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Abstract

U.S. logistics costs account for nearly 30% of every sales dollar and mathematical modeling
can play an important role in analyzing supply chains and implementing efficient and effective
solutions. We address some generic modeling issues that arise in supply chain optimization,
as well as other application domains, and then examine a specific application context called
merge-in-transit.

Many supply chain applications are naturally modeled as network flow problems with com-
plex cost structures. We address modeling techniques for problems with non-convex piecewise
linear costs, and apply these techniques to several applications in supply chain management.

The underlying models are mixed integer programs. We first show that the linear program-
ming relaxations of three classical textbook models are equivalent, each providing the lower
convex envelope of the given cost function. We then investigate the use of variable disaggre-
gation to tighten the formulation and attain better linear relaxation bounds. We show how
to interpret the disaggregated models geometrically and examine their practical significance
computationally on several networks with varying cost structures. In addition, we investigate
the use of variable disaggregation to help solve a facility planning problem and the network
loading problem. For each problem addressed, the disaggregated models provide significantly
better lower bounds than the aggregated models. In fact, the objective value of the linear
programming relaxation of the disaggregated formulation is frequently within 1% of the opti-
mal objective value. In addition, if the resulting formulation is too large to solve directly with
branch and bound, we can often use the linear relaxation solution in a rounding heuristic to
attain quality integer, feasible solutions.

We apply these techniques to a specific application in supply chain management called
merge-in-transit. Merge-in-transit is a two-echelon distribution system that might be appro-
priate when customer orders are composed of components produced at geographically dispersed
locations. We develop a basic model that addresses merge-in-transit operations and then use
disaggregation to improve the formulation. Because the models quickly become too large
to solve using traditional approaches, we develop and implement an algorithm that combines
row and column generation, rounding heuristics, and branch and bound to efficientiy solve
realistically sized problems.
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Title: Dean of Engineering and Institute Professor, MIT
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Chapter 1

Introduction

Supply chain management is a vast field that touches upon a wide range of issues — from im-
plementing integrative strategic management to developing precise operating models. Supply
chains are important in practice, as reflected for example, in the U.S. logistics expenditure
of almost $900 billion annually!. In fact, the logistics share of the gross domestic product
in the U.S. is larger than that of health care, social security or defense. Moreover, logistics
costs account for nearly 30% of the sales dollar in the U.S%2. The design and operation of
these supply chains raise many fascinating research issues. Formal models of supply chains
are often complex and can be very large and difficult to solve. For example, supply chain op-
timization often leads to large-scale models with tens of thousands of variables and constraints
and complex cost structures. This thesis addresses some generic modeling issues that arise in
supply chain optimization, as well as other application domains, and then examines a specific
application context called merge-in-transit.

This thesis is organized into five chapters. In Chapter 2, we provide an introduction to
supply chain management and motivate the use of optimization techniques. We also highlight
several companies that have successfully implemented optimization models to address a variety
of supply chain issues. We can model many of the underlying logistics issues in supply chain
mar.agement as network problems. Due to economies of scale inherent in the rates charged

by transportation companies, the flows on the networks often have non-linear flow costs. We

'Delaney, R.V., 10th Annual “State of Logistics Report”, 1999, Cass Information Systems, St. Louis, MO.
*Kasilingam, R.G., Logistics and Transportation, Design and Planning, Kluwer Academic, 1999.
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will focus on situations with piecewise linear flow costs.

In Chapter 3 we discuss and compare modeling techniques for these problems. In particu-
lar, we examine three common models (multiple choice, incremental, and convex combination)
and prove the equivalency of their linear programming relaxations. We show that each relax-
ation estimates the actual cost function with its lower convex envelope. In many situations,
we are able to improve upon this estimate by disaggregating the variables to obtain tighter
formulations. We provide a structural result stating that the disaggregated formulation ap-
proximates the actual cost function with its lower convex envelope in & dimensions, where k
is the dimensionality of the disaggregation. We use one-arc, three dimensional examples to
visualize the effects of disaggregation. For situations with concave flow costs, we are able to
express the impact of disaggregation explicitly in closed form. In studying this disaggrega-
tion technique, we will apply it to five network problems: (1) a network flow problem with
a single origin or destination, (2) a multi-commodity network flow problem, (3) a facility lo-
cation problem with multiple capacity options, (4) the network loading problem, and (5) the
merge-in-transit problem.

Chapter 4 examines the computational impact of the disaggregation techniques discussed
in Chapter 3 in solving the linear programming relaxations for several networks with a variety
of cost structures. As these results show, the disaggregated models provide much tighter
relaxations than aggregated models. In fact, for network flow problems with a single origin or
destination and concave costs, the solution to the relaxed disaggregated models are frequently
integral. For other cost structures, the objective value of the disaggregated formulations are
often within 3% of the optimal objective value, representing a substantial improvement upon
the aggregated formulation. For example, on a particularly striking instance, the objective
value of the linear relaxation of the aggregated formulation was over 500% from the optimal
objective value while the objective value of the relaxation of the disaggregated model was
within 1%. For large instances, we use an easily implemented rounding heuristic to obtain
very good upper bounds. In addition to reporting on a set of random instances, we study
the relaxation gap of the various formulations on a multi-commodity network with concave
costs as we vary the initial fixed charge, the number of commodities, and the magnitude

of the demands. This analysis provides a sense for how various network attributes effect
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the performance of both aggregated and disaggregated formulations. We find that the fully
disaggregated formulation is consistently tight (with objective values for the linear relaxations
usually within 1% of optimal), but the relaxation gaps for the formulations with aggregated
variables increase sharply as the value of the initial fixed charge increases. This result suggests
that disaggregation is particularly useful cn problems with large fixed charges. We obtain
similar results as we vary the magnitude of the demands. We also examine computational
results for the facility location and network loading problems, which both possess staircase cost
functions. We again find that disaggregation can be very helpful in obtainirg better lower
bounds, however, solving the linear relaxation of instances with staircase costs can be very
time consuming.

In Chapter 5 we introduce and examine the merge-in-transit problem, applying the previous
analysis to develop strong formulations and good solution heuristics for this topical application
in supply chain management. We describe the problem context and the specific operational
issues that we wish to model. As we define and model it, the merge-in-transit problem is a
multi-commodity, integer, generalized network flow problem. For realistically sized instances,
even the most basic formulation contains over 60,000 constraints and 100,000 variables, mostly
integer. We show how we can apply the disaggregation techniques discussed in Chapter 3
to develop several valid formulations for this problem. As we disaggregate, the formulations
become larger (in most cases at least doubling the size of the basic formulation), but the
linear relaxations become tighter. By employing dynamic column and constraint generation,
we implement an algorithm that is able to solve realistically sized problems to within 5% of
optimal in 8-10 hours.

Finally, Chapter 6 reviews the contributions of this research and provides a glimpse into

potential future research directions.

13



Chapter 2

An Introduction to Supply Chain

Management

2.1 Definitions ui Supply Chain Management and Logistics

As articulated by Lambert et. al [21], supply chain manogement is “the integration of key
business processes from end user through original suppliers that provides products, services,
and information that add value for customers and other stakeholders.” According to this
definition, the field includes product development, procurement, manufacturing, demand man-
agement, customer relationship management, order fulfillment and distribution. Supply chain
management attempts to cut-across organizational boundaries and manage inter-corporate
processes.

Each company must determine the scope of its supply chain considerations as well as the
type of relationships that it desires with each member of its supply chain. These considerations
often lead companies to forge strong partnerships with key suppliers and/or customers. Tt
is usually unnecessary to foster relationships with every member of the supply chain. For
instance, a cereal company might desire a strong relationship with its box supplier, but not
require a strong relationship, or likely any relationship at all, with the company that grows
the trees used to make the pulp for these boxes. As each company exarmnines its supply chain,
it needs to assess the direct value of each member of its supply process and determine if it will

manage the entire chain. Supply chain management, then, is about managing relationships
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and processes.

Logistics is a key component of supply chain management. As defined by the Coun-
cil for Iogistics Management, logistics is “that part of the supply chain process that plans,
implements, and controls the efficient, effective flow and storage of goods, services, and re-
lated information from point-of-origin to the point-of-consumption in order to meet customers’
requirements.” In this part of supply chain management, analytical modeling can play a

particularly important role.

2.2 Supply Chain Networks

There are many ways to define and conceive of supply chains. As shown in Figure 2-1, supply
chains typically have an underlying network structure that represents the flow of material,
people, and financial resources from material /resource procurement, through product assem-
bly/manufacture, and on to distribution centers and finai customers. These entities are often
competing for scarce or shared resources, including space, time, money, and people. The
stylized network shown somewhat arbitrarily divides the overall supply chain into three inter-
locking components - a procurement/sourcing network, an assembly/manufacturing network,
and a distribution network. The figure also shows parallel networks representing two products.

The complexity of the supply chain network will depend upon the underlying application
context. The procurement network could have tens, hundreds, or even thousands of supply
points representing both internal sources and outside vendors for raw material and components.
The network might have its own assembly structure as the supply chain converts raw materials
into intermediate components. This assembly/manufacturing network could represent tens
of geographically dispersed plants. The distribution network could have tens or hundreds of
warehouses and distribution centers and hundreds or thousands of dealers, retail outlets or
customer zones. Moreover, the supply chain might be producing hundreds of related products
and thousands or hundreds of thousands of stock keeping units (SKUs).

The efficiency of this network has a significant influence on the price and delivery time
of the final product. Therefore, coordinating network activities is of primary importance for
achieving good system performance. The coordination/optimization of the supply chain is

complicated by several factors:
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Product 1

Product 2

Sourcing Polnts e Production Plants «——e{lp>- Distribution Centers

Component Production Manufacturing Facllities Retall Outlets
Supplier/Component Assembly/Production Distribution
Network Network Network

Figure 2-1: A Typical Supply Chain Network

e The various components, products, and distribution channels are sharing common re-

sources (scarce production or distribution facilities, people, financial resources).

o The flows in the network are linked by precedence relationships, timing, and other “flow”

interactions.

e The system is simultaneously attempting to optimize/balance multiple metrics including

costs, asset utilization, customer responsiveness and service, flow time, and inventory.

e Typically, multiple organizations within a corporation (procurement, marketing, manu-
facturing, transportation, logistics, customer service) will have ownership and responsi-

bility for various components of the supply chain.

e Global networks must include the effects and restrictions of international trade laws, duty

and duty drawback, and international taxes.
o The supply chain is combinatorially complex, with an enormous number of options for
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its design and operation.

2.3 Optimizing the Supply Chain

There are many opportunities for optimization within supply chains, ranging from a localized
perspective (e.g., optimizing yield on any piece of equipment) to increasingly broader system-
wide effects, for example, optimization within any node (a plant, a warehouse), optimization
over some sub-network, and overall optimization of the entire network (often a daunting task).
Models can answer a variety of issues that aid in coordinating within and across the supply
chain. They also can range from high-level strategic decision-making to everyday operational

issues. Some examples include:

- sourcing choices - degree of outsourcing and vertical integration

- production scheduling - assignment of customers to distribution centers
- plant loading - vehicle routing and crew scheduling

- technology/equipment choices - location of plants and distribution centers

- inventory positioning and levels - transportation mode selection

The available literature and software has traditionally focused on small pieces of the sup-
ply chain network. The research and practitioner communities have successfully addressed
many issues in the Distribution Network, with algorithms and software developed for making
decisions regarding location of distribution centers and design of the distribution network in-
cluding the assignment of warehouses to plants and customers to warehouses. The production
scheduling and inventory control literature has addressed the Assembly/Production Network
extensively. Less work seems to have examined optimization of the Supplier/Component Net-
work, although there are examples of companies developing models for examining this piece
of the supply chain. Figure 2-2 shows some examples of how and where some companies have
used optimization.

As shown in Figure 2-2, several models address both the Assembly/Production Network
and the Distribution Network. These models simultaneously answer questions concerning prod-
uct allocation to plants and the design of distribution networks. In addition, two companies
have created models to optimize across all three sub-networks. The GM model [7] focuses on

product allocation and planning, but includes modules that allow simultaneous analysis of the
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other components of the supply chain. It also has the capability to consider global issues. The
DEC model [2], developed in collaboration with Insight, is the most comprehensive model that
we have encountered. It is truly a global optimization model. The system recommends a com-
bined vendor, production, and distribution network that minimizes cost or weighted cumulative
production and distribution times, subject to meeting estimated demand and restrictions on
local content, offset trade, and joint capacity for multiple products, echelons, and time periods.

Experiences vary across companies, but most report that with careful and proper implemen-
tation, optimization has provided improved solutions over other techniques, such as simulation
and heuristic methods, and have provided means for substantial cost savings. For example,
although it took years to develop, estimates indicate that the DEC/Insight model has helped
save the company over $100 million. And although the Libbey-Owens-Ford model [23] has
a much smaller scope, it has provided the company with annual savings of over $2 million.
Similarly, DowBrands [27] attributes an annual savings in logistics costs of $1.5 million to its
distribution model.

These problems are naturally large. In order to represent them with models that are of a
solvable size, analysts commonly use aggregation and pre-selection. The Hunt-Wesson model
(20], for example, aggregated hundreds of products and many thousands of customers into 17
product groups and 121 customer zones. It also eliminated thousands of variables by limit-
ing possible plant/product group assignments, distribution center locations, and distribution
center/customer zone assignments to those that were “reasonable.” For example, the model
does not create a variable representing the assignment of a customer on the east coast to a
warehouse location on the west coast. Using aggregation and pre-selection, analysts reduced
the Hunt-Wesson problem to a size that could be solved efficiently. Finding ways to aggre-
gate variables and constraints without losing information is often an important consideration
when developing a large scale model (note: this aggregation of data is different than the model
aggregation we discuss in Chapter 3). Even with significant aggregation, these problems can
be quite large. For instance, the Libbey-Owens-Ford model deals with four plants, over 200
products, and over 40 demand centers in a 12-month planning horizon. The resulting linear
program has approximately 99,000 variables and 26,000 constraints and requires three to four

hours to solve on a Sun Sparcstation. The DEC/Insight model typically solves mixed-integer
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problems with 2,000-6,000 constraints and up to 20,000 variables.

The algorithms for these models use various advanced solution techniques. Many of them
exploit the underlying network structure and use decomposition or relaxation techniques to
efficiently solve them. The Hunt-Wesson model was the first to implement Bender’s Decompo-
sition [15], and some recent models still rely on this approach. The DEC/Insight model uses
elastic constraints, row factorization, and scaling.

In some supply chain optimization efforts, like the DEC/Insight project, developing and
implementing the appropriate model is a difficult task and, by itself, is a contribution to the
literature. In other efforts, such as the Hunt-Wesson model, the algorithmic development
requires the most insight and dedication. Regardless of the focus, there are many ways that
optimizing parts, or all, of the supply chain can contribute to both the research and practitioner
communities.

Although many companies do not use optimization as part of their supply chain toolkit, the
use of software solutions is growing. Companies such as 12, CAPS and Manugistics are leading
the industry with customizable software that uses optimization models and good-performing

heuristics to solve many supply chain issues.

2.4 Summary

The field of supply chain management and logistics has grown substantially in the last ten
years. Companies are increasingly looking to cross functional borders and find better ways to
manage the entire supply chain, from procurement through distribution. A variety of software
companies are attempting to profit from this growth through software solutions. In addition,
there has been a steep increase in the number of third party logistics companies. In the last
ten years, the number of contract logistics companies has grown from a few to hundreds!.

As the need for faster, less expensive, and more effective logistics solutions has grown,
the role of optimization has become more clear. Many companies have already developed
optimization models to address a variety of issues, ranging from strategic decisions such as

facility location, to operational decisions about production scheduling and vehicle routing.

!'Yossi Sheffi, Director of the MIT Center for Transportation Studies,
http://web.mit.edu/afs/athena.mit.edu/org/c/cts/www/education/ed _mlogwhystudy.html
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These models are attempting to manage a very complex system, and as a result, they often

require clever modeling techniques, as well as advanced algorithmic approaches.
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Figure 2-2: Examples of Optimization Applications
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Chapter 3

Modeling Network Flow Problems
with Piecewise Linear Cost

Functions

3.1 Introduction

As indicated in the previous chapter, many supply chain and logistics problems can be viewed
and modeled as networks. The cost structure of these systems are often complex, with fixed
charges and possibly discontinuous piecewise linear flow costs. The importance of these
problems motivates the study of more general network flow problems with piecewise linear
costs. The insight gained from this investigation could be used in modeling and solving not
only logistics problems, but also problems in other application domains such as transportation
and telecommunications.

Within this chapter we will describe a generic problem, review relevant literature, and
discuss modeling approaches. We will then examine the use of disaggregation to improve
the linear programming relaxation of the problem and gain some structural insight into the
effects of disaggregation. Along the way, we will examine disaggregation applied to several

specialized problems.
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3.2 The Problem

We are given a directed network, G = {V, A}, with a vector, d, of supplies and demands of a
single commodity at the nodes. We consider the problem of finding the minimum cost flow
when the cost, ge(z.), on arc e is a piecewise linear function of z., the total flow on the arc,
and might include fixed charges. Letting g(z) = ) .c 4 ge(%e), we can express the network

flow problem as follows:

Minimize g(z) (3.1)
subject to: Nz = d (3.2)
z > 0. (3.3)

Constraints (3.2) are the node balance constraints typical in a network flow formulation.
N denotes a standard node-arc incidence matrix. For each node, d; > 0 denotes a demand
node with demand d;, d; < 0 denotes a supply node with supply —d;, and d; = 0 denotes a
transshipment node. In our context, this formulation is, in general, nonlinear since the cost
function can be nonlinear.

We will also consider multi-commodity versions of this problem where each commodity has
a specific origin and destination. In this case, we will define z* as the flow of commodity k, and
letz=>3", zF. In some applications we could consider, we might include capacity restrictions
or other constraints. As we will see, we can add arc capacities through the definition of
the cost function and do not require additional constraints beyond the basic formulation.
Some problems, however, require other complicating constraints. For simplicity, we consider
the most basic formulation. The techniques and analysis presented are applicable for many
situations with a more complex constraint structure. The merge-in-transit application we
consider in Chapter 5 provides an example.

We know the general version of this problem is NP-hard because a special case is the fixed
charge network flow problem. In this variant of the problem, we incur a fixed charge for
using an arc in the network. For example, in designing a telecommunications network, we

pay a fixed charge for installing a line, but incur no marginal unit flow cost. This special
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case is known to be NP-hard. Therefore, the more general problem we are considering is also
NP-hard. We will examine methods of modeling the cost function and will seek formulations

that provide strong linear programming relaxations.

3.3 Applications

Many network flow applications have piecewise linear flow costs. In Chapter 5, we examine
one example, called the merge-in-transit problem, encountered in supply chain management.
This problem can be defined as a generalized network flow problem. Two other applications,
facility location and network loading, are often not modeled as network flow problems, but
both can be interpreted within a network flow framework if we permit piecewise linear costs.

In the standard facility location problem, we need to determine which facilities to open
to meet the demand of a given set of demand points. The cost associated with each facility
includes a fixed charge for establishing the facility and often a linear production/transportation
cost. Many real-world applications, however, possess a more complicated cost structure.
Holmberg [18] and Holmberg and Ling [19] discuss situations in which both the fixed and
variable costs vary for different production levels. This situation might arise if a facility can
be opened with alternative capacities. The result is a staircase cost structure with breakpoints
at each potential capacity, as in Figure 3-1. We can model this application as a network flow
problem with piecewise linear flow costs, using a network like the one shown in Figure 3-2.
The costs on the arcs from the dummy node into the facilities will have a structure shown in
Figure 3-1, which includes both the set-up cost at the facility and any unit production costs.
The arcs between facilities and customers will incur linear transportation costs.

For situations with no transportation costs, we can replace the set of customer nodes with
a single destination node and include an arc from each: facility to this aggregated node. We
can then eliminate the facility nodes as well. As a result, this facility location problem can
be reduced to a network with two nodes (the dummy node and a single aggregated node
representing all the customers) and m parallel arcs, one for each facility. This case can be
extended to the situation when for any fixed customer, transportation costs from all the facility
locations is the same. In this case, the total transpertation cost is constant for all solutions

and we can, therefore, remove it from the objective function and reduce the problem to one
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Figure 3-1: An Example Cost Function for the Facility Location Problem

with no transportation costs. As we will see in Chapter 4, we can solve the linear program
of this special case using a greedy algorithm and use this solution to easily generate a feasible
integer solution.

The network loading problem is another application that we can consider in the context
of network flow problems. In this problem we need to install sufficient capacity on a network
to simultaneously route a set of demands between pairs of nodes. We can install capacity in
bundles of C' units and often several types of capacity, with varying values of C, are available
to be installed on each edge. This problem arises in telecommunications when we can install
lines with varying capacities on each edge of the network. As an example, we can install
two types of lines, OC1 or OC4 lines. The capacity of an OC4 is 4 times that of an OC1,
but its cost is less than 4 times as much. Therefore, we incur economies of scale as flow
values increase. The problem is to find a least cost combination of OC1 and OC4 lines to
install on each edge of the network so that it has sufficient capacity on each edge to carry all
the demand. For these telecommunications applications, we generally consider an undirected
network so the edge capacity is shared by flow on both the directed arcs, (¢,5) and (j,2). For
any given flow value on an edge, some combination of OC1 and OC4 lines provides the most
cost-effective loading. We can therefore consider the installation charge as a flow cost. The

resulting cost function on each arc is piecewise linear and takes the form shown in Figure 3-3,
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Figure 3-2: An Example of a Network for the Facility Location Problem

which corresponds to a situation where the cost of an OC1 line is three times as much as an

OCH4 line.

Flow

Figure 3-3: An Example Cost Function for the Network Loading Problem

Researchers most often discuss the network loading problem as an application in telecom-
munications, but it also arises in logistics. In this context, we are given freight that needs
to be moved between pairs of nodes of a network. This freight can be shipped in containers
of various sizes. The problem is to determine how many containers of each size will be re-
quired on each arc to simultaneously route all the demand at a minimum cost. This problem

varies from the telecommunications application since the network is directed, and therefore the
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capacity installed on arc (2, j) is not available to route freight on the reverse arc (3, ).

The merge-in-transit, facility location, and network loading problems are three examples
of network flow problems with piecewise linear costs. Each appiication could benefit from the
modeling techniques we discuss and the insight we gain in this chapter. We will examine the
facility location problem and both the directed and undirected versions of the network loading

problem more closely later in this chapter and in Chapter 4.

3.4 Literature Review

Although the literature on network flows is extensive, work on modeling problems with piece-
wise linear cost functions is limnited. Balakrishnan and Graves [3]| develop a Lagrangian-based
algorithm for the uncapacitated network flow problem with piecewise linear concave flow costs.
Although their approach is generic and can be implemented for the non-concave case, to our
knowledge, the literature contains no computational experience for implementations of this al-
gorithm on networks with non-concave costs. Cominetti and Ortega [10] solve the capacitated
network flow problem with piecewise linear concave costs with a branch-and-bound-based al-
gorithm. They exploit the concavity of the cost functions and employ sensitivity analysis to
improve the cost approximations and obtain improved lower bounds. Motivated by a logistics
application, Chan, Muriel, and simchi-Levi [8] examine the multi-commodity version of the
same problem. They derive structural results on a set-partitioning formulation, and then use
this insight to develop a linear programming based heuristic.

Other relevant work includes Popken [26] who studies the multi-commodity flow problem
and develops an algorithm that is valid for non-concave cost structures, assuming they are
continuously differentiable. Holmberg [18] develops an algorithm for the facility location
problem based on convex linearization and Bender’s decomposition. Holmberg and Ling [19]
use a Lagrangian heuristic for the same problem. In both papers, the cost functions are
discontinuous, and thus non-concave, but the algorithms developed are specific to the facility
location problem. The network loading application is covered extensively in [13].

Network design problems are related to this work. Magnaati and Wong (22| survey network
design issues in transportation planning, and Balakrishnan, Magnanti, and Mirchandani (4]

provide an annotated bibliography on general network design issues.
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In this research, we study the effects of model disaggregation. @A common approacn
in solving larg. logistics models is to use aggregation to decrease the size of the problems.
Geoffrion [14] examines the issue of aggregating data in logistics planning models and develops
error bounds. In two papers, [29] and [30], Zipkin studies the implications of both row
and column aggregation and develops a priori and posteriori bounds on the resulting loss of
accuracy. Mendelssohn [24] improves upon these bounds. In another study of aggregation,
Hallefjord and Storoy [16] examine column aggregation of 0/1 programming problems and
develop methods for improving the bounds through valid inequalities and exploiting primal
degeneracy. Although the aggregation studied in these papers has a different flavor and
purpose than the disaggregation we discuss, we can apply some of the insight we gain through

studying disaggregation to interpret the effects of aggregation.

3.5 Modeling the Cost Function

We will discuss three standard textbook methods for modeling piecewise linear cost functions.

All three introduce integer variables. We consider an arbitiary piecewise linear cost function
like the one in Figure 3-4. The cost is a function of the total flow on the arc, with the unit
flow charge and fixed charge varying according to the load on the arc. The function need not
be continuous; it can have positive or negative jumps, though we do assume that the function
is lower semi-continuous. That is, g(z) < lim;_, g(z*) for any sequence z* that approaches
z. Without loss of generality, our models assume, through a simple translation of the costs
if necessary, that g(0) = 0. As we will see, real-world applications often give rise to piecewise
linear cost functions that are, in fact, neither convex nor concave.

To define a piecewise linear cost function, we need to describe its “pieces.” Figure 3-5
illustrates the notation. On each arc e, each piecewise linear segment of the function has a
variable cost, ¢ (the slope), a fixed cost, f2 (the cost-intercept), and upper and lower bounds,
b2~! and b2, on the flow of that segment.

Notice that we can model problems with arc capacities by defining the cost function only
up to the capacity level on each arc. The bound b on the final segment will equal the capacity
on the arc. This allows us to model capacitated problems through the definition of the cost

function.
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We now present three valid models for the network flow problem with piecewise linear costs.

3.5.1 Incremental Model

As reported in Bradley, Hax, and Magnanti [5] and several other basic textbooks, in the
incremental model we define z$ as the amount of flow in the sth segment of arc e. The total
flow on an arc, . = ) _, x5, is the sum of the incremental flows in each segment. To simplify
our notation, we will write z{ as z°, omitting the edge subscript. We will use this convention
throughout this thesis for other variables and data as well, though we should remember that
these variables and data are defined for each arc. In addition, the number of segments per arc
might vary, so when we write an expression such as ), 22, we intend for the summation to be

the sum over all segments on arc e.
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To be feasible using this flow variable definition, the flow on segment s + 1 must be zero
unless segment s is “fully loaded.” That is, z**! > 0 only if z* = b* — b*~!. To model this
requirement, we introduce binary variables, y*, defined by the condition that y® = 1 if segment
s contains any flow, and y* = 0 otherwise. In addition to manipulating the flow variables, the y
variables also indicate whether we incur a fixed charge for that segment and, therefore, appear
in the objective function. In this model, we define f* = (f* + c*b*~1) — (f*~1 + c*~1b*~1),
the cost gap at the breakpoints between segments. In Figure 3-4, fl > 0 and equals the
initial fixed charge at zero flow, f’z = 0 because there is no gap at the low end of this segment,
and f"’ < 0 and f“ > 0 because the cost function jumps down and up, respectively, at these
breakpoints. If the cost function is continuous, f’ = 0 for each segment s. We can now express

the network flow problem given by (3.1)-(3.3) as a mixed-integer formulation as follows:

Minimize Zc‘x‘ +f*y’ (3.4)
8
subject to: Nz =d (3.5)
z= Zm’ (3.6)
8
(ba _ ba—l)ya+] < z° < (ba _ bs—l)ya (3.7)
z,z° >0, y®€{0,1}. (3.8)

Again, the equalities (3.5) express the flow balance constraints. In (3.6) we define the
flow on an arc as the sum of the segment flows. The two constraints in (3.7) assure that we
properly assign the y variables. They assure that if y°+! = 1, then y* = 1 and z° = b* — b°~1,
so that the previous segment is fully loaded. On the other hand, if y°*! = 0 and y* = 1, then
z® must lie within the width of segment s, i.e., z° < b — b1, And finally, if y* = 0, then
y**1 = 0 and z° = 0. Constraints (3.8) define the flow variables to be nonnegative and the y

variables to be binary.

3.5.2 Multiple Choice Model

The multiple choice model, used by Balakrishnan and Graves (3|, uses an alternative definition

of the flow variables. In this formulation, z° equals the total flow on the arc if that flow lies in
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segment s. For this definition, when a flow value of F lies in segment 5, 8 = F and z°* = 0
for all segments s # 5. As in the incremental formulation, y* = 1 if segment s contains any
flow, and y* = 0 otherwise, but in this formulation at most one y* will equal one. For this
definition of the y variables, if y* = 1, we want to include f? in the objective function. The

resulting formulation is:

Minimize Zc’m’ + f°y° (3.9
su;)ject to: Nz = d (3.10)

T = Za:’ (3.11)

b1yt < :1:: < by (3.12)

Yoy <1 (3.13)

£zt > 0, y* € {0,1}. (3.14)

The constraints in the multiple choice formulation differ from those in the incremental
formulation in two ways. First, the addition of the inequality (3.13) assures that we choose
at most one y° to be positive on each arc. Second, the segment bound constraints, (3.12), are
different than (3.7). They state that if y* = 0, then segment s has no flow, ie., 2 = 0. If

? = 1, then the total flow on the arc must lie between the breakpoints of that segment, i.e.,

bl < zf < b8

3.5.3 Convex Combination Model

The third formulation we examine is a modification of the formulation presented in Nemhauser
and Wolsey [25]. The formulation they present is not valid for discontinuous cost functions, so
we modified it to handle arbitrary functions. This formulation makes use of the fact that in a
piecewise linear cost function, the cost of a flow that lies in segment s is a convex combination

of the cost of the two endpoints of segment s, b°~! and b°. If we define multipliers, 4* and \°,
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as the weights on these two endpoints, then the following formulation is valid:

Minimize z:p,'(c’b'_l + %) + A%(c®b® + f*) (3.15)
subject to: Nz = d’ (3.16)
T o= ) (Wb + ) (3.17)

BN = g (3.18)

Yy <1 (3.19)

, ;:’,A‘ > 0, y*€{0,1}. (3.20)

In this formulation, the y variables carry the same interpretation as in the multiple choice
model. Constraint (3.19) assures that at most one of the y variables has value one on each
arc. Constraint (3.18) assures that p® + A\* = 1 for the segment corresponding to the positive
y® variable, and that u* and A® are both zero for the other segments. Constraint (3.17) defines
the total flow to be the convex combination of the two endpoints defined by x and ), and
the objective function evaluates the appropriate convex combination of the cost of these two
endpoints.

Note that in all three of these formulations, we can rewrite the flow balance constraints

using the flow definition constraints, and thereby eliminate the x variables.

3.6 Comparing the Three Models

Given that all three of the previous formulations are valid, it is natural to ask if one is better
than another. An important measure for assessing the quality of a mixed integer programming
formulation is the strength of its linear relaxation. The following result characterizes the

relaxations of these three forinulations.

Proposition 1 The linear programming relaxations of the incremental, multiple choice, and
convex combination formulations are equivalent, in the sense that they each approrimate the

real cost function with its lower convez envelope.

To establish this result, we need to show that for any arc e with a total flow Z,, the objective

value of the linear relaxation obtained by optimally choosing the other variables is given by
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the lower convex envelope of the cost function on arc e. As before, we omit the arc index e.

We will consider each formulation separately.

Proof: Convex Combination Formulation

By relaxing the integrality restriction on the y variables, we can combine constraints (3.18)
and (3.19) into }_,(x® + A®) < 1 and we can eliminate the y variables. Any representation of
Z as a convex combination of the breakpoints, therefore, provides a feasible solution. The cost

minimizing convex combination is given by the lower convex envelope of the cost function. B

Proof: Multiple Choice Formulation

1. We will prove the result by first showing that every extreme point of the linear relaxation
is a convex combination of two endpoints of the piecewise linear segments. We first note two
facts, (a) and (b).

(a). Every extreme point of the poiyhedron 13={(a:,y) € N2 : b lys < x° < by® Vs,
Y,¥* <1,y >0,z > 0} is an endpoint of one of the segments of the piecewise linear cost
function. To see this result, suppose we optimize some cost function }_, c®z® + fy* over
the polyhedron P. Note that if ¢ > 0, then z* = b*~1y® in some optimal solution of the
linear program and if ¢® < 0, then z® = b%y® in some optimal solution of the linear program.
Therefore, we can express each z? in terms of the y® variables and eliminate the =® variables
and the b*~1y* < z°® < b*y® constraints from the model. The resulting problem has a linear
objective function and the single constraint }, y* < 1 in the nonnegative y variables. Since
the problem has a single constraint, it has a solution with at most one y* = 1 and all other y
variables at value zero. Since any nonzero such point with either z° = b*~1y® or z° = b%y*
is an endpoint of the sth segment of the piecewise linear cost function, and we have shown
that such a solution is optimal for every choice of the cost coefficients, we conclude that any
extreme point of P corresponds to an endpoint of a segment. Conversely, any endpoint of a
segment corresponds to an extreme point of P.

(b). We know that if § is a bounded polyhedion in ®* and we let wz = w® be any linear
equation in R, then every extreme point in the polyhedron Q={z € @ : wz = w°} is a convex
combination of at most two extreme points of the polyhedron Q (this is a special case of the

more general Lemma 10 provided in Section 3.9.1).
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The polyhedron P={(z,y) € R?*: Y ,z° =%, b° 1y < z* < b Vs, 3 ,3° < 1,y > 0,
x > 0} describes the linear relaxation of the multiple choice model. The results (a) and (b)
imply that every extreme point of this polyhedron is a convex combination of two endpoints
of the piecewise linear segments.

2. Next we will show that if T is a convex combination of two segment breakpoints, then
the corresponding solution (that is the solution corresponding to the same convex combination
of the two extreme points of P corresponding to each breakpoint) is feasible in P. Let Z be
a convex combination of two segment breakpoints, b*! and b%2, i.e., T = Ab*! + (1 — A)b*2
for some 0 < A < 1. Let z! be the extreme point solution of P corresponding to b°!
and, without. loss of generality, let z! = b*1y®!, That is 2! = (z!,2?,..25 ¢!, 4%.95) =
(0,0, ...,5°1,0,...0,0,1,0, ...,0,0) and similarly define 2% to correspond to b*2. We will now
consider Z = Az! + (1 — A\)z2 = (0,0,..., \6%1, ..., (1 — A\)b%%,...,0,0,...,A,0, ..., 1 — A, ...,0). We
know Z € P because it is a convex combination of two of its extreme points. In addition,
3,28 = A1 + (1 — A\)b*2 = Z. Therefore, Z € P.

3. Point (1) implies that if we evaluate the objective function at an extreme point of P,
then we are taking convex combinations of the endpoints of two segments of the cost function.
When minimizing, we will choose the convex combination with least possible cost. Point (2)
assures that this least cost convex combination is feasible. In addition, since the interior points
of a segment are convex combinations of the endpoints for that segment, we know the lower
convex envelope of the true cost function is defined by the convex combinations of the segment
endpoints. Therefore, as we vary the parameter Z, the optimal objective value specifies the
least cost convex combination of the endpoints which defines the convex lower envelope of the

true cost function. B

Because we have established that an extreme point of the linear programming relaxation
of the multiple choice formulation is a convex combination of two points where the y variables
have either the form (0,0, ...,0) (corresponding to the origin) or (0,0,...0,1,0,...,0), we have

established the following result:

Corollary 2 At an extreme point of the linear programming relazation of the multiple choice
formulation, the set of y variables assumes one of two forms: one y* > 0 (when one of the

points corresponds to the origin), or two y° > 0 and their sum is one.
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Proof: Incremental Formulation

We can establish this result using the same approach as with the multiple choice formula-
tion. We must establish, however, an analog of (a) for this formulation; letting A® = b* —b%~1,
we wish to show that every extreme point of the polyhedron ﬁ:{(m,y) € R . A%yprtl <
z* < A®y® Vs, 0 < y < 1} is an endpoint of one of the segments of the piecewise linear
cost function. Note that if ¢® > 0, then z* = A®y**+! in some optimal solution of the linear
program and if ¢® < 0, then z® = A®y®. Therefore, we can express each z° in terms of the
y® variables and we are left with the following constraints: 0 < y < 1 and y* > y*t1, for all
segments s. The fact that an extreme point solution to this system must have S, the number
of segments, independent binding constraints implies that all extreme points of P will be of
the form, (1,1,...,1,0,0,...,,0). Using these values of y to find the values for x, we see that
each such extreme point corresponds to an endpoint of the piecewise linear segments. We can
then conclude that any extreme point of P corresponds to an endpoint of a segment.

The other steps of the proof are the same as those in the proof for the multiple choice
formulation so we can conclude that as we vary Z, the objective value defines the lower convex

envelope of the true cost function. IB

Since an extreme point of the linear programming relaxation of the incremental formulation
is a convex combination of two points where the y variables have the form (1,1, ...,1,0,0, ...,0),

this proof establishes the following result:

Corollary 3 At an erxtreme point of the linear programming relazation of the incremental
formulation, the set of y variables will either be of the form (3,7, ...,7,0,0, ...,0) (when one of
the endpoints is the origin) or (1,1,...,1,%,%,...,%,0,0, ...,0) for some constant 0 <7 < 1.

Another way of viewing the equivalency of these formulations is to provide a translation

between feasible points of each formulation.

Proposition 4 The linear programming relazations of the incremental, multiple choice, and
conver combination formulations are equivalent, in the sense that we can translate a feasible

solution of one formulation into a feasible solution to the others with the same cost.

Proof: See Appendix A. B
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To see how “good” these formulations are, as measured by the gap between the solutions
to the linear programming relaxation and the integer program, we can examine the difference
between a function and its lower convex envelope. In general, we cannot place upper or lower
bounds on this gap. As in Figure 3-6, the linear programming relaxation could have a value
of zero, and so the gap can be infinite. For other instances however, there could be o gap.
For example, a convex function with no initial fixed charge coincides with its lower convex
envelope, and there will be no gap between the integer program and its linear relaxation.
This observation is further validated by network theory from which we know that a network
flow problem with a convex function and no initial fixed charge will have an integral linear
programming solution. Although we cannot place a priori bounds on this gap, for any problem
instance, examining the difference between the function and its lewer convex envelope will give
us advanced insight into how tight the linear programming relaxations to these formulations

will be.

g(x)

A Lower
Convex
Envelope

Figure 3-6: A Case With Potentially Infinite Gap Between g(z) and its Lower Convex Envelope
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Another measure of the quality of a MIP formulation is its size. If we let A, N, S denote

the number of arcs, nodes, and segments respectively, we note the following:

Formulation Variables | Constraints ]
Incremental 2AS N+2AS
Multiple Choice 2AS N+2AS+A

Convex Combination 3AS N+AS+A

Although all three have the same number of binary variables, the convex combination
formulation has more variables than the other two, but fewer constraints, and the incremental
model has fewer constraints than the multiple choice model. The model size does not vary
substantially however.

According to this measure, formulation size, there is a preference for either the incremental
or the convex combination model. As we will see in the next section, however, the multiple
choice model lends itself nicely to disaggregation. We will therefore focus our attention on

this formulation.

3.7 Disaggregating the Multiple Choice Model

In some situations, we will be able to disaggregate each z;; variable into a set of variables,
:rfj, and place new bounds, ]VI,-’;, on each disaggregated variable. We then can rewrite the
multiple choice formulation in a form with a stronger linear programming relaxation. For
this disaggregation to be valid we need to be able to rewrite Nx = d in a disaggregated form,
Nz* = d*, for an appropriate choice of the demand vectors d*. This disaggregation might take
place at several levels. In the context of network flows, we can often associate the indices k
with commodities and consider flows of .ndividual commodities with bounds M*. For instance,
for a network with one source supplying several destinations, we can define a commodity by

its destination and, if d(k) denotes the demand at the destination used to define ccmmodity

k, set M* = d(k). Once we have defined a valid disaggregation, we can write the following
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disaggregated version of the multiple choice model:

Minimize Z:c’a:"k + f*y° (3.21)
s,k
subject to: Nz* = d* (3.22)
& = ) a* (3.23)
8
ba—lys < Exaksbaya (3.24)
k
Yy <1 (3.25)
:c':,z"’ > 0, y*€{0,1}. (3.26)

The advantage of this formulation is that we can add valid inequalities that tighten the

formulation. We consider two forms of additional forcing constraints:
z°F < Mby? (3.27)

and

Y oaF<MFD (3.28)

Both constraints (3.27) and (3.28) are valid and redundant for the integer program, but
can potentially strengthen the linear relaxation. We call the formulation consisting of con-
straints (3.21)-(3.26) and (3.27) the disaggregated formulation, and (3.21)-(3.26) and (3.28)
the disaggregated/aggregated formulation (because the variables are disaggregated, but the
forcing constraints are aggregated). Note that each inequality (3.28) is a sum over s of the
(3.27) inequalities, and therefore, the disaggregated/aggregated formulation is not, in general,
as strong as the disaggregated formulation. Both formulations, however, can improve upon
the aggregated formulation given by (3.9)-(3.14).

When M* < b, constraint (3.27) tightens the formulation. When M¥* > b, constraint
(3.27) does not improve the formulation because (3.24) already provides a tighter constraint
and, therefore, constraint (3.27) is redundant. We cannot determine a priori if constraint

(3.28) is redundant.
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By disaggregating the convex combination formulation in a similar fashion, we will provide
an equivalent formulation. We saw that the incremental model was smaller than the multiple
choice model, so why wouldn’t we choose to disaggregate that model instead? Although
we can write a similar disaggregation, the forcing constraints might not result in as much
improvement. The reason is that the disaggregated incrementai model already contains the
constraints }_, z°F < (b* —b*~1)y®. Therefore, if M* > b* —b°~1, the forcing constraints (3.27)
will be weak. Problem instances with very small segments, relative to the demands, might
have no strong forcing constraints to add. This limits the impact of disaggregation for the
incremental model. We, therefore, concentrate on the effects of disaggregation on the multiple
choice model while recognizing that disaggregating th= convex combination model will provide
equivalent results.

In order to disaggregate, the application must have an inherent decomposable structure.
If in a general multi-commodity network flow problem, each commodity has a specific supply
and demand node, the aggregated formulation given by (3.9)-(3.14) as a single commodity
network flow problem is not valid. Therefore, we need to limit our discussion of aggregated
formulations to networks where they are valid. In addition, for disaggregation to be applicable,
the aggregated variables must possess a disaggregated form that can be bounded. As noted
before, we can model a network problem with one source supplying many destinations, or visa
versa, as an aggregated model using (3.9)-(3.14). Alternatively, we can define a commodity
by its destination and then use the disaggregated formulation with M* = d(k), the demand at
destination k. This disaggregation is also possible for the facility location problem.

Disaggregation might be possible at several levels. For example, in a multi-commodity
network with many origins that each supply several destinations (as in the merge-in-transit
problem discussed in Chapter 5), the aggregated formulation given by (3.9)-(3.14) is not valid,
but we can write an aggregated formulation that defines a commodity by its origin and bounds
the variable flow by the total possible demand provided by that origin. We can then consider
a disaggregated model by defining a commodity by both origin and destination. These new
variables are bounded by the particular demand for that origin-destination pair and, therefore,
would provide a stronger formulation. We can even consider another level of disaggregation

by a specific path through the network. This disaggregation, however, will be tighter only if
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we can provide bounds on the path variables that are smaller than the bounds placed on the

origin-destination variables.

3.8 An Application to the Network Loading Problem

3.8.1 The Undirected Case

As discussed in Section 3.3, we can view the network loading problem as a network flow problem
with piecewise linear costs. For simplicity, we will consider the single facility network loading
problem, although much of this discussion can be extended to the multiple-facility case. In the
telecommunications version of this problem, we are given an undirected network G = {V, E},
with node set V and edge set E, and K, a set of commodities, each with a given origin s(k),
destination t(k), and demand, d(k). We need to install capacity on the arcs to simultaneously
route the flow, but we can install capacities only in blocks of b units. We incur a positive
fixed cost, fi;, for each block of capacity we install on an arc, but no variable flow costs. The

standard network loading formulation is as follows:

Minimize Zf,-jy,-j (3-29)
(.9)
d(k) if i = s(k)
subject to: Z :1:!‘J - Z .'1:;’,- = —d(k) if i = t(k)

j:(i.j)EE i:(4))eE 0 otherwise

Z(xlk]-'_mjki) < by
k

a:ijO, vi; € Z%.

Alternatively, we can think of this problem as a network flow problem with a cost function
like the one shown in Figure 3-3. In the single facility case, each segment will be of length b, so
b* = sb, and ff; = sf;;. We can consider both an aggregated formulation and a disaggregated
formulation. The aggregated formulation will define a commodity by its origin. We use
k to denote the original commodities and k' to denote these commodities defined by origin.
Therefore, each commodity &' will have an origin s(k’), a vector of destinations 7 (k') and

a demand d(K,3), for each i € T (K'). The demand d(k',7) is defined as d(k',s) = d(k) if
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s(k) = s(K’) and t(k) = i. We also define D(K') = ¥ 1..x1—q(xn A(k), the total demand of
k:s(k)=s(k’)

commodity k’. The formulation, then, is:

Minimize Y fhy% (3.30)
8,(i,j)
D(K') if i = s(k')
subject to: z xk — Z zf: = —d(k',i)ifie T (k)
j:(i.j)EE 3:(IA)EE .
0 otherwise

(s —1by;; < Z("«':f' + 93;'?' )< sbyi;
kl

douh <1
8
zf;c 201 yi’j € {011}
We can also disaggregate this model by destination; that is, we can define a commodity

by both origin and destination. We can replace D(k’) by the individual demands, d(k). The

formulation becomes:

Minimize Y  f&ys; (3.31)
8,(i,j)
d(k) if i = s(k)
subject to: Z :L'f, - z z;’,- = —d(k) if i = t(k)
3:(L5)EE J:(Ii)eE 0 otherwise

(s— Dby <) (=i +a5f )< sbyfy
k
Do < 1

‘T:f 207 y:] € {071}

Proposition 5 The solution to the linear programming relazations of both the aggregated
model (3.30) and the disaggregated model (3.31) have the same cost as the solution to the

linear programming relazation of the standard network loading formulation (3.29).
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Proof:

1. We first show that the models (3.30) and (3.31) are equivalent. Given a solution (a:fj’c s i)
of model (3.31), if we let a:;'j = a(k)_,(,c,).c,] , then (:z:lJ » ¥5;) is a feasible solution
to (3.30) “vith the same cost. In the solutions to each model, the summation of the z
variables in the segment bound constraints are the same. For example, if the solution
on arc (i, ) to the disaggregated model (3.31) contains 3 units of flow of a commodity
originating at node A and destined for node B, and 4 units of a commodity originating
at node A and destined for node C, we can solve the aggregated model (3.30) by set-
ting the flow on arc (4, j) of the commodity originating at A to 7. Similarly, we can
translate (:1:tJ »¥i;), a feasible solution of model (3.30), into (a:f," ,¥f;), a feasible solution
of model (3.31) with the same cost by just splitting the flow of each origin-defined com-
modity into the flow of an origin/destination-defined commodity. With this one to one

correspondence, we can conclude that these two formulations are equivalent.

2. We will now show that the linear relaxation of model (3.29) gives an optimal solution

with the same cost as the optimal solution to the linear relaxation of model (3.31).

(a). Consider an optimal solution (z; ,yu) to the linear relaxation of model (3.31). Let

=3, .’ijk and y;; = ) _syj;. Clearly, (:z:ij,y,-_,-) satisfies the flow balance constraints
sk 4 ook

of model (3.29). In addition, by;; = b3, syf; > b, Ek(“’;l;+-c 0 _ Sl + k).

Therefore, (a:fi,,-,y,-,-) is feasible for the linear relaxation of model (3.29). Moreover, since

I = sfij E(i,j) fijyij = zs'(w) fiyi;, and so (:2:U ,yu) and (:c{-‘j,y,-,-) have the same

objective value.

(b). Consider an optimal solution (mfj,y,-_,-) to the linear relaxation of model (3.29). For
any edge {i,j}, let 3 equal the smallest integer satisfying the condition 0 < %"i <1
3k

Now let yf; = ¥, z%F = zf

7 Tij +j» and all other variables equal 0. Clearly, the vector

(:c”‘ ,yu) satisfies the flow balance constraints and ), ¥;; < 1. In addition, for any edge
{43} Do :z:"’" +oiF =3, :c,-j +a¥; < byi; = bsy}; and for s # 3, 3, ¥ + a3k = 0.
Therefore, (:z:lJ ,¥3;) is feasible for the linear relaxation of model (3.31). Again, (zf;, y:;)

and (:z:U 1¥i;) have the same objective value.

(c). Since we can translate an optimal solution of model (3.31) into a solution of model
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(3.29) with the same cost, and we can translate an optimal solution of model (3.29) into
a solution of model (3.31) with the same cost, the linear programming relaxation of each

formulation will provide optimal solutions with the same objective value.

3. Since models (3.30) and (3.31) are equivalent, and the linear programming relaxations of
models (3.29) and (3.31) have optimal solutions with the same cost, we have established

the proposition. Ml

Note that we can solve the linear relaxations of each of these formulations by solving a
shortest path problem for each origin/destination pair using arc costs Ll‘;’-

We can now consider adding valid forcing constraints to the aggregated and disaggregated
formulations. To the model (3.30) we can add the inequality

z¥ + 2 < d(K')ys; (3.32)

and to the model (3.31) we can add the inequality
ziF + 22 < d(k)ys. (3.33)

These forcing constraints are redundant for the integer program, but can strengthen the
linear program. Therefore, to the extent that these forcing constraints tighten each model,
both of these formulations can improve upon the standard formulation, and so we have the

following result.

Proposition 6 For the network loading problem, both the aggregated formulation, given by
model (3.30) plus the inequality (3.32), and the disaggregated formulation, given by model
(3.31) plus the ineguality (8.33), are stronger formulations than the standard formulation
(3.29).

We will examine computational experiments on these formulations in the following chapter

to see how much improvement can be expected.
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3.8.2 Comparing The Directed and Undirected Cases

The directed case of the network loading problem arises in transportation applications when
the capacity on the directed arc (z,j), in the form of a truck for instance, is not available to
transport freight on the reverse arc (j,%). In this case we need to rewrite the network loading
formulations to account for this difference. Assuming that whenever the arc set contains arc
(¢,7) it also contains the reverse arc (j,7), we now examine the standard formulation and the
disaggregated formulation.

Using z;; for the binary variables in the directed case, the standard formulation becomes:

Minimize Y _ fi;zi; (3.34)
(i) -
d(k) if i = s(k)
subject to: Z .zf] - Z :r?,- = —d(k) if i = t(k)
F(i3)EE #:(iA)EE

k
Z Tij
k

:Bf'jZO, Ziyj € Zt.

0 otherwise

INA

bz,-_,-

and the disaggregated formulation becomes:

Minimize Y f525; (3.35)
8,(i,j)
d(k) if i = s(k)
subject to: Z a:f;-— Z a:f,- = —d(k) if i = t(k)

3:(i.j)€E 3:(3i)eE 0 otherwise

(s —1)bz; < fof < bz
k

Do s 1
8
2k < d(k)z;;

ij S

ziF >0, 25 € {0,1}.

Propositions 5 and 6 hold for the directed case as well, and therefore, model (3.35) is
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a stronger formulation than model (3.34). However, as we will verify with computational
experiments in the following chapter, the relexation gap for the standard formulation is smaller

in the undirected case than it is in the directed case. To see this, note the following:

Proposition 7 Assuming fi;; = f;i, the solution to the linear programming relazation of model
(3.34) for the directed case has the same optimal objective value as the linear programming

relazation of model (3.29) for the undirected case.
Proof:

1. Consider any feasible solution (:cf;, 2ij) to the linear relaxation of the directed formulation
given by model (3.34). If we let y;; = 2;; + 2ji, then (a:z-,y,-_.,-) is a feasible solution to
the linear relaxation of model (3.29) with the same objective value as (:vfj,z,-j). Since
this transformation is possible for any feasible solution to the directed formulation, it is

certainly possible for the optimal solution.

2. Consider (::::Fj,y.-_,-), an optimal solution to the linear relaxation of the undirected model
(3.29). Given that f;; > 0, we know that at this optimal solution, y;; = Eﬁ%ﬂ“ﬂ
If we let z;; = ZL:E for every directed arc (2, j), then (:z:fj, 2;;) is a feasible solution of
model (3.34). In addition, y;; = zij + zji. Therefore, these two solutions have the same

objective value.

3. Since we can translate an optimal solution from one problem into a solution to the other
problem with the same objective value, the optimal solutions of both problems must have

the same objective value. Bl

We define the ‘relaxation gap’ of an instance as the difference, measured as a percentage,
between the objective values of an optimal solution to the linear relaxation and an optimal

integral solution. The previous proposition implies the following result.

Proposition 8 Assuming fi; = f;i, the relazation gap of the standard formulation for an
undirected instance will be no larger than the relazation gap of the standard formulation for a

directed instance on the same network.
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Proof: The previous proposition tells us that the linear programming solutions for both
models have the same optimal objective value. The optimal integral solution of the undirected
problem, however, might have a smaller objective value than the optimal solution to the
directed case. If (a:fj,z.-j) is an integer feasible solution to the directed model (3.34), then
(a:fj,y,-j) with y;; = zij + zji is an integer feasible solution to the undirected model (3.29) with
the same objective value. Therefore, the optimal objective value of the undirected model
can be no larger than the optimal objective value of the directed model. Since the linear
programming values are the same, but the integer programming value might be smaller for the

undirected case, the gap between the linear program and the integer program solutions will be

at least as large for the directed instance. B

To develop more intuition, note that in order to have integral y or z variables, we might
have to install excess capacity on each arc. In the directed case, we need to install this
excess capacity on both arcs (2,j) and (j,7). In the undirected case, however, the flow in each
direction can share capacity. Therefore, we might not need to install as much total excess
capacity. For example, if the linear relaxation of the directed solution requires 2.3 units on
arc (i,j) and 3.1 on arc (j,1), then the linear programming solutions to both the directed and
undirected instance will require 5.4 units on the arc and the costs will be the same. Assuming
the flow pattern is maintained, the integral solution for the directed formulation would require
3 units on (7,j) and 4 on (j,1) for a total of 7 units. The undirected formulation, however,
would require only 6 units. As a result, the undirected model has a smaller relaxation gap.

We can provide a similar result if we consider the gap between the linear programming
relaxations of the standard formulation and the disaggregated formulation. We express this

difference as a percentage, which we call the ‘improvement gap.’

Proposition 9 Assuming fij = fji, the improvement gap for an undirected instance will be

no larger than the improvement gap for a directed instance on the same network.

Proof: As shown in Proposition 7, the linear programming relaxation of the standard
formulation will provide solutions with the same optimal objective value for both the directed
and undirected models. The linear programming relaxation of the disaggregated formulation,

however, might yield a higher cost optimal solution for the directed case. The argument
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is similar to the one provided in the proof of Proposition 8. If (a:fj,z,-j) is a feasible solu-
tion to the linear relaxation of the disaggregated directed model (3.35), then (:z:fj,y,-_.,-) with
¥ij = Zij + zji is a feasible solution to the linear programming relaxation of the disaggregated
undirected model, given by model (3.31) plus the inequality (3.33), with the same objective
value. Therefore, the optimal objective value of the linear relaxation of the undirected model
can be no larger than the optimal objective value of the linear relaxation of the directed model.
Since the linear programming values for the directed and undirected standard formulations are
the same, but the linear programming value of the disaggregated formulation might be smaller
for the undirected case, the gap between the optimal objective value of the linear relexation
of the standard formulation and the optimal objective value of the linear relaxation of the

disaggregated formulation will be at least as large for the directed instance. W

To view this result intuitively, note that the forcing constraints in the disaggregated for-
mulation force excess capacity to be added to the network when solving the linear relaxation,
in the form of larger values for the y or z variables. It is this excess capacity that increases
the total cost and ‘tightens’ the formulation. Again, the undirected network loading problem
is able to share this capacity and therefore might not need to install as much excess. There-
fore, the linear programming solution to the disaggregated formulation of the undirected case
can be smaller than the linear programming solution to the directed case. As a result, the
gap between the standard formulation and the disaggregated formulation is smaller for the
undirected problem.

The practical implication of these results is that we can expect the use of the network
flow formulations to be more effective for directed network loading problems, since both the
relaxation gap for the standard formulation and the improvement we can expect from disag-
gregating is larger than in the undirected case. Our computational results in Chapter 4 will
show that this is indeed the case.

Note that for either the directed or undirected case, the number of segments we need to
consider in either of the network flow formulations equals the total fiow on the network divided
by b. Therefore, a large capacity corresponds to a small number of segments. Epstein [13]
reports that the linear relaxation of the standard network loading formulation is tighter for

lower capacities than higher capacities. One explanation for this result is the fact that if we
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half the capacity of a particular instance, the linear programming solution doubles but the
integer solution might not (it will double in the worst case). Therefore, the gap between the
two will be smaller. To explain this result geometrically, we might examine two functions with
the same convex lower envelope. Figure 3-7 shows two cost functions, one correspending to
a capacity of b and the other to a capacity of b/2. The linear prcgramming relaxation of the
standard formulation will approximate both by its lower convex envelope, shown by the dotted
lines. It is clear from this figure that a function with more segments is better approximated
by its lower convex envelope. We will see when we examine computational experiments in the
next chapter that the standard formulation is indeed tighter when capacities are small. We

will also see that in many cases, this property holds for the network flow formulations as well.
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Figure 3-7: Network Loading: The Impact of More Segments on an Approximation

3.9 Effects of Disaggregation

We would like to better understand the implications of disaggregation. How do the forc-
ing constraints improve the linear programming solution? How do the disaggregated and
disaggregated/aggregated models approximate the cost function? We will first consider the

disaggregated formulation and then examine the disaggregated/aggregated formulation.
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3.9.1 The Disaggregated Model

Proposition 1 has already shown that the aggregated formulation approximates the actual cost
with its convex lower envelope. For the disaggregated model, given by constraints (3.21)-(3.26)
and (3.27), we develop a structural result and use the two-commodity case to help visualize
and interpret it.

As an aid to understanding the effects of disaggregation, we will use linear programming

techniques to establish the following result concerning extreme points.

Lemma 10 LetQ={z€R": Az =bandx € Q} for some polytope Q and system Az = b of
X linear equalities. Then every eztreme point of @ is a convez combination of at most K + 1

eztreme points of Q

Proof: Every extreme point of Q is a convex combination of at most n + 1 of its ex-
treme points ', 22, ...,zT. Therefore, for any vector c, the linear program min{cz : z € Q}
is equivalent to the “weighting” linear program min{}"; ,cr(cz’)\' : 3o opep(Azt)At =
b,} Y1<ier A =1, A > 0 for all t}in the sense that a point y solves the first linear pro-
gram if and only if the point y = EIStST ztA! for some nonnegative weights A\* summing to
one, and this choice of weights solves the weighting linear program. But every extreme point
of @ is the unique solution to the problem min{cz : € @} for some vector c. Therefore, we
can represent every extreme point y of the polyhedron @Q asy = ZIStST zt At for some optimal
choice of the weights A’ in the weighting linear program. But since this linear program has
K +1 constraints, it has an optimal solution with at most K +1 positive weights A*. Therefore,
every extreme point of the polyhedron @ is a convex combination of at most K + 1 extreme

points of the polytope Q [ |
For the disaggregated formulation, we can now establish the following result.

Proposition 11 Let K denote the dimensionality of the disaggregation. Then the linear pro-
gramming relazation of the disaggregated formulation estimates a piecewise linear cost function

with its lower convez envelope in K+1 dimensions.

Proof: The proof of this is similar to the proof of Proposition 1.
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1. Consider P={(z,y) € RSK+5 : po~1y* < 3", %% < b*y® Vs, zF < MFy®, 3, 9" < 1,
%% > 0, y* > 0}. Let K denote the number of commodities, i.e., the dimensional-
ity of the disaggregation. First, we show that for all extreme points of P, ¥y >0
for at most one s and if one y* > 0, then y* = 1. We prove this result by con-
tradiction. Assume the model has an extreme point (z,y) with 0 < y" < 1 and
0 < yt < 1. Without loss of generality, assume 7 = 1 and t = 2. The point, therefore,
is (g1, .., z1%, 22, ..., %0, ..., 0,31, 32,0, ...,0). We can express this point as (1 —y' —
42)(0, ...,0)+y' (21, ., £1,0,.-.,0,1,0,...,0)+3*(0, 0,%7, .., 27,0,..,0,0,1,0..0). It
is easy to see that these three points are in P and, therefore, we have expressed (z,y)
as a convex combination of three feasible points. It, therefore, cannot be an extreme
point. The same argument can be extended to the case where three or more y variables
are positive. Therefore, y® > 0 for at most one s. When a single y* > 0, we can express
this point as a convex combination of two feasible points (by taking y™ = y* and yt=0

above), unless y* = 1. Therefore, if at an extreme point of P, a single y® > 0, it must

equal one.

2. If at most one y¥* = 1, and we denote it by y?, then we can substitute out the y variables
and the polyhedra becomes P = {z € RX : b*~1 < 3", % < b%, 2% < MF, 2% > 0}.
An extreme point must have at least K linearly independent constraints satisfied at
equality. Only two kinds of points will satisfy this requirement. One is the set of points
with 2% € {0, M*} for all k. We refer to these points as corner points because they
correspond to the corners of the feasible K-dimensional hypercube. The other is the
set of points with 3, z% = &% or b*~! and 2% € {0, M*} for at least K — 1 of the K
terms. We refer to these as ridge points and they correspond to the extreme points of

the K-dimensional face defined by ¥, 2% = b® (or °-!) and z% < MF¥,

3. We have shown that the extreme points of P consist of all corner and ridge points. Using
Lemma 10, we can state that the extreme points of P={(z,y) € P : 3,2 = z*} are

convex combinations of at most K + 1 of the extreme points of P.

4. As in the case of Proposition 1, every convex combination of the extreme points of Pis

also feasible in P. Therefore, as we vary Z* and take the minimum, we will generate the
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minimum cost convex combination of at most K + 1 corner and ridge points. The corner
and ridge points are the extreme points of the K-dimensional segments of the actual
cost function and, therefore, we can express each point of the actual cost function as a
convex combination of somne subset of these points. Therefore, the minimum cost convex
combination of all these ridge and corner points will define the lower convex envelope of

the cost function in K + 1 dimensions. Il

The Concave Case

To help understand the implications of Proposition 11, we will first examine the concave cost
case. As shown in Figure 3-8, the approximation given by the aggregated formulation for any

concave cost function is the line segment from the origin to the point of maximum flow.

g(x)

< >

Figure 3-8: The Approximation of the Aggregated Formulation on a Concave Function

If we decompose the flow on an arc into K commodities, the total cost is now a concave
function of the sum of K variables and can be represented in K + 1 dimensions. We wish
to understand the approximation that the linear programming relaxation of the disaggregated
multiple choice formulation provides. Figure 3-9 illustrates the difference between the ag-
gregated and disaggregated formulations with an example of the 2-commodity case. The
aggregated approximation is a flat plane that lies below the actual cost function. The approx-

imate and actual functions are equal at the origin and at the point of maximum flow, where
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each commodity is at its maximum, but at no other points. The disaggregated approximation
is formed by two planes that intersect along the diagonai. We can in fact write equations for
these two planes. Each of these planes is equal to the actual cost function at three points: the
origin, the point of maximum flow, and one of the two corner points where one commodity has
zero flow and the other is at its maximum. This observation suggests that the disaggregated
formulation provides the lower convex envelope of the actual concave cost function in both
dimensions. Along the diagonal, the aggregated and disaggregated approximations are equal,

but at all other points, the disaggregated approximation improves upon the aggregated one.

Aggregated Approximation Disaggregated Approximation

Figure 3-9: Concave Case: The Aggregated and Disaggregated Approximations

We can generalize these results for the K-commodity case. To determine the cost of a

flow vector (z!, 22, ...,2X) in the disaggregated formulation, we first order the commodities so

(1) z(2) z(3)

that &y > 235 2 25 2 .0 2 ﬁ%. The disaggregated formulation then approximates the

actual cost function, g(z), with the function g(z):
K . .
§(z!, 22, ...,zK) = Za(')a:(') (3.36)
i=1

with

o _ 950 89) ~ (217 )
d(m)
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Chan et. al [8) have derived equivalent equations independently. We can interpret a(™ as
the slope of the segment between the cost of the sum of the first m — 1 commodities and the
cost of the first m commodities. For example, in the two commodity case, if the order of the
commodities is 1 then 2, then a{!) is equal to the slope of segment 1 in the dotted line shown
in Figure 3-10 and a(? is equal to the slope of segment 2. The equation for the darker of the
two triangles in Figure 3-10 is g(z!,z2) = aVz! + a2

Another way to view the improvement the disaggregated formulation provides is to generate
the cost of the approximation by considering one commodity at a time. Figure 3-10 illustrates
the impact for the two-commodity case. If we first flow one commodity up to its maximum
and then begin to flow the second coramodity, the resulting cost function is the dotted line in
Figure 3-10. We can see that these costs improve upon the approximation of the aggregated
formulation shown in Figure 3-9. In fact, we can interpret any flow vector one commodity
at a time in this way, and see that for some permutation of the commodities, we will have a
cost that improves upon the aggregated approximation (or at least as strong, as is the case
along the diagonal). For instance, consider (z!,z2), the flow of two commodities. Suppose
that % > f; so that (z!,z2?) falls into the region under the darker triangle in Figure 3-10.
Let m! be the slope of the first segment of the dotted line in Figure 3-10 and m? be the slope
of the second segment. Then the cost of (z!,z?) for the disaggregated formulation will be
mlz! + m2z2, which is the same expression given by equation (3.36). In fact, m! = a(!) and
m? = a®. We can similarly extend this graphical interpretation to the k-commodity case.

These results provide insight into the structural effects of disaggregation. We can now
begin to visualize the nature of the improvement resulting from disaggregating the formulation.

Computational experience in the next section will quantify this improvement.

The Non-Concave Case

The geometric and graphic interpretations discussed for the concave case can be extended to
non-concave cases, but we cannot provide closed-form expressions for the disaggregated ap-
proximation. We will, however, examine two 2-commodity examples to aid in the visualization

of the impact of disaggregation.
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Figure 3-10: The Costs Resulting from Looking at Each Commodity Sequentially

Example 1: An LTL Cost Function The function we consider is shown in Figure 3-11.
As in the concave case, the aggregated formulation approximates this function with a single
plane that lies below it but is exact at the origin and at the top corner. The disaggregated
formulation improves upon this approximation by taking the lower convex envelope of the
actual cost function in each dimension. Figure 3-12 shows both the aggregated and disaggre-
gated approximations. Again, the disaggregated approximation is composed of several planes
that fold up around the diagonal. As in the concave case, the aggregated and disaggregated

approximations are equal along the diagonal.

Cost *

) o«

Figure 3-11: Example 1: An LTL Cost Function
We are also able to derive the formulas for each of these planes by examining the convex
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Disaggregated Approximation

Figure 3-12: Example 1: The Aggregated and Disaggregated Approximations

envelope as we incrementally traverse each dimension. Figure 3-13 shows these two incremental
envelopes, one as a dashed line and the other dotted. It is possible to derive the slopes of the

four planes in Figure 3-12 from the slopes of the segments in these two dotted lines.

Example 2: A Truckload Cost Function In the second example, we consider a truckload
cost function. This cost function is similar to the single-facility network loading problem
discussed in Section 3.3. Figure 3-14 provides the example cost function, with the dashed
line denoting its lower convex envelope. As we can see by the dashed line, the aggregated
approximation will have two segments. Figure 3-15 illustrates this result along with the
disaggregated approximation.

In this example the lower convex envelope in three dimensions varies very little fromn the
lower convex envelope in two dimensions. The only improvement offered by the disaggregated
formulation is in one corner of the function. Figure 3-16, which shows the two incremental
convex lower envelopes, illustrates this result. For cost functions of this form, the convex
envelope along each dimension will not vary substantially from the aggregated convex enve-
lope. This observ;tion might lead us to believe that we will not derive much improvement

by disaggregating on cost structures of this form. As we will see, however, when we exam-
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Figure 3-13: Example 1: The Incremental Convex Envelopes

ine computational results, this small improvement in the approximation can still have a large

impact on the value of the linear programming relaxation.

3.9.2 Integrality of the Disaggregated Formulation

Although the disaggregated formulation provides a stronger (often quite strong) linear pro-
gramming relaxation, it is not integral. We will see in the next section that the disaggregated
formulation for networks with concave cost functions tends to provide integral solutions, but

this is not always the case. We can, however, state the following result.

Proposition 12 In a feasible solution to the linear programming relazation of the disaggre-
gated formulation in which each individual commoditiy flows on only one path through the

network, this flow will not be split between segments and therefore the solution will be integral.

Proof: Consider each arc of the network on which a subset K’ of the commodities flows.

For each k € K', ¥, 2% = d*. Assume b*~! < 3" .0 d* < B, ie., the total flow falls into the

sth segment.
1. Forea»chkeK’,y"’2‘%',:'-= =3,y > E‘J:L" =1 But Y,y <1,= ¥ ,4° =1
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Figure 3-14: Example 2: A Truckload Cost Function

Aggregated Approximation

. Therefore, for each k € K', 3* > %',,5, Y ,¥* =1, and %1;,5 + %2; + ...+ %.; =
sk
y=% Vs

Disaggregated Approximation

. For all s <8, 3y d* > b°. Assume y° > 0. Then b%%° > Y e 2% = y* 3 pepr d* >

y°b® = contradiction = y* =0V s < 5.

For all 3 > 3, Y cpd® < b*71. Assume y* > 0.

Then b8—1y8 S Zkeki m’k

Y* Y ker dF < y*b*~! = contradiction = y* =0V s > &.

. Since 3, %* = 1, 4® = 1. Therefore, y* € {0,1} V 5.
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Figure 3-16: Example 2: The Incremental Convex Envelopes

Note that this proposition does not apply to the aggregated formulation. It also does
not apply if a solution splits commodities between paths. Although concave cost functions
encourage larger flows, it is not the case that its solution will never split flows between paths.
There are, therefore, fractional cases of the disaggregated formulation, even with concave costs.
Consider the facility location/assignment problem shown in Figure 3-17. In this problem, we
need to assign each customer to a single facility. The cost of building each warehouse is 1.
The transportation cost on the solid lines is 1/unit flow and on the dashed lines it is 2/unit
flow. As discussed in Section 3.3, we can transform this problem into a single origin network
flow problem with piecewise linear costs. In the transformed network, shown in Figure 3-18
with the associated arc costs, we need to route one unit from the dummy node to each of the
three customer nodes. We can now model this problem with the disaggregated formulation.
Because the cost functions have only a single segment and only one has a fixed cost, we need to
define a binary variable only for each of the three arcs from the dummy node to the facilities.

The flow variables have the form :cfj, where we define a “commodity” by the customer, a, b,
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or c. The disaggregated formulation for this probiem is:

Min. x?b + .'ch + mga + xgc + zga + ng + 21"1'0. + 2x’2’b + 2z§c

Subject to : zp +zhy+zh3=1 23, —zp1 =0 T, + 29, + 13, =1
b b b b b b b b o_
Tpy+Tpy+2Zpg =1 Top —Tpe =0 Ty + T+ Ty =1
C C C —_ C C _— C J—
TP + Tpe +Zpg =1 z3, —Tp3 =0 zi, + 25+ 25, =1

0<zHh + :1:',’31 + 5 < 3ym
O S .TaD2 + 27'1,)2 + mi)z S 3yD2

0 < 3 -+ zhs + s < 3yps

b

zh < yYp1 Tp <Ym zph < yYp1
b

zhe < yp2 ZTps < YD2 zh) < Yp2
b

1 < Yp3 zp) <Yp3 zp; < Yps3

z¥ >0, yij€{0,1}.

The optimal solution to the linear relaxation of this formulation is: yp; = yp2 = yp3 = 0.5,
Thy = Thy = Thy = Thy = Thy = zpg = 0.5, and x], = =, = 2§, = x5 = 2§, = z§, = 0.5,
which has a total cost of 4.5. Although the cost functions are concave, the optimal solution
splits the flow of each “commodity” on two different paths, so Proposition 12 does not apply.
The optimal solution to the linear programming relaxation of the disaggregated formulation of

this instance is fractional. The optimal integer solution for this problem has a total cost of 5.

Facilities Customers

Figure 3-17: A [3,3] Facility Location Problem
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Figure 3-18: The Transformed [3,3] Facility Location Problem (with Arc Costs Below)

3.9.3 The Disaggregated/Aggregated Formulation

We already noted that the disaggregated/aggregated formulation is not, in general, as tight as
the disaggregated formulation, but it can improve upon the aggregated formulation and it is
not as large as the fully disaggregated model. We know the solution to the linear programming
relaxation of this formulation will fall somewhere between the aggregated and disaggregated
solutions, but we can also provide an analytical result on the effects of the aggregated forcing

constraints (3.28). As a reminder, these forcing constraints are: Y, z°¢ < M* 3" .

Proposition 13 Let (z°,3°) be the optimal solution to the linear relazation of the aggregated
formulation. This solution provides a lower bound for the integer forraulation. Let (z°%,y°)
be the equivalent solution with disaggregated flow variables, with y* = §* and ¥, z°* = 7°.
On each arc, the lower bound provided by the linear relazation of the disaggregated/aggreguted
model increases by at most f1(1 — Y_,4°). In the case of concave costs, if S denotes the

last segment, FF = z°*, and F = 7%, the per arc improvement is ezactly equal to
g s s P

k
fl ma-xk{oa 'Ed"E' - b!;}’
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Proof: Given (z°,%°), and using the definition of the disaggregation, we can derive a
feasible solution, (z**,3®) to the formulation given by constraints (3.21)-(3.26), with y* = 7*
and ¥, z°* = . If this solution satisfies the inequality (3.28), then this solution satisfies all
the constraints of the disaggregated/aggregated formulation and must be optimal. If not, then
we need to change one or more of the y variables so that they satisfy this constraint. We can
construct one feasible solution by increasing y! until we satisfy this constraint. In fact, we can
increase y! without violating any other constraints because the model imposes no upper bound
of the form %! < 3, ¥ (since b° = 0). Therefore, if we increase ! until the solution satisfies
inequality (3.28), then we have a feasible solution to the disaggregated/aggregated formulation.
In the worst case, we increase y! until }_,4° = 1; that isy* = 1 — > s219°. We now have
constructed a modified solution, (z**,y?), that is feasible for the disaggregated/aggregated
formulation. The cost of the original and new solutions on each arc are related by the following;:
cost(z**,y°) = cost(2*,7°) + f1(y! —F') = cost(z*,7%) + f1(1 — 3, 7°). In the case of concave
costs, we know that for each arc with positive flow, the solution to the aggregated formulation
isz2°=Fandg° = bfg. Since f! = min,{f*}, it is cheaper to increase y! than any of the other
y’s. Therefore, by letting ! = max;{0, 5—'; - ;Fg}, we satisfy the inequality (3.28) and have
found the optimal solution to the disaggregated/aggregated formulation when we maintain the
same arc flows. This solution increases the objective value by f! max{0, %',:5 - FFg }. Therefore,
since we are minimizing, the optimal linear programming objective function, and therefore the

lower bound, increases by at most this amount. B

We cun interpret the concave case geometrically as we did in the previous section. Return-
ing to the 2-commodity case and Figure 3-9, we note that along the diagonal, max,{0, %',:5 —
Fpg} = 0 and therefore the solutions to the linear relaxations of the aggregated and disaggre-
gated/aggregated formulations have the same cost. Elsewhere, y! increases linearly along each
dimension as F* increases. Therefore, the approximation provided by the linear relaxation of
the disaggregated/aggregated formulations is folded along the diagonal much like that of Fig-
ure 3-9, but with a fold that is not as high. Using the disaggregated/aggregated formulation,
it is therefore possible to attain a portion of the improvement gained in ¢he fully disaggregated

formulation. In one important case, however, we will not see any improvement.
Corollary 14 In the case of cost functions with no initial fized charge (i.e., f' = 0), the
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aggregated/disaggregated formulation will not improve upon the aggregated formulation.

Proof: Proposition 13 shows that if f1 = 0, we can increase y! without increasing the cost
of the solution. Therefore, the disaggregated/aggregated formulation has a feasible solution
with the same cost as the aggregated solution. Therefore, the disaggregated/aggregated

formulation provides no improvement. i

Using this result, we notice an interesting difference between the following two cases: (1)
a cost function with an initial fixed cost of f, and (2) the same cost function with no initial
fixed cost, but with a very steep and short initial segment whose endpoint is at f!. These cost
functions are approximately the same, and because the convex lower envelope of each is the
same, the linear relaxations of the aggregated formulation with each cost functions will have
the same optimal objective value. Similarly, the linear relaxation of the disaggregated formu-
lations should also provide solutions with equal cost (the convex envelope in each dimension
will also be the same for both cost functions). The disaggregated/aggregated formulations,
however, will perform very differently. As a result of Corollary 14, the solution to the relax-
ation of the disaggregated/aggregated formulation for the second cost function with no initial
fixed cost will be the same as the aggregated solution. As we will see when we examine compu-
tational results, however, the disaggregated/aggregated formulation for the first cost function
might substantially improve upon the aggregated formulation. As this example shows, the
performance of the disaggregated/aggregated formulation can vary greatly depending on how
we represent the cost functions.

In situations when f! # 0, the disaggregated/aggregated formulation might be a good
compromise. The formulation contains much fewer constraints than the fully disaggregated
model and, therefore, will be easier to solve. In addition, particularly if the fixed costs are
large, this formulation can be considerably tighter than the aggregated one. We will see in
the following chapter how each of these disaggregated models performs on a variety of cost

functions.
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3.10 Deciding When and How to Disaggregate

The disaggregated formulation of the multiple choice formulation is quite a bit larger than its
aggregated counterpart, both in the number of variables and the number of constraints. As
we will see in subsequent sections, however, the disaggregated formulation can be substantially
stronger than the aggregated formulation and, therefore, might be appropriate. Understanding
the effects of disaggregation will help us understand how we can determine when to disaggre-
gate.

There is one caveat to disaggregation. If we have one formulation with valid forcing
constraints, we can often consider a further disaggregation, but this will not always improve
the formulation, and might in fact weaken it. This can occur if we further disaggregate the
flows, but cannot decrease the flow bounds effectively. For example, assume we are given
flow variables z and the forcing constraints £ < My®. We can now consider the option of
using disaggregated variables z* (where z = Y, z*) and forcing constraints =¥ < M*y®. If
M* > M, the new forcing constraints are weaker than the old ones. By replacing the old ones,
we weaken the formulation. In the situation where M* < M, but Y" M* > M, the tightest
formulation is the one that includes both the aggregated and disaggregated forcing constraints.

As an example of this, consider the multi-commodity capacitated network flow problem.
If we define a commodity by origin, and each origin has demand D¥, we can include forcing
constraints with M = min(D¥,C;;), where C;; is the capacity of arc (i,5). Now if we
disaggregate commodities by destination, where each origin/destination pair has demand d¥,
we can disaggregate the forcing constraints with Hz = min(d*,C;;). If we simply replace
the aggregated forcing constraints with the disaggregated ones, we will weaken the formulation
wherever H,’; =Cij. If HZ = Cjj, then ll/I,’_c7 = Cj; and, therefore, we have not improved the
bound on the constraints. In essence, we are replacing Y, zF < My® with z < My® and the
latter is weaker.

To avoid these problems and assure that we have a tight formulation, we should replace
the aggregated forcing constraints with the disaggregated ones only when Y~ M* < M. If we
cannot assure this inequality for each flow variable, but we still wish to disaggregate, we should
retain the aggregated forcing constraints in the formulation so that we do not lose anything

by disaggregating.
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It might also be tempting to believe that we could further improve our formulation by
disaggregating the commodities to ones with unit demands. For instance, a demand of d units
between a specified origin and destination could be defined as d individual commodities, each
with a demand of one. In our forcing constraints, we could then set d* = 1. Therefore,
in place of z < dy®, we have ¥ < y* which are a tighter set of constraints. However,
this disaggregation will not improve our formulation. To establish this result, consider the

following two sets of constraints.

difi=3s
Z Tij — Z Tji = ~difi=t (1)
#d)eE Flis)ek 0 otherwise
Tz < dy’.
lifi=s
dooah- N ok = pifioy 2)
Hhd)en HAeE 0 otherwise
zF < ys.

The constraints in (1) model the flow of a single commodity, defined with a single origin
s(k) and destination ¢(k), and a demand of d, and (2) represents this flow disaggregated into
d commodities with unit demand. Note that if a solution (Z,7) is optimal to (1), then the
solution (3Z,7) is feasible to (2) and has the same cost as (1). The issue here is that once a
commodity is defined by an origin and destination, its flow in any feasible solution is on a set of
paths between the origin and destination. If we decompose the demand of this commodity into
two or more commodities, we can distribute the original flow proportionately so that we remain
feasible in the disaggregated problem, but the total flow on the arcs does not change, and we
therefore do not change the cost of the solution. Since we can always construct a feasible
solution with the same cost, this disaggregation does not improve the linear programming
relaxation of our problem. Graphically, we are able to construct a solution that lies on the
diagonal of the function in Figure 3-9 (or any of the other functions similarly graphed), and
along this diagonal, both the aggregated and disaggregated solutions are equivalent.
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This same mechanism, however, does not operate when we disaggregate, for example, by
destination. In this case, if we decompose a commodity traveling to two destinations, a feasible
flow will contains arcs on which both of the new commodities do not flow, for example, the
arcs leading into each destination. Therefore, we cannot proportionately distribute the flow
as we did above, and still satisfy the flow balance constraints. In this case, the interaction of
the flow balance constraints and the forcing constraints results in a stronger formulation. In
other words, we are forced off the diagonal of Figure 3-9 and we obtain an improvement from
the disaggregation.

These examples suggest that although disaggregation can tighten a formulatior, we need
to closely consider the circumstances under which we are disaggregating. We need to be sure
that the forcing constraints do indeed tighten the formulation, and that we dec not lose any

strength by using them to replace the aggregated forcing constraints.

3.11 Summary

We started this chapter by examining three common approaches for modeling network flow
problems with piecewise linear cost functions. Proposition 1 stated that these three formu-
lations have equivalent linear programming relaxations and, in fact, each estimates the actual
cost function with its lower convex envelope. We then examined a technique for disaggregating
the variables by commodity. How we define & commodity is application specific, but in the
examples we consider we define a commodity by its origin or destination. This disaggregation
allows us to add forcing constraints to the multiple-choice formulation which, when appropri-
ately used, can tighten the linear relaxation. We can apply this technique, for example, to
the single origin or single destination network flow problem, the facility location problem with
multiple capacities, and the network loading problem.

We are able to interpret this disaggregated formulation geometrically and analytically.
Analytically, we are able to conclude that, as stated in Proposition 11, the disaggregated
multiple-choice formulation approximates the actual cost function with its convex lower enve-
lope in K + 1 dimensions, with K dimensions corresponding to the flow of a commodity.

With this result, we examined the two-commodity disaggregation of concave, LTL and TL

cost functions and gained a geometrical view of the impact of disaggregation on a single arc.
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We will see how this impact plays out over an entire network in the next chapter.
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Chapter 4

Computational Experience

In this chapter, we report on computational results for the standard network flow problem
with piecewise linear costs, the facility location problem with multiple capacity options, and
the network loading problem on an undirected network. We performed these computational
experiments on a Dell PC with a 400 MHz processor running Linux and CPLEX 6.0.

We are primarily concerned with comparing the linear relaxations of the various formula-
tions. To solve most of the linear relaxations, we used the dual simplex algorithm in CPLEX.
We found that of the algorithms available in CPLEX, this one usually performed the best.
CPLEX’s network algoritbm also performed well, but, was usually slightly slower than the
dual simplex method. For some very hard problems, the barrier algorithm was quite effective,
but for most problems it was inferior to the simplex method.

In addition to knowing how the formulations compare with each other, we also want to give
a sense for how tight each of these formulations is as compared with the optimal mixed-integer
solution. For small problems, we are able to use branch and bound to solve the mixed-integer
problem for the true optimal solution. On larger problems, we used a rounding heuristic
to find integer-feasible upper bounds on the optimal solution. This heuristic first solves the
linear relaxation and examines the optimal values of the binary y variables. It then fixes all y
variables that have values above a user-specified threshold to one. The upper bounds will be
tighter for higher threshold values. We found that a threshold between 0.7 and 0.9 is usually
best. Similarly, the heuristic fixes to zero all y variables whose value in‘ the optimal linear

relaxation solution is zero. With these variables fixed, it then performs branch and bound on
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the resulting reduced problem. This reduced problem might not have a feasible mixed-integer
solution, but if it does, this solution provides an upper bound. On problems where we could
use branch and bound to solve for the optimal solution, we compared the heuristic solution
with the optimal solution and found that this heuristic performs quite well.

For each problem instance, we provide the gap between the optimal linear programming
objective value, LP, of each formulation and the known upper bound, UB. We calculate the
gap as [(UB — LP) / LP} x100. In most cases, we also provide the time, in CPU seconds,
to solve the linear relaxations of the disaggregated formulations. For all these instances, the
relaxation of the aggregated formulation solved ir: under a second, so we do not report these

times for each problem.

4.1 Standard Network Flow Problems with Piecewise Linear

Costs

To study the effects of disaggregation on network flow problem with piecewise linear costs,
we conducted computational experiments on three networks and a variety of cost structures.
Network 1, provided by Cominetti and Ortega [10], has 100 nodes, 195 arcs, and 70 commodi-
ties, with demands ranging from 2 to 100. Because this network is sparse, we also created a
more dense network, Network 2, with 25 nodes, 200 arcs, and 20 supply nodes, whose supplies
range from 15 to 95. Both these networks have a single commodity flowing from multiple
origins to a single destination. This demand pattern allows us to define a commodity by its
origin and to use the multiple choice formulation disaggregated by commodity, as discussed
in Section 3.7. We can then compare the linear programming relaxations of the aggregated,
disaggregated/aggregated (D/A), and disaggregated formulations.

The third network, Network 3, is a multi-commodity example with 40 nodes and 68 arcs
in a grid pattern. The problem contains 6 commodities, each flowing from a single origin
to multiple destinations. The demand for each origin-destination pair ranges from 5 to 30.
On this network, the aggregated formulation given by (3.9)-(3.14) is not valid, since it does
not discriminate between commodities. We can, however, consider several disaggregated

formulations. We consider four formulations which we define by the variable definition and
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by the form of the forcing constraints. We can choose to define a commodity by its origin or
by its origin and destination. For each of these variable definitions, we can include forcing
constraints of the forms of either (3.27) or (3.28). These two choices provide us with four
formulations. This type of disaggregation is closely related to what we will see in the Merge-
in-Transit application in Chapter 5.

4.1.1 Concave Cost Structures

We first compare the disaggregated model with the results of Cominetti and Ortega. They
develop an algorithm for the capacitated network flow problem with concave piecewise linear
costs. They formulate the problem using an aggregated model and then solve it with an algo-
rithm that uses pre-processing and an LP-based branch-and-bound process that incorporates
sensitivity analysis to improve the lower bounds. Their test problems used Network 1 (with
100 nodes, 195 arcs, and 70 commodities), and varied in the maximum number of segments
per arc. Their arc costs were generated by taking the concave lower envelope of a function
with n segments with randomly generated fixed and variable costs. Therefore, these problems
might contain fewer than n segments per arc.

Because their test problems had a single destination node, we could model the problem
with the disaggregated multiple choice formulation. Table 4.1 compares the results of their
algorithm, which provided both a lower bound (LB) and an upper bound (UB), with the results
of solving the linear relaxation (LP) of the disaggregated formulation. The “Int.” designation
indicates that the linear programming solution of the disaggregated formulation was integral
and, therefore, optimal. The disaggregated formulations had roughly 20,000-30,000 variables
and constraints. We should note that the times reported for the Cominetti and Ortega solutions
are from runs on a Sun Sparc 10 machine with operating system Sun OS 4.1.3, not the Dell
PC with Linux that we use to solve the linear relaxations.

The linear programming relaxation of the disaggregated forraulation yields integral so-
lutions for all five test problems. Moreover, solving the linear programming relaxation is
significantly faster than the implementation of the algorithm developed by Cominetti and Or-
tega (even once we account for the possible differences in speed of the two machines). With

these results as inspiration, we will now examine other computational results.
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Cominetti & Ortega Solving the LP of the

on the Aggregated Form. | Disaggregated Form.

Max # CPU CPU

Problem  Segs. LB UB (sec) LP Soln. (sec)
mtest0 1 | 128,110 130,012 1470 | 130,012 Int. 1

wtestl 2 90,239 93,026 1565 92,709 Int. 2
mtest2 3 96,345 100,501 1587 | 100,042 Int. 2
mtest3 4 63,291 67,587 1659 | 67,268 Int. 4
mtest4 5 48,958 52,420 1612 | 52,150 Int. 5

Table 4.1: Computational Comprison with Cominetti and Ortega Results

The results in Table 4.1 are not unusual. In all the single-destination instances we ran
with concave costs, the disaggregated formulation solved with an integral solution. Tables
4.2 and 4.3 provide samples of such instances on Networks 1 and 2. In these problems we
randomly generated a set of decreasing variable costs within the specified range for each arc.
On Network 1, b° = 12# (where S is the number of segments), and so each segment has
the same length, but on Network 2, b° = ﬁ%ﬂ"_, so that the segment length increases as s
increases. Given these variable costs, breakpoints, and f!, the initial fixed charge, we can
then calculate the appropriat: fixed costs for the remaining segments so that the resulting cost
function is concave.

On all three networks, when we include an initial fixed cost, we use a value of 1000. To
give a sense for how large a fixed cost of 1000 is, relative to the variable costs, we note that for
the instances on Network 1 with variable costs in [1,4], the optimal (integer) solution with an
initial fixed cost of 1000 was, on average, 133% greater than the optimal (integer) sclution with
an initial fixed cost of 0. For the instances with variables costs in [1,10], this average difference
was only 55%. On Network 2, the fixed costs dominated the variable costs even more. On
instances with variable costs in [1,4], the difference was 414%, while it was 169% for instances
with variable costs in [1,10]. Later we will see how the performance of the formulations are
effected as we vary the value of the initial fixed cost.

.Because of the relatively small demands on Network 2, the instances with an initial fixed
cost of 1000 provide results for a situation when fixed costs dominate the arc costs.

These results are a testimony to the strength of the disaggregated formulation. The

computational results show not only that the disaggregated formulation solves with integral
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# Var. Cost  Init. CPU (s) % Gap from Optimal
Segs Min. Max. FC | D/A Disagg | Agg. D/A Disagg.
1 4 0 7 5 16.0 16.0 0.0
1 4 1000 | 31 11 143.6 5.9 0.0
1 10 0 9 7 22.1 221 0.0
1 10 1000 | 22 8 794  12.7 0.0
1 4 0 12 8 245 245 0.0
1 4 1000 | 37 61 1656.6 9.2 0.0
1
1
1
1

10 0 17 12 35.2 35.2 0.0
10 1000 | 57 63 102.5 20.5 0.0
6 0 65 394 572  57.2 0.0
6 1000 | 226 1570 | 191.2 21.3 0.0

00 00 > i i i W W W W

Table 4.2: Computational Experience on Concave Cost Structures on Network 1

# Var. Cost  Init. CPU (s) % Gap from Optimal
Segs Min. Max, FC | D/A Disagg | Agg. D/A Disagg.
3 1 4 0 1 1 20.0 200 0.0
3 1 4 1000] 1 3 336.0 34 0.0
3 1 10 0 1 1 30.5 305 0.0
3 1 10 1000 | 2 3 1929 9.6 0.0
4 1 4 0 1 1 270 270 0.0
4 1 4 1000 3 49 354.5 4.2 0.0
4 1 10 0 1 1 39.5 395 0.0
4 1 10 1000] 5 16 213.1  11.7 0.0
8 1 6 0 4 4 64.1 64.1 0.0
8 1 6 1000] 11 201 4371 8.3 0.0

Table 4.3: Computational Experience on Concave Cost Structures on Network 2

solutions, but also how weak the aggregated formulation is. Particularly when the problem
has an initial fixed charge, the aggregated formulation is quite weak. We also see, however,
that there is a price to be paid for the tighter formulation. As the number of segments grows,
solving the disaggregated formulation becomes quite time consuming, while the aggregated
formulation solves in under a second.

As a result of Corollary 14, the disaggregated/aggregated formulation does not improve
upon the aggregated formulation when the initial fixed charge is zero. ~When the initial
fixed charge is positive, however, this formulation improves significantly upon the aggregated
formulation.

We now more closely consider the impact of the initial fixed cost. In Figure 4-1, we plot

the relaxation gaps for each formulation versus the initial fixed cost, on Network 2. As we see,
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the gap for the aggregated formulation increases as the fixed cost increases. This result is to
be expected since the convex lower envelope of the function deteriorates as an approximation.

The relaxation gap for the D/A formulation, on the other hand, decreases as the fixed cost
increases. If we analyze both the D/A LP solution and the optimal solution we can explain
this phenomenon. For this network, the optimal solution for the D/A LP are the same for
all values of the initial fixed cost. Similarly, the optimal integer solutions are also the same.
Consider a single arc, and let (z°*,3°) be the optimal integer solution and (z°*,7?) be the
optimal LP solution to the D/A formulation. When we examine the solutions, we find that
>, z% = Y, 7°; both solutions route the flow the same way and the solutions differ only
by how the models allocate the flow among the segments. The difference between the cost
of these two solutions equals (c*z°* + f%y°) — (c*Z** + f*3®). Note that when we increase
the initial fixed cost by A units, we increase each fixed cost by A as well (the entire cost
function increases by A units). Clearly, if an arc has flow in the optimal integer solution, then
Y, ¥° = 1, and therefore an increase in the initial fixed cost by A, increases the optimal cost by
A. We can also see that for an optimal solution to the linear program of the A/D formulation,
if a particular commodity flows on a single path, then ), mf_;‘ = d* and therefore YL,y =1
Therefore, an increase in the initial fixed cost by A also increases the optimal cost of this LP
by A. Indeed, for these instances, the linear programming solution sends each commodity
on a single path. Since both the linear programming solution and the optimal solution are
increased by the same amount, A, the difference between the cost of the two solutions remains
constant as we vary the fixed cost. Therefore, when we calculate the gap using [(Opt — LP)
/ LP), the numerator remains constant for all values of the initial fixed cost. The cost of the
linear programming solution, however, increases as the fixed cost increases. Therefore, the
relaxation gap for the D/A formulation decreases as the fixed cost increases.

This analysis relied on two observations particular to the solutions to this network and
demand structure. The first was that the optimal integer solution and the linear program-
ming solution of the D/A formulation did not change as the fixed cost changed, and in fact,
the routing of the flows were the same in both solutions. We also used the fact that com-
modities were routed on single paths in the linear programming solution. This second fact

is not uncommon for concave cost structures. We know the linear programming solution to
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Figure 4-1: Optimality Gap on Network 2 as the Initial Fixed Cost is Varied

the aggregated formulation sends commodities on a single path because it simply linearizes
the costs and uses the shortest path. In most cases, the optimal solution to the disaggre-
gated/aggregated formulation maintains this same routing and simply increases y! to satisfy
the forcing constraint (as shown in the proof of Proposition 13). As a result, the solution
to the linear programming relaxation of the D/A formulation often satisfies this single path
assumption.

Although other problems will not always exhibit these two features, they seem to be suffi-
ciently present that the resulting trend often holds; that is, the relaxation gap for the disag-
gregated/aggregated formulation tends to decrease as the fixed cost increases. This plays an
important role as we consider which formulation is best under varying circumstances.

The analysis thus far has examined concave cost structures on two single-destination net-
works. We will now examine the computational results on Network 3, a multi-commodity
nctwork. As mentioned, these results compare four models for the multi-commodity problem.
We refer to the model by two letters. The first (A or D) denotes whether the variables are
aggregated or disaggregated. Aggregated variables define a commodity by origin, while dis-
aggregated variables define a commodity by both origin and destination. The second letter

(also A or D) denotes whether the forcing constraints are aggregated or disaggregated, i.e., of
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the form of (3.27) or (3.28). Table 4.4 provides a summary of the results. We do not include
the solution times for the linear programming relaxations because all but one solved in under
a second.

For instances with an initial fixed cost of 1000 on this network, the fixed costs dominated the
variable costs overwhelmingly. The average difference between the optimal integer soluticns
with and without the initial fixed cost was 925% on instances with variables costs in {1,4] and
386% on instances with variable costs in [1,10].

Notice that when the problem has no initial fixed cost, the solutions to A/A and D/A arc
the same. The explanation for this is similar to the reasoning underlying Corollary 14. From
a solution to the linear programming relaxation of A/A, we can derive a feasible solution to
the linear programming relaxation of D/A by increasing y'. When f! = 0, this solution will
have the same cost as the solution to A/A. This property holds for all cost structures.

We also see that all but the D/A formulation have larger gaps when the probiem has
an initial fixed charge, but the fully disaggregated model is still quite tight and improves
significantly upon the aggregated formulation. When the problem has no initial fixed cost, the
solution to the fully disaggregated formulation is still integral, but we also notice a substantial
improvement from just disaggregating the forcing constraints of the model with aggregated
variables (i.e., comparing A/A and A/D). When the problem has an initial fixed cost, we do not
obtain a significant improvement from just disaggregating the forcing constraints, but we realize
a substantial improvement when we disaggregate the variables, even if we use aggregated forcing
constraints. In summary, with concave cost structures, the fully disaggregated formulation is
very tight. If, however, we want to use a smaller formulation, we should use a formulation
with aggregated variables and disaggregated forcing constraints whenever the problem has no
initial fixed charge. When the problem has an initial fixed charge, these results suggest that a
formulation with disaggregated variables and aggregated constraints is most appropriate. As
we will see, however, this can depend on the magnitude of the fixed costs.

One final observation from the data on all three networks is worth noting. As the number of
segments increases, the gap between the aggregated and disaggregated formulations increases
for cost structures with no initial fixed cost. This is because the way the cost functions

were defined, a function with more segments was ‘more concave.” The more concave the cost
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# Var. Cost  Init. % Gap from Optimal
Segs Min. Max. FC | A/A A/D D/A D/D
1 4 0 (223 45 223 0.0
1 4 1000 [ 73.0 69.1 2.8 0.9
1 10 0 316 60 316 0.0
1 i0 1000] 690 59.2 68 14
1 4 0 280 7.2 280 00
1 4 1000 | 73.3 693 24 0.4
1
1
1
1

10 0 | 421 100 421 00
10 1000 71.2 605 6.6 0.7
6 0 | 626 13.1 626 0.0
6 1000 [ 77.8 69.2 4.7 0.0

CO QO > W W ww

Table 4.4: Computational Experience on Concave Cost Structures on Network 3

function is, the more improvement we gain from disaggregation.

We can also gain insight into these formulations by examining the trend in the gaps as
we change the demand and cost structure. In Figures 4-2 - 4-5, we again consider a multi-
commodity network with demand from several origins serving several destinations each (similar
to Network 3).

In Figure 4-2, we see how the gaps change as we vary the magnitude of the initial fixed
charge. We do not change the variable costs or the breakpoints; we just increase the fixed
charge on each segment by a constant. As the fixed cost increases, the gaps for A/A and A/D
increase. Although the relaxation gap for D/D was zero for each value of the fixed cost, for
problems with smaller demands, the relaxation gap for this formulation also increased as the
fixed cost increased. These increasing gaps are due to the fact that as the initial fixed cost
increases, the approximation provided by the lower convex envelope deteriorates. While the
gaps for the other formulations increase, however, we again see the gap for the D/A formulation
decreasing as we did in Figure 4-1. As a result, for small fixed costs, the A/D formulation was
superior to the D/A formulation, but for large fixed costs, the D/A formulation was tighter
than the A/D formulation.

We might ask why the gap for the A/A formulation behaves differently than the gap for
the D/A formulation, since both have the same constraint structure. The rationale goes back
to the discussion of why the relaxation gap for the D/A formulation decreases. Recall that

this result relied on an assumption that in the linear programming solution, each commodity
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flowed on a single path so that ), a::;‘ = d* and, therefore, 3°,%° = 1. For this result to
hold for the A/A formulation, we would need }_, :cf;‘ = DF. Clearly, this cannot happen on
the arcs into each destination, since each one requires only a portion of D¥. Moreover, since
the destinations for each origin are likely to be spread throughout the network, we would not
expect the flow to multipie destinations to “stick together” as they flow through the network.
Therefore, we should not expect the linear programming solution to A/A to satisfy the property

. zf;‘ = D* on many arcs. As a result, the relaxation gap for A/A does not decrease as the
fixed cost increases, as it did for D/A.

In Figure 4-3 we see how the gaps change as we vary the demand of each commodity. For
these results, we vary d, a multiplier on the demand of each commodity. We then measure
the gap between each formulation and the optimal solution. When the cost functions do not
include an initial fixed cost, the gaps are constant for all &. When we introduce an initial
fixed cost, however, we see the trends presented in Figure 4-3. Notice that these results follow
the results shown in Figure 4-2, but in reverse. When generating these instances, we keep the
fixed and variable costs constant as we vary the magnitude of the demand, but increase the
breakpoints to keep the same number of segments. When the demand is small, then, the fixed
cost represents a large portion of the total cost, but as the demand increases, the role of the
fixed cost diminishes. As a result, increasing demand has the same effect as decreasing the
initial fixed cost.

This figure, however, also provides us a clearer picture of the trade-off between disaggre-
gating variables versus disaggregating forcing constraints. We see that as demand increases
(or as the fixed cost decreases), the gain from disaggregating the variables decreases (i.e., the
difference in the gaps between A/A and D/A and the difference between A/D and D/D de-
creases), while the value of disaggregating the forcing constraints increases (i.e., the difference
in the gaps between A/A and A/D and the difference between D/A and D/D increases). This
same trend is present in Figure 4-2, but it is not quite as clear that the solutions to A/A
and A/D are approaching one another. This is an important consideration when choosing a
formulation. In determining which formulation is the most appropriate, it is clear that we
should consider the relative magnitude of the fixed costs.

In Figures 4-4 and 4-5, we vary k, the number of destinations that each origin serves. In this
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Figure 4-2: % Gap from Optimal as the Magnitude of the Fixed Cost Changes

case, we keep the expected supply out of each origin the same. Therefore, as we increase the
number of destinations served, we decrease the expected demand for each origin/destination
pair. In Figure 4-4 we use a concave cost function with no initial fixed cost. As expected
for this case, the solutions to A/A and D/A are the same. In fact, the forcing constraints in
A/A do not tighten the formulation. Therefore, this solution is the same as the solution to
the formulation without any forcing constraints.

One thing we notice is that as we increase from one destination per origin to two, the A/A
and D/A gap increases relatively significantly, but then stabilizes as we further increase the
number of destination/origin pairs. Recall that the forcing constraints do not strengthen these
formulations at all, so we can ignore them. We can then see that the reason for this initial
jump is that as we move from one destination per origin to two, the total flow of the linear
programming solution on any given arc tends to decrease significantly — in fact, often by a
factor of two. When the total flow on an arc decreases, the segment bound constraints result
in y variables with smaller fractions, and therefore weaker overall solutions. When k increases
beyond two, however, there are more interactions between commodities and the total flow on
a given arc stabilizes, resulting in more stable gaps.

We also see in Figure 4-4 that the A/D formulation also makes this initial jump, but then
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Figure 4-3: % Gap from Optimal as the Magnitude of the Demand Changes

continues to increase as k increases. Although the total flow on an arc might stabilize, the
flow of each commodity continues its decreasing trend. Therefore, the forcing constraints in
A/D, z** < D¥y®, continue to produce smaller fractional y variables, and therefore, solutions
with larger gaps.

Consider now Figure 4-5 where we again vary the number of destinations per origin, but
this time include an initial fixed charge in the cost functions. The fixed charge increases the
overall magnitude of the gaps, and there is also a difference between the solutions to A/A
and D/A. However, these are not the only contrasts to Figure 4-4. We see that the gaps
for A/A, A/D, and D/D increase as k increases, without any stabilizing. This is the reverse
effect of what we saw in Figure 4-3. As k increases, the demand of the individual commodities
decreases and, therefore, the gaps increase. The gap for D/A waffles, but remains fairly
constant. As expected, the difference between A/A and D/A and the difference between
A/D and D/D increase. This outcome reflects the intuitive notion that as the number of

commodities increase, the gains from disaggregating by commodity increase.
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4.1.2 Non-Concave Cost Structures

When the cost functions are not concave, we find larger relaxation gaps for the disaggregated
formulation, but we still see a remarkable improvement between the aggregated and disaggre-
gated formulations. In the following computational runs, we have randomly (and uniformly)
generated the costs within the specified range and the network and demand structure are again
given by the previous specifications for Network 1, Network 2, and Network 3.

Tables 4.5, 4.6 and 4.7 show results for non-concave cost functions with fixed and variable
costs for each segment generated randomly (uniformly) and independently within the ranges
given for each instance. We can think of these as truly random piecewise linear cost functions,
with no structure. We generated the upper bounds in Table 4.5 heuristically. In this table, as
well as all others presented, the asterisk denotes a problem where the upper bound is, indeed,
the optimal solution. The upper bounds shown in Tables 4.6 and 4.7 are the known optimal
solutions.

We again notice that the disaggregated linear program solution is quite tight. When the

instances are large it is more difficult to find good upper bounds, but for many of the instances
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we see that the linear relaxation of the disaggregated formulation is very close to the upper
bound. We also notice that the relaxation gaps for the disaggregated formulation tend to be
slightly larger for Network 2 than for Network 1. One possible explanation of this difference
uses Proposition 12. Recall that Network 1 is a less dense network, as measured by the ratio
of the number of arcs to the number of nodes. As a result, the number of paths between any
two nodes is likely to be smaller for Network 1 than for Network 2. Proposition 12 states
that when commodities flow on a single path through the network, the solution to the linear
relaxation is integral. The proof showed that on each arc, the linear programming solution
solves with integral y variables. In a less dense network, commodities are more likely to flow
on a single path because there are fewer paths from which to choose. As a result, more arcs
will solve with integral y variables and the overall gap is expected to be smaller.

On Network 3, we have two instances where the gap between the fully disaggregated and
optimal solutions is greater than 10%. This provides evidence that the disaggregated formula-

tion is, on occasion, not very tight. Nonetheless, the disaggregated formulation still improves
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#  Var. Cost Fixed Cost Time(s) % Gap from UB
Segs Min Max Min Max | D/A Disagg. | Age. D/A Disagg.
3 1 4 0 0 3 108 28.0 28.0 0.0 *
3 1 4 0 100 4 126 3756  25.3 0.1 *
3 1 10 0 0 3 133 429 429 0.0 *
3 1 10 0 100 4 136 48.2 404 0.1 *
4 1 4 0 0 3 424 33.5 33.5 14
4 1 4 0 100 5 589 424 305 14
4 1 10 0 0 4 1435 57.1 57.1 3.6
4 1 10 0 100 6 1130 61.8 53.8 34
5 1 4 0 0 4 371 429 429 2.0
5 1 4 0 100 6 427 57.3 419 4.3
b) 1 10 0 0 6 945 775 715 4.4
5 1 10 0 100 7 1578 864 75.0 5.9

Table 4.5: Computational Experience on Non-Concave Cost Structures Network 1

#  Var. Cost Fixed Cost CPU (s) % Gap from UB
Segs Min Max Min Max | D/A Disagg. | Agg. D/A Disagg.

3 1 4 0 0 1 2 26.8 258 0.7 *
3 1 4 0 100 1 6 46.7 231 1.7 *
3 1 10 0 0 1 1 344 344 5.1 *
3 1 10 0 100 1 8 51.3 353 6.3 *
4 1 4 0 0 2 7 15,5 15.5 5.2 *
4 1 4 0 100 2 15 395 66.1 6.6 *
4 1 10 0 0 2 15 13.1  13.1 4.3 *
4 1 10 0 100 2 15 271 175 6.4 *
5 1 4 0 0 2 15 294 294 1.5 *
) 1 4 0 100 2 18 60.2 31.8 4.2 *
5 1 10 0 0 2 17 525  52.5 6.9 *
5 1 10 0 100 2 22 71.5 453 6.6 *

Table 4.6: Computational Experience on Non-Concave Cost Structures on Network 2
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#  Var. Cost Fixed Cost | CPU (s) % Gap from UB
Segs Min Max Min Max| D/D A/A A/D D/A D/D

3 1 4 0 0 <1 246 129 246 05 *|
3 1 4 0 100 6 102.1 713 403 133 *
3 1 10 0 0 <1 378 199 378 13 *
3 1 10 0 100 3 80.0 541 310 70 *
4 1 4 0 0 1 34.3 88 343 10 *
4 1 4 0 100 6 108.7 572 369 69 *
4 1 10 0 0 3 554 156 554 2.7 *
4 1 10 0 100 6 979 499 370 64 *
5 1 4 0 0 2 303 163 303 08 *
5 1 4 0 100 20 151.8 92.1 469 125 *
5 1 10 0 0 3 50.3 25.7 503 21 *
) 1 10 0 100 15 1205 768 445 8.1 *

Table 4.7: Computational Experience on Non-Concave Cost Struictures on Network 3

significantly upon the aggregated formulations. We also see that once again, A/D is tighter
than D/A when there is no initial fixed cost, but D/A generally becomes tighter when we
include an initial fixed charge.

Tables 4.8, 4.9, and 4.10 display results for LTL-like cost functions, which take the form
shown in Figure 5-4 in Chapter 5. These functions contain no fixed costs on any of the
segments and the variable costs decrease as the segment number increases. As we did for the
concave cost, instances, we assign breakpoints for each arc such that on Network 1 the segment
lengths are constant but on Networks 2 and 3 the initial segments on any arc are shorter than
subsequent ones. As a result of Corollary 14, the disaggregated/aggregated formulation will
not improve upen the aggregated formulation. Therefore, we do not provide results for this
formulation.

Like the results for the other cost structures, we notice large gaps between thLe aggregated
and disaggregated solutions, and small gaps between the disaggregated solution and the known
upper bound. Although not as small as for the concave case, the gaps between the disag-
gregated solutions and the known upper bound are within 1% for all instances on all three
networks. These results are tighter than those presented for random non-concave functions.
We also see again that the gap between the aggregated and disaggregated solutions increase as
the number of segments increase. This is because the cost functions were generated so that

instances with more segments had a more ‘rounded’ structure. As mentioned previously, the
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#  Var. Cost | CPU (s) | % Gap from UB
Segs Min Max | Disagg | Agg Disagg
1 4 103 28.6 0.0 *
10 118 43.1 0.1 *
4 330 45.0 05 *
10 907 73.2 1.6

4 286 65.6 0.3
10 1064 1124 14

[, W<, B - N JURY L]
— e e e

Table 4.8: Computational Experience on LTL-Like Cost Structures on Network 1

#  Var. Cost | CPU (s) | % Gap from UB
Segs Min Max | Disagg | Agg Disagg
3 1 4 2 232 06 *
3 1 10 5 36.7 04 ¥
4 1 4 3 269 07 *
4 1 10 2 41.8 0.1 *
5 1 4 9 371 01 *
5 1 10 7 65.1 07 *

Table 4.9: Computational Experience on LTL-Like Cost Structures on Network 2

less linear the costs, the more improvement we gain from disaggregating the variables.
On Network 3, we also conducted experiments varying k, the number of destinations served
by each origin, for the LTL case. The results were very similar to those shown in Figure 4-4.
The final cost function we consider is that of a truckload cost structure, like that of Figure
3-14. In these problems, the only factor in determining the cost function is the capacity
and the fixed cost of the trucks. The capacity and the total flow on the network determines

the number of segments that need to be defined on each arc. For each arc, the gaps are

#  Var. Cost | CPU (s) % Gap from UB
Segs Min Max| D/D | A/A A/D D/D

3 1 4 <1 209 84 04 *
3 1 10 <1 31.1 125 06 *
4 1 4 1 278 89 03 *
4 1 10 1 450 138 08 *
5 1 4 3 374 96 01 *
5 1 10 6 632 154 08 *
8 1 4 6 46.6 139 0.7 *
8 1 10 16 102.8 247 29 *

Table 4.10: Computational Experience on LTL-Like Cost Structures on Network 3
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independent of the magnitude of the fixed cost. For example, if we double the fixed cost, both
the cost of the linear program and the cost of the integer program on this arc doubles and
the gaps remeains constant. Therefore, the magnitude of the relaxation gaps should not be
effected by the magnitude of the fixed cost.

The linear programming relaxations of instances with these cost structures are harder to
solve than those with other cost structures. We found that with these cost structures, the
primal simplex method performed much better than the dual simplex method. For larger
problems, the barrier method was also quite efficient, in some instances outperforming the
primal simplex method.

Tables 4.11, 4.12 and 4.13 provide results on each of the three networks for these truckload
costs. There are several noteworthy observations to be made. The gaps between the aggre-
gated and disaggregated models are even larger than for the previous cost structures, although
the difference decreases as the number of segments increases. In fact, for an instance of Net-
work 2 with 15 segments, the gap between the aggregated and disaggregated formulations was
only 20%. This result suggests that the aggregated approximation improves as we increrse
the number of segments. This result contrasts with the other cost structures for which the
gap increased as the number of segments increased. This is the same phenomenon that we dis-
cussed in Section 3.8 regarding the network ioading problem, and showed pictorially in Figure
3-7.

We also notice that the solutions to the disaggregated/aggregated model are the same as
for the fully disaggregated model in the case of Networks 1 and 2. This is o-ften the case for
problems with a small number of segments. As the number of segments increases, however,
we find instances where there is a small difference between these two formulations. As seen
more clearly in the results for Network 3, the iniprovement from disaggregating the constraints
grows as the number of segments increases. This result is to be expected, since the aggregated

constraints are indeed aggregated over segments.

4.1.3 A Partial Disaggregation

Another option when disaggregating networks is to only partially disaggregate. For example,

rather than defining a commodity for each origin node, we can group the nodes and define
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#
Segs

2
3
4
5

CPU (s)
D/A Disagg.
607 1430
1018 2649
941 7868
1624 7017

% Gap from UB

Agg. D/A Disagg.
5279 0.6 0.6
3372 1.2 1.2
251.6 4.3 4.3
189.8 3.3 3.3

%
*

Table 4.11: Computai:iona.l Experience on TL-Like Cost Structures on Network 1

# CPU (s) % Gap from UB
Segs | D/A Disagg. | Agg. D/A Disagg.

2 7 22 409.5 2.0 2.0 *

3 54 144 249.0 1.0 1.0 *

4 46 85 173.7 1.8 i.8 *

5 42 188 1306 3.9 3.9 *

8 145 976 66.5 6.4 6.3 *

Table 4.12: Computational Experience on TL-Like Cost Structures on Network 2

# | CPU (s) % Gap from UB
Segs| D/D |A/A A/D D/A D/D

2 <1 85.2 852 0.0 00 *
3 <1 914 914 84 80 *
4 <1 789 789 99 51 *
5 1 642 636 7.6 35 *
8 7 544 486 185 9.0 *
10 10 36.1 339 127 56 *

Table 4.13: Computational Experience on TL-Like Cost Structures on Network 3
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a commodity for each group of n nodes. This approach will provide a formulation that is
tighter than the aggregated formulation, but will not be as large as the fully disaggregated
one. Figure 4-6 graphs the solution for different levels of aggregation on the Network 1 which
has 70 supply nodes and a single destination node. Although the results presented in this
figure correspond to an LTL-like cost structure with four segments, the results werc similar for
other cost functions. The dotted line plots the solution time in CPU seconds. The solid line
shows the percentage of the original gap between the soiutions to the aggregated and the fully
disaggregated formulations that is realized under each level of aggregation. A disaggregation
level with n = 70 implies that we have defined a commodity for each group of 70 nodes, and
this, therefore, corresponds to the aggregated model and so we have the full gap. If we let
the level of disaggregation equal 10, for exampie, we define a commodity for each group of
10 nodes, and we see from the figure that we gain 40% of the total improvement we would
gain if we disaggregated entirely. At a disaggregation level of 1, we define a commodity for
each node, so we have the fully disaggregated model and therefore we have closed 100% of
the gap. This figure shows that “you get what you pay for.” One might hope that a small
disaggregation (corresponding to a high value of n) would give large benefits and the solid
line in Figure 4-6 would be concave. Unfortunately, this is not the case and we have to
disaggregate extensively in order to see striking results. Nonetheless, if performance time is
more important than finding the tightest possible lower bound, it might be appropriate to use
a partial disaggregation that improves upon the aggregated formulation without exploding the

solution time.

4.1.4 Summary of Computational Results on Standard Network Flow Prob-

lems

The computational experiments discussed to this point in this chapter suggest the following

results.

e Disaggregation can significantly improve linear programming lower bounds for network

flow problems with piecewise linear costs.

¢ On instances with concave costs for networks with a single commodity flowing from sev-

eral origins to a single destination, the linear programming relaxation of the disaggregated
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Figure 4-6: Level of Disaggregation vs. Solutien Valte and Time

formulation tends to solve with integral solutions.

e The aggregated formulation is particularly weak when the costs are either concave with

large initial fixed costs, or have a truckload structure with a small number of segments.

¢ On multi-commodity networks with concave costs and each commodity flowing from a
single origin to several destinations (or visa versa), a formulation with aggregated vari-
ables and disaggregated constraints (A/D) performs better than one with disa.gérega.ted
variables and aggregated constraints (D/A) when there is a small (or no) initial fixed
charge. As the fixed costs increase, however, the formulation with disaggregated vari-

ables and aggregated constraints performs better.

e As the magnitude of the fixed cost increases on a multi-commodity network with concave
costs, the relaxation gaps for the two formulations with aggregated variables (A/A and
A/D) increase, as does the relaxation gap for the fully disaggregated formulation (D/D).
The relaxation gap for the formulation with disaggregated variables and aggregated con-

straints, however, generally increases.

e As the number of destinations/origin increases (while keeping the total demand per ori-
gin constant) on a multi-commodity network, the relaxation gap on formulations with
aggregated variables (A/A and A/D) increases, while the gap on formulations with dis-
aggregated variables (D/A and D/D) remains relatively constant.
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Aggregated D/A Disaggregated
s. | Consts. Vars. Bin. | Consts. Vars. Bin. | Consts. Vars. Bin.

#
Seg
3 1270 1170 585 | 21820 41535 585 | 41616 41535 585
4
5
8

1660 1560 780 | 22210 55380 780 | 63160 55380 780
2050 1950 975 | 22600 69225 975 | 70200 69226 975
3220 3120 1560 | 23770 110760 1560 | 119320 110760 1560

Table 4.14: Size of Formulations for Network 1

e The less linear the cost function, the more improvement can be gained from disaggregat-
ing the variables. The ‘more concave’ the cost functions are, the larger the gaps will be

between the aggregated and disaggregated formulations.

o The fully disaggregated formulation is not as tight on instances with truckload style costs

as it is for other cost structures.

e On instances with truckload costs, as the number of segments increases, the aggregated

formulation provides a better approximation of the actual cost.

e Grouping commodities to achieve a partial disaggregation might be effective at limiting
the size of a problem, but the rate at which the disaggregated model improves upon the

aggregated model continues to increase as we further disaggregate.

We have seen that disaggregation can be a quite powerful technique for improving lower
bounds on these types of problems. However, as the number of segments per arc grows, the
problems quickly become so large that even solving the linear programming relaxation of the
disaggregated formulation is quite time consuming, as seen by many of the solution times for
the disaggregated linear programs, particularly on Network 1. Table 4.14 shows the relative
size of these formulations on Network 1. So, although the disaggregated formulation appears
to be tight, the problems can become prohibitively large. To solve large problems in practice,
therefore, we need to develop more sophisticated approaches to solving the relaxations. The

computational results in Chapter 5 illustrate this possibility.

4.2 The Facility Location Problem

In Section 3.3 we discussed the facility location problem. We showed how this problem can

be transformed into a network flow problem with piecewise linear costs. Because this prob-
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lem transformation results in a network with a single origin (see Figure 3-2), we can apply
disaggregation to the formulation. In this case, we can define the flow to each customer as a
commodity and then disaggregate the flow variables by commodity and add appropriate forcing
constraints. Again, we can include forcing constraints of the form (3.28) to produce a disag-
gregated/aggregated formulation, or we can include constraints of the form (3.27), giving us a
fully disaggregated formulation. We compare these two formulations against the aggregated
one.

The data is generated with similar parameters used in Holmber and Ling [ [19]], although we
define the problems to be uncapacitated, i.e., each facility can be built large enough to satisfy
all the demand. The demand per customer is random and uniformly distributed between 20
and 100. We define a constant K = ‘%", where m is the number of possible facility locations,
n is the number of customers, and ¢ is the number of capacity options at each facility. We
divide the total demand into ¢ equal segments to define the segment bounds. This translates
into a cost function with ¢ equally sized segments on arcs from the dummy node to each
facility. The incremental fixed cost is the same for each capaéity level, and it is a random
number between 100K and 200K. We assume the production costs are zero, resulting in flat
cost segments on arcs from the dummy node into the facilities. The transportation costs are
linear with the euclidean distance between the facility and the customer, that is ¢;; = d;;.

We consider two physical networks. In the first, the number of possible facility locations is
10 and the number of customers is 20. In the second, the number of possible facility locations
is 50 and the number of customers is 100.

Table 4.15 shows the relative gaps between the linear programming relaxation of each
formulation and the optimal solution for four representative instances. We again find that
the disaggregated formulation is quite tight and improves considerably upon the aggregated
formulation. We also notice that the disaggregated/aggregated formulation also performs very
well. Moreover, for the aggregated formulation, the smaller networks have smaller gaps and
the problems with more facility sizes have smaller gaps. Note that the number of segments in
the cost function is equal to the number of facility sizes. Therefore, this result is consistent
with previous results for networks with these truckload style cost functions; that is, gaps are

smaller vhen the cost functions have more segments.
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Number of LP CPU (s) | % Gap from Optimal
Locs. Custs. Sizes | D/A Disagg. | Agg. D/A Disagg.
10 20 2 <1 <1 129 00 0.0

10 20 0 <1 <1 31 1.0 0.8
5U 100 2 2 7 75.7 0.0 0.0
50 100 6 3 13 304 0.0 0.0

Table 4.15: Computational Results for Facility Location Problem

In the case where the transportation costs are constant for each customer, we showed in
Section 3.3 how we can reduce the problem to one with two nodes and m parallel arcs. In this
case, disaggregation will not improve the formulation. The argument is equivalent to the one
presented in Section 3.10, regarding disaggregation to commodities with unit demands. In
this case, the disaggregation would define n commodities, but they would all have the same
origin and destination. Therefore, it is possible to distribute the commodity flows such that
we satisfy the forcing constraints without changing the cost of the solution.

In fact, when CF = 0, we can solve the linear programming relaxation of the aggregated
formulation using a greedy algorithm. Since the linear programming relaxation estimates the
actual costs with a convex function, the linear programming solution will start with the facility
that has the least expensive initial segment cost, in the convex lower envelope, and saturate
this segment. It will then look for the next cheapest possible segment - either continuing to
add to this facility, or looking for another facility with a cheaper initial segment cost. We can
continue in this manner until we have sent all the flow from the dummy node to the single
destination node. The resulting solution will have at most one y ¢ {0,1}. If one fractional
variable exists, we can round it to one and have a feasible integer solution.

Because the majority of the arcs on these problems have linear costs, the relaxation gaps
for the aggregated formulation vary substantially according to the relationship between the
fixed costs at the facilities and the transportation costs. To examine problems with different
relative transportation costs, we introduce a cost factor on the transportation costs. That
is, c;j = CF xd;;. 'When CF is very large, the transportation costs dominate the problem;
when CF = 1,we obtain the results in Table 4.15; when CF = 0, the problem has no trans-
portation costs. Figure 4-7 graphs the gap for each formulation for varying cost factors on an

instance with 50 locations, 100 customers, and 6 capacity options. For each instance, the dis-
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Figure 4-7: % Gap from Optima!l as the Cost Factor is Varied

aggregated/aggregated formulation gave the same solution as the disaggregated formulation.
As we see, the improvement gained by disaggregating is small when the transportation costs
are either very small or very large, relative to the fixed costs at the facilities. As explained
above, when the transportation costs are zero, we have no improvement at all. When the
transportations costs are very large, the improvement from disaggregating on the arcs into the
facilities is overshadowed by the linear transportation costs, resulting in only a small percent-
age improvement. As we see in this graph, however, there is a range for the cost factor in
which we can still gain substantially by disaggregating.

We also should not underplay the impact of disaggregating, however, even when it might
only improve 10% upon the aggregated formulation. The solution to the linear relaxation of
the disaggregated formulation is very tight (within 1% for all instances tested), and therefore,
the subsequent branch and bound can solve for the optimal solution quite efficiently. Starting
with a linear relaxation that is, for example, 10% from optimal might lead to a much longer
branch and bound process.

We learn from this computational analysis that modeling this facility location problem

with a disaggregated network flow formulation provides tight linear programming relaxations.
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However, the disaggregated/aggregated formulation is often just as tight, and the aggregated

formulation also performs quite well for most cost parameters.

4.3 The Network Loading Problem

4.3.1 Undirected Case

In Section 3.8 we discussed three formulations for the network loading problem. We use coni-
putational results to compare the standard and disaggregated formulations for the undirected
case, as seen, for instance, in telecommunications applications. For the directed case, the re-
sults for truckload functions shown previously are indicative. We label the standard network
loading formulation, given by (3.29), as SNLF and the disaggregated network flow formulation,
given by (3.31), as DNFF. As seen in the results for the network flow problem with truckload
costs, the objective values of the solutions to the relaxations of the disaggregated/aggregated
formulation and the disaggregated formulation are very close for these staircase cost functions.
In fact, for most problems they yield the same objective value. The same was true when
we tested the disaggregated/aggregated network loading formulation. We, therefore, do not
report on these results. We solved the linear relaxations of the two network flow formulations
with CPLEX’s barrier algorithm. We found that this algorithm performed much better than
either the primal or dual simplex method.

These problems are quite large in practice and both the disaggregated/aggregated and
the disaggregated formulations can quickly become unwieldy. Although they result in better
lower bounds than the standard formulation, they are often too large to solve to optimality
with branch and bound. We, therefore, focus attention on the performance of rounding heuris-
tics for finding good integer feasible upper bounds. In particular, we compare the performance
of the rounding heuristic on the disaggregated formulation (DNFF-RH), with the performance
of an edge rounding heuristic on the standard formulation (SNLF-RH). As described earlier,
DNFF-RH first solves the linear relaxation of the disaggregated formulation. It then rounds
to one any y variable whose value in the optimal linear programming solution exceeds a user-
supplied threshold. It also rounds to zero any y variable with an optimal linear programming

value of zero. With these variables fixed, the heuristic then performs branch and bound on the
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remaining problem. If the resulting problem has a feasible and integral solution, it is feasible
for the original problem and provides an upper bound on the optimal solution to the original
problem. Alternatively, one can use this same procedure on the disaggregated/aggregated
formulation. We found, however, that the network flow rounding heuristic performed slightly
better on the solution to the disaggregated formulation then on the solution to the disag-
gregated/aggregated formulation. In many cases, the heuristic rounded more variables for
the disaggregated solution, and therefore the branch and bound tree was smaller. For large
problems, however, it might be advantageous to use the disaggregated/aggregated formulation
since we can solve the initial linear relaxation more quickly.

Recall that in SNLF, the y variables are integer, not binary. SNLF-RH solves the linear
relaxation of the standard formulation and then rounds each y variable up to the nearest
integer. For example, if the linear programming solution installs 3.2 units on an edge, the
heuristic solution will install 4 units. This sclution is feasible and provides an upper bound
on the optimal solution. Epstein [13] reports further results on this and other heuristics.

The instances reported here are generated using the network generator used by Epstein.
He provides details on the nature of the network and demand structures generated and the
methods used for generating them. K and S refer to the number of commodities (defined as
an origin/destination pair with a nonzero demand) and segments, respectively. Tables 4.16
and 4.17 report results on a network with ten nodes and a uniform demand pattern. Each
node of the networks in Table 4.16 has an edge degree between three and five. The networks
in Table 4.17 are complete.

As expected, we see that the disaggregated model can provide much tighter bounds than
the standard formulation. We also notice in these results that the rounding heuristic on
the disaggregated formulation (DNFF-RH) performs very well. In over half of the instances,
it sclves with the optimal solution. In the worst case, it finds a solution within 2.4% of
optimal. Recall, however, that these networks had only ten nodes. When problems are large,
solving DNFF is very time consuming. In addition, solving the mixed integer portion of the
rounding heuristic, DNFF-RH, is also too computationally difficult. In many cases, rounding
the variables reduced the problem by at least 75%. Unfortunately, when the original problem

is very large, even a 75% reduction in problem size is not sufficient to place it within the scope
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LP % from Opt. | Heuristic % from Opt.
K S [SNLF DNFF | SNLF-RH DNFF-RH
15 3 | 138.6 34.1 90.1 0.0
15 4| 769 19.0 70.9 0.0
15 8 | 39.1 20.0 39.3 1.5
20 5| 34.1 16.9 67.0 0.0
20 71 186 10.4 49.2 0.0
20 14| 6.1 4.3 27.2 1.6
28 6 | 334 9.5 73.2 0.0
28 9 | 20.8 8.3 63.0 0.0
28 17| 9.7 7.5 22.2 0.8
39 8 [ 275 8.3 91.0 0.0
39 12| 16.6 6.5 74.4 24

Table 4.16: Computational Results for a Network with Degree from 3 to 5

of branch and bound.

In both tables we notice that the relaxation gaps for the standard formulation decrease as
the number of segments increase. This result was suggested in Section 3.8. In addition, the
relaxation gaps for the disaggregated formulation tend to increase as the number of segments
increase. Another way of viewing this is to plot the difference between the objective values
of the two linear brogramming solutions versus the number of segments. As seen in Figure
4-8, problems with many segments tend to exhibit less improvement from disaggregation than
those with fewer segments. The disaggregated formulation is more effective when the number
of segments is small.

Another apparent observation is that although the disaggregated model produces better
bounds than the standard formulation, we do not see the improvements that we saw for the
standard network flow problem with truckload cost functions. Much of this can be explained
by Propositions 8 and 9, as we will discuss below.

In conclusion, we find that although the disaggregated model improves upon the standard
formulation, it still produces rather large relaxation gaps. Moreover, although the rounding
heuristic works quite well on small problems, it is not efficient on large problems. For these
reasons, we cannot solve the problem directly and there is still a need for more efficient meth-
ods for solving the network loading problem. Nonetheless, the improved formulation is still
valuable and with further study, might be an important component of developing an approach

for solving this problem.
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LP % from Opt. | Heuristic % from Opt. |
K S |SNLF DNFF | SNLF-RH DNFF-RH
14 4 | 1309 30.8 91.5 0.0
14 5 | 914 27.2 54.0 0.0
14 10| 38.1 16.1 27.6 0.1
18 5 | 1064 27.5 113.2 0.0
18 7 | 639 14.4 79.0 1.3
18 13| 31.7 13.3 35.7 0.8
34 7| 564 10.8 215.4 0.0
34 22} 15.0 3.4 51.0 0.3

Table 4.17: Computational Results for a Complete Network

4.3.2 Comparison to the Directed Case

The directed case of the network loading problem is equivalent to the network flow problem
with truckload style costs, so the results previousiy presented for this case are indicative of
the results we would expect for the directed network loading problem. From Propositions 8
and 9, however, we expect the magnitude of the gaps to be different than in the undirected
case. | To illustrate this, Table 4.18 presents results for the directed case on some of the same
instances reported in Table 4.16. Comparing these results provides a sense for the difference
between the directed and undirected instances of the network loading problem. Indeed, the
relaxation gaps for the standard formulation are larger for the directed instances, and the gain
from disaggregating is also larger in the directed case. In addition, the relaxation gaps for the
disaggregated formulation seem to be smaller for directed problems, although this difference is
more prominent on smaller instances.

These examples provide evidence that using a disaggregated network flow formulation for
the network loading problem is more effective when the problem we are solving does not
allow capacity to be shared by flow traveling in each direction on an arc. Such applications
arise irn transportation when freight traveling from node i to node j cannot be moved on the
same carrier as freight traveling from node j to node %, at least not simultaneously. In most
telecommunications applications, we are installing capacity in the form of data transmission
lines that can carry data being transmitted from node ¢ to node j and from node j to node
¢ simultaneously. In these latter problems, the disaggregated network flow formulation can

still improve significantly upon the standard formulation, but just not to the same extent as
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Figure 4-8: Difference Between Standard and Disaggregated Formulation vs Number of Seg-

ments

it does for directed problems.

4.4 Summary

In the previous chapter we examined the analytical and geometrical implications of disaggrega-

tion on a single arc. The computational results we reported in this chapter allow us to compare

the solutions of the aggregated and disaggregated formulation, as well zs to a known upper

Undirected Directed
LP % from Opt. | LP % from Opt.
K S |SNLF DNFF | SNLF DNFF
15 3| 138.6 34.1 174.3 6.4
15 8| 39.1 20.0 48.9 16.4
20 5| 34.1 16.9 60.1 16.5
20 7| 18.6 10.4 40.3 16.8

Table 4.18: Comparing the Undirected and Directed Results
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bound. We saw that the aggregated formulation was comparatively weak, with typical gaps
between the aggregated and disaggregated formulations ranging from 20% to 200%. However,
the disaggregated formulation was frequently within 2% of the optimal solution, and in the
case of concave costs, it was always integral, and therefore optimal, for the single-destination
problems. The multi-commodity problem had small gaps — usually within 1%. These results
provide computational evidence that disaggregation can be quite powerful when applied to
network flow problems with piecewise linear costs.

The computational experiments also showed that disaggregation can be an effective tool
for modeling the multiple-capacity facility location problem and the network loading problem.
The effectiveness, however, i« dependent on the size and cost structure of the problem. For the
step functions inherent in these problems, the linear relaxations are computationally difficult
to solve, so the trade-off between solution time and improved tightness of the formulation

requires close examination.
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Chapter 5

An Application of Non-Concave
Costs: The Merge-in-Transit
Problem

We now examine an application of the results in the previous chapters to a current real problem
in supply chain management. In this chapter we describe the problem, present a model and a
solution algorithm, and discuss computational results. This work has been conducted jointly

with Professor Bernard Gendron of the University of Montreal.

5.1 Background

The 90’s has been a decade that has revolutionized the way manufacturing firms think about
customer service. It is not enough to produce a quality product - now it must be a quality
product delivered to the right place at the right time. A significant part of accomplishing
this is through good management of the distribution process. Firms that want to compete in
today’s market must find cost effective ways to meet their customers’ needs.

In the computer industry, among others, this process can be complicated by products
that are composed of several components, produced at geographically dispersed locations. A
customer might place an order for computer X, which translates into an order for a monitor,

a CPU unit, a printer and a keyboard - all of which might be produced at different sources.
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The customer does not want to receive four shipments. It wants one shipment to arrive on its
dock on the requested day.

The manufacturer can meet this need in several ways. It can maintain large warehouses
with inventories of all the components. When a customer places an order, the manufacturer
takes these components off the shelf and repackages them into a single shipment. As an
alternative, it can use merge centers that act as in-transit consolidation points. It can ship
components from plants to a merge center, where they are consolidated into the final product
requested by the customer. These merge-in-transit centers are not intended to be inventory
centers. Therefore, the firm needs to coordinate the component shipments so that they
arrive simultaneously (or nearly so) and can be bundled and shipped immediately to the final
customer for arrival on the due date.

Several companies are adapting this merge-in-transit concept and have found it to be an
appropriate way to meet customers’ needs. Compagq, for one, has implemented a merge-in-
transit system as part of a complete, and very successful, overhaul of their logistics process. In
addition to the computer industry, merge-in-transit might be appropriate for consumer goods
companies like 3M. As with computers, a typical 3M customer order is composed of several
components produced around the country. Lucent Technology has also considered merge-in-
transit. Their business is primarily build-to-order and their components are expensive. These
attributes make them a good candidate for a merge system.

Although merge-in-transit can be an efficient and effective system, it is also a complex one
to design and manage. A firm first has to decide if this is an appropriate distribution strategy
for their business. If the answer to that question is in the affirmative, then there are a host of
tactical questions regarding the number and location of merge centers. Even with these issues
settled, the daily management of the system offers substantial challenges.

In the following sections, we describe a model that addresses operational issues of a merge-
in-transit system. The model was developed to address issues faced by Caliber Logistics.
Caliber, based in Cleveland, Ohio, is a third party logistics firm that provides transportation
services to manufacturing companies. Many of its clients are asking Caliber to more actively
manage their supply chains. Several of these companies, particularly in the high tech indus-

tries, would like to implement a merge-in-transit system for their distribution process and are
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asking Caliber to help with the strategic and operational planning.

5.2 Problem Description

A merge-in-transit program uses a two echelon distribution system. Figure 5-1 depicts the
underlying network. Components move from source points to merge centers, where they are
consolidated into products and shipped to customers. In general, a firm might source multiple
components from one plant, or source one comporent from multiple plants. In the computer
industry, manufacturers usually produce a component at a single plant. For example, Source
1 might produce Monitor 1 and Monitor 2. Source 2 might produce CPU1; Source 3 might
produce CPU2, and Source 4 could produce Printer 1.

Plants Merge Centers  Customers

Figure 5-1: A Merge-in-Transit Network

Each product is composed of several components as described by a “recipe” of its compo-
nents. For example, Product A might require Monitor 1, CPU1, and Printer 1. Product B
might require Monitor 2, CPU2, and Printer 1. Each time a customer orders a product, all of
its components must arrive at one of the merge centers before the entire product can be shipped
to the customer. The merge centers are not intended to be inventory centers; they should
hold inventory only when it is cost effective to do so (we describe such circumstances later).
Consequently, we must coordinate the shipments so that they arrive nearly simultaneously so

that we can ship them on to the customer with minimal delay.
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In addition to merging components into products, the system needs to merge products into
orders. To fulfill a customer order of 10 units of Product A and 20 units of Product B, the
system must merge both products at the same merge center and ship them via the same mode.
This assures that the customer receives its entire order in a single shipment.

Not only do we need to be concerned about the timing (when to ship) and routing (which
merge-center to use) of each shipment, we must also select a mode of transportation. In
general, when choosing a transportation mode, we face a trade-off between the shipment cost
and transit time. We consider four modes: Air, Truckload, Small Package, and Less-Than-
Truckload (LTL). Air is the quickest, but most costly. It might be the required mode for
high value or fragile items. Truckload shipments are cost effective for large shipments. Small
Package and LTL shipments are the most cost effective for small shipments, but are the slowest
modes. In the following section, we will further discuss the cost structures for each mode.

We can state the merge-in-transit problem we consider as follows: Given a set of orders
(product type, customer location, and delivery date) over a short term planning
horizon, find the optimal routing, mode, and timing for sending components from
plants to merge centers, and products from merge centers to customers in order
to meet demand.

Several key features complicate this problem:

e choosing among the transportation modes to assure that products arrive "simultane-

ously” while minimizing costs,

® because of economies of scale, it might be cost effective to send components earlier than

they are needed (resulting in short term inventory),

e the selection of a merge center might require a trade-off between the best choices for

different components, and

e due to economies of scale, it might be cost effective to consolidate freight and send items

to a merge center that in isolation might not be optimal.

The second point addresses the issue of inventory. Although the merge centers are not

intended to be warehouses for inventory, they are usually designed to hold limited levels of
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stock. Two situations might drive a company to hold inventory at a merge centcr. The issue
raised by the second bullet leads to short-term inventory. If Merge Center 1 needs 10 monitors
on day 4 and 1 monitor on day 5, it might be cost effective to ship all 11 monitors to arrive on
day 4. The trade-off cost is the one day inventory of one monitor. If the economies of scale
in the shipping rates justify this inventory cost, the optimal solution will ship all 11 units at
once.

Another situation might create longer term inventory. If the product recipe includes a
small generic it2m, we might stock rather sizable quantities of it rather than shipping it as
customers place each order. An example might be a printer cable or user manual, items
that will probably be bundled with each computer. Rather than attempting to coordinate
the arrival of such items, it is probably beneficial to stock them at each merge center. Our
model does not consider this type of long term inventory. If this inventory is desired, we
would determine its optimal replenishment frequency and size independently using traditional
inventory analysis like the Economic Order Quantity (EOQ) model.

The third bullet addresses an issue of compromising between components. While one
merge center might be “ideal” for one component, for example, it is in a direct line between
the plant and the customer, it might be less costly to merge the order at a less ideal merge
center because it is, for example, closer to the source for two of the other components. The
model needs to consider these trade-offs.

The fourth point is very important. Due to economies-of-scale, we need to consider all
orders collectively. In general, the cost of transportation favors large shipments, since the per
unit transportation cost decreases as the size of the shipment increases. Therefore, from the
perspective of each order in isolation it might appear optimal to send a component for two
orders to two different merge centers, but it might actually be more cost effective to consolidate
the orders and send the components to the same merge center.

The problem description makes the following assumptions:

e Merge center locations are given and fixed.
e Demand is known for the time horizon being considered.

e Orders can be routed through any merge center, i.e , customers need not be sourced from
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a single merge center.

e The merge centers are capacitated.

Orders must arrive at the customer ON the delivery day — not early and not late.

Orders must arrive 1 a single shipment, i.e., on the same mode via the same merge

center.

We consider components as arriving to a merge center “simultaneously” if they arrive on

the same day.

e Product is available to leave the merge center the same day that all necessary components

are available at that merge center.
e All locations are domestic (so we need not worry about issues of duty or local content).
e The sources have unlimited supply.

We expect that a firm would run this model on a daily basis using the most recent demand
data. Although an appropriate time horizon is dependent on the business and the nature of
the demand patterns, we consider five to seven days as a typical time horizon. On a given day,
the firm would exercise the model and then plan on executing the schedule for the next day as
the model solution suggests. The following day it would update the demand data and re-run
the model. This execution with a rolling calendar allows the model to make use of demand
data as it enters the system, but the final schedule is determined on an as-needed basis.

To solve this problem, we developed a mixed integer linear program. Before addressing
the specifics of the model, however, we will review the relevant literature and examine the cost

functions for the four modes we consider.

5.3 Literature Review

To the best of our knowledge, there is very little existing literature on the merge-in-transit
problem. Hastings [17] and Dawe [12] describe the business issues underlying merge-in-transit.
Cole [9] develops a basic optimization model and GIS-based support system that addresses

design issues, including the number and location of merge centers.
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Although merge-in-transit literature is limited, several related problems are well studied,
including applications in transportation logistics and assembly systems. The body of literature
on transportation logistics is large and broad in scope. Bramel and Simchi-Levi [6] and Crainic
and Laporte [11] provide thorough reviews of much of the research in this area and discuss key
strategic, tactical, and operational issues.

The merge-in-transit problem is a multi-commodity integer generalized network problem.
As such, it is closely related to the applications in assembly systems. For a review of the
literature in this area, see the survey by Shapiro [28]. Although some recent books like Ahuja,
Magnanti, and Orlin [1] discuss multi-commodity networks and single-commodity generalized
networks, to our knowledge, there are very few references on multi-commodity generalized

networks.

5.4 The Costs for Each Mode

In the transportation industry, a “lane” is defined by an origin, destination, and mode. Using
this terminology, we will describe the merge-in-transit problem as defining and loading the
lanes in the distribution system. The cost of a shipment will depend on its size and the lane
on which it travels. Our model includes four modes of transportation: Air, Small Package,
Less-than-truckload (LTL) and Truckload. Each mode has its own cost structure, but each
is piecewise linear. In some cases, good approximations will help simplify modeling. The

following discussion of cost structures is based on our conversations with Caliber Logistics.

5.4.1 Truckload

When sending a shipment via truckload, the shipper is paying for a dedicated truck between a
single origin and a single destination. The cost structure includes a fixed charge and a per mile
charge, which might vary from lane to lane. The shipment charge is independent of weight
and therefore the cost per truck is constant for each lane. There are, however, weight and
volume capacities. Therefore, we will require additional trucks for shipments whose weight
or volume exceeds these capacities. If we want to consider the option of multiple trucks, we
will have to choose to consider either the weight or the volume capacity. This is usually not

a restriction in practice because in many industries, trucks either cube-out or weigh-out and
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we need to consider only one of the capacities. Because the fixed charge is large, shipping by
truckload is not economical for small shipments. Figure 5-2 shows a typical cost curve for a

truckload shipment. In this figure, ¢ denotes the weight capacity of a truck.
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Figure 5-2: A Typical Truckload Cost Function

Often several truck sizes are available; for simplicity, we assume a single truck size in our
model. To consider multiple truck sizes, we could define the cost function with an appropriately
sized segment for each combination of the trucks. We calculate travel times using a rule of
thumb that a truck can cover 600 miles per day. A simple calculation then gives us a transit

time for each truckload lane.

5.4.2 Air

For our purposes, we assume that every point-to-point demand can travel via air in one day.
Prices for air transportation are generally quoted with a minimum shipment cost and then a
per pound cost with price breaks for increasing shipment size. The cost is usually independent
of distance. Figure 5-3 shows a typical cost curve for air transportation.

Because air travel is the most expensive form of transportation, a shipper will only use it
when time constraints permit nothing else, or when the component is fragile or valuable and it is
the required mode. Therefore, the choice of air transportation is governed by issues other than
cost. This property provides us more flexibility in approximating this cost function. For the

air mode, it is unlikely that an optimal solution will change under a reasonable approximation.
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Figure 5-3: A Typical Air Cost Function

5.4.3 LTL and Small Package

Services like UPS and RPS provide Small Package delivery. The cost is a function of weight
and distance. The distance of a shipment determines a “shipment zone,” with a higher zone
corresponding to longer distance. The cost structure for each zone includes price breaks for
increasing weight. The cost per weight-class increases as the zone increases. Although the
cost varies by distance in this manner, for each lane the distance is fixed and it is therefore
only a function of weight.

A firm wishing to ship goods via LTL (less-than-truckload) contacts a carrier with the
shipment size, origin and destination. The LTL carrier then collects orders from multiple
clients and determines how to consolidate and route all the shipments. It will generally use
its own consolidation points so that it can load several orders onto one truck. In terms of cost
structure, LTL transportation is analogous to small package transportation, in that the shipper
pays a per pound charge with price breaks for increased weight. The difference, however, is
that LTL pricing does not use the concept of zones. Instead, the shipper negotiates the cost
per weight-class for each lane. From a modeling standpoint, however, the two are analogous.

A minimum charge is imposed on LTL shipments that discourages extremely small ship-
ments. The magnitude of this minimum charge implies that shipments under a specified weight
should be sent by the small package mode and those over this weight should be sent by LTL.
Therefore, the cost function for LTL can be viewed as the natural extension of the small pack-
age cost function. This observation allows us to model small package and LTL transportation

as a single mode with a single cost function for each lane. Figure 5-4 shows a typical Small
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Package/LTL cost function.
Because LTL carriers are consolidating shipments, LTL shipments have a longer transit time

than Truckload shipments. In our model, we assume that an LTL load covers 450 miles/day.

Cost ‘
(8)]

e

>
Small Package | LTL

Weight (pounds)

Figure 5-4: A Typical LTL/Small Package Cost Function

5.4.4 Approximations to the Cost Functions

There are several ways to represent these complex cost functions. Generally, we must make
a trade-off between modeling and algorithmic simplicity and accuracy. For example, a linear
approximation is the easiest to handle both in modeling and in solution development. It misses,
however, the advantages of consolidation and, therefore, will not yield quality solutions. In
fact, a completely linear approximation will just send everything on the least expensive per-unit
path time will allow and will miss all opportunities for consolidation. For the Air and Small
Package/LTL functions, we consider three alternative cost functions. Figure 5-5 illustrates
each one. The first representation, 5-5a, models the cost with a piecewise linear, discontinuous
function. For some applications, this representation is the most accurate, but some solution
techniques require continuous cost functions.

Notice that an intelligent shipper would never send a shipment at a weight just to the
left of a breakpoint in Figure 5-5a. If this is the weight of a shipment, it is less costly to
declare the shipment to be at the next price break. For example, using the function of Figure

5-5a, sending a shipment of 9 pounds costs $90. However, declaring this shipment to be 10
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pounds (or filling it with sand so that it is indeed 10 pounds), reduces the cost to $80. This
observation indicates that it might be appropriate to alter the cost function to one like that
of Figure 5-5b which shows the effective function of Figure 5-5a. Indeed many modelers use
this representation because they feel it more accurately reflects the actual costs charged by the
carriers. The other advantage to this cost function is that it is continuous.

In a third representation, 5-5c, we estimate the cost function with a piecewise linear and
concave function. Appropriate algorithms can then exploit the resulting concavity. Note that
depending on the application, a concave function might be an exact representation. If a shipper
uses an incremental discount rather than an all-unit discount (e.g., the charge is $10 for the
first 10 pounds, $9 for the next 10 pounds, etc.), then the actual cost function will be piecewise
linear and concave. In this transportation application, however, the price break applies to the
entire shipment so a concave function will only provide an approximation.

The most appropriate representation to use will be dictated by the importance of solution
accuracy and the assumptions of the solution technique. For example, if we have a very
efficient algorithm for piecewise linear concave functions, then approximating the cost function
with such a function might be wise. Alternatively, if a solution technique does not require
concavity, but relies on a continuous function, then the representation of Figure 5-5b might be
appropriate.

Our initial model of the merge-in-transit problem uses the continuous non-concave functions
as shown in Figure 5-5b for the air and small package/LTL modes. We believe that because
of the operational nature of this model, it is important to use an accurate representation.
Although there is some debate, most practitioners seem to feel that this cost model is the most
accurate. One issue with this representation, however, is that the resulting cost functions have
nearly twice as many segments as the discontinuous representation. We address this concern
by implementing an approximation technique that attempts to merge segments without losing
significant accuracy. We examine sequential segments and merge them into a single segment
if the resulting segment provides a lower approximation and the gap does not exceed a pre-
specified value. We have found through computational experience that we can often halve the
number of segments while maintaining sufficient accuracy.

We saw in Chapter 4 that disaggregation was particularly effective on problems with con-
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cave costs, suggesting that we should consider implementing the model with a concave approx-
imation. However, for the cost data provided to us, the small package/LTL costs had the
basic form shown, but there were occasions where the cost increased at a breakpoint. As a
result, we were unable to define a quality concave approximation.

Also, although we use a continuous representation, it is important to note that the model
and algorithm we develop is general, and so we are able to solve problems with any form of

piecewise linear costs.

5.5 The Basic Model

In general form, our model states the following;:

Minimize  Transportation + Inventory cost
Subject to Flow components and products through merge centers so as to satisfy
merge constraints,

Meet demand with a single shipment,

Don’t exceed merge center capacities.

We think of the model working as a “pull system.” The flow of products from merge centers
to customers must meet customer demand. The solution must maintain flow balance at each
merge center, requiring appropriate flow of components from the sources to the merge centers.
Because we assume unlimited supply at each source, the model has no stated flow balance
constraints at the sources.

Due to the nature of the system, we need to assure that model handles four peculiarities:

e Components flow in and products flow out, and every component in a given product

must be present before that product can be shipped.
e We must choose an appropriate mode and account for its cost and transit time structure.

e Flow is not instantaneous — we need to account for the time delay between components
being shipped from the sources and arriving at the merge centers, and products being

shipped from merge centers and arriving at customers.
e The merge centers might hold short-term inventory.
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To address these issues, we introduce a time and mode expanded network. As shown in
Figure 5-6, the expanded network contains three sets of nodes and three sets of arcs. The
node sets include the set P, with a node for each plant and day, and the set M, with a node for
each merge center and day. In addition, the network includes the set D, with a node for each
demand point, defined by the customer location and the day of delivery. Each demand point
has associated with it an order composed of a set of products required at that node. We can
use the product recipes to explode the product demands into component demands. Therefore,
with demand node j we associate d;?, the total demand for component k in that order.

We define the arcs on the networks by a physical link (source and destination), a mode,
and a time (for our purposes, a day). A shipment on arc e then is known to be moving
from a particular source to a particular destination, on a particular mode and day. We can
then define all the appropriate movements, accounting for travel time, as well as the inventory
holdings at merge centers.

For each plant node we include three arcs, one for each mode, going to each of the physical
merge centers with the appropriate time delay representing the transit time for that mode.
On each of these arcs we define three variables: z2, the total weight of the shipment if it lies
in segment s of arc e; uf, the unit flow of component k on arc e; and y3, a binary variable
indicating if the flow weight on arc e lies in segment s. The cost of flow on these arcs is
piecewise linear and defined by the notation in Figure 3-5.

The second set of arcs, representing inventory holdings, includes an arc for each merge
center at time ¢, to the same physical merge center at time £ + 1. The variable v¥ defined on
these arcs represent the unit inventory of component k at the merge center and day appropriate
to arc e. The cost of the “flow” on these arcs, h’e‘, which varies by component, equals the daily
cost of holding component k at this merge center.

The arc set also includes arcs from merge centers to customers. For each demand point
the network contains three arcs, again one for each mode, from each physical merge center.
The head of each arc is a demand node and its tail is a node representing a merge center at
an appropriate time, allowing for transit time, prior to the delivery date of the order. There
are several ways to handle the merge and single shipment constraints. We could, for example,

explicitly write constraints using component flow variables on all the arcs. Another possibility
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is tc define components flowing from suppliers to merge centers and products from merge
centers to customers. The flow balance constraints then need to account for the recipes that
turn components into products. Instead of either of these two methods, we have chosen to
define a single binary variable, we, on each arc from a merge center to a customer that indicates
whether we ship demand for that customer and day on that arc. This approach is valid since
products must arrive in a single shipment and cannot be early or late. By restricting only one
of these binary variables to be one for each demand point, we are enforcing both the merge
constraints and the single shipment constraints. The cost on these arcs is a constant, C,
which is the cost of sending all of the demand associated with demand node j, ), d;?, on this
arc.

In summary, we use the following notation:

SETS:
P nodes in the expanded network representing plants

M nodes in the expanded network representing merge centers
D nodes in the expanded network representing demand points
Ap arcs in the expanded network from plants to merge centers
A; arcsin the expanded.network representing inventory holdings
Ap arcs in the expanded network from merge centers to demand points
H; arcs arriving at node ¢
T; arcs leaving node 7
DATA: '
hY  daily cost of holding component k at the merge center associated with arc e
p*  unit weight of component k
I¥*  unit volume of component k
g¢i volumetric capacity at merge center 3
d_’; units of component k required to satisfy demand node j

C. total cost of shipment which satisfies demand associated with arc e € A¢

VARIABLES:
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x? total weight of shipment on arc e € Ap if it lies in segment s

v%¥  unit inventory of component k at a merge center on arc e € Ay

unit flow of component k£ on arc e € Ap

y? binary variable indicating if flow on arc e € Ap lies in segment s

we binary variable indicating if the demand associated with arc e is met with a

shipment on arc e € A¢

With our expanded network and this notation, we can formulate the merge-in-transit prob-

lem as:

Minimize Z (flys + cix?) + Z hEvE + Z Cewe 5.1)
e€Ap,s ecArk e€EAp
subject to: Z uf + Z F = Zd?we+'"f VkieM (5.2)
ee(H:NAp) ee(H;NAr) e€T;
Yl > b+ Y | <@ VieM (5.3)
k ec(H;NAp) ee(HiNAf)
Zpku'g = Zzg V ecAp (5.4)
k ]
Ywe =1V ieD (5.5)
e€H;
Yue <1 Veeap (5.6)
8
blys <zl < byl VY ecdp (5.7)
x5 >0, of, uf € Z%, we, y: €{0,1}. (5.8)

The objective function has three terms: the fixed and variable charge for all flows on arcs
from suppliers to merge centers, the inventory cost of items held in inventory at the merge
centers, and the total charge of shipments from merge centers to customers. Constraints (5.2)
act as the flow balance constraints at the merge centers. They state that the flow for each
component into a merge center on a particular day plus the available inventory must equal the
flow out of the merge center plus the inventory held on the next day. Notice that the flow out
of the merge center is expressed by the single shipment variables, assuring that the appropriate
components are merged into each order. Constraint (5.3) enforces the capacity of each merge

center. Constraint (5.4) expresses the relationship between the u variables, representing the
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unit flow of each component, and the z variables, representing the total weight of the flow on
each segment. Constraint (5.5) assures that we meet each demand with a single shipment.
Finally, the inequalities (5.6) and (5.7) are the now-familiar constraints on the selection of a
segment.

We can tighten this formulation by adding forcing constraints:
uk <MED 42V kecAp (5.9)
8

Clearly, the smaller we can make M¥, the tighter the formulation. We will let D't be the
set of demand points with a delivery date later than day ¢. Valid bounds on u¥, the unit flow
of a component, include Y ¢ pe+ df, the total future demand for the component, and |# |, the
capacity of the merge center in units of component k. We will set M* to the smaller of these

two numbers, i.e., M¥ = min(zjep' t+ df, IﬁJ)

5.6 Approaches to Disaggregating the Model

Although the formulation given by (5.1)-(5.9) is valid, we can apply the disaggregation tech-
nique described in Chapter 3 to develop a formulation with a tighter linear programming
relaxation. Disaggregating is possible at several levels. We can consider disaggregations
of both the u variables and the = variables. We will first consider disaggregating the flow

variables by defining u2*, the unit flow of component k on segment s of arc e. We then write
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the formulation as:

Minimize »  (foy + cizd)+ S hkvE+ > Cewe (5.10)
e€Ap,s e€Ar,k ecAp
subject to: E ulk + Z vk = z:d;'-'we+véc VkieM (511)
s,ee(HiNAp) ec(H:NA[) eeT;
> Yoo e+ Y i) < g YV oieM (5.12)
k s,e€(HiNAp) ec(H;NAy)
Zpkuzk = zi V s,e€Ap (5.13)
k
Y we =1 VieD (5.14)
e€H;
Yyl <1 VYeedp (5.15)
L]
u* < M*yS V¥ k,s,e€ Ap (5.16)
Bilys<xl < blys YV os,e€Ap (5.17)
2220, o, u € Z*, we, ys €{0,1}. (5.18)

Note that we can use constraint (5.13) to substitute for the z{ variables, but we will include
them in the formulation for conceptual simplicity. The redefinition of the flow variables leads
to two major changes in the constraints. We have disaggregated constraints (5.4) and (5.9)
into (5.13) and (5.16), respectively We can now bound u2F by not only the future demand and
the capacity at the merge center, which were the two bounds on %*, but also by the maximum
tiow of component k on segment s. Therefore, M2* = min(} o4, o 5, %], I_;f;'; J ). The
forcing constraint, (5.16), is tighter than (5.9) both because M2* < M} and because we now
have a constraint for each segment, rather than a single constraint over the sum of segments.
Although this disaggregated formulation adds significantly to both the number of variables
and constraints, it provides a tighter linear programming bound.

In the previous formulation, we disaggregated the flow variables by segment. We could also

kd

consider disaggregating by demand point; that is, we could define the flow variables, u;¢, as

the unit flow of component k destined for demand node d, a particular customer with demand
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on a particular day. The forcing constreints for this disaggregation are:

ukt < MFN"y: kd,e€ Ap. (5.19)
k]

To define M9, instead of considering the total future demand of component k as we did in the
aggregated model, we need only to consider d*, the demand for component k for this demand
node. Therefore, Mf¢ = min(d§, | % |).

This disaggregation, however, can weaken the formulation if we are not careful in its
implementation. Recall that M = min(3;cp .4 d%, | #]). Notice that if M = MF = % |,
then (5.9) is actually stronger than (5.19). If we simply replace (5.9) with (5.19), we might
weaken the formulation. We therefore need to include the original forcing constraints in
the new formulation to assure that we do not lose anything when we disaggregate. This
disaggregation of the u variables can then lead to a stronger formulation.

Another possibility is to combine the two prior disaggregations and define u2*9, the unit
flow on segment s, of component k, destined for d. In this disaggregation we include forcing

constraints of the form:

ulkd < M2kdys s k,d,e € Ap. (5.20)

We can define Mskd = mz'n(d.’;, |%], l.;fi-J )- Again, we do not want to just replace (5.16)
with (5.20). If M2 = M2%, (5.16) is stronger than (5.20), so we should include both sets
of constraints in the formulation. If we do, this further disaggregation of the u variables can
then lead to an even stronger formulation.

We have now examined three possible lewels of aggregation for the u variables. We can
similarly disaggregate the = variables. We can consider disaggregating by component, defining
x2k, the weight of the flow of component k if the total flow lies in segment s. We can also
further disaggregate by demand point and define £2*¢. For each of these disaggregations we
can add forcing constraints of the form z, < P.y$, using an appropriate bound P, on the flow
variable. If P. < b2, these forcing constraints will improve upon (5.7).

With multiple definitions of both the unit flow variables and the weight variables, we can

define numerous formulations. The task, therefore, is to find the formulation that is tight,
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but where size is not unwieldy. The choice of disaggregation level will depend on the size of

the underlying application and the choice of solution algorithm.

5.7 Five Valid Formulations

As we have seen, we can employ several levels of disaggregation to model the merge-in-transit
problem. To solve the problem, we consider five formulations. We label each with two letters.
The first denotes how we define a commodity. We can either define a commodity by component
(A), or we can disaggregate by destination (D).  The second letter indicates whether we
include no forcing constraints (IV), aggregated forcing constraints (A), or disaggregated forcing
constraints (D) which are disaggregated by segment. The five formulations we consider then
are:

(1) AN: This is the most basic formulation, including constraints (5.2)-(5.8), with no valid
inequalities. The flow variables are of the form u*.

(2) AA: We add aggregated forcing constraints, (5.9), to AN.

(3) AD: We add flow variables, u®*, disaggregated by segment and add disaggregated
forcing constraints, (5.16), to AA.

(4) DA: We disaggregate the flow variables by destination, introducing the variables ukd,
and add aggregated forcing constraints for these variables, (5.19), to AD.

(5) DD: We add flow variables, u®*4, disaggregated by segment and add disaggregated

forcing constraints, (5.20) to DA.

Notice that for each subsequent formulation, we are adding to the previous one. In this way,
the resulting formulaticn might include redundant constraints, but we are assured that we do
not weaken the formulation by replacing forcing constraints with weaker ones, as discussed in
Section 3.10. If we let Z(X X)) denote the optimal value of the linear relaxation of formulation

X X, this strategy assures us of the following:

Z(AN) < Z(AA) < Z(AD) < Z(DA) < Z(DD) (5.21)
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5.8 The Solution Algorithm

The large size of industrial merge-in-transit applications significantly complicates the task
of solving the problem. As an example, a real network for a computer company has ten
components, each produced at one of eight plants, five products, ten merge centers, and 73
customers. Over a time horizon of seven days, the simplest model, AN, consisting only
of constraints (5.2)-(5.8), contains more than 100,000 variables (most are integer) and over
60,000 constraints. This problem size is well beyond the capabilities of commercial integer
programming solvers. For the disaggregated formulations, even solving the complete linear
relaxation is problematic. For these reasons, we developed a solution technique that employs
relaxations, cutting plane approaches using both column and row generation, a branch-and-

bound procedure, and heuristics to generate quality lower bounds and near-optimal solutions.

5.8.1 Generating Quality Lower Bounds

With all five formulations we consider, the number of forcing constraints is prohibitively large
when we consider a realistically sized network. In addition, most of these constraints will be
inactive at the optimal solution. Similarly, each disaggregation introduces a large number of
variables, most of which will have an optimal value of zero. To address both these issues, we
implement an iterative row and column generation technique to solve linear relaxations of the
formulations to obtain lower bounds for the problem. The steps of the algorithm are outlined

as follows:

1. We initially solve the linear relaxation of the problem consisting of constraints (5.1)-(5.6).
This is formulation AN without the segment bound constraints. We then implement an
iterative cutting plane approach that adds violated segment bound constraints until we

have an optimal solution to the relaxation of AN.

2. We then examine this solution and determine which of the forcing constraints in AA
this solution violates (this separation problem is easy to solve) and iteratively add these
constraints and solve the resulting linear relaxations. Once we cannot find additional
violated forcing constraints, we return to the initial relaxation from Step 1 and look for

more violated segment bound constraints and resolve the problem. We continue in this
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manner until we have successfully solved the linear relaxation of AA.

3. We can then consider moving to formulation AD. We can develop necessary conditions
for the disaggregated forcing constraints (5.16) to be possibly violated. For example,
one necessary condition for a disaggregated forcing constraint to be violated is to have
flow on the arc, Y, z° > 0. In addition, if the flow on that particular arc is split between
segments (that is, y* > 0 for two or more y variables), or there exists a commodity k&
such that M* > l%:—J , then the disaggregated forcing constraints might be violated.
We examine the solution to AA and use these conditions to determine which forcing
constraints the current solution is likely to violate. In order to add these constraints,
however, we also need to define and add the disaggregated flow variables that appear in
these constraints. We are, therefore, integrating a dynamic variable generation strategy
within the cutting-plane approach. In this way, we are not only limiting the number of
constraints we add, we are also limiting the number of variables that we need to include
in the formulation at each stage. Once again, we employ the cutting plane technique to

iteratively solve the relaxation of AD.

4. Once we have a solution to AD, we can repeat the process of Step 3 to solve for a solution
to DA, and then repeat it again to solve for a solution to DD. We can also choose to

stop the procedure after solving any interim formulation.

At the completion of this process we have an optimal solution to whichever relaxation
we chose to solve, but we have solved it with only a subset of the variables and constraints
defined in the full formulation. We also periodically clean-up the interim models by removing
constraints and variables that we believe will no longer be needed in future iterations. This

clean-up procedure maintains a manageable problem size.

5.8.2 Generating Feasible Upper Bounds

In addition to using this row and column generation procedure to efficiently obtain quality
lower bounds, we implement two heuristic procedures for finding feasible (integral) solutions.
In the first, the w-integral heuristic, we aim to find a soluticn that is w-integral, meaning

that the w variables assume integral values, and we, therefore, satisfy the single shipment
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constraints. In this procedure we round up those w variables whose fractional value exceeds
a pre-specified threshold. We then solve the linear relaxation with these fixed variables,
again using the cutting-plane procedure. We iteratively fix variables and re-solve the linear
relaxation in this way until we either obtain a w-integral solution or we violate one of the
merge-center capacity constraints, in which case the heuristic does not find a feasible solution.
If the w-integral heuristic finds a feasible solution, we then invoke the (u,v)-integral heuristic.
The (u,v)-integral heuristic uses a w-integral solution as input and again attempts to apply a
rounding procedure to construct an all-integral solution that satisfies all the constraints. This
rounding heuristic examines each time period sequentially and first rounds the flow variables
to the nearest integer. It then rounds the inventory variables and adjusts the total flow so as
to satisfy the flow balance and, hopefully, the capacity constraints.

We can invoke these heuristics at any iteration of the cutting-plane procedure. Each
call of the heuristics can yield us an integer feasible solution, which is valuable, but calling
the heuristics too often can be too time consuming. In our implementation, we invoke the
heuristics whenever the current lower bound has improved significantly (as defined by a user-
specified threshold) over the one used for the previous call of the heuristics. The solution
procedure maintains the best feasible solution found with these heuristics, and its objective
value, in memory.

After applying the cutting-plane procedure, with its embedded rounding heuristics, we use
the resulting formulation in a branch-and-bound procedure. We branch only on the binary
w variables to obtain w-integral solutions. For each w-integral solution, we again apply the
(u,v)-integral heuristic to construct an all-integral solution. At the end of this branch-and-
bound process, we obtain a new lower bound which corresponds to the optimal solution of the
problem when we relax only the integrality restrictions on the u and v variables. We can
use this lower bound to assess the quality of our best feasible solution obtained through the

rounding heuristic.

5.9 Computational Results

The algorithm is designed to find both quality lower bounds and feasible solutions in an

acceptable running time. Our objectives in testing the algorithrn are two fold: (1) to compare
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the relative performance of the different formulations, and (2) to study the complexity of solving
instances with different demand patterns and time horizons. We performed these computations
at the University of Montreal on a Sun Ultra 10/300 workstation.

The large-scale application that we wish to solve has nine sources producing ten com-
ponents, ten merge centers, and 73 customers. As mentioned, even the fully aggregated
formulation, without the forcing constraints, results in a model with over 100,000 variables
and 60,000 constraints.

To calibrate the algorithm and gain insight into the effects of various modeling and algo-
rithm characteristics, we have performed computational testing on smaller networks. We have
generated 16 test instances as shown in Table 5.1. We use the following notation: |Ns| =
number of sources, |Njys| = number of merge centers, [Nc| = number of customers, |K| =
number of components, |P| = number of products, [T = number of time periods, w = the
proportion of all possible demand points (combination of location and day) with some positive
demand for at least one product, Is = interval on which product demands are randomly and
uniformly generated for each destination. As the table shows, although these problems are
smaller than the large-scale problem defined above, they are not ‘toy’ problems. In fact, the
second half of the problems vary from the large-scale instance only in the number of customers.

Table 5.2 provides results on the relative strength of the five formulations. We have
used the iterative column and row generation technique to solve the linear relaxation of each
formulation. The column labeled AZL reports the average (over the 16 instances) percent
difference between the optimal value of the linear programming relaxation of each formulation
with that of the tightest formulation, that is DE. The column labeled AZY reports the
average (over the 16 instances) percent difference between the optimal value of the linear
programming relaxation of each formulation and the best upper bound obtained through the
rounding heuristics (before the branch and bound phase) performed with this formulation.
The times provided are for executing both the cutting plane procedure and the heuristics.

These results show that disaggregating the variables is quite effective in generating both
better lower bounds and better upper bounds, but at the expense of significant increases in
computational time. We also note that disaggregating the forcing constraints yields only small

improvements in the bounds, but increases the computation time considerably. From these
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Problem || |Ns| | [Nm| | INc| [ |K| [ |P] | |T|| w | Is
P1 5 5 20 | 55| 302][535]
P2 5 5 | 20| 5|5 ]| 302|515
P3 5 5 | 20 (5| 5| 3][08]([535
P4 5 5 | 20| 5|53 ]|08]515
P5 5 5 [ 2 {5 |55 ]02]][535
P6 5 5 | 20 5|5 |5 (02]5,15
P7 5 5 | 20| 5|55 ]08][535
P8 5 5 [ 2| 5|55 ]08][515
P9 9 | 10 | 40 |10 | 10| 3 |0.2] 535
P10 9 | 10 | 40 |10 | 10| 3 |0.2] [515]
P11 9 | 10 | 40 |10 | 10| 3 |08][535]
P12 9 | 10 | 40 |10 10| 3 |08][515]
P13 9 | 10 | 40 | 10|10 5 |0.2] 535
P14 9 [ 10 | 40 | 10|10 5 [0.2][515]
P15 9 | 10 { 40 | 10|10 5 |08][535]
P16 9 | 10 | 40 | 10| 10| 5 |08 [515]

Table 5.1: Set of Small-Scale Instances

Formulation | AZL [ AZU | CPU (s)
AN 6.23 | 21.91 25
AA 6.17 | 21.19 32
AD 6.16 | 21.19 93
DA 0.44 | 10.39 | 3707
DD 0.00 | 10.10 | 10511

Table 5.2: Relative Performance of Each Formulation
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Cutting Plane Branch & Bound
CPU

Prob w Is | % Gap Heuristic Total | % Gap CPU
Uy 02 [515]| 7.2 14044 24196 | 7.2 14483
U, 0.2 [5,35 7.3 8676 19331 4.6 10344
U3 08 [5,15] 3.8 13453 26981 2.9 8059
Uy 08 [535] 3.4 12983 29589 | 2.0 10537
C, 02 [515] 5.8 18502 28517 | 3.7 14420
C. 02 [535] 6.4 7943 18382 4.7 12032
Cs 08 [515] 3.8 13887 27612 | 2.0 8654
C;s 08 [5,35] 4.5 22415 38656 | 3.1 14420

Table 5.3: Results on the Large-Scale Network

observations, we conclude that solving DA or DD will be the most effective for deriving quality
solutions to the merge-in-transit problem, but solving DA is probably more computationally
tractable on large instances.

We now consider the large-scale problem with nine sources producing ten components, ten
merge centers, and 73 customers. For testing on this network, we generate eight instances, as
shown in Table 5.3; four with merge-center capacities and four without. For each subset of
instances, we choose w € {0.2,0.8} and I5 = [5,35] or Is = [5,15]. We feel these values reflects
situations with both small demands and large demands. We found that when demands were
larger than these, the problems were easier to solve. Therefore, these four demand patterns
reflect more interesting situations. Table 5.3 provides the results on instances with five time
periods. In all these runs, we solve the DA formulation and limit the size of the branch and
bound tree to 1 GB. We show the gaps both before and after the branch and bound so that
we can see the added value of this phase of the algorithm. We also breakdown the CPU time
to show where the solution procedure is spending the time.

The algorithm requires significant time to (approximately) solve these large problems. One
issue, however, is that we do not need to rur. the branch and bound until completion. In fact,
if we run it for only one to two hours, we obtain virtually the same results.

The demand pattern of these instances varied in the number and magnitude of the demands.
These results suggest that instances with fewer positive demands (i.e., smaller values of w)
produce larger gaps. This conclusion is inconsistent with the results presented in Figure 4-5

which shows the gap for the D/A formulation remaining steady as the number of commodities
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increases. In fact, if we perform similar computations with the problem instances studied in
Figure 4-5, keeping the expected demand of each commodity constant (making the scenario
more equivalent to these merge-in-transit instances), we find that the relaxation gap for the
D/A formulaiion increases as the number of commodities increase. At this time, the only
explanation we have for this discrepancy is that the rounding heuristics are more effective for
instances with more commodities and therefore we obtain smaller gaps, even though the linear

relaxations might be becoming weaker.

5.10 Summary

Merge-in-transit can be an effective distribution system if customer orders are composed of
components produced at geographically dispersed lecations. A well managed merge-in-transit
system can help a company achieve both low transportation costs and reduced inventory levels.
An operational model like the one we developed can be an important tool for implementing
an efficient merge-in-transit system.

The basic formulation, given by (5.1)-(5.8), is a candidate for tightening through disag-
gregating the flow variables. As discussed in Chapter 3, this disaggregation allows us to add
forcing constraints that improve the lower bounds provided by the linear relaxation. Using
these techniques, we have defined a sequence of five valid formulations, each one improving
upon the previous one.

A tighter formulation, however, quickly becomes too large to solve by traditional means.
We, therefore, develop an algorithm: that solves each formulation sequentially, using iterative
and dynamic row and column generation. Combined with rounding heuristics and branch
and bound, this algorithm attempts to find both good lower bounds as well as quality inte-
ger feasible solutions. Computational experiments with this algorithm suggest that we can
consistently find solutions within 5% of optimal, and frequently solutions within 3%. The
complex formulations contain over 300,000 variables (the vast majority of them integer) and
constraints and the CPU requirements are quite high (generally on the order of &-10 hours).
Since the models are likely to be run at most daily, this type of computational performance
should permit firms to use this modeling and solution approach to improve operations in the

emerging new merge-in-transit approach to supply chain management.
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Chapter 6

Contributions and Ongoing

Research

This thesis has examined optimization problems with general separable piecewise linear cost
functions. It has focused on network flow models and a topical application, namely the design
and operation of a merge-in-transit system. The research has threc components: modelirg
and theoretical insight into a general problem and modeling approach, specific application
of this insight into modeling a real-world problem, and algorithm development and testing.
We believe this research contributes both through its theoretical components and through its

application to the merge-in-transit problem.

6.1 Contributions

We view our contributions thus far to include:

e Modeling problems with piecewise linear cost functions. Although the three models
presented are commonly found in the literature, to our knowledge no one had formally
shown that the linear programming relaxations of them are equivalent and, in fact,
approximate the actual cost function with its lower convex envelope. Although we
have focused on network flow models, these modeling approaches can be used for any

problem with separable piecewise linear costs.
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o Effects of disaggregation. We have shown how several problems can be disaggregated
to produce formulations with tighter linear programming relaxations. For models with
concave costs, we have examined the structural effects of disaggregation and provided
an exact representation of the solution to the linear relaxation of the disaggregated
formulation for any flow value. We proved that, in general, if k is the dimensionality of
the disaggregation, then the disaggregated model approximates the actual cost function
with the lower convex envelope in k + 1 dimensions. We also developed results for the

disaggregated/aggregated model.

¢ Limitations of disaggregation. We have shown that disaggregation can improve a formu-
lation. It seems intuitive that if it does not help, it at least will not hurt. As we have
seen, however, if we disaggregate without maintaining the aggregated structure, we can

indeed weaken the formulation. We believe this is a subtle point that is often overlooked.

e Effectiveness of disaggregation. We have shown, through computational results, that
disaggregation can be very effective, particularly with concave cost structures. Although
the problem with concave costs is not integral in general, in the instances that we exam-
ined, the solution to the linear programming relaxation of the disaggregated formulation
was always integral. For general cost functions, the disaggregated model does not gen-
erally solve with integral solutions, but the solutions are considerably tighter than the
solutions to the aggregated model. For example, a typical instance of the aggregated
formulation might have a relaxation gap of 80% but the disaggregated formulation will
bring this gap to within 1%. As the network grows, or the number of segments increases,
however, solving the disaggregated relaxations becomes computationally difficult, often

taking over an hour just so solve the linear relaxation.

e Uses of disaggregation. We applied disaggregation to five problems: the network flow
problem with a single origin or destination, the multi-commodity network flow problem,
the facility location problem with multiple capacity options, the network loading problem,
and the merge-in-transit problem. In each of these cases, we were able to develop a

disaggregated formulation that is tighter than the traditional aggregated model.

e Modeling and solving the merge-in-transit problem. The business concept of merge-in-
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transit is relatively new and many companies are struggling with its complexities. A
model like the one we develop could aid these companies in making operational decisions

that use the system efficiently while meeting the specified service requirements.

e Developing algorithms to solve large and complex mixed-integer programs. We have
combined several common algorithinic ideas into an effective algorithm to solve a very
large and combinatcrially complex mixed-integer problem. In doing so, we have exploited
very little that is problem specific. As a resuli, success with the merge-in-transit problem
suggests potential success with similar approaches to other large and complex problems

with piecewise linear objective functions.

6.2 Potential Future Research

The research to date provides insight into the general nature of this work. Ideas for future

research include:

o Further investigate alternative approaches to solving the linear relaxations of the dis-
aggregated models for the general network flow problem. For some applications, even
solving the linear relaxation of the disaggregated formulation is too computationally dif-
ficult. We have tried implementing Lagrangean relaxations and cutting-plane methods,
but these methods were not successful. Although the row and column generation tech-
nique that we implemented was effective for the merge-in-transit problem, it would be
worthwhile to further investigate alternative approaches. It would be particularly inter-
esting to see if we can use geometric insight concerning the disaggregated formulation to

solve these relaxations more efficiently.

e Consider methods for finding good integer, feasible solutions to general network flow
problems with piecewise linear cost functions. These methods might be other heuristics,

or a better implementation of branch and bound.

o Apply disaggregation and the simultaneous row and column generation approach to other

problems. We feel this modeling and algorithmic approach might be effective for other
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problems, including many network design applications. Specifically, we want to test

these approaches on the network loading problem.

Several extensions of the merge-in-transit problem might increase its applicability. Many
of these ideas arose from discussions with corporate executives from a variety of companies

and industries.

e Make merging optional, i.e., allow shipments to go directly between the manufacturing

facility and the customer if that is more cost effective.

e Allow time at the merge-centers for additional processing, e.g. delayed production, cus-

tomization, etc.

o Include limited supplies at manufacturing facilities, or production time for make-to-order
systems, i.e., don’t assume supply is unlimited and always ready at the manufacturing

facilities.

e Allow early or late arrivals with penalties.
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Appendix A

A Translation Between Formulations

In Section 3.5, we provided three valid formulations for modeling piecewise linear costs and
then showed that the linear relaxation of each approximates the true cost with the lower convex
envelope of the cost function. We can also show their equivalency by providing a translation
between extreme point solutions to each formulation. Here, we show that for a given extreme
point solution to one formulation, we can derive a solution to either of the other formmnlations
with the same cost. We do so by showing how to translate between the multiple choice
model and either the incremental or convex combination models. In this discussion, we are
considering a single arc with total flow F. The linear relaxations of the formulations, then,
can be written as:

Incremental Model:

minimize E cuw’ + fh°
8

subject to: Zw’ =F
8

(ba _ ba—l)va+1 < w? < (ba _ bs—l),va

w*>0, 0<v*<1.
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Multiple Choice Model:

minimize E cz + f*y°
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subject to : Zz
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Convex Combination Model:

minimize Z P (L + )+ N (T + f ?)

subject to: Y _(ub* Tt + X)) = F
8

u!_l_AS . ys
Yy <1
8
pio x>0, 0y’ <1

A.1 Multiple Choice and Convex Combination Models

We show that any feasible solution to one of these formulation can be translated into a feasible

solution to the other with the same cost.

A.1.1 Multiple Choice — Convex Combination

Consider a feasible solution, (z°,y %), to the multiple choice model. For this solution to be
feasible, b°"ly* < z° < b’ which implies that for some 0 < of <1,z = atb®ly® + (1 -
a®)by®. Let p* = ay’ and \* = (1 —o®)y®. Then p° + A =y and z° = pob"! 4+ AP
Moreover, the constraint 3, 2* = F implies that 3, (uob* 1 +X°b°) = F. Therefore, (y°, 1*, ")
is feasible for the convex combination formulation. Moreover, the cost of this solution is
¥, 1 (b 4 f7) + M+ f?) =D ,¢ (b IND) + fo(p° +X°) = ¥, ¢’z + f°y° which

is equal to the cost of the solution to the multiple choice formulation.
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A.1.2 Convex Combination — Multiple Choice

Consider a feasible solution (y®, %, \*) to the convex combination model. Define z* = p%b*~1+
A°b®. The conditions b*~! < b® and u?® 4+ A° = y® imply that 5*~1y® < z* < b°y®. Therefore,
(z*,y?) is feasible for the multiple choice formulation. As shown above, the cost of this solution

is the same as the cost of (y?, u®, \*).

A.2 Multiple Choice and Incremental Models

Here, we start with an extreme point solutions of one formulation and derive a feasible solution
to the other with the same cost. We will then argue that if we have a mapping for extreme
point solutions, we indeed have a mapping for all feasible solutions. This translation is
more complex than the previous one because the flow and binary variables have very different
interpretations in each formulation. We let A® = b* — b°~! to simplify the notation. Recall
that in the proof of Proposition 1 in Chapter 3 we showed the following results:

Corollary 2 At an extreme point of the linear programming relazation of the multiple
choice formulation, the set of y variables takes either a form where cne y* > 0 (when one of

the endpoints corresponds to the origin), or two y* > 0 and their sum is one.

Corollary 3 At an extreme point of the linear programming relazation of the incremental
formulation, the set of y variables will either be of the form (3,7, --.,7,0,0, ...,0) (when one of
the endpoints is the origin) or (1,1,...,1,%,%,...,%,0,0,...,0), for some constant 0 <7 < 1.

A.2.1 Multiple Choice — Incremental

Consider an extreme point solution (z?,y*®) to the multiple choice model. Corollary 2 provides
us with two distinct cases for extreme points of the multiple choice formulation; either one y*
variable is positive or two are positive and their sum is one.

CASE 1: Only one y* variable is positive, that is, y? > 0, and y* =0, V s # 5. In this
case 2* = F, and z° = 0, V 3 # 5. We also know that in an extreme point z<lution, either
Y = b—,"’f—, ory® = -:—f-.

Let (w®,v”) be a solution to the incremental model, and in particular, let v* = P, V<7

and v* =0,V s > 3. Ify3=-‘f-fr,letw’=A’y?=A’—$,Vs$?andw‘=O,V3>§.If
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T = 2 let w® = A%? = A*E. V3s<§5-1and w® =0,V s >3 Notice that for all s,
Yy 1 - b1
vt > ,Us+l

We need to first show that (w®,v?) is feasible for the incremental model.

1LIf 3 = %,3, then 3, w* = ¥, ;A% = £ 3,34 = F, as required by the first
constraint.
If 4 = ;&5 then 35,0 = 3,5 A% = 55 5,51 A = F, as required by the

first constraint.

2. If y* = %::, then for s < §, w® = A®y® = A%®, and since v* > v**!, w* > A*+1y%. For
8>3, w* =0, v* =0, and v**! = 0. Therefore, we satisfy the second constraint.
If % = F-"T’ then for s < 3— 1, w® = A’y® = A%?, and since v® > v*+1, w? > Astly®
For 3, w® = 0, v® = 3® and v**! = 0. Therefore, A%%+! < w? < A%?. For s > 3,

w® =0, v* =0 and v®*! = 0. Therefore, we satisfy the second constraint.

3. 0 < y® < 1, therefore, 0 < v® < 1,.¥ 5. Also, A’ > 0 and y® > 0, therefore, w® >0, V s.

We have just shown that this solution is feasible. We now need to show that (z*,y°) and
(w®,v°) have the same cost. Recall that the objective function of the incremental model uses
f’ which is the gap in the cost function at the beginning of the sth segment. Note that for
any 3, f+b° =3, f +cA® and 7+ 501 = P+ Y a<i-1 f® + c*A®. Therefore:

a) Ify? = b—,,then Cost (w®,v°) =), v’ +fof = Y a<s ’A’F+f’ ZJ<AC"’A"
ff= 5’% %+ %) = c’F+f";; = 2% + f?y¥ = Cost (z°,%°).

or

b) Ify® = 3-— then Cost (w®,v®) = E, cw® + ool = ) s<i-1 (c"A"F;F_'—l + f‘b,_,) +

Pt = (P + Tucaa @8+ ) = s (P4 O = OF + fgf = 5 4 iy =

Therefore, we can take any extreme point of the multiple choice formulation that doesn’t

split flow between segments and derive a feasible solution to the incremental formulation that

has the same cost.
CASE 2: Two y* variables, 3® and y?, are positive and y® + y?= 1. Assume that §< 1.
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As in Case 1, tlnsnmphesthata:‘>0and:c‘>0 and 3* —voryA=F,mdy?=f%or

f_z
nk
We now define (w®,v*), a solution to the incremental model. Let v* =1,V 8 <5, v° = o,
VS§<s<tandv® =0,V s>t Notethat again, v* >v°t!,Vs. Fors <5-1,let w* = A’
If yi = ”3 , let w® = A?, but if y® = bffl let w¥ = A%yl For < s < let w =A%l If

letw —A‘ 0 , but ify?—;ﬁ,letw = 0. Finally, for s >, let w® = 0.

Ef’

We need to first show that (w®,v®) is feasible for the incremental model.

LIy = % and g = &, then ¥, 0 = 3,5 A% + Tse, e A = B + 76 - %) =
(1 — yt)b% +of = yibi +ylt=2f+2t=F

If y* = % : and yf = £, then YW =Y G AT+ D G A tyt = b;’~+y?(b?‘1 —-b%) =
(1 — )b + o1 = y‘b’ +yft-l=af 42l =F

Ify = —:’:T and y = b" st = Za<aA + E'E‘<a<t y? = b1 +y?(b?_ bs—l) =
(l_yt)bs 1+ytbt ____,ysba-— +y‘b‘=a: +1: =F

If y* = g¥ and Yt = o= 5, then 3, w° = 30, 5A° + 23<;<?N1'/? = b7 4 it -
be- 1) — (1 yt—l)bs—l +ytbf. 1_ sbs-l +ytbt -1 _ 48 -I-.’l: =F.

Therefore, this solution satisfies the first constraint.
2. For s <5—1,uw® = A® = A%® > A%**! since v* > v°t1,
For 5, either w® = A% = AR > AR+ or w? = Ayt = AT+ < ATS,
For §< s < T, w® = A%t = A%p® > A%yst]
For t, either wf = A?y? = A%°® > A%v**] or wt =0 = Alyt+l < ATy,
For s > t, w* =0, v* =0, and v**1 = (.

Therefore, this solution satisfies the second constraint.

3. 0< y?s 1, therefore, 0 < v® <1,V s. Also, A* >0 and y?> 0, therefore, w® >0, V s.

Now that we have shown {w?,v?®) to be feasible, we must show it has the same objective
cost as (z°,3°). We will show this only for the case y* = and yt = Zt. The other cases are

similar.
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Cost (w*,v°) = 3, c*w'+f** = 3,5 (C‘A'+f')+2,<,<’(C’A’y +ot) = T,a(c? A%+
P+ Ccaci( AT+ F7) = (F+E0) +((f+cb0) ~ (FP+69)] = (1-oF)(fF+ 8+ (£ +
E6) = yF (f% + V) +E (fF + A = E¥y + Ebyt + foyF + fiyt = B + Pt + fiyf + flyf =
Cost (z*,y°).

Therefore, we can take any extreme point of the multiple choice formulation that splits
flow between two segments and derive a feasible solution to the incremental formulation that

has the same cocst.

A.2.2 Incremental — Multiple Choice

We will now consider an extreme point (w*®,v®) of the incremental formulation and derive,
(z*,3°), a feasible solution for the multiple choice formulation with the same cost. Again,
our characterization of the extreme points of the incremental formulation provides us with two

cases to consider.

CASE 1: v° variables have the form (v v,...,v,0, G ..,0). Welet 3'denote the largest s such

that v* = v. We know that either v = Kf orv= A,_l , and for all other s, v = A, = %%.
To define the solution to the multiple choice model, let y* = v, 2° = F, and 3°,2° = 0, V

s # 3. We first show that this solution is feasible for the multiple choice model.
1. Y, ,z° = z? = F, so this first constrzint is satisfied.

2. Ifv* = Kf, thenz? = F =Y, w* =Y, A%°® = b%y% > ¥ 1y% and Vs # 5, 2° = 0 and
y® = 0, therefore b*~1y® < z° < b%*
If v* = K;_—l, thenz® = F =Y, w® =3, A%v*t = b5 1v = ¥ 1% < b%)%, and V s # 5,
z® = 0 and 3® = 0, therefore b°~1y* < z° < b%y®

Therefore, the second constraint is satisfied.
3.,y = y® = v, but 0 < v* < 1, therefore 3, y° < 1.
4. F > 0, therefore, z° > 0, and since 0 <v* <1,0<y* < 1.

We now need to show that these two solutions have the same cost. We can save ourselves
some work here by noticing that (w®,v®) and (z°,y°) have the same form as they did in Case

1 above. Therefore, their costs must be the same here as well.
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CASE 2: v* variables have the form (1,1,...,1,v,v,...,v,0,0,...,0). We let § denote the
largmt s such that v* =1 and ¢ denote the larg&t s such that v* = v. We know that either

v= Z- orv= E'—l’ and either v* =1 = K" orv=1= %;:l-. To define the solution to the
multiple choice model, let y‘ =v, Y =1-v,andy’ =0,V s #5% Ifv* = Kf’ then let
P =b(1-v). Ifv® = %,:;, then let =¥ = b*~1(1 - v). If ot = fg, then let =t = blv. If

ot = Z;_l’ then let zf = b*~1v. We will first check for feasibility of this solution.
L If ¥ = 2 and of = &, ! then E,z = 2® + 2t = ¥ (1 - v) + bv = b7 + (b - bF) =

Z <3 TAY + La<a<th' = Enw =

Ifvf = 2 Kf and vt = Xﬁ’ then Z,a:‘ =2 42t = (1 —v) + b~ 1v = b + w (P! — bF) =
Za(FA' + E'i<a<t FVA* = Ea w® =

If v° = K;_— and vt = —x t then Z,z =z +af = b1 (1—v)+bbv = b1 +o(bf—b51) =
Es(aA +2“ ? —Z W =

Ifv® = 'A—r— and vt = ¥ W, then 37, 2° = 2 +ab = b1 (1 —v) + b1y = b1 4y (b -
b‘_l) = Ea(i A® + EFSJ<TUA = Ea W' =

Therefore, this first constraint is satisfied.

2. If v = %, then 2% = b(1 —v) = b%® > b* 145, If ¥ = Z;—,, then 2 = b*1(1 —v) =
B 1yP < by,
If‘U"_-—x then zt = bfv = byt > bE-14%. va‘—K;—l-, then ot = bf-1y = bi-1yt < iy,

V 8 #35,t, 2 =0 and y* = 0, therefore b*~1y* < z* < b%y°
Therefore, this second constraint is satisfied.
3.3,y = ¥ +yt = (1 —v) +v =1, therefore ) ,y° < 1.
4. v2>20,1-v2>0, and b® > 0, therefore, z* > 0, and since 0 <v <1,0<y* <1.
We have now shown (z°,%°) to be feasible. To show it has the same objective cost as
(w®,v?®), we again notice that these two solutions have the same structure as they did in
Section A.2.1 . Therefore, they will again have the same cost.

We now have a valid mapping for extreme points of the two polyhedrons corresponding to

the linear relaxations of the incremental and multiple choice formulations. We can represent

139



a feasible solution to one formulation as a convex combination of its endpoints o’ with weights
67 summing to one; that is @ = ¥ j87a7. We have shown that we can transform each extreme
point o into a feasible point B of the second formulation with the same cost. Then, 8 =
Y ;873 is a feasible solution to the second formulation with the same cost as a. Therefore,
we can conclude that we can map any feasible solution to one of the two formulations into a

feasible solution to the other with the same objective cost. B
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