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Abstract

We present a formulation and numerical solution procedure for hybrid atomistic—
continuum representations of fluid flows. Hybrid representations are of great im-
portance because they allow the solution of problems that require modelling on the
microscale without the associated cost of a fully molecular solution. This is achieved
by limiting the molecular treatment to the regions where it is needed while using the
inexpensive continuum description in the remainder of the computational domain.

The ingredients are, from the atomistic side, non-equilibrium molecular dynamics,
and from the continuum side, spectral/finite element solutions. Molecular dynamics
has been chosen for its ability to capture all the underlying physics without the need
for modelling assumptions. The continuum solution techniques chosen represent the
best compromise between the minimum computational cost, simplicity, and appli-
cability to a wide variety of problems of interest. The matching is provided by a
classical procedure, the Schwarz alternating method with overlapping subdomains.
This matching technique exhibits favorable convergence properties and has been pre-
ferred because of its ability to bypass the problem of matching fluxes in molecular
dynamics which has not been satisfactorily treated to date.

Flow of a dense fluid (supercritical Argon) in a complex two-dimensional chan-
nel serves as a test problem for the validation of the technique developed above.
Reasonable agreement is found between the hybrid solution and the fully continuum
solution which is taken to be exact. The hybrid technique is subsequently applied to
the moving contact line problem.

The motion of contact lines (the locus of intersection of a two-fluid interface with
a bounding solid) has, due to the multitude of length scales involved, been one of
the few problems that has defied theoretical analysis over the years. It has long been
concluded that continuum hydrodynamics is not adequate for the description of the
physics involved in the vicinity of the contact angle, which is predominantly molecular
kinetic, thus making this problem a good candidate for our solution technique.

The basic ingredients for the hybrid treatment of the contact line problem are
the continuum solution technique, the molecular solution technique, and a modified
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Schwarz method required due to the existence of two fluids and a two-fluid inter-
face. The continuum solution is provided by a variationally consistent finite element
simulation technique we have developed for the above reason. An already developed
molecular simulation technique is adapted to provide the molecular solution. Our
hybrid solution is compared with the fully molecular solution which serves as an ex-
act solution for comparison purposes. Good agreement is found between the two
solutions.

Thesis Supervisor: Anthony T. Patera
Title: Professor
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Chapter 1

Introduction

Many important problems in materials processing involve a range of scales from the
atomistic to the continuum. Purely atomistic representations are clearly computation-
ally intractable because of the number of particles required to represent macroscale
phenomena [26]; conversely, purely continuum approaches often neglect certain critical
microscale phenomena that do not now, and many never, admit adequate macroscale
constitutive characterization. New integrative frameworks are therefore required, not
only of the well-established atomistic then continuum variety, but also of the atomistic
with continuum variety.

Our interest is in the latter, in particular, in gas—liquid-solid systems subject to
the full range of mechanical, thermal, and, ultimately, chemical interactions. Such a
framework will allow us to treat a variety of problems of practical importance. The
need for a better understanding of wall fluid interactions, two-phase flow, contact
line motion, and material behavior under highly non-equilibrium situations, are a few
of the envisioned applications of a hybrid solution framework, driven primarily by
today’s rapidly expanding needs for materials processing techniques.

The isothermal moving contact line problem, which is fully described in a follow-
ing section, will be used as an example problem in this thesis. This problem lends
itself nicely to the new integrative framework presented here, because its satisfactory
solution requires molecular input that is localized to small (and hence tractable by

molecular techniques) regions, namely the vicinity of the contact point.
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1.1 Previous Work

Hybrid atomistic-continuum representations have been developed for problems in
both solid mechanics and fluid mechanics. In fluid mechanics, several domain decom-
position approaches have been proposed and implemented [13]. Most methods devel-
oped to date are, however, restricted to gas flows, in that both the particle treatment
(e.g., Direct Simulation Monte Carlo techniques, discretizations of the Boltzmann
equation) and the interface treatment (e.g., variations of the Marshak condition) are
directly applicable only to dilute systems [7, 44, 16]. Although these concepts can
perhaps be extended to dense fluids, we have chosen a slightly different strategy that
does not require explicit calculation of fluxes. Our approach is, in fact, more closely
related to hybrid representations of solid mechanics problems [25, 21], such as the
study by Kohlhoff et al. [25], and to a recently published fluid mechanical study by
O’Connell and Thompson [31].

In the work of O’Connell and Thompson [31] the matching between the atomistic
and continuum region is achieved through the introduction of an “Eulerian” overlap
region in which both descriptions are presumed valid. The idea of an overlap region is
also employed in the work of Kohlhoff et al. [25] albeit in a “Lagrangian” formulation
which was favored by the nature of the solid mechanics problems treated by their
approach. In fact, the “Lagrangian” identification of the lattice sites with finite
element nodes simplifies the matching problem considerably, but can only be achieved
for problems which do not exhibit bulk material motion such as solid mechanics
problems.

The matching technique used in our own work is known as the Schwarz alternat-
ing method [28] and it, again, introduces a overlap region through which information
exchange between the two (or more) subdomains takes place. The technique requires
a number (O(10)) of iterations until the solutions from all domains agree in the over-
lap region. The solution agreement in the overlap region ensures that fluxes are also
matched even though they are not explicitly prescribed. The imposition of fluxes

has been one of the main obstacles in obtaining hybrid atomistic-continuum repre-
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sentations because of their non-local nature. The Schwarz technique still requires the
imposition of boundary conditions on molecular dynamics simulations but those are
now Dirichlet instead of Neumann. The imposition of Dirichlet boundary conditions
in a molecular dynamics simulation is treated in chapter 4. Our technique success-
fully decouples the molecular and continuum time-scales and can also treat problems
in more than one space dimension. The above attributes are particularly important
because they represent the limitations of the technique by O’Connell and Thompson.
In particular, the O’Connell technique was excessively slow because the matching
was done in a timestep-by-timestep basis, and hence, the continuum subdomain was
integrated at the molecular timestep. This is further discussed in chapter 3.

The applicability of the technique presented in this thesis is limited to problems in
which the moelecular information, or the region which needs to be treated by molecular
methods, is very small and localized. This does not reflect a limitation in the coupling
procedure used, but rather an inherent characteristic of molecular dynamics, namely
that very small regions can be treated even with appreciably powerful computers.
Problems that do not fulfill the above requirements require the development of alter-
native molecular techniques that are more computationally efficient. The key to this
problem lies in the realization that between the molecular and continuum levels lie a
big number of intermediate descriptions that correspond to varying degrees of coarse
graining of the molecular description as we move towards the continuum one. As we
move away from the molecular level, information is lost but the computational cost
per unit of simulated volume decreases. Stochastic molecular dynamics [3] and Lat-
tice Boltzmann gases [11] are two promising techniques (in increasing order of coarse
graining) that provide interesting compromises between significant speedups at the
expense of molecular details at the molecular level: if the molecular level of detail
is not necessary but rather the aggregate molecular behavior is the reason for using
molecular techniques, the above methods can increase the size of the molecular region
by a significant amount for the same computational cost. Although we explicitly deal
with the use of molecular dynamics, the adoption of one of the above techniques does

not require any major modifications to the framework developed in this thesis.
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Static case

Dynamic case

Figure 1-1: Static (8,), dynamic (6,4), and apparent (6,) contact angles at the tip of
a stationary droplet (Static case), and a spreading droplet (Dynamic case).

1.2 The Contact Line Problem

The motion of contact lines (locus of points where the interface between two immis-
cible fluids meets a bounding solid in Fig. 1-1) has been one of the few problems that
has defied theoretical analysis over the years. Coutact lines are present and impor-
tant in various situations such as coating flows, or processes where one fluid is used
to displace another, such as water displacing oil from a pipe.

The static properties of contact lines are fairly well known; it is widely accepted
that the static contact angle, 8, (the angle between the two-fluid interface and the
solid at their intersection point), is given by Young’s equation [40] which is a micro-
scopic force balance equation at the point where the three materials meet. In the

dynamic case, however, matters become more complicated: the contact line moves
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with an unknown velocity and the contact angle assumes, in general, a different value
(64). Young’s equation is no longer valid, since the contact line is not in equilibrium.
The dynamic contact angle is expected to be different than the static value, and will
be expected to be a function of the capillary number, Ca = uU/~, which is a measure
of the relative strength of the capillary and shear forces [40]. Here, p is the viscosity
of one of the two fluids, U is a characteristic velocity, and v is the surface tension
coefficient of the two fluids. The capillary number is also expected to govern the
shape of the two fluid interface close to the contact line since the latter deflects so as
to balance capillary and shear stresses.

One of the reasons that no satisfactory theory exists for the above problem is that
the experimental data, usually responsible for guiding theoreticians, are unable to aid
in the development of the theory; in fact interpreting the experimental data is a major
challenge in itself. Experimental probing techniques (usually visual) are limited by
resolution to the micrometer scale [41]. The governing phenomena in this problem,
however, are of the order of and confined to within nanometers from the contact line.
Hence, experimental results for the contact angle report in reality an apparent contact
angle (6,)-a coarse grained (with respect to the desired resolution) measurement of
the angle the tangent to the two-fluid interface appears to make with the solid at the
micrometer scale. This apparent angle can, in general, be very different from the true
dynamic contact angle because of the large curvature of the two-fluid interface due to
the diverging viscous and capillary forces in the region close to the contact line which
is inaccessible to observation.

Despite these problems, experimental data have accumulated over the years and
have led to a better understanding of the problem [6]. Some empirical correlations
[6] have also been obtained from the data, the simplest of which is Hoffman’s law
[20] which is fairly widely used. As noted before, a theoretical justification of such
correlations has proven almost impossible, since the variables involved (such as ap-
parent contact angle) are not directly related to the variables in which the governing
dynamical equations are expressed, but rather form coarse grained mixtures of the

latter. Progress has been made recently [38] but further work is required.
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From the theoretical side, it has long been recognized [43] that usual hydrody-
namics cannot be used to analyze the problem. The usual no slip boundary condition
at the contact line leads to divergences in the energy dissipation rate and the shear
stress at that point. We would physically expect that the singularities do not re-
ally exist but are a result of the mathematical model used which, obviously, needs
to be modified. Both analytical [8] and numerical [29] results exist in which the
stress singularities are relieved by ad hoc methods, such as slip models. Analytical
approaches are usually based on the method of matched asymptotic expansions, and
utilize the fact that the far field solution is very insensitive to the exact details of
the inner region solution. This has also been demonstrated in numerical approaches
[5], where agreement with experimental results can be obtained with a variety of slip
models with adjustable slip constants or other singularity relieving methods. This is
encouraging from a results oriented point of view but not so encouraging from the
theoretical point of view, since comparison with experiments cannot give feedback for
the development of a “universal” theory that not only matches experiments but is

also capable of prediction.

1.3 Thesis Overview

The proposed thesis primarily focuses on numerical methods. Recent studies [27]
which demonstrated that molecular dynamics (MD) can be used to study nanoscale
fluid mechanical phenomena have prompted us to choose MD as one of our main tools.
The objective of this work is to contribute to the better understanding and solution of
problems such as the moving contact line problem by: 1) methodologies that allow the
use of MD to develop more physically correct models for use in numerical simulations,
and 2) the development a hybrid solution framework for completely treating such
problems, i.e. numerical solutions that incorporate both continuum and molecular
subdomains with the molecular domain (by far the most computationally expensive)
limited to the regions that require molecular input.

In chapter 2 a basic introduction to molecular dynamics and the numerical tech-
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niques required for simulation of materials at the atomistic level is given. In the
following chapter the other major ingredient required for a general hybrid descrip-
tion is presented, namely the Schwarz alternating method. A direct consequence of
the use of the Schwarz alternating method is the need to impose arbitrary velocity
and temperature boundary conditions on molecular dynamics simulations. This is
addressed in chapter 4 where a simple problem, flow in an obstructed microchannel
at low Reynolds number, is formulated to serve as a validation test for the boundary
condition imposition technique developed in chapter 4. The test problem is revisited
in chapter 5 where a hybrid sclution of the flow in the obstructed channel is sought
as a validation of the hybrid technique developed in chapters 3 and 4.

In chapter 6 the moving contact line problem is discussed and a variationally
consistent finite element technique is developed for the fully continuum treatment of
a simplified contact line problem treated in this thesis: the flow of two immiscible
fluids in a two-dimensional channel. This finite element technique will also be used
to treat the continuum part of our hybrid solution to the contact line problem that is
presented in chapter 8. In chapter 7 we present fully molecular and fully continuum
solutions of the contact line test problem. We show that the fully molecular results
can be approximated to a good level by fully continuum techniques that use molecular
input in the form of boundary conditions. This molecular input comes from the fully
molecular solutions of the same problem; we describe these simulations as of the

molecular then continuum variety.
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Chapter 2

Molecular Dynamics

Despite the molecular nature of matter, for most hydrodynamic applications of inter-
est, the continuum description of nature successfully captures all the essential physics
while resulting in a significantly more tractable formulation. There exist, however,
situations where the continuum description is inadequate; such situations are de-
scribed in the follewing chapters. In this case we need to resort to the molecular
description and use the classical tools of statistical mechanics. Unfortunately statis-
tical mechanics has traditionally been limited by the intractability and complexity of
the governing equations describing the systems of interest. For fluids, the BBGKY
hierarchy of equations [17] has been tackled for very few special cases, dilute gases
being the most notable. The advent of fast and powerful computers has brought a
revolution to the molecular modeling of nature; numerical solutions of the BBGKY
equations can be obtained for more complicated cases, but more importantly, systems
can be animated at the molecular level through molecular dynamics (MD).

In the molecular dynamics presented in this thesis, systems are modeled as collec-
tions of molecules that obey a set of equations of motion {classical Newtonian) and
interact between themselves through intermolecular interaction potentials. MD is a
very powerful technique because, as long as thc interaction potentials are specified for
the systems under investigation, no approximations or further modeling is required;
all the exact physics is present and accounted for. The major disadvantage is the

high computational cost associated with these computations which limits the use of
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this technique to very small systems and very short time-scales (of the order of 10000

molecules and 1ns in time for a high-end workstation).

2.1 Preliminaries

Although in the most general formulation of statistical mechanics particles interact
through quantum mechanical equations of motion, it is often the case that many
systems can be simulated to sufficient approximation level via the use of the classical

Newtonian equations of motion

N 1 idV(T,’j)ﬁj’ (21)

M=) T

where m; is the mass of the particle, 7; is the position vector of the particle with
respect to the coordinate origin, 7;; = 7; — 7, V/(7;) is the potential energy of par-
ticle 7 due to particle j, and the sum is implied to be over all particles (N). This
simplification, which results in significantly less computationally intensive calcula-
tions compared to quantum mechanical calculations, will in general be valid when all
quantum 1nechanical effects (both temporal and spatial) are negligible, or can be re-
liably lumped in an effective interaction potential V{7;) and the effects of zero point
motion can be ignored. This is always the case for the hydrodynamic applications
presented in this thesis, and as a result we will limit ourselves to the exclusive use of
the classical equations of motion.
The interaction potential used in this study is the well known [4] Lennard-Jones
potential
V() = 4el(o/ri)"* — (o/7:5)°)- (2:2)

This simple model was chosen for its ability to minimize the computational cost of
calculations while retaining all the essential physics under investigation. The Lennard-
Jones potential has been shown [4] to accurately reproduce the properties of noble
gases with appropriate choice of the two parameters ¢ and 0. The Lennard-J.nes po-

tential can also be used in studies of water [14] (in conjunction with an electrostatic

28



potential), and light hydrocarbons. It provides a reasonable compromise between nu-
merical efficiency and accuracy for hydrodynamic applications where a “hard sphere”
approximation often suffices. Structural or thermodynamic properties of materials
other than ncoble gases are not reproduced accurately. The great computational ef-
ficiency enjoyed form the use of this potential is a result of two effects: first, the
potential has a short range and effectively decays to zero for r > 100 thus leading
naturally to the definition of an interaction sphere that contains all the particles
contributing to the force acting on a specific particle, and second, it is a pairwise
additive potential and hence the force acting on a simulated particle can be simply
calculated by adding the forces exerted to it by the other particles that are within
its interaction sphere. Because the number of molecules within a sphere of radius r

3, researchers have attempted to use interaction spheres (defined

increases as n o< r
by the interaction cut-off r.) smaller than 100. It has been shown [41] that the error
resulting form the use of cut-offs as small as 2.20 is negligible. Throughout this study
we have used a conservative value of r, = 30.

The equations of motion are numerically integrated using Beeman’s modified equa-
tions of motion [35], which is a fourth order accurate in space and third order accurate
in time predictor corrector method. It is included here for completeness: if = is any

dynamic variable (in our case 7};), (), () the predicted and corrected corresponding

velocities, and At is the numerical integration timestep, the scheme is as follows:
1. z(t + At) = 2(t) + Ati(t) + AL [43(t) — i(t — At))]
2. P (t + At) = @ + §L[3E(t) — &(t — At))
3. &t + At) = F(zi(t + At), 8P (t + At),i = 1...N)/m
4. it + At) =3 + —Aﬁ—t[%(t + At) +5E(t) — £(t — At)]
5. Replace (P with £(?) and goto 3. Iterate to convergence.

Here F is the total force acting on a particle and N is the total number of particles
in the simulation. The simulations were performed using modified (by the author)

versions of the third-party molecular dynamics simulation code MOLDY.
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The simulation procedure described above produces realizations of the micro-
canonical ensemble, which in many cases are not good approximations to the system
under investigation. In particular, it is sometimes useful to let the volume of the
system vary and constrain the pressure of the system at an imposed pressure P thus
realizing a constant pressure ensemble. In what follows we review the reformulation
of the equations of motion pioneered by Parinello and Rahman [32] which allows the

simulation of a system under coiistant pressure situations.

2.2 Constant Pressure Simulations

In the formulation of Parinello and Rahman [32, 35] the molecular dynamics sim-
ulation cell is allowed to change in size in response to the imbalance between the
imposed pressure and the internal simulation pressure. The new equations of motion

are written in the center of mass co-ordinates (5;)

m;5; = h™'V Y V(7;) — mG~'Gs:. (2.3)
J#i
Here §; = h™!7;, h is the 3 x 3 matrix whose columns are the molecular dynamics cell
vectors, and G = hTh. Additionally the cell vectors obey the following dynamical
equation
Wh = (IT — p)k (2.4)

where W is the fictitious mass parameter of the pressure reservoir in equilibrium
with the system, k = VhT"l, V is the volume of the system, p is the external stress
(tensor) applied to the system, and II is the molecular contribution to the stress

tensor defined by

(2.5)

1 ]>1

N N1 dV(F )dd)

1 N
=7 (E MT T — ZZ ar Tij

Note that the above definition (eq. (2.5)) assumes that the system has a uniform pres-

sure throughout and hence it is in pressure equilibrium. The definition and evaluation
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of thermodynamic properties as a function of space in non-equilibrium situations is
obtained via the use of the assumption of local thermodynamic equilibrium discussed

in section 2.4.

2.3 Simulation Reduced Units

It is also customary to define reduced units based on the molecular model of the
material simulated [4]. In both series of simulations reported in this work the principal
material used was fluid Argon and hence unless otherwise stated, all quantities will
be expressed in reduced units using 0 = 3.4 A for length, m = 40 amu for mass,
e/ky = 119.8°K for temperature, and 7 = (mo?/48¢)"/? = 3.112 x 10~13s for time.
Here o and ¢ are the parameters of the Lennard-Jones (LJ) potential for Argon [4],
m is the mass of the Argon atom, and 7 is the characteristic time for Argon. The

integration timestep was At = 0.0327.

2.4 Definition of Macroscopic Properties

From a statistical mechanical point of view molecular dynamics numerically simu-
lates the motion of the system under consideration in a 6 N—dimensional phase space
[4]. As a result, MD simulation results are in the form of position coordinates and
velocities of the NV system molecules for a large number of timesteps (duration of the
simulation). In order to convert those to the usual macroscopic thermo-hydrodynamic
parameters we need to establish a “macroscopic connection”. In statistical mechanics
this is done through the use of ensembles: observables (parameters that are macro-
scopically perceived, such as energy, temperature, pressure, and density) are defined
as functions of the molecular phase space variables and evaluated at every timestep.
Due to the huge number of degrees of freedom of the molecular system, it is con-
ceivable that a huge number of molecular configurations will lead to the same values
of observables leading to what is usually called “loss of information”. On the other

hand these macroscopic observables will fluctuate as the particles continuously change
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positions and momenta. The “macroscopic connection” is made through the use of
an ensemble of identical systems such that the macroscopic quantity or parameter
is defined as the average of the observable over all the ensemble members [4]. In
the following section we describe the extension of the equilibrium ideas to the local
thermodynamic equilibrium formulation that allows the treatment of non-equilibrium

situations.

2.4.1 Local Thermodynamic Equilibrium

The concept of local thermodynamic equilibrium allows the extension of thermody-
namic equilibrium techniques to spatially non-equilibrium systems. It is the equiva-
lent of the quasistatic assumption for time-varying systems, and essentially assumes
that although the system is not in equilibrium it can, to a good approximation level,
be assumed to be in equilibrium locally in space (versus time for the quasistatic
case). This assumption can be reasonable if the gradients in the system are suffi-
ciently small. In particular, we require that the change across a region (spatial case)
or in time (temporal case), due to the non-equilibrium gradients present, be smaller
than the statistical fluctuations in this region because of its small size. This essen-
tially implies that the larger the gradients, and hence the larger the deviation from
equilibrium, the smaller these regions need to be. Trozzi et al. [42] have verified that
this concept can be used to define local macroscopic properties in MD simulations.
For the gradients present in their work, they found that regions of characteristic size
o can, to a good approximation level, be assumed to be in local thermodynamic equi-
librium. We will be using the same criterion since the gradients present in our work
are very similar to the work of Trozzi et al.

In fact, we can show that in order to simulate the smallest gradients possible (in
an attempt to make the simulation as realistic as possible) we need to increase the
number of molecules by adding the extra molecules in the direction of the gradient.
The fluctuations Axr of a property x in a region of space {2 containing N molecules
scale as Axr o 1/v/N. The variation of the same property Axg4 along the direction
of the gradient g is given by Ax, = gL where L is the linear dimension of €2 in the
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direction of g. We require that Ax, ~ Axr and hence,
gN¢ x N~1/2, (2.6)

We have substituted L with N¢ where d takes different values depending on the
“mode” of addition of molecules. If molecules are added equally in all dimensions
d = 1/3; if the molecules are added in the direction of the gradient g, d = 1; finally,
if the molecules is added in the remaining directions only, d = 0. It follows that the
optimum scaling (least number of molecules for a given gradient) obtains for the case

of molecule addition in the direction of the gradient for which
N o g~ %3, (2.7)

As an example, consider the case of a fluid in a two-dimensional channel with the
two bounding walls at different temperatures. For a given number of molecules and
fixed wall temperatures (or temperature difference), the minimum gradient that can
be simulated is obtained by maximizing the number of molecules in the transverse
channel direction, the direction normal to the two walls.

We would like to note that the smaller the local equilibrium regions the smaller
the number of particles that reside in it. Hence, although in theory an arbitrarily
small region can always be found that can be assumed to be in local equilibrium,
this is not practical for regions much smaller than the ones used in this study for
the following reason; the statistics obtained from these very small domains will be
unreliable due to the small number of molecules present in them, since as discussed
above the directions transverse to the gradient do not typically contain an appreciable
number of molecules. Additionally, regions smaller than the characteristic size o are
not admissible on physical grounds since this length scale sets the lower limit for the

spatial region over which the concept of a fluid exists.
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2.4.2 Statistical Mechanical Properties

In this section we present the definitions of macroscopic observables such as tem-
perature and pressure in terms of the individual molecule microscopic phase space
variables. These definitions are the first step in the macroscopic connection required
to recover a spatially varying thermo-hydrodynamic field over the MD simulation
domain from the molecular data. The above definitions can be obtained through
statistical mechanical analysis [23]; in particular the macroscopic conservation laws
are obtained through an ensemble averaging of the corresponding microscopic con-
servation laws. The identification of single particle contributions to the macroscopic
observables follows from the direct comparison of the microscopic ensemble averaged
equation and its continuum counterpart. For the derivation of these relations the
reader is referred to the original work of Kirkwood and Buff [23].

Let V be the volume in which we want to define the macroscopic observable Ay .

Following [39, 42| we define

1 N
Av =3 /V dréA,-&(r ~7) (2.8)

where N is the number of molecules, and A; = A;({7},Pj};j=1,n) is the individual
particle (z) contribution to the macroscopic property Ay. Again following [42], we

define for the density (pv)

A; =1, (2.9)
for the temperature (7y)
22
m;T;
e 2.1
' 3kgpv (2.10)

where kp is Boltzmann’s constant, for the internal energy (Ev)

_ Xz V()

A;
2pv

, (2.11)

for the flow velocity (7y)

Ai =T (2.12)
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and for the stress tensor (ITy)

A,' = m,~(r,~ - 'Uv)(T.‘ - 'Uv) - -2- rij:—ﬁLrij, (213)

j#i T ij

from which the pressure can be evaluated as the trace P,- = 1Tr(Ily). Using the
definitions given in the previous section, macroscopic observables can be evaluated
over small regions at one instant in time for every member of the ensemble under

consideration. Any thermodynamic parameter is then obtained from the ensemble

average of this observable over all the members of the ensemble.

2.4.3 Error Estimation

Due to the small number of particles that are available in each local equilibrium
domain (bin) the statistical uncertainty associated with the property estimates is
large. Under the assumption of Gaussian statistics the statistical error scales inversely
proportional to the square root of the number of samples taken. In our macroscopic
world, local equilibrium regions contain more than 10?® molecules and as a result the
fluctuations within them are imperceptible. In molecular simulations, however, the
size of a local thermodynamic equilibrium region, dictated by the the balance of the
fluctuations and the magnitude of the gradients in the simulation (eq. (2.6)), is of the
order of a few 0. The fluctuations in the value of a quantity (dxr) in such a domain
are often of the order of the value of the quantity itself (x), and hence the gradients
that can actually be resolved involve variations of O(x) over distances of a few o.
Large gradients, however, require smaller local equilibrium regions which contain less
molecules and, hence, exhibit larger fluctuations. Simulation accuracy and resolution
of physically realistic gradients are thus coupled.

Steady simulations, or simulations that are unsteady on a macroscopic time-scale
which is long enough such that the problem appears to be steady at the microscale,
benefit in terms of accuracy from the use of the ergodic theorem [4] that allows
the exchange of time with ensemble realizations. More precisely, an ergodic system

in a steady state left to evolve in time, produces realizations that are equivalent to
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those obtained by different members of the ensemble used in the formal definition of a
statistical mechanical system. Hence the ensemble averaging procedure is replaced by
averaging in time which is very convenient for a molecular dynamics simulation which
is inherently an integration procedure in time. The system under investigation is thus
simulated for an equilibration time that allows for initial condition effects to decay
and hydrodynamic transient effects to disappear, and its subsequent configurations
are sampled in regular time intervals (of the order of a few integration timesteps).
The expected error in the estimation of a thermodynamic parameter depends on
the number of independent samples taken. We could maximize the number of samples
taken by sampling every integration timestep. Unfortunately, as discussed above,
for reasons of numerical accuracy the integration timestep is a very small fraction
(0.032) of the characteristic time-scale for the fluid (7), and hence samples that are
temporally less than 7 apart are statistically correlated: even if they are used in the
sampling procedure they do not contribute any new information and do not reduce
the statistical error. Based on physical grounds, we would expect that an appropriate
decorrelation time-scale would be 7. Numerical experiments that will be described
later, show that different observables have different decorrelation time-scales, but this
physical reasoning is approximately correct. In particular, velocity which is a first
moment of molecular velocities, requires 27 — 37, whereas heat flux which is a higher

moment but also involves the interatomic forces requires less than 7.

2.4.4 Statistical Inefficiency

In this section we introduce the statistical inefficiency s which can be viewed as the
number of samples that have to be discarded in a series of data such that each new
data point contributes independent information. It is formally defined [4] as the
limiting ratio of the observed variance of the sample average (({.A),) of observable

A over subblocks of length 7;,, to the expected variance under the assumption of
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Gaussian uncorrelated statistics (¢2(.A)):

70°({(A)s)

20D (2.14)

S = l'im-rh_)m

In other words, by dividing our series of data (of length 7;) into n, small blocks of

length 73, such that 7, = 7yn,, we can calculate the mean of the simulation

1
(A) = - S A(l) (2.15)
t¢=1
and also the mean of every block b
18
(Ao = =D A(t). (2.16)
Tb t=1

We can calculate the variance of this mean

() = = 35 (A — (A)? (2.17)

T n=1

which, if the blocks are large enough to be uncorrelated, is required by the central

limit theorem follow

22((Ay) = ZA) (2.18)
Tb
where
ﬂm=%;m—mm (2.19)

Thus, if the the data are statistically independent, we expect that

2
. T2 ({A)p)
llm—rb_)oo*oam—' = 1, (220)
whereas, if there is some correlation persistence
7502({A)p) — (2.21)

limg, 400 oA

which allows us to estimate the reduction in effective sample points available.
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We can thus estimate the expected error associated with the finite number of

samples as

= — (2.22)

where we have lumped the populaticn variance and the statistical inefficiency in
the constant A which depends on the statistic, and shown the explicit form of the
dependence on the number of samples taken N. This form will be very useful in
the following chapter; the calculation of statistical inefficiencies will be illustrated in

chapter 4.
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Chapter 3

Coupling Approach

In this section we introduce the other major ingredient of the hybrid atomistic contin-
uum simulation technique presented in this thesis. Although mathematical solutions
(numerical/analytical) of various problems often consist of matched solutions in more
than one subdomain, the particular problem of coupling a continuum solution to a
molecular solution is particularly challenging. The major obstacle lies in the require-
ment of exchange of information between the various subdomains treated by what
appear to be dissimilar descriptions. Fully continuum coupling methods (where all
subdomains are described by continuum models) have been particularly successful
due to the simplicity and large extent of understanding of the treatment of boundary
conditions in continuum formulations through which the various subdomains interact.

In molecular dynamics, however, the imposition of macroscopic thermo-hydrody-
namic boundary conditions is far from trivial. The integration of the equation of
motion of the molecules requires boundary conditions at the atomistic level. As
explained in section 1.3, a huge loss of information takes place when connecting to
the macroscopic level, at which indivic-1al molecule state properties enter as statistics.
Thermo-hydrodynamic parameters can be viewed as moments of the molecular phase
space distribution {17]; this distribution can be viewed as the number of ensemble
members found in an infinitesimal region of phase space divided by the total number
of members, or by using the ergodic theorem, as the probability that the simulated

system will reside in that volume of phase space at the given instant in time. Therefore
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there is an infinite number of realizations of molecular state properties that can lead
to the same value of a given observable. There is, of course, only one physically correct
distribution function which is, however, unknown. This is the reason we initially set
out to solve the problem numerically!

Despite the difficulties just cited, some attempts using approximate distribution
functions, or other methods that artificially constrain the molecular distribution func-
tion such that their moments exhibit the required behavior [15, 31}, have been reason-
ably effective. These methods will be discussed in chapter 4. Dense fluid hybrid tech-
niques have concentrated on the imposition of Dirichlet boundary conditions which
in terms of a molecular simulation require only single particle distribution functions.
Neumann, or equivalently flux, boundary conditions, such as stress and heat flux are
non-local: the stress or heat flux contribution of a molecule depends on the location
of the other molecules in its immediate vicinity. Subsequently prescribing a non-
local quantity for NV interacting molecules requires not NV but N! “executive (ad hoc)

decisions”.

3.1 Previous Work

In the formulation proposed by Kohlhoff et al., the physical domain is decomposed
into two overlapping regions, or equivalently, three regions: an atomistic domain
treated by molecular dynamics (MD), a continuum domain treated by finite elements,
and an atomistic—continuum overlap region. Displacement boundary conditions in the
overlap region provide globally consistent stress fields — presuming that the atomistic
description is consistent with the continuum constitutive model of the finite element
analysis. For this effectively zero-temperature structural problem, in which the atoms
are bound to lattice sites, displacements can be matched on an individual atom-to-
finite element node basis; in contrast, for fluid systems, or fluid-solid systems, thermal
considerations and material motion preclude such a Lagrangian identification, and an
appropriate Eulerian generalization is required.

The recent work of O’Connell and Thompson [31] addresses the problem of mate-
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rial motion by introducing an “Eulerian” overlap region. An important conclusion of
[31] is that stress continuity can be achieved without explicitly matching (or impos-
ing) fluxes. Our method also exploits this result, and also employs an overlap region;
however, there are several important differences between the two approaches. The
technique of O’Connell and Thompson, as demonstrated in [31], is one-dimensional.
Many new issues arise in higher space dimensions, in particular when there is mean
(continuum) flow across the atomistic—continuum boundary; we treat these issues by
the introduction of a particle reservoir.

Most importantly, as reported in [31], the algorithm of O’Connell and Thompson
matches the atomistic and continuum representations on a timestep-by-timestep basis,
with the timestep imposed by the molecular dynamics representation. This necessi-
tates many continuum evaluations that, in higher dimensions, and in particular for
flows that evolve over continuum time-scales, will result in prohibitive computational
costs. In some sense, the O’Connell and Thompson technique decouples length-scales,
but not time-scales; our approach does decouple time-scales, requiring only O(1) (in
practice, O(10)) continuum solutions in order to achieve a steady state. At present
our technique is only appropriate for steady problems, although we believe unsteady
problems evolving over continuum time-scales can also be treated.

Finally, we remark that, although the O’Connell and Thompson technique permits
analysis of detailed atomistic-scale temporal evolution, adequate statistics require
averages over sufficiently long time-scales, and thus accuracy and resolution are cou-
pled. Specifically, the results of [31] suggest that only time-scales which correspond
to quasi-static evolution on the atomistic scale can be accurately resolved. This is
consistent with linear response theory [12], according to which a system “makes use”
of fluctuations about a quasi-equilibrium state to alter this state in response to a

forcing input.
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3.2 Schwarz Coupling Approach

The matching method is described here for the case of a one-dimensional problem;
extension to higher dimensions directly follows. Given a problem to be solved by
continuum techniques for 0 < z < b and molecular techniques for b < z < L, we define
the continuum subdomain as 0 < z < b and the molecular subdomain asa < z < L,

\

where a < b; a < x < b is the overlap region where both models are pfesumed
valid. Given boundary conditions at z = 0 and x = L, a solution is first assumed
in one of the subdomains, (say) the molecular. This solution at z = b (€ [a, L])
serves as a boundary condition on the continuum subdomain, permitting calculation
of the “first continuum iterate.” This first continuum iterate, in turn, provides a
boundary condition at z = a for the molecular dynamics (MD) simulation. Finally,
the resulting “first MD iterate” yields a new boundary condition at x = b for the
continuum subdomain. This alternating procedure is then repeated until convergence.

Figs. 3-1 to 3-3 demonstrate the application of the Schwarz method to a very
simple problem: Poiseuille flow in a two dimensional channel with zero velocity at
both walls (x = 0, L). The iteration starts with the assumptior of a guess solution
in one of the two subdomains, say zero velocity in the molecular region (domain 2).
Fig.3-1 shows the first continuum iterate based on the boundary condition of zero
velocity at the wall (z = 0) and the boundary condition imposed by domain 2 at x = b.
The molecular iterate, that completes the first iteration cycle, is shown in Fig. 3-2; it is
a molecular solution based on the zero velocity boundary condition at £ = L and the
boundary condition imposed by domain 1 at x = a. The next iteration cycle (Fig. 3-3)
proceeds with a continuum iterate based on the updated now boundary condition at
z = b and the “external” boundary condition at z = 0. The iteration proceeds until
the solutions in the two domains are the same and hence no “driving force” exists
for a change since the solution will be continuous at the two “internal boundary
condition points” z = a,b. For purely continuum simulations (both subdomains
being continuum) the error exhibits a power law decay, which is further discussed in

the convergence section. For mixed atomistic-continuum descriptions the statistical
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Figure 3-1: First iteration for the Schwarz alternating method. The first continuum
solution, based on a boundary condition of v(z = b) = 0 given by the original guess
solution in the MD region, is shown.
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Figure 3-2: First iteration for the Schwarz alternating method. The first molecular

solution, based on a boundary condition at £ = a given by the continuum solution,
has been added.

error contribution of molecular dynamics has to be taken into account.

This overlapping Schwarz method is chosen because it avoids the use, and hence
imposition, of fluxes in the matching of solutions on different subdomains. Assuming
that the transport coefficients are correctly matched, flux (e.g., stress) continuity
is automatically ensured by the agreement in the overlap region of the converged
continuum and atomistic representations. The method is also advantageous because
it is “implicit,” and thus decouples not only length-scales, but also time-scales: only
steady-state MD simulations are required. Extension of the method to treat time-
varying problems on the continuum time-scale is thus possible, in which at each time

t" the (say, implicitly) integrated continuum iterate is matched to the previous MD
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Figure 3-3: Second iteration for the Schwarz alternating method. The new continuum
solution, based on a boundary condition at z = b given by the molecular solution of
the previous iteration, has been added.

iterate at t"; given the macroscale timesteps and nanoscale MD domain, the MD
calculations may be treated as quasi-static, thus avoiding expensive coupled time

integration at the molecular time-scales.

3.3 Convergence

Convergence can be proven for a large class of problems when both subdomains are
treated by continuum methods [28]. In particular, elliptic problems, such as the ones

treated in this thesis, are amenable to analysis which yields useful results: convergence
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exhibits a power law behavior of the form
et = Ke® (3.1)

where K is a positive constant (0 < K < 1) which governs the convergence rate and ¢
is the error in the appropriate norm [28]. The constant K depends on the particular
problem at hand through the operator eigenvalues [28], but also on the size of the
overlap region: the larger the overlap region, the smaller K is, and hence the faster
the convergence. In the next subsection we illustrate these points with the analysis
of the simple Poiseuille problem introduced above.

Convergence should also obtain for a hybrid description if the continuum and
molecular models are equivalent in the overlap region. However, additional “steady-
state” errors will arise in the hybrid case due to first, discrepancies in the transport
coefficients in the two subdomains, second, noise introduced by MD statistical fluc-
tuations, and third, smoothing of the MD data prior to imposition of the boundary
conditions on the continuum iterate. The convergence rate may also be affected by
these new sources of error. These effect of these sources of error is investigated in the

following subsection for an one-dimensional case.

3.3.1 Convergence in 1D

Consider the Poiseuille problem defined in section 3.2. We will assume that both
domains are treated by continuum techniques. The domain is infinite in the stream-
wise direction (y) as well as the direction into the plane of the figure (2), the inertial
terms are zero and thus, this test problem is a good one-dimensional example of low
Reynolds number (Stokes flow)—elliptic problem. Let V* be the velocity at z = a at
the n'* iteration in domain 1; note that V,* will be used as the boundary condition for
domain 2 during the n'* iteration. The domain 2 iterate will give V;* at £ = b which
is subsequently used as a boundary condition for domain 1 for iteration n + 1. The

fluid has density p, viscosity px and the acceleration due to gravity in the streamwise

46



direction is g. Defining a = a,8 = (b - a),y = (L — b) = (L — a — ), we have

Vita Pg
n+1 __ b _ n
Vit = oy (—2#)1 aff +¢€ (3.2)
n_ Vo ]
Vs = Gty (2u)2ﬂ7- (3.3)

Note that we have allowed for a discrepancy between the transport coefficients in the
two domains by allowing for a difference between the values of gﬁ in the two domains.
Here €™ denotes some forcing error other than the discrepancy in transport coefficients

that may be present. We now investigate various cases.

Steady state solution with no error

If there is no error in matching transport coefficients (£2); = (£2). = (42) and €" =0,

N

using equations (3.2) and (3.3) we obtain

ntl _ ay n P9 pg oafy
R Py T A A T e & (34)

We can find the converged value of V;, denoted here by V.*, by requiring V**! =
VI = V2 in equation (3.4). This value

Ve = —g%a(ﬁ +7) (3.5)

is, of course, the value of the velocity at z = a for a Poiseuille profile. The convergence
rate is obtained by seeking the error equation: we define the error at iteration n as

g™ = VI — V2. Substituting in equation (3.4) we obtain

n+l __ ary n
R oy e (36)

£

We thus conclude that for the Poiseuille problem K = which is always

oy
(a+8)(B+7)?
less than 1 for non zero overlap. In fact, we can see that the overlap need only be

appreciable with respect to one of the subdomains for fast convergence (error decay).
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The number of molecules in the system scales with the volume of the overlap region,
and hence it is very convenient that the overlap needs to be appreciable with respect
to the molecular region and therefore the size of the overlap region does not need to
be of macroscopic dimensions for macroscopic problems. In fact, this requirement is
crucial for the success of any hybrid technique. The Schwarz method thus ensures
that reasonable convergence rates are achieved with the minimum of computational

cost, while avoiding the imposition of fluxes that was one of our original requirements.

Steady state solution with error source

In this section we investigate how an error, in the transport coefficient matching say,
propagates into the converged solution. Let us assume that (%)2 = (,_%’f) 1+ v, =0;

the case for which €” # 0 is similar. Equations (3.2) and (3.3) become

o+l ary 7 _p_g_ _ _p—g_ a,B'y _ aﬂ’y
SRRV TCEEE (2u)1“ﬂ (2M)1(a+ﬂ) ‘arpy D

and
_— ay n afy (3.8)

“e+BB+y° (et h

respectively. The tilde is used to differentiate the exact solution of the previous

section from the solution that includes an error source. The steady state error is best

expressed as a fraction of the correct solution

> > v 07
8 14— =1 ) 3.9

We conclude that the Schwarz method suppresses initial errors v by c_!-_f-%+_'7 <1

Statistical source of error

We now assume that there is a forcing error € that varies with the iteration number
n. We expect that a good model for the error contribution of the molecular dynamics

simulation which is inherently statistical, is an error forcing term that is stochastic
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with the following characteristics:

o 1 E
6_13%1_\7;:16 =0, (3.10)
and
Var(e) = li L ¢y = o2 (3.11)
are—Ng{l’oN;(e)—a. .

Equations (3.2) and (3.3) with €* # 0 lead to

n+l __ ay n__ o n
Rl Py e iy (3.12)

It can be easily shown (see next section) that

1 N
= lim v Ele" =0, (3.13)
and \
1S @B
Var(e) = lim = 3 (e")? = = o (3.14)
N=oo N 25 1 - (GmiEm)’]

We can therefore conclude that when a stochastic source of error is present the mean
value of the error goes to zero (as in the unforced case), but there is an expected error
that is related to the variance of the forcing term and the convergence characteristics
of the iteration.

Although the exact form of the difference equation governing the convergence
process was derived here for a one-dimensional case, the form of the equation does
not change in higher dimensions [28]. We will use this fact in the next section where
we use a general “decay constant” K to examine the possibility of minimizing the
computational work in a hybrid technique. This analysis will be valid for any number

of dimensions under the assumption that K is known.
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3.3.2 Numerical Efficiency Considerations

The computational work associated with a full hybrid solution can, to a very good
approximation, be attributed to the molecular part; for each iteration the continuum
iterate typically takes two orders of magnitude less computational time than the
molecular iterate. In what follows we will neglect the computational cost of the
continuum solutions in order to simplify our investigation that aims in minimizing
the computational cost of the complete hybrid solution.

If we neglect the continuum cost of the solution we can easily express the total

cost (or work W) of the hybrid solution as

no
W = Work per MD timestep Y _ N; (3.15)

i=1

where ng is the total number of iterations and N; is the number of molecular dynamics
timesteps run at iteration i. Reducing N; reduces the cost of the hybrid solution but
increases the final expected error (see equation (3.14)) through an increased variance
o? which scales (equation (2.22)) inversely to the number of samples taken. We would
like to know how the error in the initial stages of the iteration propagates or affects
the final error present at convergence; if the effect of the error decays sufficiently
fast we can design a “schedule” for the number of MD timesteps as a function of
the iteration number such that initial MD simulations are run to low accuracy, thus
reducing the computational cost.

The exact solution of the error governing equation (3.12) with K =

oY g
(a+B8)(B+7)
given by

e" = 112-:1 K" 193¢0 4 K0, (3.16)

j=0
We will now look for the error behavior as a function of the iteration number. The
averaged equations (3.13) and (3.14) were obtained by taking the limit of n — oo
for which the initial condition term goes to zero. Additionally we have assumed that
all cross correlation terms (limy_,0 & Ype; €™, k # 0) go to zero. The limit is,

of course, not valid if n is small and therefore for the present analysis we introduce
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statistics in an ensemble sense, that is

- .1 M
5 —A}%M;sk, (3.17)
and
Var(e) = lim 3" (e — 272 3.18
ar(e _Mlgéoﬁk:le" en)*, (3.18)

where k = 1, ..., M — oo are the different realizations of similar systems characterized

by equation (3.12). Using

- .. 14
e = lim 7 k2=:16k =0 Vn, (3.19)
Var(e") = lim L f:(e")2 _A& (3.20)
_M—>ooMk=1 k —Nn, '
and
Var(e®) = 0, (3.21)
it can easily be shown that
ng—1 ) ) no—1 ) A2
Var(e™) = S KX 1-9Dyar(d) = Y Kr-1-D (3.22)
j=0 Jj=0 J

Alsc note that we have again assumed that the cross correlation terms in the ensemble
sense (limy/—yco 77 Lhey €R€yj>J 7 0) g0 to zero.
The above equation (3.22) also shows how the results of equation (3.14) were
obtained. If Var(¢/) = 62 = const. then
no—l

Var(e™) = ¢* Y K¥r=179) = o2
Jj=0

TR for K <1 and ny — oo. (3.23)

We have verified the validity of the above equations with numerical simulations.
An ensemble of 1000 members all obeying the difference equation (3.12) was simulated
using a random sequence of numbers to model the stochastic term. The results (see

Fig. 3-4) verify the correctness of the equations derived above: the mean value of the
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Figure 3-4: Numerical simulation of equation (3.12). n is the iteration number. As
explained in the text the results are ensemble (1000 members) averaged. The solid line
shows that 7 decays like the unforced case, whereas the dashed lines show e £ o (™).

error decays as in the unforced case, and the expected error (associated with one
standard deviation) is given by equation (3.22).

We therefore seek the optimal scheduling of the number of moiecular dynamics
timesteps as a function of the iteration number by also allowing the number of itera-
tions to vary, subject to the constraint of a desired simulation accuracy. We can pose
the constraint as

K™% + o(e™) = B, (3.24)

where in doing so, we have associated one standard deviation of the stochastic part
of €™ to the expected error and added that to the error at the ng iteration due to the

deterministic part (K™¢°), and required that it equals B.
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We form the Lagrangian

no no—1 2
L= Z N;+ ) (K"°s° + \J 2% K2("-1-J'>J%- - B) (3.25)
- =

Jj=1 J

which can be differentiated for the extrema

ar ,\.;%Kﬂno—l—j)
AR sevr = =0 (3.26)
IVg no-— n—-1-j
and
oL 00, | 5 A2
— == n Kz(n—l_J)— _— = U. -2
5 Ks+\JJ§O N, B=0 (3.27)

Solving the above equations for V; we obtain,

A2 K—l _ Kno—l
(B — Kmog)2  K-1-1

N; = K13, (3.28)

that is, for a given ny the optimum work is achieved for N; o« K™~1~7 with

: A2 (B-K™e®) [ K-1-1
J = — =
o(€) N, o KR (3.29)

We will now seek the optimum 7y by substituting the expression we have found
for N; into equation (3.15) for the cost and finding for which 7o a minimum obtains.

The expression for the cost is

w

2 -1 _ 1eno-1\ 2
A (K K ) . (3.30)

T (B-Kwe2 T K1-1
Note that this expression is singular for B = K™:? because an infinite number of
timesteps is required for the stochastic term to go to zero such that B is balanced only
by the initial condition decay term. We can look for minima for ny > InB/InK (¢° =
1) because the branch ny < InB/InK corresponds to the negative value of the square
root in equation (3.30) and represents the case for which (B — K™¢%) < 0. For

ng > InB/InK equation (3.30) is monotonically decreasing and this indicates that
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the optimum obtains for ng — oc.

Since an infinite number of iterations is impossible, we show here that this infinity
can be replaced by a suitably large number with a very small effect on the work
savings. We illustrate this with a numerical example: using B = 0.3,? = 1,K =
0.1,A = 1 we need ng = 25 for o = const. = 0.1. This translates to a total work of

W = 2500 (in arbitrary units). Using the scheme derived above, that is

A2 K-l _ Kno—l
(B— Km™e0)2  K-1-1

N; = Kmo1-i) (3.31)
with ng = 81 we find that the error decays to the target value of 0.3, but the work
is now W = 1112.1. Additionally we can use equation (3.30) to find W(ny — o0) =
1111.1 which shows that less than 0.1% is lost by taking my = 81, but also that a
factor of 2.5 in savings is obtained through the use of the optimal scheduling technique.
Fig. 3-5 shows numerical results obtained by a stochastic simulation; the results verify
the theoretical predictions of equation (3.30). The work was also evaluated directly
form the stochastic simulation and found to equal the theoretical value of W = 1112.1.
Further numerical experiments indicate that as B — 0 this scheduling technique

becomes more profitable since the gains exceed the value of 3.
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Figure 3-5: Numerical simulation of equation (3.12) for B=0.3,e=1,K =0.1,A =
1 with ng = 81. As explained in the text the results are ensemble (1000 members)
averaged. n is the iteration number. The solid line shows that £* decays like the
unforced case, whereas the dashed lines show €® + o(e™). (a) shows the full results,
and (b) shows the crossover (B = K™¢% + g(e™)) at n = ny = 81.
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Chapter 4

Molecular Dynamics Boundary

Condition Imposition

In this chapter we present the technique developed for imposing boundary condi-
tions on molecular dynamics simulations. This is an important requirement of the
Schwarz alternating method as explained in the previous chapter. We consider Dirich-
let boundary conditions only because the Schwarz formulation avoids the explicit
imposition of Neumann boundary conditions that are significantly more difficult to
handle as explained in chapter 3. The technique is developed for general three di-
mensional problems. It is also validated using a two dimensional test problem: flow

in an obstructed channel at a Reynolds number of 3.7.

4.1 Boundary Condition Impoesition Method

We consider here the problem of imposing arbitrary velocity and temperature bound-
ary conditions on an MD simulation in a general geometry D with associated closed
boundary 0D, denoted by the dashed line in Fig.4-1. We shall, initially, consider
MD regions in the interior of the flow, and thus all boundary conditions on the MD
domain are of t*< artificial variety, that is, required solely for purposes of hybrid
representation. We thus avoid the issue of molecular walls [26] which, although im-

portant, is a purely atomistic issue, and thus separate from the primary “matching”
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concerns of the current thesis. Molecular dynamics domains with walls are visited
in chapter 8 where the contact line problem is analyzed; the existence of walls does
not require any modification of the technique presented here. We assume that the
velocity and temperature, as well as the gradient of the velocity and temperature, are

known on 3D, and that we desire the steady-state MD solution everywhere inside D.

@] o
O
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of! i
: O O o B o©
E : oD
0] g 1
o Molecular Soiution
Requfired
| o)
o | o | °
'l o E
E o] OD .
O o
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Figure 4-1: Velocity and temperature boundary condition imposition technique.

The boundary conditions are imposed tlhirough the artifice of “reservoirs” of fluid
that encompass the domain D. In particular, we first introduce a region, or sheath, B,
of small but finite thickness d, that surrounds dD. By converting @D from a surface
to a volume, we have a finite probability of finding a molecule residing in the vicinity
of D where the boundary condition is expected to apply. While in residence in B,

particles are given, at each timestep, a velocity drawn from a Maxwellian distribution

P(d) m_ N grp e 4.1
= bLbe .
('U' ( 27rkabc ) exp ( )

58



where the mean and variance of the distribution, 7. and T;. respectively, are given
by the desired velocity and temperature of the fluid, in a local equilibrium sense [17].
The desired velocity and temperature of the fluid are constructed from a first-order
Taylor series expansion based on the known values of the velocity, temperature and
velocity and temperature (normal) gradients on dD. (We prefer the Taylor series
approach over pointwise matching everywhere in B because the former is much less
cumbersome and storage-intensive. For our Taylor series approach to be valid, ¢
must be small compared to the length-scale over which the continuum solution varies
appreciably.)

Finally, we provide a continuous supply of molecules to and from D by enclos-
ing DU B in a larger, periodic domain C; C \ (DU B) acts as particle reservoir that,
for incompressible problems, ensures that there is no net mass flow into D. (Note
C\ (DU B) refers to C with D B removed.) In order to see why the particle reservoir
correctly accounts for the correct feed of molecules across 9D in incompressible sys-
tems we make two observations; first, the net mass flux through any closed surface is
zero if the Mach (M) number is sufficiently small, and second, D also “encloses” the
outside particle reservoir because the latter is periodic. Therefore, an incompressible
set of boundary conditions ([ Uh - @ = 0, where 7 is the unit normal vector on 9D)
not only produces the required solution inside D, but also produces the solution to
the problem in C \ (DU B) which is the one of the correct feed of molecules on 3D.
Extension to substantially compressible systems has not yet been considered.

The errors introduced by this method of imposing boundary conditions originate
in the not strictly correct dynamical state of the particles in C \ D, in particular
C\ (DUB), with which particles in D interact. It has been shown that the adop-
tion of local Maxwellian distributions results in slip for hard sphere systems [22];
although these results have not been extended to molecular dynamics simulations we
expect them to be qualitatively valid as [42] verifies. The incorporation of information
about the gradient of the required boundary conditions in B — not just the function
values, as one might anticipate from the continuum case — addresses, and largely

alleviates, this problem. If necessary, the width of B, d, can be chosen such that
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d > r., thus at least shielding particles in D from the reservoir C \ (BU D); here r,
is the Lennard-Jones interaction-potential cut-off. The Maxwellian equilibrium dis-
tributions assumed in B constitute another source of error; this error will be small if
the time-scale, or equivalently length-scale, over which the particle distribution func-
tions relax to the correct non-equilibrium forms is small compared to the size of D.
Non-equilibrium simulations performed by the author have confirmed earlier findings
[42] that bulk equilibrium and ron-equilibrium properties are, indeed, unaffected by
Maxwellian distribution-based boundary conditions, the effects of which (including
slip) remain localized near the simulation boundary. Although distribution functions
for dense fluids in non-equilibrium flows could be used [17], the latter are not too well
characterized, and thus empirical constructions would be required.

Several alternatives to the above “Maxwell Demon” (in fact a “two-sided” fair de-
mon) method are possible. For example, we have also considered a method by which
B is subdivided into smaller regions along 3D in which the particles are continuously
“rescaled” to the desired local mean velocity and temperature. In the latter rescal-
ing process, all particles receive a velocity increment such that their mean velocity
matches the desired value, and all velocity fluctuations about this mean are scaled
such that the temperature of the subregion matches the requisite boundary condi-
tion. This strategy is very similar to the constrained Lagrangian dynamics technique
of [31]. In their work O’Connell et al. impose boundary conditions as constraints on
the equations of motion of the particles. For example a velocity boundary condition
of U at a point A would be formulated as a constraint on the average velocity of the
molecules in a small region II surrounding A, in a direct analogy to the definition of

macroscopic properties form microscopic data. Hence

N
Zﬁ; = M7, (4.2)
i

constrains the N molecules in region II, which have a total mass M, to have a mean

velocity vj.. This constraint can be incorporated in the equation of motion of these
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molecules through a Lagrange multiplier £ to give [31]

L _ P M. 1K 5
ri=_+ é[mivac N ; mk] (4.3)
and
pi=-VV. (4.4)

Note that these equations are valid only in II. In the neighboring region . changes.
Our rescaling technique corresponds to the limit of £ — co. The main disadvantage
of this method is the discrete nature of this imposition as opposed to the continuum
nature of the “Maxwellian Demon” used in this work. We find that the “Maxwell
Demon” approach, though less sophisticated, typically performs better than these
more subtle constraints on the particle motion. To our knowledge, neither method is
proven to reproduce the correct physical dynamics [10], and hence both will no doubt

introduce local errors in the non-equilibrium distribution functions.

4.2 Validation

4.2.1 Model Problem Statement

In this section we describe the model problem with which we validate our techniques
for imposing MD boundary conditions and for matching the continuum and molecular
representations (chapter 5). The problem chosen had to satisfy two requirements.
First, the problem had to be fairly complex and hence a good test for the applicability
of our technique, and second, the fully continuum solution of the problem could be
taken as exact. The problem chosen is flow in the “obstructed” channel domain €2, a
sketch of which is shown in Fig. 4-2, with parabolic inflow velocity profile, no stress
(“outflow”) boundary conditions downstream, and no-slip velocity conditions at all
solid walls. The channel length has L = 300A and height H = 150A. The flow is
“obstructed” by a square block with side I, = 30A residing in the middle of the

channel.
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A fuily continuum spectral element discretization of the incompressible Navier-
Stokes equations serves as the reference exact solution. The Reynolds number R =
pUH/p is 3.7 based on the channel height and imposed mean flow velocity U =
52.1m/s. The viscosity 4 = 3x10~*K g/ms of Argon at the specified temperature T =
110° K and density p = 1420 Kg/m? is known experimentally [1], and independently
confirmed by the non-equilibrium MD simulations of the author and others [42].
We assume on the continuum side that the flow is incompressible, isothermal, and
constant-property; we can make no such “assumptions” on the molecular side, as

described below.

Figure 4-3: Sketch of the obstructed channel problem. The comparison takes place
in the region enclosed by the dashed line. The shaded square is the solid block in the
middle of the channel (Figure not to scale).

The region of the flow represented by the MD calculation, D is the wake region
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behind the square block in the middle of the channel, as shown in Fig. 4-3; D measures
(€p x €p x 8.820) with €p = 8.820 = 30A. This MD domain is chosen because the
“wake” region behind the block is strongly non-parallel, and thus serves as a good
test for the method, yet is far enough from all walls that continuum behavior should
obtain. The latter, of course, does not make for an interesting “real” application,
but does allow for a controlled study of the approach. In a real application, the MD
simulation would be applied in a region D in the interior of which the continuum

description is presumably not adequate.

4.2.2 Molecular Dynamics Simulations

The actual MD calculation is performed on a box D', dynamically similar to D, which
measures £, x £, x 8.82, with £, = 11.470 = 39A. Denoting the (say maximum
streamwise) velocity on dD dictated by the continuum as up, we impose on 0D’ the
scaled velocity uy,, = (¢p/€p)up. Since we specify the same material (€4;,04,) and
thermodynamic state (T" = T, p' = p) in both D and D', y’ = u, and it then follows
that, in the incompressible limit, the flows in D and D’ are dynamically similar. Note
we choose ¢5,, > ¢p and hence uf, < up to reduce compressibility and temperature
variation due to viscous heating, as both these effects are absent in our continuum
model. However, we can not choose ¢3, too large or uj, too small as the number
of molecules will increase prohibitively, and the signal-to-noise ratio will degrade,
respectively. To complete the specification of the MD problem, we choose ¢’ = 0.88¢0
for the thickness of B’, and a box of extent (20.30c x 20.30 x 8.820) for C’. The
interaction potential cutoff is set to the conservative value r, = 30. Note that we
shall present quantities in “original” units, that is, we rescale all MD results obtained

on D’ back to D prior to presentation.

4.2.3 Procedure

To validate the method of imposing boundary conditions described in section 4.1, the

exact (spectral element) solution on the dashed line in Fig. 4-3 of our model problem
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is used on 9D as the boundary condition for an MD simulation, and the resulting MD
predictions in the interior of D are then compared to the reference fully continuum
solution.

Fig. 4-4 and Fig. 4-5 show good agreement between the reference solution and the
MD results, even well away from the region B in which the MD simulation receives
boundary data. The MD simulations are integrated to a statistical accuracy of ap-
proximately =1m/s; averaging here, and in the Schwarz iteration of the next chapter,
is performed over (1.150 x 1.150 x 8.820) pencils in space, and 48007 intervals in time,
after reaching a stationary state in approximately 10607. As shown in the next section
the statistical inefficiency was estimated to be s = 7.5.

Our simulations were also used to assess the agreement between the various com-
ponents of the stress tensor in the continuum and molecular solutions at one location—
the middle of the molecular (test) region. The computation of the components of the
stress tensor is extremely costly and as a result we limited the investigation to one
point in the computational domain; the correct stress evaluation requires that all
molecules within the cutoff region 7, be taken into account since stress is non-local.
Due to this large cost and large memory requirements the number of samples taken
was limited and consequently the statistical error is significant.

The continuum (exact) solution stress field in the middle of D was given by

Tap = 2/%;” = —4.5 x 10°Pa (4.5)
ov vy
oy = Tyz = (== + =2) = —2.7 x 10°P
T =T = K+ ) a
)
Ty = —Tzz = 2;151;1 = 4.5 x 10°Pa.

Note that the solution in the z direction is homogeneous and hence 7,, = 7., = T,z =

Tyz = Tay = 0. Our simulation results for the stress tensor defined in chapter 2 give

I, = 6.7 x 10" Pa (4.6)
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Figure 4-4: Comparison between fully continuum (solid) and MD (dashed) solutions
in the interior of D. The velocities are in m/s and the lengths z,y in A. The graphs
correspond to the constant-y (1) and constant-z (2) slices indicated above.
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Table 4.1: Stress comparison for the flow in an obstructed channel. Stresses in Pascals.

Component Tz Ty Yy
T —2x10% | —2.3 x 10° | 4.5 x 106
T —4.5x10% | —2.7 x 10% | 4.5 x 108

I, = —2.3 x 10°Pa
I,, = 7.32 x 10" Pa
Il,, = —6.6 x 10" Pa.

We can subtract the thermodynamic pressure P = 3Tr(IT) = 6.9 x 107, to find

Ty = —2 % 10°Pa (4.7)
Tpy = —2.3 x 10°Pa
Tyy = 4.5 x 10°Pa.

The results are summarized in table 4.1 to facilitate comparison. We see that the

agreement is reasonable given a sampling error of the order of +3 x 10°Pa.

4.2.4 Estimation of Statistical Inefliciency

In this section we present the estimation of the statistical inefficiency for the flow
velocity. In the previous section we have shown the comparison between the molecular
and continuum solutions on D; an essential part in assessing the agreement between
those two solutions is an accurate estimation of the sampling error originating form
the statistical nature of molecular dynamics simulations and the finite number of
samples taken. If the difference between the two solutions is within the sampling
error estimate then we can conclude that the two solutions agree.

The procedure follows the derivation of expression (2.21) given in section 2.4.4.
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Figure 4-5: Comparison between fully continuum (solid) and MD (dashed) solutions
in the interior of D. The velocities are in m/s and the lengths z,y in A. The graphs
correspond to the constant-y (1) and constant-z (2) slices indicated above.
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Using the data from the simulations described in section 4.2 we can first calculate
o2(v), which corresponds to the “population variance” of the velocity (in each of the
three directions) for every one of the 100 bins in which D is divided. We expect
that o2(v) is independent of the location (bin coordinates) and velocity cemponent,
so that a single average value over all bins and velocity directions is calculated and
found to equal 6%(v) = 2400. We then divide the simulation data in blocks of length
(in time) 7, and calculate the statistics of these blocks ({v)y), 0?({v)s)) as explained

in section 2.4.4.

7-5 L T T T T T
102 ({v)s)
o2(v) 7t .

6.5 .

4.5H .
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Ty

Figvre 4-6: Plot of 12 (0s) vergys 7p. The statistical inefficiency is the limiting value

o?(v)

2
of 22 Ue) _y 75 a5 7, — o0.

a?(v)

Fig.4-6 shows the variation of T"—‘f}%M versus Tp; an asymptote of s = 7.5 is
reached as 7, increases. We thus conclude that every approximately 7.5 samples,

only one contributes new information. The samples were taken every 10 timesteps
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and hence it takes 75 timesteps, or approximately 27, for two samples to become
statistically independent. We can thus estimate the statistical error of our 48007

runs by treating thc whole sequence of data as a single block of length 7, = 48007;

o((v)y) = Mﬁ%—g = 1m/s. (4.8)

Fig.4-7 shows the comparison between the results of the simulations presented in

therefore

Fig. 4-4 and Fig. 4-5 and simulations run at half the number of timesteps (24007) with
an associated expected error of v/2 x o({(v);) = 1.4m/s. We see that the agreement
with the continuum results deteriorates with decreasing number of samples. We also

conclude that the error estimates are reasonably accurate.
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Chapter 5

Hybrid Single-Fluid Formulation

We have shown in chapter 4 that the boundary condition imposition technique pro-
posed in the same chapter can be successfully applied for general and arbitrary bound-
ary conditions. This technique is an essential ingredient of our hybrid method; it is
responsible for the correct transfer of information from the continuum to the molec-
ular iterate. The transfer of information from the molecular to the continuum iterate
is relatively simple, mainly because the process by which boundary conditions are
imposed on continuum numerical solution techniques is well known [33]. The extrac-
tion of these boundary conditions from the molecular dynamics simulation follows
directly from the methodology of defining and calculating macroscopic fields from
molecular data described in section 2.4. We find that the simulation results are much
improved if the molecular data are smoucthed and corrected for net mass flow before
being passed on to the continuum iterate. Both these “corrections” are a direct con-
sequence of the statistical nature of the molecular simnlations and are explained in
the following section.

In this chapter we present a full hybrid formulation for the test problem of chapter
4. This is the next step in the validation procedure for the hybrid atomistic-continuum
technique developed in this thesis. In the following sections we describe the numerical
procedure and present the results of the validation test. As pointed out in the previous
chapter, this test of the hybrid solution implicitly assumes that a fully continuum

treatment of the test problem is adequate and that its spectral element solution can
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be taken to be exact. For this to be true the no-slip boundary condition at the solid
boundaries has to be valid and therefore the use of molecular dynamics close to the

walls was precluded.

5.1 Hybrid Solution Algorithm

We use the test problem introduced in section 4.2 to validate the hybrid solution
algorithm developed in chapters 3 and 4. The objective is to reproduce the fully con-
tinuum solution (spectral element) shown in Fig. 4-2 through a hybrid MD-continuum
numerical solution with a molecular region shown in the sketch of Fig.5-1. Fig. 5-1
also shows the domain of the continuum part of the calculation, @ = Q \ M, which
is everything outside the “MD-only” hatched region M; the MD region of the calcu-
lation, D, and associated reservoirs B and C; and the overlap region, @ D. Recall
that we piece together the solution as continuum in Q2 \ D, molecular in M, and

continuum or molecular in QN D.

5.2 Validation

Fig. 5-2 shows schematically the Schwarz procedure %or this two-dimensional problem.
The boundary conditions on the continuum spectral element incompressible Navier-
Stokes calculation are known on all portions of 0Q save I' = M, where the conditions
are provided by the MD calculation as part of the Schwarz procedure. The continuum
problem is well posed and can be integrated in @ = Q\ M. The MD domain obtains
boundary conditions for 0D from the continuum solution on B C Q, to generate a
new set of boundary data on I' = OM to be used by the next continuum iterate.
When the boundary data on I' = OM are the same as in the previous iteration
the “driving force” for change goes to zero and convergence obtains. Although the
equality of the continuum and molecular solutions on I' = OM and/or 9D implies
that some form of convergence/limit cycle has been reached, this condition is not

sufficient for the correctness of the solution. As shown in section 3.3, if a transport
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Figure 5-1: Hybrid calculation domain decomposition (not to scale). The actual ratio
of the volume of D to the volume of the entire domain Q is 1 /50, and in practice
could be much smaller.



coefficient is incorrectly matched, convergence obtains albeit with a steady state error
which is a result of the difference in first or higher order derivatives of the continuum
and molecular solution in the overlap region. Convergence thus strictly obtains when
the molecular and continuum solutions are identical through the whole extent of the
overlap region including the boundaries I' = M and 9D.

Although the continuum calculation is two dimensional, the MD simulation is
three-dimensional. However we consider I to be effectively defined in the (x, y) plane,
since only z-averaged information passes between the two representations. Note that
the MD-derived field variables on I are smoothed - fitted by a low-order (here 3"%-
order) polynomial — prior to imposition on the subsequent continuum iterate. The
analysis of the effect of the smoothing on the results of the hybrid technique will
be the subject of future work; it is introduced here to inhibit the appearance of
oscillatory numerical instabilities to which the high order spectral element technique
is vulnerable.

To ensure that the continuum boundary data satisfies zero-mass-flux though I', the

MD smoothed data on I is further projected onto a zero mass flux field by subtracting

@ idl

£ (5.1)

from the normal velocity on I', where @ and 7 are the velocity and outward norr:..; on
I', and dl is a differential line element. We find that the correction required is :ndeed

statistical and small; no systematic error is detected in the net mass-flux though I'.

5.2.1 Results

The width of the overlap region QD in these calculations is 2.940. The size of the
molecular-only region was chosen such that the total molecular region D (molecular-
only region plus overlap region) is exactly the same as the molecular calculation
domain of section 4.2. The thickness of the overlap region significantly affects the
convergence rate, and must be some non-negligible fraction of the extent of D to

ensure rapid convergence. In practice, the overlap region should not be taken too
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Molecular calculation

Schwarz boundary

Continuum calculation

Figure 5-2: Schematic of the Schwarz iteration for the test problem of Fig. 4-2. The
Dirichlet boundaries of the continuum calculation are shown in dark; the “internal
Schwarz (Dirichlet) boundary” due to the Schwarz method is also indicated.
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large, since the number of molecules increases rapidly; for the domain chosen here,
there are 245 molecules i1 M, 980 molecules in all of D, and 3060 molecules in all
of C. In real applications, the MD-only region M will be selected first, with D (and
hence the overlap region), B, and C then determined by numerical considerations.

The Schwarz iteration is initiated by assuming a zero (mean velocity) sclution in D,
and hence zero velocity boundary conditions on I'. Each full iteration requires, on an
HP 735 workstation, 5 minutes for the 3500 degree-of-freedom steady spectral element
solution and 18 hours for the 3060-atom MD simulation. (For this “experimental
study,” we choose the interaction potential cut-off, overlap region, particle reservoir
C, and number of timesteps very conservatively; more practical choices for these
parameters would reduce the MD simulation time to roughly 10 hours/iteration.)
Note, however, that one timestep of the 180000-timestep MD simulation requires
only 0.5 seconds, and thus a technique that demanded continuura evaluation on the
MD-time-scale would be enormously expensive — a 10-year computation. (For such a
small imposed timestep, we could consider a less expensive fuily explicit compressible
continuum simulation, however the computational cost would still be formidable.)
Needless to say, even our approach is not yet particularly efficient given the intrinsic
profligacy of the MD computations.

Iterative convergence is obtained in approximately 15 iterations (see Fig. 5-5). The
accuracy achieved, although acceptable, is reduced with respect to that obtained in
section 4.2.3 (see Fig.4-4,4-5); we attribute this degradation to the response (ampli-
fication in this case) of the Schwarz method to the MD statistical fluctuations, the
difference in transport coefficients in the two models, and the error introduced by the
MD boundary condition imposition. We do not yet have a complete understanding
of this amplification. Further work is clearly required in that direction. Nevertheless,
the results indicate that our approach to hybrid representations can, indeed, capture
the dynamics of “complex” multidimensional flows, and at a cost which scales as the

cost (or O(10) the cost) of the constituent MD computation.

78



0 10 20 30 0 10 20 30

Figure 5-3: Comparison between fully continuum (solid) and hybrid (dashed) Schwarz
solutions in the interior of D. The velocities are in m/s and the lengths z,y in A. The
graphs correspond to the constant-y (1) and constant-z (2) slices indicated above.
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Figure 5-4: Comparison between fully continuum (solid) and hybrid (dashed) Schwarz
solutions in the interior of D. The velocities are in m/s and the lengths z,y in A. The
graphs correspond to the constant-y (1) and constant-z (2) slices indicated above.
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Figure 5-5: Convergence history for the test problem of Fig. 4-2. The exact (contin-
uum) solution is shown dashed.
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5.3 Noise Considerations

We have shown that the hybrid framework proposed in chapters 3-5 can successfully
be applied to fluid mechanical problems of interest. The test problem we have cho-
sen is sufficiently complex and general to guarantee that the technique is broadly
applicable. The only drawback associated with this test problem is the fact that the
physical domain is small enough that a fully molecular solution would be computa-
tionally manageable or in some cases even preferable. Indeed, for this problem the
computational gain was only of the order of 30%; although the ratio of D to Q is
1/50, the computational work associated with the MD scales as the size of the full
MD simulation (C), which is 2.5 times larger than D, multiplied by the number of
iterations (~ 15). Note that the maximum number of iterations in Fig. 5-5 is not the
representative number for convergence, since the iteration was frequently perturbed
away from its converging path in that particular numerical experiment.

Although hybrid techniques can produce considerable savings in computational
cost with respect to fully molecular solutions, the applicability of hybrid techniques
is ultimately limited by statistical noise considerations, in a similar fashion to the fully
molecular techniques. Because of the relatively small number of sampling timesteps
that can be taken in the course of an MD simulation, the noise associated with
properties in the sampling bins is of macroscopic magnitude. Adequate resolution
requires that the difference between the properties in two adjoining bins be greater
than this noise, which effectively requires macroscopic changes over distances of the
order of ¢ and thus huge gradients (see chapter 2). If such gradients prevail in the
computational domain, as the latter becomes of macroscopic dimensions the simulated
systems soon become unrealistic. For example, if the above test problem was extended
to macroscopic size by a 10,000-fold increase in linear dimensions while keeping the
same gradients in the flow and hence the same resolution, the Reynolds number would
increase by 10,000% = 10'? and the Mach number would have increased by 10, 0002
(the centerline velecity in Poiseuille flow scales as the square of the channel width);

the nature of the problem would be completely changed unless improved resolution
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