
Equilibrium Molecular Dynamics Study of Heat ARCHVE
t n MASSACHUSETTS INSTITUTE

Conduction in Octane OF TECHNOLOLGY

by APR 15 2015
Yi Jenny Wang LIBRARIES

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2015

@ Massachusetts Institute of Technology 2015. All rights reserved.

Signature redacted
A u th o r . ...................................

Department of Mechanical Engineering
January 29, 2015

Signature redacted
C ertified by ............. .............

Gang Chen
Carl Richard Soderberg Professor of Power Engineering

Thesis Supervisor

Signature redacted,
A ccepted by ....................... ..........

David E. Hardt
Chairman, Department Committee on Graduate Students



2



Equilibrium Molecular Dynamics Study of Heat Conduction

in Octane

by

Yi Jenny Wang

Submitted to the Department of Mechanical Engineering
on January 29, 2015, in partial fulfillment of the

requirements for the degree of
Master of Science in Mechanical Engineering

Abstract

Fluids are important components in heat transfer systems. Understanding heat con-
duction in liquids at the atomic level would allow better design of liquids with specific
heat transfer properties. However, heat transfer in molecular chain liquids is a com-
plex interplay between heat transfer within a molecule and between molecules. This
thesis studies the contribution of each type of atomic interaction to the bulk heat
transfer in liquid octane to further the understanding of thermal transport between
and within chain molecules in a liquid. The Green-Kubo formula is used to calculate
thermal conductivity of liquid octane from equilibrium molecular dynamics, and the
total thermal conductivity is split into effective thermal conductivities for the differ-
ent types of atomic interactions in the system. It is shown that the short carbon
backbone of octane does not dominate thermal transport within the system. Instead,
the thermal resistance within a molecule is about the same as the resistance between
molecules.

Thesis Supervisor: Gang Chen
Title: Carl Richard Soderberg Professor of Power Engineering
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Chapter 1

Introduction

Understanding thermal conductivity of fluids at the atomic level would provide the

necessary insights to improve heat transfer in fluids. Fluids play vital roles in heat

transfer systems as heat exchange mediums. These applications use the bulk heat

transfer properties of the fluid. However, an atomic level understanding of heat con-

duction in fluids can enable us to design fluids with specific thermal properties, and

make it possible to exploit specific atomic-level properties to design materials that

may become critical components of the future's ever smaller electronic devices. Un-

derstanding heat transfer in chain liquids at an atomic level is difficult because there

are two distinct contributions to transport. In this thesis, chain liquids refers to liq-

uids that are made up of chain molecules. On one hand, long molecular chains can

effectively transport heat along the chain backbone [11, which is similar to phonon

transport in solids [2]. On the other hand, the chains are also free to flow from one

area of the system to another, which is similar to transport in gases and can be de-

scribed by kinetic theory and statistical mechanics [3]. Additionally, any heat transfer

pathway through the liquid system involves heat transfer both within a molecule (in-

tramolecular heat transfer) and between molecules (intermolecular heat transfer), as

13



demonstrated in figure 1-1. Understanding this interplay is at the heart of under-

standing bulk heat transfer in liquids with molecular chains.

T
Figure 1-1: In a system like bulk octane, there are multiple pathways for heat to flow

from the hot side of the system to the cold side (the red arrow marks the temperature

gradient from high to low). Some possible pathways are marked in the diagram as ex-

amples. Any heat pathway, however, involves both intramolecular (purple) and inter-

molecular (yellow) paths. Thus, both atomic interactions within an octane molecule

and interactions between separate molecules play important roles in heat transport

of bulk octane.

All heat transfer, at the atomic level, is energy transfer through atomic interactions.

Interactions between atoms connected by covalent or ionic chemical bonds can be

collectively called "bonded interactions" while interactions between atoms not chem-

ically bonded together (i.e. on different molecules) are referred to as "non-bonded

interactions." Non-bonded interactions include electrostatic forces and van der Waals

forces. The interactions in the octane system will be further described in chapter

2.
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The liquid system studied in this work is octane. Octane is a chain of eight car-

bon atoms single bonded to each other with 18 hydrogens on each molecule to fill

out the carbon orbitals. An artistic rendering of the octane molecule is shown in

figure 1-2. The choice of using octane was influenced by several factors. First, as

a simple organic molecule, the interactions between the atoms within the system is

well understood. Molecular biology has developed many potentials to accurately re-

produce different aspects of organic chemistry interactions [41. In contrast, many

elements that are not commonly encountered in organic chemistry have not been as

well studied. Second, the alkane series is the simplest organic chain molecule. The

simplicity of the system is important because it allows a starting point to study the

complicated interplay of heat transfer at the atomic level. Third, because octane is

the primary component in gasoline, the literature on octane is much more extensive

than other alkanes of similar lengths. For example, a search on Web of Science [5] in

January 2015 yielded 6167 articles with "octane" in the title versus 1778 articles with

"nonane" in the title. The available literature serves as important grounding points

for the calculations. The molecular dynamics (MD) simulations were performed us-

ing the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [6, 7]

developed at Sandia National Laboratories.

Figure 1-2: Rendering of an octane molecule. Carbon atoms are black while the

hydrogen atoms are white.
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1.1 Heat Transfer in Lennard-Jones Fluids

Recently, it has become possible to directly study atomic level heat transfer in solids

experimentally [8], and there are a number of experiments measuring thermal trans-

port in interfaces and atomic junctions [9, 10, 11, 12]. Modeling, however, remains an

important aspect of understanding the atomic level processes in liquids. At the sim-

plest level, heat transfer in liquids can be modeled using a Lennard-Jones potential

[13, 14]. First proposed by John Edward Lennard-Jones in 1924 [15], the Lennard-

Jones potential describes a simple potential well between two particles and is often

written as

VLJ 4c - ()](1.1)

where c is the depth of the potential well, - is the finite distance when VLJ is zero,

and r is the distance between the two particles. The values of C and 0- can be fitted

to experimental values to adapt the potential to a range of different atoms and small

molecules. However, if the potential is expressed in terms of 9 and 2, then there

are no additional terms in equation (1.1). and it heromes annarent that there is only

one Lennard-Jones potential (figure 1-3). Indeed, the term Lennard-Jonesium is often

used to refer to the theoretical fluid that is perfectly described by the Lennard-Jones

potential [16]. In reality, there is no true Lennard-Jones material of course, but the

approximation is fairly good for certain molecules with simple atomic interactions,

such as the nobel gases [17, 181, with argon being especially popular for study. The

thermal conductivities of liquid argon have been calculated from Lennard-Jones po-

tentials using MD with error less than 10% when compared to experiments [14].

There are two ways to calculate thermal conductivity using MD: the equilibrium and

non-equilibrium approach. The equilibrium approach, which is the method used in

this thesis, relies on the Green-Kubo formula to connect local fluctuations in heat
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flux to the thermal conductivity [191. More details are given in chapter 3. The non-

equilibrium approach imposes a heat flux or temperature difference on the system

and determines the thermal conductivity by fitting the data to Fourier's Law

dT
q -Kdx

(1.2)

where q is the heat flux, K is the thermal conductivity, and d is the spatial temper-

ature gradient in the system [20, 21].

0

0 0.5 1
r/o

1.5 2 2.5

Figure 1-3: The Lennard-Jones potential normalized by c and o-, where c is the depth

of the potential well and - is the finite distance where VLj is zero. When normalized

this way, there is only one Lennard-Jones potential. The equilibrium distance between

two atoms interacting according to the Lennard-Jones potential is the separation that

gives the minimum energy and is marked with a red dot. As distances becomes much

smaller than equilibrium, the potential increases towards infinity, representing the

strong repulsion from electrons on each atom. As the separation distance approaches

infinity, the potential goes to zero, representing the weakening interaction as the two

atoms become further apart.

Before the advent of computers powerful enough to run MD simulations, the Lennard-
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Jones potential was already being used in statistical mechanics to aid understanding

of thermal transport in fluids. A great deal of the statistical mechanics theory was

developed in the 1950s [22, 23], including the Green-Kubo relations [24, 251 used in

this work. Details of the the Green-Kubo relation for thermal conductivities are in

chapter 3. From the hydrodynamic equation in statistical mechanics, the thermal

conductivity of argon modeled using the Lennard-Jones potential has been calculated

to be K = 0.17 W/(m K) [231, which compares well with the experimental value of

K = 0.12 W/(m K) [26]. Furthermore, the kinetic energy contribution (contribu-

tion from motion of argon atoms) to thermal conductivity is negligible and heat is

primarily transferred through the intermolecular force (interactions between argon

atoms) contribution [23]. Molecular dynamics studies confirm that the kinetic en-

ergy contribution is only a few percent of the total heat transfer [14]. However, this

may be because the boiling point of argon is low, around 87 K. In liquids at room

temperature, the kinetic energy play a more significant role [27]. For liquid argon,

contribution of kinetic energy to heat transfer depends heavily on system density,

increasing by more than a factor of 2 when the density changes by 20% while the

intermolecular force contribution has little to no dependence on density [14]. Results

for Lennard-Jones liquids using equilibrium MD and non-equilibrium MD compare

fairly well, and both are consistent with experimental values. In equilibrium MD, the

thermal conductivity of Lennard-Jones liquid has little dependence on the system size

with good convergence for systems containing as few as 108 atoms [141. In colitrast,

non-equilibirum MD requires a bigger system to reach a good convergence [28]. The

accuracy of the small system in equilibrium MD may be because intermolecular heat

transfer between first neighbors dominate thermal transport in this system [29] so

additional neighbors are not as important. The temperature gradient or heat flux

must be imposed on the system in non-equilibrium MD so the system must be large

enough to support the required difference from one side to the other.

18



1.2 Effect of Atomic Structure

While sufficient for simple materials like argon, the basic Lennard-Jones potential

can only describe one type of atomic interaction, is limited to pairs interactions (in-

teractions involving only two atoms) and models molecules as spheres so it cannot

describe the structure of multi-atom molecules. The two-center Lennard-Jones po-

tential [30] adds rotational degrees of freedom to the system and accounts for atomic

separation in a molecule to allow more accurate modeling of diatomic molecules. The

two-center Lennard-Jones potential is a sum of the basic Lennard-Jones potential

adapted to molecules having two centers. For two molecules, i and j, the two-center

Lennard-Jones potential is

2 2

V2cLJ E VLJ (riajb) (1.3)
a=1 b=1

where ria,jb is the separation between centers a on molecule i and b on molecule j and

VLJ is the basic Lennard-Jones potential in equation (1.1). This type of potential

allows investigations on the dependence of thermal conductivity on molecule length

in diatomic molecules and the role of rotational degrees of freedom. As separation

between the atoms in a diatomic molecule become longer, non-equilbrium molecular

dynamics shows that the thermal conductivity increases slightly, primarily due to

increased heat transfer in intermolecular interactions from rotational degrees of free-

dom, and heat transfer due to molecular motion is not affected [31]. Heat transfer

due to molecular motion is also not affected significantly by increases in liquid density

or pressure. Instead, the thermal conductivity increase in these situations are due to

increased heat transfer by molecular interactions [32].

More complicated molecules contain atoms and bonds with very different character-

istics and require more complex potentials to fully describe the atomic interactions

present in the system. Many potentials have been developed to describe different types
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of systems over the year. Commonly used classical potentials include the Optimized

Potentials for Liquid Simulations (OPLS) [33], Chemistry at HARvard Molecular

Mechanics (CHARMM) [34], Assisted Model Building and Energy Refinement (AM-

BER) [35], GROningen MOlecular Simulation (GROMOS) [36] among others. These

classical potentials typically all have similar forms of the interactions but have param-

eter values fitted to very different physical properties. This work uses the GROMOS

potential, which is fitted to free enthalpy and energy of solvation. Further details of

the GROMOS potential are presented in section 2.2. Many studies using the various

classical potentials have produced thermal conductivities comparable to experimen-

tal values, establishing the basic methods of calculating thermal conductivity in MD

[37, 38, 39, 40, 27, 41, 42, 43]. These simulations show that the conformation of

molecules play significant roles in liquid thermal conductivity [40] but conformation

is often dependent on the potential used since each potential has different interaction

parameters and forms. Additionally, equilibrium and non-equilibrium MD can yield

different results for thermal conductivity since these methods make different assump-

tions about the system. Thus, having data from both methods is valuable to verify

results.

1.3 Heat Tr-ansfer in Carbon Chains

Degrees of freedom within the molecule adds significant complexity to the atomic heat

transfer picture. Unlike Lennard-Jones liquids, where interactions are fairly isotropic,

the interatomic forces in alkanes are very anisotropic due to the large difference in

strength between bonded interactions along the chain and non-bonded interactions

across the chain. The thermal conductivity of stretched polyethylene fibers have

been measured to be over 100 W/(m K) [44]. In comparison, thermal conductivity

of bulk polyethylene is around 0.3 W//(m K). Simulations show that the drastic in-
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crease in thermal conductivity can be explained by the high thermal conductivity of

the carbon-carbon backbone [1] and the stretching process extending and aligning

the polyethylene molecules to better take advantage of heat transfer along the back-

bone [45, 46]. Restricting the rotation of C-H 2 segments within the molecule further

increases thermal conductivity [47]. Thermal conductivity of polymers depends on

the molecule length as well, with longer molecules being more conductive [1, 48, 49].

More rigid backbones and stronger intermolecular interactions also increases thermal

conductivity [50, 51]. All these strategies for increasing heat transfer in polymers are

essentially increasing phonon transport within the polymer by making the structure

more crystalline and strengthening the atomic interactions.

Liquids, by definition, cannot be made crystalline, and allowing molecules to flow

from one part of the system to another further complicates the heat transfer pic-

ture. However, the smaller molecules of liquid alkanes (in comparison to polymers)

allow more detailed analysis of the specific types of atomic interactions, which are not

considered in the phonon picture. Non-equilibrium MD studies on alkane have split

the total heat flux into contributions from each type of atomic interaction, including

molecular motion, intermolecular interactions, bond stretching, and bond bending

[27, 52]. However, these works used the united-atom approach which treats each

C-H 2 segment in the alkane molecule as a single particle rather than explicitly ac-

counting for the hydrogen atoms. Nevertheless, they offer important insights into heat

transport in liquid carbon chains. In these liquid systems, molecular motion contri-

butions toward heat transfer is dramatically higher than in liquid argon, accounting

for around 20% of the total heat transfer. Furthermore, as the carbon chain becomes

longer, intramolecular heat transfer becomes more important (table 1.1). In short

alkanes, intramolecular interactions carry more heat than intermolecular interactions

while the reverse is true for long alkanes. The cross-over occurs somewhere between

chains containing 10 and 16 carbon atoms [27]. As the chain becomes even longer,

intramolecular interactions account for even more of the total heat flux, increasing to
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over 50% in alkanes with 24 carbon atoms. In contrast, heat transfer by molecular

motion decreases only slightly as the alkane becomes longer.

Table 1.1: Percentage of the total heat flux due to intermolecular interactions, in-
tramolecular interactions, and molecular motion in alkanes with different carbon chain
lengths. Values are taken from [27].

Intermolecular Intramolecular Molecular
Alkane interaction interaction motion

C4Hio 62% 13% 25%
C8H1 8  47% 30% 23%
ClOH12 43% 33% 24%

C16 H3 4  34% 43% 23%
C2 4 H5 0  28% 53% 19%

This work aims to further the understanding of atomic level heat transfer in alkanes by

providing equilibrium MD results for octane. The model used for octane here treats

the hydrogen atoms explicitly and contains the slight differences in interaction for

carbon and hydrogen atoms at different positions in the molecule. Thus, this model

is more complete than those used in previous works. Chapter 2 covers the basics

of understanding MD simulations. Next, the analysis tools used to understand heat

transfer in the simulations, including a method of attributing fractions of the total

thermal conductivity to each type of atomic interactions, are described in chapter 3.

Chapter 4 contains the parameters used for the simulations in this thesis. Results from

the analysis and discussions are presented in chapter 5. Finally, chapter 6 summarizes

this thesis and gives some ideas for further exploration.
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Chapter 2

Molecular Dynamics

Molecular dynamics (MD) is a numerical method to calculate atomic motion, which

can give insights into fundamental properties of a system. As such, it is very widely

used in materials and biological applications and have been applied to a wide range of

phenomenons including diffusion, protein folding, defect formation, and heat transfer.

This work uses MD as a tool to investigate atomic level thermal transport. This

chapter will cover the basic knowledge required to understand MD simulations.

2.1 Basic Theory

Molecular dynamics simulation is essentially the application of Newton's second law,

F = ma, to a system of particles in a series of time steps. The simplest MD codes

require just three pieces of information about the system: 1) initial position of the

particles, 2) the initial velocities of the particles, and 3) how the particles interact

with each other (i.e. what forces the particles exert on each other). From initial

positions, the code calculates the forces exerted on each particle by the other particles

in the system. Applying Newton's second law to the forces on each particle gives
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the particle's acceleration a as a = F/m. The initial velocity of each particle can

then be used to calculate the particle's new position after a small time step dt by

applying

rt+dt = rt + vtdt + -at(dt)2 (2.1)
2

where r is the position and v is the velocity. The subscripts t and t + dt denotes the

value before and after the time step, respectively. The new velocity is

vtedt = vt + adt . (2.2)

The positions and velocities after the next time step is calculated using the updated

positions and velocities, rt+dt and Vt+dt. The process is repeated until the required

number of steps have been performed to give the total simulation time. Equations

(2.1) and (2.2) are the Euler integration method, the simplest time-integration method

for updating atomic positions and velocities from one time step to the next. In most

time integration methods, the acceleration is constant during each time step. At

small enough time steps, this is a satisfactory approximation. However, each time

step uses values from the previous time step so errors accumulate and can be quite

large by the end of the simulation. More sophisticated codes will calculate velocities

and positions with different integration methods to minimize the error associated

with the choice of dt. More details about the time integration used in this work is

presented in section 2.3. The snap-shots of how the positions and velocities evolve

over time are collectively called the atomic trajectory and are the raw data from the

MD simulation. MD fundamentally requires the system to be ergodic [19]. That is,

the time average is assumed to be the same as the phase space average so averages

over the atomic trajectory can be used to obtain properties about the system. Figure

2-1 shows a summary of the MD simulation process.

Incredible achievements in computation speeds have been made since computers were

first developed in the 1950s. However, computational power today still severely lim-
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(Simulation Program: LAMMPS

Input output
*Structure *Atom trajectories
# Force parameters *Forces
* Properties to eProperties
calculate

Figure 2-1: A summary of MD simulation using LAMMPS [6, 71. Required inputs into
the program are the atomic structure of the system, the force parameters describing

atomic interactions, and the properties to be computed. For each time step, the

LAMMPS program calculates the forces and requested properties, updates atomic

positions and velocities, and adjusts system temperature, pressure, or volume as

necessary. After the required number of time steps, the program produces the atomic

trajectories, the forces within the system, and the averaged properties.

its the size of the molecular dynamics system that can be calculated in a reasonable

time frame with reasonable computation resources. Calculating forces on each atom

is a major part of the computation costs since this requires summing up the effect of

the N - 1 other atoms in the system on a particular atom. Typically, the number

of required force calculations is reduced by recognizing that atomic interactions be-

come negligibly weak at long enough distances so atoms that are further away than

the cutoff distance are assumed to not interact directly. A major challenge to MD

simulations are the different timescale at which the phenomenon to be studied oc-

curs. The fastest motion in the system, typically the atomic vibrations, limit the

maximum time step that can be used. A typical MD time step is around 1 fs and

current computational capabilities limits the total number of time steps to 106 - 108

so the total simulation time is limited to around 100 ns. Available computational

capabilities also limit the maximum system size. Typical simulations can contain 10'

to 108 particles, corresponding to a system size of 1 nm to 100 nm 153]. A system

of this size, however, would have significant edge effects, and its properties would be
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very different from bulk systems as the recent developments in nanotechnology make

clear [54]. To reproduce properties of bulk systems, periodic boundary conditions are

used to replicate a base cell of atoms infinitely in each direction to produce an infinite

system with finite degrees of freedom. Figure 2-2 shows how the periodic boundary

conditions would be implemented in a 2D system. Whenever an atom in the base

cell moves outside of the cell, a periodic image of that atom enters the cell from the

other side. Effectively, the atom leaving is wrapped around to the other side of the

cell. The periodic boundary condition does not fully solve the edge effect error (for

example, the longest phonon wavelength possible in a periodic system is twice the

length of the periodic cell), but it eliminates surface forces (due to atoms at the edge

of the system only having interactions on one side) and preserves the total energy of

the system by preventing atoms from moving so far away that it no longer interacts

with the rest of the system. The base cell size and the interaction cutoff radius must

be chosen so that an atom cannot interact with multiple images of any other atom.

This means that the base cell must be at least twice as wide as the cutoff radius, but

is typically larger to ensure convergence with respect to system size.

2.2 Atomic Potentials

The methods used in MD intrinsically does not distinguish whether the particles

represent atoms, molecules, or macro-level objects. Although the term "molecular

dynamics" is typically reserved for molecular and atomic systems. Most MD pro-

grams only require the coordinates of initial particle locations and a set of interaction

parameters describing the forces between the particles. The initial particle velocities

are typically generated using a Gaussian distribution to match a desired tempera-

ture. For atomic or molecular systems, the required information is more naturally

divided into a structure file that describes the initial locations of the atoms and the
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0

A particle leaving the primary
image causes a periodic image

to enter on the other side.

Figure 2-2: The periodic boundary condition applied in 2D. The base cell, which
forms the primary image, is replicated in all directions to produce an infinite system.
The effect is equivalent to having a particle that leaves the base cell enter on the
opposite side. The base cell must be large enough so that no atoms interact with
more than one image of any other atom.

chemical bonds within the system and a potential file that describes the force of each

interaction type.

Using a suitable potential to describe the system is paramount to producing correct

results. In contrast, slight errors in the initial positions of the atoms can be fixed by

minimizing the total system energy with respect to an appropriate potential. Many

potentials have been developed to suit the wide range of MD applications. Poten-

tials are typically derived either using ab initio methods or fitted to some empirical

parameters. Developing good potentials is a time consuming task that requires pa-

tience and experience. Ab initio potentials are generally more accurate than empirical

potentials since they use quantum mechanics to calculate wave functions for the elec-

trons in the system. The forces between the atoms are then calculated from the

wave functions. However, this accuracy comes with very high computational costs

when compared with empirical potentials. There are generally two components to
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an empirical potential: 1) the mathematical functional form and 2) the parameters.

The mathematical form is the expression that describes how the force acting on an

atom depends on the atom's displacement from equilibrium while the parameters are

constants within the form. Typically, the form is derived from some physical argu-

ments and the parameters are selected to match a range of experimental or ab initio

results. Therefore, each empirical potential is tailored for specific types of situations,

but the commonly-used potentials generally apply to a wide range of systems and

produce accurate results for a wide range of applications. By eliminating explicit

calculations for elections, empirical potentials significantly improves the scaling of

computations required for each additional atom in the system. Even larger systems

can be accommodated by using coarse-graining methods, where a cluster of atoms are

considered a single particle [55]. Then, potentials are developed to describe how each

cluster particle interacts with other clusters in the system. A great deal of details

are lost through coarse-graining but when investigating bulk behavior, the details are

often not required. A common practice when modeling polymers is to coarse-grain

the monomer so each unit in the polymer acts as a single entity. In this thesis, no

coarse-graining is used and each atom in the system is treated explicitly.

The potential used in this work is GROningen MOlecular Simulation (GROMOS)

53A6 [36]. The potential was developed in conjunction with a molecular dynam-

ics software also named GROMOS, but is widely supported in other MD programs.

GROMOS started as a coarse-grain potential in the early 1980s by treating a carbon

atom and attached hydrogen atoms as a single particle centered on the carbon atom.

A substantial re-write occurred in 1996 to improve the treatment of aliphatic and

aromatic hydrogens and the potential has been updated continuously since. While

the parameters have been drastically improved over the years, the form of the po-

tential has been preserved. GROMOS 53A6 still includes capabilities to treat carbon

atoms and bonded hydrogen atoms as one particle, but it can also treat the carbon

and hydrogen atoms as separate atoms. In this work, hydrogen and carbon atoms
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are treated explicitly so each octane molecule contains 28 atoms. GROMOS 53A6 is

designed to accurately reproduce the free energies in organic systems and have been

used in biological applications with good results [56]. The GROMOS 53A6 functional

forms and parameters used in this thesis are the stretching of covalent atomic bonds,

bending of angles in covalent bonds, twisting of atomic dihedrals, a Lennard-Jones

form for non-bonded interactions, and an electrostatic form for interactions between

partial charges (see figure 2-3). This allows a detailed study of how each type of in-

teraction contributes to the overall heat transfer. Although octane has no net charge,

there are partial charges on some of the atoms since the electronegativity of carbon

and hydrogen differs considerably. The forms and parameters given in GROMOS

are for potential energies; the forces are calculated as the negative derivative of the

energies with respect to the displacement: F = -'9, where F is the force, E is the

potential energy, and r is the displacement.

Potential energies due to covalent bonding is calculated by summing over all the

bonds:

Nb
E ROMOS = b GKROMOS 2n 2b~OO 4 KbjnI (bn2 - b~)(2.3)

n=1

where Nb is the total number of bonds, KGROmOS is the parameter describing the

stiffness of the nth bond, bn is the actual length of the nth bond, and b0 is the

equilibrium length of the nth bond. GROMOS developers chose this anharmonic

functional form to reduce the number of square-root operations required to calculate

forces, but, in the range of physically realistic values, it is essentially the same as the

harmonic potential

Nb

E "armonic K h" [bn - ]2 (2.4)

nt1

wit Kbrni KnOObO (see figure 2-4). The Ebarm"ic functional form will be
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Figure 2-3: Diagrams of the GROMOS 53A6 atomic interactions used in the bulk

octane system. The light blue spheres represent the atoms involved in the interaction

and the springs represent chemical bonds. The yellow background denotes intermolec-

ular interactions and the purple backgrounds are intramolecular interactions. Pairs

interactions include the non-bonded interactions (also commonly known as van der

Waals interactions) and coulombic interaction. Dihedral interactions are due to bonds

twisting, and the angle o measures the displacement of the twisting from equilibrium.

used in this work to model covalent bond stretching because the form of E"R"AOS' is

not currently supported by LAMMPS. The latest version of LAMMPS used in this

work is the release on Feb. 1, 2014. The harmonic bond interaction does not lead to

an infinite thermal conductivity in the bulk octane system (which is clearly unphys-

ical) because the overall system is anharmonic due to the other atomic interactions

and couplings between different interactions. Even though each type of atomic inter-

action is harmonic, they depend on different displacements, which make the system

anharmonic. The reason can be easily seen by considering bond stretching and angles

angles. The energy for bond stretching and angles bending are given in equation (2.4)

and equation (2.5), respectively. The energies just due to bond stretching, Eb, is har-
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monic with respect to the displacement r while the energies just due to bond bending,

Ea, is harmonic with respect to the cosine of the displacement angle 0. However, the

sum of Eb and Ea will depend on both r and cos9, which introduces anharmonic

effects.
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Figure 2-4: Comparison between E ROMOS and Ebh""ic for a single carbon-carbon
bond being displaced from the equilibrium length bo = 0.11 nm. The typical ampli-
tude for atomic vibrations is on the order of 0.01 nm [57]. Within this range, the
difference between EGROMOS and E"armnic is less than 5%.

Angle interactions in octane occur between three atoms, i, j, and k, that are linked

by two covalent bonds. Potential energy due to bending of the angle formed by the

two covalent bonds is

Na

EGROMOS Ka os (On) - COS(9On)J2  (2.5)
n=1
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where K GROMOS is like the spring constant for bending the nth angle, 0, is the

measurement of the nth angle, and 00n is the equilibrium value of the nth angle.

The functional dependence on cos(On) rather than On reduces computational costs by

eliminating an arecosine operation that the purely harmonic form

Na

Eharmonic aronic [n n2
aKamnc n - 0n (2.6)

n=1

would require.

The torsional dihedral term describes interactions from bonds twisting. The energy

is given by

Nd

EROMOS = A [1 + cos(6n)cos(mnpn)] (2.7)
n=1

where 6o is the phase shift (restricted to 0 or ir), mn is the multiplicity of the torsional

dihedral, t, is the actual value of the dihedral angle. The trans configuration is

defined as W, = 0. The restriction on 6n allows E GROMOS to be rewritten in the

harmonic form

Nd

Edarmtic = K " ["1 + dn cos(mnpn)]] (2.8)
n=1

where K h"rmonic = K' ROMOS d +1 for 6n 0 and dn = -1 when n = 7r.

Non-bonded interactions are modeled in GROMOS by the sum of Lennard-Jones

potential [15] and electrostatic interactions. The form of the Lennard-Jones potential

used is

EL= - (2.9)
pairs i,J I Z3

where C12i and Ci2 are parameters describing the strength of the pairs interaction
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and rij is the separation betweens atoms i and j. In theory, all pairs of atoms should be

considered in the sum. In practice, atoms connected with covalent bonds are typically

excluded from the sum because their interaction is already considered by the bond

term. Additionally, atoms further than the cutoff distance are not considered in the

sum to reduce computational time as discussed in section 2.1. The Lennard-Jones

form is also commonly written as

EU = 4[ - (2.10)

In this form, the physical interpretation of the parameters c and a is much clearer (see

figure 1-3). c can be identified as the minimum energy and a as the minimum energy

length scale withClij= 4eijag and C6ij = 4eijo,6 . Physically, the r-6 term describes

attraction between two atoms at long ranges due to non-bonded interactions and is

derived from quantum mechanics for instantaneous dipole-dipole interactions. The

r-1 2 term describes repulsion at close distances, which prevents atoms from occupying

the same space. The selection of r-12 is not justified through any physical argument,

but is historically used for numerical simplicity since it is easily calculated as the

square of r 6 . Using r-1 2 exponent reproduces a sufficiently accurate approximation

to the repulsion from overlapping electron orbitals, but other large repulsive terms,

such as r-1 or r--" [58] or exponentials of the form e-Ar, where K is a positive

constant [59] will generally not significantly impact the MD results. Electrostatic

interactions are modeled with the familiar

Eeiectrostatic =ar ~ 1 qi c1  1 (2.11)

where co is the dielectric permittivity of the vacuum, cl is the relative permittivity of

the medium in which the atoms are embedded, r is the distances between atoms i

and j , and qi, qj are the charges on atoms i and j respectively. It is standard to set

the value of El to 1 since MD systems are typically constructed as atoms in a vacuum,
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as is the case in the bulk octane system. Alkane molecules are typically non-polar,

but partial charges do exist on some hydrogen and carbon atoms due to the large

difference in electronegativities of these two elements. The molecule is charge neutral

overall. Both the Lennard-Jones and electrostatic potentials are pairs interactions;

that is, they describe the interactions between a pair of atoms. In the rest of the work,

the term "pairs interactions" will refer to the sum of Lennard-Jones and electrostatic

interactions. The energy due to the pairs interactions is defined as

Ep,: ELJ + Eeiectrostatic . (2.12)

It is also useful to note that the pairs interactions act on atoms that are not con-

nected with chemical bonds; these are the interactions that can carry heat from one

molecule to another molecule and are thus the intermolecular interactions. Likewise,

it is useful to group bond, angle, and dihedral interactions, which require atoms to

be chemically bonded and thus belong to the same molecule, as the intramolecular

interactions.

2.3 System Convergence

Once information about the atomic structure and interactions are obtained, there

are generally four steps to an MD simulation: 1) convergence, 2) minimization, 3)

equilibration, and 4) production run. The first three steps are required to ensure

that the last step is a good model for the physical system being studied and produces

correct results. Each of the steps will be described in the next several sections.

The first step, system convergence, is a critical issue for all numerical simulations,

not just MD. This step ensures that data collected during the simulation is a true

representation of the conditions under investigation rather than artifacts due to ap-

34



proximations made in the simulation process. MD makes two main approximations

in modeling the bulk system: finite time steps and finite system size. Thus, it is

imperative to check these approximations are accurate enough to produce correct re-

sults. Specifically, MD is modeling a continuous process (the atomic movements) as

a series of time steps and integrating velocities to find the new positions. As such,

the time step size is critical for obtaining accurate results. If the step is too big, then

the phenomenon under study may not appear. Additionally, big time steps can lead

to large integration errors and unstable systems because atoms are allowed to move

too far apart. However, if the time step is too small, then more steps will be needed

to reach the desired total simulated time, thus requiring more computational power.

In general, a good rule of thumb is to start with a time step an order of magnitude

smaller than the frequency of the fastest atomic vibration in the system and test for

convergence from there.

Clever time integration methods can reduce the error and allow the use of larger time

steps. The velocity Verlet method [60], the default integrator in LAMMPS, is widely

used to reduce the time integration errors, and gives much more satisfactory results

than the simple Euler method discussed in section 2.1. In the velocity Verlet method,

the position of an atom at the end of the time step is calculated as

1
rt+dt = rt + vt -dt + -at (dt)2  (2.13)

2

where r is the position, v is the velocity, dt is the time step size, and a is the

acceleration. The subscripts t and t + dt denotes the value before and after taking the

time step, respectively. Then, at+dt is calculated using Newton's law F = ma, with

F determined by the position rt+dt and the atomic interactions. Next, the velocity at

the end of the time step is calculated as

Vt+t = Vt + at+dt . (2.14)
2
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In this method, the accelerations at the beginning of the time step at and the velocity

at the end of the time step at+dt are averaged when calculating the new velocity. This

correction gives significant improvements over the simple Euler method described in

equations (2.1) and (2.2).

The size of the the base cell used with periodic boundary conditions is vitally impor-

tant to reach system size convergence. The periodic boundary condition creates an

infinite system with finite degrees of freedom, so convergence ensures that there are

enough degrees of freedom to accurately calculate the properties under investigation.

In crystalline solids, the cell can be relatively small, since the real bulk system is

actually periodic. In liquids and gases, however, the base cell must be much larger

because there is no periodicity in these materials and the cell must be big enough that

the periodicity caused by the periodic boundary condition has negligible effect.

Since liquid molecules have no periodic order, it is tempting to start the calculation

with molecules randomly placed within the simulation box. However, doing so can

lead to unrealistic configurations if atoms start out too close to each other. Instead, it

is more advisable to start with molecules in an ordered configuration with the correct

density and then run a long minimization step to randomize the molecule placement.

One may also be tempted to check that molecules are sufficiently randomized only

with visuals, but this can be deceiving. Instead, the molecular positions should be

plotted to make sure the system is sufficiently randomized.

2.4 Minimization

After the appropriate time step size and system size has been found, the next step is

to minimize the energy within the system. Typically, the initial atomic structure used

in the calculations is not actually the optimal stable structure, but a guess at what
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that structure would be. Therefore, the stable structure must be found by allowing

the atoms to move to more stable (i.e. lower energy) configurations. Minimiza-

tion, by itself, provides a great deal of information about the system. For example,

in biology, finding the minimum energy configuration in proteins is at the heart of

studies on finding protein structures. As the many massive-scale distributed com-

puting programs, such as Folding at Home [61], demonstrate, finding the minimum

energy configuration for a system is not a trivial task. When starting calculations

for system dynamics, however, it is imperative to first find a minimum in the energy

surface to serve as a stable starting point. The minimized system is the configuration

about which fluctuations occur during the time trajectory of the system. The fluc-

tuations, in turn, provide the dynamics that are the underpinning of MD. The net

force on each atom is zero at a minimum energy point, and a system may have more

than one local minimum. Typically, the local minimum can be found fairly easily

by using well-developed protocols, but finding the global minimum requires a scan

of the conformational space. For dynamics calculations, it is typically not necessary

(and extremely challenging given the the typical system size) to find the global mini-

mum. There are three commonly used methods for minimizing the system energy: 1)

steepest descent [621, 2) conjugate gradient [631, and 3) Newton-Raphson [641. The

steepest descent method, although robust, is not especially efficient computationally.

Nevertheless, it is sufficient for this work.

The steepest decent finds the energy minimum by following the negative of the first

derivative. For a potential surface, E, the minimization starts with a guess at the

local minimum, x1. Then, a second point on the energy surface, x 2, is found by taking

a small step 6 in the direction of the negative gradient of E so that

X2= x, - 6VE (x1) (2.15)

and E(x2 ) < E (xi) . (2.16)
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Subsequent steps x 3 , x 4 , ... are found in the same manner to generate a path

E (xi) > F (x2 ) > E (x3 ) > E (x4 ) > ... that leads to the lowest energy config-

uration. Note that 6 can change at every step but arbitrary values of 6 will not

ensure convergence.

The line search method is one way to determine 6 that is guaranteed to reach a local

energy minimum. In this method, a line is drawn from an initial guess using the

gradient of E until the line reaches another point at the same energy. The starting

point for the next guess is taken to be the point along the line with the minimum

energy. Consider a simple, 2D potential energy surface example:

E (x, y) = 2X 2 + 5y 2 . (2.17)

The minimum of E, of course, is located at (0, 0). The gradient is

VE = (4x, 10y) . (2.18)

The line used for finding the second point given an initial guess (Xi, Yi) is

Xz = O ) = zx, (1 + 46) (2.19)
OX ilyi

y) y1 + ( y1 (1+106) . (2.20)

Equations (2.19) and (2.20) form a set of parametric equations for a line going through

the potential surface, E. This line also goes through another point with E (xi, yj) =

E (xi, yi). Between (xi, y1 ) and (x', y'), the energy E is lower than E (x', y') =

E (xi, y) so there must a minimum energy point on the line. This point is taken to

be (X 2 , y2). The same procedure is then used to find (X 3 , y3) and subsequent points

until arriving at the local minimum. This example, illustrated in figure 2-5, though

trivially simple, illustrates the method for energy minimization through following the
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gradient of the energy. In this example, the minimum is found fairly quickly because

the potential energy surface is quadratic. For an MD system, there are many more

degrees of freedom and additional complexities, but the principle is the same as this

example. Energy minimization algorithms are typically built into MD software, as is

the case for LAMMPS, since they are vital to the simulation; all the user has to do

is call up the appropriate commands in the input script.

5

4

3

2

1

0h

-1

-2

-3

-4

-5'
-I 0

x
5

Figure 2-5: An simple example illustrating the principle of steepest descent mini-

mization. The potential energy surface is E (x, y) = 2x 2 + 5y 2. The minimum, of

course, is located at (0, 0). An initial guess of (xi, yi) = (4.05, 2.33), marked by

the blue dot, starts the numerical search for a local minimum. E(4.05, 2.33) = 60.

The line search for (x2 , Y2) proceeds along the dotted blue line, parametrized by

x1 (1 +46), y' yi(I + 106), and intersects the contour E = 60 at another point

(0.04, -3.44), marked with a red dot. Thus the minimum of E on the dotted blue

line must be between (4.05, 2.33) and (0.04, -3.44). This point, marked with a blue

+, is (x2 , Y2) = (2.01, -0.61). The next line search starts at (x2, Y2) = (2.01, -0.61)

and yields (x3, Y3) = (0.67, 0.41). The rest of the search path is shown, ending at

E(0.12, 0.06) = 0.05 after two more steps.
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2.5 Equilibration, Thermostats, and Barostats

Once a local minimum energy configuration has been found, the work of creating a

statistically accurate MD representation of the system under investigation can begin

in earnest. The next step is equilibrating the system to reach the desired temperature

and pressure conditions through use of a thermostat or barostat. In addition to

randomizing molecule locations, equilibration serves the more important purpose of

properly distributing the total energy between potential and kinetic and adjusting

energies within the system to maintain the desired temperature or pressure even

when thermostats and barostats are removed from the equations of motion.

The basic MD equations describe velocity, acceleration, and forces through time and

do not contain direct temperature information. However, one can use the kinetic

energy distribution to calculate the temperature. The simple way is to first calculate

the average kinetic energy and then apply the equipartition theorem. The total kinetic

energy, EK, of the system is

N 
2

r m: V (2.21)
i= 1

where mi is the mass of ith atom, vi is the magnitude of the velocity of the ith atom,

and N is the total number of atoms in the system. From the equipartition theorem,

each mode of freedom with a quadratic potential contributes jkBT, where kB is the

Boltzmann constant, and T is the temperature, to the total energy. Kinetic energy

has a quadratic potential and 3 degrees of freedom, along the x, y, or z axis, so the

kinetic energy of a single atom is !kBT and that of the full system is

3
EK = -NkBT (2.22)

2

where N is the total number of atoms in the system. Setting the two expressions for
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EK equal yields

EK =1 Miv = NkBT (2.23)

N

=T~ 31k Zmiv 2 (2.24)->T=3NkB

In calculating vi, the center of mass of the system must be set to zero. If the center

of mass moves, the center of mass velocity must be subtracted from the velocity of

each atom.

Often, it is necessary to generate velocities for the atoms to start the simulation

and desirable to have the initial velocities match a particular temperature. This

can be accomplished by creating initial velocities for the atoms in the system using

the Maxwell-Boltzmann distribution. The Maxwell-Boltzmann distribution gives the

probability of finding an atom with a particular velocity component within the system.

For the x component of velocity, vx,

M2

P(V) = k e 2kBT . (2.25)P (V) 2= kBT

Note that p(vx) = p(vy) = p(vz) is a Gaussian distribution with mean of 0 and

variance of a2 = !B. The necessary temperature distribution can then be easily

created by using a random number generator to create a set of velocities that satisfy

the Maxwell-Boltzmann distribution. Even with velocity generated in this way, it

is still necessary to equilibrate the system to reach a reasonable minimum energy

configuration.

The basic MD formulation is a description for the microcanonical ensemble: the

system is completely isolated. In MD, the microcanonical ensemble is often called the

NVE ensemble, where N refers to the number of atoms, V to the volume of the system,

and E to the total system energy, since N, V, and E are held constant. However,
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most physical systems are not isolated. Instead, typically either the temperature

and/or pressure is held constant instead of the total energy. These are the NVT and

NPT ensembles, respectively. Thermostats and barostats required in NVT and NPT

ensembles to maintain the desired temperature and/or pressure.

The expression for system temperature in equation (2.24) suggests a simple way to

maintain a constant temperature. At each time step, the velocities of the atoms can

be rescaled by multiplying each velocity with a factor A. This procedure produces

the desired temperature as

1 N

Tdesired 3NTk n m (Avi )2

A2  N

3NkB miVi
=1

=A 2 T

A T (2.26)
Tdesired

where T is the temperature before rescaling. If the temperature is too high, this

method takes some energy out of the system by slowing all the atoms down, and

if the temperature is too low, this method adds energy by increasing the velocities.

This rescaling enforces the desired temperature at every time step so that if the

desired temperature is far away from the current system temperature, rescaling by

A will introduce large temperature fluctuations accompanied by large over or under-

shooting. Furthermore, this rescaling does not allow for any fluctuations in system

temperature, which may not be physical.

The Berendsen thermostat [651 solves much of the issues with the velocity rescaling

42



method by changing the velocity slowly over many time steps such that

dT 1-- - - (T - T) (2.27)dt -r deid

where r controls how quickly the temperature is changed. The change in temperature

at each time step is

5t
6T - (Tdesired - T)

T

where 6t is the size of the time step. Then, the required velocity scaling parameter

ABerendsen is calculated as

6t
6T = erendsen -T - (Tdesired - T ) (2.28) AB 7ererzdsrd -T

ABerendsen + 6t Tdesired (2.29)

Note that if T 6t, ABerendsen reduces to the simple rescaling parameter in equa-

tion (2.26) and the Berendsen method becomes the simple velocity rescaling discussed

previously. In contrast, as r + 00, ABerendsen -+ 1 so the velocity is no longer being

rescaled and the system reduces to the microcanonical ensemble.

The pressure of the system can be calculated from

NkBT Nrii
P = + K (2.30)

V dV

where P is the system pressure, V is the system volume, ri is the position of the ith

atom, fi is the force on the ith atom, and d is the number of dimensions in the system

[66]. For a bulk system, d = 3. Note that the first term of equation (2.30) is the

familiar ideal gas law and the second term is a viral correction to account for atom

interactions. Similarly to temperature, the expression for pressure suggests a simple
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way to adjust the system pressure during calculations: by changing V. The system

volume can be adjusted by length scaling to change the system pressure, P, to the

desired pressure, Pdesired, similar to scaling the atom velocity to change the system

temperature. For a cubic system, the volume of the system and the length of the

system, 1, is related by V =i, so the scaling becomes

V = 13 3 (2.31)

ri - pri . (2.32)

As in thermostating, the Berendsen method provides a way of slowly adjusting the

volume towards the desired pressure. The Berendsen scaling factor is

P/erendsen 6t (Pdesired - P) 1/3 (2.33)

where / is the isothermal compressibility. This choice for scaling factor satisfies

dP 1 (Pdesired - P) (2.34)

dt rp

isothermal compressibility for the system is not required to apply the Berendsen

barostat since 3 appear only in a ratio to Tp, the pressure relaxation timescale.

The Berendsen thermostat in conjunction with the Berendsen baraostat give realistic

fluctuations in temperature and pressure [65] and are extremely efficient for relaxing

the system to the desired temperature and pressure. However, they do not produce

canonical distributions. Other methods, notably Nose-Hoover [67, 68], have been

developed and proven to accurately reproduce equilibrium canonical statistics. The

Nose-Hoover thermostat changes the equations of motion to include a heat bath that

is used to maintain the system at the desired temperature. Then, the extended system

(heat bath and original system) forms a microcanonical ensemble while the original

44



system correctly produces equilibrium canonical behavior. Since the Green-Kubo

formulas are derived under the assumption of canonical ensembles, the Nose-Hoover

thermostat is often used to enforce an NVT ensemble during the production run.

However, the Nose-Hoover thermostat has only been proven to produce the correct

equilibrium canonical statistics, and no thermostat has been proven to produce the

correct dynamical properties [69], such as the heat flux correlation functions used

in the Green-Kubo method. Instead, the heat flux correlation functions should be

evaluated by averaging multiple NVE runs from systems that have been carefully

relaxed to equilibrium in NVT.

Every time the system temperature and pressure is adjusted through the thermostats,

the system will be out of equilibrium. Additional time steps are required to bring the

system back into equilibrium. Note that this equilibrium refers to the dynamic equi-

librium, not the minimum energy equilibrium configuration found during minimiza-

tion. A well equilibrated system will keep fairly constant pressure and temperature

even without additional constraints from thermostats and barostats. This allows an

NVE ensemble to produce the canonical distributions required for Green-Kubo. It

is a good practice to switch between NVT and NPT ensembles several times during

equilibration and, before starting the production run, to confirm that the system is

indeed well equilibrated with a NVE equilibration segment.
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Chapter 3

MD Calculation Analysis

Molecular dynamics calculates the trajectories of and the forces acting on each atom

through time. These two sets of data can then be used to calculate macroscopic

properties of the system. This chapter will introduce the methods for connecting

atomic trajectories and forces to thermal conductivity. Thermal conductivity can be

calculated using non-equilibrium MD by imposing a temperature difference between

opposite sides of the system, calculating the heat flux across the system, and fitting

to Fourier's Law q = -k0, where q is the heat flux, k is the thermal conductivity,

T is the temperature, and x is in the direction of the temperature gradient [20]. The

second method for non-equilibrium MD is to impose a heat flux, calculate the resultant

temperature gradient, and fit to Fourier's Law [21]. Alternatively, the Green-Kubo

formula can be used to calculate thermal conductivity in an equilibrium system [191.
This method relies on natural fluctuations in the equilibrated system, so the noise to

data ratio is larger than the non-equilibrium method. This work uses equilibrium MD

and the Green-Kubo formula because the temperature gradient or heat flux required

in non-equilibrium MD is typically larger than would naturally occur in the system

[70] and are therefore not physical. This chapter will first discuss how heat flux is
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calculated, and then will develop several equations that will later be used to analyze

the MD data.

3.1 Stress and Heat Flux

As discussed in chapter 2, MD calculations only require calculating atomic trajectories

(positions and velocities) and forces, but these two sets of data can be used to calculate

many other properties. Calculating stress on each atom from velocities and forces is

straightforward. Then, the stresses can be used to calculate heat flux on each atom.

In LAMMPS, the stress on an atom A is defined as

Np
1 -1

S =- [mvivj + -1 L (rn12 Fn1 j + rn2iFn2 i)
V 2 n=1

Nb N,

+ ~ (riFnij+ r 2 3Fn2 5) + (rFnliFn + rn2iFn2j + rasiFasy) (3.1)

1 Nd

* 4 (rnliFnij + rn2iFn2j + r3iFn3j + rn4iF4j) +.--]
n= 1

where S is the stress component, V is the volume occupied by the group of atoms

considered, m is the mass of the atom, vi and vj are velocity components, r is the

positions of the atoms involved in the interaction, and F is the force acting on the

atoms due to the interaction [66]. The indices i, j rotates between x, y, and z

to produce the components of the symmetric stress tensor. Additional interactions

not used in the octane system are not shown. The total stress is the sum of the

kinetic energy contribution (the first term) and each type of atomic interactions,

where p stands for pairs interactions, b stands for bonds stretching, a stands for

angles bending, and d stands for dihedral interactions. The subscripts n1, n2, n3,

and n4 refers to the different atoms involved with the nth instance of each type of

interaction. There can be more than one instance of each type of interaction acting
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on atom A. Np, Nb, Na, and Nd are the number of pairs, bonds stretching, angles

bending, and dihedral interactions atom A participates in. For example, A could

could be part of two bonds: one with atom B and the other with atom C. Then,

Nb = 2 and the stress components on A from bond stretching is the sum of those two

bonds and equals

1 (rniFnij + rn2iFn2j) = (rl Fl + r1 2iF 12J) + (r2 1iF2 1j + r22iF22j)
n=1 (3.2)

- (rAi FAj + rBiFBj) + (rAiFAj + rciFcj) -
22

Note the coefficients before the sums in equation (3.1). The stress due to interac-

tions involving a group of atoms (i.e. 2 atoms for pairs and bond interaction, 3 for

angle interactions, and 4 for dihedral interactions) is split evenly between the atoms

involved. This method for calculating stress is essentially the virial stress [71]. From

the stress tensor S, heat flux J over a group of n atoms can be calculated as

J E Kvi + #Ovi - Sve , (3.3)

where V is the volume occupied by the n atoms, Ki is the kinetic energy of the ith

atom, #$ is the potential energy of the ith atom, and vi is the velocity [661.

3.2 The Green-Kubo Equation for thermal conduc-

tivity

Evaluating correlation functions reveal underlying dynamical processes in a molecular

system. The heat flux correlation function is defined as

Ci (t) = PJ(0) -J(0)) . (3.4)
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This is constructed for any atomic trajectory by setting the chosen initial time step to

t = 0. The ( ) signals ensemble average, meaning that Cj is the average over the full

system. For an MD system at an equilibrium temperature, there will be fluctuations

in local temperature due to statistical variations through the system. This leads to

local heat fluxes. The correlation function shows how quickly local heat flux influences

the rest of the system. For a system that does not interact with itself, J(t) will not

change with respect to time and Cj will be constant. As the system starts to interact

with itself, J(t) will gradually change due to influences from the other molecules in

the system. In this case, the correlation between J(t) and J(t = 0) will get smaller

as time goes on, and Cj will decay towards zero. As the system interaction gets

stronger, J(t) begins to oscillate since heat can transfer easily in both directions

of an interaction, and Cj will reflect those oscillations. However, the peak of each

oscillation will get smaller, similar to a damped oscillator. The correlation function of

J indicates how much the heat flux in the system at the current time depends on the

heat fluxes at an earlier time and can be used to calculate the thermal conductivity

of the system. In systems with high thermal conductivity, heat in one location will

quickly influence surrounding areas so the correlation will be high. In systems with

low thermal conductivity, heat in one location influences surrounding areas much

more slowly so the correlation is low.

The Green-Kubo equations formally connects flux correlations to transport coeffi-

cients. They form the basis for calculating dynamic system properties in equilibrium

molecular dynamics. For thermal conductivity, K, the Green-Kubo equation is:

V 2 0J(0) -J(t))dt .(3.5)
3kBT 0

This equation can be derived using the Liouville equation in linear response theory

[70]. The linear response theory simplifies the response of a system to external per-

turbations to a linear relationship. In many cases, real systems do not respond to
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Figure 3-1: Comparison between a system with strong correlations and weak corre-

lations. The strongly correlated system, shown in green and marked with asterisks,
has oscillations that persist far longer than the weakly correlated system, shown in

blue and marked with circles.

external applied fields linearly, but as the perturbations become small, this description

becomes accurate. The Liouville equation is

a&f(N) H f f(N) 3 .(N)
0 = ) + n (3.6)

(9t + 8pi ari ari api

where f(N) is the N particle distribution function and

H (r, p) = E p + U(r) (3.7)
2m

is the Hamiltonian of the system. p is the generalized momentum of the N particles

and U(r) is a potential energy dependent on the locations, r, of the N particles.

The summation n acts over the components of the generalized coordinates (r, p).

This equation describes the time evolution of the phase space distribution function

and satisfies conservation of phase space density. The Poisson bracket {A, B} is
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commonly used to simplify notation and is defined as

( OA OB
{A,B}=- -

2,(r 
p

OAOB

09 Ori
(3.8)

where A and B are arbitrary functions of the phase space variables. The Liouville

operator, F, is defined as

Pg - i{H, g} (3.9)

where g is any function and i = VTI is the imaginary number. Using equations (3.8)

and (3.9), the Liouville equation can be re-written as

0 f(N)
=f{H, f(N)}

at

ipf (N) (3.10)

Linear response theory assumes that F does not explicitly depend on time [72] so the

solution to equation (3.10) is of the form

F(N) (1 ) (~:Z uN
\y.~l~J~)

F(N)

For a small disturbance, we can write f(N)

the Liouville equation becomes

(N) + f(N) and H H, + HS . Then,

f(N)

at

+ f(N)

+ {H + H3 , f(N) _ f(N)}

{Hc, f(N)} + {HO, f(N)} + {H, f (N)} + {H3 , f(N) (3.12)

Assuming the last term is small, since both H6 and f(N) are small, equation (3.12)
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af(N)
can be simplified, and identified as

af(N) 0 f (N)

ft N) = {Ho, f N)} + {HO, fN)} + {H , f N)I

Of(N)
={HfN)

&N) = {HO, f(N)} + {H3 , fON)} (3.13)

The probability distribution in a canonical system with a small temperature distur-

bance, 6T, is

hAV
f =Ce kB(T+6T) (3.14)

~Ce- kBT T (3.15)

where C is a normalization constant, h is the local energy density, kB is the Boltz-

mann constant, and AV is the local volume [721. The approximation is derived by

using the Taylor expansion j = 1- x+2X - x +. .. around x = 0. Then, the corre-

sponding local energy disturbance, to the first order, is -hAVI, and the perturbed

Hamiltonian can be written as

H Ho + Hs ~- Ho - h(r(t)) T dV (3.16)~ T

and the perturbation can be identified as

H = - h(r(t)) T dV . (3.17)
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Then, we can write

fN)} {{Hol,A6 fN){H, f(N)}

-f(N) kBT

,p(N) H-f(N)
(N))

-irof'(N) 
kBT2

Then, applying energy conservation to express h (r(t)) as -V -j and recognizing that

heat flux on system boundaries is zero, we get

f (N)

/ T2 J(-V7i)

(N)

k 0T2V 6 ( y.(N)

Vf0N VT(r) -kBT 2

kBT WT r) -J

6T(r)dV

~T) + j -V6T(r)J dV

jdV

(3.19)

where Fo = i{H,, }. The solution for fIN) iS

f (N) (t,r,p) 2 V 6T(r) I -t,)roJd .

Then, the ensemble average of the system total heat flux per unit volume is

(J2( )) = j Jx (r (t),I p (t)) f (N) (t, (r), p)drdp

kBT2 jdtJ J

V J
kBT 2 f-c: x (t) J(t - t6)) - WT .
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(N)

at

h(r(t))6T(r)dV (3.18)

(9fN)
1f(N) -

-irofl +

pf (N)+

=-iro N +
= fN) +

6f (N) +V

(3.20)

J(r(t), p(t)) [V6T -J (r(t ), p(t6))] e -'tt)ro drdp



Then, we see that

kij (w) = (Jj (0) Jj (r))e-i"rdT . (3.21)
kBT2 fo

For an isotropic medium, we take an average of the thermal conductivity in the x, y,

z directions:

k(w) = 0T j (J(0) - J(r))e-wdr . (3.22)
3 kBT2 fo

Equation 3.22 gives the thermal conductivity as a function of the perturbation fre-

quency w. For the bulk thermal conductivity, the perturbation frequency goes to 0

(i.e. constant heat fluxes) [72] so the appropriate expression for macroscopic thermal

conductivity is

r kV= (J(0) - J(T))dT . (3.23)
3kBT2 0

3.3 Splitting Thermal Conductivity

The thermal conductivity in equation (3.23) is for a bulk system. Determining the

contribution of each type of atomic interaction requires separating the heat flux car-

ried by each type of interaction. The GROMOS potential treats the different types of

atomic interactions separately, so using the definition for heat flux in equation (3.3),

the contribution to the total heat flux of each type of interaction can be separated

by first separating the stress due to that interaction. The total heat flux can be

expressed as a sum of the heat flux due to each type of interaction:

S = Sp + Sb + Sa + Sd (3.24)
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where the subscripts p, b, a, and d refer to pairs, bond stretching, angle bending,

and dihedral interactions, respectively. Writing the stress in this way is the first step

to teasing out the contributions to total heat transfer of each type of interactions and

is along the same vein as [40]. Using equation (3.24) in equation (3.3), the heat flux

can be written as

N 1 N N

J (Kivi) + - (#ivi) - [(Spi + Sbi + Sai + Sdi) Vi] (3.25)

where #i is the potential energy of the ith atom and can also be split into the com-

ponent associated with each interaction. This fully breaks up the heat flux, except

for the contributions from velocity, namely the kinetic energy K and the velocity of

each atom. Using some algebraic manipulations,

NV NJIN
J = (K vi) +

N

V (Kvi) +

N

V (K vi) +

N

V (K vi) +

N 
d

+

1 E [(bpi + #bi + kai + )di) Vi] - [(Spi + Sbi + Sai + Sdi) Vi]

N -K (#p, + #bi + Oaj + Od) vi- (Spi + Si + Sai + Sdi) Vi

N 
-P b "V

p Shi - -S - Sai+'d +Sdji

N O i SN b "N a, S i- _Sp Vi + L- Si Vi + - i

i .

(di) .2

(3.26)
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From equation (3.26), define

IZN
Jk = Kvi)

N

JP =

N

Jb =

N

Ja =

N

Jd =

Vp

( 7b

(qa.

V

Of course, the definitions enforce

as required. Using the definitions in equation (3.27), the flux autocorrelation can be

broken into components.

(J(O) -J(t))

([Jk(O) + Jp(O) + Jb(O) + Ja(O) + Jd(O)] - [Jk(t) + Jp(t) + Jb(t) + Ja(t) + Jd(t)])

(3.29)
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- Sbi) Vi

- Sai) vi

- Sdi) Vi

(3.27)

J =Jk + Jp + Jb + Ja + Jd (3.28)



Applying the distributive property of dot products reveals

(J(0) -J(t)) =

(Jk(0) Jk(t)) + (Jk(0) Jp(t)) + (Jk(0) Jb(t)) + (J(0) Ja(t)) + (Jk(0) Jd(t))

+ (Jp(0) Jk(t)) + (Jp(0) Jp(t)) + (J(0) Jb(t)) + (Jp(0) Ja(t)) + (J(0) Jd(t))

+ (Jb(0) Jk(t)) + KJb(0) Jp(t)) + (Jb(0) Jb(t)) + KJb(0) Ja(t)) + (Jb(0) Jd(t)

+ (Ja(0) Jk(t)) + (Ja(0) Jp(t)) + (Ja(0) Jb(t)) + (Ja(0) Ja(t)) + (Ja(0) Jd(t))

+ (Jd(0) Jk(t)) + KJd(0) Jp(t)) + (Jd(0) Jb(t)) + (Jd(0) Ja(t)) + (Jd(0) Jd(t))
(3.30)

The effective thermal conductivity is for heat conduction between any two types of

interactions is

V 00
rii (Ji(0) -Jj(t))dt (3.31)

3kBT 2 J0

where the subscripts i and j refers to the two types of interactions. Thus, calculating

an effective "thermal conductivity" for interaction type i requires the dot product of

the flux due i. Cross correlations Ji(0) -Jj(t) represent the transfer of energy from

interaction type i to interaction type j and is a major component of heat transfer in

octane. Indeed, these cross correlations are what makes heat transfer in bulk molec-

ular chain liquids possible since, as established previously, heat transfer pathways in

these systems must pass through multiple types of interactions.
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Chapter 4

Calculation Procedures

The previous chapters introduced the methods of obtaining accurate molecular tra-

jectories and the necessary theory to analyze the trajectory to obtain thermal transfer

properties. This chapter covers the specifics about applying the topics discussed pre-

viously to bulk octane and includes the necessary simulation system parameters.

4.1 System Convergence

As discussed previously, the time step must balance between minimizing errors from

integration and computational efficiency. Typically, the time step is set by the need

to keep the system energy stable. Additionally, the time step must be small enough

so the atoms in the system do not move too far in each step and crash into each

other. To converge the energy in the simulated system, a time step of 1 fs is required

(figure 4-la). However, the heat flux correlations show oscillations with a period of

about 6 fs so a smaller time step of 0.1 fs was chosen to produce a smooth heat flux

curve.
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Figure 4-1: The time step size was found in two steps. (a) The first limit on time
step size is the convergence of energies. The fluctuations over time in total energy
per octane molecule is plotted for several time step sizes. As the time step becomes
bigger than 1 fs, the energy becomes inaccurate. Convergence in energy is reached
at 1 fs, and smaller time steps do not significantly alter the energy. (b) The heat

flux correlation (the beginning of on example) is shown here, has oscillations around

170 THz, which a time step size of I fs cannot accurately capture. Therefore, the

time step size of 0.11 fs was chosen to produce smooth correlations.

As discussed in chapter 2, the size of the base cell often affects computed properties.

The base cell used in this thesis contains 1125 octane molecules, which was chosen

to balance between computational speed and accuracy of the computed thermal con-

ductivity (figure 4-2). Increasing the base cell to 1944 octane molecules changes the

calculated thermal conductivity by less than 10% but almost doubles the total com-

putational time needed. The base cell is a 67 A x 67 A x 67 A cube, and periodic

boundary conditions are used during calculations.
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Figure 4-2: The system size must be large enough to converge the calculated thermal
conductivity. Acceptable convergence is reached at a system containing 1125 octane
molecules. Increasing the system to 1944 octane molecules changes the calculated
thermal conductivity by less than 10%. Each thermal conductivity value in the plot
is the average of 6 separate runs.

4.2 Choosing Equilibration Time

The initial system is created using a regular arrangement of octane molecules matched

to the experimental density, as shown in figure 4-3. Equilibration then serves the

dual purpose of randomizing the molecule positions and distributing the kinetic and

potential energies to give stable system temperatures and pressures even after the

thermostats and barostat have been removed. The cartesian coordinates of each

atom before and after a 10 ps equilibration is plotted in figure 4-4. No discernible

patterns remain, showing that the equilibration time is sufficient to randomize the

position of the molecules.

The equilibration is broken into two phases, as shown in figure 4-5, each lasting 5 ps

in simulated time. The first phase is in NVT while the second is NVE. System energy

61



and temperature stabilizes after about 2 ps of NVT equilibration. Even after the

thermostat is removed, the system temperature remains stable during the subsequent

NVE equilibration, indicating that the system energy has been distributed appro-

priately between kinetic and potential energy during the NVT equilibration phase.

The constant temperature in NVE ensembles allows the NVE ensemble to be used

for collecting data for the Green-Kubo formula for thermal conductivity and ensures

that the Green-Kubo formula applies to this system. The first 2 ps of the production

run after the two equilibration phases are also shown in figure 4-5. The production

run is in NVE and also shows stable system temperatures.

The production run lasts for a total of 10 ps. An example of the heat flux correlation

calculated during the production run is shown in figure 4-6. Note that the correla-

tion decays to small oscillations around zero after about 1.5 ps in simulated time.

The calculated thermal conductivity also begins to oscillate around the final value of

0.24 W/(mK) after about 1.5 ps (figure 4-7).

(a) (b)

Figure 4-3: Images of the simulation system projected onto the x-y plane. The system
consists of a 67 A x 67 A x 67 A cubic base cell containing 1125 octane molecules and

periodic boundary conditions. (a) The initial system is created by arranging octane

molecules in a regular pattern. (b) The system after equilibration has randomized

the atomic positions.
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Figure 4-5: Plot of the system energy and temperature during NVT and NVE equi-
libration and during the beginning of the production run.
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Figure 4-6: An example of the calculated correlation function for the octane system.

The correlations decay to small oscillations around zero after about 1.5 ps.
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Figure 4-7: Calculated thermal conductivity as a function of the maximum correlation

time in the integral. This is the average of 10 separate simulation runs. The average

value is 0.24 W/(mK). Black bars denote the boundaries of the expected error.
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Chapter 5

Results and Discussion

This chapter covers the results from the simulations and discusses the significance of

the results to shed more insight into heat transfer in bulk octane.

5.1 Comparison to Experimental Data

As a numerical method, results from molecular dynamics simulations of a system

should be validated against experimental results. The density presents a simple check.

The density for a range of temperatures for the octane system is shown in figure 5-1.

The calculated values reproduce the experimental trend and the difference between

the calculated value and the experimental ones is less than 10%. A second check is

to compare the calculated overall thermal conductivity against experimental values.

The calculated total thermal conductivity of the system, which is the average of 10

separate runs, is shown in figure 4-7. The average value is 0.24+0.11 W/(mK). The

experimentally measured thermal conductivity for octane is around 0.13 W/(mK) [73],

which is within the expected error. The comparisons with experimental values show

that the simulated system does capture the behavior of bulk octane and validates the
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simulation parameters.
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Figure 5-1: Density of the calculated octane MD system and experimental results

from NIST [731. The calculated values reproduce the trend from experimental vales.

The error between calculated and experimental values is about 10%.

5.2 Effective Thermal Conductivities

The total thermal conductivity was split into the contribution from each type of

interaction using the methods previously described in chapter 3 and shown in figure 5-

2. All the results from this section are the averages from 10 separate simulation

runs where the only difference is the random number seed. These effective thermal

conductivities are calculated using the heat flux over all the atoms in the system and

so are averages over the entire system. Of the effective thermal conductivities, the

ones that involve pairs, bond stretching, angles bending, and kinetic energy terms are

significant while the ones that involve dihedral interactions are all essentially zero.
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This means that dihedral interactions carry negligible amounts of heat through the

bulk octane system. The effective thermal conductivity of bond stretching (bb) is

the highest, meaning that most heat in the system is transferred by bond stretching

exciting other bond stretching modes. This is in line with the fact that carbon-carbon

bonds are every effective at conducting heat [1]. Pair-pair interactions (as described

in chapter 2, the pairs interactions are the sum of the van der Waals and electrostatic

interactions), are almost as high as bond-bond interactions. On the surface, this is a

bit surprising since van der Waals and electrostatic interactions in alkanes are much

weaker than bond interactions. However, the pair-pair interaction is a major part

of intermolecular heat transfer and previous non-equilibrium MD results have shown

that intermolecular interactions account for about 50% of total heat transfer in bulk

octane f271. Therefore, it is reasonable for pair-pair interactions to have a fairly high

effective thermal conductivity in comparison to the other interactions.

The effective thermal conductivities can be split into two categories: intermolecular

heat transfer and intramolecular heat transfer. Specifically, effective thermal conduc-

tivities involving only bonds, angles, and dihedrals are intramolecular heat transfer

since these interactions are limited to atoms within the same molecule. Intermolecu-

lar heat transfer requires at least one of the interactions to be pairs or kinetic energy

since these are the interactions that can carry heat from one molecule to another.

The sums of the two categories are 0.14 W/(mK) for intramolecular heat transfer

and 0.10 W/(mK) for intermolecular heat transfer. This can be understood in the

context of a circuit analogy for heat transfer, as shown in figure 5-3. In the anal-

ogy, the thermal resistance for heat transfer along the chain and between the chain

are in series so no matter how large the intramolecular heat transfer is, the thermal

conductivity in the bulk system will not be significantly increased unless intermolec-

ular heat transfer is also high. The result that the thermal conductivity within a

molecule is only 0.14 W/(mK) is surprising since previous studies have shown that

the carbon-carbon bond is capable of high heat transfer, but the thermal conductiv-
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Figure 5-2: The total thermal conductivity has been split into effective thermal con-

ductivities for each type of interaction. Pairs, bond stretching, angle bending, dihe-

dral, and kinetic energy terms are labeled by p, b, a, d, and k, respectively. The first

letter denotes the interaction providing J(O) in the correlation (J(O) - J(1)), and the

second letter denotes the interaction providing J(t). The effective thermal conduc-

tivities include correlations of an interaction with itself (the two letters in the label

are the same) and cross interactions between different types of interactions (the two

letters in the label are different).

ity of a single carbon chain becomes smaller as the length decreases [1] since, as the

chains get shorter, longer wavelength phonon modes are eliminated and the length

of the chain limits mean free path, which both significantly reduce thermal conduc-

tivity. Additionally, in a bulk system, the heat transfer within a molecule is further

disrupted by interactions with surrounding molecules.

In figure 5-2, several interactions produce negative terms. On the surface, this seems

to indicate heat flowing from a colder area to a hotter area, which would be a violation

of the Second Law of Thermodynamics. However, these interactions cannot occur

without the other interactions so the net thermal conductivity is still positive and
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Figure 5-3: Circuit analogy for heat transfer in bulk octane. Because intermolecular
and intramolecular heat transfer are in series, only increasing one will not be enough
to drastically increase bulk thermal conductivity.

does not violate the Second Law. These negative terms can be understood as heat flux

exchanges and this situation would be similar to radiative heat exchange, where the

radiation from the colder body to the hot body must also be accounted for to arrive

at the correct net heat transfer. Negative thermal conductivity was also observed

in MD studies on single polyethylene molecules [72]. Additionally, non-equilibrium

MD studies on water have also observed heat flux in the opposite direction of the

temperature gradient [29].
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Chapter 6

Conclusion

6.1 Summary

Understanding heat transfer in liquids at the atomic level would greatly enhance the

arsenal of tools for thermal engineering by allowing liquids with specific properties

to be designed. This thesis uses equilibrium MD and the Green-Kubo formula to

model the heat transfer in bulk octane and introduces a method of splitting the to-

tal thermal conductivity into the effective thermal conductivity due to each type of

atomic interactions. The effective thermal conductivities were calculated for bulk

octane. When taken over the entire system, intramolecular and intermolecular heat

transfer in bulk octane are both significant components of the total heat transfer,

with the intramolecular effective thermal conductivity being 0.14 W/(mK) and in-

termolecular effective thermal conductivity being 0.1 W/(mK). Heat transfer in the

carbon backbone of bulk octane is not nearly as high as that in the carbon backbone

of polyethylene [1].
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6.2 Future Work

This thesis has explored thermal transport in bulk octane with equilibrium MD, but

many questions of atomic level thermal transfer remains unanswered. Calculations at

different temperatures and pressures could further link atomic interactions to thermal

conductivity and analysis of the the molecular conformation could identify shapes that

are more effective heat carriers. There are also additional types of interactions, like

hydrogen bonding, to be explored.

Octane is a simple chain molecule and do not contain features found in more complex

molecules, such as functional groups. The addition of other elements would likely

significantly complicate the heat transfer picture. On one hand, functional groups

can introduce stronger intermolecular interactions into the system that would boost

intermolecular heat transfer. On the other hand, functional groups could disrupt

heat transfer along the chain backbone and decrease intramolecular heat transfer. A

detailed analysis would be required to fully explore how these two factors balance in

the bulk heat transfer of the system.
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