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Abstract

We develop a method based on neural networks for efficiently interpolating equations
of state (EOS) for liquid-vapor equilibria of ternary mixtures. We investigate the
performance of neural networks both when experimental data are available and when
only simulation data are available. Simulation data are obtained from Gibbs Ensemble
Monte Carlo simulations, using the TraPPE-EH molecular model. Our investigation
uses the mixture of carbon dioxide, methane, and ethane as a validation example, for
which experimental data exist. Analysis of the error in a neural-network-generated
liquid-vapor coexistence curve shows that the resulting interpolation is robust and
accurate, even in the case where the network is trained on a few data points. We
use this observation to construct a methodology for accurately locating liquid-vapor
equilibria of ternary mixures wihout using any experimetnal data.
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Chapter 1

Introduction

Reservoir simulations have become increasingly common in the oil-extraction industry

[23]. Typically, these calculations solve the compressible Navier-Stokes equations over

length scales ranging from hundreds of kilometers to the length scale of porous rock

(meters) using massively parallel computer algorithms. One limitation associated

with the compressible formulation is the need for an equation of state (EOS) for the

reservoir fluid. Unfortunately, in real life situations it is not always possible to find

closed form equations of state. For example, this becomes difficult when the reservoir

fluid has many constituents. In fact, analytical EOSs are not available for mixtures

with three or more components. Reservoir fluids are usually composed of a mixture

of various n-alkanes, 02, C0 2 , S04, C0 3 , HCO 3 , H 20, as well as other compounds,

making them particularly challenging to model analytically. An alternative approach

is to use experimental data to develop an EOS.

Variations in the compressibility are particularly important near the critical point

and in the two phase region. As such, we will be focusing on modeling the two-

phase region of liquid-vapor equilibrium for mixtures. For a system in liquid-vapor

equilibrium (LVE) the number of degrees of freedom is given by the Gibbs phase rule:

F = C - P + 2 (1.1)

where F denotes the degrees of freedom available to the system, C is the number of
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components in the mixture, and P is the number of phases coexisting. During LVE

two phases coexist, so the number of degrees of freedom is the same as the number of

components. In a binary mixture (two components), the system is completely defined

by two parameters. For example we can use any two of the temperature, the pressure,

and the Gibbs free energy. We need to keep in mind that the volume of the state space

grows exponentially with the number of degrees of freedom. Completely defining

the state of a ternary system (three components) would, as an example, require a

temperature, pressure, and Gibbs free energy. It quickly becomes apparent that, for

mixtures containing three or more components, it is impractical to completely explore

the two phase region using experimental results [1]. As a result, ternary experimental

data is often limited to just the few temperatures and pressures of particular interest

for any given mixture.

In most cases with complex reservoir fluids, it is difficult to generate a differentiable

EOS using experimental data. Fortunately, LVE properties can be calculated using

molecular simulation techniques, such as the Gibbs Ensemble Monte Carlo (GEMC)

method which will be discussed in Chapter 3. However due to the high computational

cost associated with these simulations, some of the drawbacks associated with phys-

ical experiments are also present in simulation based approaches, albeit to a lesser

degree. Therefore, the need to develop methods which can create an accurate and

differentiable EOS based on a minimal number of data points is compelling.

One promising approach is to use machine learning to interpolate the thermody-

namic properties of the data. Specifically, we will be using neural networks, though

other methods such as Gaussian processes can produce equivalent results [2]. Ma-

chine learning is well suited to this task because it allows for the EOS to be defined

or redefined for any valid set of independent variables that fully defines the system

and is well suited to the high dimensionality of the problem of interest. Additionally,

it is updatable, meaning that new data can be incorporated to improve the accuracy

of the interpolated EOS.

In this thesis, we develop a method for using artificial neural networks to calculate

an approximate representation of the LVE of ternary mixtures using a small set of data
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for which the properties of the coexisting phases are known. In Chapter 2 we provide

some background information about the LVE of ternary mixtures, the methods used

to simulate such systems, such as Gibbs Ensemble Monte Carlo (GEMC), and the

challenges associated with these methods. In Chapter 3 we review the theory behind

GEMC. In Chapter 4 we discuss the Lennard Jones potential, the Lorentz-Berthelot

combining rules for unlike particles, bonded interactions, and the available molecular

models that can be used to model the potential energy of alkanes and other molecules

of interest. In Chapter 5 we compare pure component and binary mixture LVEs

obtained using GEMC simulations to the experimental results to determine which

molecular model is the most accurate for our future calculations. In Chapter 6 we

discuss the theory Bayesian regularized artificial neural networks for interpolating

nonlinear multidimensional data. In Chapter 7 we apply artificial neural networks

to available ternary LVE data sets to estimate the number of data points needed for

a neural network to produce a reliable representation of LVE coexistence curves. In

Chapter 8 we calculate LVE coexistence properties starting from binary coexistence

data, thus demonstrating that this approach can be reliably used to obtain reliable

LVE representations in the complete absence of experimental data (provided GEMC

data can be obtained).

15
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Chapter 2

Background

One of the difficulties associated with finding the ternary phase envelope is the large

amount of data necessary to describe a system with so many dimensions. In many

cases, data for binary systems is readily available, but data for ternary systems is

limited to a specific temperature or pressure of interest to the previous investigators.

It is now relatively common to use molecular simulation to generate data on the

liquid-vapor equilibrium surface. Molecular models have been generated by various

groups that allow for accurate simulation of various thermodynamic properties, in-

cluding phase equilibria. The gold standard method for performing simulations using

these potentials is the GEMC method developed by Panagiotopoulos et al [4]. The

method works by performing simulations of the two coexisting phases in two separate

simulation boxes.

While GEMC can obtain results with impressive efficiency, its convergence to a

correct equilibrium can be greatly impeded by poor initial choices for coexisting com-

positions. Poor choices can result in slow convergence, simulation boxes containing

the same phase, or the simulation never reaching equilibrium. Working around these

problems without reliable information can be extremely computationally expensive.

One way of improving the accuracy of the initial compositions is to develop an esti-

mate of the equation of state based on already available data. This estimate can then

be used to find an initial guess for a GEMC simulation.

A simple method for modeling the ternary liquid-vapor equilibrium surface in
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Figure 2-1: The composition of a ternary mixture can be represented on a ternary plot.

In these plots the concentration of each component at a point is given by the three axes.

The grid lines corresponding to each axis are the ones departing at 120 *measured from

the origin. For example point A has a composition of 20% substance 1, 40% substance

2, and 40% substance 3.

An example of a set of isothermal-isobaric LVE lines is also shown. In this exam-

ple, the blue line is the isothermal-isobaric coexistence for the vapor phase and the

red line is the isothermal-isobaric coexistence line for the liquid phase. The dotted

lines are representations of typical experimental data. The solid lines correspond to an

approximation of the isothermal-isobaric line from linearly interpolating the binary LVE

data points (Eli).
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cases where there is limited data, amounts to assuming that the isothermal-isobaric

lines connecting the binary LVE data points are linear. We will call this the linear

approximation method. This effectively assumes a simplified model in which the

chemical potential is constant for a given temperature and pressure.

An example of these lines is shown in Figure 2-1 for the case of a ternary mixture;

the substances in this particular mixture (nitrogen, methane, and carbon dioxide)

have chemical potentials with very weak dependence on the mole fraction of each

component, and for this case the linear assumption is a relatively good approximation.

Here we remind the reader that in general, the chemical potential of substance i

in a mixture is given by

pi(xi) = p' + RTln(7ixi) (2.1)

where R is the gas constant, T is the temperature, p is the chemical potential at a

reference state (typically ambient conditions), xi is the mole fraction of component i ,

and 74 is the activity coefficient [20]. The linear approximation neglects the logarith-

mic term in equation (2.2). As a result using a linear approximation will not always

be reasonable, since it is ignoring potentially significant contributions from the change

in chemical potential as the composition of the mixture changes. Unfortunately there

is little we can do to address this from a thermodynamics standpoint.

Furthermore, there are additional problems that arise from using a linear approx-

imation for the coexistence in a ternary mixture. Strong interactions between the

components are a possibility, especially when considering components that are polar

and/or ionic. In these cases the activity coefficient, which in ideal cases has a value

of one, can be significantly different from one or even depend on the composition of

the mixture.

These dependencies can result in large nonlinearities in the liquid-vapor equilib-

rium surface that are impossible to capture using a linear approximation. One of

the most difficult ternary mixtures to model is the combination of methane, ethane,

and carbon dioxide [3]. This is due to the strong deviation from Raoult's Law and

corresponding positive azeotrope for a system composed of ethane and carbon diox-

19



ide. Roult's Law states that the pressure of a solution is a function solely of the pure

solvent at the same temperature scaled by the mole fraction of the solvent present.

Azeotropes, also referred to as constant boiling mixtures, can occur when two com-

ponents have similar vapor pressures and strong intermolecular interactions, resulting

in a maximum or minimum in the vapor pressure as a function of the composition of

the mixture. An example of an azeotrope is shown in binary example of Figure 2-2.

Finding ternary LVE for mixtures with aezeoropes is effectively a worst case scenario

where the estimates made by a linear approximation of the mole fraction can have an

absolute error as high as 15% 1161.

As previously mentioned, GEMC is sensitive to initial conditions. One potential

solution to this problem is to use a more advanced method to model the liquid-vapor

equilibrium surface for the purpose of providing initial conditions to GEMC calcu-

lations. We propose the use of machine learning, more specifically neural networks,

to interpolate the available data. There are a number of benefits to using neural

networks to generate this model. First, neural networks are specifically intended to

handle systems with many inputs and many outputs. This is particularly important,

because the liquid-vapor coexistence curves for a ternary system need to be fit in a six

dimensional space (temperature, pressure, liquid mole fraction of component 1, liquid

mole fraction of component 2, vapor mole fraction of component 1, and vapor mole

fraction of component 2). Additionally, a neural network can always be retrained

with an expanded set of data to improve accuracy. By combining GEMC simulations

and neural networks it should be possible to estimate new compositions and refine

them to eventually generate a neural network that can accurately generate estimates

throughout the two phase region.
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Chapter 3

Gibbs Ensemble Monte Carlo

Gibbs Ensemble Monte Carlo (GEMC) [4] is the prevalent method of simulating

phase equilibria in fluids. The method's popularity is due to its intuitive formulation

as well as its straightforward implementation. Additionally, GEMC requires signifi-

cantly less a priori information about the phase diagram than alternative simulation

methodologies.

3.1 Overview

GEMC is a Metropolis Monte Carlo (MC) algorithm 15]. Metropolis MC are meth-

ods for sampling statistical mechanical equilibrium distributions using importance

sampling. By setting up a Markov Chain 124], these methods generate samples of

the desired distribution by only considering the relative probability of consecutive

states, thus never calculating the distribution function normalization, which is a high

dimensional integral (similar to the one of interest).

In the case of using Metropolis MC for molecular simulation, every Monte Carlo

move amounts to a perturbation of the system, such as displacing a molecule. The

energy of the new state is compared to that of the old state. If the move results in a

lower system energy, the move is accepted. If the move increases the system energy

then the move is accepted with probability

23



Sexp(-Enew) 
(3.1)

exp(-Eold)

This generates states with probability proportional to exp(-OE) where E is the

equilibrium state energy. In the case where a move is rejected, the system stays at

the old state for another iteration.

3.2 Implementation

The greatest difficulty associated with performing an accurate simulation of a two

phase system comes from the presence of interfacial effects which are never absent

unless the system is truly infinite. GEMC simulations avoid this difficulty by using

two communicating but not spacially adjacent (see below) simulation boxes, each

containing one of the phases of interest. These boxes can be brought to equilibrium

with each other by exchange of molecules, but are each able to remain in one phase

because of the energy barrier associated with creating an interface within a simulation

box [4][5]. Particles in the two boxes do not interact directly, and as a result, no

interface exists between the two boxes.

In addition to being in internal equilibrium, each of the phases needs to be in equi-

librium with each other by having equal temperature, pressure, and chemical poten-

tials for each component. Thermal equilibrium is established by allowing translation

and rotation of molecules within their starting box. Pressure is equilibrated by trans-

ferring volume between the two simulations (NVT GEMC) or expanding/contracting

the boxes independently (NPT GEMC). The chemical potential is equilibrated by

using particle transfer moves between the two boxes.

The full statistical mechanics of the Gibbs Ensemble was developed by Smit et al

[6] and Smit and Frenkel F71. For a one component system in the canonical ensemble

(NVT) divided into two subregions, they give the partition function as

24



QNVT = 1 3N N j d V 1 V1NI VN 7' J dNexp [-U1(N1)]
NI=O (3.2)

J <NI 1eXp [ -,3UI ( NI) ]

where A is the de Broglie wavelength, 3 = -, Kb is the Boltzmann constant, iKbT'

and I, are the scaled coordinates of the particles, with the roman numeral subscript

indicating the corresponding simulation box and U(N) is the intermolecular potential

energy associated with N molecules. Since the total volume and number of molecules

are conserved, V11 = V - V and N11 = N - N1 .

Smit et al. [6] showed that the partition function given in equation (3.2) and a free

energy minimization procedure will, for a system with a first-order phase transition,

result in the two subregions reaching the correct equilibrium density.

3.3 Acceptance Criteria

To minimize the free energy, GEMC uses the Metropolis Algorithm, which utilizes

the relative probability of two states without requiring knowledge of the partition

function for the system [4]. Specifically, the relative probability between states is

required for acceptance rejection purposes. For canonical (NVT) conditions, the

probability distribution obeys

N!
ONVT (NI, V; N, V T ) oc N

NI! NII! ( 3.3)
exp [N11nV + N111nV11 - 3U1(N1 ) - QUII(NII)]

The probability density function for a NPT system obeys [4]

N!
eNPT( N1 l +; N, P, Tn) oc -NI! NII. (3.4)

ex p [ NI1nV + NII1nV1 - 3U,( NI) - OUII( Nii) - OP(V + VI)]
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3.3.1 Translation/Rotation

Translation and rotation moves are fairly simple. In the case of a translation move,

a molecule is chosen at random from a box and is moved some small distance. In the

case of a rotation move, a molecule is rotated by a small angle in a random direction,

but this only applies if the molecular model consists of more than one bead. The

probability of acceptance is straightforward to calculate in this case, because only the

configuration is affected. The acceptance probability is:

min [1, exp (-AU)] (3.5)

Here AU = U - U1 + U2 - U2 , where U1 and Ulf are the energies in box one before

and after the trial move and U2 and U2 are the energies in box two before and after

the trail move. This equation is valid for both NVT and NPT GEMC simulations.

3.3.2 Molecule Transfer

In a molecule transfer move, a random molecule type is selected with uniform prob-

ability. Then a random molecule of that type is moved to the other box. Unlike the

previous move, the acceptence probability needs to account for the fact that there

has been a change in the multiplicity of the systems due to the change in the number

of molecules in each box. It is given by:

min 1 , ' NI, j1 V exp (-3AU1 - (3.6)
1 (N1, + 1) x VI

In this equation, as before, the roman numeral subscripts indicate the two simulation

boxes. As written, equation (3.6) is for the transfer of a molecule from simulation

box II to simulation box I. If the system has multiple components, j indicates

the species of the molecule being transfered. This move applies to both types of

simulation; however, the species type will only come into play for NPT simulations.

This move also satisfies the condition that probability of transferring a molecule from

an empty box is zero.
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3.3.3 Volume Transfer for NVT Simulations

Volume transfer is one of the moves that can be used to equilibrate the pressure

between the two simulation boxes. In this move, a volume change of size AV is

applied to the two boxes (with opposite signs). All molecule positions are rescaled to

the new size of the simulation boxes. The resulting acceptance probability is given

by:

PVolumeTransfer = min [, exp (O AUI - /3AU11 + N1 x In
., (3.7)

+N11 x In VI-A

where the last two terms in the exponential account for the entropy associated with

volume change. It is important to note that AV must be sampled uniformly around

a value that adjusts during the simulation run to keep the acceptance ratio at a

desirable level. This move is only applicable to constant NVT simulations, since it

conserves total volume while equilibrating the pressure between the two boxes.

3.3.4 Volume Change for NPT Simulations

Much like the volume transfer move, the volume change move allows the two simu-

lation boxes to approach an equilibrated pressure; however, in the case of this move,

both boxes are adjusted independently towards a set pressure Pc,0nt. The acceptence

probability for each box is given by:

min 1, exp (-AU 1 + N1 x h.VIn \V - OPcostAV (3.8)
VI

As with the volume transfer move, AV should be sampled uniformly around a value

that adjusts during the simulation run to keep the acceptance ratio at a reasonable

level. This move is only applicable to constant NPT simulations since it does not

conserve the total volume, but does fix the average pressure at the specified value.
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3.4 Determining Critical Points

Determining the critical points of the phase diagram can be very challenging using

molecular simulation. Simulations that are performed at conditions near the critical

point usually produce results which deviate significantly from the experimental re-

sults. This is due to the decreasing energy needed to form an interface and results in

both the liquid and vapor phases being present inside one or both of the simulation

boxes. Unfortunately, it is difficult to separate the error in the simulation results from

the true change in the macroscopic thermodynamic properties as one approaches the

critical point. It is possible to obtain some improvement in accuracy, using the his-

togram reweighting method developed by Ferrenberg and Swendsen [8], by creating

histograms of the energy and the density for each of the states that where accepted.

The histograms can then be analyzed to determine the state or states with the highest

probabilities. However, this method can be very sensitive to the size of the simulated

system. Increasing the number of molecules reduces the noise in the histogram, mak-

ing it easier to distinguish multiple peaks in the data set. Unfortunately, the accuracy

close to the critical point is still limited by the finite box size. This is because at the

critical point, the characteristic correlation length of the system goes to infinity. The

finite size of the simulation box means that the macroscopic thermodynamic proper-

ties will not be reliable once the correlation length approaches or exceeds the size of

the simulation box.

3.4.1 Single Component Systems

In the case of a single component system, it is relatively easy to obtain an accurate es-

timate of the location of the critical point by fitting simulation results to the expected

theoretical results for a non-classical system near a critical point. These equations

take into account the density fluctuations that occur near the critical point resulting

in a flatter peak. This can be done using the rectilinear diameter rule [9J

(p, + pg)/2 = p, + C(T, - T) (3.9)
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as well as the scaling relationship for the width of the coexistence curve [9J

P - p9 = A(T - T)b (3.10)

Here, A and C are both fitting parameters, pi and pg correspond to the density of the

liquid and gas respectively, Tc is the critical temperature, pc is the critical density,

and b = .325 for a non-classical three dimensional system. Both equations (3.9) and

(3.10) were derived empirically using experimental results and then later derived for a

hard sphere potential model [18]. Fitting simulation results requires a careful balance,

since it is important to obtain data as close to the critical point as possible for the

fit to be as accurate as possible; at the same time, it is also important that the data

is sufficiently far from the critical point to prevent finite size effects from resulting in

a poor fit.
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Chapter 4

Potential and Model

In the GEMC method, the probability of accepting a Monte Carlo move is dependent

on the change in potential energy from the old state to the new, candidate, state.

In this Chapter we discuss the potential energy models used in our work. Molecular

models are required because ab-initio calculation of intermolecular forces and inter-

action energies is too expensive. Instead, models which capture the main features of

the former are built from basic building blocks, such as electrostatic interactions and

van der Waals interactions between one or more interaction sites (or beads) and can

be as simple as a single site for an entire molecule. The force field parameters are

usually determined by fitting to various known properties, such as the enthalpy of

vaporization and/or the critical point.

Typically, to minimize computational cost, it is desirable to use the simplest force

field that can accurately predict the relevant physics. More complexity is needed

when dealing with molecules that are ionic, polar, or have large aspect ratios. When

dealing with mixtures, other important factors come into play, such as the interac-

tions between unlike molecules. In such cases, special attention needs to be paid

to consistently choose force fields that are compatible with each other. In many

cases, accurately modeling a mixture requires fitting the force field to some prop-

erties associated with benchmark mixtures. This usually means using one type of

force field for the whole simulation; one exception is the Transferable Potential for

Phase Equilibria (TraPPE) group of force fields [11] [121. These were developed by
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the Siepmann group, and focus on the liquid vapor equilibria of alkanes, but latter

additions also incorporated models for some ionic and polar molecules [13]. TraPPE

potentials are unusual because they are designed to be transferable. This is done by

breaking alkanes down into their component chemical groups and designing a force

field for the chemical groups made of one or more interaction sites. These force fields

are then optimized to recreate the experimental results for several different molecules

that contain the group, as well as for mixtures containing those molecules. A similar

process can be used to ensure that the several types of TraPPE force fields can be

used in the same simulation.

Another type of available model is the Anisotropic United Atom revision 4 (AUA-

4) that was developed by Ungerer [14]. In this Chapter, we will be looking at several

of the TraPPE force fields as well as AUA-4.

The total potential energy of a molecule modeled using a potential is divided into

bonded and non bonded contributions. The non bonded potentials, typically Lennard

Jones and electrostatic interactions, are used only for the interactions of pseudo-atoms

belonging to different molecules or for pseudo-atoms that are sufficiently far apart that

they do not have any bonded contributions to the potential energy.

4.1 Lennard Jones Potential - Non Bonded Interac-

tions

Perhaps in search of simplicity, the force fields used for modeling coexistence are typi-

cally based on the well-known Lennard-Jones potential plus electrostatic interactions,

which for the interaction between molecules A and B can be written in the form

12 61

1= [ 4e - I (4.1)
iE A jEB-

Here, i and j index the interaction sites (locations) in molecules A and B respectively,

rij is the distance between the sites, cij is the well depth, -ij is the core diameter, and

qj is the partial charge at interaction site i. Partial charges are the non-integer charge
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values (when measured in elementary charge units) created due to the asymmetric

distribution of electrons in chemical bonds. The primary difference among the differ-

ent force fields that use the Lennard Jones Potential is the values of the parameters

Eij and oi as well as the differences in the number and location of interaction sites.

4.2 Combination Rules

For an interaction between two like particles, equation (4.1) seems fairly straightfor-

ward. However, in the case of an interaction between a pair of unlike molecules there

is no longer a well defined well depth or interaction distance. The primary way of

modeling this is through combination rules. In our case, we will be making use of the

popular Lorentz-Berthelot combining rules:

an + O (4.2)
2

Ej - (4.3)

These rules are not very accurate, but are usually sufficient (more complex rules

do not produce noticeable improvements in simulation result accuracy), and due to

their simpliciy have become very common.

4.3 Bonded Interactions

Bonded interactions for all molecular models can be broken down into types based

on the number of interaction sites involved. Interactions between two beads that are

directly bonded (1-2 interaction) are considered as having a fixed length for all of the

models being considered. In more complex cases, flexible bond lengths can be used;

however, this phenomenon is not typically significant at the temperatures of interest

for LVE. The bonded interaction for a triplet is an angle potential (1-3 interaction).

In the models being considered, this interaction is modeled as a harmonic potential
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given by:

Ubend (0) = x > (6 -Oeq)2 (4.4)

where ko is the force constant associated with the bending of the bond angle and

Ubend is the potential energy stored by the deviation of the bond angle 6 from the

equilibrium angle 0e.

4

2 3

Figure 4-1: The dihedral angle, or torsion angle, is the angle between normal vectors of
the two planes (1,2,3) and (2,3,4). For the example molecule shown, the dihedral angle
is -180 degrees.

In the case of a large molecule, interactions between sites separated by three bonds

become important (1-4 interactions). The potential energy for these interactions is a

function of the dihedral angle. An example of the dihedral angle in butane is shown in

figure 4-1. The potential energy for this interaction is expressed using trigonometric

functions. For example, in TraPPE models the torsion is modeled using:

Utors(0) = cO + ci[1 + cos(#)] + c2[1 - cos(2#)] + c3 [1 + cos(3#)] (4.5)
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where ci and ej are constants defined in the molecular model and # is the dihedral

angle.

In the case of AUA models, the potential energy stored in torsion is calculated

using an eighth order Ryckaert-Bellemans potential to more accurately model the

torsional potential.
8

Utors(0) = a (cos#)j (4.6)
j=0

Here j = 0, 1,..., 8 corresponds to the Fourier mode and aj scales the response to the

jth mode as defined in the molecular model. The Ryckaert-Bellemans potential can

be rewritten in the same form as equation (4.5) by expanding the Fourier series.

4.4 Molecular Models

4.4.1 TraPPE-UA

The Transferable Potentials for Phase Equilibria - United Atom model is the most

popular and most extensive force field in the TraPPE family [11]. As with any United

Atom approach, the total number of interaction sites in a molecule is kept as small

as possible. This is by creating pseudo-atoms that lump a number of real atoms

together. In the case of TraPPE-UA, a carbon atom together with all of its bonded

hydrogen atoms is represented as a single interaction site located at the site of the

carbon atom. When modeling n-alkanes, these pseudo atoms will be CH 4 , CH3 , CH2 ,

CH and C. Lennard Jones parameters for each of these groups were determined by

fitting to the critical points as well as the saturated liquid densities for n-alkanes from

methane to dodecane. The parameters associated with these groups can be found in

Table 4.1. Additional pseudo atoms exist that can be useful for modeling other, more

complicated molecules. The parameters for the bonded interactions between these

pseudo atoms are given in Table 4.2.
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Pseudo Atom Type e/k[K] J [A]
CH 10 4.68

CH2  46 3.75
CH3  98 3.75

CH4 148 3.73

Table 4.1: List of the associated non-bonded interaction parameters for TraPPE-UA

Table 4.2: List of parameters used for bonded interactions in TraPPE-UA
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Parameter Value Units

Bond Length 1.54 A
Bending

Bond Angle (60) 112 degrees
ko/kB 62500 K/rad 2

Torsion

co/kb 0 K

cl/kb 355.03 K

c2 /kb -68.19 K

c3/k 791.32 K



4.4.2 TraPPE-Explicit Hydrogen

In certain cases, United Atom methods can have difficulty accurately representing

certain components or mixtures. In the case of TraPPE-UA, the pseudo atoms result

in a relatively coarse model of the atom. While this saves computational time, it can

limit the ability of the model to accurately predict the interactions in mixtures with

ionic compounds or non polar compounds. TraPPE-EH includes interaction sites

for every atom in the molecule [12j. The additional features provided by the extra

interaction sites can provide a higher level of accuracy than could be achieved with

a simpler model. The downside to this increased accuracy is the significant increase

in the number of interaction sites, which greatly increases the computational cost of

performing a simulation.

TraPPE-EH molecular models are more complicated to create. It is important

to note that the interaction site for hydrogen molecules is not located at the nucleus

of the hydrogen atom, but is instead shifted with the electron cloud to the center of

the H-C bond. This is necessary because the lone electron of the hydrogen atom is

no longer around the nucleus but bonded to a carbon atom. As in the TraPPE-UA

case,various types of bonds between the different carbon pseudo-atoms. However, the

hydrogen pseudo-atoms are treated as being rigidly attached to their corresponding

carbon atom. The flexibility in the hydrogen-carbon bonds is unnecessary because

they do not contribute to the bending of the overall chain structure and so would

only come into play at extremely high energies. The necessary parameters for this

model are shown in Table 4.3 and Table 4.4. The torsional energy for the Hydrogen

pseudo-atoms is treated as a special case with:

Utors(X - C - C - H) = cx [1 - cos(3#)] (4.7)

This equation only applies to Hydrogen atoms that are part of a methylene group.

Methyl group hydrogen are excluded from contributing to the torsional energy. The

parameters associated with this force field can be found in Tables 4.3 and 4.4.
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Pseudo Atom Type E/k[K] I jA]
C-H bond 15.3 3.31

C(H2) 5.00 3.65
C(H3) 4.00 3.30

C(H4 ) 0.01 3.31

Table 4.3: List of the associated non-bonded interaction parameters for TraPPE-EH

Parameter Value Units

Bond Length (C-C) 1.535 A
Bond Length (C-H) 0.55 A

Bending

Bond Length (C-H Bond) 1.10 A
Bond Angle (C-C-C) 112.7 degrees

Bond Angle (C-C-H) 110.7 degrees

Bond Angle (H-C-H) 107.8 degrees

kG/kB 58765 K/rad 2

Torsion (C-C-C-C)

co/kb 0 K

cl/kb 355.03 K

c2 /k -68.19 K

C3/k 791.32 K

Torsion for Hydrogen in Methyl Group (X-C-C-H)

cc/k 854 K

CH/kb 717 K

Table 4.4: List of parameters necessary for calculating the bonded potential energies
associated with molecules using TraPPE-EH. Note that the interaction site for the C-H
bond pseudo atom is located at the center of the bond resulting in an actual distance of
.55 A. Additionally, the X-C-C-H torsion is calculated in a special way and only considers
hydrogen pseudo-atoms that are part of a methylene group. Hydrogen atoms that are
part of a methyl group are excluded.
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4.4.3 TraPPE-SM

TraPPE models have also been developed for a variety of small molecules that are

compatible with the TraPPE potentials for the n-alkane models described above [13.

TraPPE-Small Molecule includes models for carbon dioxide, nitrogen, helium, oxygen,

ethylene oxide, and ammonia. For our purposes we will be making use of both carbon

dioxide and nitrogen models. TraPPE-SM models have been fit to produce accurate

binary mixing results with the other TraPPE models. The parameters associated

with these models are listed in Tables 4.5 and 4.6.

Pseudo Atom Type e/k[K] ][A] q[e]

C02

C 27.0 4.68 +.70

0 79.0 3.75 -.35

N2

N 148 3.73 -.482

Center Of Mass (COM) 0 0 +.964

Table 4.5: List of the associated non-bonded interaction parameters for TraPPE-SM

Table 4.6: List of parameters used for bonded interactions associated with TraPPE-SM
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CO 2

Parameter Value Units

Bond Length 1.160

Bond Angle (O-C-O) 180 degrees

N 2

Bond Length 0.550 A

Bond Angle (N-COM-N) 180 degrees



4.5 Anisotropic United Atom - 4

The AUA-4 model was created as an alternative to the TraPPE potentials [14]. Origi-

nally developed for modeling equilibrium and transport properties, the fourth revision

was created to fix deficiencies in the third version that resulted in inaccurate coex-

istence diagrams. This was done by fitting the potential to vapor pressures, liquid

densities, and vaporization enthalpies. AUA-4 is a united atom potential that consol-

idates groups of atoms into a pseudo atom to allow for reduced computational costs,

allowing for larger or longer simulations than models that have interaction sites for

every atom. AUA-4 is similar to the TraPPE-UA model in that it is a transferable

potential that consolidates molecular groups into pseudo-atoms that are used to build

various molecules; however, it is unique in the fact that it does not restrict the lo-

cation of the pseudo atoms to the location of the carbon atom. The offset, included

in Table 4.8, moves the pseudo-atom from the location of the carbon atom in the

average direction of the bonded hydrogens. Theoretically this offset distance should

allow for the potential to provide improved accuracy over TraPPE-UA while being

more computationally efficient than TraPPE-EH. One of the primary drawbacks of

this model is that it is less widely used that the TraPPE models and as such, it does

not have as extensive a selection of compatible molecular models to chose from for

non-alkanes. Additionally, because they are fit to different properties, there is no

guarantee of accuracy when molecules modeled using AUA-4 are used in conjunction

with molecules modeled with TraPPE.

Pseudo Atom Type E/k[K] I-A]

CH 2  86.291 3.4612

CH 3  120.15 3.6072

CH 4 149.92 3.7327

Table 4.7: List of the associated non-bonded interaction parameters for AUA-4
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Parameter Value Units

Bond Length 1.535 A
Offset CH2 ( 6 cH 2 ) .38405 A
Offset CH3 ( 6 CH3) 21584 A

Bending

Bond Angle (0o) 114 degrees

ko/kB 62500 K/rad 2

Torsion

ao/kb 1001.35 K

al/kb 2129.52 K

a2/kb -303.06 K

a3/kb -3612.27 K

a4/k 2226.71 K

a5/kb 1965.93 K

a6/kb -4489.34 K

a7/kb -1736.22 K

as/kb 2817.37 K

Table 4.8: List of parameters used for bonded interactions in AUA-4
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Chapter 5

GEMC simulation

Gibbs Ensemble Monte Carlo was performed using the Gibbs program developed

by Panagiotopoulos and Errington [41 [5]. For pure substances we used the NVT

version of GEMC to determine the liquid-vapor coexistence curves. Simulations where

performed using 600 particles in each simulation box and initially equilibrated for at

least 2,000,000 Monte Carlo moves before data was produced over a production run

of at least 5,000,000 MC moves.

For both binary and ternary mixtures, the NPT version of GEMC was used.

Simulations were initially run with inter-box moves disabled to allow for the density

in each of the simulation boxes to equilibrate. Equilibration took place over 5,000,000

MC moves. Then, the resulting configuration was restarted with inter-box moves

enabled. In this case, the minimum number of moves for equilibration was increased

to 15,000,000 and the results where averaged over 20,000,000 MC moves. In the case

of mixtures, the initial number of molecules per box was 1000 (2000 total molecules).

5.1 Pure Component Results

Simulations for the pure component systems show that each of the models is imple-

mented correctly. As shown in Figures 5-1, 5-2, and 5-3, each of the models predicts

the liquid-vapor equilibrium curve with small deviations. These figures also show he

estimated location of the critical point calculated using the method of section 3.4.1.
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The good agreement with experiments serves to demonstrate the capability to accu-

rately predict critical points in the case of pure components from GEMC simulation

results.

By closely comparing the simulation results to the experimental data obtained by

Younglove [151, we can evaluate the relative strengths and weaknesses of each of the

molecular models, and connect the small deviations from the experimental data to

the basic assumptions inherent in each model.

Comparing the TraPPE-UA models results to the experimental data shows that

the model is highly accurate for each of the three components shown (methane,

ethane, and propane). Combined with its low computational cost, it is easy to see

why this model is so widely used.

The TraPPE-EH model is also shown to have impressive accuracy, though slightly

less accurate than the United Atom version. This is attributed to the fact that this

model uses fitted potentials for the individual atoms which makes it more difficult to

obtain very accurate results for a particular molecule type. The added complexity

of the model does not appear to result in any improvement when simulating a pure

component system, however it does result in a large increase in computational cost.

The AUA-4 model seems to have a fairly consistent tendency to overestimate the

density of the fluid phase. This error is fairly apparent in Figure 5-1 and in figure

5-2. AUA-4 has very good accuracy when simulating the density of the vapor phase.

Overall there are only some minor concerns with the accuracy of this model and it is

too soon to determine if the slight inaccuracy in the fluid phase will cause significant

problems while simulating mixtures.
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Figure 5-1: GEMC simulation results for liquid-vapor equilibrium in pure methane. The
liquid-vapor equilibrium curve obtained from experimental results is indicated by the green
line. Results from each of TraPPE-UA(<), TraPPE-EH(A), AUA-4(>) are plotted along
with the estimated critical point (shown with a filled marker) for comparison. Error bars
are smaller than symbol size unless otherwise indicated.

45



320

260

300

260

240 --

220
UD

C-

0 100 200 300 400 500 600 700

Density [kg/m3

Figure 5-2: GEMC simulation results for pure ethane. Results from each of TraPPE-

UA(<), TraPPE-EH(A), AUA-4(>) are plotted as well as the experimental results (-).
The estimated critical point (shown with a filled marker) is shown for comparison. Error
bars are smaller than symbol size unless otherwise indicated.
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Figure 5-3: GEMC simulation results for pure propane. Results from each of TraPPE-

UA(<i), TraPPE-EH(A), AUA-4(>) are plotted as well as the experimental results (-). The
estimated critical point (shown with a filled marker) is shown for comparison. Error bars
are smaller than symbol size unless otherwise indicated.
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5.2 Binary Component Comparison

It is important that the molecular model we choose for ternary simulations is able to

account for highly non ideal mixtures that do not follow Raoult's Law. In order to test

how accurately each force field can model the interaction between unlike molecules, we

can perform simulations of the relevant binary mixtures. Since our ternary mixture

will be composed of methane, ethane, and carbon dioxide, binary LVE simulations

will be performed for a mixture containing methane and carbon dioxide, as well as

a mixture containing carbon dioxide and ethane. The latter is an ideal test case,

because the intermolecular interactions between ethane and carbon dioxide molecules

are strong and result in many nonlinear features, including an azeotrope.
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Figure 5-4: GEMC simulation results for liquid-vapor equilibrium for a mixture of CH 4
and C 2 H6 at 180K. Results from each of TraPPE-UA(<), TraPPE-EH(A), AUA-4(>) are
plotted along with the experimental results (-). Empty markers and dashed line indicate

the vapor phase while the solid markers and solid line indicate the liquid phase. Error bars

are smaller than symbol size (~ 1%).
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Figure 5-4 demonstrates that the TraPPE-UA model is too simple to account for

the intermolecular interactions that occur in mixtures. Even in the case of a mixture

of methane and ethane, which is usually approximated as ideal, this model fails to

accurately predict the vapor composition. The vapor composition has consistently less

methane by mole fraction at almost every trial pressure compared to the experimental

results obtained by Wei et al. [16].

The results in Figure 5-4 also show that the TraPPE-EH model and the AUA-

4 model both have inaccuracies in modeling the liquid phase. Fortunately for our

purposes, the error in the results obtained by these two potentials appear to be less

severe than the error for TraPPE-UA. It is somewhat interesting that the errors

associated with these two potentials are of approximately the same magnitude but in

opposite directions, with the TraPPE-EH model underestimating the mole fraction of

methane in the liquid phase and the AUA-4 model overestimating the mole fraction

of methane in the liquid phase.

The much more difficult case of a binary mixture composed of carbon dioxide

and ethane, in Figure 5-5, shows that there are limits to what can be simulated

with any given potential model of the type (4.1). In this case, the AUA-4 model

predicts that there is no two phase equilibrium for any of the pressures tested at

the temperatures of 207K and 213K. Additionally the TraPPE-UA and TraPPE-EH

models had significant difficulty performing accurate simulation of this mixture, even

though both models where able to obtain results indicating LVE. As discussed in

Chapter 2, the deviation from ideal mixing is due to the interactions between unlike

molecules. Even if the force field is fitted to account for this non ideal behavior, the

azeotrope presents additional challenges. As shown in Figure 5-5 for a temperature of

213K, near the critical point there are four different compositions potentially existing

at the same temperature and pressure. The implementation of GEMC being used

here can only have two coexisting phases. This results in an extended region around

the critical point in which GEMC results are unreliable. The coexistence curve for

a temperature of 207K does not have this problem because the CO 2 in the mixture

solidifies before a critical point is reached.
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The effects of having an azeotrope will become less important when performing

GEMC simulations for ternary mixtures. The addition of another component helps

prevent the properties for an individual simulation box from changing to another

phase. Additionaly, the effects of the azeotrope will vanish quickly as the concentra-

tion of a third component is increased. From the simulation results in Figures 5-4 and

5-5, it is clear that using the TraPPE-EH force field is the best choice going forward.
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Figure 5-5: GEMC simulation results for LVE for a mixture of CO 2 and C 2H6 at 207K
(top) and 213K (bottom). Results from TraPPE-UA(<) and TraPPE-EH(A) are plotted
along with the experimental results (-). Empty markers and dashed line indicate the vapor
phase while the solid markers and solid line indicate the liquid phase. Error bars are smaller
than symbol size (~ 1%).
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Chapter 6

Artificial Neural Networks

As discussed in Chapter 1, analytical equations of state are not available for ternary

mixtures. Additionally, increasing the number of degrees of freedom by adding com-

ponents to the reservoir fluid quickly results in a system that is too large to describe

through experimental techniques. Molecular simulation can be used to partly replace

experiments; however, this approach also becomes very expensive as the number of

components increases and the volume of the phase diagram increases. To address this

we require a method for generating a reliable approximation to the EOS that is based

on available data; in other words, we require a method which can interpolate data in

a large number of dimensions.

Machine learning provides a convenient and popular method for creating inter-

polation models of nonlinear many-input many-output systems. These methods are

especially useful when the class of functions and/or the order of the functions that

relate the inputs and outputs is unknown. Rather than guessing a class and order

of functions and risking over or under fitting the data, we can instead use machine

learning to build a model. In this work, we will be using Bayesian regularized artificial

neural networks (BRANNs). The benefit of using Bayesian regularization is that it is

very robust in its ability to handle higher order systems with difficult to fit data. It

also has the additional benefit of eliminating the computationally expensive step of

model validation [17][191. BRANNs are relatively easy to use because regularization

penalizes higher order fits of the data, which protects against over fitting.
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6.1 Problem Statement

Our objective is the calculation of the mole fraction y of one of the three substances

along the liquid and vapor coexistence lines given the mole fraction of one of the

substances x1 , the temperature, and pressure (note that this fully defines the coexis-

tence point since the mole fraction of the third substance, X2 , can be calculated from

X2 = 1 - X1 - y). In the present case, we treat the liquid and vapor lines separately;

in other words, we are seeking to create a neural network with one output, that is, of

the form
Np

y= wihi(xi) g(X) (6.1)

where Np is the number of parameters (or weights), X denotes the vector of input

(independent) variables with elements xi, i = 1, ... , Np, and hi(xi) denotes the basis

function associated with the ith independent variable.

6.2 Bayesian Regularized Artificial Neural Networks

The values of w may be found by minimizing the error

ND

[yi - g(Xi)] 2  (6.2)

over ND data points. Here, W denotes the vector whose entries are wi, i = 1, ... , Np.

This basic least squares approach is prone to overfitting. To mitigate this, a

penalty term is added that penalizes large values of wi. In its simplest form, this

leads to the objective function

ND NP

E(W) = [yi - g(Xi)] 2 + A E (6.3)
i=1 j=1

with the constraint 0 < A < 1. The solution now requires determination of the

vector W and the optimal value of A. In the present work a solution is obtained via

the BRANN procedure implemented in the MATLAB @ package Neural Network
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Toolbox which uses the sigmoid function as a basis, namely

hi(xi) = 1 (6.4)
1 + exp(-xi)

and a slightly modified form of (6.3), namely

ND Np

S(W) =# [yi - g(Xi)]2 + a E W2 (6.5)
i=1 j=1

This formulation avoids overfitting by introducing Bayes theorem which leads to

explicit expressions for the hyperparameters a and #, as well as the effective number

of parameters Np (see [17] for more details). The choice of the sigmoid function is

motivated by efficiency considerations. Creating a neural network that fits 100 data

points takes less than 0.3% of the calculation time of a single GEMC simulation.

More details can be found in References [17] and [19].
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Chapter 7

Application of Machine Learning to

Ternary LVE

In this Chapter, we will examine the ability of a Bayesian regularized neural network

to create a model of an LVE coexistence curve given a set of data points. We also

investigate how many data points are needed to accurately create such a model. For

testing the ability of a neural network to reproduce LVE coexistence data, we will

train the neural network using both experimental data as well as GEMC simulation

results. To quantify the number of points needed, we train the neural network using

a series of data sets, based on the experimental data, which contain a only a small

number of data points. By analyzing the error between the experimental data and

the resulting predictions obtained using smaller data sets, we can estimate how many

data points are needed to describe LVE coexistence without introducing significant

error.

7.1 Experimental Data

Our first objective is to confirm that machine learning can make an accurate predic-

tion about the liquid and vapor compositions of a ternary mixture under "optimal

conditions", in which we have an abundance of data, and under conditions for which

the LVE surface is smooth. In this case, we will attempt to build a neural network
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Figure 7-1: Ternary liquid-vapor equilibrium results for C0 2, CH 4, and C 2H6 at 230K and

1.52MPa (blue) / 3.55MPa (green) / 5.57MPa (red). Experimental results (X) are from

Wei et al [16]. Neural network results are denoted by 0.
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Figure 7-2: Error Histogram for the error between the experimental data and the inter-
polated data points, shown in Figure 7-1, as defined by equation (7.1). Blue columns
indicate the error from the liquid compositions and the red column indicates the error
from the vapor composition.
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model of the methane, ethane, and carbon dioxide system using the experimental

data obtained by Wei et al [161. The actual neural network will be implemented us-

ing the MATLAB Neural Net Toolbox discussed in the previous Chapter. Due to the

limitations in the available experimental ternary LVE composition data, we will only

be considering a temperature of 230K. Using the experimental data set provides the

neural network with the best chance of converging to an accurate equation of state,

because the experimental data is, by comparison to the simulation data considered in

section 7.2, noise free. Additionally, the experimental data also includes composition

data at and near the critical points and other regions where GEMC simulations break

down.

One of the benefits of training this neural network is that it will provide infor-

mation on the maximum number of weights needed to represent the data over the

phase space covered by the data. As discussed in Chapter 6, the use of a regularized

training method prevents over fitting. Since it is impossible to over fit the neural net-

work, we do not have an upper limit on the number of basis functions that can used.

Establishing the minimum number of weights needed to represent the data gives us

the minimum number of basis functions that are needed for the neural network.

Knowing the number of basis functions needed allows us to not include unused

basis functions in the neural network, improving the efficiency of future training calcu-

lations. The neural network training session that resulted in the model whose results

are shown in Figure 7-1, indicated that a network with seven basis functions was

sufficient to adequately model the system. Using a larger number of basis functions

size does not change any of the results significantly, though some fine tunning in the

number of basis functions can result in a slight improvement in the error of a neural

network's fit.

Figure 7-1 illustrates how well the neural network reproduces the experimental

data. As expected, the experimental results match the estimations made by the

neural network almost exactly. The error in the predicted compositions needs to be

quantified so that we can make comparisons to the error from the neural network.

We can calculate the total error at a given point as the Eucledian distance between
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the neural network estimate (1) and the experimental result (x), namely

Error = V'(ii - x1)2 + (Y2 - X2 )2 + (:i3 - X3 (7.1)

As expected, Figure 7-2 shows that the error created by using a neural network

is very small. On average, the mean error in the liquid phase is 1.54% and the mean

error in the vapor phase is 2.40%. The histogram also shows that there are a few

outliers which result in a maximum error of 8.96% in the fluid and a maximum error

of 11.20% in the vapor.
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7.2 Simulation Data

CH
0

C2H. 0 20 40 60 60 9.2

Figure 7-3: Ternary liquid-vapor equilibrium results for C0 2, CH4, and C2H6 at 230K and

1.52MPa (blue) / 3.55MPa (green) / 5.57MPa (red). Experimental results (X) are from
Wei et al [16]. Neural network results are denoted by LI.

After confirming that neural networks can be used to create a model of the LyE,

we will proceed to investigate how the method performs when relying on noisy data.

Note that even though neural networks can assign a weight to the importance of each

of the training data points, thus reflecting our prior knowledge of the error uncertainty

associated with each of them, in our case, where the goal is to use as little a priori

knowledge as possible, estimating the accuracy of the data points used to train the

network becomes impractical.

For this test, we will train the neural network using GEMC simulation results

that where obtained by initializing the simulations from the experimental data. The

error is calculated as the Euclidean distance between the neural network estimate
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and the corresponding GEMC simulation result. In Figure 7-4 we can see the error

histogram comparing the fitting of the neural network to the simulated data it was

generated from. Once again, we find that overall the error is still very small, though

there are much larger outliers compared to the experimental data case of Section 7.1.

This is expected since the neural network is effectively smoothing out the noise in the

simulation data, which results in large errors for points if the GEMC simulation does

not predict a smooth VLE surface.

On average, the mean error in the liquid phase is 1.34% and the mean error in the

vapor phase is 1.78%. The histogram also shows that there are a few outliers which

result in a maximum error of 26.64% in the fluid and a maximum error of 24.00% in

the vapor.

Now that we have confirmed that a neural network can accurately model a nonlin-

ear ternary LVE surface in favorable conditions with sufficient data, we can investigate

the possibility of building a predictive model of the VLE of a system for which there

is little or no existing experimental data. For this method to be useful, we will need

to determine how many data points are needed to build a robust model.

The level of robustness, or accuracy, will depend on the application. Here, we

have two applications in mind. First, we are interested in using the neural network

as a source of initial conditions for GEMC simulations; this requires relatively low

accuracy, although not when, the results of such simulations are to be used to enrich

the original network fit. The second application is a complete LVE coexistence curve

description, which requires high accuracy, namely on the order of a few percent.
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7.3 Training With Few Data Points

0

e IL

0 2 40 OD

Figure 7-5: An example of the three approximations of the isothermal-isobaric LVE curves
being evaluated as reduced initial data sets. The linear approximation is shown in red,
the three point approximation in blue, and the four point approximation in fuchsia. For
comparison the true isothermal-isobaric curves are shown in black.

To estimate how much error is introduced by using a reduced data set, we will

begin with using a limited number of data points from the experimental data. We

will be looking at three different cases. The first is a linear approximation of the

liquid and vapor equilibrium curves connecting the binary simulation results. The

second case assumes the availability of experimental data close to the midpoint of the

isothermal-isobaric lines connecting the binary data points, in effect having a three

point piece-wise linear approximation for each curve. The third neural network will

use a four point approximation constructed from three piece-wise linear segments. For

this set of tests, only experimental data is used, because we already have estimated
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Figure 7-6: Error histogram for the liquid phase of a system composed of C0 2 , CH 4 ,
and C 2H 6 at 230K. The histogram shows the interpolation error distributions resulting

from a linear approximation (blue), a three point approximation (green), a four point

approximation (yellow), and the error associated with using the full data set (red).
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Figure 7-7: Error histogram for the vapor phase of a system composed of C0 2 , CH4 ,
and C 2 H6 at 230K. The histogram shows the interpolation error distributions resulting

from a linear approximation (blue), a three point approximation (green), a four point

approximation (yellow), and the error associated with using the full data set (red).
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the amount of error resulting from using GEMC simulation results. We will compare

the error of the resulting neural networks to each other as well as to the error resulting

from using every data point from the experimental LVE data set at 230K [16] to train

a neural network. The results of this analysis are shown in Figure 7-6 for the liquid

phase and in Figure 7-7 for the vapor phase.

Figure 7-6 shows that, for the liquid phase, there is little difference between the

different neural networks tested. This is because the liquid curve is nearly linear. It

is also notable that using the full data set to fit the neural network resulted in the

worst outliers of any of the neural networks. This is a result of the neural network

having difficulty fitting the critical points. In the smaller data sets the critical points

are not included in the provided data.

The more definitive test, however, is the histogram in Figure 7-7 due to the wider

distribution in errors. Both the three and four data point sets result in few outliers.

While using a four point approximation of the isothermal-isobaric lines results in

a slight reduction in the mean error, small improvements in accuracy are unlikely

to provide any real benefit if the purpose of the neural network is to generate new

estimates of the initial conditions for future GEMC simulations.

From this section we conclude that the three point approximation produces a suffi-

ciently accurate representation of the LVE coexistence curves. While using additional

data is unlikely to hurt the accuracy of the neural network, calculating the additional

data will be too computationally expensive to justify the small improvement in accu-

racy.
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7.4 Predicting LVE Coexistence Curves Without Ex-

perimental Data

We now have the basics for using neural networks to efficiently calculate LVE co-

existence curves in a ternary mixture. We assume that the binary coexistence data

for our chosen force field is either available or can be easily calculated using GEMC.

This provides the necessary information to implement a linear approximation of the

isobaric-isothermal lines connecting the binary LVE compositions. Here the goal is to

build up from this simplistic model to one that can accurately model mixtures with

complicated interactions between unlike molecules. This means not using experimen-

tal ternary data, since, in general, those cannot be assumed to be available.

In the previous section, it was determined that a three point approximation of

the isobaric-isothermal connecting lines provided the best balance between accuracy

and computational cost. Since our objective is to construct a neural network without

using experimental ternary data, we propose to use GEMC results for obtaining the

third (intermediate) point in this approximation. We further propose obtaining this

data point by using a linear-interpolation-based neural network to provide an estimate

for initializing the GEMC simulation.

The primary challenge associated with his scheme is determining if a potentially

"poorly" initialized GEMC simulation (the one whose initial condition is given by the

neural nework based on the linear interpolation of the binary LVE data) has converged

to a sufficiently precise solution. Because GEMC uses a fixed number of molecules of

each species, making it is possible for the system to be unable to reach the correct

equilibrium composition if started sufficiently far from it. The most reliable way to

check for this error is to look at the distribution of the total number of particles at the

end of the simulation. If the total number of molecules in each box is no longer close

to its starting value, this is a strong indication that convergence was not achieved. A

reasonable estimate for this threshold is a shift of 20% in the number of molecules in

each box. If convergence is not reached, a new simulation can be started at the new

compositions with equal numbers of molecules in each box. This can be performed
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Figure 7-8: Diagram of the steps used to calculate LVE using neural networks

70



iteratively until the shift in the number of molecules becomes small, suggesting that

the resulting compositions of the liquid and vapor phases will have converged to

the correct equilibrium state. This process is time consuming but this cost is offset

somewhat by the fact that the neural network can be used to provide estimates for

additional initial points in the future. Using this procedure, we can calculate real

coexistence compositions near the midpoint by initializing from the midpoint of the

linear approximation. These calculated coexistence points and the binary LVE data

can then be used to train a neural network to interpolate. This process is summarized

in the flow chart in Figure 7-8.
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Figure 7-9: Ternary liquid-vapor equilibrium results for C0 2, CH 4, and C 2H6 at 230K
and 1.52MPa (blue) / 2.53MPa (red). Neural network results are indicated by the line
with open symbols, while solid symbols indicate simulation results obtained from starting
simulations initialized at experimental composition results from Wei et al [16]. Dark
shades correspond to the liquid phase and light shades correspond to the vapor phase.

Figure 7-9 shows the results from a neural network that was trained to predict
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Figure 7-10: Ternary liquid-vapor equilibrium results for CO 2 , CH4 , and C 2H6 at 230K.

The red and blue markers are the same as in Figure 7-9 and shown for reference. The

green line and empty symbols indicate the estimated composition at a temperature of 230K

and a pressure of 2.03 MPa. The solid symbols were obtained from GEMC simulations

initialized at the interpolated data points. Dark shades correspond to the liquid phase and

light shades correspond to the vapor phase.
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the LVE based on the given temperature, pressure, and as well as the liquid mole

fraction of CO2 from GEMC simulation results at those same conditions. The neural

network used for this figure was trained using a three point approximation of the

isothermal-isobaric lines, where the LVE properties where calculated using GEMC

simulations, that is, in other words, using the procedure just outlined. These results

show that even if we use a very limited data set to train the neural network, it is

possible to obtain reasonably accurate predictions.

Additionally as demonstrated in Figure 7-10, using this neural network we can

make predictions that are not at the same temperature and pressure as the data

that was originally used to create the model. This figure was created using the same

neural network as Figure 7-9. The neural network was used to make predictions of the

LVE at a pressure of 2.03 MPa, for which no experimental data is available. These

predictions where used to initialize GEMC simulations to check the accuracy of the

predictions. The GEMC simulation results where all in good agreement the predicted

values. This shows that the neural network can be used to make predictions not just

on the same isothermal-isobaric lines, but also make predictions at other points on the

LVE surface, given that the points temperature and pressure is bounded by known

coexistence data included in the neural network (that is, the neural network is used

to interpolate - as opposed to extrapolate - data).
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Chapter 8

Conclusion

Machine learning can be very effective at reducing the amount of data necessary to ac-

curately calculate the liquid-vapor equilibrium surface of a ternary mixture. Using a

Bayesian regularized neural network allows for the robust and accurate calculation of

a model for highly dimensional systems with many inputs and many outputs. While

Bayesian regularization is considered an expensive method for training a neural net-

work, its computational cost is roughly two orders of magnitude less than performing

a single GEMC simulation. The comparatively low cost of fitting a highly accurate

neural network means that it has the potential to significantly reduce the cost of

calculating the LVE surface using GEMC simulations alone.

The neural network models calculated in Figures 7-9 and 7-10 demonstrate that

from a fairly limited set of coexistence data points it is possible to estimate initial

compositions that, from the standpoint of a GEMC simulation, are indistinguishable

or are nearly indistinguishable from using the experimental data as the initial guess.

In Figures 7-9 and 7-10 we have used just three data points per isobaric isothermal

coexistence line. It is clear from our results that while the system does not necessarily

predict the LVE surface with complete accuracy, it is close enough that any further

GEMC simulations in that region of phase space would converge to a correct result

without the need for iteration.

This method does have some limitations. Since the model is interpolated, it is only

accurate within the phase space covered by the data used to train the network. As
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such, the network cannot be used for extrapolation of properties into regions without

any data. This is somewhat alleviated by the fact that the binary coexistence data is

relatively simple to calculate, meaning that it should be relatively easy to extend to

new temperatures and pressures. It also means that this method will never be able

to provide the data at a critical point unless data for nearby points was included in

the training data.

The methodology described here can in principle be extended to mixtures involving

more components. The largest challenge presented by increasingly complex mixtures

is the increasing volume of the state space. This makes it much more difficult to obtain

the initial data needed to train the neural network. In the example of a quaternary

mixture, one would need to first approximate the LVE coexistence curves for four

different ternary mixtures before using the method described to interpolate between

the results for the ternary mixtures to obtain the initial data points for the quaternary

neural network. While this would be more computationally expensive, we do no

foresee any fundamental limitations for performing either the GEMC simulations or

training the neural network.

76



Bibliography

[1] Bruce, A.D. and Wilding, N.B., "Computational Strategies for Mapping Equilib-
rium Phase Diagrams", Adv. Chem. Phys., 127, 1-64 (2003).

[2] Williams, C.K.I., "Prediction with Gaussian Processes: From Linear Regression
to Linear Prediction and Beyond." Learning in Graphical Models. Ed. Michael
I. Jordan. Springer Netherlands, 599-621 (1998).

[3] van't Hof, A., Peters, C.J., and de Leeuw, S.W., "An Advanced Gibbs-Duhem
Integration Method: Theory and Applications", J. Chem. Phys., 124, 054906
(2006).

[41 Panagiotopoulos, A.Z., "Monte Carlo Methods for Phase Equilibria of Fluids", J.
Phys.: Condens. Matter, 12, R25-R52 (2000).

[51 Panagiotopoulos, A.Z., "Direct Determination of Phase Coexistence Properties of
Fluids by Monte Carlo Simulation in a New Ensemble", Mol. Phys., 61 813-826
(1987).

[6] Smit, B., de Smedt, Ph., and Frenkel D., "Computer Simulations in the Gibbs
Ensemble", Mol. Phys., 68, 931-950 (1989).

[71 Smit, B. and D. Frenkel., "Calculation of the Chemical Potential in the Gibbs
Ensemble", Mol. Phys., 68, 951-958 (1989).

[8] Ferrenberg A.M. and Swendsen R.H., "New Monte Carlo Technique for Studying
Phase Transitions", Phys. Rev. Lett., 63, 1195-1198 (1989).

[9] Rowlinson, J.S. and Swinton, F. L., Liquids and Liquid Mixtures (3rd ed.). But-
terworth (1982).

[10] Potoff, J.J. and Panagiotopoulos, A.Z., "Critical Point and Phase Behavior of the
Pure Fluid and a Lennard-Jones Mixture", J. Chem. Phys., 109, 10914-10920
(1998).

[11] Martin, M.G. and Siepmann, J.I. "Transferable Potentials for Phase Equilibria.

1. United-Atom Description of N-Alkanes, J. Phys. Chem. B, 102, 2569-2577
(1998).

[12] Chen, B. and Siepmann, J.I. "Transferable Potentials for Phase Equilibria. 3.
Explicit-Hydrogen Description of Normal Alkanes", J. Phys. Chem. B, 103,
5370-5379 (1999).

77



[13] Potoff, J.J. and Siepmann, J.I., "Vapor-Liquid Equilibria of Mixtures Containing
Alkanes, Carbon Dioxide, and Nitrogen", AIChE J., 47, 1676-1682 (2001).

[14] Ungerer, P., Beauvais, C., Delhommelle, J., Boutin, A., Rousseau, B. "Optimiza-
tion of the Anisotropic United Atoms Intermolecular Potential for N-Alkanes",
J. Chem. Phys., 112, 5499-5510 (2000).

[15] Younglove, B.A. and Ely, J.F., "Thermophysical Properties of Fluids. II. Methane,
Ethane, Propane, Isobutane, and Normal Butane" J. Phys. Chem. Ref. Data,
16, 577-798 (1987).

[16] Wei, M.S.W., Brown, T.S., and Kidnay, A.J.K. "Vapor + Liquid Equilibria for
the Ternary System Methane + Ethane + Carbon Dioxide at 230K and Its Con-
stituent Binaries at Temperatures from 207 to 270K", J. Chem. Eng. Data, 40,
726-731 (1995).

[17] Burden, F. and Winkler, D. "Bayesian Regularization of Neural Networks",
Method. Mol. Bio., 458, 23-42 (2009).

[18] Biswas, A.C., "The Law of Rectilinear Diameter for the Liquid-Gas Phase Tran-
sition", Pramana, 1, 109-111 (1973).

[19] Buntine, W.L. and Weigend, A.S., "Bayesian Back-Propagation", Complex Sys-
tems, 5, 603-643 (1991).

[20] DeHoff, R. Thermodynamics in Materials Science. Taylor and Francis (2006).

[21] Nabney, I.T. Netlab: Algorithms for Pattern Recognition. Springer-Verlag, Lon-
don (2002).

[23] Danesh, A. PVT and Phase Behaviour of Petroleum Reservoir Fluids. Elsevier

(1998).

[24] Hastings, W.K., "Monte Carlo Sampling Methods Using Markov Chains and
Their Applications", Biometrika, 57, 97-109 (1970).

[25] Toxvaerd, S., "Equation of State of Alkanes II", J. Chem. Phys., 107, 5197-5204
(1997).

78


