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Abstract

It is now well appreciated that a number of semicrystalline polymers can be effectively
toughened by the addition of a well-dispersed secondary phase. In particular, when
the average interparticle matrix ligament thickness, A, of the blend is reduced below a
critical length parameter, A., dramatic jumps in toughness levels are observed. This
critical parameter is a specific material characteristic of the base polymer and can
be achieved by various combinations of filler particle volume fraction and particle
size. Recently, the significant improvements in toughness achieved when A < A, were
attributed to a morphological transition taking place when interface-induced crystal-
lization of characteristic thickness, A./2, successfully percolates through the primary
phase. These transcrystallized layers are highly anisotropic in their mechanical re-
sponse and, as a result, change the preferred modes of plastic deformation in the
material, enabling the large plastic strains, which provide the high toughness. This
study aims to elucidate the micromechanics and micromechanisms responsible for the
high toughness exhibited by these morphologically altered heterogeneous material
systems via a series of micromechanical models. The case of polyamide-6 modified
with spherical elastomeric particles was modeled. The finite element method was
employed to conduct a parametric study on the deformation of these systems. It
was found that the mechanical response and local modes of plastic deformation of
rubber-modified polyamide-6 depend strongly on the assumed particle distribution,
the morphology of the primary phase, the volume fraction of filler particles and the
level of applied stress triaxiality. In particular it is shown, that in the case where
transcrystallized material spans the interparticle ligaments, the unique morphology
of the matrix impedes dilatational expansion of the material, while promoting exten-

sive yietdmg under conditions of global stress triaxiality. Concluding, an important
_ouzhenitEmetMmpism is identified.
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Chapter 1

Introduction

Polyamides (PAs), commonly referred to as nylons !, are important engineering ther-
moplastics. While first introduced in 1938 in fibrous form as monofilament bristles
and textile yarns, their range of applications has expanded considerably since that
time. In addition to fibers, they can now be found in the form of films, extrusions,
moldings, castings and modifiers in a variety of different applications, such as au-
tomotive and structural. Ease of processing, abrasion and wear resistance, cost and
weight reduction, are some of the advantages PAs have to offer in engineering applica-
tions. Their limitations lie primarily in their mechanical properties and, in particular,
in their well-known sensitivity to stress triaxiality or notch brittleness. Notch brit-
tleness is the condition whereby the material exhibits brittle failure in regions of a
structure containing sudden geometry changes that raise the local stress triaxiality
(i.e. notches, sharp corners). Clearly, this is an important limiting condition and,
as a result, much academic and industrial research has gone into designing materials
with enhanced resistance to stress triaxiality.

A commonly-employed practice in designing such materials is blending with a
well-dispersed rubbery phase. When properly controlled, this secondary phase may
impart significant levels of toughness to the base polymer even in the presence of

high triaxiality. For instance, the addition of 20 wt. % rubber in PA-6,6 increases

1Registered trademark of du Pont.
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Figure 1-1: Notched Izod impact strength of PA-6,6/rubber blends vs. average inter-
particle matrix ligament thickness, A (data after Wu (1985)).

its notched Izod strength 30-fold when the particle size is properly controlled (Wu,
1985). Although the effectiveness of these blending practices has been recognized
for quite a long time, it wasn’t until recently that a toughening criterion became
available for semicrystalline polymers. Namely, in 1985 Wu was able to show that
the brittle/tough transition in rubber-modified PA-6,6 strongly correlates with the
average interparticle matrix ligament thickness, A, of the blend. The effect of this
length parameter in PA-6,6/rubber blends is illustrated in Fig. 1, where a dramatic
jump in toughness is shown to take place when A is reduced below a critical value,
A, =~ 0.3 um, independently of rubber volume fraction and particle size. Following
Wu, a number of investigators verified his observations regarding the existence of A,
and extended them to a number of different systems where a semicrystalline polymer
comprises the primary phase. Thus, Borggreve et al. (1987) studied PA-6/EPDM
rubber blends and concluded that the critical length parameter determined by Wu
is indeed the controlling parameter in the toughening of these systems, while Wu et

al. (1991) reported similar findings for isotactic polypropylene (iPP). More recently,
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Bartczak and co-workers showed that high density polyethylene (HDPE) is effectively
toughened by the dispersion of either rubber or calcium carbonate (CaCOj3) particles
(Bartczak et al., 1999a; Bartczak et al., 1999b). In the Bartczak studies, the authors
measured A, to be equal to 0.6 um for HDPE, demonstrating further that A, is
a specific material property of the matrix and does not depend on the nature of
the modifying particles. Concluding, it is becoming apparent that A, is the single
controlling parameter that determines the onset of the brittle/tough transition in
most semicrystalline polymers. Moreover, it is specific to the base polymer and
independent of the nature of filler particles, filler content and particle size.

To explain the existence of A, many investigators offered arguments based on
stress-field theories, suggesting that stress-field overlap and/or a transition from lo-
cally plane strain to plane stress conditions in the matrix was responsible for the
toughness jumps (Wu, 1985; Margolina and Wu, 1988). In addition, several studies
attempted to demonstrate these premises in terms of finite element micromechani-
cal models. Thus, Fukui et al. (1991) developed a two-dimensional multi-inclusion
model and studied the interaction of closely-spaced octahedral rod inclusions in a
body-centered cubic (BCC) type of packing. They attributed particle toughening to
massive shear deformation of the matrix resulting from overlapping particle stress-
fields. In a similar analysis, Dijkstra and Bolscher (1994) considered the same particle
distribution under triaxial loading conditions in order to simulate the state of stress
ahead of a crack tip. They, too, attributed toughening to extensive plastic defor-
mation of the matrix triggered by stress-field overlap. While matrix yielding is a
significant source of energy dissipation and therefore toughness, the works of Fukui
et al. and Dijkstra and Bolscher merely begin to identify critical issues regarding the
effect of volume fraction in toughening but are unable to capture the effect of a length
scale. In other words, both models and field-notions in general are dimensionless in
the sense that the ratio of particle diameter to particle-to-particle ligament thickness
used in most cases to characterize the onset of stress-field overlap is dimensionless and
as such can not correlate with an absolute physical dimension, such as A.. Instead,

the dramatic effect of A, must be a consequence of a specific material characteristic
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of the matrix.

Muratoglu et al. (1995a, 1995b), were the first to tie the existence of A, to such
a material characteristic. They identified a morphological transition to take place in
the matrix material when A is reduced below A.. Specifically, they showed that in the
proximity of a second phase, only the « crystal form of PA-6 is present (Muratoglu
et al., 1995a). This crystal form is characterized by the vertical stacking of planar
zig-zags of the macromolecular chain, also known as hydrogen-bonded planes. When
near a second phase, these planes are found to preferentially align themselves with the
interface (Keller, 1959; Muratoglu et al., 1995a). As a result, the normally spherulitic
structure of the bulk polymer is replaced by crystalline lamellae growing parallel to
each other and perpendicular to the second phase. This preferred crystallization, also
known as transcrystallization (Schonhorn, 1967; Fitchmun and Newman, 1969), does
not extend more than a well-defined distance into the primary phase. Muratoglu et
al. (1995a) determined that in PA-6 the crystal texture resulting from transcrystal-
lization has a thickness, ~ A./2. Since significant improvements in toughness are
achieved only when the average thickness of interparticle matrix ligaments becomes
smaller than the critical dimension, A, the authors attributed the observed jumps in
toughness to the morphological transition taking place when transcrystallized mate-
rial spans the interparticle distances and successfully percolates through the matrix.
This transition in matrix morphology is schematically depicted in Fig. 1-2 in terms
of two blends having the same volume fraction of modifier, one with A > A., and
one with A < A, 2.

Muratoglu et al. (1995b) went on to postulate a toughening mechanism, whereby
the primary toughening role of the rubber particles is to provide an appropriate den-
sity of interfaces for transcrystallization to take place in the matrix material. It is
then critical that the particles cavitate, early on in the deformation, to relieve con-

straints on the deforming matrix. In the resulting cavitated system, the crystalline

2Several authors before Muratoglu et al. reported morphological differences in the matrix material
of brittle and tough blends (Géhde et al., 1977; Flexman, 1979; Chacko et al., 1982). However,
Muratoglu et al. were the first to relate them to the mechanical properties of the blends, and in
particular, their toughness, in a comprehensive way.
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(a) (b)

Figure 1-2: Schematic matrix morphology of: (a) brittle blends, A > A; (b) tough
blends, A < A, (projecting lines indicate lamellar growth directions).

component of the PA contains only the a crystal form. In this crystal form, adjacent
sheets of folded chains interact with weak van der Waals forces, that readily allow
shearing of the crystal along the hydrogen-bonded planes. As a result, chain slip along
these planes comprises the deformation mode with the lowest resistance to shear (Lin
and Argon, 1992), and consequently, plastic deformation of the material is controlled
by the relative orientation of these slip systems with respect to the applied defor-
mation. Specifically, owing to the preferential orientation of the hydrogen-bonded
planes parallel to the interface, the sectors of the matrix parallel and perpendicular
to the loading direction will resist deformation, while the sectors oriented at roughly
45° will deform readily, facilitating large plastic deformation and toughness. While
a combination of different events may ultimately be responsible for the toughness
jumps 3, it is the ability of these materials to undergo extensive plastic deformation
that provides the toughness. Concluding, this thesis focuses on understanding how

the local morphology promotes plastic deformation and toughness.

3For instance, in addition to providing sites for early yield to take place, the refinement of the
local microstructure resulting from transcrystallization acts to eliminate defect structures, such as
spherulite boundaries, which promote brittle response under high triaxiality.
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Chapter 2

Description of micromechanical

models

In order to understand the underlying mechanisms that impart toughness to the un-
modified semicrystalline polymer, micromechanical models were constructed that per-
mitted the study of the influence of particle distribution, matrix morphology, volume
fraction of modifier and triaxial loading on the composite material behavior. In the
sections to follow, these models are discussed in terms of: (1) the geometric descrip-
tion of a Representative Volume Element (RVE), which embodies the microstructure
of the model material; (2) the constitutive description of the matrix material behavior
as tied to the underlying morphology of the blend modeled; and (3) the description
of loading conditions. The case of PA-6 modified with spherical rubber particles is
presented. Based on the results of a related study, which demonstrated that the
cavitation event itself does not significantly contribute to the toughening of PAs, as
long as it occurs sufficiently early on in the deformation (Baumann, 1998), the rub-
ber particles were modeled here to be pre-cavitated (i.e. as voids), and are thus not

discussed any further.
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2.1 Representative Volume Element (RVE) geom-
etry

The first step in micromechanical modeling is to determine a Representative Volume
Element (RVE), which adequately captures essential features of the underlying mi-
crostructural geometry and deformation modes. A particle-toughened polymer con-
sists of a well-dispersed but random distribution of a given volume fraction of particles
in a matrix. In the case of rubber particles, the particles are nearly spherical, having
some distribution in size. In this study, the particles were idealized as being spherical
and of equal size. Moreover, two simplified RVE models of polymers filled with: (1)
a stacked hexagonal array of particles, to be termed here the Regular Array (RA),
and (2) a more realistic Staggered Array (SA) of particles were considered. The RVE
models for both particle distributions are mathematically described below, where no-
tation is based on the following conventions. Scalars are in italics (a, A), vectors are
in lower-case boldface (a), second-order tensors are in upper-case boldface (A) and
macroscopic quantities are in barred characters (A). The second-order identity ten-
sor is denoted by (I). Components of tensor and vector quantities are expressed in
cylindrical coordinates, where r represents the radial direction, z represents the axial

direction and € represents the circumferential angle. Tensor (dyadic) products are

indicated by (®) and tensor scalar products of appropriate order by a raised dot (-).

2.1.1 Regular Array (RA) model

The RA model is a simplified representation of the idealized periodic microstructure
depicted in Fig. 2-1; i.e., in 12 and 23-orthographic views of the model material, the
second phase particles are arranged in regular arrays, while in the 13-orthographic
view they are closely packed. Traditionally, such periodic structure is divided into
stacked hexagonal cells, centered on each particle, that behave identically when the
system is subjected to far-field normal loads. That is, the lateral faces of each cell

remain planar with zero shear traction and average normal stress equal to the macro-
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scopically applied transverse stresses, while the top and bottom faces also remain
planar with zero shear traction and average normal stress equal to the macroscop-
ically applied axial stress. Since the deformation of each of these cells is identical
to that of its neighbors, only one cell, referred to as the Representative Volume Ele-
ment (RVE) of the model material, needs to be considered, provided that appropriate
boundary conditions are specified. To simplify the problem further, the space-filling
hexagonal cells are approximated as cylindrically-shaped cells at the appropriate vol-
ume fraction. The advantage of the cylinder approximation is that the solution to
the deformation problem becomes independent of the circumferential angle, 6, and
consequently, only a two-dimensional structure needs to be analyzed. Finally, since
the z-plane is a symmetry plane, the region of interest reduces to the hatched region
of Fig. 2-1 (d).

In this study, the transverse and axial spacing of voids in the model material was
chosen so that the initial radius of the RVE, Ry, was equal to the initial length, Lg
(see Fig. 2-2 (a)). The initial porosity, fo, was estimated from: fo = 2 R,3/3 Ry*Ly,
where R, is the initial radius of the void. The two-dimensional domain of interest
was discretized using 8-node full-integration quadratic axisymmetric elements, and
was deformed subject to periodic boundary conditions embodying compatibility and
traction continuity in the model material (see Fig. 2-2 (b)). In particular, the lateral
boundary of the RVE was constrained to remain cylindrical during the deformation,
while its top and bottom surfaces were constrained to remain planar. These symmetry

conditions were enforced in the finite element model via the following constraints:

uzIBC = ule:
urlCD = Ur|D1
2.1)

uz|gp = 0,

ur|ap =0,

where for example, u,|pc is the displacement in the z-direction of radial segment BC,

while u,|p is the displacement in the z-direction of point B.
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Figure 2-1: Motivation for RA model: (a) 13-orthographic view; (b) 12 and 23-
orthographic views; (c) stacked hexagonal RVEs; (d) axisymmetric RVEs.

2.1.2 Staggered Array (SA) model

While RA models have been used extensively in the study of heterogeneous materials
(see for example, Tvergaard (1982), Bao et al. (1991), Steenbrink et al. (1997)), they
assume a rather unrealistic particle distribution. As a result, desired modes of defor-
mation such as interparticle matrix shear are restricted. Several authors recognized
this weakness of the RA model and have proposed alternative micromechanical mod-
els of particle-filled materials. Thus, Huang and Kinloch (1992) used a plane strain
RVE model of a nested two-dimensional particle distribution and showed that this

new model predicted patterns of matrix deformation fundamentally different from the
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Figure 2-2: Finite element model of RA particle distribution: (a) sample undeformed
mesh, fo = 20%; (b) sample deformed mesh, f, = 20%.

RA approach. In a more detailed study, Smit et al. (1999) considered various ran-
dom two-dimensional particle distributions, also in terms of plane strain RVE models.
They too emphasized the important role of particle distribution in the progression of
plastic deformation in heterogeneous material systems. More recently, Socrate and
Boyce (1999) modeled a three-dimensional staggered particle distribution using an
approach whereby the RVE geometry can be simplified to one similar to that of the
RA model. Their model captures the interaction of particles in a more realistic stag-
gered arrangement, while maintaining the axisymmetric simplicity of the RA model.
An axisymmetric RVE model of a three-dimensional staggered array of particles (SA
model), was also adopted in this study and is briefly discussed below. This model
will be shown to be particularly important in the study of this thesis, where special
features of the matrix morphology and resulting constitutive behavior promote sig-
nificant changes in the preferred modes of plastic deformation in the matrix that may
be inhibited by the constraints of the more traditional RA model.

The heterogeneous material considered in the SA approach models the periodic
distribution of spherical particles shown in Fig. 2-3; i.e., in the 13-orthographic view,

the modifying particles form a square array, while in 12 and 23-orthographic views
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they are arranged in a staggered fashion. As in Sec. 2.1.1, the assumed periodic mi-
crostructure is divided into unit cells that behave identically under macroscopically
applied normal loads. In this case, the axisymmetric RVE is introduced as an approx-
imation to the cubic unit cell of Fig. 2-3 !. Owing to symmetries similar to the ones
considered previously, the axisymmetric SA model is defined on a two-dimensional
domain identical to the one analyzed in the RA approach. However, the structure
now deforms subject to very different lateral boundary conditions in order to properly

capture the influence of neighboring particles. More specifically, since in the SA ap-
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Figure 2-3: Motivation for SA model: (a) 13-orthographic view; (b) 12 and 23-
orthographic views; (c) axisymmetric RVEs.

!Note that the cubic cell used to divide the model material is not the only repetitive cell geometry
possible. The effect of using an alternative cell geometry is discussed in the following section.
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proach eight nearest neighbors are located diagonally above and below the equator of
a particular particle, the lateral boundary of the RVE is expected to curve during the
deformation. This special feature of the SA model is more easily understood when
the RVE is considered together with a neighboring cell. As shown schematically in
Fig. 2-4, such neighboring cell is identical to the RVE analyzed, only rotated by 180°.

In this anti-parallel cell arrangement, axial compatibility requires that the top and

Figure 2-4: Schematic of anti-parallel cell arrangement considered by the SA model.

bottom of the RVE remain planar throughout the deformation. Moreover, points

along the lateral boundary move such that,

uz(m) + uy(m2) = 2u,|p, for g, = ng, (2.2)

where u, (1) and u.(n2) are the displacements in the z-direction of points located
axial distances 7; and 7, from point F. Point F' is the mid-point of the initially

straight and axially-oriented boundary C'D and moves such that,

2u:|F = uzlB, (2.3)

where u,|p is the axial displacement of the top boundary. In addition, radial com-
patibility requires the total cross-sectional area of an infinite array of cells to be
independent of the axial coordinate position. Consequently, the displacement in the

radial direction of points along the lateral boundary must satisfy the following con-
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dition,
[Ro + ur(m))* + [Ro + ur(m)}* = 2[Ro + ur|p)?, for my =, (2.4)

where Ry is the initial radius of the RVE, while 7 {{Ro +u,(m)]* + [Ro + u(12)]*} and
27 [Ro+ u,|p|? are the cross-sectional areas of two cells at an axial distance n; (or 7,)
from point F', and at point F', respectively, in the deformed configuration. Finally,

symmetry with respect to the z-axis and the z-plane requires that,
UTIABZO and uz|DE=O. (25)

A sample of the discretized structure deformed subject to these special lateral bound-
ary conditions is depicted in Fig.2-5 (b). The user subroutine used to implement these

constraints in ABAQUS is included in Appendix C.1.
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Figure 2-5: Finite element model of SA particle distribution: (a) sample undeformed
mesh, fo = 20%; (b) sample deformed mesh, fo = 20%.

Note that these boundary conditions were originally proposed and used by Tver-
gaard in a study of cavity growth and the interaction between small and large voids
(Tvergaard, 1996; Tvergaard, 1998). However, the phenomenon explored by Tver-

gaard differs substantially from that discussed here, as well as from that presented in
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Socrate and Boyce (1999). More specifically, since the Tvergaard RVE maintained a
large axial spacing between large voids, matrix deformation localized at the void equa-
tors and, consequently, the Tvergaard study did not detect the significant changes in

particle interactions discussed here.

2.1.3 Alternative Staggered Array (SAb) model

Alternatively, the axisymmetric cell generated by the revolution of plane BCDGH
in Fig. 2-6, around the z-axis can be used to represent the SA model material 2.

When the symmetry of the underlying microstructure is taken under consideration,

Figure 2-6: Motivation for the alternative SA model.

this axisymmetric RVE reduces to the two-dimensional domain ABCDE'. This alter-
native model, termed hereafter (SAb), deforms subject to identical constraints with
the SA model (i.e. subject to constraints (2.2)-(2.5)); where in the actual model,
boundary CD is modified to satisfy constraint (2.4) in the reference configuration,
while deviating minimally from a straight line (see Fig. 2-7)

Although none of the axisymmetric RVE models of the SA microstructure is space-
filling, it will be shown that both models predict very similar deformation patterns
locally and macroscopically. This result justifies the assumptions made in reducing

the three-dimensional SA microstructure to the two-dimensional domains analyzed.

2To create plane BCDGH, line CD is drawn perpendicular to the line connecting the centers of
nearest neighboring particles and passes through its mid-point, point F.
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Figure 2-7: Alternative finite element model of SA particle distribution: (a) sample
undeformed mesh, fo = 20%; (b) sample deformed mesh, fy = 20%.

2.1.4 Macroscopic cell response

To calculate the overall mechanical response of the RVE models, it is taken into
account that stress continuity in the model material demands the cell volume-averaged

stress, T gy g, to be equal to the macroscopically applied stress, T. Namely that,

T =Trvg = ! / T(x)dV, (2.6)

where x is the position vector of an arbitrary point in the deformed configuration,
T(x) is the Cauchy stress tensor at that point and Vgyg is the deformed volume of
the RVE. Since divT = 0 from equilibrium and grad x = I, the Cauchy stress tensor

can be written as

T(x) = sym [(divT) ® x + T(grad x)]
= sym [grad (Tx)].
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Utilizing this relation and the divergence theorem, the volume integral of eqn (2.6)

becomes the surface integral:

Trve =

x®t+t®x)dsS, 2.8
QVRVE[S( ) (2.8)

where t = T n is the traction vector applied at an arbitrary point x on the RVE outer
boundary and S is the bounding surface of the RVE in the deformed configuration.
Moreover, the deformed volume of the RVE is given by

1
VRVE= —/x-ndS, (29)
3Js

where n is the outward normal of area segment dS. Concluding, the far-field stresses
can be simply calculated using eqn (2.8) from the reaction forces at nodes along the
cell’s boundary.

Similarly, the macroscopic deformation gradient, F, is found from

F=RU=VR
—I+i Grad u(y) dV,
- Vo Ve y 0 (2.10)

1
=1+ — dsS
+%AOU®H0 0

where y is the position vector of an arbitrary point in the reference configuration,
u(y) is the displacement of that point, V; is the undeformed volume of the RVE, S,
is the undeformed bounding surface of the RVE, and ng is the outward normal of the
area segment dSy. Finally, the macroscopically applied logarithmic strain, E, can be

calculated from

E=

—

nU=V, (2.11)
where for the deformations studied, F=U =V, ie. R=1
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2.2 Matrix constitutive behavior

The primary focus of this study is to investigate changes in the deformation behavior
of rubber-modified PA-6 ensuing from changes in its matrix morphology. To simulate
these changes, the matrix material of the RVE models, was divided into two regions.
As illustrated in Fig. 2-8, the region of radial extent not more than A./2, immedi-
ately surrounding the particle, represents the transcrystallized portion of the matrix,
while the rest of the RVE matrix material represents the bulk material of random
orientation. The relative extent of each region depends on the interparticle distance,
A, being modeled. In the extreme case where the simulated spacing is smaller than
A., the oriented material percolates through the matrix. However, when A > A,
the extent of oriented growth becomes negligible, and randomly-oriented isotropic
material effectively occupies the entire matrix. The two limiting cases of A < A,
and A > A, were studied in detail, where the influence of matrix morphology was
captured by the constitutive model of the matrix material. In the limit of A > A,
the matrix was taken to be isotropic and was modeled using a constitutive model
for polymeric materials as described below, while for A < A., the matrix was taken
to be highly anisotropic in both elastic and plastic behavior. In incorporating the
anisotropic behavior, the textured material was taken to be transversely isotropic
about the lamellar growth direction of crystallization. A set of Cartesian basis vec-
tors, {m;, my, m3}, was consequently chosen to coincide with the principal axes of
anisotropy, at each position y in the reference configuration. Specifically, base vector
m,; (y) was taken to be the growth direction. At the initiation of crystallization, this
direction coincides with the radial normal to the particle-matrix interface as shown
in Fig. 2-8 (b). Base vector m3(y) was chosen to coincide with the circumferential
basis vector, eg, of the axisymmetric cell > and base vector my(y) was taken to be
mutually orthogonal to m,;(y) and mj3(y). Finally, a third cell morphology was stud-

ied in which both constitutive behaviors were present. In this case, the transition in

3Note that by selecting ey to be a principal material direction, the validity of the axisymmetric
assumption of the RVE models is sustained.
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matrix texture (and therefore constitutive behavior) was modeled to take place in a
stepwise fashion; where mechanical tests of Muratoglu et al. (1995a) on partially and

fully transcrystallized thin films support this assumption.

2
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©
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Figure 2-8: (a) Schematic of proposed material modeling of computational domain,
consisting of particle (A); transcrystallized matrix domain (B); and randomly-oriented
isotropic matrix domain (C); (b) local material directions near the particle-matrix
interface (parallel lines indicate the orientation of the hydrogen-bonded planes with
respect to the interface).

2.2.1 Constitutive modeling of the isotropic matrix material

(A > A.)

Semicrystalline polymers are heterogeneous solids consisting of amorphous and crys-
talline components. Understanding their large-strain deformation behavior requires a
sufficient knowledge of their underlying morphology and local deformation modes (for
a review see: Bowden and Young (1974), Lin and Argon (1994)). When crystallized
from a melt, most semicrystalline polymers form spherulites. In a spherulite, the
ribbon-like crystals (lamellae) of the polymer grow radially from a common center,

with amorphous material filling the inter-lamellar regions. Although the crystallites
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themselves are highly anisotropic, their random positioning in a spherulitic structure,
coupled with the isotropic behavior of amorphous regions, gives rise to an overall
mechanical response that is essentially isotropic at scales larger than the spherulite
diameter. For large monotonically applied loading, the main features of this response
include: linear elastic behavior, followed by a gradual roll-over of the stress-strain
curve corresponding to yield, followed by gradual monotonic hardening of the stress-
strain response, followed by dramatic hardening at large strains. While these general
trends in behavior are very similar to those observed in glassy polymers, it is still a
somewhat open question as to which phase of the semicrystalline polymers dominates
their mechanical response.

One attempt at answering this question has been made by Lee and co-workers
(1993), who took into account the micro-composite morphology of semicrystalline
polymers in terms of an inclusion consisting of a crystalline lamellae and its cor-
responding amorphous layer. In this model, the two components of the composite
lamellar inclusion were assumed to deform homogeneously, obeying a Sachs-like ag-
gregate interaction law. The visco-plastic behavior of the crystalline component was
modeled taking into account the kinematic deficiencies discussed by Parks and Ahzi
(1990), while the constitutive behavior of the amorphous component was modeled by
introducing a back-stress tensor in the flow rule to account for orientation-induced
hardening, similar to the developments of Boyce et al. (1988). Lee et al. applied their
model to the deformation of initially isotropic HDPE and obtained stress-strain and
texture evolution results in reasonably good agreement with experiment. In terms
of the relative contributions of each phase to the shape of the stress-strain curve,
the authors found that while the initial yield behavior of the polymer was a result
of overcoming resistances in both crystalline and amorphous domains, the post-yield
strain hardening of the material was dominated by the deformation of amorphous
domains up to the point of the very highest strains. Based on these results and the
fact that the amorphous content of PA-6 (60 %) is much higher than that of HDPE
(10-25 %), it is proposed that a modified version of the Arruda and Boyce (1993)

model for glassy polymers is used to capture the mechanical response of isotropic
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Figure 2-9: Uniaxial compression of initially isotropic PA-6 (¢ = 0.01 sec™!): (—)
experimental data; (— -) model predictions.

PA-6. Details of this model are included in Chapter 3, while Fig. 2-9 illustrates how
the model predictions compare to an actual uniaxial compression test. The model
accurately captures the initially linear elastic response of the material and most of
its post-yield behavior. Moreover, the predicted behavior in simple tension is in good
agreement with experimental data obtained by G’Sell and Jonas (1981). Thus, even
though much of the detail regarding the local modes of deformation and morphology
of the material is omitted, the Arruda-Boyce model sufficiently captures important

features of the mechanical response of isotropic PA-6.

2.2.2 Constitutive modeling of the anisotropic matrix mate-
rial (A < A.)

Two different forms of PA-6 crystals normally coexist in the crystalline component

of the bulk material, at roughly equal proportion: monoclinic & and monoclinic y

(Galeski et al., 1987). The differences between the two forms are in the lattice pa-

rameters and in the position of the hydrogen bonds between the N-H and the C=0
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groups. Specifically, in the v form the hydrogen bonds bridge parallel macromolecu-
lar chains across fold planes, while in the « form they bridge anti-parallel chains in
a given fold plane. In other words, the v form requires a twist of each chain away
from its fold plane and is thus characterized by a three-dimensional network of hydro-
gen bonds, while the o form requires no such twist and is therefore characterized by
sheets of hydrogen bonding. While in characterizing the mechanical behavior of such
crystalline structures it is desirable to experiment on single crystals, the small size
of polymer crystals prohibits this kind of work. Rather, highly-textured materials
that macroscopically resemble single crystals (“quasi-single” crystal), are produced
by compressing the bulk material in a channel die. Lin and Argon (1992) developed
such “quasi-single” crystal PA-6 samples containing both a and ~ crystal forms and
used them to study the mechanical anisotropy of the crystalline component of bulk
PA-6. They established that its plastic deformation is primarily derived from three
crystallographic slip processes consisting of the (001)[010] and (100)[010] chain slip
systems, and the (001)[100] transverse slip system. Moreover, they determined that
the easiest slip process occurs along the hydrogen-bonded planes, i.e., the {001} crys-
tallographic planes and in the direction of the chain, i.e., the (010) crystallographic
direction. This slip process has a resistance to shear, go = 16 MPa, while the other
two resistances are almost equivalent, having a shear strength, =~ 1.5 gy. This sub-
stantial difference in resistance to shear, as well as the insufficient number of slip
systems to accommodate arbitrary plastic deformation of the crystal, make the PA-6
crystallites highly anisotropic in their mechanical response. In the bulk material, this
strong mechanical anisotropy of the crystalline component is evened out by random
spherulitic texture, making the contribution of this component to the overall mechan-
ical response of the material secondary. However, in the presence of crystallographic
orientation the role of the crystalline component is governing. Since the material of
interest here is highly-textured, it can be assumed that its mechanical anisotropy is
primarily derived from its crystalline component, and thus, the material can be ideal-
ized as being 100 % crystalline. Specifically, its elastic anisotropy can be determined

using experimental data obtained by Lin and Argon (1992) for “quasi-single” crystal

32



PA-6, and its plastic anisotropy by numerically simulating the plastic deformation of
an aggregate of PA-6 crystallites. While the accuracy of the determined anisotropy
is difficult to assess, it will provide a sufficiently representative material behavior for

comparison to the bulk isotropic behavior introduced in the previous section.

Anisotropic elasticity

The large strain, plane strain compression of bulk PA-6 produces a material that
macroscopically mimics a single crystal (Lin and Argon, 1992). More specifically,
during the deformation the macromolecular chains align with the flow direction, while
the hydrogen-bonded planes orient perpendicular to the loading direction. Since both
«a and 7 crystal forms are present in the bulk material, plane strain compression
results in a dual orientation of the {100} planes with respect to the loading axis,
and consequently, in orthotropic symmetry. Therefore nine independent constants
are required to completely characterize the elastic behavior of “quasi-single” crystal
PA-6. For convenience, these constants were used as a guide in modeling the elastic
response of the material crystallized near a second phase. Thus the Young’s modulus
of the transcrystallized material along the direction normal to the hydrogen-bonded
planes, F;, was taken as the modulus of the “quasi-single” crystal material along the
loading direction. Moreover, the moduli along the transverse directions, Ey = Fj,
were taken to be sufficiently lower than the modulus of the “quasi-single” material in
the flow direction to account for the radial orientation of chains about the normals
to the hydrogen-bonded planes in the actual material. Since the Poisson’s ratios,
Vo3 = U39, Tepresent the plane of transverse isotropy of the textured material, they
were taken to be equal to the Poisson’s ratio of bulk isotropic PA-6. Finally, the values
for 191 = vs; and shear moduli, G; = G3; were taken directly from Lin and Argon.
A summary of the values used to characterize the elastic response of transversely
isotropic PA-6 expressed in the reference frame of Fig. 2-8 (b) is given in the table

below.
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E, Ey,=FE; | Gy =Gz | 9 = V31 | Vo3 = V32

(GPa) | (GPa) (GPa)
[ 3460 | 45 [ 04 | 053 [ 033 |

Table 2.1: Elastic constants determined for transversely isotropic PA-6.

Anisotropy of yield

The plastic response of the oriented material was modeled in terms of the anisotropic
yield criterion developed by Hill (1947) for metals of orthotropic symmetry. In a
Cartesian frame of reference locally aligned with the principal axes of anisotropy, the

Hill yield surface takes the form:

1
(F(Ta2 — Ts3)* + G(T3s — Tn)* + H(Ti1 — Ta)? + 2LT% + 2MTY + 2NT})? — opy =0,
(2.12)

where F,G,H,L, M, N are constants characteristic of the state of anisotropy given

by the following relations:

pol(L 1 1
EEAV N
1 1 1 1
G=x{ o+ =)
2(R§3+R%1 R)

1 1 1 1
H==( -+ = — =

2(R%1+R%2 R)

3
L=-—-1—
2R%,’

(2.13)

3

M=—
2R2;’

3
-~ 2R%)’
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and Ry, Ry, and R33 are ratios of the tensile yield strengths of the textured material
in different directions to the tensile yield strength of the bulk isotropic material, ogy
= 70 MPa. Similarly, the constants R;2, Rj3 and R»3 are ratios of the yield strengths
in shear to the shear yield strength of the bulk isotropic material, 75y = opy/ V3.
Owing to the transverse isotropy of the oriented material, only four of these ratios
need to be determined. Ideally they should be measured experimentally and allowed
to vary with strain. However, since the transcrystallized material can only be formed
in thin film conditions, mechanical tests required to determine its strength in different
directions are very difficult or even impossible to perform. While some attempts have
been made, only a limited amount of data is available in the literature. For instance,
Muratoglu et al. (1995a) were able to prepare thin films of the desired texture and test
them in tension. They determined that the tensile strength of the textured material
was about 1.8 times that of the bulk isotropic material, indicating the pronounced
mechanical anisotropy of the transcrystallized material.

While this result confirms the expected trend in behavior, the absolute value of
the ratio determined by Muratoglu is still open to question, given the immense dif-
ficulty of mechanical tests performed on free-standing films of sub-micron thickness.
Alternatively, a complete set of parameters can easily be obtained numerically as is
proposed here. Since the mechanical anisotropy of the textured material is primarily
derived from its crystalline component, the material can be idealized as being 100 %
crystalline, and a polycrystal plasticity model specifically designed for low symme-
try crystals can be used to simulate its plastic deformation. For this purpose, the
Constrained Hybrid (CH) model, as initially proposed by Parks and Ahzi (1990) and
later modified by Lee et al. (1994, 1995) for polymer crystals of lower symmetry was
employed. Details of the CH model are included in Chapter 3, while the following
paragraphs outline the method used to assess the anisotropy of yield of transversely
isotropic PA-6. Initially an important implication of the geometry of the slip process,
the re-orientation of a crystal lattice undergoing slip relative to the stress axis, is ex-
ploited in order to construct the desired textures, while subsequently, the developed

textures are probed for their strengths in different directions.
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It is well-known that in a crystal lattice deforming under uniaxial compression by
a single slip process, the normal to the slip plane rotates towards the loading axis.
This phenomenon is also observed in crystal aggregates where the deformation pro-
cess is dominated by one preferred slip system. In the case of PA-6, deformation is
dominated by slip occurring on the hydrogen-bonded planes and along the direction
of the chain. Thus, uniaxial compression of an initially random texture results in a
highly-textured material, where the hydrogen-bonded planes are oriented perpendic-
ular to the compression axis, and the chains are oriented radially about that axis. In
taking advantage of this process, different amounts of texture can be accomplished by
simply compressing a crystal aggregate of initially random texture to different com-
pression ratios. Figure 2-10 depicts such a texturing process in terms of pole figures
of the normals to the hydrogen-bonded planes, {001}, and of the chain direction,
(010), at different compression ratios. The mechanical response of the aggregate is
also depicted, in terms of an aggregate-averaged true stress vs. true strain curve,
where the stress is normalized by the easiest chain-slip strength, go. As expected,
with increasing deformation in the simulation, the normals to the hydrogen-bonded
planes begin to align with the loading axis, while the chains start to re-orient radi-
ally about that axis. A sudden hardening in the aggregate macroscopic mechanical
response also manifests this sharpening of texture, i.e., as fewer and fewer slip sys-
tems remain favorably oriented to accommodate the deformation, compressing the
aggregate further becomes increasingly difficult.

Several different textures (A)-(E), were obtained by this process and were tested
for mechanical anisotropy. Although simulations of the type performed here can easily
determine the strain dependence of yield, in this study attention is confined to the
initial yield behavior of the textured material. Figure 2-11 summarizes the initial
ratios required by the Hill criterion as a function of texture. As can be seen, these
ratios start at unity for texture (A), indicating an initially isotropic material, but start
to differentiate with increasing crystallographic orientation. Thus, all ratios related to
tensile loading indicate monotonically increasing yield strengths of the material with

sharpening texture. For reasons mentioned above, this hardening phenomenon is more
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Figure 2-10: Numerical construction of textures: (a) simulated stress-strain behavior
in uniaxial compression of an initially isotropic crystal aggregate; (b) evolution of
{001} and (010) pole figures with increasing deformation (poles are shown looking
down the loading axis).
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Figure 2-11: Computed Hill ratios vs. texture.

pronounced in the 1-direction, while the transverse isotropy suggested by the nature
of the developing textures is verified by the fact that the two flow-directions remain
equivalent at all textures. Moreover, the ratios related to shear loading indicate that
the strength of the material under 12 and 13 imposed shears decreases monotonically
with texture sharpening, reaching a computed value of 0.7. The reason for this
decrease is the favorable orientation of the “easy-shear” slip systems with respect to
the applied deformation. Finally, the strength of the material under 23 imposed shear
is nearly unaffected by texture. The Hill ratios for the sharpest texture, texture (E),
are summarized in the table below. As can be seen, even for the sharpest texture the
predicted value for Ry, = Rs3, roughly 1.2, is much lower than that determined by
Muratoglu et al. (1995a) experimentally. While as mentioned above, the accuracy
of the experimental value (1.8) is uncertain, the one determined by the CH model is
admittedly too low *. Consequently, a compromise between the two values (1.6) was

used in the simulations to follow. Moreover, given the fact that hydrogen-bonding

4Due to the approximations made in estimating the constrained stress components in the CH
model, the results tend to underestimate the strength of the highly textured material.
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in the « crystal form results in planar conformations of the chain rather than three-
dimensional networks, gy in a material containing only « crystals is expected to be
lower than that determined for a material containing both « and v crystal forms.
Thus, rather than 0.7 a value of 0.5 for Rj; = R;3 was used ®>. The effect of each
parameter on the macroscopic mechanical response of the models is separately studied

in Sec. 4.2.3

| Ry, | Ry = R33 | Ry = Ri3 I Ry3 |
(a) 3.0 1.2 0.7 1.0
(b) 3.0 1.6 0.5 1.0

Table 2.2: Hill ratios: (a) obtained by the CH model for texture (E); (b) used in the
simulations.

Local material directions

As formulated in the previous sections, the constitutive description of the anisotropic
matrix material requires a Cartesian set of basis vectors, {m;, my, m3}, locally aligned
with the principal axes of anisotropy. Since the axis of transverse isotropy (base vec-
tor m;(y)) coincides everywhere with the direction of lamellar growth, its orientation
with respect to the global set of axes, {r,z, 8}, depends on the underlying texture
of the matrix and, in the case of A < A., the periodicity of the assumed particle
distribution. More specifically, when A > A., m,(y) follows the direction of lamellae
oriented perpendicular to the particle-matrix interface. However, when A < A, the
periodicity of the assumed microstructures dictates that the crystalline lamellae em-
anating radially from one particle rotate gradually, away from the interface to meet
lamellae emanating from a nearest neighbor without forming orientation kinks, and
consequently, m;(y) changes direction accordingly. Figure 2-12 schematically illus-
trates such textures for both RA and SA particle distributions. As can be seen, the

periodicity of the RA model dictates that the normals to the hydrogen-bonded planes

5Clearly, the a monoclinic crystal form is much more anisotropic than the equivalent orthotropic
material comprising both & and 7 crystal forms.
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Figure 2-12: Schematic of assumed texture for A < A, in: (a) the RA model; (b) the
SA model. Thick lines represent RVE boundaries, while thin lines represent lamellar
growth directions, i.e., lines tangent to the local m; direction.

rotate near the outer boundaries of the RVE in order to meet them perpendicularly.
In addition, symmetry with respect to the z-plane and axisymmetry about the z-axis
dictate that they orient along radial directions near the equator and parallel to the
axis near the pole of the particle. As a result, only a small portion of the matrix ma-
terial remains favorably oriented to accommodate axial deformation. On the other
hand, in the SA model, preferentially-oriented material spans the entire interparticle
regions. This difference of texture in the two models will be shown to have a sub-
stantial influence on the propagation of plasticity in the matrix, as well as on the
overall mechanical response of the material. Note that in this study the definition of
the local reference frame, {m;, my, m3}, within each individual element, was accom-
plished by carrying out a heat transfer analysis. The idea is to use the same mesh for
both heat transfer and stress analyses and to take base vector, m;(y), to be parallel
to the heat flux vector at each integration point. The details of this procedure are
discussed in Appendix A. In the deformation simulations to follow, {m;, my, m3} at
each integration point, is taken to rotate with the average rigid body motion of the

material point, and that is the only evolution in anisotropy considered.
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2.3 Loading conditions

Boundary conditions on the RVE models simulated both uniaxial tension and axisym-
metric triaxial conditions. In applying triaxial loading, the triaxiality parameter, ¥,
given by the ratio of the cell-averaged hydrostatic stress, 1/3 Tk, to the cell-averaged

equivalent stress, T'¢,,

o= K
3T,

Tkk —_ (2 Trr + zz) (2 14)
3 Tzz_ rrl -

!

was kept constant by means of a user-element, further defined in Appendix B, that
monitors the level of applied axial stress and calculates the appropriate radial traction,
which is then applied to the lateral boundary of the RVE. For simplicity, uniaxial
tension was also applied using the same user-element, where ¥ was specified to be

equal to 1/3.
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Chapter 3

Material models

In modeling the macroscopic mechanical behavior of semicrystalline polymers, one
must be able to relate the deformation of spherulitic structures to the deformation
of lamellar crystals and amorphous layers. The principal mechanisms involved in the
deformation of both phases are well understood, albeit very complex when considered
in the context of the local morphology. Like most inorganic crystals, the crystalline
component of semicrystalline polymers deforms plastically by slip, twinning, and
stress-induced martensitic transformations. Crystallographic slip is considered as the
most important deformation mechanism since it is generally easier to activate and
is capable of producing larger plastic strains than the other two. Intercrystalline
deformation of amorphous regions takes place predominantly by simple shear, while
the mechanical coupling between the two phases depends on the nature of the interface
and density of tie molecules.

Earlier models on the deformation behavior of semicrystalline polymers confined
attention to the deformation of spherulites (for a review of the most important such
models see Lin and Argon (1994)). Although models of this type indeed shed light
on the complex deformation processes taking place at the spherulite level, it is ul-
timately desirable to follow the deformation of the material on a macro-scale, and
relate these physically-based microstructural theories to continuum theory. In the
case of polycrystal metals, this transition was made with crystal plasticity models,

such as the Taylor model, which assumes uniform deformation within a crystal aggre-
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gate. The Taylor assumption has proved to be successful in the case of metal crystals,
which possess a sufficient number of slip systems to accommodate arbitrary plastic
deformation. However, in the case of polymer crystals, the number of independent
modes of deformation is usually less than the five required for a general homogeneous
deformation, making the Taylor estimate of aggregate stress to become unbounded.
Therefore, modifications on existing crystal plasticity models are required before they
can be applied to crystalline polymers.

Parks and Ahzi (1990), were the first to relate the local modes of deformation
in semicrystalline polymers to continuum plasticity theory. In their so-called Con-
strained Hybrid (CH) model, they idealized bulk semicrystalline polymers as being
100 % crystalline and modeled the lack of full kinematic freedom of polymer crys-
tals in terms of kinematic constraints. Following the insight of the Taylor model of
crystal plasticity, they specified the local deformation rate of each crystal to devi-
ate minimally from the macroscopically applied one, so that it satisfies the kinematic
constraints. Parks and Ahzi applied their model to the deformation of HDPE, and ob-
tained good qualitative agreement with experimental results in terms of the predicted
evolution of texture and mechanical behavior. A more refined version of the CH model
was proposed recently by Lee et al. (1995) in which the kinematic constraints associ-
ated with each crystal, need not be identified explicitly. This reformulation of the CH
model facilitates its application to the deformation of materials with lower symmetry
crystals in which the kinematic constraints are hard to identify. Lee et al. (1993) also
developed a more elaborate model where both phases of semicrystalline polymers are
taken into account. While undoubtedly the most complete model to date, the amount
of detail incorporated in this model is beyond the scope of this study. Rather, the
Arruda and Boyce (1993) model for amorphous polymers was used to capture the
deformation behavior of isotropic PA-6 and the modified CH model (Lee et al., 1995)
to mimic the mechanical response of transversely isotropic PA-6. Both models are
further discussed in the sections to follow. Notation used in the previous chapter
is carried through here, while additional conventions needed for the formulations to

follow are given below. Fourth-order tensors are in upper-case calligraphics (A). The
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fourth-order identity tensor is denoted by Z. The prefixes, “det” and “tr” indicate
the determinant and the trace respectively, a superscript ()7 the transpose, a prime
() the deviatoric part of a tensor, a superscript (-)~! the inverse of a tensor, and
a superimposed dot the material time derivative unless otherwise stated. Finally, a
quantity in angular brackets, (-), represents the volume average of that quantity over

an aggregate of crystals.
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3.1 Arruda-Boyce model for amorphous polymers

Three constitutive elements enter the model formulation. A linear spring is used
to characterize the initial elastic response of the material. A visco-plastic dashpot
is used to capture the rate and temperature-dependence of yield, and a non-linear
rubber elasticity spring is used to account for the anisotropic resistance to chain
alignment that develops with plastic strain. The constitutive description of each
element is summarized below within the context of a general finite strain deformation

framework.

3.1.1 The kinematics of finite strain deformation

The deformation gradient, F, is assumed to be represented by a multiplicative de-

composition into an elastic and a plastic part:
F = F°F?, (3.1)

The elastic part of the deformation gradient, F¢, is restricted to be a stretch only,
F¢ = V¢ = U*, without loss of generality (Boyce et al., 1989). The plastic part, FP,
is taken as the deformation gradient of a relaxed configuration obtained by elastically
unloading to a stress-free state via (F¢)~'. The velocity gradient of that relaxed con-
figuration, LP = FP(FP)_l, is then decomposed into symmetric and skew symimnetric

parts:
L? = D? + WP, (3.2)

The skew-symmetric part, W7, represents the spin and is algebraically prescribed as
a result of the imposed symmetry on the elastic deformation gradient. The symmetric

part, DP, is the rate of shape change and is constitutively prescribed in Sec. 3.1.2.
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3.1.2 Constitutive relations

A fourth-order isotropic elastic modulus tensor, £¢, with Cartesian components given
by
FE 2u

(5ik5ji -+ 6,'1(%);) + E‘dﬁj&k! , (33)

e

1kl — m

constitutively characterizes the elastic element as follows

1 [ €
T = 5L Ve) (3.4)

Here T is the Cauchy stress, In V¢ is the Hencky strain and J = det V€. The plastic

shear strain rate, 7y, is described by a thermally activated process according to:

o AG
’Yp=70exp{—ﬁ[1+£]}, (3-5)

where 4, and AG are material parameters, 7 is the equivalent shear stress (defined
further below), « is the Boltzmann’s constant, © is the absolute temperature and s
is the athermal shear strength.

The effect of pressure, p = —tr T on plastic flow is incorporated by adding the
product ap to the shear strength, where « is the pressure sensitivity coefficient of the
material. The initial strain hardening stage observed in PAs, is modeled by taking
s to evolve from initial value, sy, to a saturation value, s,;, in a manner similar to

Boyce et al. (1988):

where h, the hardening slope, is an additional material parameter.

The driving stress, T*, which continues to activate plastic flow, is given by

™=T- %F"TN(F‘*)T, (3.7)
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where TV is a network stress tensor that captures the effect of orientation-induced
strain hardening. The description of strain hardening in amorphous polymers, due
to the stretching of the underlying entangled molecular network, makes use of the
analogy with the stretching of the cross-linked network in rubbers. Thus the network
stress tensor, TV, is modeled using the Arruda and Boyce (1993) eight-chain model

of rubber elasticity expression:

\/N - /\c ain
T o (e (B, (39

1

Here B = F”(F”)T and Acpain = [% tr B] 2 is the stretch of each chain in the model
eight-chain network. In analogy to number of cross-links in rubbers, IV here represents
the number of rigid molecular units between physical entanglements, while ug is

proportional to the initial stiffness. The Langevin function L is given by

L(B) = coth B — %; B=L"" (%) , (3.9)

where its inverse provides the functionality that as the chain stretches and Acpain
approaches its limiting extensibility, v/ IV, the network stress increases dramatically.
The deviatoric part of the driving stress is used to define the equivalent shear

driving stress by

1 3
T= (ET*' . T*’) , (3.10)
while finally the rate of shape change, DP, is constitutively prescribed by

o A, ) (3.11)
V2T

Table 3.1 lists the material parameters required by the model, as determined for
isotropic PA-6 using experimental data presented in Chapter 2 as well as published

results.
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L FElastic L Visco-plastic I Hardening [ Orientation Hardem‘ng]

FE v Yo AG h S0 | Sss HR N
(MPa) (s7h) (J) (MPa) (MPa)
3500 |0.33]5.4(107) [ 25 (10719 | 150 |65 | 95 3 4.5

Table 3.1: Material properties of isotropic PA-6.

3.2 Constrained Hybrid (CH) model

3.2.1 Single crystal rigid/visco-plasticity

First consider a low symmetry single crystal having N < 5 physically distinct and
independent slip systems. The o!” slip system in that crystal is defined by the normal
to its slip plane, n®, the slip direction, s®, and a shear resistance, g, which is the
value of the resolved shear stress on the slip plane in the slip direction that must
be reached before shear can take place. The symmetric part of the traceless Schmid
tensor associated with that slip system, R®, is given by

1
R* = 5 (s*®n* +n® @s%). (3.12)

Moreover, the skew symmetric part, A%, is given by

A*=—-(s"®n* —n®*®s"). (3.13)

DN =

To model crystallographic slip, a rate-dependent power law is used to relate the

shear rate on slip system «, ¥, and its corresponding resolved shear stress, 7%,

n-1

, (3.14)

0 (8]

. . T
’Y°=’Yog—a

T

ga

where 7, represents a reference strain rate and n > 1 the rate exponent. For a single

crystal subject to a uniform deviatoric Cauchy stress, S, the resolved shear stress on
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the o'" slip system can be defined as
T =8"-R?% (3.15)

where S* is a subspace specific modification of the deviatoric Cauchy stress tensor
with zero components in the constrained directions, as defined by Parks and Ahzi
(1990).

Concluding, the traceless deformation rate generated by all available slip systems

is given by

N
D =) 4°R°, (3.16)
a=1

and the lattice spin, W*, defined as the difference between the crystal spin, W, and
the plastic spin, WP, by

N
W =W-WFP=W-) 4°A°. (3.17)

a=1

Thus the rate of change of orientation of the crystallographic axes, for example the

b axis is given by
b = W*b. (3.18)

3.2.2 The modified Taylor model

Now consider an aggregate of crystals subject to a traceless macroscopic velocity

gradient, L, that can be additively decomposed into a macroscopic deformation rate,

D, and a macroscopic spin, W,
L=D+W. (3.19)

In the Parks and Ahzi (1990) formulation of the CH model, D is chosen to deviate
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minimally from D, to satisfy both the local kinematic constraints and, in a volume
average sense, global compatibility. In their reformulation of the CH model, Lee et

al. (1993, 1995), showed that such local deformation rate can be written as
D={P(P)"'}[D], (3.20)

where P is a local fourth-order projection tensor expressed by

N
D — Z Z(F—l)aﬂRa ® Rﬂ, (3.21)

N
a=1 =1

so that the kinematic constraints are accounted for implicitly. In eqn (3.21), I is a

constant symmetric matrix, the components of which are given by
“* =R*-R% 1<a,f< NS (3.22)

Note that (P) is invertible only for an aggregate of crystals that is not highly textured.

To complete the interaction law the local spin in each crystal, W, is simply equated
to the macroscopic spin, W = W so that the requirement of global compatibility,
(W) = W, is satisfied trivially. Moreover, macroscopic equilibrium requires that

S = (S), which Lee et al. (1993, 1995) showed to be satisfied by taking
S=(P)" [(s")], (3.23)
while assuming that
S-S =(Z-"P)S] (3.24)

Finally, note that for crystals possessing precisely five physically distinct slip sys-
tems, P reduces to Z, S* =S and D = D.
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3.2.3 Application to Polyamide-6

For PA-6, the information regarding the available deformation modes is summarized

in Table 3.2. In this study, strain hardening and normal pressure effects on the shear

Type of Slip Slip System (n®s®) | Shear Resistance (g%)
(MPa)

Chain Slip (001)[010] 16.24

Chain Slip (100)[010] 23.23

Transverse Slip (001)[100] 23.18

Table 3.2: Deformation modes operable in the crystalline component of PA-6 (Lin
and Argon, 1992).

resistance of each system were neglected, so that g® remained constant during the
deformation. Neglecting the intrinsic strain hardening is justified by the fact that the
crystalline lamellae are very thin and cannot retain dislocations. Moreover, neglecting
the pronounced normal pressure effects, observed by Lin and Argon (1992), is justified
by the fact that these effects are most likely a consequence of the three-dimensional
nature of hydrogen bonding in the v crystal form of the PA, which is not present in
the material of interest.

For the purpose of mathematical analysis, all tensor and vector components as-
sociated with the deformation of a single crystal were expressed in terms of an or-
thonormal basis, {ej, ez, €3}, that was related to the crystallographic basis, {a, b, c}.
Here, the orthonormal basis was chosen so that e; = b/b, e3 = ¢/c and e; = e; X e3.
This choice of local crystal basis, simplifies the representation of the orientation of
the crystal with respect to the global set of axes, typically given in terms of three
Euler angles, {#, ¥, w}. Starting with the crystal basis parallel to the global system of
reference, these three angles represent the required rotations for the crystal to reach
its final orientation in the aggregate. If these rotations are expressed in matrix form,
then by simple matrix multiplication one can get a rotation matrix in terms of Euler
angles, which transforms all vector and tensor components expressed in terms of the

crystal basis to global coordinates. All possible orientations can be obtained within
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Figure 3-1: Pole figures of {001} planes and (010) directions in the initially isotropic
crystal aggregate.

therange 0 < ¢ <27, 0 < ¢ < 7, and 0 < w < 27. If all orientations are sufficiently
sampled (i.e., there is an even spatial distribution of the poles as shown in Fig. 3-
1), the resulting crystal aggregate is isotropic (see Fig. 3-2). Here, the global axes
were chosen so that the 1-axis was parallel to the direction along which the initially
isotropic texture was compressed, and the 2 and 3-axes were aligned with the flow
directions.

To simplify the numerical implementation of the CH model further, all symmet-

ric traceless tensors were reduced to five independent components according to the

following convention:

(A22 - All)

A NG

3
) §A337 \/§A23a \/§A137 \/§A12 . (325)

Finally, the simulation of deformation, for example simple tension in the 3-direction,
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Figure 3-2: Simulated stress-strain behavior of the initially isotropic crystal aggregate
in simple tension.
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was achieved as follows: D33 was prescribed, while D}; and D,, were guessed itera-
tively so that they satisfy the incompressibility condition: D;; + Da; + D33 = 0, and
produce a state of uniaxial stress: S12 = S13 = Sa3 = S1; — Sos = 0. The numerical

implementation of the CH model is included in Appendix D.
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Chapter 4

Results

The macroscopic behavior and underlying micromechanics of deformation were found
to depend strongly upon the following factors: (1) assumed particle distribution, (2)
matrix morphology, (3) volume fraction of modifier and (4) level of applied triaxiality.
Each factor is discussed separately below, where results are presented in terms of the
macroscopic stress-strain response of the RVE models, as well as local deformation
mechanisms such as progression of matrix plastic straining with applied macroscopic
strain. In view of the large number of combinations of cell and matrix material

models, an acronym and icon based lexicon is given in Table 4.1.
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Model Description | Acronym | Icon |

Regular Array-Isotropic Matrix model RA-IM
Regular Array-Anisotropic Matrix model RA-AM
Staggered Array-Isotropic Matrix model SA-IM

Staggered Array-Anisotropic Matrix model SA-AM

Staggered Array-Partially Anisotropic Matrix model | SA-PAM

Alternative Staggered Array-Isotropic Matrix model SAb-IM

azrd 480 S

Alternative Staggered Array-Anisotropic Matrix model | SAb-AM

Table 4.1: Table of acronyms and icons.

4.1 Effect of particle distribution

Numerous studies have explored the deformation of materials containing particles ar-
ranged in regular arrays (RA). Even though the deformation of such model materials
is well-understood, its main features are summarized here to serve as a comparison
basis to the more realistic SA distribution. In order to isolate the effect of particle
distribution from other important issues addressed in this study, the results presented
in this section regard a model material with a fully isotropic PA-6 matrix deforming
in simple tension (the case of f; = 20% is presented). Figures 4-1 (a)-(c) depict
contour plots of equivalent plastic strain rate normalized by the macroscopically ap-
plied strain rate, €, /Feq, where Eo, = 2/3 |E,, — E,,|, at different macroscopic axial
strains, E,,, and thus illustrate the progression of active plastic deformation in the
RA model material. As can be seen, owing to the particle stress concentration effect
(Goodier, 1933), plasticity in the RA model initiates at the particle interface along its
equatorial plane. Then, after small amounts of applied strain, the deforming mate-
rial has sufficiently strain-hardened such that the regions located along the main cell

diagonals begin to plastically deform, starting from the cell boundary and proceeding
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inward towards the particle. As deformation proceeds further, the entire axial liga-
ment between particles actively deforms, since symmetry forces the lateral boundary
of the cell to displace uniformly in the radial direction. This axial plastic thinning
of interparticle regions dominates the deformation from that point on, while regions
located near the poles of the particle barely deform. Concluding, particle interac-
tions in the RA model occur mainly along transverse directions, while the influence
of neighbors located above and below the equatorial planes of particles is hardly felt
during loading. Clearly, these predicted patterns of deformation are rather simplified
and do not capture important modes of deformation such as interparticle shearing of
the matrix.

In an effort to correct this weakness of the RA model, a second more realistic
staggered array (SA) particle distribution was modeled. In the SA approach, the
modifying particles are positioned in a nested configuration, where, owing to the new
assumed symmetries, they are allowed to shear relative to each other under macro-
scopically applied tensile loading. This effect is demonstrated in Figs 4-2 (a)-(c),
where plasticity is shown to still initiate at the particle equator, due to the stress
concentration effect, but to proceed very differently. In the SA model, plastic defor-
mation concentrates in pronounced broad bands that bridge neighboring particles,
indicating interparticle matrix shear. In addition, a rotation of the lateral boundary
indicates relative motion of the modifying particles. This combination of events per-
sists up to ~ 20% axial strain and has a dramatic effect on the mechanical response
of the material as shown in Fig. 4-3. The ability of the SA model to stretch via inter-
particle matrix shear and relative motion of particles results in a much softer overall
response than that of the RA model. This difference in behavior starts to diminish
at large macroscopic strain levels (> 20%).

Almost identical patterns of deformation with the SA-IM model, are observed
locally in the case of the SAb-IM model (see Figs 4-4 (a)-(c)). In addition, both
models predict the same overall mechanical response for the SA model material (see
Fig. 4-5). Thus, although none of the axisymmetric SA models is space-filling, the

fact that they both predict identical results reinforces their value in studying three-
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Figure 4-1: RA-IM model in simple tension (fo = 20%). Normalized equivalent
plastic strain rate, €2, /FE,,, at: (a) E.,= 0.02; (b) E,,=0.03; (c) E,,=0.15.

58



.87E-17
.94E-01
.BBE-01
.48E+00
.9BE+00
.47E+00
.96E+00
.46E+00

+2.36E-17
+4,45E-01
+8.90E-01
+1.34E+00
+1.7BE+00
+2.23E+00
2.67E+00
.12E+00

w

. 43E-02
.17E-01
.77E-01
.3BE-01
-99E-01
.26E+00
.52E+00
.78E+00

()

Figure 4-2: SA-IM model in simple tension (fo = 20%). Normalized equivalent plastic
strain rate, é2 /E,,, at: (a) E..,= 0.02; (b) E,,=0.03; (c) E,,=0.15.

99



70 T T

N w =
(=] [=] (=)
T T T
\

\

\

\
L i 1

\
(=]
T

)

g

Macroscopic Axial Stress (MPa)

—
(=)
T

i

0 0.05 0.1 0.15
Macroscopic Axial Strain

Figure 4-3: Macroscopic axial stress, T,, (MPa) vs. macroscopic axial strain, E,, for
isotropic matrix, but differing RVE models (fo = 20%).

dimensional heterogeneous material systems.

In summary, it is found that the assumed particle distribution plays an impor-
tant role on the predicted deformation behavior of heterogeneous materials for up to
significantly high strains. Thus, while the RA model is a good first approach, more
physically representative RVE models such as the SA and SAb models provide a more
realistic picture of the underlying micromechanics. Finally, the assumptions made in
reducing the three-dimensional model material to a two-dimensional representative
structure are justified by the fact that both SA and SAb models predict identical

results.
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Figure 4-4: SAb-IM model in simple tension (fo = 20%). Normalized equivalent
plastic strain rate, é2,/E.,, at: (a) E,,= 0.02; (b) E..=0.03; (c) E..=0.15.
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4.2 Effect of matrix morphology

In this section, the effect of reducing the average interparticle ligament thickness, A,
below A. is explored in both RVE models deforming in simple tension. Experimen-
tally, the average interparticle distance in a blend can be reduced either by increasing
the modifier content at fixed particle size, or by decreasing the particle size at fixed
modifier volume fraction. In this study, the latter effect was captured by changing the
constitutive behavior of the matrix material at constant volume fraction of modifier.
In this section, the case of fy=20% is used. Three cases of matrix texture were con-
sidered: one case considered the interface-induced texture to percolate through the
entire matrix and is referred to as the Anisotropic Matrix (AM) model; the second
case considered the opposite extreme where the amount of oriented matrix material
is negligible and is referred to as the Isotropic Matrix (IM) model; and the third
case considered the anisotropic portion of the matrix to be significant, but it does not
span the entire interparticle region (the specific case of 5 vol.% AM material is taken).
This last texture is modeled by dividing the matrix into an anisotropic region and
an isotropic one, and is therefore, termed the Partially Anisotropic Matrix (PAM)
model. The macroscopic mechanical response and local modes of plastic deformation
of the RA, SA, SAb-IM models were discussed in the previous section. Here the
deformation behavior of the RA, SA, SAb-AM and SA-PAM models is compared to
the deformation behavior of the IM models. The effect of Hill ratios on the predicted

overall mechanical response of the models is also studied.

4.2.1 Anisotropic Matrix (AM) models vs. Isotropic Matrix
(IM) models

Figures 4-6 (a)-(c) illustrate the evolution of matrix plasticity in the RA-AM model,
where €, = T-¢? /oBy. As can be seen, rather than at the particle equator, plasticity
in the AM model initiates along distinct diagonal bands. These bands form in regions
where the shear strength of the material is lowered by preferential orientation of

the “easy-shear” slip systems of the matrix material, with respect to the loading
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Figure 4-6: RA-AM model in simple tension (fo = 20%). Normalized equivalent
plastic strain rate, €2, /F,, at: (a) E.,=0.02; (b) E,,=0.03; (c) E,,=0.15.
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Figure 4-7: Macroscopic axial stress, T,, (MPa) vs. macroscopic axial strain, E,, for
RA models, of both isotropic and oriented matrix material (fo = 20%).

axis. Moreover, owing to the void’s inability to transmit shear, they form away
from the interface. Due to the constraints of the RA cell geometry !, plasticity
then propagates into the “hard-to-deform” equatorial regions of the matrix below
the yielded diagonals. As a result, the overall mechanical response predicted by the
RA-AM model is significantly stronger than that predicted by the RA-IM model (see
Fig. 4-7). While this predicted behavior appears at first to be in direct contradiction
with experimental observations: namely, Muratoglu et al. (1995b) observed a 10 %
decrease in the overall strength of PA-6,6 blends and no subsequent hardening when
A was reduced below A, it will be shown that these predictions are artificial and
mostly a consequence of the unrealistic constraints of the RA model.

Figures 4-8 (a)-(c) illustrate the evolution of matrix plasticity in the SA-AM

model. For reasons similar to those discussed in the case of the RA-AM model, plas-

1The RA model deforms primarily through axial plastic thinning of interparticle ligaments.
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Figure 4-8: SA-AM model in simple tension (fo = 20%). Normalized equivalent
plastic strain rate, €2 /E.,, at: (a) E.,=0.02; (b) E..=0.03; (c) E..=0.15.
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tic deformation in the SA-AM model initiates in the matrix material diagonally away
from the particle interface, forming distinct multiple shear bands. These bands origi-
nally develop midway between nearest neighboring particles along directions perpen-
dicular to lines connecting their centers, and then propagate in the form of multiple
parallel shear bands. As in the case of the SA-IM model, these deformation patterns
indicate relative motion of the modifying particles via interparticle matrix shear; how-
ever, matrix shearing occurs in a substantially different way. In the SA-IM model,
relative motion of particles concentrates plastic deformation in ever-broadening bands
that bridge nearest neighbors. In contrast, in the SA-AM model, deformation is
accommodated by distinct shearing of the matrix material along specific crystallo-
graphic planes. While plasticity in the SA-AM model eventually percolates to the
“hard-to-deform” equatorial regions of particles, the ability of the model to sustain
deformation within the preferentially-oriented material causes its macroscopic me-
chanical response to almost never rise above that corresponding to the SA-IM model
(see Fig. 4-11). Rather, the overall mechanical behavior of the two models is very
similar with the exception of the slightly reduced elastic stiffness in the AM material.

The patterns of deformation predicted by the SA-AM model are verified by the
SAb-AM model as shown in Figs 4-9 (a)-(c). The predictions of both SA models
are almost identical with the exception of early on in the deformation; where the
SAb model yields near the equator of the particle and in the region of lowered shear
resistance simultaneously. This results in a slightly stronger overall mechanical re-
sponse of the SAb model, a difference that diminishes with increasing deformation

(see Fig. 4-10).

4.2.2 Anisotropic Matrix (AM) models vs. Partially Anisotropic
Matrix (PAM) models

A combination of the deformation patterns observed in the SA-AM and SA-IM simu-
lations is observed in the case of the SA-PAM model. Namely, similarly to the SA-AM

model, plastic deformation in the anisotropic portion of the matrix initiates away from
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Figure 4-9: SAb-AM model in simple tension (fo = 20%). Normalized equivalent
plastic strain rate, é2,/E.,, at: (a) E.,=0.02; (b) E.,=0.03; (c) E.,=0.15.
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the interface, and propagates along directions perpendicular to lines connecting the
centers of neighboring particles through multiple shear bands. Simultaneously, plas-
ticity in the isotropic portion initiates at the particle equator and propagates through
a single broad band, bridging neighboring particles. The net effect of such a combi-
nation on the macroscopic mechanical response of the material is rather unexpected.
Namely, because shear initiating in the preferentially oriented region of the anisotropic
portion of the matrix cannot propagate into the isotropic region, it instead propagates
into the “hard-to-deform” equatorial regions of the anisotropic matrix earlier on in the
deformation. As a result, the effect of the anisotropic skin layer is that of a stiff shell
that does not allow the particle surface to deform (i.e., the voids behave almost like
rigid particles). This results in a rise of the macroscopic flow stress levels of the cell
above that of the SA-IM and SA-AM models (see Fig. 4-11). In other words, when
A is sufficiently larger than A, the yield strength of a material blended with a softer
secondary phase may potentially be higher than that of the unmodified material! This
effect diminishes as the amount of preferentially-oriented matrix material increases.
Indeed, Dijkstra (1993), has experimentally observed this peculiar effect, whereby the
strength of PA-6 increases when a small amount of an elastomeric secondary phase
is blended in the material. Since Muratoglu et al. (1995b) did not report the yield
strength of the isotropic material, the drop in yield strength that they observed upon
reaching A < A, in blends of identical filler particle volume fraction, is potentially
relative to the strength of blends with widely spaced particles. While such a drop in
strength may accompany the toughness jumps in PAs, other semicrystalline polymers
that are effectively toughened when A < A, for instance HDPE, do not exhibit such
a drop (Bartczak et al., 1999b) 2. Consequently, its effect in toughening is secondary,

while the easy interparticle shear discussed here is mostly responsible for the jumps.

2The crystalline component of HDPE is not as anisotropic as that of PAs. Thus, the effect of
a thin layer of highly oriented material, surrounding secondary phase soft inclusions in modified
HDPE, on the macroscopic mechanical response of the blend might not be as dramatic.
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4.2.3 Sensitivity study on the effect of Hill ratios on the pre-

dicted deformation behavior of the blends

Since the accuracy of the determined anisotropy is difficult to assess, a sensitivity
study on the effect of Hill ratios on the predicted deformation behavior of the SA
blends was conducted to rule out misleading results ®. Figure 4-12 depicts the effect
of varying R;; on the predicted overall response of the blends; where it is clear that
the value of Ry, used in the simulations has no effect on the results. Figure 4-
13 depicts the effect of varying Ry = Rs3. As can be seen, this parameter has a
dramatic effect on the predicted flow stress levels; where increasing its value results
in an increase of the overall flow stress. Figure 4-14 depicts the effect of varying
Ry = Rys. Similarly to Ry, = Rs3, this parameter appears to control the predicted
macroscopic flow stress levels. In conclusion, results are mostly sensitive to the value
of Ryy = Rs3 and Ry = Ry3, and consequently, these parameters must be chosen

carefully.

4.3 Effect of volume fraction

The local deformation mechanisms observed in each case: RA-IM, SA, SAb-IM, RA-
AM, and SA, SAb-AM were found to be independent of filler volume fraction (see
Figs 4-15 (a)-(c), 4-16 (a)-(c), 4-17 (2)-(c) and 4-18 (a)-(c)). However, with decreas-
ing matrix material, the succession of local deformation events is accelerated in each
case. The overall trend in mechanical response dependence on filler volume fraction
1s also the same in each case. Figures 4-19 and 4-20 illustrate this trend, comparing
the stress-strain behavior for the RA-IM and AM, and SA-IM and AM cases, for
fo =15 and 25% respectively. In both assumed microstructures, increasing the vol-
ume fraction of modifier results in a decrease of the macroscopic flow stress levels of
both IM and AM morphologies by approximately the same amount. However, since

increasing the volume fraction of modifier decreases the amount of preferentially ori-

3Note that for simplicity, the elastic response of the material is taken to be isotropic in this
sensitivity study.
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ented material, the drop in strength of the AM models is smaller than that for the

IM models, with increasing filler volume fraction.

4.4 FEffect of Triaxiality

As mentioned earlier, it is only in the presence of high triaxiality that the normally
quite tough PAs lose their toughness. Consequently, it is important to study their be-
havior under triaxial loading conditions. Since the SA model has been shown to more
realistically capture the deformation of particle-filled PAs, the effects of triaxiality
are explored here only with the SA models. Figure 4-21 depicts the overall deviatoric
strength, of the SA-IM model under different levels of triaxiality, where the level of
triaxiality is indicated using the triaxiality parameter, ¥. Moreover, Fig. 4-22 depicts
the volumetric response of the material, Ew = 2F,, + ET,, as a function of macro-
scopic equivalent strain. A pronounced softening of the deviatoric strength of the
material is observed with increasing triaxiality, a well-known behavior in porous plas-
ticity of isotropic materials (Gurson, 1977). In addition, the macroscopic volumetric
strain increases, indicating that the SA-IM model deforms through void growth and
tensile stretching.

In the corresponding plots contouring normalized equivalent plastic strain incre-
ment, €, /feq for the SA-IM model, the same patterns of plastic deformation are ob-
served to evolve in the matrix, independently of 3. However, as triaxiality increases
the broadening of the interparticle shear bands appears to happen earlier on in the
deformation (see Figs 4-23 (a)-(c)). In contrast, the deviatoric strength of the SA-
AM model is surprisingly unaffected by triaxiality, while the macroscopic volumetric
strain increases but not as dramatically as in the case of the SA-IM model (see Figs
4-24 and 4-25). In addition, shear banding in the matrix appears to become more
intense with increasing triaxiality (see Figs 4-26 (a)-(c)). Concluding, the texture of
the matrix in the SA-AM model acts to provide a nearly non-stretching shell around
the particle that impedes volumetric expansion of the RVE, while still promoting

shear via distinct highly localized shear bands under conditions of global triaxiality.
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Figure 4-15: RA-IM model in simple tension (fo = 25%). Normalized equivalent
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Figure 4-17: SA-IM model in simple tension (fo = 25%). Normalized equivalent
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Figure 4-23: SA-IM model (X = 1.0). Normalized equivalent plastic strain rate,
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Figure 4-24: Staggered Array-Anisotropic Matrix (SA-AM) model. Macroscopic
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Chapter 5

Discussion

Prior experimental work has shown that the incorporation of an elastomeric secondary
phase in PA-6 acts to fundamentally change its morphology in regions immediately
surrounding the second phase particles. As a result, skin layers of pronounced crys-
tallographic orientation and mechanical anisotropy are created around each particle.
When a critical, material-specific length exceeds the interparticle matrix spacing in
such blends, the skin layers of neighboring particles overlap, and material resulting
from preferred crystallization percolates through the primary phase.

In this thesis, micromechanical models of PA-6/rubber blends were developed
that allowed the study of the influence of particle distribution, matrix morphology,
volume fraction of modifier and triaxial loading conditions on the mechanical behavior
of the blends. Two different particle arrangements in a PA-6 matrix were modeled,
using the RVE model approach. The two models predicted substantially different
deformation patterns both locally in the matrix material and macroscopically in the
stress-strain response of the blends. Consequently, it was concluded that the assumed
particle distribution is essential in developing realistic two-dimensional models of
heterogeneous material systems.

Moreover, three different interparticle matrix ligament thicknesses (i.e., A > A,
A > Acand A < A.) were modeled for the same volume fraction of modifier
(fo = 20%). This was achieved by varying the amount of oriented matrix material of

the RVE (from 0, to 5, to 100 vol. %). Comparisons between the deformation behavior
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of each of these blends, in simple tension and triaxial loading conditions, revealed that
the plastic deformation of the morphologically altered systems (A > A, and A < A,)
initiates and proceeds very differently from the deformation of the isotropic matrix
blends (A > A.). In particular, when A > A, the preferential orientation of the
macromolecular chains parallel to the particle-matrix interface gives rise to an ini-
tially stiffer and higher strength overall mechanical response than that of the isotropic
matrix polymer (i.e. the elastomeric particles surrounded by a thin layer of highly
anisotropic material act as rigid inclusions). More importantly, when A < A, the
plastic deformation of the matrix changes locally in both kind and degree from that
of the isotropic matrix blends. At the unit cell level, the matrix is found to plasti-
cally deform via distinct shear bands, rather than a single broad band. These changes
in underlying micromechanisms of deformation have little effect on the macroscopic
mechanical response of the material in uniaxial tension, but have a significant ef-
fect under conditions of global triaxiality. In the latter case, the anisotropic matrix
morphology is found to impede softening of the deviatoric strength and dilatational
expansion of the material, while promoting extensive shear yielding via shear banding
along specific crystallographic planes. Consequently, an energy dissipation and there-
fore toughening mechanism is identified to be in force when A of a blend is reduced
below A..

Finally, the effect of varying the amount of rubber was studied (f, =15, 20,
25%), for the cases of A > A, and A < A.. The same underlying deformation
mechanisms were observed in each case independently of amount of modifier. Thus,
it was concluded that once the criterion of A < A, is met, increasing the amount of
modifier further increases the toughness of the blends in a predictable manner, result

that agrees with experimental observations.
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Chapter 6

Future work

Several approximations were made in developing the micromechanical models pre-
sented in this thesis. These approximations were judged necessary for the time frame
of this work, but can be avoided or improved in the future. First, approximations
were made to reduce the size of the deformation problems solved. Thus, the random
distribution, size and shape of the modifying particles in PA-6/rubber blends, was
modeled using two highly symmetric arrays of equally sized spherical particles. While
some effort was made in developing realistic models of the actual three-dimensional
system, the results presented here are nevertheless derived from the deformation of
a single-particle RVE, and therefore lack the ability to capture the randomness in
succession of deformation events in the real material.

Approximations were also made in the constitutive modeling of the PA matrix
due to the complexity of the underlying microstructure, and lack of experimental
data for the material of interest. Semicrystalline polymers with a simpler crystal
structure, such as HDPE, have been studied extensively and would make a better
model material. Finally, the currently available constitutive models for semicrystalline
polymers either are too complex or not complete. In either case, they are not ideal
for implementation in finite element micromechanical models of the type presented
here and require further improvements. Such improvements are needed in order to
study the extensive deformation that these material systems are able to undergo and

thus to more fully understand the toughness of these materials.
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Appendix A

Determination of local material

directions

A.1 Regular Array (RA) model

Figure A-1 (a) depicts the steady-state heat transfer boundary value problem solved
to obtain the texture of Fig. 2-12 (a). Namely, the discretized structure analyzed in
the RA approach was subjected to the following boundary conditions. All boundaries
along which the base vector m;(y) must be perpendicular, i.e., the particle-matrix
interface (boundary AF) and boundaries BC and CD were subjected to constant
temperatures, Ty and Ty respectively. In order for m;(y) to point outward from
the center of the particle, Ty was taken to be the highest temperature, while the
absolute values of Ty and T} is not important. Moreover, boundaries with which
m; (y) must be parallel, i.e., boundaries AB and ED, were taken to be adiabatic.
The r and z components of the heat flux vector at each integrations point were saved
in a file, which was then read by user subroutine ORIENT at the beginning of the
stress analysis (see Appendix C.2).
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Figure A-1: Steady-state heat transfer analyses: (a) RA model, fo = 20%; (b) SA
model, fo = 20%. Thick lines represent RVE boundaries, while thin lines represent
the isotherms produced by the analysis.

A.2 Staggered Array (SA) model

Figure A-1 (b) depicts the boundary value problem solved to obtain the texture
of Figure 2-12 (b). The structure analyzed was obtained by dividing the region
ABCDE, with line GH. This line is perpendicular to the line connecting the centers
of the particles and passes through its mid-point, point F'. The imposed boundary
conditions were identical to the ones discussed above, while in order to complete the
two-dimensional domain analyzed in the SA approach, the texture of area DF H was

used in place of CFG.
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Appendix B

User Element

The user element employed to deform the RVE models involves only two nodes, both
of which are initially located at point B, in the RA approach, and point F', in the SA
approach (see Fig. B-1). The node referred to here as node 1, is fixed to move with
the above mentioned points, while node 2 is a pseudo-node and moves independently.
Nodes 1 and 2 are connected with a spring of stiffness, K, to monitor the applied
axial force, t, !. This is accomplished simply by displacing node 2 an amount, Az,
and calculating the force from ¢, = K Az. The macroscopically applied axial stress,
T,. can be then calculated from ¢, and the position of node 1 in the z-direction, z,,
using eqns (2.8) and (2.9). From eqn (2.14), the value of desired ¥, and T, the
appropriate level of radial stress, T,,, is calculated. Following, the radial force to be
applied on the lateral boundary of the RVE, t,, is found from T,, and the position
of node 1 in the r-direction, z,, using again eqn (2.8). Finally, the magnitude of the
determined radial force is applied on node 1, inside the user element. In this way,
constant triaxial loading is achieved throughout the deformation. The position of
nodes along the outer boundary of the RVE is also monitored inside the user element
to allow for the calculation of the deformed volume of the models using eqn 2.9. The

numerical implementation of this user element is included in Appendix C.3, together

INote that, given the constraints (2.1) in the case of the RA model, and (2.2)-(2.5) in the case of
the SA model, all reaction forces from nodes located along the outer boundary of the RVE models
are lumped on node 1.
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Figure B-1: User element used to deform the SA model.

with the subroutine used to displace node 2.
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Appendix C

User subroutines

C.1 User multi-point constraints

SUBROUTINE MPC(UE,A,JDOF,MDOF,N,JTYPE,X,U,UINIT,MAXDOF,
& LMPC,KSTEP,KINC,TIME,NT,NF,TEMP,FIELD)
INCLUDE ’ABA_PARAM.INC’

DIMENSION A(N),JDOF(N),X(6,N),U(MAXDOF,N),UINIT(MAXDOF,N),

& TIME(2) ,TEMP(NT,N) ,FIELD(NF,NT,N)
IF(JTYPE.EQ. 1) THEN

JDOF(1) =1

JDOF(2) = 1

JDOF(3) = 1

A(1) = 2x(1 + U(1,1))

A(2) = 2«1 + U(1,2))

A(3) = (-4)*(1 + U(1,3))

C = SQRT(2*(1 + U(1,3))**2 - (1 + U(1,2))**2)
=C-1

END IF
RETURN
END

C.2 Local axes orientation

SUBROUTINE ORIENT(T,NOEL,NPT,LAYER,KSPT,COORDS,BASIS,ORNAME,
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& NNODES, CNODES)
INCLUDE ’>ABA_PARAM.INC’

CHARACTER*8 ORNAME

PARAMETER(ELNUM = 4000, INTPT = 9)

INTEGER ELEMENT

DIMENSION T(3,3),
& ELDATA1(ELNUM, INTPT) ,ELDATA2(ELNUM, INTPT)
SAVE IFLAG,ELDATA1,ELDATA2

DATA IFLAG/0/

IF(IFLAG.EQ.O)THEN
OPEN(UNIT = 10,

& FILE = ’/usr/home/kuhn2/tzika/orient_data/20_perc_c_cyl.dat’,
& STATUS = ’0OLD’)
REWIND(10)

c Read and save the x and y coords of the heat flux vector, at each
c integration point, of each element into two ELNUM x INTPT arrays
c (ELDATA1l stores the x-coordinate and ELDATA2 stores the y-coordinate):
100 READ(10,*,END = 101) ELEMENT, INTEGPT, HEATFL1, HEATFL2
¢ Normalize:
VALUE
U

SQRT( (HEATFL1)**2 + (HEATFL2)*x*2)
(HEATFL1)/(VALUE)

v (HEATFL2) / (VALUE)

ELDATA1 (ELEMENT, INTEGPT)

] ]
< o

ELDATA2 (ELEMENT, INTEGPT)
GOTO 100
101 IFLAG=1
END IF
c Define the local axes of anisotropy:
c Local 1-direction:
T(1,1) = ELDATA1(NOEL,NPT) !NOEL = ELEMENT #, NPT = INTEG. POINT #
T(2,1) = ELDATA2(NOEL,NPT)

c Local 2-direction:

T(1,2) = -ELDATA2(NOEL,NPT)
T(2,2) = ELDATA1(NOEL,NPT)
RETURN

END
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C.3 User element

SUBROUTINE UEL(RHS,AMATRX,SVARS,ENERGY ,NDOFEL,NRHS ,NSVARS,
& PROPS,NPROPS,COORDS,MCRD,NNODE,U,DU,V,A, JTYPE, TIME,DTIME,
& KSTEP,KINC, JELEM,PARAMS ,NDLOAD, JDLTYP, ADLMAG , PREDEF , NPREDF,
& LFLAGS,MLVARX,DDLMAG,MDLOAD,PNEWDT , JPROPS,NJPROP,PERIOD)

INCLUDE ’ABA_PARAM.INC’

COMMON DELU1

DIMENSION RHS(MLVARX,*),AMATRX(NDOFEL,NDOFEL) ,PROPS(x),

& SVARS(x) ,ENERGY (8),COORDS (MCRD,NNODE) ,U(NDOFEL) ,

& DU(MLVARX, *) ,V(NDOFEL) ,A(NDOFEL) ,TIME(2) ,PARAMS (),
& JDLTYP(MDLOAD, *) ,ADLMAG (MDLOAD, *) ,DDLMAG (MDLOAD, *) ,
& PREDEF (2,NPREDF ,NNODE) ,LFLAGS(5) , JPROPS ()

PARAMETER(NMAX = 100)

DIMENSION
& UCDORDS(2,NMAX), UM(2,NMAX), UN(2,NMAX), UDS(NMAX)

ONE = 1.D0

TWO = 2.D0

THREE = 3.DO

PI = TWO * TWO * DATAN(ONE)

AK = PROPS(1) ! Spring Striffness
TRIAX = PROPS(2) ! Triaxiality Ratio

c Initialize varijables:

DO K1 = 1,NDOFEL
DO KRHS = 1,NRHS
RHS(K1,KRHS) = 0.DO
END DO
DO K2 = 1,NDOFEL
AMATRX(K2,K1) = 0.DO
END DO

END DO

c Calculate axial force acting on the spring:

DELU1 = U(90) ~ U(46) ! Spring Elongation
FORCEXT = AK * DELU1 ! Force

RHS(46,1) = FORCE1

RHS(90,1) = -FORCE1
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¢ Calculate contribution to the Jacobian (stiffness):

AMATRX(46,46) = AK
AMATRX(90,90) = AK
AMATRX(46,90) = -AK
AMATRX(90,46) = -AK

c Calculate the ratio of the radial to the axial stress:
FACTOR = ((THREE*TRIAX)-ONE)/(TWO+(THREE*TRIAX))
c Calculate current coordinates of nodes along the outer

¢ boundary of the RVE:

DO 70 KNN = 1,NNODE
UCOORDS(1,KNN) = COORDS(1,KNN) + U((2*KNN)-1)
UCOORDS (2,KNN) = COORDS(2,KNN) + U(2+KNN)
70 CONTINUE

¢ Initialize volume:
VU = 0.0D0
¢ Calculate position vectors and surface normals:

DO 100 KNN = 1, (NNODE-2)

UM(1,KNN) = ( UCOORDS(1,KNN) + UCOORDS(1,(KNN+1)) ) / 2.DO
UM(2,KNN) = ( UCOORDS(2,KNN) + UCOORDS(2, (KNN+1)) ) / 2.DO
UN(1,KNN) = ( UCOORDS(2,KNN) - UCOORDS(2, (KNN+1)) )
UN(2,KNN) = ( UCOORDS(1,(KNN+1)) - UCOORDS(1,KNN) )

ULENG = DSQRT((UN(1,KNN))*%2 + (UN(2,KNN))**2)

c Normalize:

UN(1,KNN) = UN(1,KNN) / ULENG
UN(2,KNN) = UN(2,KNN) / ULENG
100 CONTINUE

¢ Calculate surface increment:
DO 120 KNN = 1, (NNODE-2)
UDS(KNN) = PI * (UCOORDS(1,KNN) + UCOORDS(1, (KNN+1))) =*
& DSQRT( ((UCOORDS(1,KNN) - UCOORDS(1, (KNN+1)))**2)
& + ((UCOORDS(2,KNN) - UCOORDS(2, (KNN+1)))**2) )
120 CONTINUE
¢ Calculate current volume:
DO 130 KNN = 1, (NNODE-2)
VU = VU + (( (UM(1,KNN)*UN(1,KNN)) + (UM(2,KNN)=*UN(2,KNN)))
& * UDS(KNN) )
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130 CONTINUE
VU = VU/3.D0
c Macroscopic Axial Stress:
SIGZ = (1/VU)*(FORCE1*UCOORDS(2,23))
c Macroscopic Radial Stress:
SIGR = FACTOR * SIGZ

c Radial force applied on the lateral boundary:

FORCE2 = (2.D0*VUxSIGR)/(UCOORDS(1,23))
RHS(45,1) = FORCE2

SVARS(1) = VU

SVARS(2) = SIGZ

SVARS(3) = DELU1

SVARS(4) = SIGEQ

RETURN

END

SUBROUTINE DISP (U, KSTEP, KINC, TIME, NODE, JDOF)
INCLUDE ’ABA_PARAM.INC’

COMMON DELU1

DIMENSION U(3), TIME(2)

U(1) = 0.08 * TIME(2) + DELU1

RETURN

END
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Appendix D

CH driver

C Written by Said Ahzi, Jean-Marc Diani and Panagiota A. Tzika.

AA_DRIVER_OUTPUT (time, strain, stress) (file 50)

C INPUT DATA FILES:

C loading.dat ~-- DEFORMATION HISTORY (file 15)
C material.dat --- MATERIAL PARAMETERS (file 10)
C epsvar.dat --- SHEAR SYSTEMS (file 11)

C aeuler.dat --- EULER ANGLES (file 12)

C OUTPUT FILES:

C

C

AA_EULER_QUTPUT (euler angles) (file 103)

C MAIN VARIABLES USED IN THIS PROGRAM:

C AMV(3,MAXSYST) -- SLIP DIRECTION VECTORS (input in crystal coords)

C ANV(3,MAXSYST) -- SLIP PLANE NORMAL VECTORS (input in crystal coords)
C DBSAG(3,MAXSYST,MAXCRYS)-- SLIP DIRECTION VECTORS (in global coords)

C DNSAG(3,MAXSYST,MAXCRYS)-- SLIP PLANE NORMAL VECTORS (in global coords)

C QG(3,3,MAXCRYS) -- ROTATION MATRIX

C SMATC(5,MAXSYST) -- SCHMID TENSOR (in crystal coords)

C SCHG(5,MAXSYST,MAXCRYS) -- SCHMID TENSOR (in global coords at time t)

C DBAR(5) -- MACROSCOPIC STRAIN RATE (imposed)

C SBAR(5) -— MACROSCOPIC STRESS (deviatoric)

C WBAR(3,3) -- MACROSCOPIC SPIN RATE (imposed)
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DGAMMA (MAXSYST ,MAXCRYS) -- SHEAR RATE OF EACH SYSTEM IN EACH CRYSTAL

C TGAMI (MAXSYST,MAXSYST) -- TENSOR GAMMA~alpha beta™-1

C SALPHT(MAXSYST,MAXCRYS) -- SLIP RESISTANCE (constant)

C P(5,5,MAXCRYS) —-- LOCAL CONSTRUCTED PROJECTION FOR EACH CRYSTAL
C PAV(5,5) -- <[P]> AVERAGE CONSTRUCTED PROJECTION

C PAVINV(5,5) -- <[P]>"-1 : INVERSE OF PREVIQOUS

C D(5,MAXCRYS) -- STRAIN RATE IN EACH CRYSTAL

C

C

SSTAR(5,MAXCRYS) -- S™* IN EACH CRYSTAL

PROGRAM MAIN

IMPLICIT REAL*8 (A-H,0-Z)

PARAMETER (MAXCRYS = 3000, MAXSYST = 5)

COMMON/VARIABLES/AMV (3,MAXSYST) , ANV (3,MAXSYST) ,QG(3,3,MAXCRYS),

&

&
&
&

SMATC(5,MAXSYST) ,DBAR(5) ,SBAR(5) ,NSYST,NCRYS,
TGAMI (MAXSYST,MAXSYST) ,SALPHT (MAXSYST,MAXCRYS),
PAVINV(5,5) ,WBAR(3,3),SSTAR(5,MAXCRYS),
D(5,MAXCRYS) ,DGAMMA (MAXSYST ,MAXCRYS)

COMMON/MATPLAS/GDOTO,AM,HO,R1,R2,R3,STILDE, AHARD,

&

QL,CRYSDIA,G,WIDTH

INTEGER FD,LD,CD,TR1,TR2

REAL*8

LBARDOT(3,3),A(3,3),DB3(3,3)

REAL*8 DNSAG(3,MAXSYST,MAXCRYS) ,DBSAG(3,MAXSYST,MAXCRYS)
REAL*8 GDOT(MAXSYST),LDOT(3,3),DBSA(3,MAXSYST)
REAL*8 DNSA(3,MAXSYST),SSTAV(5),PAV(5,5)

REAL*8

SDEV(3,3),T(3,3),SCHG(5,MAXSYST ,MAXCRYS)

C READ INPUT MATERIAL PARAMETERS (from file material.dat)

OPEN(UNIT=10,FILE="nylon6.dat’ ,STATUS=’0LD’)
REWIND(10)

READ (10, %)

READ(10,*) GDOTO,AM !flow parameters

READ (10, %)
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READ(10,*) R1,R2,R3

C INITIALIZE STATE

~OBTAIN INFORMATION ABOUT AVAILABLE SLIP SYSTEMS IN CRYSTAL COORDS (AMV, ANV)
FROM FILE epsvar.dat

-CALCULATE THE SYMMETRIC, TRACELESS SCHMID TENSOR ASSOCIATED WITH EACH SLIP
SYSTEM IN CRYSTAL COORDS (SMATC)

-CALCULATE THE COMPONENTS OF THE CONSTANT, SYMMETRIC MATRIX GAMMA~alpha beta
(TGAM), AS WELL AS IT’S INVERSE (GAMMA"alpha beta)”-1 (TGAMI)

-OBTAIN EULER ANGLES FOR EACH CRYSTAL FROM FILE aeuler.dat AND CALCULATE
ROTATION MATRICES FOR EACH CRYSTAL

-FOR NYLON6 READ THREE CONSTANT CRSS

-CALCULATE THE SCHMID TENSOR IN GLOBAL COORDS (SCHG) USING SUBROUTINE SCHMAC

QO O O a o a a o o o

CALL INITIAL(DNSAG,DBSAG,SCHG)

C SET DEFORMATION HISTORY (from file loading.dat)

C LFLAG: 1 --- SIMPLE SHEAR
C 2 --- SIMPLE TENSION/COMPRESSION
C 3 --- PLANE STRAIN TENSION/COMPRESSION

OPEN(UNIT=15,FILE='1loading.dat’,STATUS=’0LD’)
REWIND(15)

READ(15,%*)

READ(15,*) LFLAG

READ (15, *)

READ(15,*) EQINCR

READ(15,*)

READ(15,*) STRAINRATE

C MACROSCOPIC VELOCITY GRADIENT IMPOSED ON THE CRYSTAL AGGREGATE (LBARDOT)

IF(LFLAG.EQ.1)THEN

CALL ZEROM(LBARDOT,3)
LBARDOT(1,2) = STRAINRATE
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WRITE(*,*) > IMPOSED MACROSCOPIC VELOCITY GRADIENT’
b0 5000 I=1,3
WRITE(*,2) (LBARDOT(I,J),J=1,3)
5000 CONTINUE
ELSE IF(LFLAG.EQ.2)THEN
WRITE(*,*)’PLEASE SPECIFY LD,TR1,TR2’
READ(*,*)LD,TR1,TR2
DTIME=2.DO
DEQPSTN=EQINCR/DTIME
TOL=0.00001D0
ELSE IF(LFLAG.EQ.3)THEN
WRITE(*,*) ’PLEASE SPECIFY LD,CD,FD’
READ (*,*)LD,CD,FD
CALL ZEROM(LBARDOT, 3)

LBARDOT(CD,CD) = 0.DO
LBARDOT(FD,FD) = -STRAINRATE
LBARDOT(LD,LD) = STRAINRATE

WRITE(*,*)’ IMPOSED MACROSCOPIC VELOCITY GRADIENT’
DO 5001 I=1,3
WRITE(*,2) (LBARDOT(I,J),J=1,3)

5001 CONTINUE

END IF

DECOMPOSE LBARDOT TO GET:
-MACROSCOPIC DEFORMATION RATE (DBAR,A 5-VECTOR)
-MACROSCOPIC SPIN (WBAR, A 3X3-MATRIX)

a o o o

—ALSO CALCULATE DEQPSTN AND GET TIME INCREMENT (DTIME)

IF(LFLAG.EQ.1.0R.LFLAG.EQ.3) THEN
DO 10 I=1,3
D0 10 J=1,3
DB3(I,J)=(LBARDOT(I,J)+LBARDOT(J,I))/2.D0
WBAR(I,J)=(LBARDOT(I,J)-LBARDOT(J,I))/2.D0
10 CONTINUE
WRITE(*,*) ’MACROSCOPIC DEFORMATION RATE’
DO 5002 I=1,3
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WRITE(*,2) (DB3(I,J),J=1,3)
5002 CONTINUE
CALL TRACEM(DB3,TRD)
WRITE(*,*) >TRACE OF D IS:’,TRD
WRITE (*,*) ’MACROSCOPIC SPIN’
DO 5003 I=1,3
WRITE(*,2) (WBAR(I,J),J=1,3)
5003 CONTINUE
CALL TRACEM(WBAR3,TRW)
WRITE(*,*) TRACE OF W IS:’,TRW
DEQPSTN=0.D0O
CALL DOTPM(DB3,DB3,DEQPSTN)
WRITE(*,*) ’DBAR*DBAR IS’
WRITE(*,*)DEQPSTN
DEQPSTN=DSQRT (2.DO*DEQPSTN/3.D0)
DTIME=EQINCR/DEQPSTN 'time increment
CALL MATVEC(DB3,DBAR)
END IF

C ADDITIONAL INPUT (from loading.dat)

READ(15,%)
READ(15,*) EPSMAX
READ(15,%*)
READ(15,*) TEXSTNINC

C OPEN FILES FOR WRITING OUTPUT
OPEN(50,FILE="AA_DRIVER_OUTPUT’,STATUS=’0LD’)
REWIND (50)
IF(LFLAG.EQ.1) THEN
WRITE(50,’ (A,//1X,A,4X,A,6X,A,6X,A,8X,A,8X,A,8X,A//)?)

+ ’OUTPUT FROM DRIVER: SIMPLE SHEAR’,
+ ’INC’,’M. EQ. STRAIN’,’M. EQ. STRESS’,’SDEV(1,2)’,
+ ’SDEV(1,3)’,’SDEV(2,3)’

ELSE IF(LFLAG.EQ.2) THEN
WRITE(50,’ (A,//1X,A,2X,A,2X,A,2X,A,2X,A,2X,A//) )
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+ ’OUTPUT FROM DRIVER: SIMPLE TENSION/COMPRESSION’,
+ INC’,’M. EQ. STRAIN’,’M. EQ. STRESS’,’SDEV(1,2)’,
+ ’SDEV(1,3)’,’SDEV(2,3)°
ELSE IF(LFLAG.EQ.3) THEN
WRITE(50,’(A,//1X,A,2X,A,2X,A,2X,A,2X,A,2X,A,2X,A//) )

+ ’OUTPUT FROM DRIVER: PLANE STRAIN TENSION/COMPRESSION’,
+ ’INC’,’M. EQ. STRAIN’,’M. EQ. STRESS’,’SDEV(1,2)’,
+ ’SDEV(1,3)’,’SDEV(2,3)’,’SDEV(3,3)’

END IF

OPEN(103,FILE=’AA_EULER_QUTPUT’ ,STATUS=’OLD’)
REWIND(103)

WRITE(103,’(A,//A,I3)?)
+ ’OUTPUT OF EULER ANGLES FOR CALCULATING TEXTURE:’,
+ ’NCRYS = ’,NCRYS

C COMPUTATION

PI=4.DO*DATAN(1.DO)

SQR2=DSQRT(2.D0)

SQR3=DSQRT(3.D0)

EPSILON=0.DO 'initialize strain

ISTEP=0

999 IF(LFLAG.EQ.2)THEN

CALL MNBRAK(DTIME,LD,TR1,TR2,STRAINRATE,SCHG,
+ AX,BX,CX)

WRITE(*,*)’AX, BX, CX ARE:’,AX,BX,CX

CALL GOLDEN(DTIME,LD,TR1,TR2,STRAINRATE,SCHG,
+ AX,BX,CX,TOL,RMIN,GOLE)
CALL ZEROM(LBARDOT,3)

LBARDOT (LD,LD)=STRAINRATE

LBARDOT (TR1,TR1)=-STRAINRATE/ (1+RMIN)

LBARDOT(TR2,TR2)=- (RMIN*STRAINRATE) / (1+RMIN)

DO 55 I=1,3

D0 55 J=1,3
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DB3(I,J)=(LBARDOT(I,J)+LBARDOT(J,I))/2.D0
WBAR(I,J)=(LBARDOT(I,J)-LBARDOT(J,I))/2.D0
55 CONTINUE
CALL MATVEC(DB3,DBAR)
END IF

-TAKE THE MATRIX (GAMMA~-1) alpha beta (TGAMI) CALCUALTED IN SUBROUTINE
INITIAL AND USE IT TO CALCULATE THE LOCAL FOURTH ORDER PROJECTION TENSOR P (P)
—-CALCULATE IT’S VOLUME AVERAGE OVER THE POLYCRYSTALLINE AGGREGATE <P> (PAV)
-USE THAT TO CALCULATE THE LOCAL DEFORMATION RATE D (TEMPD)
-USE THAT TO CALCULATE THE SHEAR RATE ON EACH SYSTEM dgamma~alpha (DAGAMM)
-GET THE RESOLVED SHEAR STRESS ON EACH SYSTEM tau”alpha (RSS)
-GET sigma~alpha (SIGALPH)
-GET S™* (SSTAR)

aQ o o ao o a o a A

-CALCULATE IT’S VOLUME AVERAGE <S~*> (SSTAV)

CALL SOLVCRYS(DTIME,SCHG,SSTAV,PAV) !time increment, global Schmid, <S~*>

C UPDATE THE GLOBAL DEVIATORIC CAUCHY STRESS (SBAR), WHICH FROM MACROSCOPIC
C EQUILIBR. IS EQUAL TO <P>"-1 * [<S~*>] (OR SBAR=PAVINV*SSTAV)

CALL MULTMV(PAVINV,SSTAV,SBAR,5)
C BEGIN THE LOOP ON CRYSTALS FOR VARIABLE UPDATING
DO 70 ICRYS=1,NCRYS
C UPDATE THE ORIENTATION MATRIX [QG)
DO 80 IS=1,NSYST
GDOT (IS)=DGAMMA (IS, ICRYS) /DTIME
80  CONTINUE
DO 100 IS=1,NSYST

D0 105 I=1,3
DBSA(I,IS)=DBSAG(I,IS,ICRYS)
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DNSA(I,IS)=DNSAG(I,IS,ICRYS)
105 CONTINUE
100 CONTINUE
DO 110 I=1,3
DO 110 J=1,3
LDOT(I,J)=0.D0
DO 115 KS=1,NSYST
LDOT(I,J)=LDOT(I,J)+DBSA(I,KS)*DNSA(J,KS)*GDOT (KS)

115 CONTINUE

IF (DABS(LDOT(I,J)/DEQPSTN) .LT.1.D-06) LDOT(I,J)=0.DO
110 CONTINUE
DO 119 I=1,3
DG 119 J=1,3

A(I,J)=QG(I,J,ICRYS)

119 CONTINUE

CALL ORIENT(DTIME,LDOT,A)

DO 120 I1=1,3

DO 120 J=1,3

QG(I,J,ICRYS)=A(I,J)

120 CONTINUE

C END OF VARIABLE UPDATING => NEW CRYSTAL

70 CONTINUE !loop for variable updating, done for all crystals

C UPDATE NORMALS, SLIP DIRECTIONS AND SCHMID TENSORS IN GLOBAL AXES

CALL SCHMAC(DNSAG,DBSAG,SCHG) !SCHMAC has the crystal loop built in

C WRITE THE RESULTS IN OUTPUT FILES

SDOTS=0.D0O

SEQ=0.DO

EQPSTN = ISTEP*DEQPSTN*DTIME

CALL VECMAT(SBAR,SDEV) !transforms a 5-vector back to a 3X3 matrix
CALL DOTPM(SDEV,SDEV,SDOTS) !scalar product of two matrices
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SEQ=DSQRT (1.5D0*SDOTS)

IF(LFLAG.EQ.2) THEN
T(1,1)=SDEV(1,1)-0.5D0*(SDEV(TR1,TR1)+SDEV(TR2,TR2))
T(2,2)=SDEV(2,2)-0.5D0* (SDEV(TR1,TR1)+SDEV(TR2,TR2))
T(3,3)=SDEV(3,3)-0.5D0*(SDEV(TR1,TR1)+SDEV(TR2,TR2))
T(1,2)=SDEV(1,2)

T(2,1)=T(1,2)

T(1,3)=SDEV(1,3)

T(3,1)=T(1,3)

T(2,3)=SDEV(2,3)

T(3,2)=T(2,3)

ELSE IF(LFLAG.EQ.3)THEN
T(1,1)=SDEV(1,1)-SDEV(FD,FD)
T(2,2)=SDEV(2,2)-SDEV(FD,FD)
T(3,3)=SDEV(3,3)-SDEV(FD,FD)

T(1,2)=SDEV(1,2)

T(2,1)=T(1,2)

T(1,3)=SDEV(1,3)

T(3,1)=T(1,3)

T(2,3)=SDEV(2,3)

T(3,2)=T(2,3)

END IF

GOLE=DABS (SDEV(TR1,TR1)-SDEV(TR2,TR2))

WRITE(50,’(I4,2X,9(E10.4,4X)) ’)ISTEP,DABS(EQPSTN) ,DABS(SEQ),

+ DABS(T(TR1,TR1)/T(LD,LD)),DABS(T(TR2,TR2)/T(LD,LD)),

+ DABS(T(1,2)/T(LD,LD)),DABS(T(1,3)/T(LD,LD)),
+ DABS(T(2,3)/T(LD,LD)),RMIN,GOLE
WRITE(*,%)’

WRITE(*,’ (A,1X,A,2X,A)’)’ISTEP’,’EQ.STRAIN’, ’EQ.STRESS’

WRITE(*,’(I4,1X,2(E10.4,1X))’)ISTEP,EQPSTN,SEQ
WRITE(*,*)’
WRITE(*,*) ’MACROSCOPIC DEVIATORIC STRESS’
DO 8000 I=1,3
WRITE(*,2) (SDEV(I,J),J=1,3)
8000 CONTINUE
CALL TRACEM(SDEM,TRS)

113



WRITE(*,*) ’TRACE OF SDEV IS:’,TRS

C CALCULATE AND STORE THE TEXTURE

IF ((TEXSTNINC .GE. EPSILON)
+ -AND. (TEXSTNINC .LT. (EPSILON+EQINCR))) THEN
WRITE(103,%)” °
WRITE(103,’(A,F6.4)°)

+ ’STRAIN =’ ,EPSILON

WRITE(103,%)> °

WRITE(103,” (2X,A,2X,A,2X,A)’) ’ THETA’,
+ ’ PHI’,’ OMEGA’

WRITE(103,%)’ °
DO 140 ICRYS=1,NCRYS
DO 150 I=1,3
DO 150 J=1,3
A(I,J)=QG(I,J,ICRYS)
150 CONTINUE
CALL EULANG(A,3,TH,PHI,OM,ICRYS)

TH = TH*180.D0/PI
PHI = PHI*180.D0/PI
OM = OM=*180.DO/PI

WRITE(103,’ (3(4X,F10.4))°’) TH,PHI,OM
140 CONTINUE
ENDIF

C UPDATE THE 999 LOOP

EPSILON=EPSILON+DTIME*DEQPSTN
ISTEP=ISTEP+1

C GO TO NEXT INCREMENT IF THE MAXIMUM STRAIN IS NOT EXCEEDED

IF(EPSILON.LT.EPSMAX) GOTO 999

STOP
END
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C MAIN SUBROUTINES

C SOLVCRYS
SUBROUTINE SOLVCRYS(DTIME,SCHG,SSTAV,PAV)

IMPLICIT REAL*8 (A-H,0-Z)
PARAMETER (MAXCRYS = 3000, MAXSYST = 5)
COMMON/VARIABLES/AMV (3,MAXSYST) , ANV (3,MAXSYST),QG(3,3,MAXCRYS),

+ SMATC(5,MAXSYST) ,DBAR(5) ,SBAR(5) ,NSYST,NCRYS,

+ TGAMI(MAXSYST,MAXSYST) ,SALPHT (MAXSYST,MAXCRYS),

+ PAVINV(5,5),WBAR(3,3),SSTAR(5,MAXCRYS),

+ D(5,MAXCRYS) ,DGAMMA (MAXSYST,MAXCRYS)
COMMON/MATPLAS/GDOTO, AM,HO,R1,R2,R3,STILDE, AHARD,

+ QL,CRYSDIA,G,WIDTH
REAL*8 RSS(MAXSYST),SIGALPH(MAXSYST),P(5,5,MAXCRYS) ,PAV(5,5)
REAL*8 SSTAV(5),TEMPD(5),SCHG(5,MAXSYST,MAXCRYS) ,DIFF(5,5)
REAL*8 RES(5)

C CALCULATES THE PROJECTION TENSORS: P, <P>, <P>"-1

DO 10 ICRYS=1,NCRYS
D0 30 I=1,5
DO 30 J=1,5
P(I,J,ICRYS)=0.DO
DO 40 KS=1,NSYST
DO 40 LS=1,NSYST
P(I,J,ICRYS)=P(I,J,ICRYS)+
+ TGAMI (KS,LS)*SCHG(I,KS,ICRYS)*SCHG(J,LS,ICRYS)
40 CONTINUE
30 CONTINUE
10 CONTINUE
IF(ISOLVE.EQ.O) THEN
WRITE(*,*)’0OUTPUT FROM SUBR. SOLVCRYS: P FOR ICRYS=1’
DO 7000 I=1,5
WRITE(*,2) (P(I,J,1),J=1,5)
7000 CONTINUE
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ENDIF
DO 50 I=1,5
DO 50 J=1,5
PAV(I,J)=0.DO
DO 60 ICRYS=1,NCRYS
PAV(I,J)=PAV(I,J)+P(I,J,ICRYS)
60 CONTINUE
PAV(I,J)=PAV(I,J)/FLOAT(NCRYS)
50 CONTINUE
IF (ISOLVE.EQ.O) THEN
WRITE(*,*)’0UTPUT FROM SUBR. SOLVCRYS: PAV’
C WRITE(*,*)’ISOLVE IS:’,ISOLVE
DO 7001 1I=1,5
WRITE(*,2) (PAV(I,J),J=1,5)
7001 CONTINUE
DO 7010 I=1,5
DO 7010 J=1,5
IF(I.EQ.J)THEN
DIFF(I,J)=((PAV(I,J)-0.6D0)/0.6D0)*100.D0
ELSE
DIFF(I,J)=PAV(I,J)
ENDIF
7010 CONTINUE
WRITE(*,*)’0OUTPUT FROM SUBR. SOLVCRYS: % DIFF’
DO 7011 I=1,5
WRITE(*,2) (DIFF(I,J),J=1,5)
7011 CONTINUE
ENDIF
CALL MATINV(PAV,5,5,PAVINV)
IF(ISOLVE.EQ.0) THEN
WRITE(*,*)’QUTPUT FROM SUBR. SOLVCRYS: PAVINV’
C WRITE(*,*)’ISOLVE IS:’,ISOLVE
DO 7002 I=1,5
WRITE(*,2) (PAVINV(I,J),J=1,5)
7002 CONTINUE
ENDIF
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DO 55 L=1,5

RES(L)=0.DO

DO 100 K=1,5
RES(L)=RES(L)+PAVINV(L,K)*DBAR (K)*DTIME
100 CONTINUE

55 CONTINUE

DO 70 ICRYS=1,NCRYS

C CALCULATES THE STRAIN RATE WITHIN EACH CRYSTAL.

DO 80 I=1,5
TEMPD(I)=0.D0
DO 90 L=1,5
TEMPD (I)=TEMPD(I)+P(I,L,ICRYS)*RES(L)
90 CONTINUE
80 CONTINUE
IF((ISOLVE.EQ.O) .AND. (ICRYS.EQ.1))THEN
WRITE(*,*)’0UTPUT FROM SUBR. SOLVCRYS: TEMPD FOR ICRYS=1’
C WRITE(*,*)’ISOLVE IS:’,ISOLVE
D0 7003 I=1,5
WRITE(*,2) TEMPD(I)
7003 CONTINUE
ENDIF

C GET THE SHEAR RATE ON EACH SYSTEM: DGAMMA

DO 115 IS = 1,NSYST
DGAMMA (1S, ICRYS)=0.D0
DO 120 JS=1,NSYST
RAS=0.DO
DO 130 K=1,5
RAS=RAS+TEMPD (K) *SCHG (K, JS, ICRYS)
130 CONTINUE
DGAMMA (IS, ICRYS)=DGAMMA(IS,ICRYS)+TGAMI(IS,JS)*RAS
120 CONTINUE
115 CONTINUE
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IF((ISOLVE.EQ.O).AND. (ICRYS.EQ.1))THEN

WRITE(*,*)’0UTPUT FROM SUBR. SOLVCRYS: DGAMMA FOR ICRYS=1’
DO 7004 IS=1,NSYST
WRITE(*,2) DGAMMA(IS,1)

7004 CONTINUE

ENDIF

C GET THE RESOLVED SHEAR STRESS (RSS) AND (SIG"ALPHA)

DO 140 IS = 1,NSYST
RSS(IS)=(DGAMMA (IS, ICRYS)/DABS (DGAMMA (IS, ICRYS)))*
+ SALPHT (IS, ICRYS)=*
+ (DABS(DGAMMA (IS, ICRYS))/(DTIME*GDOTO))**AM
140 CONTINUE
IF ((ISOLVE.EQ.0) .AND. (ICRYS.EQ.1))THEN
WRITE(*,*)’OUTPUT FROM SUBR. SOLVCRYS: RSS FOR ICRYS=1’
DO 7005 IS=1,NSYST
WRITE(*,2) RSS(IS)
7005 CONTINUE
ENDIF
DO 145 IS = 1,NSYST
SIGALPH(IS)=0.D0
DO 150 KS = 1,NSYST
SIGALPH(IS)=SIGALPH(IS)+TGAMI(IS,KS)*RSS(KS)
150 CONTINUE
145 CONTINUE
IF ((ISOLVE.EQ.0) .AND. (ICRYS.EQ.1))THEN
WRITE(*,*)’0UTPUT FROM SUBR. SOLVCRYS: SIGALPH FOR ICRYS=1’
DO 7006 IS=1,NSYST
WRITE(*,2) SIGALPH(IS)
7006 CONTINUE
ENDIF

C GET THE S7=*

DO 160 I=1,5
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SSTAR(I,ICRYS)=0.DO
DO 170 KS=1,NSYST
SSTAR(I,ICRYS)=SSTAR(I,ICRYS)+SIGALPH(KS)x*
+ SCHG(I,KS,ICRYS)
170 CONTINUE
160 CONTINUE
IF((ISOLVE.EQ.O) .AND. (ICRYS.EQ.1))THEN
WRITE(*,*)’0UTPUT FROM SUBR. SOLVCRYS: SSTAR FOR ICRYS=1’
DO 7007 I=1,5
WRITE(*,2) SSTAR(I,1)
7007 CONTINUE
ENDIF
70 CONTINUE !crystal loop

C GET <S™*>

DO 180 I=1,5
SSTAV(I) = 0.DO
DO 190 ICRYS=1,NCRYS
SSTAV(I) = SSTAV(I)+SSTAR(I,ICRYS)
190 CONTINUE
SSTAV(I)=SSTAV(I)/FLOAT(NCRYS)
180 CONTINUE
IF(ISOLVE.EQ.O)THEN
WRITE(*,*)’0UTPUT FROM SUBR. SOLVCRYS: SSTAV’
DO 7008 I=1,5
WRITE(*,2) SSTAV(I)
7008 CONTINUE
ENDIF
ISOLVE=ISOLVE+1
2 FORMAT(5(2X,F10.6))
RETURN
END

C INITIAL
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SUBROUTINE INITIAL(DNSAG,DBSAG,SCHG)
IMPLICIT REAL*8 (A-H,0-Z)
PARAMETER (MAXCRYS = 3000, MAXSYST = 5)
COMMON/VARIABLES/AMV (3,MAXSYST) , ANV (3,MAXSYST) ,QG(3,3,MAXCRYS),
+ SMATC(5,MAXSYST),DBAR(5),SBAR(5) ,NSYST,NCRYS,
+ TGAMI(MAXSYST,MAXSYST) ,SALPHT (MAXSYST,MAXCRYS),
+ PAVINV(5,5),WBAR(3,3),SSTAR(5,MAXCRYS),
+ D(5,MAXCRYS) ,DGAMMA (MAXSYST ,MAXCRYS)
COMMON/MATPLAS/GDOTO, AM,HO,R1,R2,R3,STILDE, AHARD,
+ QL,CRYSDIA,G,WIDTH
REAL*8 AUX(3,3),SCHG(5,MAXSYST,MAXCRYS)
REAL*8 TGAM(MAXSYST,MAXSYST)
REAL*8 DNSAG(3,MAXSYST,MAXCRYS) ,DBSAG (3,MAXSYST,MAXCRYS)
PI = DACOS(-1.D0)
SQR2=DSQRT(2.D0)
SQR3=DSQRT(3.D0)

C OBTAIN SLIP SYSTEM INFORMATION

OPEN(UNIT=11,FILE=’epsvar.dat’,STATUS = ’0LD’)

READ (11, %)

READ(11,*) NSYST !total # of available systems

READ(11,%)

DO 10 I = 1,NSYST

READ(11,*)

READ(11,*) (ANV(J,I),J=1,3),(AMV(J,I),J=1,3) 'read info for slip systems
10 CONTINUE

DO 20 IS = 1,NSYST

c COMPUTE THE SCHMID TENSOR IN CRYSTAL COORDS (AS A 5-VECTOR)

SMATC(1,IS)=(ANV(2,IS)*AMV(2,IS)-

+ ANV(1,IS)*AMV(1,IS))/SQR2
SMATC(2,1IS)=ANV(3,IS)*AMV(3,IS)*
+ SQR3/SQR2

SMATC(3,IS)=(ANV(2,IS)*AMV(3,IS)+
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+ ANV (3,IS)*AMV(2,IS))/SQR2
SMATC(4,IS)=(ANV(1,IS)*AMV(3,IS)+
+ ANV (3,IS)*AMV(1,IS))/SQR2
SMATC(5,IS)=(ANV(1,IS)*AMV(2,IS)+
+ ANV (2,IS)*AMV(1,IS))/SQR2
WRITE(*,*)’0UTPUT FROM SUBR. INITIAL: LOCAL SCHMID’,IS
WRITE(*,2) (SMATC(I,IS),I=1,5)

20 CONTINUE
C GET THE TENSOR TGAM(NSYST,NSYST) AND ITS INVERSE ’TGAMI’
C WHICH DO NOT DEPEND ON THE FRAME AND ARE USED IN

C SUBROUTINE ’SOLVCRYS’

DO 40 IS=1,NSYST
DO 40 JS=1,NSYST
TGAM(IS,JS)=0.D0

DO 50 K=1,5

TGAM (IS, JS)=TGAM(IS,JS)+SMATC(K,IS)*SMATC(K,JS)
50 CONTINUE
40 CONTINUE

WRITE(*,*) OUTPUT FROM SUBR. INITIAL: TGAM’

DO 1001 I=1,NSYST

WRITE(*,2) (TGAM(I,J),J=1,NSYST)
1001 CONTINUE
CALL MDET(TGAM,DET)
WRITE(*,*) ’DETERMINANT OF TGAM IS:’,DET
CALL MATINV(TGAM,NSYST,MAXSYST,TGAMI)
WRITE(*,*) >OUTPUT FROM SUBR. INITIAL: TGAMI’

DO 1002 I=1,NSYST

WRITE(*,2) (TGAMI(I,J),J=1,NSYST)
1002 CONTINUE

C 1. READ EULER ANGLES FOR EACH N CRYSTALS

C 2. CALCULATE THE ROTATION MATRIX [QG] FOR EACH CRYSTAL

C 3. CALCULATE THE SCHMID TENSOR IN THE GLOBAL COORDINATE SYSTEM (SCHG) USING
C SUBROUTINE SCHMAC
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OPEN(UNIT=12,FILE=’euler8untex.dat’,STATUS="0LD’)

READ (12, %)

READ(12,*) NCRYS

READ (12, %)

READ(12, %)

DO 60 ICRYS = 1,NCRYS

C READ EULER ANGLES FOR EACH CRYSTAL

READ(12,*)TH,PHI,OM
TH = TH*PI/180.DO
PHI = PHI*PI/180.D0
OM = OM*PI/180.DO

C CALCULATE THE ROTATION MATRIX [QG] FOR EACH CRYSTAL

CALL ROTMAT(TH,PHI,OM,AUX)

C STORE [AUX] FOR EACH CRYSTAL IN {QG] FOR FUTURE USE

DO 70 I=1,3

Do 70 J=1,3
QG(I,J,ICRYS) = AUX(I,J)

70 CONTINUE

C INPUT CONSTANT CRSS

SALPHT(1,ICRYS)

SALPHT(2,ICRYS)
SALPHT (3, ICRYS)

60 CONTINUE 'done for all crystals

R1
R2

R3 !constant CRSS for Nylon6 trial

WRITE(*,*)’0UTPUT FROM SUBR. INITIAL: QG FOR ICRYS=1’

DO 1003 I=1,3

WRITE(*,2) (QG(I,J,1),J=1,3)

1003 CONTINUE
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WRITE(*,*)’0QUTPUT FROM SUBR. INITIAL: SALPHT(IS,1)’
DO 1004 IS=1,NSYST
WRITE(*,2) SALPHT(IS,1)
1004 CONTINUE

C CALCULATE SCHMID TENSOR IN GLOBAL AXES (SCHG)

CALL SCHMAC(DNSAG,DBSAG,SCHG)

WRITE(*,*) ’EVEN MORE QUTPUT FROM SUBR. INITIAL’

DO 1005 IS=1,NSYST

WRITE(*,*) ’SLIP PLANE NORMAL IN GLOBAL FOR ICRYS=1, SYST:’,IS
WRITE(*,2) (DNSAG(I,IS,1),I=1,3)

WRITE(*,*)’SLIP DIRECTION IN GLOBAL FOR ICRYS=1, SYST:’,IS
WRITE(*,2) (DBSAG(I,IS,1),I=1,3)

WRITE(*,*) ’SCHMID TENSOR IN GLOBAL FOR ICRYS=1, SYST:’,IS
WRITE(*,2) (SCHG(I,IS,1),I=1,5)

1005 CONTINUE

2 FORMAT(5(2X,F10.6))

RETURN

END

C SCHMAC

SUBROUTINE SCHMAC(DNSAG,DBSAG,SCHG)
IMPLICIT REAL*8(A-H,0-2)
PARAMETER (MAXCRYS = 3000, MAXSYST = 5)
COMMON/VARIABLES/AMV (3 ,MAXSYST) ,ANV(3,MAXSYST),QG(3,3,MAXCRYS),
+ SMATC(5,MAXSYST) ,DBAR(5) ,SBAR(5) ,NSYST,NCRYS,
+ TGAMI(MAXSYST,MAXSYST) ,SALPHT (MAXSYST,MAXCRYS),
+ PAVINV(5,5),WBAR(3,3),SSTAR(5,MAXCRYS),
+ D(5,MAXCRYS) ,DGAMMA (MAXSYST ,MAXCRYS)
COMMON/MATPLAS/GDOTO,AM,HO,R1,R2,R3,STILDE, AHARD,
+ QL,CRYSDIA,G,WIDTH
REAL*8 DNSA(3,MAXSYST),DBSA(3,MAXSYST),A(3,3),SCH(5,MAXSYST)
REAL*8 DNSAG(3,MAXSYST,MAXCRYS) ,DBSAG(3,MAXSYST,MAXCRYS)
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REAL*8 SCHG(5,MAXSYST,MAXCRYS)

C GET ANV, AMV AND SCHMID TENSOR IN MACRO AXES

SQR2=DSQRT(2.D0)
SQR3=DSQRT(3.D0)
DO 10 ICRYS=1,NCRYS
DO 15 I=1,3
DO 15 J=1,3
15 A(I,J)=QG(I,J,ICRYS) !rotation matrix for each crystal
DO 20 IS=1,NSYST
DO 30 I=1,5
SCH(I,IS) = 0.DO
30 CONTINUE
DO 170 J=1,3
DNSA(J,15)=0.D0
DBSA(J,IS)=0.D0
DO 180 K=1,3
DNSA(J,IS)=DNSA(J,IS)+A(J,K)*ANV(K,IS)
DBSA(J,IS)=DBSA(J,IS)+A(J,K)*AMV(K,IS)
180 CONTINUE
170 CONTINUE
SCH(I,IS)=(DNSA(2,IS)*DBSA(Q,IS)-DNSA(l,IS)*DBSA(l,IS))/SQRQ
SCH(2,1S)=DNSA(3,1S)*DBSA(3,IS)*SQR3/SQR2
SCH(3,IS)=(DNSA(2,IS)*DBSA(3,IS)+DNSA(3,IS)*DBSA(Q,IS))/SQR?
SCH(4,IS)=(DNSA(1,IS)*DBSA(S,IS)+DNSA(3,IS)*DBSA(1,IS))/SQR2
SCH(5,IS)=(DNSA(1,IS)*DBSA(?,IS)+DNSA(2,IS)*DBSA(1,IS))/SQRZ
D0 25 I=1,5
SCHG(I,IS,ICRYS)=SCH(I,IS) 'assigns a 5-vector to each system of
!each crystal, in global coords
25 CONTINUE
DO 26 I=1,3
DNSAG(I,IS,ICRYS)=DNSA(I,IS) !'normals in global coords
DBSAG(I,IS,ICRYS)=DBSA(I,IS) !slip directions in global coords
26 CONTINUE
20 CONTINUE !done for all available systems
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10 CONTINUE !done for all crystals
RETURN
END

C ORIENT

SUBROUTINE ORIENT(DTIME,T,A)
IMPLICIT REAL*8(A-H,0-Z)
PARAMETER (MAXCRYS = 3000, MAXSYST = 5)
COMMON/VARIABLES/AMV (3,MAXSYST) ,ANV(3,MAXSYST) ,QG(3,3,MAXCRYS),
+ SMATC(5,MAXSYST) ,DBAR(5) ,SBAR(5) ,NSYST,NCRYS,
+ TGAMI(MAXSYST,MAXSYST) ,SALPHT (MAXSYST,MAXCRYS),
+ PAVINV(5,5) ,WBAR(3,3),SSTAR(5,MAXCRYS),
+ D(5,MAXCRYS) ,DGAMMA (MAXSYST,MAXCRYS)

COMMON/MATPLAS/GDOTO,AM,HO,R1,R2,R3,STILDE, AHARD,

+ QL,CRYSDIA,G,WIDTH

REAL*8 A(3,3),T(3,3),C(3,3),TH2(3,3),V(3) ,VBAR(3),TH(3,3)
REAL*8 ROT(3,3),ANEW(3,3)

C T IS THE DISTORSION TENSOR, WE FIRST TAKE THE SKEW SYMMETRIC PART OF IT, C, AND
C BUILD THE ORTHOGONAL ROTATION TENSOR BASED ON RODRIGUEZ FORMULA.

PI=4.DO*DATAN(1.DO)

SQR2=DSQRT(2.D0)

SQR3=DSQRT(3.D0)

DO 10 I=1,3

DO 10 J=1,3
C(I,J)=(WBAR(I,J)-(T(I,J)-T(J,I))/2.D0)*DTIME

10 CONTINUE

V(1)=C(3,2)

V(2)=C(1,3)

V(3)=C(2,1)

SNORM=DSQRT (V(1)*V(1)+V(2)*V(2)+V(3)*V(3))

SNORM1=DTAN (SNORM/2.D0)
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IF(SNORM.GT.1.D-08) GO TO 97
SNORM=1.DO0
97 DO 20 I=1,3
VBAR (I)=SNORM1xV (I)/SNORM
20 CONTINUE
SNORM=VBAR (1) *VBAR (1) +VBAR(2) *VBAR (2) +VBAR (3) *VBAR(3)
TH(3,2)=VBAR(1)
TH(1,3)=VBAR(2)
TH(2,1)=VBAR(3)
TH(2,3)=-VBAR(1)
TH(3,1)=-VBAR(2)
TH(1,2)=-VBAR(3)
DO 40 I=1,3
40 TH(I,I)=0.D0
DO 30 I=1,3
DO 30 J=1,3
TH2(I,J)=0.D0
DO 50 K=1,3
TH2(I,J)=TH2(I,J)+TH(I,K)*TH(K,J)
50 CONTINUE
30 CONTINUE
D0 60 I=1,3
DO 60 J=1,3
ROT(I,J)=(I/J)*(J/I)+2.D0*(TH(I,J)+TH2(I,J))/(1.DO+SNORM)
60 CONTINUE
DO 70 I=1,3
D0 70 J=1,3
ANEW (I, J)=0.DO0
DO 80 K=1,3
ANEW(I,J)=ANEW(I,J)+ROT(I,K)*A(K,J)
80 CONTINUE
70 CONTINUE
D0 90 I=1,3
DO 90 J=1,3
A(I,J)=ANEW(I,J)
90 CONTINUE
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RETURN
END

C FUNC

SUBROUTINE FUNC(DTIME,LD,TR1,TR2,STRAINRATE,R,SCHG,TEST2)

C GIVEN A RATIO R=L11/L22 THIS SUBROUTINE RETURNS
C TEST2=DABS(SDEV(TR1,TR1)-SDEV(TR2,TR2))

IMPLICIT REAL*8 (A-H,0-Z)
PARAMETER (MAXCRYS = 3000, MAXSYST = 5)
COMMON/VARIABLES/AMV (3,MAXSYST) , ANV (3,MAXSYST) ,QG(3,3,MAXCRYS),

+ SMATC(5,MAXSYST) ,DBAR(5) ,SBAR(5) ,NSYST,NCRYS,

+ TGAMI(MAXSYST,MAXSYST) ,SALPHT (MAXSYST,MAXCRYS),

+ PAVINV(5,5) ,WBAR(3,3),SSTAR(5,MAXCRYS),

+ D(5,MAXCRYS) ,DGAMMA (MAXSYST,MAXCRYS)
COMMON/MATPLAS/GDOTO, AM,HO,R1,R2,R3,STILDE, AHARD,

+ QL,CRYSDIA,G,WIDTH

INTEGER LD,TR1,TR2

REAL*8 LBARDOT(3,3),DB3(3,3),PAV(5,5)

REAL*8 SSTAV(5),SDEV(3,3),SCHG(5,MAXSYST,MAXCRYS)
CALL ZEROM(LBARDOT, 3)
LBARDOT (LD, LD)=STRAINRATE
LBARDOT(TR1,TR1)=-STRAINRATE/ (1+R)
LBARDOT(TR2, TR2)=- (R*STRAINRATE) / (1+R)
D0 10 I=1,3
DO 10 J=1,3

DB3(I,J)=(LBARDOT(I,J)+LBARDOT(J,I))/2.D0O
WBAR(I,J)=(LBARDOT(I,J)-LBARDOT(J,I))/2.D0

10 CONTINUE
CALL MATVEC(DB3,DBAR)
CALL SOLVCRYS(DTIME,SCHG,SSTAV,PAV)
CALL MULTMV(PAVINV,SSTAV,SBAR,5)
CALL VECMAT (SBAR,SDEV)
TEST2=DABS (SDEV(TR1,TR1) -SDEV(TR2,TR2))
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2 FORMAT(5(2X,F10.6))
RETURN
END

C MNBRAK

SUBROUTINE MNBRAK(DTIME,LD,TR1,TR2,STRAINRATE,SCHG,
+ AX,BX,CX)

C GIVEN DISTINCT INITIAL POINTS FOR R (AX AND BX) THIS SUBROUTINE
C BRACKETS THE MINIMUM OF TEST2 AND RETURNS NEW POINTS AX, BX, AND CX.
C ALSO, THE VALUE OF TEST2 AT THESE POINTS FA, FB, AND FC.

IMPLICIT REAL*8 (A-H,0-Z)
PARAMETER (MAXCRYS = 3000, MAXSYST = 5)
PARAMETER (GOLD=1.618034D0,GLIMIT=100.D0,TINY=1.E-20)
COMMON/VARIABLES/AMV (3,MAXSYST) ,ANV(3,MAXSYST),QG(3,3,MAXCRYS),
+ SMATC(5,MAXSYST) ,DBAR(5) ,SBAR(5) ,NSYST,NCRYS,
+ TGAMI(MAXSYST,MAXSYST),SALPHT (MAXSYST,MAXCRYS),
+ PAVINV(5,5),WBAR(3,3),SSTAR(5,MAXCRYS),
+ D(5,MAXCRYS) ,DGAMMA (MAXSYST ,MAXCRYS)
COMMON/MATPLAS/GDOTO, AM,HO,R1,R2,R3,STILDE, AHARD,
+ QL,CRYSDIA,G,WIDTH
INTEGER LD,TR1,TR2
REAL*8 SCHG(5,MAXSYST,MAXCRYS)
AX=0.DO
BX=1.DO
CALL FUNC(DTIME,LD,TR1,TR2,STRAINRATE,AX,SCHG,FA)
CALL FUNC(DTIME,LD,TR1,TR2,STRAINRATE,BX,SCHG,FB)
IF(FB.GT.FA) THEN
DUM=AX
AX=BX
BX=DUM
DUM=FB
FB=FA
FA=DUM
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ENDIF
CX=BX+GOLD* (BX-AX)
CALL FUNC(DTIME,LD,TR1,TR2,STRAINRATE,CX,SCHG,FC)
1 IF(FB.GE.FC)THEN
R=(BX~AX) * (FB-FC)
Q=(BX-CX) * (FB-FA)
U=BX- ((BX-CX)*Q-(BX-AX)*R)/

+ (2.DO*SIGN(MAX (DABS(Q-R),TINY),Q-R))

ULIM=BX+GLIMIT* (CX-BX)

IF ((BX-U)* (U-CX) .GT.0.DO) THEN

CALL FUNC(DTIME,LD,TR1,TR2,STRAINRATE,U,SCHG,FU)

IF (FU.LT.FC) THEN

AX=BX

FA=FB

BX=U

FB=FU

RETURN
ELSE IF(FU.GT.FB)THEN
CX=U
FC=FU
RETURN
ENDIF
U=CX+GOLD* (CX-BX)
CALL FUNC(DTIME,LD,TR1,TR2,STRAINRATE,U,SCHG,FU)
ELSE IF((CX-U)*(U-ULIM).GT.0.DO)THEN
CALL FUNC(DTIME,LD,TR1,TR2,STRAINRATE,U,SCHG,FU)
IF(FU.LT.FC)THEN
BX=CX
CX=U
U=CX+GOLD* (CX-BX)
FB=FC
FC=FU
CALL FUNC(DTIME,LD,TR1,TR2,STRAINRATE,U,SCHG,FU)
ENDIF
ELSE IF((U-ULIM)=*(ULIM-CX).GE.0.DO)THEN
U=ULIM
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CALL FUNC(DTIME,LD,TR1,TR2,STRAINRATE,U,SCHG,FU)
ELSE

U=CX+GOLD* (CX-BX)

CALL FUNC(DTIME,LD,TR1,TR2,STRAINRATE,U,SCHG,FU)
ENDIF

AX=BX

BX=CX

CX=U

FA=FB

FB=FC

FC=FU

GO TO 1
ENDIF
RETURN
END

C GOLDEN

SUBROUTINE GOLDEN(DTIME,LD,TR1,TR2,STRAINRATE,SCHG,
+ AX,BX,CX,TOL,XMIN,GOLE)

C THIS SUBROUTINE PERFORMS GOLDEN SECTION SEARCH FOR THE MINIMUM OF
C FUNC, ISOLATING IT TO A FRACTIONAL PRECISION OF ABOUT TOL

IMPLICIT REAL*8 (A-H,0-Z)
PARAMETER (MAXCRYS = 3000, MAXSYST = 5)
PARAMETER (R=0.61803399D0,C=1.D0-R)
COMMON/VARIABLES/AMV (3,MAXSYST) , ANV (3,MAXSYST),QG(3,3,MAXCRYS),
+ SMATC(5,MAXSYST),DBAR(5) ,SBAR(5),NSYST,NCRYS,
+ TGAMI(MAXSYST,MAXSYST),SALPHT (MAXSYST,MAXCRYS),
+ PAVINV(5,5) ,WBAR(3,3),SSTAR(5,MAXCRYS),
+ D(5,MAXCRYS) ,DGAMMA (MAXSYST,MAXCRYS)

COMMON/MATPLAS/GDOTO,AM,HO,R1,R2,R3,STILDE, AHARD,
+ QL,CRYSDIA,G,WIDTH

130



INTEGER LD,TR1,TR2
REAL*8 SCHG(5,MAXSYST,MAXCRYS)
ITRIAL=0
X0=AX
X3=CX
IF (DABS(CX-BX) .GT.DABS(BX-AX) ) THEN
X1=BX
X2=BX+Cx* (CX-BX)
ELSE
X2=BX
X1=BX-C* (BX-AX)
END IF
CALL FUNC(DTIME,LD,TR1,TR2,STRAINRATE,X1,SCHG,F1)
CALL FUNC(DTIME,LD,TR1,TR2,STRAINRATE,X2,SCHG,F2)
1 IF(DABS(X3-X0).GT.TOL*(DABS(X1)+DABS(X2)))THEN
IF(F2.LT.F1) THEN
X0=X1
X1=X2
X2=R*X1+C*X3
F1=F2
CALL FUNC(DTIME,LD,TR1,TR2,STRAINRATE,X2,SCHG,F2)
ELSE
X3=X2
X2=X1
X1=R*X2+C*X0
F2=F1
CALL FUNC(DTIME,LD,TR1,TR2,STRAINRATE,X1,SCHG,F1)
ENDIF
ITRIAL=ITRIAL+1
GOTO 1
ENDIF
WRITE(*,*)’# OF TRIALS IS:’,ITRIAL
IF(F1.LT.F2)THEN
XMIN=X1
GOLE=F1
ELSE
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XMIN=X2
GOLE=F2
END IF
RETURN
END

C UTILITIES SUBROUTINES:

C MULTMV

SUBROUTINE MULTMV(A,V,VNEW,N)

IMPLICIT REAL*8(A-H,0-2)

REAL*8 A(N,N),V(N),VNEW(N)

C THIS SUBROUTINE TRANSFORMS VECTOR V TO VECTOR VNEW
C BY MULTIPLYING BY MATRIX A.

DO 10 I=1,N
VNEW(I)=0.DO

DO 15 J=1,N
15 VNEW (I)=VNEW(I)+A(I,J)*V(J)
10 CONTINUE

RETURN

END
C MATVEC

SUBROUTINE MATVEC(A,V)
IMPLICIT REAL*8(A-H,0-2)
REAL*8 A(3,3),V(5)

C TRANSFORMS A 3X3 SYMM. TRACELESS MATRIX TO A 5-VECTOR

SQR2=DSQRT(2.D0)

SQR3=DSQRT(3.D0)

V(1)=(A(2,2)-A(1,1))/SQR2
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V(2)=A(3,3)*SQR3/SQR2
V(3)=A(2,3)*SQR2
V(4)=A(1,3)*SQR2
V(5)=A(1,2)*SQR2
RETURN

END

C VECMAT

SUBROUTINE VECMAT(V,A)
IMPLICIT REAL*8(A-H,0-Z)
REAL*8 A(3,3),V(5)

C TRANSFORMS A 5-VECTOR TO A 3X3 SYMM. TRACELESS MATRIX

SQR2=DSQRT(2.D0)
SQR3=DSQRT(3.D0)
A(3,3)=V(2)*SQR2/SQR3
A(2,2)=(V(1)/SQR2)-V(2)/(SQR2*SQR3)
A(1,1)=-A(2,2)-A(3,3)
A(1,2)=V(5)/SQR2
A(2,1)=A(1,2)
A(1,3)=V(4)/SQR2
A(3,1)=A(1,3)
A(2,3)=V(3)/SQR2
A(3,2)=A(2,3)

RETURN

END

C MATMUL

C THIS SUBROUTINE MULTIPLIES MATRIX A BY MATRIX B TO GIVE MATRIX C

SUBROUTINE MATMUL(A,IA,B,IB,C,IC,L,M,K)

IMPLICIT REAL*8(A-H,0-Z)
REAL*8 A(IA,IA),B(IB,IB),C(IC,IC)
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DO 10 I=1,L
DO 10 J=1,K
C(1,J)=0.D0
DO 20 II=1,M
20 C(I,J)=C(I,J)+A(I,II)*B(II,J)
10 CONTINUE
RETURN
END

C ONEM

C THIS SUBROUTINE STORES THE 3X3 IDENTITY MATRIX IN MATRIX [A]

SUBROUTINE ONEM(A)

REAL*8 A(3,3)
DO1TI

1,3
DO 1J

1,3
IF (I.EQ.J) THEN
A(I,J) = 1.D0
ELSE
A(I,J) = 0.DO
END IF
1 CONTINUE
RETURN
END

C ROTMAT

SUBROUTINE ROTMAT(TH,PHI,OM,Q)

IMPLICIT REAL*8(A-H,0-Z)

REAL*8 Q(3,3)

C INITIALIZE

CALL ONEM(Q)
STH = DSIN(TH)
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CTH = DCOS(TH)
SPH = DSIN(PHI)
CPH = DCOS(PHI)
SOM = DSIN(OM)
COM = DCOS(OM)

Q(1,1) = CPH*COM-SPH*SOM*CTH

Q(1,2) = SPH*COM+CPHxSOM*CTH
Q(1,3) = SOM*STH
Q(2,1) = -CPH*SOM-SPH*COM*CTH
Q(2,2) = -SPHxSOM+CPH*COM*CTH
Q(2,3) = COM*STH
Q(3,1) = SPH*STH
Q(3,2) = -CPH*STH
Q(3,3) = CTH

RETURN

END

C EULANG

SUBROUTINE EULANG(Q,N,TH,PHI,OM,ICRYS)

IMPLICIT REAL*8(A-H,0-Z)

REAL*8 Q(N,N)

PI = 4.DO*DATAN(1.DO)

ICHK=0

IF (DABS(Q(3,3))-1.0.GT.1.0D-6)THEN 'why the 1.07
WRITE(9,*)’Q’, ((Q(1,J),J=1,3),1=1,3)

PAUSE ’Q(3,3) > 1.0’

ENDIF
Do 10 I =1,3
DO 10 J =1,3

10  IF(DABS(Q(I,J)).LT.1.0D-6)Q(I,J)=0.DO
IF (DABS (DABS(Q(3,3))-1.0) .LT.1.0D-6)THEN !vhy the 1.07
CALL CHECK1(Q,3,TH,PHI,OM,ICHK)
IF(ICHK.NE.1)GO TO 20
RETURN
ENDIF
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TH = DAC0S(Q(3,3))
STH = DSIN(TH)
OM = DATAN2(Q(1,3)/STH,Q(2,3)/STH)
PHI = DATAN2(Q(3,1)/STH,-Q(3,2)/STH)
CALL CHECK(Q,3,TH,PHI,OM,ICHK)
IF(ICHK.EQ.1)RETURN
TH = 2.DO*PI-TH
STH = DSIN(TH)
OM = DATAN2(Q(1,3)/STH,Q(2,3)/STH)
PHI = DATAN2(Q(3,1)/STH,-Q(3,2)/STH)
CALL CHECK(Q,3,TH,PHI,OM, ICHK)
20 IF(ICHK.NE.1)THEN
WRITE(9,*)’ICRYS = ’,ICRYS
WRITE(9,%)’Q’, ((Q(J,K),K=1,3),J=1,3)
PAUSE ’FAILED TO FIND EULER ANGLES’
ENDIF
RETURN
END

C CHECK1

SUBROUTINE CHECK1(Q,N,TH,PHI,OM,ICHK)
IMPLICIT REAL*8(A-H,0-2Z)
REAL*8 Q(N,N)
TOL=1.0D-3
Q(3,3) = 1.0%Q(3,3)/DABS(Q(3,3)
TH = DAC0S(Q(3,3))
IF(DABS(Q(1,3)) .GT.TOL)RETURN
IF(DABS(Q(2,3)).GT.TOL)RETURN
IF(DABS(Q(3,1)) .GT.TOL)RETURN
IF(DABS(Q(3,2)) .GT.TOL)RETURN
IF(Q(3,3) .EQ.1.0)THEN !'why the 1.07
IF(DABS(Q(1,1)-Q(2,2)) .GT.TOL)RETURN
IF(DABS(Q(1,2)+Q(2,1)) .GT.TOL)RETURN
ELSE
IF(DABS(Q(1,1)+Q(2,2)) .GT.TOL)RETURN

136



IF(DABS(Q(1,2)-Q(2,1)) .GT.TOL)RETURN
ENDIF
PHI = DATAN2(Q(1,2),Q(1,1))
OM = 0.DO
ICHK = 1
RETURN
END

C CHECK

SUBROUTINE CHECK(Q,N,TH,PHI,OM,ICHK)
IMPLICIT REAL*8(A-H,0-Z)
REAL*8 Q(N,N)

TOL=1.0D-3

A

DCOS (PHI)*DCOS (OM) -DSIN (PHI)*DSIN (OM)*DCOS (TH)
-DSIN(0M)*DCOS (PHI)-DCOS (OM)*DSIN (PHI)*DCOS (TH)
DCOS (OM) *DSIN(PHI)+DSIN(0OM)*DCOS (PHI) *DCOS (TH)
-DSIN(PHI)*DSIN(OM)+DCOS(PHI)*DCOS (OM) *DCOS (TH)
IF (DABS(A-Q(1,1)).LT.TOL.AND.DABS(B-Q(2,1)) .LT.TOL.
+ AND.DABS(C-Q(1,2)).LT.TOL.AND.DABS(D-Q(2,2)) .LT.TOL) ICHK=1
RETURN

B
C
D

END

C MATINV

SUBROUTINE MATINV(A,N,NP,Y)
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION A(NP,NP),Y(NP,NP), INDX(NP)

C Set up the identity matrix

DO 12 I=1,N
DO 11 J=1,N
Y(I,J)=0.DO
11 CONTINUE
Y(I,I)=1.D0

137



12 CONTINUE

C Decompose the matrix just once (LU Decomposition)

CALL LUDCMP(A,N,NP,INDX,D)

C Find the inverse by columns. It is necessary to recognize
C that FORTRAN stores two dimensional matrices by column, so

C so that Y(1,J) is the address of the Jth column of Y.

DO 13 J=1,N
CALL LUBKSB(A,N,NP,INDX,Y(1,J))
13 CONTINUE
RETURN
END

C LUDCMP

SUBROUTINE LUDCMP(A,N,NP,INDX,D)
IMPLICIT REAL*8 (A-H,0-Z)
PARAMETER (NMAX=100,TINY=1.0E-20)
DIMENSION A(NP,NP),INDX(N),VV(NMAX)

D=1.D0O

DO 12 I=1,N
AAMAX=0.DO
DO 11 J=1,N

IF (DABS(A(I,J)).GT.AAMAX) AAMAX=DABS(A(I,J))
11 CONTINUE
IF (AAMAX.EQ.0.DO) PAUSE ’Singular matrix.’
VV(I)=1.DO/AAMAX
12 CONTINUE
DO 19 J=1,N
IF(J.GT.1)THEN !vwhere did that come from?
DO 14 I=1,J-1
SUM=A(I,J)
IF(I.GT.1)THEN !where did that come from?
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DO 13 K=1,I-1
SUM=SUM-A(I,K)*A(K,J)
13 CONTINUE
A(I,J)=SUM
ENDIF !'where did that come from?
14 CONTINUE
ENDIF !'where did that come from?
AAMAX=0.DO
DO 16 I=J,N
SUM=A(I,J)
IF(J.GT.1)THEN !where did that come from?
DO 15 K=1,J-1
SUM=SUM-A(I,K)*A(K,J)
15 CONTINUE
A(T,J)=SUM
ENDIF !vwhere did that come from?
DUM=VV (I)*DABS (SUM)
IF(DUM.GE.AAMAX) THEN
IMAX=1I
AAMAX=DUM
ENDIF
16 CONTINUE
IF(J.NE.IMAX)THEN
DO 17 K=1,N
DUM=A (IMAX,K)
A(IMAX,K)=A(J,K)
A(J,K)=DUM
17 CONTINUE
D=-D
VV(IMAX)=VV(J)
ENDIF
INDX (J)=IMAX
IF(A(J,J) .EQ.0.DO)A(J,J)=TINY
IF(J.NE.N)THEN !that was the other way around
DUM=1.DO/A(J,J)
DO 18 I=J+1,N
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A(TI,J)=A(I,J)*DUM
18 CONTINUE
ENDIF
19 CONTINUE
RETURN
END

C LUBKSB

SUBROUTINE LUBKSB(A,N,NP,INDX,B)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION A(NP,NP),INDX(N),B(N)
I1=0
DO 12 I=1,N
LL=INDX(I)
SUM=B(LL)
B(LL)=B(I)
IF (II.NE.O)THEN
DO 11 J=II,I-1
SUM=SUM-A (I, J)*B(J)
11 CONTINUE
ELSE IF(SUM.NE.0.DO)THEN
II=1
ENDIF
B(I)=SUM
12 CONTINUE
DO 14 I=N,1,-1
SUM=B(I)
IF(I.LT.N)THEN !where did that come from
DO 13 J=I+1,N
SUM=SUM-A(I,J)*B(J)
13 CONTINUE
ENDIF !where did that come from
B(I)=SUM/A(I,I)
14 CONTINUE
RETURN
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END

C EQUIVS

SUBROUTINE EQUIVS(S,SB)

C THIS SUBROUTINE CALCULATES THE EQUIVALENT TENSILE STRESS SB
C CORRESPONDING TO A 3X3 STRESS MATRIX [S]

REAL*8 S(3,3),SDEV(3,3),SD0TS,SB
SB = 0.DO

SDOTS = 0.DO

CALL DEVM(S,SDEV)

CALL DOTPM(SDEV,SDEV,SDOTS)

SB = DSQRT(1.5D0* SDOTS)

RETURN

END

C DEVM

SUBROUTINE DEVM(A,ADEV)

C THIS SUBROUTINE CALCULATES THE DEVIATORIC PART OF A 3X3 MATRIX [A]

REAL*8 A(3,3),TRA,ADEV(3,3),IDEN(3,3)
CALL TRACEM(A,TRA)

CALL ONEM(IDEN)

CALL ZEROM(ADEV,3)

1,3

1,3

DO11I
DO 1J

ADEV(I,J) = A(I,J) - (1.D0/3.DO)*TRA*IDEN(I,J)
1 CONTINUE
RETURN
END

C TRACEM
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SUBROUTINE TRACEM(A,TRA)

C THIS SUBROUTINE CALCULATES THE TRACE OF A 3X3 MATRIX [A] AND STORES
C THE RESULT IN THE SCALAR TRA

REAL*8 A(3,3),TRA

TRA = A(1,1) + A(2,2) + A(3,3)

RETURN

END

C DOTPM

SUBROUTINE DOTPM(A,B,C)

C THIS SUBROUTINE CALCULATES THE SCALAR PRODUCT OF TWO

C 3 BY 3 MATRICES [A] AND [B] AND STORES THE RESULT IN THE

C SCALAR C.

REAL*8 A(3,3),B(3,3),C

C= 0.D0
DO 11I-=1,3
DO 1J=1,3
C = C + A(I,J)*B(I,J])
1 CONTINUE
RETURN
END
C ZEROM

SUBROUTINE ZEROM(A,N)

C THIS SUBROUTINE SETS ALL ENTRIES OF A N BY N MATRIX TO 0.DO

REAL*8 A(N,N)
DO 1 I=1,N
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po 1 J=1,N
A(I,J) = 0.DO
1 CONTINUE
RETURN
END

C MDET

SUBROUTINE MDET(A,DET)

C THIS SUBROUTINE CALCULATES THE DETERMINANT OF A 3X3 MATRIX [A].

REAL*8 A(3,3),DET

DET = A(1,1)*A(2,2)#*A(3,3)

+ + A(1,2)%A(2,3)*A(3,1)

+ + A(1,3)*A(2,1)*A(3,2)

+

+ - A(3,1)*A(2,2)*A(1,3)
+ - A(3,2)*A(2,3)*A(1,1)
+ - A(3,3)*A(2,1)*A(1,2)
RETURN
END
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