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PREFACE

The ability to sense and respond to fluctuations in environmental nutrient levels is a requisite for 

life. Nutrient scarcity is a selective pressure that has shaped the evolution of most cellular 

processes. Different pathways that detect intracellular and extracellular levels of sugars, amino 

acids and lipids, and surrogate metabolites, are then integrated and coordinated at the organismal 

level via hormonal signals. During food abundance, nutrient sensing pathways engage anabolism 

and storage, and scarcity triggers homeostatic mechanisms, like the mobilization of internal stores 

through mechanisms such as autophagy. Nutrient sensing pathways are commonly deregulated in 

human metabolic diseases.

Nutrients (also referred to as macronutrients) are simple organic compounds involved in 

biochemical reactions that produce energy or are constituents of cellular biomass. Glucose 

and related sugars, amino acids, and lipids (including cholesterol) are important cellular 

nutrients, and distinct mechanisms to sense their abundances operate in mammalian cells. 

Essentiality is not necessarily a hallmark of nutrients, as for certain amino acids, such as 

arginine, cysteine, glutamine, glycine, proline and tyrosine, their essentiality is context 

dependent. In healthy individuals, the de novo synthesis of these amino acids from other 

molecules meets organismal requirements, but under particular metabolic needs, as during 

the rapid growth of infants1,2, they must be also obtained from the environment. Nutrient 

scarcity has operated as a strong pressure for selecting efficient mechanisms of nutrient 

sensing in all organisms. Considering the importance of nutrient homeostasis for all living 

organisms, and for human health in particular, it is surprising that we know relatively little 

about direct nutrient sensing mechanisms.
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The sensing of a particular nutrient may involve the direct binding of the sensed molecule to 

the sensor, or occur by an indirect mechanism relying on the detection of a surrogate 

molecule that reflects nutrient abundance. Regardless of the manner in which nutrient 

sensing occurs, in order to consider a sensor as such, the affinity constant must be within the 

range of physiological fluctuations of the concentration of the nutrient or its surrogate.

Unicellular organisms are directly exposed to environmental fluctuations of nutrients, and 

sense both intracellular and environmental nutrient levels. In contrast, most cells in 

multicellular eukaryotes are not directly exposed to changes in environmental nutrients, and 

homeostatic responses aimed to maintain circulating nutrient levels within a narrow range 

exist. Nevertheless, internal nutrient levels do fluctuate, and hence intracellular and 

extracellular nutrient sensing mechanisms exist also in mammals. In multicellular 

organisms, nutrients also trigger the release of hormones, which act as long-range signals 

with non-cell autonomous effects, to facilitate the coordination of coherent responses in the 

organism as a whole.

Here, we will discuss intracellular and extracellular glucose, amino acid, and lipid sensing 

mechanisms and signaling events in mammals; how these sensing mechanisms become 

deregulated in human disease; and also elaborate on how internal nutrient stores are 

mobilized during nutrient scarcity.

LIPID SENSING

Lipids are a large and diverse set of nutrients (e.g. fatty acids or cholesterol) characterized 

by hydrophobic carbon backbones that are used for energy storage and membrane 

biosynthesis, among other cellular processes. Due to their non-polar nature, lipids are either 

packaged into lipoproteins and chylomicrons or bound by albumin in the serum3, and are 

rarely found free in a soluble form the organism. Despite the morbidity caused by increased 

lipid ingestion and deregulated lipid storage, as occurring in obese states, our knowledge 

about lipid sensing mechanisms is, with some exceptions, quite limited.

Fatty acid signaling

A family of G-protein coupled receptors, best characterized by GPR40 and GPR120, detect 

long chain unsaturated fatty acids (FAs). In mechanisms not fully understood, free FA 

stimulation of GPR40 at the plasma membrane of pancreatic beta cells augments glucose-

stimulated insulin release4 (Figure 1A). GPR120 also mediates insulinotropic activity, albeit 

by an indirect mechanism, involving production of GLP1. GLP1 belongs to a group of 

gastrointestinal hormones called incretins that promote insulin release in beta cells5. These 

examples demonstrate how an increase in one particular nutrient (FAs) anticipates a 

response to the imminent increase in another nutrient (glucose), as food intake rarely 

provides solely one nutrient species. Additionally, activation of GPR120 at the plasma 

membrane of white adipocytes leads to a signal transduction cascade that promotes 

PI3K/AKT activation, leading to the cell-autonomous induction of glucose uptake6 (Figure 

1A). Genetic mutations that disrupt GPR120 function occur in obese humans, and ablation 

of Gpr120 in mice contributes to diet induced-obesity, suggesting a key role for this signal 

transduction pathway in the systemic control of nutrient homeostasis7. Naturally, these 

Efeyan et al. Page 2

Nature. Author manuscript; available in PMC 2015 February 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



findings have spurred interest toward the development of GPR120 agonists to control the 

onset of obesity8.

In addition to GPR120, the FAT/CD36 receptor has been implicated in direct binding and 

uptake of intestinal luminal FAs9, and interestingly GPR40, GPR120, and CD36 have FA-

sensing properties in cells within the oral epithelium involved in gustatory perception10-13 

(Figure 1A).

Cholesterol sensing

Our limited knowledge about the sensing of other lipidic species contrasts with the profound 

understanding of the cholesterol sensing mechanism, deciphered by Brown and Goldstein14. 

Sterols, including cholesterol, are fundamental constituents of mammalian membranes that 

provide membrane fluidity and are also needed for the synthesis of steroid hormones. 

Cholesterol can be obtained from the diet and also synthesized de novo. Hence, adequate 

sensing of internal cholesterol levels allows for the control of the energetically demanding 

cholesterol biosynthetic pathway, so that is only active when external supply and internal 

levels of sterols are low. Cholesterol sensing occurs in close proximity to the regulation of 

the cholesterol biosynthetic pathway. The cholesterol sensing protein, and the transcription 

factor that induces the expression of enzymes involved in the cholesterol biosynthetic 

pathway, from a constitutively bound complex on the endoplasmic reticulum (ER). The 

cholesterol-sensing protein SCAP (SREBP1 cleavage activating protein) directly binds 

cholesterol via a region originally found to span its 5 transmembrane sterol sensing domains 

(SSD)15,16. The initial mapping observations were later refined to a loop in the ER side of 

the membrane, likely embedded in the lipid bilayer17 (Figure 1B). SCAP is constitutively 

bound to SREBP (Sterol Regulatory Element-Binding Protein), which transactivates genes 

critical for cholesterol synthesis. When cholesterol levels are high, cholesterol binding to 

SCAP triggers a conformational change that increases its affinity to the INSIG protein18, an 

anchor for SCAP and SREBP within ER membranes. Conversely, when cholesterol levels 

are low and SCAP is not bound to cholesterol, the SCAP/SREBP tandem dissociates from 

INSIG and shuttles to the Golgi apparatus19 (Figure 1B). This step is of crucial importance, 

because the presence of the SCAP/SREBP complex at the Golgi allows the cleavage and 

release of the cytoplasmic N-terminus of SREBP by proteases resident at the Golgi20,21. In 

turn, the cleaved cytoplasmic fragment of SREBP translocates to the nucleus and induces 

genes involved in lipid anabolism. Replete cholesterol levels then initiate a negative 

feedback by interacting with SCAP and inhibiting further cleavage of SREBP22.

Substantial evidence also supports an additional sterol-sensing event that occurs within the 

ER, involving the enzyme HMG-CoA reductase. HMG-CoA reductase catalyzes the rate-

limiting step in de novo cholesterol synthesis and is a transcriptional target of SREBP in 

response to low cholesterol levels. The C-terminus of HMG-CoA reductase, containing its 

catalytic activity, is exposed to the cytoplasm, while several transmembrane domains, 

including the sterol-sensing domain reminiscent to that of SCAP, are embedded in the ER 

membrane23. High levels of intermediate lipid species in cholesterol synthesis, such as 

lanosterol, trigger the binding of HMG-CoA reductase to INSIG, which is also bound 

constitutively to an ubiquitination complex formed by VCP, GP78 and UBC7. This 
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interaction promotes the ubiquitin-mediated degradation of HMG-CoA reductase24 (Figure 

1C). As mentioned before, HMG-CoA reductase catalyzes an early (and rate limiting) step 

in cholesterol synthesis, but the levels of HMG-CoA reductase are regulated by a slow, 

transcriptional mechanism that is shutoff only after cholesterol levels have already been 

replenished. Hence, the interaction of HMG-CoA reductase with Insig, leading to its 

turnover by the proteasome, constitutes a faster regulatory loop that aims to put a brake in 

cholesterol synthesis when the presence of precursor molecules already warranties its 

imminent increase.

Sensors upstream of adipokines

Adipokines, hormones secreted by adipocytes, exert systemic effects that include the 

regulation of appetite, energy expenditure and other processes that contribute to nutrient 

homeostasis. Their levels do not necessarily reflect circulating lipid levels, but report on 

organismal lipid storage25, and some adipokines, as LEPTIN, can be considered a surrogate 

indicator of lipid storage abundance. Surprisingly, the identity of the sensor that connects 

high levels of stored lipids with LEPTIN production remains a mystery, despite the 

identification of regulatory elements in the promoter region of the LEPTIN gene26. We 

know significantly more regarding the systemic effects downstream of LEPTIN. LEPTIN 

receptor is expressed both in the central nervous system and in peripheral tissues and its 

activation coordinates food intake and organismal metabolism. In hypothalamic neurons that 

suppress appetite (anorexigenic), LEPTIN activity antagonizes the effect of appetite-

stimulating neuropeptides and neurotransmitters. Lipid mobilization by adipocytes, as 

occurring in fasting states, results in decreased LEPTIN production, thereby stimulating 

appetite and promoting nutrient acquisition behavior. Indeed, mutations in the Leptin 

receptor gene were found in morbidly obese patients27, and mice harboring inactivating 

mutations in the Leptin28 or Leptin receptor29 genes are so hyper-fagic that they can double 

the mass of normal mice.

In addition to LEPTIN, adipocytes also synthesize the hormone Adiponectin (also known as 

ADIPOQ)30,31, though the regulation of its production is even less understood32. In contrast 

to LEPTIN, circulating ADIPOQ levels inversely correlate with lipid storage, and this 

adipokine exerts a multitude of systemic effects that include the promotion of energy 

expenditure, insulin sensitivity and loss of appetite33-35. Mutations and polymorphisms in 

the human ADIPOQ gene strongly correlate with obesity and the development of type 2 

diabetes36-38.

AMINO ACID SENSING

Amino acids (AAs) are the building blocks for proteins, the most abundant macromolecule 

in cells. Protein synthesis is energetically expensive and complex; accordingly, cells sense 

extracellular and intracellular AAs to couple abundance to use. Under conditions of AA 

scarcity, proteins constitute reservoirs of AAs that catabolic programs such as proteasome-

mediated degradation and autophagy mobilize. AAs are subsequently recycled and allocated 

for the synthesis of specific proteins required under nutrient limitation. Furthermore, under 

periods of prolonged starvation and hypoglycaemia, AAs are catabolized for the production 

of other forms of energy, as glucose and ketone bodies, required to fuel the particular needs 
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of certain organs, like the brain. Hence, accurate sensing of AA levels is key for an efficient 

regulation of protein and AA synthesis and catabolism, and also for the control of food 

intake.

GCN2

As no AA compensates for the absence of another in protein synthesis, the cell must be able 

to efficiently detect the lack of any AA in order to prevent potential failures in peptide chain 

synthesis. The structural unit of the protein synthesis machinery, the ribosome, incorporates 

AAs into a nascent peptide by the sequential binding of specific transfer RNAs (tRNAs) 

covalently linked to its cognate AA. Amino acid-specific aminoacyl tRNA synthetases 

(aaRS) execute the loading of AAs to their cognate tRNAs39, and uncharged tRNAs 

accumulate during low levels of free AAs. Failure to finish a peptide chain due to a stalled 

ribosome under AA scarcity is inefficient and energetically onerous, so cells anticipate this 

situation by preventing translation initiation. The mechanism involves a single protein that is 

able to detect any uncharged tRNA, regardless of its AA specificity, allowing for the 

detection of low levels of any AA in the context of abundance of the other 19. This protein 

is GCN2 (kinase general control nonderepresible 2), which has high affinity to all uncharged 

tRNAs40 (Figure 2A), and represents an elegant example of AA sensing by the detection of 

a surrogate molecule. Under low intracellular AA levels, the binding of GCN2 to a given 

uncharged tRNA triggers a conformational change that leads to kinase activation and 

inhibitory phosphorylation of a key early activator of translation initiation: the eukaryotic 

initiator factor 2 alpha (eIF2α)41. Mouse models have proven the importance of GCN2/

eIF2a in mammalian responses to transient drops in AAs42,43 and, interestingly, this AA 

sensing pathway seems to play a key role in the central nervous system for the detection of 

imbalances in AA composition in food, independently of taste44-46.

Inhibition of protein synthesis by GCN2/eIF2a occurs in concert with other cellular 

responses to AA depletion, such as the inhibition of the mTOR pathway (see below), 

restricting translation to those mRNAs encoding proteins required for cellular adaptation to 

nutrient starvation while impairing synthesis of most other proteins47. Minimizing 

translation also enables the use of AA as energetic sources.

mTORC1

The mechanistic target of rapamycin (mTOR) kinase, when part of mTOR complex 1 

(mTORC1), controls cellular energetics by inducing numerous anabolic processes, including 

protein and lipid synthesis48. Growth factors activate mTORC1 via a well-understood signal 

transduction cascade initiated by the binding of a receptor at the plasma membrane, and 

culminating with the activation of the Rheb GTPase. Rheb directly binds mTORC1 and 

activates its kinase in a growth factor-dependent manner49-52. In addition to the regulation 

by protein hormones, intracellular AAs also activate mTORC1, so the complex integrates 

information on both systemic and cellular nutrient levels. In spite of the fact that mTORC1 

activity is highly responsive to changes in AA levels, it is not an AA sensor. Indeed, 

mTORC1 activation is one of the several examples of a key sensing signaling process 

where, in spite of intense interest, actual nutrient sensors remain unidentified (Figure 2B). 

mTORC1 is not equally sensitive to all AAs, leucine being particularly important for its 
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activation53. We can only speculate about the selective importance of leucine levels for 

mTORC1 activation, mentioning that is one of the most abundant AA in proteins, and hence, 

more likely to be limiting during protein synthesis. Intriguingly, GCN2-null mice fed a 

leucine deficient diet display a more severe phenotype than the same animals fed diets 

lacking tryptophan or glycine43. Thus, leucine seems critical for the organismal sensing of 

AA sufficiency and deprivation by different pathways. The molecular characterization of the 

AA-dependent activation of mTORC1 started only a few years ago with the identification of 

the Rag family of GTPases54,55, which regulate mTORC1 via a distinct mechanism to that 

of growth factors. Whereas growth factors regulate the kinase activity of mTORC1, the Rag 

GTPases recruit mTORC1 to the outer lysosomal surface, an essential step in its 

activation56. Because mTORC1 kinase activation by Rheb occurs at the outer lysosomal 

surface, it is only possible following Rag GTPase-dependent recruitment of mTORC1 

(Figure 2B). Hence, AA abundance and the consequent recruitment of mTORC1 is a 

prerequisite for the activation of mTORC1 by growth factors (Figure 2). Although the 

sensors for AAs have not been identified as yet, a few pieces in the puzzle of AA-dependent 

regulation of mTORC1 have been added recently. Cell-based biochemical studies have 

identified the proteins responsible for tethering the Rags to the lysosomal surface56, guanine 

exchange factors (GEFs) and GTPase-activating proteins (GAPs), as well as other regulatory 

proteins operating upstream of the Rag GTPases57-63.

Although the reason for the recruitment of mTORC1 to the lysosomal surface may sound 

puzzling, independent pieces of evidence suggest that the lysosome plays a key role in AA 

homeostasis. The yeast vacuole, organelle equivalent to mammalian lysosome, accumulates 

nutrients, such as AAs64, and the mechanism of mTORC1 recruitment is conserved in 

yeast65. In addition, high intraluminal concentrations of certain AAs have been shown also 

in lysosomes66. Protists such as D. dyscoideum obtain energy via phagocytosis and 

lysosomal degradation67, which is followed by a transient increase in intralysosomal nutrient 

levels. Finally, both the lysosome and the vacuole are the organelles where AAs and other 

nutrients are scavenged from cellular components, via the catabolic process of autophagy 

(Figure 4). Hence, high levels of AAs within the lysosome/vacuole system seem to reflect to 

some extent cellular AA abundance, and so it is reasonable to couple its sensing with 

recruitment and activation of mTORC1, a critical regulator of most anabolic processes, 

including protein synthesis.

Germline and sporadic mutations in genes involved in the signal transduction of nutrient 

levels upstream of the Rag GTPases have been found in human syndromes characterized by 

growth defects, neurological disorders, skin and immunological problems, and 

tumors60,61,68-70.

Amino acid-sensing taste receptors

As strict heterotrophs, animals must obtain energy and nutrients from external organic 

sources, and predicting the nutritional value of food before digestion allows for accurate 

selection of food sources and for anticipation of increased nutrient abundance. Several 

mechanisms act synergistically, including experience and social rules in humans, but a 

fundamental nutrient sensing event occurs at the level of the oral taste buds. Nutrient sensing 
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by taste receptors is not just a means of sensing extracellular nutrients, it is a mechanism of 

extra-organismal sensing that allows interrogation of prospective food sources. In humans, 

taste is divided into five categories: sweet, umami, bitter, sour and salty, and is generated by 

signals elicited in taste buds, groups of cells in the tongue, palatal, and esophageal 

epithelium. Within these cells, the taste receptors are logically exposed in the apical 

membrane oriented toward the environment71.

Taste receptors belong to the T1R and T2R families of G-protein coupled receptors, and are 

characterized by 7 trans-membrane domains with an extracellular N-terminus and an 

intracellular C-terminus. Molecular and genetic information regarding the different members 

of the taste receptors genes can be found elsewhere71. The T2R family is involved in the 

detection of bitter molecules, a category that includes potentially toxic compounds, and two 

T1R family members are responsible for sensing the presence of AAs (the umami taste). 

Although other taste receptors also exist71,72, elegant genetic studies employing 

heterologous expression experiments defined that the T1R1+T1R3 heterodimer senses AAs 

(Figure 2C). Human AA taste receptors have particularly high affinity to glutamate, but 

other L-amino acids also serve as ligands, while D-amino acids do not73. AA binding to a 

taste receptor triggers signal transduction through the plasma membrane, followed by G-

protein activation and neurotransmitter release74, which is then integrated with other 

neurotransmission events at the central nervous system level.

In addition to the presence of taste buds in the oral epithelium, taste receptors also exist in 

endocrine cells in certain regions of the gut75. Intestinal taste receptors operate via G-protein 

activation in a similar manner to that of the oral epithelium, but instead of inducing the 

release of a neurotransmitter that activates an afferent signal to the brain, the cascade elicited 

by enteral taste receptors culminates with the release of incretins into blood circulation, 

serving as an anticipatory signal that prepares responses for the imminent digestion and 

systemic increase in nutrient abundance.

Interestingly, extracellular AA sensing at the plasma membrane by taste receptors can 

modulate mTORC1 activation without affecting intracellular AA levels76, a meaningful 

cross-talk that engages the anabolic machinery of the cell in anticipation to an elevation in 

intracellular AA levels, following import.

GLUCOSE SENSING

Mammals rely on multiple means of maintaining glucose levels within a narrow 

physiological range. Glucose intake, storage, mobilization and breakdown are tightly 

regulated at different levels, and multiple mechanisms of glucose sensing coexist: 

extraorganismal, extracellular and intracellular. In addition, and a network of hormone 

signals, exemplified by insulin and glucagon, aim to coordinate coherent responses to 

systemic glucose levels in distant organs. Deregulated glucose homeostasis mechanisms, 

from glucose sensing to import, storage and mobilization underlie the pathogenesis of type 2 

diabetes and other human diseases.
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GCK

Glucokinase (GCK) catalyzes the first step in the storage and consumption of glucose, 

glycogen synthesis and glycolysis, and its function constitutes a simple, direct intracellular 

nutrient sensing mechanism that controls systemic glucose homeostasis. Like all 

hexokinases, GCK phosphorylates glucose to make glucose-6-phosphate (G6P), but unlike 

the other isozymes, only GCK functions as a glucose sensor77. This uniqueness occurs 

because, unlike the other hexokinases, which have Kms for glucose much below the 

minimum physiological level of glucose, GCK has a significantly lower affinity and is only 

active when glucose levels are relatively high (~120 mg/dl, or 7 mM, and greater). Hence, 

while the other hexokinases function as ‘phosphorylation machines’ regardless of the actual 

glucose levels, GCK is active only during glucose abundance, and it controls systemic 

glucose fate through its effects in the liver and pancreas (Figure 3B). The liver maintains 

glycaemia through gluconeogenesis and glycogen breakdown during periods of systemic 

glucose scarcity, or by storing glucose in the form of glycogen when it is in excess78. GCK 

is the most abundant hexokinase in liver and because is inactive under conditions of glucose 

limitation, it permits export of un-phosphorylated glucose from the liver in order to supply 

the energetic demands of the brain and muscles. When hepatic glucose levels are high, 

GCK-mediated conversion of glucose to the metabolic intermediate G6P allows its shunting 

into glycolysis (for energy production) or glycogen synthesis (for storage).

GCK is also expressed in beta cells (see below), and in neurons and glial cells in the 

hypothalamus, and although work remains to be done to understand the role of this glucose 

sensor in the brain, systemic effects, such as feeding responses and insulin release, are likely 

downstream of hypothalamic GCK activity79.

Dozens of germline mutations in GCK in patients with abnormal glycaemia and diabetes80, 

together with conditional deletion of the murine Gck gene in liver and pancreas81, support 

the fundamental role for GCK in maintaining organismal glucose homeostasis.

GLUT2

The glucose transporter GLUT2 (SLC2A2) is a sensor of extracellular glucose levels; like 

GCK, GLUT2 has a higher Km (20 mM) than other glucose transporters of the same family. 

The Km for GLUT1 is approximately 1 mM and that of GLUT4 is ~5 mM82, so they are 

close to saturation even during fasting glycaemia (~4 mM). The low affinity of GLUT2, in 

contrast, allows for efficient transport of glucose across the plasma membrane only when 

glycaemia is high, but not under the low concentrations that still saturate the other 

transporters. Accordingly, GLUT2 plays critical roles in directing organismal glucose 

handling following feeding. Hepatic glucose import mediated by GLUT2 is followed by 

GCK-dependent phosphorylation for storage and energy production, as described above. 

Importantly, during periods of low glycaemia, hepatic glycogenolysis and gluconeogenesis 

increase intrahepatic glucose levels. Because GLUT2 can transport glucose in a bi-

directional manner, it now exports glucose to the circulation (Figure 3A). Hence, GLUT2-

mediated import occurs only during transient hyperglycaemic states, and GLUT2-mediated 

export only happens when intrahepatic glucose levels are high, thus constituting a key 

controller of glucose homeostasis. Not surprisingly, inactivating mutations in GLUT2 lead 
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to human metabolic disorders, such as the Fanconi-Bickel syndrome, which is characterized 

by deregulated glycogen accumulation, hepatomegaly and hypoglycaemia, among other 

symptoms of disrupted glycaemic homeostasis83.

Beta cells in the pancreas have a specialized role in sensing systemic glucose levels, and are 

responsible for the synthesis and secretion of insulin. Glucose is imported in beta cells and 

phosphorylated by the tandem of GLUT2 (or GLUT1) and GCK, respectively, and, as it is 

consumed, leads to an increased ATP:ADP ratio. This closes K+-channels at the plasma 

membrane, and causes the membrane to depolarize. Dissipation of membrane potential 

results in a transient increase of intracellular Ca++ that facilitates the fusion of insulin-

containing vesicles with the plasma membrane, releasing its cargo into systemic circulation 

(Figure 3C). It is important to mention that whereas the predominant transporter in murine 

beta cells is GLUT2, the relative abundance of the GLUT2 transporter in human islets seems 

to be minor compared to that of the high affinity GLUT1 transporter, so that the relevance of 

GLUT2 for glucose transport in human beta cells is not clear84.

Elevated sugar intake and chronic hyperglycaemia deregulates normal glucose sensing via 

several mechanisms, including ER stress, elevated intracellular Ca++ levels, mitochondrial 

dysfunction, reactive oxygen species, and chronic inflammation, all of which seem to 

contribute to the corruption of insulin secretion in type 2 diabetes85.

Finally, although the other glucose transports, such as GLUT1 and GLUT4, do not behave 

as sensors, their activities and effects are regulated by different means, in order to meet 

particular requirements of glucose use and storage. GLUT4 is expressed in skeletal muscle 

and adipose tissue, two organs important for post-prandial glucose uptake and storage82, and 

although GLUT4 has a low Km, glucose uptake in these organs is a regulated process. 

Insulin triggers a PI3K-AKT dependent signal transduction cascade that results in GLUT4 

localization to the plasma membrane, allowing glucose uptake in these tissues86. Because 

glucose import and storage are insulin-dependent, and thus secondary to direct glucose 

sensing mechanisms in liver and pancreas, they occurs only after the organism has reached a 

threshold of internal glucose abundance. GLUT1 is expressed in fetal tissues and its constant 

activity provides glucose to all tissues to sustain the rapid growth of the organism.

AMPK and ATP:AMP ratios

The AMP-activated protein kinase (AMPK) is a fundamental regulator of cellular 

metabolism and coordinates several metabolic responses in different cell types. It is 

exquisitely responsive to cellular energy levels, as a surrogate sensing mechanism for 

glucose abundance, increased levels of AMP and ADP directly activate the kinase. AMPK 

has been the subject of a number of excellent reviews addressing its activation, regulation, 

and downstream consequences can be consulted87,88, and will be briefly discussed herein in 

the context of the regulation of autophagy.

mTORC1 and the sensing of glucose

The regulation of mTORC1 through Rag GTPase-mediated recruitment is not restricted to 

AAs; cellular glucose levels also affect the activity of the Rag GTPases 89. Unlike our 

understanding of the activation of mTORC1 by cellular AAs, with some molecular players 
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upstream of the Rag GTPases and downstream of AA already identified, less clear is the 

mechanism by which glucose regulates the Rags. Some aspects downstream of glucose and 

AA sensing are shared, such as the involvement of the lysosomal v-ATPase48,89,90, but 

additional players remain unidentified. Because the AA and glucose sensing mechanisms are 

generally independent phenomena, as herein illustrated, it is very likely that AAs and 

glucose sensing upstream of mTORC1 occur in parallel and converge upstream of the Rag 

GTPases, but precisely how this integration occurs is unresolved.

Glucose-sensing taste receptors

In a similar manner to AA sensing in taste buds by T1R1+T1R3, the heterodimer composed 

of T1R2+T1R3 constitutes the glucose taste receptor (Figure 3D). The extracellular N-

terminal domains of both T1R1 and T1R2 are essential for determining the specificity for 

their natural ligands91. Millimolar concentration of the saccharides glucose, fructose or 

sucrose activate the T1R2+T1R3 receptor92; this concentration may seem high, but sucrose 

concentration in an apple is ~100-200 mM, and hence, this process is selective and efficient 

for the detection of highly energetic foods.

Glucose taste receptors are also expressed in the intestinal epithelium, and although the 

sensing process is identical to that of the oral epithelium, the signal transduction does not 

trigger an afferent signal to the brain, but results in the transient localization of the GLUT2 

transporter to the apical membrane, leading to increased absorption of glucose from the 

intestinal lumen after feeding93,94.

In addition to natural ligands, glucose taste buds also respond to artificial sweeteners as 

saccharine, cyclamate and aspartame92. Activation of glucose taste receptors by artificial 

ligands has clinical implications for obesity and type 2 diabetes, as sweeteners may increase 

nutrient absorption and activate other nutrient-sensing signaling cascades at different levels, 

regardless of nutritional value. Indeed, some studies have shown that consumers of artificial 

sweeteners are at higher risk to develop metabolic disease95. The phenomenon of artificial 

activation of this nutrient sensing pathway is currently an active field of research.

AUTOPHAGY: ACCESSING INTERNAL NUTRIENT STORES

Because environmental nutrient availability can be intermittent, cells and organisms have 

evolved efficient ways of storing nutrients during periods of abundance. This occurs in 

unicellular organisms and is more obvious and prominent in animals, with the emergence of 

organs specialized in nutrient storage, such as the fat tissue, liver and skeletal muscle. 

Mammalian cells accumulate and store glucose in the form of glycogen, lipids within lipid 

droplets and internal membranes, and AAs in proteins and organelles;all of which can be 

mobilized and catabolized to endure periods of nutrient limitation. Cells exploit different 

means to obtain the basic nutrients from internal stores, including autophagy, the controlled 

process of recycling of cellular constituents confined within a double membrane structure. 

Autophagy starts with the de novo formation of a membrane structure termed phagophore, 

which engulfs its cargo and closes as a cytoplasmic double-membrane autophagosome. An 

autophagosome then fuses with a lysosome, which leads to the enzymatic breakdown of the 

autophagosomal cargo into its basic building blocks, then exported from the 
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autophagolysosomes and further catabolized to produce energy, or used again in other 

anabolic reactions (Figure 4).

The process of autophagy is unique because it can target any cellular component and 

nutrient storage depot, and as a key internal source under scarcity, is highly regulated at 

multiple levels by nutrients and nutrient signaling96. AMPK kinase, directly activated by a 

low ATP:ADP ratio, phosphorylates and activates ULK1, a kinase that regulates autophagy 

initiation97,98. AMPK also activates the FoxO transcription factors, which transactivate ATG 

genes, responsible for the initiation and completion of autophagy99. Hence, AMPK regulates 

autophagy acutely, and also by means of a slower, transcriptional mechanism.

A critical regulator of autophagy, as shown in all eukaryotes using both cultured cells and 

model organisms, is mTORC1, through its inhibitory phosphorylation of ULK1 and 

Atg13100. mTORC1 appears to play a dominant role on the regulation autophagy, as 

mTORC1 inhibition is sufficient to induce it101, while its constitutive activation is sufficient 

to block it89. Nutrient depletion is perhaps the most potent inducer of autophagy, and the 

regulation of mTORC1 by the Rag GTPases downstream of nutrient scarcity appears to be 

essential for the regulation of autophagy. Mice with constitutive RagA activity, and hence, 

constitutive activation of mTORC1 regardless of nutrient levels, develop normally but 

succumb within the first day of life, similarly to mice lacking essential autophagy genes 

Atg5 and Atg789,102,103. Constitutive RagA activity in neonatal mice leads to a profound 

glucose and AA homeostasis defect secondary to an impairment in the detection of nutrient 

shortage after the trans-placental supply of nutrients is interrupted at birth, and the 

consequent inability to trigger autophagy.

In addition to the regulation of autophagy initiation, mTORC1 activity is required for 

autophagy termination104. Cellular free AAs, produced by autophagy, result in an increase 

in mTORC1 activity and the reformation of lysosomes. Systemic levels of nutrients also 

regulate autophagy via the effects of insulin105. The intracellular cascade of insulin activates 

AKT, a positive input for mTORC1, and also a negative regulator of the FoxO transcription 

factors. Hence, both local and systemic nutrients regulate the process. In addition to 

nutrients, hypoxia, ER stress, DNA damage, among others forms of stress, also regulate 

autophagy106.

Several studies that generated autophagy-deficient tissues in a temporal specific manner 

have determined the importance of autophagy in mammalian physiology. Besides the 

aforementioned role of autophagy in the early neonatal starvation period102,103, autophagy is 

essential for the survival of embryos in the pre-implantation stage107. Whole-body acute 

deletion of autophagy genes in adult mice eventually culminates in neurodegeneration and 

death, presumably due to the accumulation of harmful organelles and proteins, which likely 

cause neuronal toxicity108,109. Liver-specific impairment in autophagy results in 

accumulation of abnormal cellular endomembranes, mitochondria and ubiquitinated 

proteins103, and impaired lipid mobilization110. An impaired autophagy seems to 

preferentially affect cells specialized in vesicle trafficking, such as lymphocytes, beta cells, 

and others111, but some of these effects may be due to a deranged endomembrane trafficking 

system, rather than a direct consequence of a nutrient homeostasis defect.

Efeyan et al. Page 11

Nature. Author manuscript; available in PMC 2015 February 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



CONCLUDING REMARKS

In spite of intense research, our understanding of nutrient sensing mechanisms is far from 

complete. For instance, we have not yet deciphered what links lipid storage levels with 

LEPTIN synthesis and release. Equally unclear is what the glucose and AA sensors 

upstream of mTORC1 are. Toward the identification of nutrient sensors upstream of 

mTORC1, the lysosome appears to be a key organelle in nutrient sensing; yet we still need 

to determine what and how is sensed at the lysosome. Besides these and other fundamental 

unanswered questions of direct nutrient sensing, the mechanisms discussed herein were 

outlined mostly in a modular manner. This reflects that we still lack an integrative view of 

the nutrient sensing pathways; connecting different aspects of nutrient sensing is one of the 

challenges of future research. We know that mTORC1 is a node where hormone and nutrient 

inputs converge, but we ignore whether these signaling cascades cross talk upstream of 

mTORC1. A complete view of nutrient sensing mechanisms includes addressing potential 

cross regulation between different nutrient sensing pathways, but also incorporating the 

regulation by other signaling events. For example, we know some consequences of chronic 

inflammation in deregulating nutrient sensing mechanisms and the signaling cascades 

downstream, as occurring in the obese state, but how exercise modulates nutrient inputs, or 

how aging effects nutrient sensing abilities, remain to be determined. From the experimental 

point of view, advances in genomics will likely contribute insight on clinical conditions 

secondary to deregulated nutrient sensing, such as the identification of novel mutations and 

polymorphisms in humans. Finally, nutrient abundance not only affects the onset of 

diabetes, but also influences cancer development and the process of aging. Nutrient sensing 

and metabolism in cancer cells has received a new wave of attention, in part thanks to the 

advances in next generation sequencing and metabolomics. Cancer cells are exposed to 

limited nutrients due to poor vasculature, and deregulated proliferation poses energetic and 

nutrient demands and liabilities, which act in concert with aberrant activation of growth 

signals. On the other hand, one of the most successful interventions against the onset of 

aging is limitation in nutrient intake, or caloric restriction112. Hence, understanding normal 

nutrient sensing mechanisms is a prerequisite for designing better interventions against 

human disease beyond diabetes.
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Figure 1. Lipid Sensing Mechanism
A. Fatty Acid (FA) detection mechanisms by GPR40 and 120 (left) and CD36 (right). These 

GPR family members are expressed in several cell types including entero-endocrine cells, 

taste buds and white adipocytes. In the enteroendocrine cells, binding to FAs occurs in the 

luminal side, and the signal is transduced via G protein, leading to the release of incretins 

into the circulation. In taste buds, they trigger the release of neurotransmitters; in white 

adipocytes, activation of GPR120 indirectly promotes glucose uptake. Binding of CD36 to 

free FAs in the oral taste buds triggers Ca++ release and neurotransmission; in enterocytes, it 

directly promotes FA uptake. B. Cholesterol sensing by SCAP. In the presence of 

cholesterol, the SCAP/SREBP complex binds the INSIG proteins at the endoplasmic 

reticulum (ER) membrane and remains anchored in the ER. When cholesterol is absent and 

SCAP/SREBP do not bind INSIG, the complex traffics to the Golgi where the cytoplasmic 

tail of SREBP gets released by proteolytic cleavage, and triggers a cholesterol synthesis 

transcriptional program at the nucleus, including the synthesis of HMG-CoA reductase 

(HMGCR). C. The enzyme HMGCR catalyzes a rate-limiting step in cholesterol synthesis, 

and is synthesized when cholesterol levels are low. HMGCR is embedded in the ER 

membrane and also has cytoplasmic domains, which include its catalytic activity. In the 

presence of abundant intermediate species in the cholesterol biosynthetic pathway, HMGCR 

interacts with the INSIG proteins, constitutively bound to an ubiquitination complex. This 

leads to HMGCR ubiquitination and degradation and halts the synthesis of cholesterol in a 

rapid regulatory mechanism, key to the anticipation of an imminent increase in cholesterol 

levels.
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Figure 2. Amino acid Sensing Mechanisms
A. GCN2 detects insufficiencies of cellular amino acids (AAs). During low levels of any 

AA, its cognate aaRS fails to load the transfer RNA (tRNA), which is then detected by 

GCN2 kinase, halting translation initiation. B. mTORC1 is activated downstream of 

elevated intracellular AAs via its recruitment to the outer lysosomal surface through a Rag 

GTPase-mediated mechanism. Increases in intra-lysosomal levels of AAs control Rag 

GTPase function, which recruits mTORC1 to the outer lysosomal membrane, an essential 

step in its activation. The identities of the sensor for AAs remain unidentified, and several 

non-mutually exclusive possibilities exist: a) an intra-lysosomal sensor that transduces the 

signal through the membrane; b) a lysosomal transmembrane sensor that both detects and 

transduces the signal; and c) and a cytoplasmic sensor that operates downstream of AA 

export from the lysosome. C. Extra-organismal AA sensing by oral taste receptors. The 

heterodimeric receptor T1R1+T1R3 binds AAs at high concentrations only, and triggers a 

signal transduction cascade via G-protein. In the intestinal epithelium, it also leads to the 

localization of GLUT2 to the apical membrane, facilitating glucose import.
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Figure 3. Glucose Sensing Mechanisms
A. Glucose sensing by the GLUT2 transporter. Due to low affinity, this transporter actively 

imports glucose only during high glycaemic states (right). Due to its bidirectional properties, 

it can also export glucose from hepatocytes into the circulation under hypoglycaemic states 

if hepatic gluconeogenesis and glycogen breakdown raise the intrahepatic glucose levels 

(left) B. Intracellular glucose sensing by glucokinase (GCK) in hepatic and pancreatic cells. 

GCK has low affinity for glucose, and shunts glucose-6-phosphate into either glycolysis or 

glycogen synthesis only when glucose is abundant. C. Mechanism of insulin release 

downstream of glucose sensing in pancreatic beta-cells. A multi-step process that relies on 

glucose phosphorylation by GCK, subsequent ATP production, and ATP-mediated blockade 

of K+ channels. This leads to a Ca++ influx that facilitates insulin release from vesicles into 

the bloodstream. D. Extra-organismal glucose sensing by oral taste receptors. Dimeric 
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receptors T1R2+T1R3 bind glucose, sucrose, fructose and artificial sweeteners at high 

concentration only, and trigger a signal transduction cascade via G-protein.
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Figure 4. Nutrients and Autophagy
Autophagy serves as an internal source of stored nutrients under conditions of nutrient 

limitation. Two main regulatory inputs for autophagy are AMPK and mTORC1. Autophagy 

initiation can be promoted by the activation of ULK1 via AMPK-dependent phosphorylation 

during low ATP:AMP ratio. mTORC1 is activated by growth factors at the outer lysosomal 

surface if cellular AAs and glucose have recruited mTORC1 via the action of the Rag 

GTPases. Once activated, mTORC1 inhibits ULK1 and Atg13 by phosphorylation. Hence, 

low nutrients promote autophagy by the inhibition of mTORC1. Autophagy starts with the 

engulfment of cellular constituents: glycogen, lipids from lipid droplets, soluble proteins, 

ribosomes or organelles in a double membrane structure that then fuses with lysosomes, 

where the enzymatic breakdown occurs. The products of autophagy, basic nutrients (sugars, 
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lipids, amino acid, and nucleosides), are then exported into the cytoplasm, where may be 

used as a source of energy, or re-used for anabolism.
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