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[1] We employ a marine ecosystem model, with diverse and flexible phytoplankton
communities, coupled to an Earth system model of intermediate complexity to explore
mechanisms that will alter the biogeography and productivity of phytoplankton
populations in a warming world. Simple theoretical frameworks and sensitivity
experiments reveal that ecological and biogeochemical changes are driven by a balance
between two impacts of a warming climate: higher metabolic rates (the “direct” effect),
and changes in the supply of limiting nutrients and altered light environments
(the “indirect” effect). On globally integrated productivity, the two effects compensate to
a large degree. Regionally, the competition between effects is more complicated; patterns
of productivity changes are different between high and low latitudes and are also
regulated by how the supply of the limiting nutrient changes. These complex regional
patterns are also found in the changes to broad phytoplankton functional groups. On the
finer ecological scale of diversity within functional groups, we find that ranges of some
phytoplankton types are reduced, while those of others (potentially minor players in the
present ocean) expand. Combined change in areal extent of range and in regionally
available nutrients leads to global “winners and losers.” The model suggests that the
strongest and most robust signal of the warming ocean is likely to be the large turnover in
local phytoplankton community composition.
Citation: Dutkiewicz, S., J. R. Scott, and M. J. Follows (2013), Winners and losers: Ecological and biogeochemical changes in a
warming ocean, Global Biogeochem. Cycles, 27, 463–477, doi:10.1002/gbc.20042.

1. Introduction
[2] Phytoplankton communities in the sunlit layer of the

surface ocean are important both as the base of the marine
food web fueling fisheries and in regulating key biogeo-
chemical processes such as export of carbon to the deep
ocean. How will phytoplankton communities reorganize
with changing climate? And how will this reorganization
affect their productivity and ocean biogeochemistry? Models
are a useful tool to investigate these questions. Here we
employ a marine ecosystem model, with diverse and flexible
phytoplankton communities which reorganize with changing
climate, to examine what mechanisms might alter the bio-
geography and productivity of phytoplankton populations in
a warming world.

[3] Temperature “directly” affects phytoplankton growth
rates [Eppley, 1972; Bissinger et al., 2008] impacting their
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productivity and relative fitness. Warming and concurrent
changes to the hydrological cycle and other climate proper-
ties will also alter the physical ocean circulation and mixing,
“indirectly” impacting marine ecosystems by changing
their light and nutrient environment. How do these two
effects play out against each other in setting changes in
phytoplankton communities and their productivity in the
ocean? Here we employ a suite of numerical models along
with a systematic theoretical framework to examine these
two effects.

1.1. Biogeochemical Perspective
[4] Published numerical projections of future oceans sug-

gest very different changes in global integrated primary
production in future scenarios [Sarmiento et al., 2004;
Schmittner et al., 2008; Steinacher et al., 2010; Marinov
et al., 2010; Taucher and Oschlies, 2011; Bopp et al., 2005;
Bopp et al., 2013], even disagreeing on the sign of the net
change. Locally, there are only select regions of general
agreement between models, with other regions of disparate
signs of changes [Bopp et al., 2013]. On the other hand,
most numerical projections agree on the sign of the change
in globally integrated export production, with better regional
agreement as well. Why do models have such different
responses at one metric of productivity but agree on another?
Why are their responses so sensitive?
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[5] Model studies suggest that reduced rates of nutrient
supply in a future ocean will lower productivity [Schmittner
et al., 2008; Steinacher et al., 2010; Marinov et al., 2010;
Bopp et al., 2013; Bopp et al., 2001]. Taucher and Oschlies
[2011], however, suggest that this “indirect” effect might
be counteracted by the direct effect of increased growth
rates due to increased temperatures. Here we more clearly
separate the two effects with targeted sensitivity studies.

[6] Previous studies [e.g., Bopp et al., 2001; Steinacher
et al., 2010; Marinov et al., 2010] have suggested an oppo-
site response in productivity between nutrient-rich high and
oligotrophic low latitudes. Here we use simple theoretical
insights to explore these regional differences further.

1.2. Ecological Perspective
[7] Previous model studies of global change [e.g., Bopp

et al., 2013; Steinacher et al., 2010] have resolved only
a handful of phytoplankton functional types. Most models
include a small phytoplankton (characterized as slower
growing but more efficient at low nutrient levels) and a
large phytoplankton class (characterized as having higher
maximum growth rates but reached only at higher nutrient
levels). In this paper, we will refer to the former as
“gleaners” and the latter as “opportunists.” Previous stud-
ies have suggested that reduced rates of nutrient supply in
a future world will alter community structure to favor the
gleaners (with their lower nutrient requirements) relative to
the opportunists [e.g., Bopp et al., 2005; Schmittner et al.,
2008; Steinacher et al., 2010; Marinov et al., 2010]

[8] Beyond this coarse-grained separation of functional
groups, no other study has attempted to capture the finer-
grained changes within community structure. The numerical
model we employ here resolves major functional groups
(which, as with previous models, can be loosely collected as
gleaners and opportunists) and also a diversity within them,
reflecting specific or ecotypic specialization in adaptation to
temperature, light, resource availability, and predation. Here
we employ this model to explore how a warming climate
might impact marine phytoplankton communities and the
range of species. What is the signature of global change from
the ecological perspective?

[9] In our ecosystem model, diverse and flexible phy-
toplankton communities can reorganize with changing
climate. We couple this model to an Earth system of inter-
mediate complexity. We describe the numerical model in
section 2 and the present-day results in section 3. We use
the combination of sensitivity experiments and theory to
explain changes in a warming world at the ecological level
(section 4.1) and at the biogeochemical level (section 4.2).

2. Numerical Simulations
2.1. Earth System Model of Intermediate Complexity

[10] We use the MIT Integrated Global Systems Model
(IGSM) framework [Dutkiewicz et al., 2005a; Scott et al.,
2008; Sokolov et al., 2009]. In this Earth system model
of intermediate complexity, a three-dimensional ocean
circulation module (MITgcm [Marshall et al., 1997]) is
coupled to a two-dimensional (latitude and height) atmo-
spheric physical [Sokolov and Stone, 1998] and chemi-
cal module, and a terrestrial component [Schlosser et al.,
2007] with hydrology [Bonan et al., 2002], vegetation

[Felzer et al., 2004], and natural emissions [Liu, 1996]. The
ocean has a horizontal resolution of 2ı�2.5ı and 22 vertical
levels ranging from 10 m in the surface to 500 m at depth.
Ocean boundary layer physics is parameterized following
Large et al. [1994], and the effects of mesoscale eddies, not
captured at this coarse resolution, is parameterized [Gent
and McWilliams, 1990].

[11] The coupled system is spun up for 2000 years (using
1860 conditions) before simulating 1860 to 2100 changes.
Atmospheric greenhouse gas and volcanic observations are
specified from 1860 to 2000; for the 21st century, we use
human emissions for a “business and usual” scenario that is
projected by an economics module of the IGSM [Prinn et al.,
2011]. This scenario is constructed under the assumption
that no climate policies are imposed over the 21st century
and is similar to the Representative Concentration Pathways
8.5 (RCP8.5) used in the Coupled Model Intercomparison
Project 5 (CMIP5).

[12] In the spin-up, historical, and future simulation
phases, the three-dimensional ocean is forced with pre-
scribed wind fields. These fields have variability as pro-
vided by the National Centers for Environmental Prediction
(NCEP) [Kalnay et al., 1996] reanalysis (detrended winds
over the period 1948 to 2007 are employed; these winds
are “recycled” for years outside this period), which drives
interannual variability in the ocean model. For instance, an
El Niño-Southern Oscillation (ENSO)-type signal is appar-
ent. For simplicity, we do not represent changes to the wind
patterns and intensity in the future period. Although some
clear patterns of changes in wind stress emerge from analy-
sis of the AR4 archive of coupled runs [Randall et al., 2007],
considerable model uncertainty remains [Yin, 2005; Fyfe and
Saenko, 2006]. This aspect of physical changes to the system
is beyond the scope of this work.

2.2. Marine Ecosystem Model
[13] We use the ecosystem model of Follows et al. [2007]

with modifications [Dutkiewicz et al., 2009; 2012] and direct
the reader to those papers for full equations, parameter
values, and discussion of the framework. Here we provide a
brief overview and only the pertinent parameters (Table 1).

[14] We resolve inorganic and organic forms of nitrogen,
phosphorus, iron, and silica, 100 phytoplankton types, as
well as two grazers. The biogeochemical and biological
tracers are transported and mixed by the climate system
model and interact through the formation, transformation,
and remineralization of organic matter. Excretion and mor-
tality transfer living organic material into sinking particulate
and dissolved organic detritus, which are respired back to
inorganic form. Iron chemistry includes explicit complexa-
tion with an organic ligand, scavenging by particles [Parekh
et al., 2005], and representation of aeolian [Luo et al., 2008]
and sedimentary [Elrod et al., 2004] sources.

[15] The time-dependent change in the biomass of each of
the model phytoplankton types, Pj, is described in terms of
a growth, sinking, grazing, other mortality, and transport by
the fluid flow. Phytoplankton growth is a function of light,
temperature, and nutrient resource. For phytoplankton type j
(where j = 1 to 100), growth rate is given by the following:

�j = �maxj�
T
j �

I
j �

R
j (1)
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Table 1. Parameters of Phytoplankton Growth in the Ecosystem Modela

Parameter Symbol Fixed Value Random Assigned Values Units

Max. growth rate at 30ıC �maxj Small: 1.4 d–1

Large: 2.5 d–1

Temperature coefficient A –4000 K
Temperature range coefficient Bj Small: 0.001 ıC–1

Large: 0.0003 ıC–1

Temperature normalization coefficient TN 20 ıC
Optimum temperature Toj –2 to 35 ıC
Temperature decay coefficient b 4
Temperature normalization coefficient � 0.33
PAR saturation coefficient kparj Small: mean 0.012, std 0.01 (�Ein m–1 s–1)–1

Large: mean 0.012, std 0.003 (�Ein m–1 s–1)–1

PAR inhibition coefficient kinhibj Small: mean 6� 10–3, std 1� 10–4 (�Ein m–1 s–1)–1

Large: mean 1� 10–3, std 5� 10–5 (�Ein m–1 s–1)–1

Phosphate half saturation kPO4j Small: 0.015 �M P
Prochl: 0.01 �M P
Large: 0.035 �M P

Nitrate half saturation kNO3j Small: 0.24 �M N
Large: 0.56 �M N

Ammonium half saturation kNH4j Small: 0.12 �M N
Large: 0.28 �M N

Silicic acid half saturation kSij Non-diatom: 0 �M Si
Diatom: 2.0 �M Si

Iron half saturation kFej Small: 0.015 nM Fe
Prochl: 0.01 nM Fe
Large: 0.035 nM Fe

a“Small” indicates gleaners, “large” indicates opportunists, “Prochl” indicates non-nitrate using Prochloroccus-analogs, “Diatom” indicates silica-using
phytoplankton type.

where �maxj is the maximum growth rate of phytoplank-
ton j, and �T

j , � I
j , �R

j are the functions modulating growth
due to temperature, light, and resource (nutrient) availability,
respectively (Figure 1). See Appendix A and Dutkiewicz
et al. [2009, 2012] for more details.

[16] The physiological functionality and sensitivity of
growth to temperature, light, and ambient nutrient abun-
dance

�
�T, � I

j , �R
j
�

for each of the hundred modeled phyto-
plankton type are governed by several true/false parameters,
the values of which are based on a virtual “coin toss” at
the initialization of each phytoplankton type. These deter-
mine the size class of each phytoplankton type (“large”
or “small”), whether the organism can assimilate nitrate,
whether the organism can assimilate nitrite, and whether
the organism requires silicic acid. Some simple allometric

trade-offs are imposed: Phytoplankton in the large size
class are distinguished by higher intrinsic maximum growth
rates, faster sinking speeds, and higher half-saturation con-
stants. This trade-off allows for the crude separation of
the large “opportunists” adapted to highly seasonal, high-
nutrient regions and the small “gleaners” adapted to low-
nutrient, stable waters. In common with other ecosystem
models, we also parameterize the opportunists through their
larger size and sinking speed as exporting carbon to the
deep ocean more efficiently [Pomeroy, 1974; Laws, 1975].
We do not include parameterization of nitrogen fixation in
these simulations.

[17] Parameter values which regulate the effect of tem-
perature and light on growth (Toj, kparj and kinhibj ) are
assigned stochastically, drawn from broad ranges guided by

0 10 20 30
0

0.5

1 a

g
ro

w
th

 f
u

n
ct

io
n

temperature (°C) 

AB

CD

100 102
0

0.5

1 b

0 0.2 0.4
0

0.5

1 c

PAR (uEin/m2/s) PO4 (mmol/m3)

Figure 1. Functional forms of the sensitivity of phytoplankton growth to (a) temperature
�
�T

j
�
; (b) flux of

photosynthetically active radiation
�
� I

j
�
, and (c) ambient resource concentration

�
�R

j
�
, here specifically for

phosphate. The collection of curves in each panel is chosen to illustrate the ranges from which initialized
growth sensitivities are selected. At any time and location, each phytoplankton type has a realized growth
given by �j = �maxj�

T
j �

I
j �

R
j (equation (1); see Appendix A for more details). Larger phytoplankton are

given a higher intrinsic growth rate, �maxj, and higher nutrient half saturation (see Table 1). Colored
curves and letters refer to the phytoplankton types shown in Figures 4, 5, and 6. Though difficult to see at
this scale, phytoplankton type C has a higher optimum temperature and a lower light optimum than D.
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Figure 2. Biogeochemistry and productivity. (a) “Present-day” model nitrate in surface 50 m
(mmol N m–3); (b) nitrate in surface 50 m (mmol N m–3) from observations (World Ocean Atlas [Garcia
et al., 2006]); (c) present-day model iron in surface 50 m (�mol Fe m–3); (d) observed iron (�mol Fe m–3)
from the compilation of Moore and Braucher [2008], white indicates no data; (e) present-day model
primary production (gC m–2 y–1) over surface 50 m; (f) primary production (gC m–2 y–1) derived from
satellite measurements [Behrenfeld and Falkowski, 1997].

laboratory and field studies (Table 1). In particular, each
phytoplankton type was randomly assigned an optimal tem-
perature for growth and was only viable over a specified
temperature range (Figure 1a).

[18] The phytoplankton are grazed by two zooplankton
size classes. Large zooplankton preferentially graze on large
phytoplankton but can graze on small phytoplankton, and
vice versa for small zooplankton.

[19] Primary production (PP) is a function of growth rates
(hence nutrient, light, and temperatures) and phytoplankton
biomass:

PP =
X

j

�maxj�
T
j �

I
j �

R
j Pj (2)

[20] Export production (EP) is defined here as particulate
inorganic carbon (POC) sinking through 100 m at rate w,

EP = w
dPOC

dz
(3)

where POC is a function of PP and also the type of com-
munity present, since large phytoplankton are parameterized
as providing more to the sinking POC pool than small
phytoplankton.

2.3. Experiment Design
[21] We use the physical fields of the three-dimensional

ocean component of the IGSM to drive the biological and

biogeochemical fields of the ecosystem model. In particu-
lar, we use the three-dimensional temperature, circulation
vectors (meridional, zonal, and vertical fluid flow), mixing
parameters, and sea-ice cover fields. The surface photosyn-
thetically available radiation is provided by monthly mean
SeaWiFS products, and the monthly surface iron dust is from
the model of Luo et al. [2008]. These latter two fields are
climatological means and do not change in the simulations
described here. Though the impact of changes in light and
dust are likely to be important in the future, they are beyond
the scope of this paper.

[22] Nutrient distributions were initialized from output
from previous simulations, though the key results presented
here are not sensitive to these initial conditions. The 100
phytoplankton were all initialized with the same low initial
condition.

[23] Since it is computationally expensive, the ecosystem
simulations are run for only 200 years. The first 100 years
used present-day conditions (1995–2005 repeating) to quasi-
spin-up the ecosystem and biogeochemical fields. A repeat-
ing seasonal cycle is quickly reached, and there is only
a small biogeochemical drift associated with upwelling of
deep water. The several thousand years of integration needed
to adjust the deep ocean is computationally unfeasible. After
a few years’ adjustment during this initial spin-up, the
biomass of about a third of the 100 phytoplankton types fell
below the threshold of numerical noise, and these types were
assumed to have become “extinct.”
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Figure 3. (a) Limiting nutrient to phytoplankton growth.
Color indicates present-day conditions: Red represents
limitation by iron, and blue dissolved inorganic nitrogen.
The black line indicates the boundary between these regions
in year 2100 from All. (b) Fraction of gleaners relative to
total biomass in present day.

[24] From the quasi-equilibrium state, we conduct several
different experiments, each for an additional 100 years:

[25] 1. Control. For another 100 years, the 1995–2005
conditions are sequentially cycled. This experiment provides
a measure of the biogeochemical/ecological drift (small)
and a baseline from which to compare the climate change
experiments.

[26] 2. All. The temperature, circulation, mixing, and sea-
ice fields change as projected by the Earth system model
from 2000 to 2100.

[27] 3. Direct. The temperature fields that affect biolog-
ical rates are allowed to change from 2000 to 2100, but
the circulation, mixing, and sea-ice fields repeat 1995–2005.
This experiment therefore highlights the “direct” effect of
warming on phytoplankton growth rates alone.

[28] 4. Indirect. Temperature fields repeat 1995–2005 for
100 years, but the circulation, mixing, and sea-ice fields are
allowed to change as for 2000–2100 conditions. This exper-
iment therefore highlights the “indirect” effects of changes
to light environment and nutrient supply.

[29] 5. Indirect-ice. Temperature fields, circulation, and
mixing fields repeat 1995–2005 for 100 years, but sea-ice
fields are allowed to change as for 2000–2100 conditions.

[30] 6. Indirect-circ. Temperature fields and sea-ice fields
repeat 1995–2005 for 100 years, but circulation and mixing
fields are allowed to change as for 2000–2100 conditions.

[31] In previous studies with this ecosystem model
approach with random assignment of traits [Follows et al.,

2007; Dutkiewicz et al., 2009; Barton et al., 2010], we have
conducted an ensemble of simulations, each member with
a different randomization of the physiological parameters.
In those studies, we have found global integrated values
(such as global primary production); regional patterns of
biomass, productivity, and diversity; and range of func-
tional types of phytoplankton to be robust between ensemble
members. Here with several hundred years of integration
(and several sensitivity experiments), it was not feasible to
run a large ensemble. Instead we conduct only one other
“ensemble member.” In this additional simulation, with a
different randomization of physiological parameters, the first
100 year quasi-spin-up was completed, and then analogs
of the Control and All experiments were conducted. In the
results discussed below, we highlight those changes that are
robust between these two ensemble members.

3. Present-Day Conditions
[32] Experiment Control provides a “present-day” base-

line from which to compare the climate change experiments.
The biogeochemistry, productivity (Figure 2), ecosystem
community structure, and diversity in the simulated present-
day ocean were qualitatively reasonable and similar to those
found in earlier studies using this ecosystem model [Follows
et al., 2007; Dutkiewicz et al., 2009; Barton et al., 2010;
Saba et al., 2010]. Iron measurements are still sparse, but the
model qualitatively captures the observed gradients between
major ocean basins [Parekh et al., 2005; Dutkiewicz et al.,
2005b]. We do not adequately resolve coastal processes,
underestimating productivity near shore. The model also has
lower productivity in the equatorial Pacific than observed,
possibly due to iron supply which is too low here. As a
consequence, local nitrate levels are too high. The model
does however capture the broad patterns of low nutrients and
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Figure 5. Ecological perspective: Changing phytoplankton ranges in All. The distribution of four
(of the 100) phytoplankton types shown as annual mean biomass concentration over top 50 m (gC m–3).
Panels on the left are the 2000 conditions; the right panels show the same phytoplankton at year 2100.
Letters correspond to the types also highlighted in Figures 1, 4, and 6.

productivity in the subtropical gyres and higher productivity
and nutrients in the high latitudes and upwelling equatorial
regions. Iron limitation of growth (Figure 3a) is found in the
classic “High Nitrate, Low Chlorophyll” (HNLC) regions:
the Southern Ocean, equatorial Pacific and northern Pacific.
All other regions of this simulation are limited by dissolved
inorganic fixed nitrogen.

[33] Most of the global biomass comprises about 20 phy-
toplankton types but with minor contributions from a long
tail of rarer types (bottom row of Figure 4). The abundance
ranking is not constant over time, even under present-day
conditions of Control, shifting with season and with interan-
nual variability that is imposed on the model.

[34] Two theoretical ecological regimes (Dutkiewicz et al.
[2009], further outlined in Appendix B) provide a rationale
for separation of biomes dominated by gleaners and oppor-
tunists (Figure 3b). The amount of seasonality suggested by
the annual range of the mixed layer depth provided a good

metric to separate the two biomes [Dutkiewicz et al., 2009].
The strongest gradient of this mixed layer depth range is
found at about 40ı North and South, and we use this as a
dividing line here.

[35] In the regions of low seasonality (nominally equator-
ward of 40ı), coexisting phytoplankton types have similar
R*, a combination of physiological traits [Tilman, 1977;
Dutkiewicz et al., 2009; Barton et al., 2010]

R*
j =

kRjmj

�maxj�
T
j �

I
j – mj

where kRj is the nutrient half-saturation coefficient and
mj is the phytoplankton loss term (see Appendix B,
equation (B3)). In these more stable environments,
“gleaners” tend to win out over the larger opportunists, as
their combined maximum growth, �maxj, and half satura-
tion for nutrients, kj, lead to lower R*

j . Here the gleaners
are all provided the same �maxj , though those that can fix
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Figure 6. Ecological perspective: Changing phytoplankton ranges. Difference between phytoplankton
biomass (gC m–3) of four (of the 100) phytoplankton types shown in Figure 5. This is the difference
between 2100 and 2000 for (a) All, (b) Direct (experiment highlighting only the impact of warmer temper-
ature on biological rates), and (c) Indirect (experiment highlighting only the indirect effects of changing
physical environment on nutrient and light environment). Red indicates a local increase in phytoplankton
type biomass in 2100 relative to 2000, blue a decrease.

nitrate have slightly larger kj than those that do not (see
Table 1). The combination of the temperature and light pref-
erences

�
�T

j , � I
j
�

is therefore instrumental in setting which of
the gleaners has the lowest R*

j . Those types with the low-
est R* draw the nutrients down to this value [Tilman, 1977;
Dutkiewicz et al., 2009] and exclude all others, in particular
those with non-optimal �T

j , � I
j . Our model therefore cap-

tures a finer-scale resolution of gleaner coexistence, with
the specific ranges (e.g., Figure 5, types A and B) defined
by the individual-type temperature and light preferences. In
this case, type A is adapted to higher temperatures than type
B is (Figure 1) and has only a very small and very low
abundance relative to B in present-day conditions (Figure 5,
left column).

[36] The theoretical framework (Appendix B) suggests
that in the high latitudes growth rate alone is important in
determining which type dominates. In the high seasonality
regions, the “opportunists” which have a higher �maxj are
indeed more abundant (Figure 3b) with those types with
highest local growth rate dominating. Since all opportunists
in this model have the same �maxj, dominance between
opportunists is also dictated by the local modification on

growth rate by �T
j and � I

j . For instance, type C is adapted to
higher temperatures than D (Figure 1) and therefore has a
range more equatorward (Figure 5, left column).

[37] We note that the separation between gleaners and
opportunists is not well demarcated (Figure 3b). Top-down
control [Prowe et al., 2012a; Ward et al., 2012] by two
grazers (who preferentially prey on either gleaners or oppor-
tunists) and continual mingling of populations by advection
and mixing allow for greater degree of diversity.

[38] In the difference relative to “2000” discussed in
the remainder of this paper, we show variables relative
to the appropriate year of this Control experiment. This
removes the minor biogeochemical drift from the results
and is a technique used frequently in presenting climate
change experiments.

4. Perturbed System
[39] In the “business as usual” scenario presented here,

the model marine ecosystem is perturbed from its present-
day state by the altered physical ocean resulting from
the projected anthropogenic emission of greenhouse gases
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Figure 7. Ecological perspective: Changes between 2000
and 2100 in the top 50 m of All: (a) 2000 local commu-
nity remaining (equation (4), % indicates amount of biomass
of original community that survives; note though that other
phytoplankton types may have invaded, so this does not
reflect change in total biomass); (b) total biomass made up
of small gleaner phytoplankton (increase indicates biomass
is made up of more gleaners relative to opportunists than
in year 2000). Black contour indicates boundary between
regions where majority of biomass is limited by availability
of iron or dissolved inorganic nitrogen (Figure 3a).

[Sokolov et al., 2009] and associated climate change.
The atmospheric pCO2 at year 2100 is 1300 ppmv, global
mean surface air temperature has increased by 5ıC, and the
mean global sea surface temperature has increased by 3ıC
(varying between 0 and 5ıC). There is larger increase in the
Northern Hemisphere due to the presence of landmasses. On
these time scales, the heat that enters the ocean has not had
a chance to redistribute evenly; more is trapped near the sur-
face, leading to increased stratification and reduced mixing
at the surface. Sea-ice retreats. The meridional overturning
circulation slows and shallows relative to 2000 conditions.
The reduced surface mixing and shifts in the meridional
overturning lead to an increased separation of the surface
waters from the deep, reducing the supply of macronutrients
from depth, at least over the time scales addressed in this
paper [Schmittner, 2005].

[40] How do these physical changes impact the phyto-
plankton? The suite of experiments described in section 2.3
is designed to separate the direct and indirect responses to
this warming world. We will discuss separately the changes
on the ecosystem biogeography and community level and
the changes on the biogeochemical productivity level.

4.1. Ecological Changes
[41] The ranges of individual phytoplankton types change

significantly over the course of the hypothetical 21st century
(Figures 5 and 6a), shifting poleward and, in lower latitudes,

eastward. We interpret the shifts in these ranges using the
theoretical framework.

[42] As an example, in the low-latitude warm pool region,
phytoplankton type B dominated in 2000 (Figure 5): this
gleaner type had the optimal combination of �T

j and � I
j

and thus the lowest R*
j . However, as temperatures increased

over the course of the hypothetical 21st century, in this
region �T

B decreases (see Figure 1), leading to a higher R*
B

(equation (B3)). At the same time, for type A, �T
A increases

in this region, leading to a lowering of its R*
A. Eventually,

R*
A becomes smaller than R*

B, and type A takes over as dom-
inant. However, just poleward (and eastward) of this warm
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Figure 8. Globally integrated properties in warming sce-
nario relative to 2000 values. (a) Percent of 2000 local
community remaining (equation (4), % indicates amount of
biomass of original community that survives; note though
that other phytoplankton types will have invaded, so this
does not reflect the changes to total biomass); (b) change in
the percentage of total biomass made up of small gleaner
phytoplankton (positive values indicate biomass is made up
of more gleaners relative to opportunists than in year 2000);
(c) percentage change in biomass; (d) percentage change in
primary production (PP); (e) percentage change in export
production (EP) as defined as the rate of sinking particulate
carbon through 100 m. Black solid line indicates experiment
All, red dashed line indicates results from experiment high-
lighting only the impact of warmer temperature on biological
rates (Direct), and blue indicates experiment highlighting
only the indirect effects of changing physical environment
on nutrient and light environment (Indirect). Black dotted
line indicates zero.
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Figure 9. Biogeochemical perspective: Changes between
2000 and 2100 for All: (a) biomass (gC m–2); (b) primary
production (PP) (gC m–2 y–1); (c) export production (EP)
defined as rate of sinking particulate carbon through 100 m
(gC m–2 y–1). Red indicates an increase in 2100 relative to
2000, blue a decrease. Black contour indicates boundary
between regions where majority of biomass is limited
by availability of iron or dissolved inorganic nitrogen
(Figure 3a).

pool region, the water temperatures are also rising—here
temperatures become more favorable for type B; in these
new regions, R*

B becomes lower than the type that dominated
in those regions in 2000. The range of type B shifts into
these waters. Thus, locally B “loses” in some regions but
will “win” in others.

[43] The model sensitivity experiments Direct and
Indirect show that the shift in ranges of A and B are driven
primarily by temperature changes (Figure 6b) and less by
changes in light environment (Figure 6c). The global total
biomass of A increases from insignificant to a major player
over the course of the 100 year warming (Figure 4). How-
ever, though the global total biomass of B does decrease
(Figure 4), it does not drop below the biomass of type A over
the course of this hypothetical 21st century. Thus, globally
B is not a significant “loser.”

[44] In the high latitudes, a similar shifting of ranges
occurs (e.g., types C and D, Figure 5), driven by changes to
�T

j and � I
j and their impact on growth rates. Type C moves

poleward as waters there approach the optimum in its �T
C ,

while D is out-competed as its �T
D decreases. In these most

poleward regions, there is no further habitat with temper-
atures that can accommodate D. Thus, D both locally and
globally “loses” (Figures 5 and 4). In this example, the
changes to temperature and light environments have oppo-
site effects: the more stratified conditions favor the higher
light-adapted type D over type C (Figure 6c), though the
temperature-driven changes dominate in All.

[45] All ranges shift, but some types have increased (e.g.,
A, C) and some decreased (e.g., D) areal extent. Habitats
do not shift completely but have regions that overlap for
2000 and 2100 conditions (e.g., B, C, D); it is the margins
that shift. Shifts to some regions may in fact be beneficial
to some phytoplankton types. For instance, the extent of
type B shifts southward in the South Pacific Ocean; and in
these new regions, the biomass appears to have increased
relative to earlier values when it inhabited regions further
to the north. We can explain this looking at equation (B5).
Phytoplankton biomass is a function of the supply of the lim-
iting nutrient, SR. Type B’s new range incorporates waters
with higher nutrient supply than its previous range to the
north, thus leading to higher biomass supported in this new
region. Thus, it is the combined change in areal extent and
change in regionally available nutrients that leads to global
“winners and losers” (Figure 4). Interestingly, these “wins”
can be transient. For instance, type C (Figure 4) has an
increasing global biomass through the 2080s but near the end
of the century begins to decline.

[46] At any location, several phytoplankton types coexist:
Each location has a community structure. How much does
this community structure change with hypothetical future
warming? We see that ranges shift, so that new phytoplank-
ton types invade a new location. However, we also note that
ranges do not shift completely to new areas but have over-
lapping extents between present-day and 2100 conditions.
To gain an appreciation of the mixture of plankton types, we
calculate a measure of community structure change:

Cs(t) = 100 �
JX
1

min

 
Pj(t)PJ
1 Pj(t0)

,
Pj(t0)PJ
1 Pj(t0)

!
(4)

where t0 is present day. If the community did not change at
all at time t, then Cs(t) = 100%. If all phytoplankton types
increased, then Cs(t) is still 100%: The original community
is still there, but there is additional biomass. But if any phy-
toplankton types had decreased biomass, then Cs(t) < 100%.
The lower Cs(t), the more of the original community has
disappeared from that location (though total biomass may
or may not have changed). In the scenario presented here,
the local community at 2100 was composed of about only
half the community that was there in 2000 (see Figures 7a
and 8a) consistently across regions. Most of the shift in local
community was attributed primarily to the direct impact of
warming on the phytoplankton growth rates (Direct, red line
in Figure 8a): This is driven by shifts in the ranges. Globally
there is a smaller but significant shift in community structure
from the indirect effect (blue line), mostly a consequence of
the reduced supply of nutrients from depth.

[47] Globally, the shifts in community structure favor the
gleaner populations (Figure 8b). Here we show the percent-
age of the total biomass that is made up of gleaners. Note
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Figure 10. Biogeochemical perspective: Zonally averaged changes between 2000 and 2100: (a) biomass
(gC m–2); (b) primary production (PP) (gC m–2 y–1); (c) export production (EP) defined as rate of sinking
particulate carbon through 100 m (gC m–2 y–1). Black solid line indicates experiment All, red dashed
line indicates results from experiment highlighting the impact of warmer temperature on biological rates
(Direct), and blue indicates experiment highlighting the indirect effects of changing physical environment
on nutrient and light environment (Indirect). Black dotted line indicates zero; gray shading indicates
region where resource competition theory is most applicable [Dutkiewicz et al., 2009]; see Appendix B.

that this does not take into account the change in biomass
(discussed later) but considers merely the relative commu-
nity structure. Globally, the relative abundance of glean-
ers increases almost exclusively from the indirect effect
(Figure 8b) of reduced nutrient supplies as noted by several
earlier studies [Bopp et al., 2005; Steinacher et al., 2010;
Marinov et al., 2010]. This is especially true in mid and
higher latitudes as more stratified, more stable conditions
favor small phytoplankton (Figure 7b). However, unlike
the strong and global pattern of changes in community
structure, this “functional” level change in the ecosystem
is regionally more complex with patterns of increases and
decreases. Some patterns of increase/decrease come from
shifts in temperature fronts (e.g., Southern Ocean), but oth-
ers are more complex. We will discuss these further in the
next section.

4.2. Changes at the Biogeochemical Level
[48] As found by many (but not all) previous studies, there

is a global decline in phytoplankton biomass and primary
and export production over the 100 years (Figure 8), but
the regional patterns are complex (Figure 9). To visually
separate out the direct and indirect effects on these biogeo-
chemical variables, we present zonally averaged changes
(Figure 10).

[49] Our theoretical framework (see Appendix B) for olig-
otrophic regions with low seasonality suggests that total

phytoplankton biomass is determined by the ratio of the
rate of supply of the limiting nutrient and the phytoplankton
loss rates (equation (B5)) and not by the growth rates of
the phytoplankton present. In experiment Direct (red line,
Figure 10a), where nutrient supply rates do not change, there
is little change in biomass in these regions between present
day and 2100, even though the community structure had
changed significantly (Figure 7a). In experiment Indirect
(blue line, Figure 10a), there is a zonally averaged reduction
in biomass linked to decrease in the macro nutrient nitrate
supply (SR) from the deep ocean. The indirect effect there-
fore dominates in these low-latitude regions, but its impact
differs between regions where growth is limited by nitrate
and those limited by the micronutrient iron (Figure 9a).
Atmospheric delivery of dust is a major source of iron to the
ocean, and in this model the dust supply does not change.
Though iron is also supplied from depth, in the subtropi-
cal regions lateral supplies are more important [Dutkiewicz
et al., 2005b]. An increase in biomass occurs in regions
where lateral iron supply from upstream becomes higher.
These upstream regions are nitrate limited and therefore
have a reduction in biomass. There is a subsequent reduc-
tion in the drawdown of iron, allowing more to be laterally
transported to the iron-limited regions. This also leads to a
relative increase in opportunist in these regions (Figure 7b).
It is, however, likely that atmospheric delivery of iron will
change with climate and would impact the ecological and
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biogeochemical dynamics discussed above. Projections of
changes to iron deposition in the future are uncertain [Tegen
et al., 2004; Luo et al., 2008; Mahowald and Luo, 2003].

[50] At higher latitudes, our theoretical framework sug-
gests that increased growth rate alone would lead to higher
biomass and more efficient drawdown of nutrients. In the
highest latitudes (poleward of about 70ı), increased growth
rates and reduced sea-ice cover (captured in Indirect but not
in Direct) also leads to increased biomass (Figures 9a and
10a and as demonstrated in additional experiments Indirect-
ice and Indirect-circ, not shown here). However, between
latitudes 40ı and 70ı, there is a competition between
increased growth rates and reduced rate of nutrient supply.
Increase in biomass in the iron-limited regions (Southern
Ocean and North Pacific) indicates that the direct effect
wins out when the limiting nutrient supply rate is rela-
tively unchanged (Figure 9a). In the nitrogen-limited North
Atlantic, reduced nitrate supply rates (important after sea-
sonal drawdown even in these high-nutrient supply regions)
win out, and there is a reduction in biomass (Figure 9a).

[51] The interplay between increases in biomass in some
high-latitude regions, where the direct effect wins out, and
the general decrease in most low-latitude regions, where the
indirect effect of reduced supply rates is most important,
leads to a delicate global balance in changes to total biomass
(Figure 8c).

[52] We see a broad similarity between the global and
regional responses of primary production and biomass
(Figures 8d, 9b, and 10b). However, since primary produc-
tion is a product of both biomass and growth rate (and
thus temperature; see section 2, equation (2)), the com-
petition between the direct and indirect effects are even
more important. In low latitudes, the temperature depen-
dence of growth allows for a slight increase in Direct, though
this is offset by the reduction of supply of macronutrients
in All (Figure 10b). But similarly with biomass, in some
low-latitude regions with increased lateral supply of iron,
there can be an increase in primary production (Figure 9b).
Globally integrated, the direct and indirect effects on pri-
mary production are opposing and almost compensating
(Figure 8d).

[53] The biological export of carbon from the surface
ocean to the deep is regulated by both the primary produc-
tion and the phytoplankton community structure. The model
results show a shift to relatively more gleaners which are
modeled to drive export of carbon less efficiently. Since
the indirect effect of warming through reduced nutrient
supply leads to both a decrease in primary production in
this model and a shift toward a relatively larger fractional
biomass of gleaners, this effect wins out over the direct
effect (Figure 10c), and there is global reduction in export of
carbon (Figure 8e).

5. Discussion and Summary
[54] Here we have employed a numerical model to tease

apart how some aspects of a warming ocean may impact
competition and productivity in phytoplankton. Our model
does not represent, for example, changing to dust (iron)
deposition [Tegen et al., 2004; Luo et al., 2008; Mahowald
and Luo, 2003], acidification [Doney et al., 2009], flexible
elemental composition of phytoplankton [Tagliabue et al.,

2011], or nitrogen fixation. Additional levels of complex-
ity in the grazer parameterizations will affect the diversity
[Prowe et al., 2012a; Ward et al., 2012] and productivity
[Prowe et al., 2012b]. Such processes and additional sen-
sitivities will make predictions even more complex and the
underlying mechanisms more difficult to pull apart. Here we
have limited ourselves to prying apart the differing effects
of direct changes to phytoplankton growth rates and the
indirect effects of the warming on their nutrient and light
environment. We find that the ecological and biogeochemi-
cal responses are complex and can be transient and that there
is a delicate balance between these two effects.

5.1. Biogeochemical Perspective
[55] Biogeochemically, the direct and indirect effects of

warming can be in opposition and largely compensate on a
global scale (Figures 8c and 8d) as suggested by Taucher
and Oschlies [2011]. However, in that study, two ecosystem
models were used: one with a temperature dependence on
growth and the other without. We argue here that our sensi-
tivity studies (Direct and Indirect) with the same ecosystem
provide a cleaner and more consistent method to examine the
interplay of these two effects and in particular the regional
competition (Figure 10). The theoretical framework pro-
vides a rationale for the impact of reduced nutrient supply
(indirect effect) being most pronounced on biomass and pri-
mary productivity at lower latitudes, with increased growth
rates (direct effect) playing a stronger (but not necessarily
dominant) role in nutrient-rich higher latitudes. These find-
ings are consistent with and extend on those of previous
studies [e.g., Bopp et al., 2001; Steinacher et al., 2010;
Marinov et al., 2010]. Here we also show that these results
are modulated by whether growth is limited by supply rate
of iron or macronutrients (Figure 9). Though our results
are dependent on our crude assumption of a non-changing
aeolian dust field, they do indicate that complex upstream
effects and changes in lateral supplies of nutrients will
alter local changes in productivity. The regional changes to
biomass and primary production will be highly complex,
with some regions “winning” and some “losing.”

[56] There is a delicate balance globally between the
direct and indirect effects on primary production (Figure 8d).
We suggest that the uncertainty in net change of modeled
biomass and primary productivity [e.g., Sarmiento et al.,
2004; Steinacher et al., 2010; Bopp et al., 2013] can be
understood by variations in the competition between the
two effects which depend on intermodel differences in the
parameterization of growth (and its temperature depen-
dence) and the extent of the physical changes to the ocean.

[57] A recent intercomparison of CMIP5 RCP8.5 simula-
tion [Bopp et al. 2013] found that 10 different models agreed
on a local decrease in primary production in the tropical
Indian, tropical Western Pacific, tropical Atlantic, and North
Atlantic (consistent with our model results, Figure 9b). The
CMIP5 models did not agree however on the sign of change
of primary production over most of the rest of the ocean.
We can use the mechanistic insight gained from this study
to speculate why robust answers between models only occur
in some regions. We note that all the regions of robust
response are strongly nitrogen limited in our model. All
models (ours and the CMIP5) simulate a reduction of supply
in macronutrients, and in the low-latitude regions where
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macronutrient supply rates are paramount (equation (B5)),
all models’ primary production respond in the same way.
In the equatorial Pacific, our study suggests that the control
on lateral iron supply is important in dictating the changes.
We speculate that different parameterizations of iron chem-
istry and iron aeolian supply assumptions lead the CMIP5
models to respond dissimilarly here: those with strong iron
limitation will have regions where increased lateral sup-
ply will lead to enhanced productivity, and those with less
(or no) iron limitation will have decreased productivity.
In the higher latitudes, increased growth rates can cancel
out the indirect effect of lower nutrient supply. Differences
in how models formulate the temperature dependence of
growth (and light) will therefore lead to dissimilar balances
between the effects and thus different responses in primary
production. Consistent with the simulation (All) presented
here, the CMIP5 models appear to capture the more impor-
tant impact of reduced nitrate supply in the North Atlantic.
These hypotheses could be assessed more quantitatively
with further CMIP5 model intercomparisons.

[58] Export production is a function not only of primary
production but also community composition. Models agree
that smaller phytoplankton (parameterized to be less effi-
cient at exporting organic matter) will be favored in warming
scenarios [e.g., Bopp et al., 2005; Steinacher et al., 2010;
Marinov et al., 2010]. (Though we note that this widely used
parameterization of strongly exporting opportunists and
recycling gleaners may be too simplistic [Richardson and
Jackson, 2007]). Indirect effects impact both primary pro-
duction and functional community structure in such a way as
to decrease export production on a global scale (Figure 8).
Thus, decreased export production is projected by all mod-
els. Moreover, this stronger control by indirect effects could
explain the more widespread regional agreement noted in
CMIP5 models [Bopp et al., 2013].

[59] The model results here show that there may be
regions where export production increases. These are driven
in some low-latitude regions by the indirect effect leading
to increased lateral iron supply. And in the high latitudes,
increased export occurs where the direct impact on growth
rates wins out relative to the indirect effects on nutrient
supply and phytoplankton functional community structural
changes.

5.2. Ecological Perspective
[60] Here by including a diverse community within func-

tional types, we have explored how ranges in phytoplankton
types shift and the implication for community structure.

[61] There is a local level of winning and losing: warm-
ing and stratifying waters allow some phytoplankton types
to invade a new area, out-competing the currently abundant
types. The occupied ranges of some types become larger
and/or shift to regions with higher nutrient supply, both of
which could lead to global increase in biomass of that type.
Other types will have reduced ranges and/or shifts to regions
with lower nutrient supply leading to reduction in global
biomass. Thus, there is a distinct difference between win-
ning and losing locally or globally. Winning and losing on
both levels can, however, be transient (Figure 4).

[62] Local community structure was altered due to shifts
in the range and relative fitness of the populations. In this
scenario, the local community structure was altered by more

than 50% over the course of 100 years at almost all locations
relative to present-day conditions (Figure 7a). This com-
munity structure change was largely driven by temperature-
related range shifts (Figure 8a) but also with an impact from
reduced nutrient supplies globally. The functional biogeog-
raphy of the plankton populations changes, for the most
part, much less than the community structure at the pheno-
typical level and with a far more complex regional pattern
(Figure 7b). In terms of functional groups, the changes are
almost exclusively driven by changes to the limiting nutrient
supply (Figure 8b).

5.3. Final Comments
[63] As a scientific community, we are keenly examining

data for signs of climate-related changes in the biogeo-
chemistry and ecology of the Earth system. In the oceans,
satellite-derived changes in the area of the subtropical gyres
[e.g., Polovina et al., 2008], changes in chlorophyll a [e.g.,
McClain et al., 2004; Gregg et al., 2005], changes in pri-
mary productivity [e.g., Behrenfeld et al., 2006], and shifts
in species ranges from in situ measurement [e.g., Beaugrand
et al., 2002; Beaugrand and Reid, 2003] are suggested as
signs of an altered marine environment.

[64] Here we suggest that global changes of primary and
export production change will likely be only a few percent
over the 21st century. Changes in broad functional classifica-
tion and production rates are likely to be complex, regionally
varying, and with many underlying causes. Though these
changes may be biogeochemically important, they will be
difficult to monitor, and it will be even more difficult to
pull apart the underlying mechanisms for these changes.
However, our model suggests that geographical shifts in
temperature structure will dramatically change local com-
munity composition. Future monitoring of climate-induced
change will have a much clearer signal at the phytoplank-
ton population level (i.e. within functional groups), and we
should expect to see significant changes in species or eco-
type composition (as measured, for example, by 16S or 18S
rRNA tagging) at any given location.

[65] Monitoring and understanding changes in the marine
phytoplankton to a warming world is an important task,
especially given the importance of these ecosystems as the
base of marine food web fueling fisheries and in regulat-
ing key biogeochemical processes such as export of carbon
to the deep ocean. Models, such as the one presented here,
provide a “laboratory” for helping gain the necessary under-
standing of the complex three-dimensional system impact-
ing the phytoplankton productivity and the reorganization of
their communities.

Appendix A: Ecosystem Model Growth Equation
[66] The ecosystem model equations are almost identical

to those used and provided in detail in Dutkiewicz et al.
[2009, 2012], and we refer the reader to these papers for
more details. Here we present a short discussion on the
growth terms as these are crucial for our results here.

[67] Phytoplankton growth is described by equation (1):

�j = �maxj�
T
j �

I
j �

R
j (A1)
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where �maxj is the maximum growth rate of phytoplankton j,
and �T, � I

j , and �R
j are the functions modulating growth due

to temperature, light, and nutrient availability, respectively.
[68] Temperature modification is based on the Arrenhius

function [Kooijman, 2000]:

�T
j = � exp

�
A
�

1
T + TK

–
1

TN + TK

��
exp

�
–Bj|T – Toj|b

�
(A2)

and sets a temperature range over which each phytoplankton
j can grow (Figure 1a). Coefficients � , A, TK, and TN regulate
the form of the temperature modification function. Toj sets
the optimum temperature for each type, and Bj dictates the
width of the range. There is an increase in maximum growth
rate for types with higher optimum temperature as suggested
by observations [Eppley, 1972; Bissinger et al., 2008]. T is
the local model ocean temperature.

[69] The light sensitivity of growth rate is parameterized
using the following function (modified from Platt et al.
[1980]):

� I
j =

1
Fmax

�
1 – e–kparj I

�
ekinhibj I (A3)

where I is the local, vertical flux of photosynthetically active
radiation (PAR) and Fmax is chosen to normalize the max-
imum value of to 1 [Follows et al., 2007]. The parameter
kparj defines the increase of growth rate with light at low
levels of irradiation, while kinhibj regulates the rapidity of
the decline of growth efficiency at high PAR, or photo-
inhibition. This highly idealized parameterization of light
sensitivity captures variations in optimal light intensity and
their ecological implications but does not explicitly account
for photo-acclimation, differences in accessory pigments, or
other factors which might lead to variability in the maximum
light-dependent growth factor.

[70] Nutrient limitation of growth is determined by the
most limiting resource,

�R
j = min

�
Rlim

1 , Rlim
2 , ...

�
(A4)

where the resource Ri are nutrients phosphate, iron, silicic
acid, and dissolved inorganic nitrogen. The effect on growth
rate of ambient phosphate, iron, or silicic acid concentrations
is represented by a Michaelis-Menton function (Figure 1c):

Rlim
i =

Ri

Ri + kij
(A5)

where the kij are half-saturation constants for phytoplank-
ton type j with respect to the ambient concentration of
nutrient i. We resolve three potential sources of dissolved
inorganic nitrogen (ammonia, nitrite, and nitrate), though
modeled phytoplankton may be able to assimilate ammonia
only, ammonia and nitrite, or all three. Phytoplankton pref-
erentially take up ammonia [see Dutkiewicz et al., 2009].
We do not include parameterization of nitrogen fixation in
these simulations.

[71] Temperature modulation of mortality, grazing and
remineralization rates, similar to that for phytoplankton
growth, are based on a nondimensional factor following
Kooijman [2000] though only as a function of increas-
ing temperature with no optimal range as discussed in
Dutkiewicz et al. [2012].

Appendix B: Theoretical Framework
[72] Here we recap the theoretical framework described

in Dutkiewicz et al. [2009]. Consider a system (significantly
simpler than the numerical model described above) of
several photoautotroph (Pj, where j = 1 to J), nourished by a
single nutrient resource (R) which has source/sink term SR:

dPj

dt
= �maxj�

T
j �

I
j

R
R + kRj

Pj – mjPj (B1)

dR
dt

= –
JX

j=1

�maxj�
T
j �

I
j

R
R + kR

Pj + SR (B2)

where �maxj is maximum growth rate for each phytoplank-
ton type, j, �T

j �
I
j are the effect of light and temperature on

growth rate, mj is linear loss rate (that includes effects of
sinking, grazing, viral lysis), and kRj is half saturation for
resource uptake in Monod formulation of nutrient limitation.
In this study, R could be dissolved inorganic nitrogen or iron,
depending which is most limiting to growth at any location.
Note that the growth term is similar to equation (1) in the
numerical model but with �R

j explicit written out.
[73] We consider illustrative cases of this system at two

extremes: steady state and spring bloom conditions.

B1. Illustrative Case 1: Equilibrium Condition
[74] Setting the left-hand side of equations (B1) and (B2),

we can solve for R and P (here * indicates equilibrium
solution):

R*
j =

kRjmj

�maxj�
T
j �

I
j – mj

(B3)

JX
j=1

mjP*
j = SR (B4)

[75] In recent studies [Dutkiewicz et al., 2009; 2012],
we showed the utility of a similar framework (a version
of resource competition theory [Tilman 1977; 1982]) for
interpreting the relationship between organisms and their
resource environment. It aided us to understand the results of
the significantly more complex numerical ecosystem model
similar to that used in this study. Given the equilibrium
assumption, we found that it was appropriate only for the
low-latitude, low seasonal regions of the model ocean and
considered it only to explain the annual average results
[Dutkiewicz et al., 2009; 2012]. Here we recap some essen-
tial elements and direct the reader to the earlier studies for
more details.

[76] The equation for R*
j suggests that the ambient con-

centration of the limiting resource is determined by charac-
teristics of the organism including its growth rate, nutrient
half-saturation constant, and mortality rate. For a system
starting with several phytoplankton types, the one with the
lowest R*

j will draw the nutrient down to that value and will
exclude all others in equilibrium.

[77] Assuming similar loss rates for all surviving types,
m = mj, equation (B4) reduces to

P*
T =

SR

m
. (B5)

suggesting that phytoplankton total biomass, P*
T, depends on

the resource supply rate and the biomass loss rate.
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[78] We note that this is a simplified framework, and
explicit inclusion of grazers (e.g., Armstrong 1994; Ward
et al., 2012) or additional sink/source terms leads to nuances
in these results. However, we have found [Dutkiewicz et al.,
2009; 2012] that this framework provides a good base to
understand the far more complex numerical simulations.

B2. Illustrative Case 2: Spring Bloom
[79] In contrast to the equilibrium conditions, during ini-

tiation of the spring bloom in highly seasonal environments,
nutrients are high such that in equation (B1), R/(R+kRj) � 1,
and the grazer population is low (mj � 0). In this case, the
per capita growth rate is strongly regulated by growth:

1
Pj

dPj

dt
� �maxj�

T
j �

I
j (B6)

[80] During the spring blooms, changes to growth rate
through alterations of light or temperature will be impor-
tant to productivity and biomass. However, later in the
season when nutrients become more limiting, the impact of
changing nutrient supply may become important.
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