2 X .i ,n- X

20



3. The state at time t + 1 is then x(t+) = (x+, X+ +

go back to step 2.

,..., +'). Increase t and

Notice that Gibbs sampler always accepts the proposed state in each iteration. It

is assumed that the conditional distributions are easy to sample from. Since Gibbs

sampling is a special case of Metropolis-Hastings algorithm, it is also provably correct

in the limit of infinitely many iterations.

2.2 Factor Graphs

Graphical models are useful tools that capture the structure of the variables of in-

terest. A graph contains nodes and edges, where nodes represent variables/functions

and edges indicate dependence between the nodes they connect to. This thesis focuses

on a particular type of graphical models, namely factor graphs.

fh(X 1 , x 2 ) = 1(Xi +X2 1)

f2 (X 3, x 4 ) = 1(x3 +x 4 < 1)

if X2 - X3 = X4

otherwisc

Figure 2-1: An example factor graph.

A factor graph g = (V, S, F) is a bipartite graph, which contains a set of vari-

able nodes V, a set of factor nodes F, and a set of undirected edges S. Each

edge connects a variable node and a factor node. Let the variable nodes represent

21

X1

X2

X3

X4
3(X2, X3, X4)

0.9
=0.1



x = (xi, x2, ... , )Xn) jth factor node is associated with a non-negative function fj(xfj),

where j E {1, 2, ... , K}, K = |IJ and xf, is the subset of variable nodes that jth factor

node connects to. Then the joint probability distribution associated with the factor

graph is
K

PX (X1i, X2, ...,i XNV) C fi (Xf3
j=1

A simple example of a factor graph can be found in Figure 2-1.

2.3 Message Passing Algorithms

Nowadays, many applications are dealing with systems of ever-increasing size. Exam-

ples include the Internet, sensor networks or multi-core architectures. Such systems

are usually modelled as graphs, where the entities (i.e. computers, sensors and cores

respectively in the aforementioned examples) are viewed as nodes, and two entities

that can communicate with each other are connected by an edge. The tasks in the

applications are usually global ones, e.g. finding some globally optimal configura-

tion. Yet the computational cost to accomplish these tasks via centralized computing,

where one processor takes care of all the computation, is usually exponential in the

total number of nodes, and thus infeasible for large systems. Instead, one resorts to

distributed computing.

In distributed computing, each node in the graph is viewed as a processor and carries

out computation locally. Obviously, the local processors need to communicate with

each other to achieve/approximately achieve the global objective. Message passing

algorithms are a family of algorithms that perform such communication among nodes

using 'messages'.

In general, message passing algorithms are iterative algorithms. In each iteration,

each node receives messages from neighbours (i.e. other nodes that it directly con-

nects to), performs local computation, and sends out new messages to its neighbours.
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After t iterations, each node has information from its size-t neighbourhood. De-

pending on what messages are communicated among nodes, there are many types

of message passing algorithms. In this thesis, we focus on a particular one called

Belief Propagation algorithm. Its general derivation can be found in many standard

textbooks (e.g. [6], [27]) and thus is omitted here. Details of the Belief Propagation

algorithm specialized to the proposed LDPC-based sampling scheme will be discussed

in Section 5.2.

2.4 LDPC Codes

This section introduces LDPC codes and some related definitions.

Only binary LDPC codes will be considered here, i.e. the codebook C is a subset

of {0, 1}N. N is called the block length of the code. LDPC codes are linear codes,

that is, C can be written as

C = {xE 10, 1 }N : HX = 0},

where parity check matrix H is a K x N(K < N) matrix with binary elements

Hgi E {0, 1}, and Hx is computed in modulo 2 sense.

rank(H) denotes the number of linearly independent rows in H and

rank(H)
N

is defined as the rate of the code. Clearly, R < .

H will be a sparse matrix, i.e. the number of O's in H is much larger than the

number of l's, hence the name 'low density'. To be more precise, the number of l's

grows only linearly with block length N.
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Each LDPC code can be described by its parity check matrix H and each H in turn

can be associated with a factor graph. Create a variable node for each column of H

and create a factor node for each row of H. As each of them corresponds to a parity

check, the factors nodes in the factor graph for an LDPC code are also referred to as

'check nodes'. Variable node j is connected to check node i if and only if Hij = 1.

The function associated with check node i is

1l(xj + xj2 + ...- + x = (mod 2))

assuming there are 1 variables connected to check node i, whose corresponding indices

are j, j2, ... , ii.

In fact, we will be using a slightly different definition of LDPC codes:

C' {= x E {O, 1}N : Hx = z(mod 2)}

where z E {0, 1}K is a fixed binary sequence. Notice that for any xo c C', and for any

x c C, xO + x G C'. The function associated with check node i now becomes

11(xj + xj 2 + ... + x = zi(mod 2))

It can be proved that most of the properties of C are satisfied by C' as well.

An important property of an LDPC code is its degree distribution. The degree of

a node (variable or check node) is defined as the number of other nodes that it is

connected to. Degree distribution, as the name suggests, is the distribution of the

degree of variables nodes and check nodes. More concretely, given the factor graph

associated with an LDPC code, denote by Ad and Pd the fractions of variable nodes

and check nodes, respectively, of degree d (d = 0,1,2,...). The pair (A, P) is called the

degree distribution of the LDPC, where A = {Ad} 0O and P = {Pd}o. A practical
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representation of the degree distribution is provided by the generating functions

A(x) = ZAdxd and P(x) = ZpdX

d>O d>O

If both the variable node degree and the check node degree are constants (i.e. there

exist integers d, and d, such that Adv = 1 and Pd, = 1), the LDPC is said to be regular.

Otherwise the LDPC is called irregular. Irregular LDPC codes are more flexible than

regular ones and shown to have better performance when used as channel codes [11].

However, finding the optimal degree distribution is a non-trivial task. This thesis will

stick to regular LDPC codes. Section 5.1 will describe how the LDPC codes used in

the simulations are generated, and Section 6.2.2 will discuss how degree distribution

of the LDPC codes can impact the performance of the proposed sampling scheme.

2.5 Onsager's Exact Solution for 2D Ising Model

One of the models the proposed sampling scheme will be tested on is 2-Dimensional

homogeneous Ising model, a schematic of which is shown in Figure 2-2.

Denote the set of edges in the 2D Ising model as S. The model is defined as

Px(x) = exp(-O3J E xxi)
(i'A~ES

where Z = Z exp(-.J E xixj) is called the partition function and xi E {-1, 1}
x (ij)ES

represents the spin at location i. 3 and J have physical meanings, but for our pur-

poses, they are just constants.

Chapter 6 will need to calculate the entropy and partition function of the 2-Dimensional

Ising model. Fortunately, both quantities can be analytically computed using On-

sager's Exact Solution [1], which is presented in this section. The relevant proofs are

very involved and beyond the scope of this thesis, and thus are omitted here.
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Figure 2-2: Schematic of Ising model.

It should be noted that Onsager's Exact Solution assumes periodic boundary con-

ditions, i.e. a factor node is attached to the first and last variable in each row and

column as well. The graph is a toroidal grid as shown in Figure 2-3, and all variables

in the grid have the same number of neighbours. As the size of ising model increases,

the assumption about boundary conditions should have vanishing impact.

Free energy of the 2-Dimensional Ising model is defined as

F(3) A ln[Z(#3 )] = - ln[E exp(-OJ E xix)]
x (ij)C

Free energy density is free energy per node, as the size of the model goes to infinity

f (P) = lim FW
N-+oo N 2

where N is the number of nodes in each row/each column.
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Figure 2-3: 2D Ising model with periodic boundary condition.

Entropy of the Ising model is defined as 2

S() A - Px(x) ln(px(x)) = 2 F

Similarly entropy density is defined as s(O) = lim SN 2"). Thus
N-4oo

s(B) = ltosaeth

Onsager's Exact Solution states that

f(c) = - ln(2)

27r 27r

8r 2 ffln[a2 - b cos(O1)
0 0

- bcos(6 2)]dO1dO 2

where a = cosh(23J) and b = sinh(2/J)

For large N, by definition of F() and f(3), partition function can be computed

from

Z,~ exp(-Of (O)N 2 )

2 The usual definition of entropy uses log 2 instead of In. But for clarity of presentation we use ln
here. The answer only differs by a constant factor ln(2).
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Plug in s(o) = #f2,, entropy density can be computed as

27r 27r

s(,) = ln(2) + 2 ln[a2 - b(cos(O1) + cos(02))]dO1dO2
0 0

27r 27r

_ J 2ab - a(cos(01) + cos(02)) d61d02
47r2 f I a2 - b(cos(a 1 ) + cos(0 2))

0 0

Notice # and J always appear together in the expressions, thus without loss of gen-

erality, one can assume # = 1. Also, notice that neither free energy nor entropy will

change if all -1's in the Ising model are replaced by O's.

It is also common to describe the Ising model using factors and flipping probabil-

ity p (i.e. the probability of neighbouring variables taking different values). Then the

function associated with each factor in Figure 2-2 takes the form:

P if xi -x
xi,x ={ Pf

1-p if x =x3

Now let us relate J to p:

e--J 1- Pe- -p
e_ =p

Iln( )
2 1- p

Thus a = cosh(2J) = 2p2 -2P+1 and b = sinh(2J) = p- .
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Chapter 3

LDPC-Based Sampling Scheme

In this chapter, the LDPC-based sampling scheme is formally introduced. To begin

with, Section 3.1 defines the sampling problem and lists the goals of the proposed

scheme. Next, Section 3.2 aims to provide a description of the basic idea of the

scheme, as well as an intuitive argument as why the scheme should work. Finally, a

precise statement of the scheme is presented in Section 3.3.

3.1 Problem Description

The goal is to sample from distributions over discrete variables defined over a finite

alphabet. As already mentioned in Chapter 1, such a distribution can always be con-

verted into a distribution over a sequence of binary random variables. Thus without

loss of generality, the rest of the thesis will assume x = (xI, x2, ..., XN) E {0, 1}N.

Moreover, the target distribution px(-) is described by a factor graph.

Ideally, independent samples x), X(2), ... , x(s) from px(-) are desired. Since the al-

phabet size is finite, in theory px(x) for every x E {0, 1}N can be computed. Given

probabilities of all possible configurations, one can partition [0,1] into small intervals,

each corresponds to one configuration and the length of the interval equals to the

probability of that configuration. Then independent samples can be obtained by sim-

ply generating a random number from the uniform distribution on [0,1]. However,
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the amount of computation needed for this naive approach will be exponential in N1 .

The proposed LDPC-based sampling scheme, which will be described in detail in

Section 3.3, claims to produce samples xl, x(), ... , x(s).

1. in amount of time that is linear with respect to the number of samples S and

polynomial with respect to the size of the source N;

2. without requiring an 'easy-to-sample-from' proposal distribution;

3. although the samples produced are not necessarily independent, for any pre-

specified accuracy, the empirical distribution formed by (x(1), X(), .,s)) can

approximate px(-) with that accuracy given large enough S.

3.2 Basic Idea and Why It Should Work

Before presenting the details of the proposed sampling scheme, it is useful to describe

the basic idea and provide some intuition as why this scheme should work.

Given a target distribution px(-) over alphabet X, a 6-strong typical set of size t

with respect to px(-) is defined as:

T(t) - {y = (x(), x(2 ), ..., xN) E Xt : Va E X,1 N(aly) - px(a)I < 6}
t

where N(aly) denotes the number of occurrences of symbol a in sequence y. In other

words, if y is a strong typical sequence for px(-), the empirical distribution formed

by X (X), ... , x(t) is a nice approximation of px(-) and the approximation precision

is controlled by 6. On the other hand, typicality analysis shows that the sequences

in the strong typical set will dominate the probability when k is large enough and

they each have roughly the same probability in asymptotic sense. Thus good quality

samples of px(-) can be obtained by associating with each typical sequence an index,

'Recall that in general, computing the normalization constant/partition function is NP-hard for
distributions described by a factor graph.
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uniformly randomly picking an index, and then finding the sequences corresponding

to that index.

The challenge is how to simulate this process using a scheme that can be imple-

mented in practice. Inspired by [291, we consider attaching an LDPC code to the

variables. The LDPC code essentially serves as a hash function and partition all

sequences into groups that will be referred to as 'bins'. The results in [29] shows

that when the LDPC code has appropriate rate, the hash function is a very good one

for the typical sequences: almost all bins contain one and only one typical sequence.

Therefore given hash index and side information provided by the factor graph of the

distribution, one can expect to find the corresponding typical sequence with high

probability. In particular, the analysis in Chapter 4 assumes that the most likely se-

quence in the chosen bin is picked and it will be proved to be a typical one with high

probability; the experiments in Chapters 5 and 6 uses Belief Propagation algorithm

to search for the typical sequence and obtains good samples empirically.

However, the sampling scenario considered in this thesis has its own feature: in

the compression problem in [29], the sequence to be compressed is produced accord-

ing to the source distribution and thus is a typical one with high probability; while

in the sampling problem, typicality is not naturally in the system: the factor graph

describing the target distribution has to be repeated to impose the notion of typicality.

Notice all information about the target distribution is (implicitly) available once the

factor graph of target distribution is given. For example, algorithms such as Belief

Propagation or Max-Product can be run to estimate the marginal distributions or

maximizing configuration. However, these algorithms are deterministic. In order to

sample from px(-), randomness is needed. In the proposed scheme, randomness is

introduced by 'uniformly randomly picking an index'. Introducing the right amount

of randomness is then equivalent to picking an appropriate rate for the LDPC code.

The amount of randomness should be enough such that rich samples can be produced,
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but only to the extent where the structure in the target distribution is still respected.

3.3 Sampling Scheme Based on LDPC Codes

The proposed sampling scheme will be defined on a combined source-code graph (which

will be referred to as combined graph for concise presentation). Thus the construction

of the combined graph will be described first.

Given a target distribution px(.), denote the corresponding factor graph as S. The

source graph gs will contain t identical copies of S. The copies are independent of

each other, i.e. there is no edge connecting any two nodes from different copies. As

mentioned in Section 3.2, the factor graph of px(.) is repeated for typicality argu-

ments to work. Further justification for this and what value of t should be used will

be discussed in Chapter 4.

Given the source graph gS, attach to it an LDPC code, which has Nt variable nodes

and with appropriate rate 2 . The factor graph describing the chosen LDPC code is

referred to as code graph gc. In what follows, the factor nodes in code graph gc will

"e LJ1Led UekL' liuueb, adrt tUe term 'actor noces will be reserved for factor nodes

in the source graph gS.

Notice that the variable nodes are shared by source graph !s and code graph 9c,

and form a boundary between the two. 9s and gc together are called combined

graph, denoted by g. An example of combined graph is shown in Figure 3-1. Now

we are ready to present the LDPC-based sampling scheme:

1. Given the factor graph for px(-), construct the corresponding combined graph.

Denote the number of check nodes in the combined graph as K, the number of

variables in the target distribution as N, and the number of repetitions of the

factor graph as t.
2 Discussion on how to choose the rate will be deferred to Section 5.5.
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Figure 3-1: The schematic of an example combined graph.

2. Flip K independent fair coins and use the results ('head' as 1 and 'tail' as 0) as

parity values at the check nodes.

t

3. Find (x(), X), ..., x(t)) E {0, 1I}Nt that maximizes px(x()) while keeping the

K parity checks satisfied. In other words, find the codeword of the attached

LDPC code that has the highest probability under px(-).

In practice, finding the Maximum-likelihood solution in step 3 will be NP-hard and

Belief Propagation algorithms are used instead to provide an approximate solution.

Now that the LDPC-based sampling algorithm has been formally described, follow-

ing chapters move on to theoretically justify the correctness of the proposed scheme

under Maximum-likelihood simulation (Chapter 4) and empirically examine the per-

formance of the scheme under approximate simulation (Chapters 5 and 6).
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Chapter 4

Maximum-Likelihood Simulation

In this chapter, performance of the proposed LDPC-based sampling scheme is an-

alyzed assuming maximum-likelihood simulation is possible, i.e. one can find the

most likely sequence that satisfies all parity checks. In practice, maximum-likelihood

simulation will be computationally intractable and approximate simulation will be

implemented via Belief Propagation algorithm. Yet it is useful to understand the

behavior of the scheme in the maximum-likelihood simulation case, which provides

an upper bound for the performance of the scheme.

Section 4.1 will first prove the correctness of the proposed scheme assuming maximum-

likelihood simulation. That is, with maximum-likelihood simulation and large enough

t (number of repetitions of the source), the proposed sampling scheme will provide

samples that approximate the target distribution arbitrarily well, with probability

arbitrarily close to 1. Clearly, smaller t is desirable since the computational cost will

grow with t. Section 4.2 discusses how many repetitions are required, i.e. how large

t should be, as a function of the target distribution and the desired accuracy.
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4.1 Correctness Under Maximum-Likelihood Sim-

ulation

Section 3.2 argues that if y = (x( 1), X(2), ..., x(t)) is in the 6-strong typical set defined

with respect to target distribution px(-), by definition, the empirical distribution

computed from X X(2, ..., x() will be a good approximation of px(-) in the sense

that
N(aly)

Va E X, I - px(a)< 6
t

where X is the alphabet of the target distribution and N(aly) is the number of times

symbol a appears in y = (x('), X(2) ... , x().

Thus in order to produce good quality samples for px(-), the goal is to find typi-

cal sequences. However, maximum-likelihood simulation of the proposed sampling

scheme, as described in Section 3.3, looks for a 'most likely' sequence that satis-

fies all parity checks. The main result of the current section proves that when the

LDPC code is generated with appropriate rate, the 'most likely' sequence found by

maximum-likelihood simulation will be a typical sequence with high probability.

Before a precise statement of the result can be made, it is necessary to introduce

a few definitions first.

Definition 1. Given a target distribution py(-) and a parity check matrix A E

{ 0, l}kx, an ML-sequence set M is defined as the set of all sequences that has

the largest probability among sequences with the same parity check values:

M A {y E {0, 1}": 3z E {0, 1}ks.t.Ay = z and Vy' where Ay' = z, py(y) ;> py(y')}

Technically, it is possible that there are several sequences that are most likely (they

all have the same probability). In those situations, one of them can be arbitrarily but

deterministically chosen to be in set M to make sure |MI < 2
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Definition 2. A model that defines a probability distribution over string y of any

length n, py(.; n), is said to have mean entropy Hy if for any E > 0, for any 6 > 0,

there exists n* such that for all n > n*:

IP(I -log(py (y; n)) + HyI > 6) < E
n

Definition 3. Given target distribution py(-), a (k, A, w, e) satisfactory matrix A

for py(-) is a matrix with k row, n columns (n > Ak) with weight w or less per column,

and py(M) > 1 - c, where M is the ML-sequence set defined with respect to py4.).

The main result of this section is summarized in Theorem 1:

Theorem 1. Given any target distribution px(-) over {0, 1}N with mean entropy

H., for any c > 0, 6 > 0, there exists large enough t, such that there exists an

LDPC code with parity check matrix H c {0, 1}KxNt, where K - t(H(p.) - q), for

which maximum-likelihood simulation will produce a sequence in T t) with probability

at least 1 - E. Here Tft) is the 6-strong typical set defined for distribution px(-),

H(px) = - Epx(a) log(px(a)) ~ NH., and q = -6 Z log(px(a)). In fact, the
aEX aE{0,1}N

result holds for almost any reasonably well constructed LDPC code'.

The theorem contains several important messages:

1. The 'appropriate' rate of the LDPC code is

K t(H(px) - q) - H(px) - y H(px) H
Nt Nt N N

which is the mean entropy of the target distribution.

2. With large enough t, the 'most likely' sequence satisfying all parity checks found

by maximum-likelihood simulation is a typical sequence with probability arbi-

trarily close to 1 (controlled by constant c). If it is typical, the obtained sequence

can be viewed as concatenation of t samples, and the samples approximate tar-

get distribution px(-) with accuracy controlled by constant 6.

'Section 5.1 discusses how to construct an LDPC code.
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Theorem 1 can be broken into three steps:

1. The parity check matrix of the LDPC code H partitions the space {O, 1 }Nt into

2K bins, each containin the same number of Nt-bit sequences and corresponds

to a different parity check value z E {o, 1}K.

2. Only a vanishingly small portion of all bins have a sequence that has higher

probability than a typical sequence.

3. The typical sequences spread across the bins nicely, i.e. almost all bins contain

a typical sequence.

Since the proposed sampling scheme is basically uniformly picking a z E {0, i}K and

then finding the most likely y E {0, I}Nt such that Hy = z(mod 2), it is clear that

if all three arguments are true, Theorem 1 follows directly. These three steps will be

established in the lemmas below:

Lemma 1. Let A E {0, I}kx" be full rank and k < n, then for any z G {O, I}k, there

are 2 n-k sequences y E {O, 1} that satisfy Ay = z(mod 2).

Proof. Since A is full rank, i.e. rank(A) = k, according to Rank-Nullity Theorem,
4-- 1,r.. - 1- I -r A /. 1 r of% I~ 'I 'n 1 1 A (m od U imens or 01 e kerneeeIU I L 01 A i. 0e. t1e e f y k u, 1j- such that Ay = 0 (mod

2)) is n - k. In other words, there are 2 n-k binary sequences of size n for which

Ay = 0 (mod 2) holds. Clearly, the all-zero sequence is in the kernel.

Given some z, if Yo E {0, 1}' satisfies Ayo = z(mod 2), we have A(yo + u) = z

if and only if u is in the kernel of A. Thus if such a yo exists, there will be exactly

2 ,-k binary sequences y that satisfies Ay = z(mod 2). Since A is full rank, Ay can

achieve any sequence in {0, 1}k as y sweeps the whole space of {0, 1}fl, which guaran-

tees the existence of such an yo. Thus for any z E {0, I}k, there are 2n~k sequences

y E {0, 1}" that satisfy Ay = z(mod 2). D

We will be working with finite field GF(2) throughout this thesis, and from here on,

'mod 2' will be omitted in the equations. Also, the parity check matrices are assumed
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to be full rank unless otherwise stated. Such a matrix A partitions the space of {O, 1}"

into 2 k bins. Each bin corresponds to a different z, i.e. for any y in this bin, Ay = z.

Each bin contains 2n-k of these size-n binary sequences. As a result of Lemma 1,

the ML-sequence set M defined with respect to a full-rank matrix A E {O, 1}kxn and

any target distribution will contain exactly 2 k elements. Clearly, Lemma 1 proves

argument 1.

Given target distribution px(-) defined over alphabet X, if y E X' is in T(t, i.e.

y is a typical sequence of px (-), by definition we have

Px(y) = H (px(a))N(ay) -> log(px (y)) = N(aIy) log(px(a))
aCX aEX

Plug in IN(ajy) - px(a)I < 6, then for any y E T t)

S t(px(a) + 6) log(px(a)) < log(px(y)) < 5 t(px (a) - 6) log(px(a))
aEX aEX

.- 2-t(H(px)+n) - t(H(yx)- )

where H(px) = - > p,(a) log(px(a)) and q = -6 E log(px(a)) are deterministic
aEX aEX

functions of Px(-). The above computation provides upper and lower bounds on the

probability of a typical sequence.

Lemma 2. Given a distribution px(.), define set L A {y E X' : px(y) > 2 -t(H(px)-7 7 )

In other words, Lt is the set of all sequences that are more likely than a 6-typical

sequence. Then for any e > 0, for any 6 > 0, there exists T C Z+, such that for all

t > TY,

Lft) < e-2"((p.)-71)

where H(px) = - > px(a) log(px(a)) and r = -6 E log(px(a)).
aEV aEV

Proof. Using properties of the strong typical set, we know that for any c > 0, there
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exists large enough t such that P(T(t)) > 1 - e. Since T(t) nL( = 0, we have

IP(LPt ) <; c

If K > t(H(px) - r), Lemma 2 proves argument 2, i.e. number of sequences that are

more probable than a typical one is only a small proportion of the number of bins

2 K. In other words, only a small portion of the bins contain sequences that are more

likely than a typical one.

Lemma 3 (Theorem 2 in [8]). Given a distribution px(.) of mean entropy H, < 1,

and a desired A < -L there exists an integer w(H,, A) > 3 such that for any desired

block error probability e > 0, there is an integer kmin, such that for any k > kmin,

there is a (k, A, w(H., A), E) satisfactory matrix A for p.(.).

In fact, [8] comments that the parity check matrix of almost any well-constructed

LDPC code of the appropriate rate and column weight is a (k, A, w(H., A), e) satis-

factory matrix. Lemma 3 effectively says that for any given distribution, almost any

LDPC code of appropriate rate and column weight satisfies the property that the

ML-sequence set has probability close to 1.

Think about playing a game, where the sender generates a sequence y = (x( 1 ), X(2), x(t)

according to px(-) and sends z = Hy to the receiver, where H is the parity check ma-

trix of some LDPC code. The receiver's task is to figure out what y was sent and

wins the game if and only if he correctly guessed y. If the receiver answers with 9
where 9 is the most likely y such that Hy = z, according to Lemma 3, the receiver

will almost always win when the number of repetition of the source (thus the size of

the sequence) is allowed to increase.

The proof of Lemma 3 can be found in [8] and thus is omitted here.
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Lemma 4. Given a distribution p,(-) of mean entropy H. < 1, j = -J E log(px(a)),
aEX

M and Tft) are the ML-sequence set and 6-strong typical set defined with respect to

px(-) respectively. Then for anyE > 0, there exists large enough t such that

(I - E) 2t(H(p )-1)-K

Proof. One side is easy:

M K |m n 40 T |
|MnT \< M| 2K K - 1

From Lemma 3 we know that for any e > 0, there is a large enough t, such that

P(M) > 1 -
2

On the other hand, from properties of typical sets we have, for any e > 0, 6 > 0,

there is large enough t such that

P'(T0) > 1 -

> 1 - P((T t))c) - P(MC) > 1 -

We have mentioned that the probability of any sequence in Tft) is at most 2 -t(H(px)-,)

.-. |M n T |; (1 - 6)2t(H(Px)-Ti)

IM n T t) > (1 - e)2 t(H(p.)-7)
-~~ - >

E

If we set K = t(H(px) - 17), we have 1 - E < < 1

Remember that maximum-likelihood simulation uniformly picks a bin and look for

the most probable sequence in that bin, which is equivalent to uniformly pick one
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element in the ML-sequence set M. Lemma 4 states that with probability arbitrarily

close to 1, the sequence picked is also a strongly typical one and thus provides a good

approximation to the target distribution.

Now the proof of Theorem 1 becomes relatively straightforward.

Proof. Given a target distribution px(.) over {O, 1}N, let us set y to be a concatena-

tion of t independent, identically distributed copies of x, i.e. y = (x(1), X2, ..., x(t)
t

and py(y) = H px(x(')). Clearly the model py(-) has mean entropy.
i=1

From Lemma 4, we know that for large enough t and correctly chosen rate,

1-c< M <
- IM| <1

In the Maximum-likelihood Simulation, we pick an element of M uniformly at random.

Thus the probability that the chosen element is a 6-strong typical sequence is lower

bounded by 1 - c. F

4.2 RHate of Convergence

In the discussions so far, a 'large enough' t is assumed for asymptotic behaviors to

kick in without discussing exactly how large t needs to be. Apparently, the scheme

would be of little use if t grows exponentially with N because the computational

complexity of the scheme would also be exponential in N in that case.

Unfortunately, it is possible to encounter distributions which requires a large number

of repetitions. An example would be a distribution where one of the configurations

has a constant probability (say, 1/2) while all other configurations are equi-probable

(roughly 1/ 2 N). Intuitively, a large t is needed to 'smooth out' the effect of the highly

probable configuration.
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The following theorem discusses how the necessary size of t depends on properties of

the target distribution px(-).

Theorem 2. For any distribution px(-) where x E {0, 1I}N X, and VE> 0, W3> 0,

P(T(t)) > 1 - e if

t > 2 ln( 2 X) max{p.(a)(1 - px(a))}
- E aEX

where T t) is the 6-strong typical set defined for p,-)

Notice Theorem 2 argues that the number of repetitions needed for typicality ar-

guments to be valid is proportional to ln(jXj), i.e. linear in N. The required t is
1 1

also proportional to - and ln -,as well as maxpx(a)(1 - px(a)). If probability for
26 aEX

individual elements px(a) is close to 0 for all a E X, then

maxpX(a)(1 - px(a)) ~ max px(a)
aEX aEX

Notice that for sources that possess a high degree of regularity, e.g. Markov chain

source or Ising models that we will consider in Section 6.1, max px (a) = cN, where c is
aEX

a constant and c < 1. Thus the bound on t scales as O(NcN) and becomes negligibly

small for large N. In such cases, the increase in computational cost brought about

by repeating the source becomes insignificant.

In order to prove Theorem 2, the following notations and lemmas are introduced:

1. If u ~ B(n, p) is a binomial random variable, the probability mass function of

u is f(k; n,p) = P(u = k) = (pki - p"-k, and the cumulative distribution

function of u is denoted as F(k; n, p) = P(u < k).

2. If u and v are two Bernoulli random variables with P(u = 1) = a and P(v =

1) = b respectively, by a slight abuse of notation, we will denote D(p. Ipv), the

KL-divergence between u and v, as D(aIIb). Clearly, D(a|Ib) = D(1 - aIII - b).
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The following lemma provides an upper bound for the cumulative distribution func-

tion of binomial distribution:

Lemma 5. F(k;n,p) < exp(-nD( |jp))

This is a well-known result and its proof can be found in [7] and thus is omitted here.

Lemma 6. Assume 0 < a < b < 1. If the value of b is fixed, D(a||b) is locally a

decreasing function of a.

Proof. This should be intuitive as divergence is in some sense a measure of 'distance'

(square of distance) between two distributions. Thus the larger a is (while a < b

still holds), the closer the two Bernoulli distributions are, and the smaller D(allb) is.

More concretely:

OD(aflb) 0 a 1- a
_____ = - (a log - + (1 - a) log )

a a b 1 - b
1 1

=log a + -log b - log(1 - a) - + log(l - b)In 2 In 2
la(1 - b) a - ab
ogb(1 - a) b - ab

A~ n (1111, 1
Since a < b =* a - ab < b - ab k"""U < 0

oBa
D(a| b) is locally a decreasing function of a. E

Now we are ready to prove Theorem 3.

Proof of Theorem 3. P(Tf ) > 1 - E is equivalent to:

P(Ela E X, s.t. I -N~l)_Px(a)l > 6) < c
t

Here y E {0, 1}Nt, but is viewed as a t-symbol sequence where each symbol consists

of N bits and is generated from px(-). N(aly) is the number of appearances of symbol

a in the sequence.
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From Union Bound:

s.t. N(aly) - Px(a)
t p~)

Look at each term in closer detail:

P( N(aly)=1-IPQ

Lt(px(a)+ )j

= 1-- ( )px(a)i(1

Denote |t(px(a) - 6)] as c, and denote Lt(px(a) + 6)] as c 2

Px (a)z(1 - px(a))'- +(*) i
i=0 (t

px (a)'(1

+
i=C2+1

- px(a)) t- +

px(a)i(1 -

() Px(a)t -(1
i=O

= F(ci - 1; t, px(a)) + F(t -c 2 - 1;t,1 - px(a))

< exp(-tD(ci - 1|1px(a))) + exp(-tD(t - C2 1 - px(a)))
t s

The last step used in (**) Lemma 5. Notice:

ci - < t(px(a) - 6) -- 1 px(a)
t t

t - c 2 -1 t - t(px(a) + 6) + 1 - 1

t

-6 < px(a)

px(a) - 6 <1 px(a)

Applying Lemma 6, we get:

(**) < exp(-tD(px(a) - Jllpxa))) + exp(-tD(1 - px(a) - 61 - px(a)))

= exp(-tD(px(a) - 6llpx(a))) + exp(-tD(px(a) + J||px(a)))
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P(I N(aly) - Px(a)t > 6) - px(a) I <6)

(*)

i=o

Px(a))t-i

- px(a))'
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t
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Since 6 is a small positive constant, let us use Taylor expansion:

D(px(a) + 611px(a)) =

= px(a) log(1
6

+ px(a)

+ (1 -p(a)) log(1 -

1 6

In 2{PX(a)(px(a) 2px

+ (1 - px(a))( -px(a)

62

(px(a) + 6) log(P(a ) + (1
px(a) +

)+ 6log(1 +
px(a)

Px (a)
62

(a )2) +
'S

- px(a) - 6)log( px(a) -

2(1 - px(a))2) +o(62

I

By symmetry,

D(px(a) -

.-. P(3a E X, s.t.
N(akx) _ px(a) >6)

t
:! E 2 exp (- t ~62 )1 - )

1
< 21X Imax exp(-t)
Cery 2i co e( n 2 px(a)(I - px (a))

Clearly, a sufficient condition for P(TFt) ;> I - E is:

I
2 1X Imax exp(-tLI<

a2 X 2ln 2 px(a)(1 - px(a)) -

2t > In 2 maxpx(a)(1 px(a))
- 62 6 aEX

D
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Chapter 5

Approximate Simulation

This chapter discusses the practical implementation details of the sampling scheme

proposed in Section 3.3. A description of how the LDPC code used in the simulations

is constructed is included in Section 5.1. Since the computational cost of Maximum-

likelihood simulation is generally intractable, approximate simulation is performed

instead via Belief Propagation algorithm. Section 5.2 presents the message update

equations of BP algorithm, specialized to the proposed sampling scheme. Section 5.3

and 5.4 provide further details on how to start and terminate the BP algorithm.

Finally, Section 5.5 focuses on how to dynamically determine the right code rate for

the LDPC code.

5.1 Generation of LDPC Codes

The parity check matrix H used in the simulations is randomly generated, with almost

constant left degree 3 (i.e. each variable participates in roughly three different checks).

The procedure of producing such an H is described below:

1. Given the specified number of rows and columns, generate an all-zero matrix of

appropriate size.

2. For each column, independently place three l's at random rows.
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3. For each row, if the number of l's in the row is fewer than 2, place extra l's in

the row at random places.

4. Get rid of size-4 cycles on the factor graph corresponding to H. In other words,

make sure a, b, i, j such that

=Has,IHiaj I = lHbj = 1

Step 4 is necessary due to the fact that BP algorithm is known to have poor perfor-

mance on graphs with very small cycles. Step 4 may introduce new degree-i checks

or redundant rows (i.e. all-zero rows). One way to deal with this problem is to iterate

step 3 and 4. In practice, when H is reasonably large, the probability of size-4 cycle

appearing becomes pretty lowl and the probability of introducing degree-1 check or

redundant row in step 4 is even lower.

5.2 Belief Propagation Algorithm

Belief Propagation (BP), also known as Sum-Product algorithm, is a popular message

passing algorithm. The general form of BP and its derivation can be found in many

standard textbooks (e.g. [6], [27]) and thus are omitted here. Below is a detailed

description of the messages specialized to the proposed sampling scheme.

For the clarity of presentation, the subscripts on variable/check/factor nodes will

be omitted; but since messages are only defined for variable and check/factor nodes

that are connected, the subscript should be easy to infer from context.

Let .A(v) denote the neighbourhood of variable node v, i.e. the set of all the check

'For a matrix with K rows and N columns, the expected number of size 4 cycles is roughly

(N) 3(K2)

\2c (K)

which is a constant if the ratio between N and K is fixed.
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nodes and factor nodes that are connected to v. K(f) and A/(c) are defined in a

similar manner. Let x be the value taken by a variable v. Given a set S of variables,

xs denotes the vector of values taken by all variable nodes in S.

1. Messages from factor nodes to variable nodes:

x
XKr(f)\{vl

f (xg(f)\{}, x)
vG CA((f)\{v}

M + (x*)

2. Messages from check nodes to variables nodes:

mV (x) = V z + x}
xK(c)\{v} v*EN(c)\{v}

1-
v.EN(c)\{v}

m$>c(vt )

where z is the parity check value corresponding to check c.

3. Messages from variable nodes to factor nodes:

mQ (x)+xc {(X
cEN(v)

H1
f.EN(V)\{f}

mfQ+_ (x) }

There is no fundamental difference between check nodes and factor nodes in

this equation. Separating them into two terms is mainly for clarity.

4. Messages from variable nodes to check nodes:

m (X) c { H
f EN(v)

m~i (x)} { H m/tt_,(x) }
c. cN(v)\{c}

5. At each iteration, the marginal distribution of each variable is computed from

all the incoming messages

P(t)(x)c { 
f EN(v)

mff,(x)}
cEN(v)

Symbol MAP decoding is used to produce an estimate of the values of the
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variables at each iteration. :

{1 if P ((x = 0) <x =2

0 if P(t) (x = 0) > I

It should be noted that when the code rate is high enough, the probability that

a variable have [0.5,0.5] marginals after the BP has converged should be very

low. Thus if Pv(0) = 1, the tie can actually be broken arbitrarily. We will2'

consistently assign such variables to 0 in the simulations so that in order to

diagnose when the rate is too low (i.e. too many zeros come up.)

5.3 Initialization of Messages and Doping

In the simulations, a uniform initial value is used for all the variables to factor/check

messages (i.e. all messages from variables to checks/factors are [0.5, 0. 5]T). It should

be noted that for each check node, if any of its incoming messages from a connected

variable is uniform, the outgoing messages from this check node to other variables is

also uniform. If the source is symmetric about 0 and 12, all messages in subsequent

iterations will be uniform if initial messages are, which is not a very interesting case.

One alternative choice would be a random initialization, but in practice such an

initialization often results in failure of convergence of BP algorithm. Instead, a few

randomly chosen variables, known as 'doping bits', are set to 0 or 1 uniformly ran-

domly and then viewed as fixed. Doping bits can effectively start the algorithm yet

keep the perturbation 'local', and they can be thought of as degree-1 check nodes.

The number of doping bits is a parameter to tune, but should be a small fraction of

the total number of variables in the system. In the simulations, doping rate = 0.05

is used. That is, 5% of the nodes are doped.

2A11 three distributions we considered here are symmetric about 0 and 1.
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5.4 Termination Criteria

BP algorithm terminates either when all messages have stabilized or a specified max-

imum number of iterations is reached. The former case is regarded as 'converged'

and the latter 'not converged'. To be more concrete, one keeps track of changes in

messages between iterations. If the maximum change in all the messages has been

smaller than a certain constant3 for several consecutive iterations, the algorithm is

said to have converged. Section 6.2.1 is devoted to the discussion of various aspects

of convergence behavior in the simulations.

It is worth pointing out that the convergence behavior is somewhat different from

that in [29] [30], where the same framework is used for compression. In the com-

pression scenario, a sequence x is generated from a given source distribution and H

is the parity check matrix of a randomly chosen LDPC code. z = Hx is the output

of the compressor and decompression is achieved by running BP algorithm on the

combined graph. As z and the doping bits are both computed from the same x and

thus consistent with each other, a higher code rate will never do any harm to the

decoding process. And with a high enough rate, the correct x can be recovered. In

the sampling application discussed in this thesis, however, the doping bits and the

parity check values z are both generated randomly since 'ground truth' is no longer

available. With increasing code rate, it is more likely that information from doping

bits and the parity checks contains conflicts and thus BP algorithm may not converge.

5.5 Finding the Correct Code Rate

As discussed in Chapter 4.1, the required rate of LDPC code roughly equals to the

entropy rate of the target distribution. Intuitively, that is the average number of bits

of information contained in each bit of a sample. When the rate is too high, code

graph and source graph provide contradicting information and BP algorithm fail to

converge. When the rate is too low, there will be variables that do not receive enough

30.01 was used in the simulations if not stated otherwise.
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information from the checks/factors and their estimated marginals remain close to

[0.5,0.5]T. The goal is to find the 'correct' rate, i.e. it is desirable to introduce to

the system as many checks as possible, provided the BP algorithm can still converge4 .

However, the exact rate varies across different H's. For each LDPC code chosen,

its 'correct' rate is individually found using the following procedure described:

1. Generate an LDPC code of rate r, where r is guaranteed to be an overestimate.

In other words, if BP algorithm is run on the combined graph constructed using

this LDPC code, it does not converge.

2. Decrease the number of checks in the LDPC code by a prescribed amount

each time and run BP algorithm on the resulting combined graph to identify

the approximate region of 'correct' rate. The prescribed amount should be

reasonably large so that the approximate region can be found fast enough, but

small enough to avoid a very time-consuming step 3.

3. In the approximate region, decrease the number of checks by a smaller pre-

scribed amount each time and run BP algorithm on the resulting combined

graph. In other words, a finer scan of the approximate region (found in step

2) is performed. If the number of unsettled variables (i.e. variables whose

marginal is still changing by non-negligible amount after some fixed number of

iterations) has increased considerably from last time, the checks just removed

are regarded as 'important' 5 . The ordering of the checks is rearranged so that

the 'important' checks are back in the combined graph. Instead a different set

of checks is removed and step 3 is iterated until the 'correct' rate is found.

Section 6.2.1 will look in closer details at how different aspects of the BP algorithm

on the combined graph change as the number of checks is decreased, which will justify

the procedure described here.

4Empirically this provides good samples of the target distributions.
5 for example, a degree-2 check is usually important.
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Chapter 6

Simulation Results and Analysis

In this chapter, the LDPC-based sampling scheme developed in previous chapters is

used to produce samples from three different types of target distributions: Markov

Chain source, Single Loop source, and 2-dimensional Ising Model source. As discussed

before, Maximum-likelihood simulation is theoretically correct but computationally

intractable. Thus the results in this chapter are obtained by approximate simulations

performed via Belief Propagation algorithm.

In Section 6.1, simulation results are reported for the three target distributions. Vari-

ous properties of the obtained samples are examined to measure their quality. This is

followed by discussions based on the simulation results presented in Section 6.2, where

we attempt to answer the following questions: In the proposed sampling scheme, how

does the convergence behaviour of Belief Propagation algorithm depend on the rate

of the LDPC code? Can we make sense of the convergence behaviour intuitively?

Apart from code rate, what other factors affect the quality of the obtained samples?

6.1 Simulation Results for Different Sources

This section contains the simulation results of the proposed LDPC-based sampling

technique for different types of target distributions: Markov Chain source, Single

Loop source, and Ising Model source. All the target distributions are assumed to be
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homogeneous. It is possible to sample exactly from the first two sources and thus the

obtained samples are compared against those from exact sampling. For Ising model,

exact sampling is computationally intractable. Therefore the results are compared

with samples obtained using Markov Chain Monte Carlo methods, which are widely

used in practice.

6.1.1 Markov Chain

The schematic of a Markov Chain source is shown in Figure 6-1:

Figure 6-1: Schematic of Markov Chain source

The factors are homogeneous and symmetric about 0 and 1, i.e. Vi C {1, 2, ... , N - 1}

Xi-Xi+1

p

1 - p

where xi E {0, 1}. The plots and figures in

parameters as in Table 6.1:

if x, $ xi+1

if xi =x+1

this section are produced by setting the

Table 6.1: Parameters for Markov Chain source.
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Number of Variables in the Source N 100

Number of Repetitions of the Source t 10

Probability of Flipping p 0.1/0.2/0.3/0.4

Number of Maximum Iterations in Belief Propagation algorithm 200

Doping Rate 0.05

Total Number of Samples -1000
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Exact sampling from Markov Chain source is straightforward: one can first sample

xi from px, (.), then sample x2 from px,2 (I x1 ), and so on. The distribution to sample

from in each step is a Bernoulli one and there are N steps in total.

For samples from homogeneous Markov chains, one important property is the number

of flips F (a 'flip' is a pair of neighbouring variables that take different values). Fig-

ure 6-2 examines the distribution of F, computed using samples from exact sampling

and the proposed sampling scheme respectively.

0.15 Exact distribution
Empirical distribution: LDPC-based
Empirical distribution: Exact sampling

0.1 -

0

0.05

U..
40 50 60 0

0.15-

0.1 -

0.05 -

0

Exact distribution
Empirical distribution: LDPC-based
Empirical distribution: Exact sampling

CO
.0
2~

40 50 60

Figure 6-2: Markov Chain source: distribution

10 20 30 40 50 60
Number of Flips

(b) p = 0.2

Exact distribution
Empirical distribution: LDPC-based
Empirical distribution: Exact sampling

10 20 30 40
Number of Flips

(d) p = 0.4

of number of flips F.

50 60

The horizontal axis in the above plots shows the number of flips F. The vertical axis

shows the probability of having a certain number of flips. The green curves indicate

the true distribution of F, which is computed using 100000 samples from exact sam-

pling. The purple curves are constructed using samples obtained from the proposed
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method. The blue curves are plotted using the same number of samples (~1000), but

obtained via exact sampling method.

It can be seen from Figure 6-2 that the distribution of F produced by the pro-

posed sampling scheme follows the true distribution fairly nicely, but the curve is

less smooth. The 'noise' is expected, though, because only 1000 samples are used to

produce these figures. However, as the plots suggest, the performance is comparable

to the case where the same number of samples from exact sampling are used. To be

more quantitative, the divergence between the empirical distributions of F and the

true distribution are computed and listed in the Table 6.21:

p Proposed Scheme (1000 samples) Exact Sampling (1000 samples)

0.1 0.0260 0.0215

0.2 0.0284 0.0326

0.3 0.0393 0.0295

0.4 0.0483 0.0354

Table 6.2: Divergence between the empirical distributions and true distribution of F.

To further examine the quality of the obtained samples, it would be helpful to look at

some local structures and test whether the frequencies of different patterns appeared

in the obtained samples agree with analytical prediction, i.e. the marginal distribu-

tions of the local structures. These local tests will be particularly useful when exact

sampling of the source is not possible.

Figure 6-3 looks at four local structures in Markov chain: single node and neigh-

bourhood of size 2, 3 and 4 respectively. Note that in the Markov Chain case, these

neighbourhoods are just sub-chains. A 'pattern' is a configuration of the local struc-

ture, e.g. a single node has two patterns: 0 and 1; for a size-2 neighbourhood, there

'Divergence between two distributions p(.) and q(.) is computed by D(pilq) = 1 p(a) log ,
aEX

where X is the alphabet for p(.) and q(.) and JX| < oc.
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are 4 possible patterns: 00, 01, 10, and 11. Similarly, size 3 and 4 neighbourhood have

8 and 16 patterns respectively. Since the target distribution is assumed to be homoge-

neous, averages can be taken with respect to different local structures of the same size.

Each plot in Figure 6-3 focuses on one local structure and each plot contains 4 sets

of data (for p = 0.1, 0.2, 0.3 and 0.4 respectively). Horizontal axis shows the in-

dex of patterns, while vertical axis shows the probability. Black lines indicate the

probabilities of different patterns computed analytically. Red stars are the empirical

probabilities estimated using the samples from proposed scheme. The patterns are

sorted in increasing probability for clarity of presentation.

True

* Empirical

0 0.5 1 1.5 2
0 0.5 1 1.5 2

Pattern index

(a) single node

2.5 3

0.6-

0.5-

0.4-

c 0.3--0
0

0.2-

0.1 -

0-
0

True
* Empirical

1 2.

12 3
Pattern index

(b) size 2 neighbourhood

0
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0.6

0.5

0.4

0.3

0.2

0.1
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0.4

0.3-

0.2

0.1 -

True
* Empirical

0 1 - V
0 2 4 6 8 0 5 10 15

Pattern index Pattern index

(c) size 3 neighbourhood (d) size 4 neighbourhood

Figure 6-3: Markov Chain source: the comparison of theoretical and empirical prob-

abilities of different patterns in different local structures.

As can be seen from the plots, the marginals over local structures are nicely approx-
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imated using the samples from the proposed LDPC-sampling scheme.

In practice, a common usage of samples is to estimate some quantities about the

variable. In the Markov Chain case, a natural quantity to estimate is the flipping

probability p. Since the Markov chain is homogeneous, p can be estimated by

1 s
(N - 1)S =F(x())

where S is the number of samples and thus (N - 1)S is the total number of neigh-

bouring pairs in the samples. F(x)) is the number of flips in sample x(.

Table 6.3 shows the empirically estimated value of p versus the truth value. As

can be seen from the table, samples from proposed distribution provide a reasonably

good approximation of the true value of p. This should not be surprising because

as shown in Figure 6-2, the samples from the proposed scheme can approximate the

distribution of F nicely.

True Flipping Probability p 0.1000 0.2000 0.3000 0.4000

Estimated Flipping Probability 0.0962 0.1968 0.3064 0.4051

Table 6.3: Markov Chain source: estimation of flipping probability p.

6.1.2 Single Loop Source

The schematic of a homogeneous Single Loop source is shown in Figure 6-4. Just as

the Markov Chain source considered in last section, the factors are homogeneous and

symmetric about 0 and 1, i.e. for any i E {1, 2, ... , N}

f p if xi $X+1

1 - p if x= xi+1

xi E {0, 1}, and assume xN+1 ~ Xi.
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X1

XN X2

XN- X3

Figure 6-4: Schematic for single loop source.

The parameters are set as in Table 6.4:

Number of Variables in the Source N 100

Number of Repetitions of the Source t 10

Probability of Flipping p 0.1/0.2/0.3/0.4

Number of Maximum Iterations in Belief Propagation algorithm 200

Doping Rate 0.05

Total Number of Samples -1000

Table 6.4: Parameters for single loop source.

Notice that due to the homogeneity and symmetry of the loop, the distribution can

be sampled exactly using the following algorithm:
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1. Sample the number of flips F. Notice

P(F = k) a (I)pk (I - P)N-k ifk is even and

P(F = k) = 0 if k is odd

Since F only takes N + 1 possible values, the partition function of distribution

of F can be computed in time linear with respect to N. Once the partition

function is available, F can be easily sampled.

2. Given F, all configurations with F flips are equi-probable. A configuration

can be sampled by uniformly randomly picking F positions out of the total N

positions, where the flips can happen. There will be two configurations corre-

sponding to the same 'flip pattern' and the two configurations are complement

of each other (all bits are different). Since the source is symmetric about 0 and

1, uniformly randomly pick one of them as the desired sample.

As with Markov Chain source, the distribution of the number of flips F, is examined

first and the corresponding plots are shown in Figure 6-5. The horizontal axis shows

F and vertical axis shows the probability. The green, purple and blue curve indicate

the true distribution, empirical distribution constructed using samples from the pro-

posed method and using the same number of samples from exact sampling method,

respectively. As discussed before, IP(F = k) = 0 if k is odd. But these zero data

points are not shown in the plots, mainly for clarity of illustration.

Similar to the Markov Chain case, the samples from LDPC-based sampling method

follows the true distribution fairly well. Some noises do exist, mainly due to the

relatively small number of samples used. The performance is comparable to exact

sampling provided the number of samples is kept the same. The divergence between

the empirical and theoretical distributions of F is shown in Table 6.5:
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Figure 6-5: Single loop source: distribution of number of flips F.

p Proposed Scheme (1000 samples) Exact Sampling (1000 samples)

0.1 0.0021 0.0104

0.2 0.0184 0.0259

0.3 0.0183 0.0105

0.4 0.0444 0.0193

Table 6.5: Divergence between the empirical distributions and true distribution of F.

Next, Figure 6-6 compares the empirical and theoretical probabilities of different pat-

terns of local structures. Again four local structures are considered: single node, and

neighbourhood of size 2, 3, and 4. Horizontal axis represents the pattern index and

vertical axis shows the probability. As can be seen from Figure 6-6, the probabilities

of different patterns in local structures are well approximated by samples from the
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proposed sampling scheme.

Table 6.6 compares the flipping probability estimated by the proposed method with

the truth value, and the results indicate that the LDPC-based sampling scheme can

estimate flipping probability of the single loop source relatively accurately.
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* Empirical
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Pattern index
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(a) single node
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* Empirical]

.0
0L
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(c) size 3 neighbourhood

True
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Pattern index
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Figure 6-6: Single loop source: for different local structures, the comparison of theo-
retical and empirical probabilities of different patterns.

True Flipping Rate p 0.1000 0.2000 0.3000 0.4000

Estimated Flipping Rate 0.1004 0.1998 0.3083 0.4062

Table 6.6: Single loop source: estimation of flipping probability p.
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6.1.3 Ising Model

Schematic of 2-dimensional Ising model is shown in Figure 6-7.

X1,1 X1,2

X2,1 X2,2

4XN, XN,2

- -- X1,N

X2,N

XN,

Figure 6-7: Schematic of Ising model.

The Ising model considered here is a

Vijs.t. (ij) E S,

bxi Ix{

lso homogeneous and symmetric about 0 and 1.

p

I - p

if xi

if xi =

xi

xi

where . is the set of all edges in the grid and xi E {0, 1}. Moreover, the Ising model

is assumed to have periodic boundary conditions to ensure fair comparison with an-

alytical results from Onsager's exact solution. The simulation parameters are listed

in Table 6.7.

Unlike in the case of Markov Chain sources and Single Loop sources, 2D Ising model

cannot be sampled exactly. The most popular sampling methods used in practice are

Markov Chain Monte Carlo methods. Thus for Ising model, the samples from the pro-

posed sampling scheme will be compared with those from Markov Chain Monte Carlo
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methods. In particular, a Gibbs sampler with a burn-in period of 100000 iterations

is used. One sample is produced out of each 50000 iterations. To match the number

of samples from proposed scheme, 1000 samples are obtained from Gibbs sampler by

running 100 Markov chains in parallel, i.e. each chain produces 10 samples.

Number of Variables Each Column N1  10

Number of Variables Each Row N2  10

Number of Repetitions of the Source t 10

Probability of Flipping p 0.1/0.2/0.3/0.4

Number of Maximum Iterations in Belief Propagation algorithm 200

Doping Rate 0.05

Total Number of Samples ~1000

Table 6.7: Parameters for 2D Ising model source.

Three tests are carried out to test the quality of obtained samples:

1. Estimation of flipping probability p.

2. Estimation of patterns' probabilities in local structures.

3. Estimation of partition function.

Notice that for all three tests, the true value is available: flipping rate of the target

distribution is a given parameter; probabilities of patterns for small local structures

can be easily computed; and partition function of 2D homogeneous Ising model can

be calculated via Onsager's exact solution (as discussed in Section 2.5). These tests

will be carried out for samples from both the proposed sampling scheme and MCMC

methods, and then the results are compared with the true values obtained analytically.

Firstly, estimations of flipping probability p are shown in Table 6.8.
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True Flipping probability p 0.1000 0.2000 0.3000 0.4000

p estimated by LDPC-based Scheme 0.1074 0.1951 0.2998 0.3958

p estimated by Gibbs Sampler 0.0022 0.0284 0.2168 0.3917

Table 6.8: 2D Ising model: estimation of flipping probability p.
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For the second test, estimation of patterns' probabilities in local structures are pre-

sented in Figure 6-8 and 6-9, for samples from LDPC-based scheme and Gibbs sampler

respectively. The horizontal axis in the plots is the index of patterns and the vertical

axis represents probability. Same as in Figure 6-3 and 6-6, the black curves are the

true probabilities computed analytically, while the red and blue dots are the empiri-

cal probabilities, estimated from the proposed scheme (red ones) and Gibbs sampler
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It can be seen from Table 6.8 that samples produced using the proposed LDPC-

sampling scheme correctly estimate the flipping rate for all p values, while samples

from Gibbs sampler have very poor performance at low p values. Similar phenomena

can be observed in Figure 6-8 and 6-9. Samples from Gibbs sampler produce poor es-

timations of pattern probabilities for local structures for p = 0.1, p = 0.2 and p = 0.3

(except in the single node case, which basically states that the model is symmetric

about 0 and 1). Samples from LDPC-based scheme make very accurate estimation

of pattern probabilities in the single node, 1 x 2 and 2 x 1 cases. The estimations in

the 2 x 2 case with p = 0.1 and p = 0.2 are less satisfactory, but still outperform the

Gibbs sampler samples.
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It should be commented that although a very basic version of Gibbs sampler is used

in our simulations, similar trends can be observed for more sophisticated variants of

Gibbs sampling, or other Markov Chain Monte Carlo methods. This has to do with

the existence of a phase transition of 2D Ising model. For the parameters used in our

simulations, the phase transition2 takes place at pc = 0.2929. For p < pc, the Ising

model is in a so-called 'ferromagnetic' phase (in statistical physics, it is also inter-

preted as the system being at low temperature) and the Markov chains in Markov

Chain Monte Carlo methods are likely to be trapped in a state that has relatively

high probability and require impractically long time to mix.

The third test aims to estimate the partition function. To be more precise, assume

the distribution defined by the 2D Ising model is

Px(X) = I pF(x) (1 _ P)T(x)-F(x)

where F(x) is the number of flips in (x), and T(x) is the total number of neighbour-

ing pairs. Thus T(x) - F(x) is the number of 'non-flips' (i.e. pairs of neighbouring

variables that take the same value). The goal is to compute the partition function

Z. Partition function has long been a quantity of interest in statistical physics3 and

is provably hard to calculate. It can be proved that performing inference on general

graphs is polynomially reducible to computing the partition function of the corre-

sponding graph. In other words, given an oracle that can compute the partition

function for any given graph, one can come up with polynomial time algorithms to

find marginals or most likely configuration.

In the case of homogeneous 2D Ising model, Onsager developed in [1] a solution

to find out Z exactly, which is described in Section 2.5. It should be noted that in

2 Computation of phase transition temperature can be found in [23].
3 Many quantities of important physical meanings, such as free energy and canonical entropy, are

defined as a function of Z. Details can be found in [23].
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[1], the distribution is of the form

PX X) = 1exp(-i 1 xixj)
(ij)EE

where xi E {-1, +1} is the spin at location i and 9 is the set of all edges in the Ising

model. If we set J = 1 ln( 1P) and replace 0's with -I's in the grid, the two distri-

butions are exactly the same, except that the partition functions differ by a constant

factor. For convenience of presentation, the computations in this section stick to the

distribution form px(x) = exp(-J E xix,).
(ij) e-

An empirical distribution can be produced from a set of samples SP {x(1), X(2), x(S)

and the corresponding partition function can be computed via

Z = exp(-J 1 xxy)
xeSP (ij) E

If samples in SP are from exact sampling of 2D Ising model and the size of SP is

large enough, the expected number of appearances in SP of a certain configuration

x is roughly
ISPI

x pp(x)# of possible configurations

In such an ideal case,

Z ~
# of possible configurations

x Z

should hold. Notice the number of all possible configurations of the Ising model grows

exponentially with the size of the model and for any practical simulation

SPI < # of possible configurations

Yet
# of all possible configurations -

|SP|X Z
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Figure 6-10: 2D Ising model: estimation of partition function Z.

is still used to approximate Z. The results are plotted in Figure 6-10. The horizontal

axis represents the flipping probability p, and the vertical axis shows the value of

the partition function Z. For clarity of presentation, ln(Z) is used in the plot. It

can be seen that for all values of flipping probability p, the estimation of partition

function using samples from LDPC-based scheme consistently outperform that using

samples from Gibbs sampler. However, both estimations are higher than the true

value computed using Onsager's exact solution by a significant amount.

One major reason for the over-estimation is that the sample set size (~1000) is only

a tiny fraction of the number of all possible configurations (2100). For many values

of F, the expected number of samples in SP that have F flips is much less than

1, which means it is likely that SP does not contain such a sample at all. Notice

these values of F are exactly the ones that result in low values of exp(-J E xixj).
(ij)ee

Approximating Z using 2 x Z can be interpreted as estimating Z using a new set

of samples, where each sample in SP is replicated 2 times. Thus essentially the
1000

higher values of exp(-J E xixj) are counted more than they should be, and the
(ij)eS

lower values are almost never counted. As a result, the estimated partition function
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is an over-estimate of the true value of Z.

6.2 Analysis of Simulation Results

Section 6.1 presented simulation results for the three target distributions considered

and showed that the samples from the proposed sampling scheme are close represen-

tations of the target distributions. This section moves on to report and explain some

interesting phenomena observed in the simulations. In particular, Section 6.2.1 fo-

cuses on describing various aspects of convergence behavior of the Belief Propagation

algorithm, while Section 6.2.2 explores how check nodes' average degree impacts the

performance of the sampling scheme.

6.2.1 Convergence Behavior of Belief Propagation algorithm

Recall that approximate simulation of the proposed scheme is achieved by running

Belief Propagation algorithm on the combined graph. The combined graph is clearly

a loopy one, thus the convergence behaviour is in general complicated. Inspired by

EXIT function analysis of channel coding, [30] has developed a method for summariz-

ing the evolution of messages for the same framework but with different setup. The

theoretical analysis of Belief Propagation algorithm is beyond the scope of this thesis,

but we aim to provide a detailed description of the convergence behaviour, along with

some intuitive arguments.

The figures in this section are produced using simulation data from Markov Chain

model with flipping probability p = 0.1. The corresponding entropy rate is ~ 0.45.

When referring to 'low code rate', 'correct code rate' and 'high code rate', LDPC

codes with rate around 0.2, 0.4, and 0.6 are used respectively. Data from other mod-

els and/or different values of flipping probabilities p exhibits similar trends in terms

of convergence behaviors.

Below, convergence behavior, entropy of messages, fraction of unsatisfied checks,
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probabilities of the resulting sequence, and empirical code rate are discussed in turn.

Convergence Behavior

Briefly speaking, when the rate of the LDPC code is too low, Belief Propagation

algorithm will converge, but the resulting sequence (obtained using symbol MAP de-

coding as described in Section 5.2) will not be a typical one of the target distribution.

On the other hand, if the code rate is too high, the algorithm will fail to converge.

There is some 'correct' code rate around which the algorithm will converge and pro-

duce a typical sequence.

Notice this is different from what was described in [29], where the same framework

is used for compression. In [29], since the doping bits and parity check values are all

computed using the same sequence (i.e the sequence to be compressed), the informa-

tion provided is always consistent and a higher code rate will never do harm to the

convergence of Bellief Propagation algorithm. In the proposed scheme, however, the

doping bits and parity check values are generated independently, thus too much (ran-

domly generated) information will likely become inconsistent and lead to confusion

of Belief Propagation algorithm.

One way to look at the combined graph is that the variables form a boundary be-

tween the source graph and the code graph. The goal is to figure out what values the

variables should take using information from two directions: source graph and code

graph4 . Consider the extreme case where there are no checks, then running Belief

Propagation on the source graph will result in a 'most likely' sequence5 for the given

source. On the other extreme, if all variables are independent and symmetric about 0

and 1 (i.e. source graph does not contain any factors), Belief Propagation algorithm

will converge to a sequence that satisfies all the checks defined in the code graph (i.e.

a codeword). In general cases where both source graph and code graph exist, there

4 The doping bits are viewed as degree-1 checks and grouped into the code graph.
5To be more precise, bit-wise most likely, since symbol MAP decoding is used.
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is a competition between the two.

When the code rate is too low, codewords are abundant and the algorithm will con-

verge to a 'likely' (in bit error sense) sequence, which may not be typical. This case

can also be regarded as information from the code graph being too weak.

Conversely, when the code rate is too high, there are very few codewords. The

information from source graph and code graph try to pull the variables in different

directions and an agreement cannot be reached. As a result, Belief Propagation al-

gorithm fails to converge.

The interesting case is when the code rate is roughly matched to the entropy rate of

the source. In this case, discussion in Section 4.1 states that with high probability,

there is a sequence that is both a codeword and a typical sequence of the target dis-

tribution. With well balanced information from source graph and code graph, Belief

Propagation algorithm should be able to find that sequence.

Figure 6-11 shows how the marginals of variables evolve with number of iterations of

Belief Propagation algorithm, for different code rate. The horizontal axis represents

the number of iterations performed, while the vertical axis is the marginal probabili-

ties of variables (in particular, the probability that variable takes value 1 is plotted).

For clarity of presentation, only a randomly chosen subset of the 1000 variables are

displayed. As can be seen from the plots, when code rate is too low, the marginal

estimates stop changing after some number of iterations but the beliefs of most vari-

ables are close to 0.5. In other words, the algorithm is still fairly unsure about most

variables' values. When the correct code rate is used, the algorithm converges, and

most beliefs are close to 0 or 1. When the code rate is too high, the algorithm fails

to converge and the estimated marginals vary dramatically between iterations.
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Figure 6-11: The variable marginals estimated from the Belief Propagation algorithm,
as a function of number of iterations.

Entropy of Messages

To further distinguish the impact from source graph and code graph, the entropy of

messages coming into variables, both the factor-to-variable ones and the check-to-

variable ones are computed for each node. Define A'>(i) and Ac(i) to be the set of

all factor nodes and all check nodes connected to variable i respectively, then

HFi= W _____

.H t (i) = Ic__

H(m )
feK, (i)

H(m( )
ceArc(i)
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where H(m) = -m(0) log2 (m(0)) - m(1) log 2 (m(1)) is the binary entropy of normal-

ized message m = [m(O), m(1)]T, m(O) + m(1) = 1.
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from source graph and code graph.

Figure 6-12 shows how the message entropies look like for different values of code

rate. In all the plots in Figure 6-12, the horizontal axis shows the number of itera-

tions and the vertical axis shows entropy. A message with entropy close to 1 indicates

'ignorance', i.e. the message is close to [0.5, 0. 5]T and does not have much preference
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about what value the variable should take, while a message with entropy close to 0

is an 'information-rich' one and relatively sure about the corresponding value.

It should be commented that given the way the target distributions are defined,

they are symmetric about 0 and 1. Thus for any given variable, without any external

information, the source graph does not have preferences its value. However, if the

value of a variable is known (either given explicitly or via a non-uniform marginal),

the source graph will have opinions about the values of its neighbouring variables.

It can be seen from Figure 6-12 that with low code rate, although the code graph side

messages are reasonably 'information rich', there are too few of them. As a result,

the source graph is still very uncertain about many variables' values. In other words,

the entropy of messages from source graph are close to 1. With the correct code rate,

the entropy of messages from both code graph and source graph are reasonably away

from 1. With high code rate, Belief Propagation algorithm fails to converge and the

entropy of messages varies dramatically from iteration to iteration, as expected.

Proportion of Unsatisfied Checks

Recall that the goal of code graph is to find a codeword, i.e. make all checks satisfied.

Figure 6-13 examines how close the resulting sequence is to a codeword, measured by

fraction of checks that are unsatisfied (out of all checks).

With low code rate, the impact from code graph is dominated by that from source

graph and not all checks can be satisfied. With correct code rate, almost all checks

are satisfied. With high code rate, impact from code graph is strong, but likely to

be conflicting, either among themselves and/or with information from source graph,

leaving the Belief Propagation algorithm confused and not converging. Thus a big

portion of the checks are unsatisfied. Notice in the plot for high code rate, there

is an initial drop in fraction of unsatisfied checks. This is mainly due to the fact

that information comes in from code graph first (through doping bits). It takes some
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Figure 6-13: The fraction of unsatisfied checks as a function of

200

time for the information to propagate through the source graph. In this period code

graph will have stronger influence, and thus the fraction of unsatisfied checks is lower.

It is worth mentioning here that in practice, since it is impossible to have very fine

scale control of the competition between source graph and code graph, even with

correct code rate, it often so happens that a small portion (< 5%, usually 1-2%) of

the checks are still unsatisfied at convergence. Recall that the fixed points of Belief

Propagation algorithm on loopy graph are local extrema of the corresponding Bethe

Approximation problem [13]. Since the distribution defined by the combined graph

is expected to be complicated, it should not be surprising when the algorithm gets

stuck in a local extrema.

Figure 6-14 shows a typical situation where a variable gets disagreeing information

from the source graph and the code graph when the Belief Propagation algorithm has
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converged. Note that the code graph wants this bit to be 0 while the source graph

wants it to be 1, In this particular case, source code wins and results in an unsatisfied

check. However, further investigation shows that all checks can be satisfied by flip-

ping only a few bits of the resulting sequence. In other words, the resulting sequence

is a 'near-codeword' and the effect on the obtained samples should be negligible.

Factor Nodes in
Source Graph

46..3444
.X5324 i 0.66

[0.5238
t .4762]

Check Node in
Code Graph

Figure 6-14: Source and code graph provide conflicting information to the variable.

Probability of the Resulting Sequence

Figure 6-15 shows how the probability of the sequence under the target distribution

evolves with number of iterations of Belief Propagation algorithm. Here, log of the

probability is used for clarity of illustration. Horizontal axis represents number of

iterations and vertical axis shows log of the probability. The blue curve indicates the

log probability of a typical sequence of the given distribution.

When the rate is too low, there are many more codewords than typical sequences so

the algorithm finds a sequence more probable than a typical sequence (purple curve

in Figure 6-15). Conversely, when the rate is too high, there are very few codewords

compared to typical sequences and it is simply too difficult to find one. Moreover,

in search of a codeword, the influence from code graph makes the resulting sequence

have probability much lower than a typical sequence (red curve). At a suitable rate,
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there is one sequence that is both a 'near codeword' and typical to the source with

high probability. Belief Propagation algorithm will converge to it (green curve).
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Figure 6-15: log probability of obtained sequence as a function of iteration number.

Empirical Rate of LDPC Codes

Figure 6-16 shows the comparison between the actual code rate used by the simula-

tions and the theoretical entropy rate computed analytically. The proposed sampling

is run 100 times to produce the 1000 samples required, and the empirical code rate

varies among different runs. In Figure 6-16, the horizontal axis indexes which run it

is and the vertical axis shows the rate. The red, blue, green and purple dots represent

p = 0.1 , 0.2, 0.3, and 0.4 respectively, and the lines with matching colors show the

corresponding entropy rates.

It can be seen that for Markov chain source and single loop source, the empirical

values track the entropy rate reasonably well, but are slightly lower in a consistent

manner. Recall from Section 4.1 that the 'correct' rate is

t
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Figure 6-16: Empirical rate of LDPC code used in the proposed scheme.

where q = -6 E log(p,(a)) > 0. Therefore the gap has its theoretical justification.
aEV

In the case of Ising model and relatively small flipping probability p, the actual code

rate used in simulations is much higher than the corresponding entropy rate. This

can be partially explained by the fact that the factor graph describing Ising model

contains a large number of closely tied loops and thus very sensitive to external in-

formation. In fact, any external information, weak it may be, will be significantly

amplified in Ising model by running Belief Propagation algorithm. The source graph

can be regarded as the strong side in the competition, which in some sense makes

convergence easier. To put it another way, Ising model can tolerate more randomness

when running Belief Propagation algorithm. More details on this can be found in

Section 6.2.2.
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6.2.2 Check Degree and Sample Quality

Section 6.2.1 detailed how different code rate can lead to different behaviors of the

proposed sampling scheme. It is observed from the simulations that in the compe-

tition between source graph and code graph, rate is not the only factor that has

impact. Empirically it is observed that average check node degree also influences the

effectiveness of information from code graph, and thus affects the quality of samples.

This section will discuss how check nodes' average degree can affect performance

of the LDPC-based sampling scheme, as well as present an empirical method to find

the correct degree.

Sample Quality As a Function of Degree Distribution

Consider the messages update equations at a check node, as shown in Figure 6-17.

Without loss of generality, assume the parity value associated with the check is 0.

Degree 1 check

Degree d+1 check

Degree 2 check

I - Pd

where (1 - 2 p) = t (1 -2p)
i=1

Figure 6-17: Message update equations at a check node

d d

Notice (I- 2p) = H (--2pi) -> 1l-2pl = f Il-- 2pil and 11- 2pil < 1, Vi E {1, 2, ... , d}
i=1 i=1
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.1. 11 - 2pl < 1 - 2pil, Vi E {1, 2, ... , d}

That is, if one of the incoming messages to the check is uncertain (i.e. the message

is close to [0.5, 0. 5 ]T), the outgoing messages are even less certain. When the degree

of a check is higher, it is more likely to have an uncertain incoming message, which

in turn leads to weak outgoing messages. As a result, the source graph can dominate

the competition easily. The intuition is clear when one considers extreme cases: given

the same number of checks, i.e. the same amount of randomness, if all of them are

degree 1 checks, the values of the corresponding variables are directly determined re-

gardless of what the source graph says; on the other hand, if all checks have very high

degrees such that each check has uninformative incoming message ([0.5, 0 .5]T), then

the messages from checks to variables will be uninformative. The actual situation is

something in between the extreme cases, yet the general trend is true: the smaller a

check node's degree is, the stronger/more informative its outgoing messages will be.

Assuming a regular LDPC code, how does the behaviour of the proposed sampling

technique vary as a function of the check nodes degree? The quantities of interest

include:

1. The empirical distribution of number of flips in each sample, F, and the corre-

sponding average.

2. After convergence, how certain Belief Propagation algorithm is about the vari-

ables' values. This certainty is measured using 'confidence', defined as the gap

between estimated marginal and 0.5, averaged over all variables.'

3. Proportion of unsatisfied checks when at convergence of Belief Propagation

algorithm.

These quantities will be examined in turn. It should be noted that figures in this

6 confidence = 0.5 when the algorithm is entirely certain about the value of each variable and all
marginals take value [0, I]T or [1, O]T. confidence = 0 when the algorithm is totally ignorant of the
variables' values, i.e. all marginals take the value [0.5, 0.5]T.
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section are produced using experiments with the Markov chain model, as defined in

Section 6.1.1, with flipping rate p = 0.1. But the trends described hold for other

sources and other parameters as well.

To begin with, Figure 6-18 examines the empirical distribution of number of flips

F and Table 6.9 shows the corresponding average. Recall that the actual flipping

rate here is p = 0.1. The horizontal axis in Figure 6-18 shows number of flips in the

Markov chain and vertical axis shows probability. Curves of different colors represent

empirical distribution estimated using different check node degree, as shown by the

legends.
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0.16-- Empirical: avg degree = 3
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Number of flips in the Markov chain

Figure 6-18: distribution plot for different values of average check degree

Average Check Degree 3 2.5 2.25 2

Estimation of Flipping Rate p 0.0722 0.0981 0.1106 0.1302

Table 6.9: Estimation of flipping probability for varying average check degree.

It can be seen that the higher the average check degree, the lower the number of

flips in each sample. This is in agreement with the intuitive arguments discussed
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before. As the average check degree increases, the messages from code graph be-

comes weaker/less informative, thus the source graph gains more advantage in the

competition. Given the way the source graph factors are defined (p < 0.5), the source

graph prefers neighbouring variables to have the same value. Thus with higher check

degree, samples obtained contain fewer flips.

Next we consider the confidence level. In Figure 6-19, horizontal axis shows the

average degree of check nodes, while vertical axis shows the confidence. Different

dots represent different runs of the proposed scheme. As shown in Figure 6-19, the

confidence level decreases slightly with increasing average check degree. It should be

noted that if Belief Propagation algorithm does converge, the confidence level can

be viewed as a measure of how much randomness is introduced into the combined

graph from the code graph side: the higher the confidence, the more randomness is

effectively introduced. Thus the trend in Figure 6-19 is in accordance with intuitive

arguments: with higher average check degree, the messages from the code graph is

weaker and less effective in introducing randomness.

0.5
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Figure 6-19: Confidence level for different values of average check degree

Finally, Figure 6-20 depicts how the fraction of unsatisfied checks at convergence

changes with average check degree. Horizontal axis again shows the average check
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node degree and vertical axis shows the fraction of unsatisfied checks. Following a

similar argument, Figure 6-20 makes intuitive sense: with higher average check degree,

the code graph is the weaker side in the competition and thus a bigger fraction of

checks is unsatisfied at convergence.

0.25-

* avg degree = 3

0 0.2- * avg degree = 2.5
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Figure 6-20: Fraction of unsatisfied checks for different values of average check degree

As is evident from Figure 6-18, for the purpose of sampling, there is a range of good

average check degrees that will result in samples that can approximate the source

distribution nicely. The problem now becomes how to find this range. An empirical

method that works well in practice is discussed as follows.

Sensitivity to External Information

The basic idea is to match the strength of messages from code graph to the sensitivity

of the source graph. Depending on the structure, different factor graphs can respond

to the same external information in very different manners. When the source graph

contains loops, Belief Propagation algorithm will cause amplification of the message,

i.e. a message will be counted more than once through different paths but the algo-

rithm still treat them as information from independent sources. The amplification

effect will be more severe when smaller loops exist, and even worse when the small
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loops are closely tied.

To demonstrate this, several toy examples are studied below: size 3 loop, size 6

loop, and size 3 x 3 Ising model. In particular, the sensitivity to external information

of the toy examples are examined by associating a biased node potential to a single

chosen variable and running Belief Propagation algorithm on the corresponding fac-

tor graph. It can be proved that Belief Propagation algorithm will converge and the

quantities of interest are the variables' marginals estimated at convergence.

Example 1: size 3 loop

The schematic of a size 3 loop is shown in Figure 6-21. The loop is homogeneous

and symmetric about 0 and 1. There are two parameters involved: flipping probabil-

ity p controls the coupling of neighbouring variables and q indicates how strong the

external information is.

W1(0)= 1-q
4I1(1)=q

1

2 3
Wij(OO) = Wij (1,1)= 1-p
Wij(0,1)= Wij (1,0) = p

Figure 6-21: Schematic of a size-3 loop with external message on one variable.

Plots in Figure 6-22 are produced by running Belief Propagation algorithm until

convergence for each given pair of p and q. External message q varies from 0.51 to

0.99, in steps of 0.01. Horizontal axis shows the value of q and vertical axis shows
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the estimated marginal. As expected, with increasing q (i.e. the external information

becomes stronger), the final belief produced by Belief Propagation algorithm is higher.

With increasing p, the variables are less coupled to each other (notice if p = 0.5, the 3

variables are independent), and thus the influence caused by external information on

the other variables becomes weaker. Finally, it should be noted that there are only

two lines for three variables due to the symmetry of the source (two lines are on top

of each other).

0.5 0.6 0.7 0.8 0.9 1
q

(a) p = 0.1
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q

(c) p = 0.3

Figure 6-22: The sensitivity to external information for a size 3 loop.

Example 2: size 6 loop

The schematic of a size 6 loop is shown in Figure 6-23. Again, the model is ho-

mogeneous and symmetric about 0 and 1.
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W1(0) = -q
Wi(1) =q

3 5

Wij(0,0) = Wqi(1,1) = 1-p
4 4Wj(0,1) = 4J)(1,O) = p

Figure 6-23: Schematic of a size-6 loop with external message on one variable.
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Figure 6-24: The sensitivity to external information for a size 6 loop.
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With varying p and q, Figure 6-24 shows that the sensitivity to external information

exhibits similar trends as in size-3 loop. However, since the loop is larger and the

graph more locally tree-like, the response is weaker than in a size-3 loop given exter-

nal messages with the same strength.

When there are closely coupled small loops, the behavior will be more dramatic:

the source becomes very sensitive to weak external messages. This is well illustrated

by the third example below:

Example 3: size 3 x 3 Ising model

The schematic of the 3 x 3 Ising model is shown in Figure 6-25.

4 (O )= -q
4i(1)= q

12 

3

4 5 6

7 8 9

4j(0,0) =4ij(1,1) = 1-p
4i4(0,1) = 41g;(1,) =p

Figure 6-25: Schematic of a 3x3 Ising model with external message on one variable.

As can be seen from Figure 6-26, for small p (i.e. strong coupling between neighbour-

ing variables), the estimated marginals of variables in Ising model respond dramati-

cally even to weak external information. This is mainly due to the severe amplification
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of messages introduced by closely coupled size-4 loops.
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Figure 6-26: The sensitivity to external information for a 3x3 Ising model.

Intuitively, if the source is sensitive to weak external messages, it would be ok to

have weak messages from the code graph, which translates to the fact that the av-

erage check degree should be relatively large in the code graph. Conversely, if the

source only responds to stronger external messages, the code graph messages should

be strong and direct, thus the average check degree should be smaller.

In practice, what can be done is to carefully examine a few typical examples to

calibrate the correct range of average check degrees that will produce good samples:

ones that approximate the corresponding target distribution nicely. Then these ex-

amples can be used as references: given a new target distribution, its sensitivity to

external information will be compared with the references to determine a range that

is expected to work well for the new distribution.
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Chapter 7

Further Discussion

The LDPC-based sampling scheme has been the focus of the previous chapters: Chap-

ter 3 provides its formal description; Chapter 4 proves its theoretical guarantee of

correctness; Chapters 5 and 6 discuss the practical implementation and report the

simulation results. This chapter takes a step back and considers how the proposed

sampling scheme fits into the big picture.

One natural question to ask is, how does the proposed sampling scheme compare

to other existing sampling methods? What are the relative advantages and disad-

vantages? Section 7.1 attempts to compare the various aspects of different sampling

methods and provide advices on how to choose the right sampling method depending

on the specific application.

In the simulations, the LDPC codes are assumed to have (almost) constant check

degree and generated in the way described in Section 5.1. This is easy to implement,

but it is clearly not the only way to generate LDPC codes. Nor do we claim it to be

the optimal way. In Section 7.2, a few other possibilities for LDPC code generation

are briefly touched upon.
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7.1 Choose the Right Sampling Method

Estimating marginals of a general distribution px(-) is NP-hard. However, if some

sampling method can produce independent samples from px(.), the marginals can be

approximated arbitrarily closely in polynomial time'. Thus one should not expect

the existence of such a sampling method that runs in polynomial time.

Different sampling schemes have different goals as priority while making compro-

mises in other aspects. Depending on the actual application, one or another sampling

method may be the most suitable. This section attempts to discuss how to choose

the right sampling technique for various applications.

When one is looking for samples from a certain distribution, the following properties

are usually on the wish list:

1. Cost of the sampling method. Computational cost, both in space and time,

should be tractable. Clearly, the more efficiently the samples can be produced,

the better.

2. Quality of the samples. The empirical distribution of the samples should be a

good approximation of the target distribution. Correlation between successive

samples should be small because it determines the number of samples needed

for Law of Large Numbers. Ideally, independent samples are desired.

3. Theoretical guarantee of the quality of samples. It is desirable to be able to

prove either the correctness of the samples, or bounds on the number of samples

needed to approximate the distribution to some certain accuracy.

4. Randomness utilization. On average, how many random bits are necessary

to generate one sample? How does it compare to the minimum amount of

'To be more precise, let us denote the estimation of p(xi = a) as jPx=a, then

P(lp(xi = a) - Pxi=a I > ) < o

when we have O( ) iid samples.
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randomness required in theory? Generating random bits may be expensive,

and in such cases, economic use of randomness would be desirable.

As discussed above, it is unrealistic to hope all the listed requirements to be satis-

fied by one single sampling method. The trade-off will be made depending on the

characteristics of the specific application in mind:

1. Is the target distribution over discrete variables or continuous variables?

2. Is the target distribution over high-dimensional space or low-dimensional space?

3. How are the samples going to be used? Do the actual samples matter or one

only cares about estimating the expected value of a certain function?

4. What does the distribution look like? Distribution with certain features will

be particularly undesirable for some sampling methods. For example, Markov

Chain Monte Carlo methods will fail when there are islands of high-probability

states connected by low-probability states in between.

Below, the sampling methods discussions in Section 2.1 as well as the proposed LDPC-

based sampling scheme are examined in turn to understand under what circumstances

each of them is useful.

Rejection Sampling

The samples from Rejection Sampling method are provably correct and successive

samples are independent. However, computational cost of the technique depends on

the rejection rate, which in turn depends on how close the proposal distribution q,(-)

is to the target distribution px(-). The situation where q.,(.) has low probability at

places where px(-) has high probability is particularly undesirable.

Rejection Sampling can deal with continuous or discrete variables. Technically, Re-

jection Sampling can be applied to higher dimensional x, but the acceptance rate 2

2 Acceptance rate = 1 - Rejection rate
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will decrease exponentially with the number of dimensions.

Random bits are necessary each time a sample is generated from the proposal dis-

tribution, regardless of whether it is accepted as a sample of the target distribution.

Moreover, the randomness cannot be re-used, otherwise the independence among

samples can no longer be guaranteed. Thus when the rejection rate is high, the uti-

lization of randomness in Rejection Sampling can be very inefficient. Many random

bits are necessary to produce one single sample of the target distribution.

Importance Sampling

Importance Sampling estimates the value of a certain expectation (with respect to

the target distribution) without producing samples from the target distribution. The

estimation is provably correct in the limit, but similar to Rejection Sampling, the

actual computational cost of obtaining a reasonable estimate depends heavily on the

quality of the proposal distribution q.(.). If for some x, px(-) is large while qx(.) is

small, x is unlikely to come up as we are sampling from qx(.). Yet x is needed to

accurately estimate the function value because it is 'important' for px(-). Even worse,

for Importance Sampling, it is difficult to diagnose how good the estimate is at any

certain point and thus difficult to determine when to stop3

Importance Sampling can be applied to discrete or continuous variables. It is also

worth noting that Sequential Monte Carlo method/Particle Filters can in some sense

be viewed as a special case of Importance Sampling applied to HMM: the target

distribution is Px1,x2 ,...,XN y1,y2,.,yN y 1, Y2, ..., YN) while the proposal distribution is

Px,x2,..,XN (.). The curse of dimensionality applies to Importance Sampling as well,

due to the difficulty of finding a good proposal distribution in high-dimensional space.

Following a similar argument as in Rejection Sampling, independent random bits are

3In contrast, in Rejection Sampling, it is easy to know when to stop by counting the number of
samples generated.
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needed each time a sample is generated from proposal distribution q,(). If q.(-) looks

very different from target distribution px(-), the weights will vary dramatically, and

the estimation is dominated by a few terms. Thus a large number of samples (from

proposal distribution) are needed to produce a good estimate. In those situations,

utilization of randomness is low.

Markov Chain Monte Carlo Methods

In theory, Markov Chain Monte Carlo methods will produce samples from the target

distribution as the number of iterations goes to infinity. They can deal with con-

tinuous or discrete variables, and scales well with dimensionality. However, several

difficulties exist in practice:

1. It is non-trivial to determine how long the burn-in period is.

2. Since the successive samples from Markov Chain Monte Carlo methods are cor-

related4 , the task of extracting roughly independent samples from the sequence

of samples is non-trivial. The effective number of samples is much smaller than

the number of iterations run.

3. Depending on the target distribution, the Markov Chain Monte Carlo methods

may easily get stuck and cannot explore the distribution very well.

In practice, heuristics are usually used to deal with the issues mentioned above. There

are also variants of Markov Chain Monte Carlo methods that are specifically designed

to deal with one or more of them. Examples include Block Gibbs Sampling which is

designed to reduce correlation between consecutive samples, or using Simulated An-

nealing at early stage of Markov Chain Monte Carlo to reduce random walk behavior,

etc. But these variants are still in the heuristic regime and do not necessarily work

for all target distributions.

4The correlation is particularly high under Gibbs sampling since only one coordinate is changed
at each iteration.
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In terms of randomness utilization, the amount of randomness needed is closely cou-

pled with number of iterations performed by the Markov Chain Monte Carlo method.

The latter in turn depends on factors such as the length of burn-in period and corre-

lation between successive samples, and thus is hard to quantify.

LDPC-based Sampling Scheme

For the sampling technique proposed in this thesis, the samples produced are provably

from the target distribution assuming Maximum-likelihood simulation. In practice,

however, Belief Propagation algorithm is implemented to perform approximate simu-

lation and thus the correctness is only approximated. Samples from different runs of

the scheme are independent. The samples in the same run are correlated (correlation

introduced through the LDPC code), but form a sequence that is typical of the target

distribution and thus provide good approximation to the target distribution .

The proposed scheme scales well with dimensionality. The computational cost is

tractable5 because the code graph is sparse and the number of iterations needed in

the decoder does not grow significantly with the size of the combined graph. However,

for moderate-size sources (e.g. N = 100, t = 20), the LDPC-based method takes con-

siderably longer to produce the same number of samples than Markov Chain Monte

Carlo methods6 .

The LDPC-based sampling method only applies to discrete variables, but can deal

with arbitrary distributions over discrete variables without requiring a proposal dis-

tribution that approximates the target distribution. Moreover, it can deal with high

dimensional x.

The proposed scheme makes particularly efficient use of randomness. In theory, the

5roughly linear in t, the number of repetitions of source graph, and at most quadratic in N, the
number of variables in the source.

61t is a bit tricky to provide quantitative comparison of computation times for the two methods
because the samples produced by Markov Chain Monte Carlo methods are correlated. Finding the
effective number of independent samples, as just discussed, is non-trivial task.
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minimum amount of randomness per bit needed to produce samples from a target

distribution px(.) equals to the entropy rate H(px). Each time the proposed scheme

is run, the number of required random bits equals the number of parity checks plus

the number of doping bits. Thus the average randomness per bit, as discussed before,

roughly equals the entropy rate of px(-). To be precise, extra randomness is needed

1. during the process of dynamically determining the 'correct' rate because an

overestimate of the rate is initially picked;

2. to determine the positions of doping bits.

3. to generate the LDPC code;

The amount of randomness needed for item 1 and 2 above are linear in total num-

ber of variables in combined graph with small constants, while that for item 3 will

be amortized. Thus the randomness needed by the proposed LDPC-based sampling

scheme is very close to the theoretical lower bound.

It is worth mentioning here that for all the sampling techniques discussed so far,

the goal is to approximate the target distribution and emphasis is on sampling the

more likely events. For example, the LDPC-based scheme only look at typical se-

quences of the target distribution and explicitly ignores rare events. Probably none

of them would do a good job in sampling rare events. There are sampling methods

that specialize in sampling rare events, examples include Forward Flux Sampling[26],

Transition Path Sampling[14] etc.

A Few Real-life Applications

Let us conclude Section 7.1 by a few real-life applications where sampling is needed

and discuss what sampling method is suitable for each of them:

Example 1: Molecular Dynamics Simulation
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In statistical physics, a common task is to compute some thermodynamic poten-

tials such as free entropy or internal energy, which can be expressed as expectation

of some function over the Boltzmann distribution7

PX X) = - exp(- E(x))
Z

Exact computation is intractable except for a few special cases, thus some sort of

sampling techniques is often used. Here the data is high-dimensional, usually discrete

(particles usually take one of a finite number of possible states, e.g. spins take value

+1 or -1), and people care mostly about estimating some functions instead of obtain-

ing the actual samples.

In practice, some variant of Markov Chain Monte Carlo method is commonly used for

such applications, mainly due to its ability to scale with dimensionality. The LDPC-

based sampling technique proposed in this thesis is also well suited for approximating

thermodynamic potentials. In particular, the Ising model discussed in Section 6.1.3

serves as a nice example.

Example 2: Max-Weight Independent Set

Given an undirected graph on which each node is associated with a positive weight,

the Max-weight Independent Set (MWIS) problem aims to find the set of mutually

non-adjacent nodes that has the largest total weight. The problem arises naturally

in many scenarios. Examples include scheduling channel access and transmissions in

wireless networks [24].

The problem is known to be NP-hard and can be hard to approximate [18]. One way to

solve the problem is to put a distribution over all the independent sets: p(I) c H AW,
iCE

where A > 1 is a constant. If this distribution p(1) can be efficiently sampled from

7For example, free entropy is defined as log(Z(3)) and internal energy is defined as Ep.(.) [E(x)]
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for large enough A, the MWIS problem can be solved with high probability because

independent sets with higher total weights are more likely to appear.

Again, the data involved is high-dimensional and discrete, thus Markov Chain Monte

Carlo is a common choice. However, [25] proves that there exists threshold on A above

which it will provably take exponential time for the Markov Chain to mix. Due to the

discrete nature of the problem, the LDPC-based sampling method proposed in this

thesis can also be a good candidate. It would be interesting to explore what happens

if the proposed method is applied to sampling independent sets.

7.2 Alternative Ways to Generate Code Graph

In the proposed sampling scheme, a random LDPC code is introduced in order to dis-

tribute the randomness from fair coin flips into the source graph to generate samples.

The LDPC code is generated in the way described in Section 5.1 mainly because it is

both easy to implement and is known to work well with Belief Propagation algorithm.

Yet this is clearly not the only way to construct the code graph. In this section, a

few possible alternatives for code graph construction8 are briefly talked about.

Irregular LDPC Codes

The LDPC codes considered so far are almost regular: both variable node degrees and

check degrees are made as even as possible. Allowing irregular LDPC codes provides

more flexibility in designing the code graph. When used as a channel code, carefully

designed irregular LDPC codes are known to have better decoding performance than

regular ones[11], and decoding will happen at check nodes with small degrees (where

the information is most direct) first and information gradually propagates to other

parts of the code graph. Although the setup in the proposed sampling scheme is

slightly different (Belief Propagation runs on the combined graph instead of just the

8Due to the limitation of time, this thesis will not explore these possibilities in full depth. Yet it
is worthwhile to mention them here.
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code graph), a similar improvement may be expected when switching to irregular

LDPC codes.

Moreover, as discussed in Section 6.2.2, with a regular LDPC code, the performance

of the proposed sampling technique depends on the average check degree and it is

necessary to match the average check degree to the source empirically in a rather

ad-hoc way. With irregular LDPC codes, this phenomenon may be alleviated be-

cause check nodes with different degrees will send messages of different strengths to

the source graph. It definitely would be interesting to see how the proposed sampling

scheme performs using an irregular LDPC code as its code graph. However, we should

comment that finding a good degree distribution is not an easy task.

Progressive Edge-Growth (PEG) Algorithms

Since the combined graph is a loopy one, Belief Propagation algorithm is expected

to work better if the combined graph is more locally tree-like, or in other words, if

it has a larger girth. This section presents an algorithm that provably generates a

combined graph whose girth grows as O(log(Nt)). The algorithm is inspired by [19],

but modifications are made to account for the source graph.

Basically, the algorithm progressively add new edges between variable nodes and

check nodes such that the placement of a new edge has as small an impact on the

girth as possible. The main advantages of the PEG algorithm in [19] include its sim-

plicity, in that it has low complexity and can be used for constructing codes of very

large block length, and its flexibility, in that it can generate LDPC codes of any block

length and any rate. Both advantages carry over to the following algorithm.

A few notations before stating the algorithm:

1. V A {vf : 1 i < t, 1 < j < N}, )7 A {f : 1 < i < t, 1 < j < M} and

C A {ci : 1 < i < K} denote the set of variable nodes, factor nodes and check
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nodes respectively.

2. The number of factors v is connected to is called factor degree of v and
.2

denoted as fd (). Similarly the check degree of v is denoted as cd (i). The
vi VjV.

degree of (') is the sum of factor degree and check degree: d M = fd (i) + cdM.

The variable degree of check node ci is the number of variables connected to ci

and denoted as vde. Similarly the variable node of f() is denoted as vdo.

3. The subgraph rooted at 0) and expanded to the 1 th level of variables (root as

the 0 th level) is denoted as ./V(j). Notice that factor nodes, as well as check

nodes are included in the subgraph.

The factor degree and check degree of each variable node are given. The girth of source

graph, g, equals to the girth of the factor graph describing the target distribution

(because the source graph consists of t independent copies of the target distribution

facor graph) and is also an input to the PEG-style algorithm. Clearly the girth of the

combined graph is upper bounded by g,. In the following discussion, g, is assumed

to be large enough so that at least one of the shortest cycles of the combined graph

contains check nodes in it.

Algorithm 1 PEG-Style Algorithm for Generating the Combined Graph

for i = 1 -+ t, j = 1 - N do

for r = 1 -+ cd(i) do

A 1 0) for increasingly large 1, until one of the following cases happens:
V.

1. 31, s.t. JV = g j, and 3c E C s.t. c N .

2. 3l, s.t. all check nodes in C appear in Ng1 )1 but not all of them appear

in / 1(. Then choose c E C s.t. c 0 1(.

* Add an edge between vW and c. 10

end for

end for

9 For variable nodes and factor nodes, the subscript indicates the variable/factor index in the
target distribution, while the superscript indicates the index of the copy (of the factor graph of
target distribution).
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The following theorem guarantees that if the combined graph is generated in the way

described in Algorithm 1, its girth will grow as O(Nt).

Theorem 3. The girth of the combined graph generated from the above algorithm g

satisfies:
K(a - 1)g > 2(loga(da + 1) + 1)

dmax

where a = (vdmax - 1)(dmax -1), dmax nx d , vdmax = max{max vde, max vd i)}
2,3 j 2 iW f,(

Proof of Theorem 3. Suppose during the construction, the first time a length g cycle

appears after connecting variable node v to check node c. Notice only case 2 will

introduce a new cycle, thus by the way the algorithm is designed, we know that

before adding this new edge, c V NJ but c E A 1

.-. g = 2(1 + 2)

Since we are in case 2, Vc c C, c E Av+1

1+1

.-. K number of check nodes at level i

< dmax + dmax(vdmax - 1)(dmax - 1) + - + dmax(vdmax - 1)1(dmax - 1)1

= dmax (vdmax - 1)1+1(dmax - 1)1+1 - i

(dmax - 1)(dmax - 1) -I

= dmax ai- 1

K(a - 1)
K(a - 1 + < a +1

dmax

=g > (log ( K(a - 1) +
dmax

-=>g > 2(loga( ~ 1) + +)

Since a and dmax are constants, girth g grows as log(K), where K (the number of

check nodes) is in turn proportional to Nt (total number of variable nodes) and Nm

(total number of factor nodes).

Ramanujan Graphs

Ramanujan graphs are regular graphs that have the largest possible spectral gap.
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These graphs are interesting in the coding context because they can be constructed

to have both large girth and good expander properties". There have been attempts

to construct codes based on Ramanujan graphs, such as [12]. However, the code

constructed in [12] is of a fixed rate 1/2. The construction is specific to that rate and

seems difficult to generalize.

Construction of codes would be much more straight-forward if the underlying graph

was a bipartite Ramanujan graph. In fact, [28] has proved that bipartite Ramanu-

jan graph of every degree exists. Unfortunately, the proof is existential rather than

constructional. If someday a computationally feasible construction can be found for

bipartite Ramanujan graph, it might be useful to produce good codes with large girth.

1 [10] proves that sparse graphs with good expander properties result in good LDPC codes.
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Chapter 8

Conclusions and Future Work

This thesis has proposed a new sampling technique that generates samples from an

arbitrary target distribution over a finite alphabet. Such a distribution can always be

converted into one over a sequence of binary variables, thus without loss of generality,

we consider target distribution px(-) over x E {0, 1I}N. The distribution is described

by a factor graph.

The main intuition of the proposed sampling scheme comes from the concept of typ-

ical sequences. If the concatenation of k independent copies of x: (x(1 ), X2, ... , x(k))

is in the 6-strong typical set defined with respect to px(-), then by definition, the

empirical distribution computed from x(, X2, ... , x(k) approximates px(-) with ar-

bitrary accuracy for large enough k. Thus x(, X2, ... , x(k) can be seen as samples

from the target distribution. On the other hand, it is well known that the typical

set dominates the probability asymptotically, and all typical sequences are roughly

equi-probable. Thus each typical sequence can be thought of as associated with an

index. Sampling the target distribution can then be approximated asymptotically by

uniformly picking an index and then finding the typical sequence that corresponds to

the chosen index.

Conceptually, the proposed scheme does exactly that: it applies a randomly cho-

sen LDPC code with appropriate rate to the variables, and uses the parity check
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values as the index. To uniformly randomly generate the index, K fair coins (K is

the number of checks in the LDPC code) are flipped to determine whether each parity

check value is 0 or 1. The space of all possible sequences is partitioned into 2 K bins,

each corresponding to a particular value of the K parity checks.

To find the typical sequence associated with this index, we look for the sequence

that both satisfies all the parity checks and has high probability under the target

distribution. It is proved in Chapter 4 that a randomly generated LDPC code with

appropriate rate serves as a good hash function for typical sequences, i.e. almost all

bins contain one and only one typical sequence. Moreover, the typical sequence is also

the most likely one in the bin with high probability. As a result, if the most probably

codeword can be found (i.e. Maximum-likelihood is possible), the scheme can find a

typical sequence with high probability and the obtained samples can approximate the

target distribution arbitrarily closely. In practice, Maximum-likelihood simulation is

computationally intractable and thus approximate simulation is performed via Belief

Propagation algorithm. As can be seen from Section 6.1, the sampling scheme still

provides good quality samples in this sub-optimal case.

Some desirable features of the proposed sampling scheme are highlighted as follows:

1. Unlike Rejection sampling, Importance sampling, or Metropolis-Hastings algo-

rithm, the proposed scheme does not require a proposal distribution or proposal

Markov chain. Recall that although the choice of proposal distribution/proposal

Markov chain does not affect the asymptotic correctness, it does have vital im-

pact on how fast good quality samples can be obtained. Choosing a proposal

distribution/proposal Markov Chain that is easy to sample from and produce

good samples efficiently is generally hard.

2. The proposed scheme can deal with high-dimensional x. The computational cost

of the scheme grows linearly with N (size of the source, measured in number of

binary variables) and t (number of repetitions of the source) since the combined
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graph is sparse and the number of iterations in Belief Propagation does not

increase significantly with the size of the graph. In contrast, the acceptance

rate usually decrease exponentially with dimension and thus Rejection sampling

does not work well for high-dimensional x. A similar argument can be made for

Importance sampling as well.

3. In the proposed scheme, samples from different runs of the algorithm are guaran-

teed to be independent. Samples from the same run, although not independent

(coupling introduced by the code graph), form a strong typical sequence of the

target distribution. Notice with Markov Chain Monte Carlo methods, one can-

not make similar independence claims due to the correlation between successive

samples.

4. The proposed scheme makes relatively efficient use of randomness. As discussed

in Section 7.1, when normalized by total number of bits, the amount of random-

ness needed in the proposed scheme is close to the entropy rate of the target

distribution, which is a theoretical lower bound on randomness requirement.

In contrast, all other sampling techniques discussed in this thesis may demand

exponentially many random bits.

However, as already discussed, one should not expect the existence of a perfect sam-

pling method due to the inherent hardness of general inference problem and Monte

Carlo methods' ability to solve inference problems with arbitrary precision given good

quality samples. The major weaknesses of the proposed sampling scheme are listed

below:

1. While Rejection sampling, Importance sampling and MCMC methods work for

both continuous and discrete variables, the proposed scheme only works for

discrete variables with finite size alphabets.

2. Although the running time can be proved to be polynomial, for moderate N

(e.g. N = 100) and the sources considered in this thesis, the proposed scheme

takes considerably longer than Markov Chain Monte Carlo methods to produce
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the same number of samples. (But this is not a fair comparison since the

consecutive samples from Markov Chain Monte Carlo methods can be highly

correlated.)

3. For Rejection sampling, although it can take very long to produce a sample,

when a sample is produced, it is always a correct one. For the proposed scheme,

since approximate simulation is used (via Belief Propagation algorithm), there

is no theoretical guarantee on the correctness of the obtained samples. The

quality of the samples can only be examined empirically. Importance sampling

and Markov Chain Monte Carlo methods have the same problem.

In short, as with any other existing sampling technique, the proposed LDPC-based

sampling scheme has its merits and problems. But it definitely provides a different

trade-off between quality, computational cost and randomness utilization.

Finally, a few possible directions for future work are listed as follows:

1. Section 7.2 proposes a few alternative ways to generate the code graph. These

ideas certainly deserve a more thorough exploration. In particular, using irreg-

ular LDPC codes will provide more flexibility and may alleviate the sampling

performance's dependence on check degrees. Thus understanding how to find

a good degree distribution for a given target distribution px() is a topic worth

spending some time on.

2. The discussion on Belief Propagation algorithm and approximate simulation in

this thesis is mainly qualitative and descriptive. It would be nice to have a more

quantitative analysis on the subject and be able to make sharper statements.

3. The target distributions used in the simulations so far (Markov Chain model,

Single Loop model, Ising model) are relatively artificial. It would be interesting

to test the proposed scheme in applications of real importance, for example, the

Weighted Maximum Independent Set Problem mentioned in Section 7.1.
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