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Abstract
Physicians must often diagnose their patients using disease archetypes that are
based on symptoms as opposed to underlying pathophysiology. The growing
concept of "precision medicine" addresses this challenge by recognizing the vast yet
fractured state of biomedical data, and calls for a patient-centered view of data in
which molecular, clinical, and environmental measurements are stored in large
shareable databases. Such efforts have already enabled large-scale knowledge
advancement, but they also risk enabling large-scale misuse. In this thesis, I explore
several statistical opportunities and challenges central to clinical decision-making
and knowledge advancement with these resources. I use the inherited heart disease
hypertrophic cardiomyopathy (HCM) to illustrate these concepts.

HCM has proven tractable to genomic sequencing, which guides risk
stratification for family members and tailors therapy for some patients. However,
these benefits carry risks. I show how genomic misclassifications can
disproportionately affect African Americans, amplifying healthcare disparities.
These findings highlight the value of diverse population sequencing data, which can
prevent variant misclassifications by identifying ancestry informative yet clinically
uninformative markers. As decision-making for the individual patient follows from
knowledge discovery by the community, I introduce a new quantity called the
"dataset positive predictive value" (dPPV) to quantify reproducibility when many
research teams separately mine a shared dataset, a growing practice that mirrors
genomic testing in scale but not synchrony. I address only a few of the many
challenges of delivering sound interpretation of genetic variation in the clinic and
the challenges of knowledge discovery with shared "big data." These examples
nonetheless serve to illustrate the need for grounded statistical approaches to
reliably use these powerful new resources.

Thesis Supervisor: Isaac S. Kohane, M.D., Ph.D.
Title: Professor of Pediatrics and Health Sciences and Technology

3



Acknowledgments

This work would have been impossible without the support of many people and it is
a privilege to have been in their company for the past several years. I owe my
deepest gratitude to the following individuals:

Dr. Isaac (Zak) Kohane, my brilliant mentor and friend. When I first met Zak, I knew
I needed to work for him. I left our first meeting (and every meeting thereafter)
feeling inspired by his vision for medicine, and supported by his mentoring style
which allowed me to ask and answer questions with complete freedom. I always felt
that Zak's primary goal was to cultivate my research skills and hone my interests
(and to make me laugh). He provided me with far more intellectual freedom than I
deserved during graduate school, yet also held my work to highest standards. It is
my good fortune to have spent so much time with such a nurturing adviser and
prophetic thinker.

Dr. Peter Szolovits and Dr. Joseph Loscalzo. my committee, for their endless support,
challenging questions, and willingness to always share their wisdom. They both
have had a profound impact on the way I approach science.

My colleagues in ZakLab for many spirited and productive discussions over the
years.

My collaborators outside ZakLab: the Lab for Molecular Medicine, Dr. Judith
Strymish, and Dr. Sachin Jain-this work would not have been possible without all
of you. A special thanks goes to Dr. John loannidis, one of my personal heroes and
the inspiration for Chapters 3 and 4.

My friends during graduate school, especially Ally, Kartik, Adeeti, Gaurav, and
Chirag-you all are the best.

My Rachna, for being my constant source of happiness.

My sister Mini, for always believing in me and having my back.

Andfinally, I dedicate this thesis to my parents, Drs. Lalita and Ajay Manrai, who have
given me everything, even my curiosity and persistence. They both completed their
PhDs while raising two young kids in two cities in a new country. I hope one day to
achieve half of what they have both as parents and as scholars.

4



Table of Contents

Abstract ........................................................................................................................... 3

Acknow ledgem ents ................................................................................................... 4

Chapter 1 Introduction ............................................................................................ 7

Chapter 2 A Cautionary Tale for Genomic Medicine: Population Diversity and the
Genetics of Hypertrophic Cardiom yopathy............................................................. 19

Introduction ............................................................................................ 20
M ethods ................................................................................................... 22
Results ..................................................................................................... 24

Discussion ................................................................................................. 29
References ............................................................................................... 33

Chapter 3 The Precarious Wisdom of Communal Science ................. 47
Introduction ............................................................................................ 48
M ethods ................................................................................................... 48
Results ..................................................................................................... 51
Discussion ................................................................................................. 57
References ............................................................................................... 60

Chapter 4 The Dataset Positive Predictive Value (dPPV) ................................... 69
References ............................................................................................... 84

Chapter 5 Medicine's Uncomfortable Relationship with Math ........................... 85
M ethods .................................................................................................... 86
Results ..................................................................................................... 86
Discussion ................................................................................................. 87
References ............................................................................................... 89

Chapter 6 Conclusions and Future Directions .................................................... 93
References ............................................................................................... 96

5



This page is intentionally left blank

6



Chapter 1: Introduction

Medicine is a science of uncertainty and an art of probability.
-Sir William Osler

1.1 Precision Medicine

In 1763, Carl Linnaeus, the father of modern taxonomy, developed a classification

system for human disease-a "nosology"-in his Genera Morborum.1 Linnaeus'

nosology contained 11 classes, 37 orders, and 325 "species" of disease. Nine of the

eleven classes were based on symptoms, while the two classes Deformes and Vitia

were based on anatomic findings (Figure 1). Linnaeus' classification system was a

major contribution to medicine, especially in view of the understanding of disease

etiology and pathophysiology during his time.2

MORBI.
ExANTHEMATICI. I.

Febriles (e sanguine in medullam)................ CRrCI. Ii.
PLOGISTICI. III.

. Sensationis DowORost. IV.
Nervii Judicii MENTAL.ES. -V.

Motus..... QUIETALES. VI.

f MoToit. VII.
Morbi (Temperati)......... Fluidi Secretionis. SUPPRESSORIr. VIII.

fEvACUATORIU. IX.

Solidi Interni DEFORMEs. X.
Externi VImIA. XI.

EXANTHEMATICI. Febris cum efflorescentia cutis maculata.
CRiTiCI. Febris cum urinx hypostasi lateritia.
PHLoGISTICi. Febris cum pulsu duro, dolore topico.
DooRosi. Doloris sensatio.
MENTALES. Judicii alienatio.
QUIErALES. Motus abolitio.
MOTORI. Motus involuntarius.
SUPPRESSORI.- Meatum impeditio.
EVACUATOR. Fluidorum evacuatio.
DEFORMES. Solidorum facies mutata.
VITIA. Externa palpabilia.

Figure 1: Carl Linnaeus' classification system for human disease published in Genera Morborum,
1763. Eleven classes of disease are listed on the right hand side of the figure (Roman numerals).
Figure from Egdhal.2
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Today, the most widely used taxonomy of human disease is the International

Classification of Disease (ICD), a nosology considerably more complex than

Linnaeus' version and an integral part of our healthcare system, used in myriad

purposes from medical billing to research.3 Epidemiologist Robert Hahn explains

that the ICD is intended "to include all conditions-and to ensure that no particular

event of sickness will be classified under more than one code number."4 To

accomplish these goals, the ICD includes clauses that explicitly exclude conditions

(e.g. M76: "Enthesopathies, lower limb, excluding foot") and others that leave room

for future refinement (F84.9: "Pervasive developmental disorder, unspecified"). Yet

while this nosology is more than 250 years removed from Linnaeus and we are

more than a decade into the genomics era, the diseases in the ICD themselves-

Linnaeus' "species"-are still largely diagnosed by symptoms, signs, and simple

Oslerian clinicopathological correlations5 as opposed to the patient's underlying and

more complex pathophysiology. 6

Consider the classification of type 2 diabetes. This disease is usually

diagnosed by an abnormal fasting blood glucose or by an abnormal three-month

average of blood glucose, HbAlc.7 This downstream physiological response

(impaired glucose tolerance) may be treated pharmacologically with oral

medication (e.g. Glucophage) or intramuscularly with insulin.8 Such strategies have

markedly improved the quality and longevity of life for those with type 2 diabetes.

Notwithstanding these accomplishments, we know this disease has a multifactorial

etiology with a strong hereditary component,9 but we have little understanding of

its underlying molecular pathophysiology and the reasons that the disease

8



manifests so heterogeneously across individuals. Thus, we are left to manage the

symptoms and their downstream consequences (e.g. retinopathy' 0 , nephropathy")

without the ability to detect or treat its upstream cause and without a precise

description of disease progression or risk for family members. Decades of clinical

experience have shown that it is crucial for diabetes, and even for many ostensibly

"single gene" disorders, to contextualize the disease using its multiple genomic and

environmental determinants, as depicted in Figure 2.12-15

Environmental PathophysiologIcal
determinants states

Primary diEease E..
genome E, Ej

DsI .. ,. In1

phenotype
D3 D4 Pahpeoype

Sodry, disease
genonte

Figure 2: Human disease network. The primary disease genome, secondary disease genome,
environmental determinants, and intermediate phenotype interact to yield path ophysiologi cal states and

path oph enotypes. Figure from Loscalzo et al.3

The concept of "precision medicine" formalizes the challenge of reclassifying

disease in the context of large-scale molecular and patient data generated by

contemporary healthcare and biomedical research enterprises. This vision for

medicine was described in a report published by the Committee on a Framework for

9



Developing a New Taxonomy of Disease ("Committee"), and calls for a taxonomy of

disease that views a patient's state as a time-varying high-dimensional vector of

genetic, environmental, and clinical data.6 In order to achieve this new taxonomy,

the Committee charges the research community to integrate the vast yet fragmented

patient-centric resources into an "Information Commons" as depicted in Figure 3.

Google Maps: GIS layers Information Commons
Organized by Geographical Positioning Organized Around Individual Patients

Figure 3: A patient-centric information commons is the data substrate for precision medicine. Just as Geographical
Information Systems (GIS) are location-centric integrations of multiple layers of data, the Information commons is a
patient-centric integration of diverse data that collectively inform patient state. Figure from Toward Precision Medicine
report.6

The Information Commons (right panel of Figure 3) bears resemblance to

Geographical Information Systems (GIS, left panel of Figure 3). Just as GIS are

physical location-centric integrations of multiple layers of data, the Information

Commons is a patient-centric integration of diverse data types that collectively

represent the patient's state. Sharing and centralizing these data will enhance

efforts to reclassify ostensibly singular common phenotypes into their distinct

constituent diseases, an approach that has already led to significant gains in the

clinical management of diseases such as non-small cell lung carcinoma.' 6
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1.2 Statistical Foundations for Precision Medicine

In this thesis, I explore several statistical opportunities and challenges

central to clinical decision-making and knowledge advancement with growing "big

data" resources. I focus on two ongoing use cases: (1) clinical interpretation of

genetic variation and (2) knowledge advancement in the context of many

researchers mining a shared dataset. A primary goal of "precision medicine" is to

identify the true (and often distinct) causes of an apparently singular phenotype, but

it is necessary to distinguish this long-term goal from ongoing clinical decision-

making, which often requires only an accurate understanding of the correlation

between genotype, phenotype, and other available data. If "precision" in describing

such correlative evidence is not achieved, then the consequences for patients can be

harmful, and public and private investments in biomedical research wasteful.

The threat of large-scale misuse in the context of genomic medicine was

described nearly a decade ago by Kohane and colleagues, who defined "the

incidentalome" in 2006 as the set of incidental findings obtained from

comprehensive genotyping in the general population which, if unchecked, may

largely be composed of false positives (Figure 4).17

11
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Figure 4: The percentage of the total population with a false-positive test result when genomic testing is applied
to the general population for a large number of low-probability conditions. Figure from Kohane et al.17

Kohane and colleagues warn that the accumulation of false positive test results in

the general population may be disastrously high even when genomic tests have

nominally very good sensitivity and specificity if the tested population has low prior

probability for the conditions tested. The rate at which false positive test results

grow with respect to the number of independent tests depends on the clinical

specificity (and sensitivity) of the tests-if the tests had perfect specificity, genomic

variants would be pathognomonic ("pathogen om ic") with disease and false positives

would be nonexistent. But much recent experience has shown that high specificity is

the exception -reduced penetrance and variable expressivity are the norm.1820 This

begs the question: what is the typical false positive rate? We currently lack the

infrastructure to answer this question systematically across diseases but the

Information Commons is poised to rapidly accelerate this goal. In order to enhance

these future efforts, we identify three statistical challenges for ongoing clinical

12



decision-making using genomic data as well as knowledge advancement using

shared "big data" resources:

1. The bias-variance tradeoff is fundamental to precision medicine. On the

one hand, if our understanding of disease is too coarse, we may fail to stratify

diagnosis along meaningful axes (e.g. subclinical findings or ethnicity, where

allele frequency differences between populations can masquerade as

meaningful clinical signal21 ). On the other hand, it is remarkably easy in

today's rich data environment to unwittingly use high-dimensional patient

data to support virtually any hypothesis with biological plausibility. Finding

the right balance, as with any statistical model, will lead to the most reliable

findings outside the training data.

2. Communal science - Shared big data resources permit a multiplicity of

uncoordinated investigations. This multiplicity rivals high-throughput omics

multiple hypothesis-testing in scale but not synchrony: whereas high-

throughput omics analyses often use a single test platform where all

measurements are taken simultaneously, analyses using shared data may

happen piece-meal by investigators over decades. New knowledge will need

to be contextualized accordingly.

3. Medical education - Even with accurate estimates of the relationships

between features across the layers of the Information Commons, new

diagnostics and therapeutics will improve care only if their performance

parameters (sensitivity, specificity) are readily available to physicians at the

point of care and incorporated correctly into decision making. Statistical

13



literacy will become increasingly important if we are to keep pace with an

ever-growing catalogue of diagnostics and therapeutics. 21

The three challenges above are central to sound clinical interpretation of genomic

data and knowledge advancement using shared big data resources.

1.3 Outline of Thesis

In Chapter 2, I describe a cautionary tale for genomic medicine that illustrates the

importance of diverse control sequence data in the clinical interpretation of genetic

variation for the inherited cardiac disease hypertrophic cardiomyopathy (H CM). In

Chapters 3 and 4, I introduce a new quantity called the "dataset positive predictive

value" (dPPV) to quantify the proportion of true claims amongst all claims made

during multiple uses of a shared dataset by different investigators. In Chapter 5, I

report the results of a study that assessed statistical literacy in a group of practicing

physicians. In Chapter 6, I describe future directions of this research program.

Chapter 2 is based on a manuscript co-authored with B.H. Funke, H.L. Rehm,

M.S. Olesen, B.A. Maron, P. Szolovits, D.M. Margulies, J. Loscalzo, and I.S. Kohane.

Chapters 3 and 4 are based on a manuscript co-authored with C.J. Patel, J.P.A.

loannidis, and I.S. Kohane. Chapter 5 is based on a manuscript co-authored with G.

Bhatia, J. Strymish, I.S. Kohane, and S.H. Jain published inJAMA Internal Medicine.22
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Chapter 2

A Cautionary Tale for Genomic Medicine: Population
Diversity and the Genetics of Hypertrophic
Cardiomyopathy

Overview
Risk stratification for hypertrophic cardiomyopathy (HCM) is an exemplar of the
clinical gains attainable by targeted genetic testing. Using sequencing results,
clinicians routinely assess risk for the patient's relatives and even tailor therapy for
rare patients. However, the benefits of genetic testing come with the risk that
variants may be misclassified. Using publicly accessible exome data, we identified
variants previously considered causal of HCM that were overrepresented in the
general population. We studied these variants in diverse populations, and
reevaluated their initial ascertainments in the medical literature. We reviewed
patient records at a leading genetic testing laboratory for variant occurrences
during the near decade-long history of the laboratory. Multiple patients, all of
African or unspecified ancestry, received positive reports with variants initially
classified as pathogenic and later changed to benign. All studied high-frequency
variants were significantly more common in African Americans than European
Americans (P < 0.001). If diverse control sequencing data had been available, these
variants would likely have been classified earlier as benign, possibly avoiding
multiple misclassifications in African-ancestry individuals. We identify
methodological shortcomings that may have led to these errors in the medical
literature. These findings highlight the value of diverse population sequencing data,
which can prevent variant misclassifications by identifying ancestry informative yet
clinically uninformative markers. These findings expand upon current guidelines,
which recommend using ethnically matched controls to interpret variants. As
diverse sequencing data become more widely available, we expect variant
reclassifications to increase, particularly for ancestry groups that have historically
been less well studied.
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INTRODUCTION

Although hypertrophic cardiomyopathy (HCM) is best known as a fatal affliction of

young athletes, it causes significant morbidity and mortality in patients of all ages

and lifestyles.12 The defining feature of HCM is unexplained left ventricular

hypertrophy (LVH) but its clinical presentation is heterogeneous, manifesting as

severe heart failure in some patients yet being asymptomatic in others. 3 In over one-

third of patients, causal genetic lesions are identified, enabling clinicians to risk

stratify the patient's relatives 4 and in specific, rare circumstances, tailor therapy for

a patient found to have a tractable phenocopy disorder such as Fabry disease.5

Additionally, in patients with clinical features but not a definitive diagnosis of HCM,

identification of a pathogenic sarcomeric variant may be used to help establish a

diagnosis.

When a patient is incorrectly informed that one of his or her variants is

causal when in fact it is benign, it can have far-reaching unintended consequences

within the family. First, relatives who lack the non-causal variant are given false

reassurance that further surveillance is unnecessary. Second, relatives possessing

the non-causal variant receive prolonged at-risk screening and are advised on

lifestyle modifications (e.g., cessation of certain sports and activities) that may not

be necessary, in addition to the stress and economic burden that accompany the

incorrect diagnosis. Third, for patients with clinical features but without a definitive

diagnosis of HCM, such as young athletes with modest hypertrophy and a family

history of sudden cardiac death, misclassification of a benign sarcomeric variant as

pathogenic may lead to overestimation of the benefits of implanting a cardioverter

20



defibrillator to prevent sudden cardiac death. Lastly, when a variant's status is

downgraded from pathogenic to benign, the sequencing laboratory often re-contacts

the referring physician who, in turn, re-contacts the patient and their tested family

members, engendering confusion and compromising trust.

In order to safeguard against the many problems that result from variant

misclassifications, much effort has gone into developing standards for correct

interpretation. 14 6-9 The principal challenge is to separate truly pathogenic variants

from the historically underappreciated amount of background variant noise

dormant in the genome.6,10 To aid with interpretation, expert guidelines generally

recommend classifying variants using ethnically matched control sequence data.4 8 .

Recently, large-scale control sequence data from the NHLBI Exome Sequence

Project11 were systematically reviewed for HCM-associated variants labeled

"disease-causing" or "pathogenic" in an expert-curated database.12,13 Far more HCM

variants were found than expected in the general population, implying reduced

penetrance or misclassification errors in prior H CM-variant associations, or both.

We observed that only a handful of high-frequency variants account for the majority

of this overabundance, and that these variants occur disproportionately in African

American individuals.

We hypothesized that the identification of HCM-associated high-frequency

variants in the general population implied historical reporting errors in patients,

and that most or all individuals affected would be of African ancestry. We further

posited that these variant associations stemmed from ascertainment bias and other

methodological shortcomings in the original studies. In order to test these

21



hypotheses, we searched patient records for occurrences of these variants at a

premier genetic testing laboratory and reviewed the medical literature for initial

ascertainment. We describe here a cautionary tale of broad relevance to genomic

medicine.

METHODS

Study Populations

We used publicly-accessible sequence data from the NHBLI Exome Sequence Project

(ESP)," 1000 Genomes Project (1000G),14 and Human Genome Diversity Project

(HGDP).15 The NHBLI ESP has exome data from 4,300 European Americans and

2,203 African Americans; the 1000 Genomes Project Phase 1 has whole-genome

data for 1,092 individuals from 14 worldwide populations; HGDP has whole-

genome SNP data for 938 individuals from 51 worldwide populations. Clinical

records for HCM patients were reviewed at the Laboratory for Molecular Medicine

(LMM), Partners HealthCare, Boston, MA. All HCM patient reports with originally

reported variant status "Pathogenic," "Presumed Pathogenic," "Unknown

Significance," and "Pathogenicity Debated" were included (Table 2). The LMM

patient population is a mixed population of 64% Caucasian and 8% black/African

American individuals, with the remaining individuals of other or unspecified

ancestry.16

Variant Ascertainment

A targeted search was performed for initial disease-variant associations for all HCM-

associated high-frequency variants in the medical literature using PubMed. All

22



Human Genome Variation Society (HGVS) names for the variants (e.g., K247R and

Lys247Arg) were used as well as all possible transcript variants obtained from NCBI

dbSNP Build 140.17 All original reports of disease-variant associations were in

agreement with those listed in the Human Gene Mutation Database (HGMD) Version

2014.1.13 "HCM-associated high-frequency variants" were defined as variants with

minor allele frequency (MAF) greater than 1% in either NHLBI subpopulation.

Statistical and Bioinformatics Analyses

P values were computed using the chi-squared test. SNAP 18 was used to detect SNPs

in linkage disequilibrium with high-frequency variants. The HGDP Selection

Browser1 9 was used to display allele frequencies in worldwide populations. The

"penetrance" of a genetic variant is defined as the proportion of individuals with the

variant who have HCM, expressed as the probability P(DIG) where D indicates the

disease (HCM) and G indicates the variant:

Penetrance = P(DIG) P(GID)K
P(G)

The penetrance depends on the prevalence (K) as well as P(GID), the proportion of

HCM patients with the variant, and P(G), the overall frequency of the variant. Unless

otherwise specified, all analyses were performed using the R statistical package. 20
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RESULTS

Only a few high-frequency variants account for the majority of HCM gene
variation in the general population

The NHLBI Exome Sequence Project has previously been searched for any variant

labeled a "Disease causing mutation" ("DM") for HCM in the Human Gene Mutation

Database (HGMD Version 2012.2).1 Although 94 distinct variants were discovered,

we observed that relatively few variants account for the bulk of the genotype

prevalence signal (Figure 1A). Five of the ninety-four HGMD HCM variants identified

in the ESP data met our threshold to be "H CM-associated high-frequency variants"

(MAF > 1 in Pithpr NHLBRI subpopulation), and accounted for nearly 75% of the

overall genotype prevalence signal.

HCM-associated high-frequency variants occur disproportionately in African
Americans

All five H CM-associated high-frequency variants occurred at significantly greater

frequencies in African Americans than in European Americans (Figure 1B, Chi-

squared P < 0.001 for each comparison). The minor allele frequency for these five

variants ranged from 1.5% to 14.9% in African Americans, 0.01% to 1.5% in

European Americans, and 0.5% to 6.0% in the combined population. The genotype

frequency, defined as (heterozygotes + homozygotes)/(total individuals), ranged

from 2.9% to 27.1% in African Americans, 0.02% to 2.9% in European Americans,

rand 1.0% to 11.1% in the combined population. The summed genotype frequency

of the remaining 89 variants was not statistically different between African

Americans and European Americans.
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HCM-associated high-frequency variants have low penetrance in African
Americans

We computed the penetrance for each variant across several clinical contexts (Supp.

Figure 1). Because HCM occurs infrequently in the general population (Panel A) with

a prevalence of K= 1:500,2 even variants with minor allele frequency as small as 1%

have a theoretical maximal penetrance of 0.2, but likely much lower, as the high

allelic heterogeneity of HCM implies that P(GID) is small for most variants, with a

few notable exceptions. 21 Even large values of P(GID) can have little influence on

penetrance; for example, even if the TNNT2 K247R variant were present in all

African Americans with HCM, K247R would have a penetrance of less than 1%.

Penetrance may take on rather different values in other clinical contexts (Panels B,

C). Notably, for first-degree relatives, clinically insignificant high-frequency variants

may have deceivingly large penetrance.

Clinically, all HCM-associated high-frequency variants are considered benign
for all ethnicities

Using the clinical classification algorithm in use at the Laboratory for Molecular

Medicine (Partners HealthCare Personalized Medicine),7 we classified all high-

frequency variants unambiguously as "benign," consistent with the LMM's current

classification of these variants, given their elevated frequency in control populations

as well as the mix of patient and functional data available for these variants. By

contrast, in the HGMD database version 2014.1, four of the five variants remain

classified in the most pathogenic category, "Disease causing mutation." Only one

variant (OBSCN R4344Q) was downgraded from "disease-causing" to "disease-

causing?" in September 2012.
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HCM-associated high-frequency benign variants were classified as pathogenic
in reports provided to African Americans

Seven patients, all of African or unspecified ancestry, received reports between

2005-2007 that one of the two benign variants TNNI3 (P82S) or MYBPC3 (G278E)

was "Pathogenic" or "Presumed Pathogenic" (Table 2). In five of the seven reports,

P82S or G278E was the most significant variant reported to the patient. Six

additional inconclusive and positive cases reported later listed one of the two

variants as "Unknown Significance" or "Pathogenicity Debated." Nine patients (of 13

total) had a clinical diagnosis of HCM, two had clinical features of HCM, and one had

clinical symptoms of HCM. Five of 13 patients had a documented family history of

HCM.

Small sample size and bias of original studies

All high-frequency variants were examined for their initial association in the

medical literature (Table 1). For the two variants that affected patients, TNNI3 P82S

and MYBPC3 G278E, control sample sizes were 85 and 100, which are below and

equal to, respectively, the minimum currently accepted standards needed to

corroborate pathogenicity. 4 Furthermore, none of the studies implicating these

variants were undertaken in individuals of African ancestry explicitly; however,

several studies might have sequenced or genotyped individuals of African ancestry

during the discovery stage (Table 1). Generally, the original study that established

the variant-HCM association consisted of three steps. First, HCM patients were

sequenced at a handful of genes previously connected to the disease. Second,

discovered variants were examined in ostensibly ethnically-matched unrelated

26



controls and, where available, family members. Third, functional analyses were

conducted in a subset of studies to assess causality of the variant.

African Americans have significantly more sequence variation than European
Americans in both MYBPC3 and TNN13

We used the 1000G data to compare sequence diversity between African Americans

and European Americans, using as proxies the populations ASW (Americans of

African Ancestry in SW USA) and CEU (Utah Residents (CEPH) with Northern and

Western European ancestry), respectively. As shown in Figures 2C and 2D, African

Americans harbor significantly more segregating loci than European Americans in

both genes. These "private sites," where MAF > 0% in one population but MAF = 0%

in the other, are represented for ASW by the red points in Figures 2C and 2D. There

are 66 (ASW) compared to 15 (CEU) private sites for MYBPC3 and 45 (ASW)

compared to 6 (CEU) private sites for TNNI3.

Diverse population sequence data reduce the risk of false positives

As shown in Figure 2B, even small studies of diverse populations are statistically

well-powered to avoid misclassifying the five HCM-associated high-frequency

variants. Conservatively, we used the lower frequency variant of the two that were

misclassified in patients (MYBPC3 G278E, MAF 0.0157 in African Americans,

0.000122 in European Americans). At these frequencies, even if African Americans

constituted just 10% of the control cohort, we would have a 50% chance of correctly

ruling out pathogenicity with a control cohort of only 200 individuals.

We documented how allele state and frequency for the H CM-associated high-

frequency variants could be inferred both by neighboring variants (linkage
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disequilibrium, LD) and worldwide relationships (shared ancestry, admixture)

(Figure 2a, Supp. Table 1). For example, the highest-frequency HCM variant (TNNT2

K247R) was a locus in the Human Genome Diversity Project (HGDP) 15 (Figure 2A)

and the HCM-associated high-frequency variant TNNI3 P82S is in LD with the HGDP

SNP rs7258659, which notably has non-zero allele frequencies in several African

populations.

Paucity of available diverse control data may lead to the same errors in other
populations

Table 3 shows the probability of ruling out pathogenicity for truly benign variants

using existing sequencing resources. For example, using the 1000G population

"Mexican Ancestry from Los Angeles" (MXL), which consists of 66 individuals, we

have only a 1:2 chance of ruling out pathogenicity when the MAF is 0.5%. If MAF is

0.1%, such as for a rare variant discovered on high-coverage exome sequencing, the

probability of ruling out pathogenicity is only 12% using the MXL population.
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DISCUSSION

We hypothesized that high-frequency variants identified disproportionately

in African Americans in the general population might have been previously

misclassified in patients receiving genetic testing for hypertrophic cardiomyopathy.

Upon reviewing patient records, we identified multiple individuals, all of African or

unspecified ancestry, who had benign variants initially classified as pathogenic. Such

misclassifications invalidate risk assessments undertaken in relatives, requiring a

chain of amended reports and management plans, creating stress for patients and

their families. Our findings suggest that false positive reports are an important and

perhaps underappreciated component of the "genotype positive/phenotype

negative" subset of tested individuals. 22

To the best of our knowledge, this is the first illustration of how HCM variant

reclassifications can disproportionately affect an underserved ethnic group.

Consistent with previous work,23 we observed significantly greater genetic diversity

in African Americans in MYBPC3 and TNNI3, the genes harboring G278E and P82S,

respectively. When coupled with historically limited sequencing resources and bias

in original studies, these findings suggest why African Americans might be

disproportionately affected by variant reclassifications. Future work is needed to

assess whether this pattern holds more broadly across other variants and types of

misclassifications.

Minimizing misclassifications by sifting through genomic noise for causal

variants is closely related to assessing penetrance, the proportion of individuals

with the variant who express the disease. However, estimating penetrance is often
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difficult because it is sensitive to clinical context (Supp. Figure 1) and because many

studies start with patients and ascertain variants as opposed to starting with the

variant and prospectively evaluating patients and controls, a pattern not limited to

H CM. 24 This approach is due, in part, to historically limited sequencing resources.

Fortunately, recent large-scale sequencing efforts are mitigating this aspect of the

variant annotation challenge,11,2 5 while also introducing an unprecedented scale of

novel variants and genes to consider. 6,26 While the NHLBI Exome Sequence Project

is a powerful resource for African Americans and European Americans, a

comparable resource for populations such as Native Americans and Asian

Americans is urgently needed to prevent similar errors going forward (Table 3).

Large-scale sequencing resources such as the NHLBI ESP are not only well-powered

to "rule out" benign variants and reduce false positives (Figure 2B), but also allow

pathogenicity to be corroborated for truly pathogenic variants (help "rule in"

variants).

Large-scale sequencing data from the general population also enable

systematic reassessments of prior disease-variant associations.12,27 28 For such

assessments in HCM, expert guidelines generally recommend using ethnically

matched controls. 4 Doing so controls for false positives due to stratification

provided the case and control ethnic mix is well matched. Ironically, insistence on

using only ethnically matched controls may delay proper annotation if matching is

imperfect. Consider MYBPC3 G278E, an HCM-associated high-frequency variant that

was discovered in a Parisian cohort29 and misclassified in several African ancestry

individuals (Table 2). Given the ethnic diversity of Paris and the fact that not all
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HCM patients were of European origin in the original study (Table 1), it is

conceivable that the discovery cohort included individuals of African ancestry. If

only European-ancestry individuals were subsequently used as controls, then the

study would have been underpowered to label the variant as non-pathogenic

(Figure 2B). These findings suggest how current guidelines might be extended-

variants from diverse ethnic groups may be used to rule out the pathogenicity of

novel and known variants.7 30 Such issues of population stratification are even

subtler in admixed individuals, who have a patchwork of local ancestry31 that defies

the imperfect proxy of self-identified race.

Several steps are expected to improve care going forward. First, adopting a

probabilistic framework alleviates much of the confusion in pathogenicity

assessments because the quantities relevant to computing penetrance are

incorporated explicitly and as continuous measures. Such a framework is required

to achieve the infrastructural and statistical scaling challenges of "precision

medicine." 32 Second, reevaluating the fragmented disease-variant literature

depends on continued data-sharing and reporting standardization that are the aims

of centralized databases like ClinVar.33 Third, strengthening the relationship

between the population genetics and medical genetics communities will lead to

inventive safeguards against confounders like stratification. Lastly, as variant

annotations are updated, an agile biomedical infrastructure would sense these

changes and notify stakeholders expeditiously. 34 Indeed we expect that many

"variants of uncertain significance"6 will be recategorized in the near future as

diverse control sequencing resources expand.
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The cautionary tale we have described illustrates the complexities of variant

classification. Far from being a clear binary decision, variant classification is an

evolving art that will benefit most from a synergy of clinical, genetic, and statistical

perspectives to prevent future misclassification errors and their adverse

consequences.
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Table 1: Studies that initially implicated HCM-associated high-frequency variants

Gene (Variant) Reference Discovery In InControls vitro vivo Country

Arimura (2007)36 Targeted gene
OBSCN* Biochem Biophys Res sequencing of 288 Japan

(R4344Q) Commun 362,281 unrelated cases Uapanese)
Clananese)

MYBPC3 Richard (2003)29 Targeted gene
(G278E) Circulation 107, 2227 sequencing of 100*** - - France +

unrelated cases***

* OBSCN and JPH2 have never been included in cardiomyopathy testing at the LMM.
** No specific ethnicity provided, but "informed consent was obtained in accordance with
human subject committee guidelines at Brigham and Women's Hospital, St. George's Hospital
Medical School [U.K.], and Minneapolis Heart Institute Foundation."
*** "Patients were recruited in France, and most of them were of European origin."
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Table 2: Clinical findings for HCM-associated high-frequency variants

46 Unavailable 2005 Positive Pro82Ser Pathogenic Benign Y Clinical Diagnosis of HCM

Family History and Clinical

75 Unavailable 2005 Positive Pro82Ser Pathogenic Benign Y' Symptoms of HCM

32 Black or African American 2005 Positive Pro82Ser Presumed Pathogenic Benign N Clinical Diagnosis of HCM

Clinical Diagnosis and
34 Black or African American 2005 Positive Pro82Ser Pathogenicity Debated Benign N Family History of HCM

12 Black or African American 2006 Inconclusive Pro82Ser Unknown Significance Benign Y Family History of HCM

40 Black or African American 2007 Inconclusive Pro82Ser Unknown Significance Benign Y Clinical Diagnosis of HCM

45 Black or African American 2007 Inconclusive Pro82Ser Unknown Significance Benign Y Clinical Features of HCM

Clinical Diagnosis and
16 Asian 2008 Positive Pro82Ser Unknown Significance Benign N Family History of HCM

59 Black or African American 2006 Positive Gly278Glu Presumed Pathogenic Benign Y Clinical Features of HCM

15 Black or African American 2007 Positive Gly278Glu Presumed Pathogenic Benign Y Clinical Diagnosis of HCM

16 Black or African American 2007 Positive Gly278Glu Presumed Pathogenic Benign Y Clinical Diagnosis of HCM

Clinical Diagnosis and
22 Black or African American 2007 Positive Gly278Glu Presumed Pathogenic Benign N Family History of HCM

48 Black or African American 2008 Positive Gly278Glu Unknown Significance Benign N Clinical Diagnosis of HCM

*The "Most Significant?" column indicates whether the variant was unequivocally the most pathogenic variant on the original report

provided to the patient.
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Table 3: Limited control sequencing resources for ruling out pathogenicity in several US populations

U.S. Census Category Cohort Proxy Population N MAF = 0.5% MAF = 0.1% MAF = 0.01%
White NHLBI ESP

Black or African
American NHLBI ESP

European Americans

African Americans

Asian 1000 Han Chinese in Beijing,
Genomes China

4400

2203

66

97

100

100%

100%

48%

62%

63%

100%

99%

12%

18%

18%

22%

36%

1%

2%

2%

The probability of ruling out pathogenicity is shown for different self-identified ethnicities using proxy populations.
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Figure 1A: Overrepresented HCM variants in the general population. The five
highest-frequency variants account for 74% of the genotype frequency signal for
HCM in the general population.
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Figure 1B: All HCM-associated high-frequency variants are significantly more
common in African Americans than European Americans. Chi-squared P < 0.001
for each comparison.
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Figure 2: Diverse sequencing data help prevent variant misclassifications by
illuminating hidden sources of bias as well as useful correlations to infer allele

frequency (A) TNNT2 (K247R) was a variant genotyped in the HGDP. Most

populations around the world have non-zero minor allele frequency. (B) For a
variant predominantly found in one ethnic group, the chance of correctly ruling out

pathogenicity for a truly benign variant generally increases with the diversity of the

control cohort and the number of controls (control chromosomes shown in legend).

These simulations use the allele frequencies of the MYBPC3 G278E variant, which

has an African American minor allele frequency (MAF) of 0.0157 and a European
American MAF of 0.000122. (C/D) MAFs for 100OG populations ASW (y-axis, 61
individuals) and CEU (x-axis, 85 individuals) for the HCM genes MYBPC3 and TNNI3.

Each point represents a distinct variant (SNP/indel). African Americans have

significantly more private variants (CEU MAF = 0% and ASW MAF > 0%, colored in

red), than European Americans (ASW MAF = 0% and CEU MAF > 0%).
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Supplementary Table 1: Allele frequencies in global populations

African European

Gene (Variant) AA EA ASW YRI LWK CEU IBS GBR TSI FIN JPT dbSNP

OBSCN(R4344Q) 7.97% 0.17% 10.7% 15.9% 17.0% 0% 0% 1.1% 0% 0% 0% rs79023478

MYBPC3 (G278E) 1.57% 0.01% 0.8% 1.1% 2.1% 0% 0% 0% 0% 0% 0% rs147315081

NHLBI Exome Sequence Project 1000 Genomes Project

Minor allele frequencies in populations around the world for the five H CM-associated high-frequency variants. African
populations include ASW (Americans of African Ancestry in SW USA), YRI (Yoruba in Ibadan, Nigeria), and LWK (Luhya in
Webuye, Kenya). European populations include CEU (Utah Residents (CEPH) with Northern and Western European ancestry),
IBS (Iberian population in Spain), GBR (British in England and Scotland), TSI (Toscani in Italia), and FIN (Finnish in Finland).
Also shown are minor allele frequencies for JPT (Japanese in Tokyo, Japan).
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Supplementary Figure 1: Computed penetrance of HCM-associated high-frequency variants in three different clinical

contexts. (A) General population (prevalence K = 1:500), (B) population enriched for HCM patients, e.g., mixed population of

HCM patients and general population (K = 1:100), (C) first-degree relatives (K = 1:2). P(GID) is the proportion of HCM patients

with the variant.
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Chapter 3

The precarious wisdom of communal science

Overview
Shared datasets receive little attention with regards to reproducibility. Broader
reproducibility initiativesl, focus on investigator responsibility, but structural
aspects of the scientific enterprise including a shared dataset's access policy and the
distribution of studies across relationships are equally influential, yet are neither
controlled by nor visible to individual researchers. Here we introduce a new
quantity called the "dataset positive predictive value" (dPPV) to quantify the
proportion of true claims amongst all claims made during multiple uses of a shared
dataset by different investigators. We show that, in the presence of moderate bias,
using nominal statistical significance levels to make claims leads to publications that
are mostly false. The distribution of studies performed across relationships affects
both the number of claimed relationships and the proportion that is true, even when
teams use identical data and inference procedures. We derive scaling rules that hold
generally and demonstrate several surprising facts about the reproducibility of
communal science. For example, reproducibility often declines as more teams study
the same topic and small pilot studies may produce more confusion than guidance.
Finally, we discuss data access policies. We find that restrictive data access policies
may blur evaluations of reproducibility more than open policies. We discuss
possible solutions to prevent confusion and maintain reproducibility amid the
competing interests of communal science.
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INTRODUCTION

Shared data resources permit a multiplicity of uncoordinated investigations to be

performed. This multiplicity rivals high-throughput omics multiple hypothesis-

testing in scale but not synchrony: whereas high-throughput omics analyses often

use a single test platform where all measurements are taken simultaneously,

analyses using shared data may happen piece-meal by investigators over decades. 3

This pattern of use is likely to become more common as shared datasets and user-

centered data browsers 4 flourish. Failure to account for these multiple tests,

especially in the context of biases like selective reporting, can lead to false5 or

inflated 6 claims. In order to enhance the reproducibility of communal science, we

develop an analytical framework for a new quantity called the "dataset positive

predictive value" (dPPV) to measure the proportion of true claims amongst all

claims made during multiple uses of a shared dataset. We use this framework to

understand the reliability of claims made during multiple uses of a shared dataset

by using simulations that vary which relationships are tested and policies that

govern database access and data sharing.

METHODS

dPPV quantifies reproducibility in the context of a shared dataset's access

policy and features of the studies that are performed (Box, Figure 1). The actors in

this framework are research teams, the relationships they choose to study, and the

policies governing data usage. Capturing the full range of shared dataset use

requires extending previous models for scientific reproducibilitys in two key ways.
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First, we allow any team to study any relationship in the data over time, as opposed

to focusing on the more limited scenario where all teams are testing the same

relationships. Second, we formally model the variance in realized values of dPPV,

which is due to a mixture of luck, study features, and the truth of relationships

tested.

Consider c relationships of which Cr are "non-null" and CF are "null"

relationships, under study by n teams at time t. Teams may be studying one or more

relationships, with the full set of ongoing studies specified by the dynamic n x c

binary matrix N (Box). Each study is performed at significance level a, and team i is

studying relationshipj with Type II Error fl. The ratio of "non-null" to "null"

relationships is given by R. The bias term, u, is the proportion of research findings

that would not have been claimed under ideal study design, analysis and reporting

procedures5 .Tying together these terms, dPPV(t) is the proportion of claimed

relationships that is true at time t, and can be written as the ratio of two Poisson

binomial random variables:

dPPV(t) PB(CT(t), p3 (t))
PB(cT (t), pj (t)) + PB(cF (t), qj(t))

where pj(t) and q;(t) are probability vectors that describe the features of studies

underway at time t and are based on fi; and a, respectively, as well as the extent of

bias u (Box).

We developed a simulation framework to study dPPV (Figure 1). We

obtained laboratory data (e.g. serum creatinine and glucose) of participants in the

National Health and Nutrition Examination Survey (NHANES), 7 a cross-sectional
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epidemiological study. Next, we created a large set of uncorrelated "synthetic

variables" by randomly sampling from the empirical distributions of the NHANES

analytes. Synthetic variables were combined in varying proportions with the

NHANES laboratory data for each patient, allowing control over the ratio of "non-

null" to "null" relationships (R) as detailed below. Pairwise relationships between

variables in the combined data were measured with the Pearson product-moment

correlation coefficient, computed after adjusting appropriately for the NHANES

sampling design8 . In our simulation, a "non-null" relationship is defined as any

pairwise correlation between NHANES analytes that met a Bonferroni-adjusted

significance threshold (p < 1.8 x 104). All other pairwise correlations, whether

involving only NHANES analytes or synthetic variables, are "null". During each time

step of the simulation, several studies are approved, performed, selected and

research findings are claimed if they meet a threshold of statistical significance (a

model parameter). We track the "true" proportion of claimed relationships over

time in a dataset in which a proportion of the potentially testable correlations are

simulated as being "null" (Figure 1).
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RESULTS

Statistically significant correlations that represent false-positives are readily

observed between artificial variables and the NHANES clinical variables. If research

teams conduct uncoordinated investigations of separate relationships and each

team uses a nominal statistical significance threshold (p < 0.05), in expectation there

will be 0.05 x (c/(R+1)) false claimed relationships. For example, consider a shared

dataset with relatively few true relationships (R = 0.001) but many ongoing studies

(c = 1000). If the ongoing studies are not somehow enriched for targeting a higher

proportion of true relationships and always have R=0.001, we expect 50 statistically

significant false positive discoveries and just 1 true positive discovery assuming

reasonably good power (1 - = 0.8), yielding an expected dPPV of less than 2%.

While the nominally acceptable power exceeds the false positive rate by a factor of

16, the null relationships dwarf the non-null relationships by a factor of 1000,

dooming dPPV.

The expected value of dPPVcan be computed more generally:

E(dPPV) ~- TP (2)
ATP + AFP

where ATP and /FP are the expected number of true positives and false positives,

respectively. Intuitively, the expected proportion of true relationships claimed from

communal use of a shared dataset is the ratio of the expected number of true

positives to the expected number of total claimed relationships. While an analogous

formula holds for the model in which research teams study separate relationships

with identical power and statistical significance thresholds,5 it is noteworthy that a
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similar relationship holds in the more complicated scenario of many teams

separately mining a shared dataset (Chapter 4).

Equation 2 describes how reproducibility declines during communal science

scenarios that are likely to happen in real life (Table 1). Consider the situation in

which teams arriving late to a shared dataset choose to study relationships with

reduced pre-study odds (i.e. addressing more far-fetched relationships) or with

reduced power (e.g. addressing more rare phenomena). For example, most

relationships with high a priori probability (low-hanging fruit) may have already

been claimed and to study hypotheses without precedent, late-arriving researchers

may study a priori less likely hypotheses. Alternatively, late-arriving teams may

choose to investigate potential subgroup effects across different strata or

relationships that have smaller numbers of observations. It is well documented in

the clinical trials literature that such post-hoc analyses ought to be treated with

caution.9"1 0 An analogous result holds for communal use of a shared dataset (Figure

3a). Some additional common scenarios are listed in Table 1.

Another critical parameter is bias (u), which may arise for a variety of

reasons including, but not limited to, conflicts of interest,11 heterogeneity,12

confounding,1 3 questionable research practices,1 4 or inappropriate analysis

procedures.6 Analysis challenges may spread as big data is commoditized and may

worsen as data creators and data analysts become increasingly disconnected. For

example, researchers analyzing administrative claims1s or electronic health record

(EHR) data (e.g. comparative effectiveness), or researchers monitoring treated

patients for adverse events (e.g. pharmacovigilance), are often disconnected from
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the individuals who organize, code, and store these data. Moreover, many of these

datasets were never created for research purposes and there may be a poor

understanding by their users of the analytical caveats resulting from poor quality

and deficiencies in the data and measurements available. Unless proper analysis

guidelines are maintained or techniques such as pre-specified falsification end

points are used,16 reproducibility is liable to suffer when bias (u) increases in these

settings (Figure 3c).

More optimistically, Equation 2 reveals how to improve reproducibility in

communal science. For example, ensuring adequate power lessens the false

discovery risks from communal pursuit of less likely hypotheses (Figure 3a).

Manipulating dPPV shows that the pre-study odds and dataset-averaged power are

closely related to one another. If the equation

(Reff) x (1/cr l -[1 - U]IIip 1 ) = constant (3)

j=1

holds, the expected value of dPPVis unchanging, assuming the false positive rate

remains constant. In other words, doubling the relationship-averaged power

compensates for studying hypotheses half as likely. For example, when using EHR

data to study rare diseases, combining patient cohorts across hospitals 17 may enable

the community to preserve reproducibility, partially offsetting a "file drawer"

problem' 8 that may worsen as increased sharing of large data sets is promoted.

However, the same resource may be used to justify almost any statistically

significant yet clinically insignificant effect with an appropriately large sample size
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(e.g. even if the true relative risk is 1.001, a sufficiently large population will achieve

statistical significance).

Reproducibility also improves if the community is able to limit certain forms

of "herding."19 Herding occur when an initial discovery is followed by a wave of

similar studies, either by the same team or others. In the context of a shared dataset,

this behavior may take the form of different groups analyzing the same topic using

slices of data from the larger shared dataset. Empirical evidence also suggests that

when the same data are re-analyzed, even with participation of the original authors,

different conclusions are often reached, even for non-exploratory research such as

randomized trials.2 0 Independent studies of the same relationship cause the

probability of a chance false discovery to rise rapidly, with biases like selective

reporting and nonstandard analysis procedures worsening the situation (Figure 3c).

This pattern may seem counterintuitive, as corroboration by independent teams is

considered to be the hallmark of scientific progress.

Independent corroboration is necessary to verify or refute claimed

relationships during the replication stage. But during the discovery stage, when

novel relationships are being claimed and research teams can select which findings

to publish, the presence of many teams studying the same relationship threatens

reproducibility because the chance of a false discovery rises steeply with the

number of teams. Using dPPV, the expected rate of false claimed relationships is

given by:

CF

1/CF Z= - 1j(1 -a)i (4)
j=1
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where the sum spans the false relationships under study. Given the same total

number of studies, reducing the number of studies per relationship tends to reduce

the expected rate of false claims (Figure 3d, Chapter 4). This means that for

discovery research, we should think of strategies that reduce the chances that

different teams would be pursuing the same or overlapping research questions.

Intellectual crowding is bad for discovery.

One discussed strategy to narrow the scope of hypotheses considered is to

conduct small pilot studies and follow up only promising findings. Many funding

agencies have incentives for small pilot studies and grant applications routinely

request pilot data, hoping to avoid committing large funds and resources in areas

where there is yet no evidence that they would be fruitful. However, it is not well

known how this strategy influences reproducibility in the setting of shared datasets.

The matrix /(t) in dPPV stores the Type II Error of all studies, so constrained time

evolution of dPPV simulates pilot studies that tend to have smaller sample sizes and

reduced power. In general, simulations show that small pilot studies tend to

increase the expected value of dPPV (Figure 3b). However, here the expected value

of dPPV may not suffice to convey the entire picture. Very small pilot studies are

especially concerning because there is larger unpredictability in what they will find:

then they may lead to overreaction, either by prematurely terminating a research

program or justifying undue investment.2 ' To capture the extent of this potential

problem, we need to assess the variance of the dPPV, which is higher when smaller

studies are performed.
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We have focused primarily on the expected value of dPPV, but the proportion

of true claimed relationships takes on different values even with identical

reproducibility parameters (Figure 4). This variance is relevant in practice because

it can lead to confusion and divert attention to factors unrelated to reproducibility.

Variance depends on several factors that are not controlled by individual teams:

these include the data governance policy and the number of teams simultaneously

mining the dataset. These dependencies are captured in part by the means A'TP and

IFP in the variance equation for dPPV:

2VVar(TP) Var(TP + FP) Cov(TP, TP + FP)
Var[dPPVt)] 2&T 2 + - 2)21T+M Ll a -lkri> IrL un'

. A 'I r , Lr-+-rr - F

In general, more liberal data governance policies reduce variance (Figure 4a). If a

large number of relationships are studied, estimation of dPPV improves due to the

law of large numbers and as can be seen in Equation 5 (Chapter 4). By extension,

reproducibility tracks with the ebbs and flows of scientific interest or funding in a

particular field (Figure 4b). Chance is at work in both of these settings-

understanding the degree of its influence will temper expectations and avoid

misattribution of both blame and credit for efforts designed to enhance

reproducibility.
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DISCUSSION

Most recent efforts to enhance reproducibility emphasize the responsibility

of individual researchers.12 However, dPPV shows that there are structural factors

such as the data governance policy that can be equally influential. These factors

affect both the expectation and the variance of dPPV. Understanding the spectrum of

possible values of dPPV and similar metrics is a prerequisite for systematically

improving reproducibility. Estimation of dPPV demonstrates that such assessments

are laden with predictable amounts of variability that worsen as evaluations

become narrower-the global evidence is more stable than the evidence procured

by single institutions or departments, which is more stable than the evidence

procured by individual investigators. An institution or data governing body might

initially adopt small reproducibility programs to audit a handful of studies in order

to closely monitor reproducibility. Ironically, such initiatives may be the least

reliable. In the current globalized environment for research, single academic or

research institutions may have access to very thin slices of the total evidence, and

pilot programs within these thin slices may be particularly unreliable and have very

high variance.

dPPV specifies how to assess and improve reproducibility in communal

science. The principal challenge in estimating and applying dPPVto existing shared

datasets is that model parameters such as u, number of hypotheses tested, and R

may be unavailable or unmeasured. The relationships we have described hold

generally, though their magnitude will be sensitive to specific parameter values.

However, very often we may have empirical evidence on the potential range of bias
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and pre-study odds in different fields. Moreover, even subjective parameter

assessments are likely to improve the scientific process and help contextualize novel

claimed relationships. 22 But most promising would be to use the wealth of rich

shared data to estimate empirically the reproducibility parameters across a wide

range of communal science pursuits (Table 1). This is likely to be a trial-and-error,

iterative process.

Estimates of dPPVmodel parameters can be obtained in both agnostic 2 3-25

and hypothesis-driven approaches to discovery. For example, genome-wide

association studies (GWAS) 26,27 offer a paradigm where reproducibility has been

high.28 It is now standard in GWAS for researchers to correct for multiple

hypotheses, minimize bias from ancestry-based confounding,29 and even estimate

the pre-study odds using concepts such as heritability.30 If separate researchers

tested individual SNPs or genes instead of utilizing GWAS methodology,

irreproducibility and wasted investment would be catastrophically high, as well

documented for the thousands of claims made by single investigators in the

candidate gene era.31 Systematic methods of agnostic inquiry have been applied to

other fields 2 4 but remain a challenge for the majority of observational clinical data,

reflecting in part the siloed efforts that characterize much of biomedical research

over the past several decades. The successful scientist is still considered to be the

individualistic principal investigator who comes up with extravagant discoveries

against the prior odds. Paradoxically, this scientist model is linked to very low

reproducibility. Conversely, not a single Nobel Prize has been given to communal,

team science to-date, despite its tremendous-and growing-importance in
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biomedicine and despite the fact that it is a model that is likely to be associated with

high reproducibility.

Without appreciating the influence of structural factors including a shared

dataset's access policy and the distribution of studies across relationships, we have

only an incomplete understanding of the risks of irreproducibility and the levers

with which we can increase the reproducibility of communal science. As the

scientific community strives to enhance reproducibility, successful efforts will

require methods to overcome the fickle nature of scientific reproducibility in the

context of today's communal science.
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Table 1 Frequently encountered situations in communal science
Communal science

situation Example(s)
Affected dPPV
narameter(s)

Intellectual crowding

Many smaller studies vs.
fewer, larger studies

iPSCs post Takahashi, Yamanaka 2UU6

Many studies were spurred by the discovery of iPSCs,
likely shifting N togreater "depth" (more studies per
relationship). This impacts both the mean and the
variance of dPPV, with the probability of a
subsequent false discovery increasing with the
donroo nF infol orhtnl ,rnwudinn fiinhro r)

NIH Grants, NHLBI Clinical Trials between
2000-11,33 NIH Large RFA vs. Investigator-

Initiated Grant Programs

Funding agencies must balance the size and number
offunded studies. j? terms are smaller for large
studies, but this likely comes at the expense offewer
relationships studied. Both mean and variance will
be impacted in this tradeoff Pilot studies may
increase the mean of dPPV but may also inflate its
unrinnno (Minnro 7h)

Pharmacovigilance, comparative effectiveness
based on health claims data

Data analysts from
different community than Health claims data have established biases.15 If such

dif eerencom nty t corrections are applied improperly as data are
data generators made available to analysts from different

communities, u will increase, diminishing
reproducibility (Figure 3c).

Abbreviations: dbGaP: database of Genotypes and Phenotypes, iPSCs: induced pluripotent stem cells,
NHLBI: National Heart, Lung, and Blood Institute, NIH: National Institutes of Health, RFA: Requests
for Applications, DREAM: Dialogue on Reverse Engineering Assessment and Methods.
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Framework for studying communal science
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for each study) and conducted. Findings are then "published" subject to bias u.The dataset positive predictive value,
dPPV(t) is tracked during the simulations (center). Shown in red are relevant model parameters at each step. 65
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(Box: The Dataset Positive Predictive Value (dPPV)

dPPV(t) =
PB(cT(t), pj (t))

PB(cT(t), p,(t)) PB(CF(t), ,(t))

Rff 1 E CT 1 - [I -=]II" join

Re 1 T [1 -jjl n]I l + _L ECF - [1 - ujjj ,1 (1 -a)ij

2 ~TP
AP~r Var(T )

2 '2
/I-TP+FP ATP

Var(TP + FP) 2 Cov(TP, TP + FP)
+ 2

ILTP+FP ITPILTP+FP

c, relationships:

nl,2 ... ni,cm

n 2,2 n 2,Cm

L. Tn,2 nfl,cm

/3-=

c, relationships
13ll /S1,2 ... 19 ,Cm

13271 362,2 ... 032,c.

/32%1 /3n,2 )3nlcmj

all-~

p1(t) = 1 - [1 1 u]Hb SO qj (t 1-Ujll%1,(1

bias

The Dataset Positive Predictive Value dPPV(t) is a random variable representing the
fraction of claimed relationships that are true at time t. dPPV(t) is a time-dependent ratio
of two Poisson binomial distributions. At time t, there are c,(t) "non-null" relationships
under study and c,(t) "null" relationships under study. The ratio of these two quantities is
the pre-study odds, Reff(t) = cT(t)/cF(t). The n x c. binary matrix N specifies whether team i
is studying relationshipj, and the n x c, matrix P gives the Type I errror of team i's study
of relationshipj. These matrices are used to compute p)(t) and q,(t) at time t, which are
vectors representing the relationship-wise Type II errors for the cT(t) "non-null" relation-
ships and Type I errors for cF(t) "null" relationships under study, respectively. Relation-
ships are claimed at significance level a. PB(c,(t),pj(t)) is a Poisson binomial random vari-
able representing the number of true positives from cT(t) trials with probability vector
p,(t), and PB(cF(t),jq(t)) is a Poisson binomial random variable representing the number of
false positives from cF(t) trials with probability vector q,(t). Even with identical param-
eters, there may be high variability in the realized values of dPPV. This spread is captured
by the variance of dPPV, whose approximation is provided above. The central tendency
is captured by the expected value of dPPV.
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Structural factors that influence the reproducibility of communal science
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Liberal data governance makes reproducibilty more stable
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Chapter 4

The dataset positive predictive value (dPPV)

Overview

Here we briefly motivate and define dPPV, the dataset positive predictive value. We first
review the model for PPV published by Ioannidis' and then introduce new parameters to gen-
eralize this model for the situation in which many teams are studying different relationships in
a shared dataset with studies of differing power. We use these new parameters to define a new
time-dependent equation for PPV. We then recast this version of PPV as the mean of a discrete-
time stochastic process dPPV, the ratio of two correlated Poisson binomial random variables. We
compute approximations of the mean and variance of dPPV and describe Monte Carlo simulations
with dPPV using NHANES patient data.2
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1 Review of the Ioannidis model (PLOS Medicine 2005)

The PPV model published by Ioannidisi uses the following notation:

" PPV: positive predictive value

" R: pre-study odds, the ratio of "non-null" relationships to "null" relationships among those

tested

" a: Type I Error Rate

" /: Type II Error Rate

" U: bias

" n: number of teams

* C: number of relationships tested in the field

Using this notation, PPV in the absence of bias is given by:

PPV =(I -#)R (1)R-/OR+a

PPV with bias u:

PPV = (1 - )R + uR (2)
R + a - OR +u - a+u R (2)

PPV with n teams:

PPV = R(1 - On) (3)
R(1 - on) + I - [I - a]n

Model notes:

" Each study has equal power (1 - 0) to detect any of the "non-null" relationships

" Parameters are fixed (e.g. n, R)
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* For the many teams scenario, teams behave identically, each pursuing all c relationships

" For the many teams scenario, PPV is the fraction of claimed relationships that are true

amongst all claimed relationships, where a relationship is "claimed" if at least one team

claims it, and is not claimed only if no team claims it

" A large number of relationships are being tested such that the probabilities in the equations

above may be considered rates, and we may neglect the variance in PPV (detailed below)

2 Introducing N and /3

In order to generalize the Ioannidis model' for the situation in which many teams may be studying

different relationships with studies of differing power, we introduce two new matrix variables. Let

N be an n x cm matrix (m for "maximum" number of relationships) of binary variables where nij

indicates whether team i is studying relationship j:

cm relationships

n1 ,1  nl,2 ni,cm

n2,1 n2 ,2  ' n2,cm n
N = teams (4)

nn,1 nn,2 ... nn,cm

Let / be an n x cm matrix where fOij specifies the Type II error of team i's study of relationship

j. Equivalently, 1 - 3i,j is the power of team i's study of relationship j:

cm relationships

01,1 1,2 * ' - 31,cn

132,1 02,2 ... - 2,cm n/ =teams (5)

On,1 n,2 /3n,cm

where we set i,= -1 iff nij = 0 (that is, iff the ith group is not studying relationship j). Note

that N and )3 are redundant (ni,, = 0 iff Oij = -1 and ni,3 = 1 iff 3ij / -1), but we keep the
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notation for clarity below.

The Hadamard (element-wise) product zeroes out the power terms for those studies not being

conducted:

N o 03

fl, 1 n1,2

n2,1 n2,2

7 n,1 nn,2

E 1,81,1

n2,182 ,1

[nn, n,i

* . n,cm

... n2,cm

''. nn,Cm

fl,2 1,2

n2,202,2

nn,20n,2

G0
02,1

01,2

02,2

/nj n,2

.. /3'1,Cm

- - - 2,Cm

... /3n,cm

... fl,cmi,cm1

. T'2,cm 02,cm

... fln,cmon,cmj

3 Two types of PPV

For the many teams scenario,1 Equation 3 can be written as:

PPV
cR o_ n)

C (1 -- 3)+C1(1 - [ - a]n)

R(1-1 )
R(1 - on) + (1 - [1 - a]n)

Rf ()
Rf (3) + f (a)

where f() = (1 - on) and f(e) 1 - [1 - ap. We consider the following method, analogous to

Ioannidis1 for defining f(a) and f() in our model:

Model rates:
f(a) = (1/CF) ECF( (I L1  ni j

f(/P) = (1/CT) ZCT( - II j )
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We could define f(a) and f() to be rates of true and false claims made, several of which might

be about the same relationship. Instead we follow Ioannidis in defining f(a) and f(3) as rates

of true and false relationships claimed, though many similar results may be derived using either

scheme. Note that in Equation 6 above, if /ij = 3 everywhere then f() simplifies to (1 - 0f), in

agreement with Ioannidis.1

4 Two types of data

The set of c relationships under study by n teams (specified by N) might define a "field" where

the data is separately sampled in each individuals team's study, or might be a shared dataset D.

For most purposes, the second scenario is effectively a simplified version of the former, where 3

is identical for all teams pursuing the same relationship (assuming the inference procedures are

equivalent). Moreover, PPV is simpler in this scenario-Method 1 reduces to:

f(a)=a
Model rates: (7)

f f(3) = (1/CT) E (1 - Oj)
CT

where /3 is the power for studies of relationship j.

5 Introducing Reff and 0

Let Reff C [0, 1] be the pre-study odds of the relationships being studied by the n teams, as specified

in N. Note if the n teams are studying the c possible relationships at random and c is sufficiently

large, Reff R. We can write:

R C (Reff(I/CT) ECT(1 - I(8_)3 i)

c)''- I_33) + (1/CF) EcF(I H -

Let 0 be a function that takes as input a research design (e.g. "exploratory", "novel", "confirma-

tory", "meta-analysis") and outputs a corresponding typical Reff for that design.
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6 Adding bias u

We adopt the definition of bias from Ioannidis: 1

"First, let us define bias as the combination of various design, data, analysis, and presentation

factors that tend to produce 'research findings' when they should not be produced. Let u be the

proportion of probed analyses that would not have been 'research findings,' but nevertheless end

up presented and reported as such, because of bias."1

Introducing u impacts the model rates as follows:

Model rates: f (a) =9(1/CF) ()

f() = (1/CT) EC,(1 - [1 - u]U 1 'j)

assuming u has no relationship with the Rf{ terms or f.

7 Modeling time

We let N vary with time: N(t). As a result, Reff also varies with time: Ref(t). There are many

ways to define N(t). As an illustration, consider the following simple scenario: a new team begins

to analyze the dataset at every time point and picks a relationship to study from the cm that are

available. Define 9(t) to be the research design used by team t. 9(t) specifies the pre-study odds.

t = t,

t = 2 Rl,l p1 ,2  * 1E,cm
6(t) t = I

ni,1  l,2 - n1,cm n2,l n2,2 n ' 2,cm
N(t) =n, nl,2 - 1,cm a 3 - - - -+

- 2, n2,2 ' f2,cm

-nt',1 nt',2 n t',cmj
(10)

For example:
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0(t)

N(t) = [0
t=1

1*- -
-0

] - I

t=2

1 --

0 ...

0

0

t

0 1

1 0

0 0

(11)

We also let 0 vary with time: 3(t). Consider the following scenario: teams with initial access to the

data pursue "simpler" relationships in the data (e.g. single-variable associations) while late-arriving

teams pursue more "complex" relationships in the data (e.g. interactive effects). Controlling for

Type I Error, the late-arriving investigators will tend to have reduced power to identify complex

relationships. Alternatively, if late-arriving teams are able to recruit more individuals per study

(perhaps by pooling data with another team or receiving additional funding for their study), later

studies may be able to maintain power even as complexity increases.

t=1

)(t) = p1,1 31,2 -- ,cm14 [
32,1

t = 2

/1,2

/2,2

- -- 1,cm

--- 2,cm l

/31,1

02,1

t

01,2

02,2

/3t',1 /,2

... - 1,Cm

... - 2,cm

- t -

(12)

For example, the following version of /3(t) might correspond to the N(t) in Equation 11, where a

new team begins analyzing the shared dataset at each time step and chooses a single relationship

to study:

t =2

0.1 ...

-1 .--

-ii
-ij ~

t~t'

-1 0.1 ... -1

0.05 -1 - -1

-1 -1 ... 0.6

(13)
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where -1 indicates no relationship is being pursued, mirroring zeroes in N. In this example, as

with N(t) in Equation 11, a row is added at every time step. #ij(t) can change at any time point.

For example, 32,1 drops from 0.3 to 0.05 from t = 2 to t = t', reflecting e.g. an increase in available

sample size and corresponding gain in power.

8 PPV(t)

Tying everything together, we may now write a time-dependent version of PPV, which incorporates

bias and the time dependence of [3(t) and Reff(t):

DDP4) =

Reff (t) E (1 _ [1 _ u]H~n(3/3i'j (t)fli~i)
CT(t)

CT M)11 A\

CT(t ) 1 - ] i(t) n) + F (I - [1 - U]t)n( 1 - ) )
CT~s M TW1CMCF M i=

We can show that:

PPV(t) declines with decreasing Re(t).

Assuming f(a) and f() unchanging, it is straightforward to show that iff Reff(ti) 5 Reff(t2) for

any two time points ti and t2 then PPV(ti) PPV(t2 ). Note that Equation 14 has the form:

PPV (t) = -Reff(O~f (0)
Ref(t)f() + f(a)

where all terms are nonnegative. The equation PPV(ti) < PPV(t2 ) can be written as:

(15)

Reff(ti) f($)
Reff(ti)f (W) + f (a)

Reff(tl)Reff(t 2 )f (0)2 + Reff(tl)f (a)f (0)

Reff(tI)fQY)f(Z )

-K

K

K

Reff(t 2 )f(0)

Reff(t 2)f () + f (a)

Reff(ti)Reff(t 2 )f(0)2 + Reff(t 2 )f (a)f(C)

Reff(t2)f (C)f (0) + Reff(t1) :5 Reff(t2)
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given that all terms are nonnegative.

Much as positive predictive value of a diagnostic test falls with declining pre-study odds, the PPV

in a shared database falls as teams pursue a pnori less likely hypotheses over time. This may

happen as newly-arriving teams pursue novel or more complex hypotheses. This equation also

sheds light on how we can improve PPV(t): by increasing f(3) or decreasing f(a), which generally

correspond to reducing /kj and a. f(3) may be increased by increasing the power of each study or

reducing the number of independent investigations of the same relationship, provided an analogy

of the relationship 1 - 3 < a from' holds.

9 Data governance: s(t), c(t), and n(t)

The data governance policy is captured by three functions: s(t), the number of studies at time t;

c(t), the number of relationships being studied at time t; and n(t), the number of teams at time t.

If s(t) ~ c(t) then there is approximately one study per relationship. Some possible forms of n(t)

include:

a fixed number of teams

t linearly increasing number of teams, as in Section 7
n~t) = <(16)

atA decreasing number of teams if A < 0; increasing if A > 0

a sin(bt) fluctuating access policies

10 The dataset Positive Predictive Value, dPPV(t)

PPV(t) in Equation 14 may be viewed as the mean of a discrete-time stochastic process dPPV(t),

the dataset positive predictive value:

dPPV(t) TP(t) (17)
TP(t) + FP(t)

where TP(t) follows a Poisson binomial distribution with CT(t) = c(t)Reff/(Reff + 1) trials and
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success probability vector T(t) C [0, 1 ]CT(t). Similarly, FP(t) follows a Poisson binomial distribution

with cF(t) = c(t)/(Rff + 1) trials and success probability q(t) C [0, 1 ]CF(t). We can write 1(t)

as the vector of column-wise products of power terms from matrix 3: f(t) = pj(t) = (1 - [1 -

u]H3=, 1 ', 1 -[1-u]H>=10', -) where we have replaced the vector notation

with the subscript j that indexes the columns of 3. Similarly, qt) = qj(t) = (1 - [1 - u]U 1 (1 -

a)ni,, 1 - [1 - u]JI 1 (1 - a)ni,2, . . . , 1 - [1 - u]HU 1 (1 - a)nicF ). More compactly:

dPPV(t) = PB(cT(t),pj(t)) (18)
PB(cT(t),pj(t)) + PB(CF(t), qj(t))

pj(t) = 1-[1 - u1H #o' (19)

qj(t) = 1 - [1 - u]HU 1 (1 - a)ni'j (20)

where we have dropped the explicit time notation.

The mean and variance of a Poisson binomial distribution with n trials and success probabilities

p pj is given by:

n

P = P3 (21)
j=1
n

2= pj(1- pj) (22)
j=1

Thus, the mean and variance of TP(t) is given by:

CT

pTP = 1 - [1 - Jui13i', (23)
j=1

CT

= Z(1 -1-- um;Z)([1 -uJU ,3',j) (24)
j=1
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and similarly the mean and variance of FP(t) is given by:

CF

[FP = - U (1 - a)"ta (25)
j=1
CF2  = (1- [1 - u]IIn 1 (1 - a)njj )([1 - I? 1 (1 - a)f) (2)

OIFP j=(26)

j=1

We note that TP(t) + FP(t) is also Poisson Binomial with c(t) trials and probability vector

(P1, P2, ... , Pc, q, 2, ... , qCF) ordered as "non-null" followed by "null" relationships.

Then dPPV is the ratio of two (correlated) Poisson binomial random variables. We can write

an instructive approximation using the delta method and Taylor expansions. Simulations have been

conducted to validate these approximations. It can be shown that the expected value of dPPV is

approximately:

E(dPPV) PTP (27)
/TP + /FP

where we note that P1TP and PFP are functions of time depending on which studies are being

conducted and with what power (Equations 23 and 25).

Note that we may rewrite Equation 27 as:

E(dPPV) ~ TP
/TP -PFP

Reff C 1
Reff+1 CTP

Regfc 1 AT +
Re,+i CT Reff+1 CF PFP

Reff I PTP

Reff I1TP + PFP

where all terms vary with time (explicit notation omitted). Expanding this equation shows its

equivalence to Equation 14 derived earlier, strengthening the framework for dPPV as a stochastic

process:
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E C--- T 1 -[1 - u) 2p":
E(dPPV(t)) CT j-1 1 = [) (28)

Reffg ZcT  - [1 - u]r 3' + 1 - )ni,j

In order to study the effect of governance policy, let us now hold Reff constant. We also hold

the "average power" 7yavg constant initially:

CT

Yavg TP/CT CT 1 - 1(29)
j=1

10.1 Increasing power offsets reducing pre-study odds

Note that if Reff and 7avg are inversely related to one another in Equation 27. Assuming that the

rate of false discoveries #FP /rF is unchanging, then doubling the relationship-averaged power offsets

the pursuit of hypotheses that are a priori half as likely.

10.2 Variance vs. number of relationships being studied

We can show that, in general:

The variance of PPV(t) is inversely related to c(t) = CT(t) + CF(t)

We use a Taylor expansion and the delta method to approximate the variance of dPPV(t). We

find:

2 Var(TP) Var(TP + FP) Cov(TP, TP + FP)
Var[dPPV(t)]~ 2 ( 2 + 2 2 (30)

ATP+FP ITP PTP+FP ATPPTP+FP

If (1/cT)ATp and (1/cF)IIFp remain constant with time, and pre-study odds is not changing, then

the variance of dPPV(t) is inversely related to c(t) even as the mean of dPPV (PPV) is largely

unaffected.
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11 Correlation analyses and patient data

Here we give a concrete application of this framework by computing correlations between patient

laboratory measurements. We use the NHANES 2011-12 Standard Biochemistry Profile data for

these simulations (http://wwwn.cdc.gov/nchs/nhanes/). We use the following notation:

11.1 Finding statistically significant correlations in random data

We use Pearson's r as our test statistic:

rY -- Cov(x, y) - ryx r
8sYs

If the data arise from an uncorrelated bivariate normal distribution, then the following variable

t follows Student's t-distribution with (n - 2) degrees of freedom.

t = r (32)
1 -r

Inverting this statistic, we find that the critical value r to reach statistical significance depends on

the desired level of significance indicated by t and the sample size n according to:

t
r = (33)

r -n - 2 + t2

For example, for n = 10 and n = 1000 which correspond to Student's t-distributions with critical

values of tdf=8 = 2.228 and tdf=998 = 1.962, we have critical values of of r = 0.619 and r 0.0620 ,

respectively.
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N number of individuals

p number of measurements per individual

r sample correlation

D complete data matrix, is N x p unless otherwise specified



11.2 Simulating patient data

Given a positive-definite covariance matrix E, we may simulate patient data for N patients with p

measurements according to a multivariate normal:

I 1
D 1 (27e)k/21 exp -- (X - ) ' (x -P)} (34)

(2rl)k/1)1/2 2

11.3 Decreasing PPV(t) with decreasing Reff(t)

Below are the key steps in simulating using the NHANES data and N(t) to run a Monte Carlo

simulation for teams arriving at the dataset sequentially. In this example, teams gaining access

later to the dataset, perhaps under pressure of novelty, search over an increasingly a priori unlikely

hypothesis space.

Data: N x p matrix of patient data

initialization;

while new team do
team computes correlation for their study, late-arriving teams look in subsets of data

with lower pre-study odds;

if p < 0.05 then

claim relationship;

else

do not claim relationship;

end

end

using known correlation matrix ("gold standard"), look up true positives and false positives;

Algorithm 1: Monte Carlo simulation for long-term publication patterns when late-arriving

teams study a priori less likely hypotheses
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11.4 Increasing variance in dPPV(t) with decreasing s(t)

Data: N x p matrix of patient data; Data governance policies for I institutions

initialization;

while new institution do

while new team do

team computes correlation for their study;

if p < 0.05 then

claim relationship;

else

do not claim relationship;

end

end

end

look up and collate results;

Algorithm 2: Monte Carlo simulation for many institutions with different governance policies
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Chapter 5

Medicine's Uncomfortable Relationship with Math:
Calculating Positive Predictive Value

Overview
In 1978, Casscells et. al. 1 published a small but important study showing that the majority
of physicians, house officers, and students overestimated the positive predictive value of a
laboratory test result using prevalence and false positive rate. Today, interpretation of
diagnostic tests is even more critical with the increasing use of medical technology in
healthcare. Accordingly, we replicated the Casscells study by asking a convenience sample
of physicians, house officers, and students the same question: "If a test to detect a disease
whose prevalence is 1/1000 has a false positive rate of 5 percent, what is the chance that a
person found to have a positive result actually has the disease, assuming you know nothing
about the person's symptoms or signs?"
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METHODS

During July 2013, we surveyed a convenience sample of 24 attending physicians, 26 house

officers, 10 medical students, and 1 retired physician at a Boston-area hospital, across a

wide range of clinical specialties. Assuming a perfectly sensitive test, the correct answer is

1.96%; we considered "2%", "1.96%", or "<2%" correct. P-values were computed using the

two-sided exact binomial test.

RESULTS

Approximately three-quarters of respondents answered the question incorrectly (p <

0.001). In our study, 14 of 61 respondents (23%) gave a correct response, not significantly

different from the 11 of 60 (18%) correct responses in the Casscells study (p = 0.32). "95%"

was the most common answer in both studies, given by 27 of 61 respondents (44%) in our

study and 27 of 60 (45%) in Casscells et al. (Figure 1). We obtained a range of answers

from "0.005%" to "96%", with a median of 66%, which is 33 times larger than the true

answer. In brief explanations of their answers, respondents often knew to compute PPV but

accounted for prevalence incorrectly. "PPV does not depend on prevalence", wrote one

attending cardiologist, while, quite remarkably, a resident expected "better PPV when

prevalence is low".
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DISCUSSION

With wider availability of medical technology and diagnostic testing, sound clinical

management will increasingly depend on statistical skills. We measured a key facet of

statistical reasoning in practicing physicians and trainees: the evaluation of positive

predictive value (PPV). Understanding PPV is particularly important when screening for

unlikely conditions, where even nominally sensitive and specific tests can be diagnostically

uninformative. Our results show that the majority of respondents in this single-hospital

study could not assess PPV in the described scenario. Moreover, the most common error

was a large overestimation of PPV, an error that could heavily impact the course of

diagnosis and treatment.

We advocate increased training on evaluating diagnostics in general. Statistical

reasoning was recognized to be an important clinical skill over 35 years ago1 3 and notable

initiatives like an HHMI-AAMC collaboration have developed recommendations to improve

the next generation of medical education.4 5 Our results suggest that these efforts, while

laudable, could benefit from increased focus on statistical inference. Specifically, we favor

revising premedical education standards to incorporate training in statistics in favor of

calculus, which is seldom used in clinical practice. In addition, the practical applicability of

medical statistics should be demonstrated throughout the continuum of medical training-

not just in medical school.

To make use of these skills, clinicians need access to accurate sensitivity and

specificity measures for ordered tests. In addition, we support software integrated into the

electronic ordering system that can prevent common errors, and point-of-care resources

like smartphones that can aid in calculation and test interpretation. The increasing
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diversity of diagnostic options promises to empower physicians to improve care if medical

education can deliver the statistical skills needed to accurately incorporate these options

into clinical care.
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Table. Survey Respondentsa

No. of Respondents

Level of Training

Medical student
Casscells et all

20

Present Study
10

Intern 12

Resident 2 0 b 8

Fellow 6

Attending physician 20 24

Retired 0 1

TotaL 60 61

a This table gives the breakdown of the physicians and trainees surveyed in our
study and the study of Casscells et al.' The study by Casscells et al was
performed at Harvard Medical School in 1978. Our study included Harvard and
Boston University medical students along with residents and attending
physicians affiliated with these 2 medical schools. Of the 30 fellows and
attending physicians, the most represented specialties were internal medicine
(n = 10). cardiology (n = 4), spinal cord injury (n = 2). pulmonology (n = 2),
and psychiatry (n = 2), with 1 attending physician or fellow from each of 8
other specialties.

b Casscells et all split their sample into students, house officers, and attending
physicians. They did not break down the house officers category further.
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Figure.
Distribution of Responses to Survey Question Provided in the Article
Text

Of 61 respondents, 14 provided the correct answer of 2%. The most common answer
was 95%, provided by 27 of 61 respondents. The median answer was 66%, which is
33 times larger than the true answer.

91

4A

4W 4
4

4

I
* Students (n = 10)
* House staff (n = 26)
* Attending physicians (

0-



This page is intentionally left blank

92



Chapter 6: Conclusions and Future Directions
Towards a decision theoretic genomic medicine

In this thesis, I explored several statistical opportunities and challenges

central to clinical decision-making and knowledge advancement using shared "big

data" omics resources. In Chapter 2, I studied reclassifications of genetic variant

pathogenicity ratings in hypertrophic cardiomyopathy, and showed how African

Americans were disproportionately affected by false positive genomic variant

misclassifications, demonstrating the need for diverse control data to vet variants

going forward. In Chapters 3 and 4, 1 studied the rising practice of sharing genomic

and other big data resources, a practice that mirrors genomic testing in scale but not

synchrony. In order to quantify reproducibility in this context, I introduced a new

quantity called the "dataset positive predictive value" (dPPV). Most recent efforts to

enhance reproducibility emphasize the responsibility of individual researchers;1 2

however, dPPV shows that there are structural factors such as the data governance

policy that can be equally influential. Lastly, in Chapter 5, I surveyed a group of

practicing physicians to assess statistical literacy, a skill that will become

increasingly relevant as medicine incorporates the burgeoning catalogue of

precision diagnostics and therapeutics into practice. 3
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The findings in this thesis may

be viewed as examples of a broader

statistical tradeoff between bias and

0
variance, a tension which pervades all

total error
facets of precision medicine. Recall - Chapter 2

that the error in future prediction of C. Chapters 3,4

any statistical model can be

decomposed into the sum of bias
precision

(squared) plus variance (plus

irreproducible error),4 and that

increasing model complexity reduces

bias at the expense of variance. In the

Precision diagnostics and therapeutics
context of an Information Commons,s e.g. NCBI Genetic Testing Registry

as we correlate the high-dimensional

patient state vector with disease, we Chapter 5
clinical application

must be wary of this inherent
Figure 1: Mapping of thesis chapters onto the bias-variance
tradeoff.

tradeoff-we must not be more precise

than the data will allow us to be. Indeed the chapters of this thesis may be mapped

onto this axis (Figure 1). Chapter 2 examines the adverse consequences of biased

inference when findings derived from the study of one ethnic group are invalidated

in another. In Chapters 3 and 4, I computed both the expectation and the variance of

the dataset positive predictive value (dPPV) to study the central tendency and

stability, respectively, of the true fraction of findings discovered by a community of
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researchers mining a shared dataset. Finally, Chapter 5 assesses a skill necessary for

practitioners to translate research findings into improvements in clinical care.

The findings in this thesis suggest tractable ways to study and enhance

reproducibility when researchers mine the Information Commons,5 but equally

important are methods to integrate the resulting precision diagnostics 3 into clinical

care. I believe the most promising approach going forward will be found by looking

to past, particularly at successful applications of decision analysis in medicine.6-8

Decision analysis offers a principled approach to integrate the concepts of

probability and utility, and perhaps most important for contemporary genomic

medicine, it removes confusion during disagreement. In the words of Stephen

Pauker and Jerome Kassirer,6

Decision analysis is explicit; it forces us to consider all pertinent outcomes, it
lays open in stark fashion all our assumptions about a clinical problem,
including numerical representations of the chances and values of outcomes;
it forces us to consider how patients feel about the quality of outcomes; and
it allows us to come to grips precisely with the reasons why colleagues differ
about actions to be taken. (Pauker, Kassirer 1987)

Developing a decision analytic framework on top of the Information Commons will

foster reproducible use of the growing amounts of molecular, environmental, and

clinical data available today. Achieving these goals will allow patients, researchers,

and physicians alike to realize the full promise of the data-centric view of precision

medicine.

95



REFERENCES

1. Collins, F.S. & Tabak, L.A. Policy: NIH plans to enhance reproducibility. Nature

505, 612-613 (2014).

2. McNutt, M. Reproducibility. Science 343, 229-229 (2014).

3. Rubinstein, W.S. et al. The NIH genetic testing registry: a new, centralized

database of genetic tests to enable access to comprehensive information and

improve transparency. Nucleic Acids Research 41, D925-D935 (2012).

4. Hastie, T.J., Tibshirani, R.J. & Friedman, J.J.H. The Elements ofStatistical

Learning. 745 (Springer: 2009).

5. Toward Precision Medicine: Building a Knowledge Networkfor Biomedical

Research and a New Taxonomy of Disease. 121 (National Academies Press:

2011).

6. Pauker, S.G. & Kassirer, J.P. Decision analysis. New England Journal of Medicine

316, 250-258 (1987).

7. Pauker, S.G. & Kassirer, J.P. The Threshold Approach to Clinical Decision

Making. New England Journal of Medicine 302, 1109-1117 (1980).

8. Szolovits, P. & Pauker, S.G. Categorical and probabilistic reasoning in medical

diagnosis. Artificial Intelligence 11, 115-144 (1978).

96


