Certified by

Accepted by ......... P L ——

An Approach for Nonlinear Control Design
via Approximate Dynamic Programming
by

Constantinos 1. Boussios

Submitted to the Department of Mechanical Engineering

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy
at the
Massachusetts Institute of Technology

S —
MASSACHUSETTS INSTITUTE

June, 1998 OF TECHNOLOGY
@©Massachusetts Institute of Technology, 1998. All rights reserved. JUL 121999
LIBRARIES
Signature of Author ................. SO S
Department of Mechanical Engineering
May 22, 1998
Certified by ...... e P e e e

Munther A. Dahleh

Professor of Electrical Engineering

Thesis Co-Supervisor

John N. Tsitsiklis

Professor of Electrical Engineering

Thesis Co-Supervisor

Anthony T. Patera

Acting Chairman, Departmental Committee on Graduate Students






An Approach for Nonlinear Control Design
via Approximate Dynamic Programming

by
Constantinos I. Boussios

Submitted to the Department of Mechanical Engineering
in June, 1998 in partial fulfillment of the requirements for the Degree of
Doctor of Philosophy

Abstract

This thesis proposes and studies a methodology for designing controllers for nonlinear
dynamic systems. We are interested in state feedback controllers (policies) that stabilize the
state in a given region around an equilibrium point while minimizing a cost functional that
captures the performance of the closed loop system. The optimal control problem can be
solved in principle using dynamic programming algorithms such as policy iteration. Exact
policy iteration is computationally infeasible for systems of even moderate dimension, which
leads us to consider methods based on Approximate Policy Iteration. In such methods, we
first select an approximation architecture (i.e., a parametrized class of functions) that is used
to approximate the cost-to-go function under a given policy, on the basis of cost samples that
are obtained through simulation. The resulting approximate cost function is used to derive
another, hopefully better policy, and the procedure is repeated iteratively. There are several
case studies exploring the use of this methodology, but they are of limited generality, and
without much of a theoretical foundation.

This thesis explores the soundness of Approximate Policy Iteration. We address the prob-
lem of improving the performance of a given stabilizing controller, as well as the problem
of designing stabilizing controllers for unstable systems. For the first problem, we develop
bounds on the approximation error that can be tolerated if we wish to guarantee that the re-
sulting controllers are stabilizing and/or offer improved performance. We give bounds on the
suboptimality of the resulting controllers, in terms of the assumed approximation errors. We
also extend the methodology to the unstable case by introducing an appropriate modification
of the optimal control problem.

The computational burden of cost function approximation can be often reduced, thereby
enhancing the practicality of the method, by exploiting special structure. We illustrate this
for a special class of nonlinear systems with fast linear and slow nonlinear dynamics. We also
present an approximation based on state space gridding, whose performance can be evaluated
via a systematic test.

Finally, analysis is supported by applying Approximate Policy Iteration to two specific
problems, one involving a missile model and the other involving a beam-and-ball model.

Thesis Co-Supervisor: Munther A. Dahleh
Title: Professor of Electrical Engineering

Thesis Co-Supervisor: John N. Tsitsiklis
Title: Professor of Electrical Engineering

Thesis Committee Chairman: Kamal Youcef-Toumi
Title: Professor of Mechanical Engineering






Acknowledgments

I wish to express my deepest thanks and most sincere gratitude to my thesis supervisors,
Professors Munther Dahleh and John Tsitsiklis. I wish to thank Munzer for his truly insightful
supervision, and for his unique ways of motivating and energizing me. I wish to thank John
for his invaluable ideas and feedback and his exceptional guidance throughout this work.
Munzer and John’s countless and most illuminating suggestions have always broadened my
understanding and raised my quality standards and objectives to even higher levels. They
have always encouraged me to pursue my own ideas, even those not directly related to the
main line of this research. Through their advice, help and encouragement they have brought
the best out of me. It is hard to imagine a more rewarding or more enjoyable doctoral thesis
experience.

I also wish to thank Professor Kamal Youcef-Toumi, Chairman of my thesis committee. He
has been a constant source of guidance, giving me very important suggestions on my research
and thesis. I am thankful to Professor Alexandre Megretski for having always been eager to
give me his invaluable insight into the research problems I dealt with.

Through the ups and downs of my studies, I have been blessed with the encouragement
and support of Professor Elias Gyftopoulos, who has boosted my perseverence and enthusiasm
for research. He has been an invaluable mentor to me.

During my years at MIT, I had the good fortune to meet some very remarkable fellow
students, postdoctoral associates, and friends. They given me enormous amounts of help by
discussing technical issues, sharing their own experiences and advising me, or by listening to
my practice presentations. In particular, I am deeply thankful to Christos Athanasiadis, Rienk
Bakker, Soosan Beheshti, Harry Doumanidis, Nicola Elia, Ulf Jonsson, Alex Koulouris, Pat
Kreidl, Dinos Mavroidis, Wesley McDermott, Kathy Misovec, Reza Olfati-Saber, Fernando
Paganini, Leonidas Pantelidis, Babis Papadopoulos, Steve Patek, Sridevi Sarma, Thanos Sia-
pas, Nikos Soukos, George Stamoulis, Mary Tolikas, Ben Van Roy, Manos Varvarigos, Sean
Warnick, Ssu-Hsin Yu, Zhenya Zastavker, George Zonios.

I wish to thank my parents from the bottom of my heart for being such great parents.
They have always given me their full and unconditional love and support and I have always
drawn enormous amounts of courage from them.

Finally, I would like to dedicate this thesis to the two people who inspired, guided and
educated me through the course of this work. The fact that I had the chance to work so closely
with them has made my whole graduate study experience truly memorable. These people
are my thesis supervisors, Professors Munther Dahleh and John Tsitsiklis. I feel extremely
privileged and proud to have been their student.






Contents

1 Introduction and the Design Method 11
1.1 Problem Formulation . . . . . . . ... ... ... ... ... ... 17
1.2 Approximate Policy Iteration . . . .. .. ... ... ... .. .... 19

1.2.1 Directional Derivatives . . . . . . . ... .. ... ... .... 19
1.2.2 Discrete time representation of the system dynamics. . . . . . 19
1.2.3 Policy Iteration . . . . . . .. . ... ... L. 21
1.2.4 Approximate Policy Iteration . . . ... ... ... ...... 24
1.3 ThesisOQutline. . . . . . . . .. ... .. ... ... . ... 27

2 Conditions for Stability and Cost Improvement after a Single Itera-

tion 31
2.1 Description and Assumptions on the System . . . .. ... ... ... 32
2.2 Directional Derivatives of the Cost Function . . . . . .. .. ... .. 37
2.3 Suflicient Condition for Stability of a Single Iterate . . . . ... ... 42
2.4 Discussion and interpretation of the stability criterion . . . . . . . . . 46
2.5 Sufficient Condition for Cost Improvement of a single Iteration . . . . 49
2.6 Discussion of the cost improvement result . . . . . . .. .. ... ... 52
3 Upper Bound on Suboptimality as Iterations Repeat 55
3.1 Error Definitions . . . . . . . . .. .. Lo 56



3.2 TheUpperBound. . ... ... ... ... ... .. ... ....... 62

3.3 Proof of the Theorem . . . . . . . ... ... .. ... ......... 66
Design of Stabilizing Controllers for Unstable Systems 73
4.1 Model Formulation . . . . ... ... ... ... .. ... ... ... 75
4.2 Discounted Problem and Stability of the Optimal Policy . .. .. .. 81
4.3 Approximate Policy Iteration . . .. ... ... .. ... ....... 88
4.4 Implementation of Approximate Policy Iteration . . . . . . .. .. .. 91
Approximation architecture for a class of nonlinear systems 93
5.1 Description and assumptions . . . . . . . ... ... ... ... 95
5.2 Acontinuity result . . . .. .. ... 102
5.3 Discussion of the Proposition . . ... ... ... ... ........ 104
5.4 Proof of the Proposition . . . .. .. .. ... ... .. ........ 107
A Grid-based Approximation Architecture 123
6.1 Approximation Architecture . . . . . . .. ... ... ... ... ... 125

6.1.1 Grid Selection . . . . . ... ... 125

6.1.2 Computing the Directional Derivative of the Cost Function . . 126

6.1.3 Implementation of Approximate Policy Iteration . . . . . . . . 128

6.2 A Convex Optimization Test for Checking Asymptotic Stability of the

Iterate . . . . . . . 131
Missile Autopilot Design 139
7.1 Problem Formulation . . . . . .. .. ... ... ... ... ... 140

7.1.1 Missile Dynamics . . . . ... .. ... oo 140

7.1.2 State Augmentation . . . . .. ... ... 142

7.1.3 Optimal Control Problem . . ... ... . ... ........ 143



7.2 Tteration 1 . . . . . . . . . e 145

7.2.1 Approximation Architecture . . . . . . ... ... ... ... 147
7.3 Iterations 2 through 22 . . . . . . .. .. ... ... .. ... ..... 148
7.3.1 Sample Transient Responses . . . . . . . .. ... ....... 150
Beam-and-Ball Problem 153

8.1 Policy Evaluation, Cost Function Approximation, and Policy Update 158

8.2 Tteration 1 . . . . . . . . s 160
83 Iteration 2 . . . . . . . . e 163
Conclusions and Recommendations for Future Research 167
9.1 Recommendations for future research. . . . . . . . . . .. .. ... .. 171



10



Chapter 1

Introduction and the Design

Method

In this thesis, we are dealing with dynamical systems. As such we describe systems
whose state changes in time under some rules - the dynamics - that are dictated by
the nature of the system. What we refer to as a system in the thesis is a deterministic
model (representation) of an underlying physical process. The state of the system is
described by a collection of variables that fully characterizes the system. Accordingly,
we name this set of variables the state of the system, and this is the sole meaning
of the term “state” throughout the rest of this document. We consider systems
whose state is a vector of real scalars taking values in a Euclidean state space, and
evolves continuously with time along a continuous trajectory through the state space.
The value of the state at any time is governed by its past values, as well as by the
past values of all external influences to the system. The external influences that
are under the control of the system’s human or machine supervisor/operator are
called control inputs. For the class of systems we consider, the control inputs are

real scalars collected together in a vector which takes values in a Euclidean input

11



space. On the other hand, any (typically unpredictable) external forces that might
influence the underlying physical process that we model by our system are called
disturbances, but they are not taken into account in the methodology and analysis
presented in this thesis. The task of controlling a dynamical system amounts to
selecting the appropriate sequence of control inputs so as to drive the behavior of
the dynamic system in a desirable manner. For example, it is imperative to ensure
stability, which is formally defined as the property that all trajectories of the control
system remain bounded. From a practical point of view, the stability requirement
amounts to ensuring that the state may not grow beyond some limits imposed either
by system performance specification tolerances or even safety considerations. Also,
it is desirable to ensure that the state is effectively driven by the control so as to
meet system performance specifications. In fact, the control objective is to determine
an appropriate control policy', that is, a function mapping the state space to the
input space; the control input at any time is determined via the control policy by
the current value of the state. In the physical process level, the state is read with
the help of sensors in real time. The controller is in feedback form. The resulting
controlled system along with the feedback controller form the closed loop system.
Feedback is desirable because it partly compensates for uncertainty which is present
in several forms (e.g. disturbances) in any real world environment. The control
design task is the task of determining the right feedback policy for our system. As
mentioned above, the system that we work with is a model of a physical process,
typically obtained via a combination of physical analysis and experiments. The model
is assumed to capture the dominant dynamic characteristics of the real life system

(device) that we wish to control, although it may not account for every dynamic

!The terms policy and controller are used interchangeably as synonyms throughout the thesis,
both defined as the mapping from the state to the control input. A policy or controller is denoted
by the letter . The term “policy” is more commonly used in the field of dynamic programming,
whereas the term “controller” in the field of control.

12



effect present in real life. The topic of the thesis is a control design methodology
for a deterministic dynamic system, typically a model of a more complicated real
life process. Although the methodology does not address uncertain systems, it can
be shown that the resulting controllers potentially have some desirable performance
robustness (with respect to uncertainty) properties which they possess even though
such robustness is not among the direct objectives of the deterministic design process.
We consider nonlinear dynamic systems, whose dynamics are a nonlinear function of
the state z and a linear function of the control input u. Nonlinear systems which are
linear in the controls include a great variety of systems of interest for which the control
design problem is open. Furthermore, it can be shown [67] that an even larger class
of systems can be represented by nonlinear systems that are linear in the controls.

The objective of the thesis is to develop a methodology for the design of nonlinear
controllers capable of forcing every trajectory of the system to converge towards a
desired equilibrium point (the origin 0 € R"). This problem is called stabilization. In
addition, the method aims at designing controllers which are optimal with respect to
some trajectory performance criterion. The performance criterion weighs the distance
of the state from the targeted equilibrium point at any time during a trajectory, as
well as the amount of control input applied at any time during the trajectory.

The stabilization objective captures more general command following problems,
which can be brought into the stabilization formulation by appropriate state variable
transformations. The combined stabilization/optimal control objective also captures
the stability problem, since it specifies that the state is forced close to a desired point
of operation.

As far as the problem of stabilization goes, there exist several approaches to the
nonlinear control design problem. Many apply to special classes of systems. We men-
tion feedback linearization [65, 37, 76], which applies to nonlinear systems that can be

transformed to linear ones under an appropriate feedback law, and the transformed

13



linear system can be addressed by one of many available linear control techniques.
The backstepping algorithm [54, 55] is a control design technique applied to a class
of feedback linearizable systems with special structure. For systems whose dynamics
include a component with linear corresponding dynamics, the gain scheduling ap-
proach [78, 57, 58, 53] produces controllers that are linear in the part of the state
with linear dynamics and nonlinear in the rest. It is most effective in cases where the
linear part of the dynamics is dominant. More advanced recent variants [6, 50, 47, 46]
of gain scheduling have led to effective and computationally efficient controller design
tools by taking advantage of the special structure. Other control design approaches
apply to more general classes of nonlinear systems. Sliding mode control forces the
state trajectory to approach an attractive invariant manifold, the sliding surface,
which goes through the origin. Once the trajectory reaches the sliding surface, it is
forced to move along it towards the origin. Sliding mode control [62, 74] has found
many applications [31, 64], but it comes with potential problems like large excursions
away from the origin before reaching the sliding surface, high control input require-
ments, and excitation of high frequency unmodeled dynamics during the slide (the
latter can be compensated for by forcing the state to a “boundary layer” around the
sliding surface rather than the surface itself [61], at the expense of tracking error).
The above methodologies and others which were not mentioned typically fail to
address the issue of performance. On the contrary, some of them produce controllers
that are by design of potentially poor performance. For example, gain scheduled
controllers force the trajectories to move close to a certain surface of the state space
around which linearity is practically valid, and at the same time slowly so as to
diminish the effect of nonlinearity. There may exist preferable alternative trajectory
routes, but gain scheduling control does not even seek to follow them. As far as
feedback linearizing control goes, its primary objective, that is linearization, is not

related to any acceptable trajectory performance measure, whereas it can be easily

14



demonstrated that performance may potentially be seriously degraded.

The optimal control approach, on the other hand, does address the issue of per-
formance. Depending on the exact form of the criterion with respect to which a
controller is optimal, it potentially produces trajectories with desirable features, like
fast convergence to the origin, absence of oscillation, low control input requirements,
etc. On a different twist, it has been shown that optimal nonlinear controllers pos-
sess some desirable robustness properties with respect to errors in modeling of the
underlying physical process [73, 26, 27]. It can be shown that for a large range of
modeling errors (nonlinear gain and phase margins), an optimal controller designed
for the inaccurate model of a physical process is guaranteed to be stabilizing if ap-
plied to the undermodeled physical process. This is a quite attractive feature from a
practical point of view, and constitutes one of the main motivations behind working
with optimal control based design methods.

Finding analytical solutions to the nonlinear control design problem is a nontrivial
task. It has only been achieved satisfactorily for limited classes of systems. Even more
difficult a task is to analytically solve the optimal control problem. On the positive
side, the optimal controller can be characterized by means of a partial differential
equation in the state variables, the Hamilton-Jacobi (HJ) equation. The solution
of the HJ equation is a control Lyapunov function of the dynamic system, on the
basis of which one can design a stable control law. The HJ equation is analytically
intractable, except in very few cases. Several optimal control approaches focus on
approximately solving the HJ equation computationally [21, 42, 29]. Unfortunately,
any such approach suffers from the curse of dimensionality, that is, the tremendous
amount of computation required to solve the HJ equation exactly. These approaches
work well for problems of low dimension, like 2 or 3, whereas the computational
complexity increases exponentially when one moves to higher dimensions.

Another computational approach to solving the optimal control problem is based

15



on dynamic programming algorithms. Dynamic programming is a collection of al-
gorithms which address the optimal control problem for dynamic systems in discrete
time [8, 36, 9, 10]. The state of a discrete time system changes at discrete instances of
time (a system whose state varies continuously with time can be approximated by an
appropriate discrete time system, as discussed in detail later). Again, dynamic pro-
gramming algorithms suffer from the curse of dimensionality. Therefore, approximate
versions of these algorithms are more appropriate.

Several approaches for nonlinear control using Approximate Dynamic Pro-
gramming algorithms have been proposed. Recent surveys of these algorithms can
be found in [80, 11, 68]. The focus is on developing practical algorithms. Unfor-
tunately, these algorithms come with no study on the effect of approximation on
stability and performance of the resulting controllers. Some theoretical results in-
clude [11], that provides bounds on suboptimality of the generated policies for cases
of decision problems where instability is not a possibility and the cost is discounted,
and [17] for a linear quadratic problem in which case the exact form of the function to
be approximated is known, and all that is needed is tuning some parameters to their
right values. In most cases, justification of the method’s validity is based on some
successful control design for a specific application. Overviews of recent research are
given in [80, 71, 72]. However, the lack of theoretical results undermines the credibil-
ity of the method as a general design tool for “difficult” problems which cannot be
effectively addressed by other design methods.

In this thesis, we propose Approzimate Policy Iteration, one of the Approximate
Dynamic Programming algorithms as a nonlinear control design tool. Approximate
policy iteration is a computational method based on off-line simulation of the dynamic
system. It has been successfully used in several applications [80, 71, 72], mainly for
problems with non-Euclidean state spaces. It assumes that a stabilizing controller is

available (actually, a controller for which the cost accumulated along any trajectory

16



of the corresponding closed loop system is finite). Given the controller, the closed
loop system is discretized and a number of trajectories is simulated off-line. The cost
of each trajectory is computed. The cost function is a function mapping a value of the
state = to the cost corresponding to the trajectory that starts at z. The simulations
provide a finite number of samples of the cost function. The approximation task
amounts to somehow determining an approximate cost function, based on the finitely
many samples of the cost function via interpolation and extrapolation. An updated
controller is then obtained based on the approximate cost function, as described later.
The same process is iterated until a satisfactory controller is finally obtained. As will
be discussed in Chapter 4, in the case that no stabilizing controller is known for a
system, then a proper modification of the algorithm just described is possible which
uses approximate policy iteration to obtain a stabilizing controller.

The thesis objective is to establish the method’s credibility and control engineers’
confidence in it via theory and computational experiments. In the next section, we
define the problem. In Section 1.2 we present the proposed algorithm; Finally, in
Section 1.3 we give an overview of the thesis and discuss our objectives and contri-

butions.

1.1 Problem Formulation

We consider a continuous time nonlinear dynamic system of the form

= f(z) + G(z)u, (1.1)

where & denotes the derivative of the state with respect to time, dz/dt; f : R" —» R"

denotes the state dynamics, a nonlinear continuously differentiable function of the

17



state z; The matrix

G@) = [91(2)," -+, gm(z)] € R™*™

is called the input matriz, consisting of the continuously differentiable nonlinear col-
umn vector functions ¢; : R — R™ i=1,...,m. The origin 0 € R” is assumed to
be the only equilibrium point of (1.1); that is, f(0) =0.

The control objective considered is optimal stabilization. A stabilizing con-

troller p(z) drives every trajectory of the closed loop system
z = f(z) + G(z)u(z), z(0) = o, (1.2)

starting off at z, at time ¢ = 0, asymptotically to the origin, that s, limy_, o, z(t) = 0.

An optimal controller 1" minimizes a cost function of the form

/0 " Qu(t) + u(t) Ru(t))ar, (1.3)

for every initial state, over all possible control functions i, where @Q and R are symmet-
ric positive definite matrices. For a given controller u, the cost function J; :R" > R

is defined as

Titao) = [ (@07 Qu(t) + (a(0)” Ru(e(t))dt, (14)

where z(t) denotes the trajectory which starts off at z, at time 0, that is, z(¢t = 0) =
To. A more proper notation should be z,,(t), but we simplify it. The superscript ¢

denotes continuous time.

18



1.2 Approximate Policy Iteration

1.2.1 Directional Derivatives

Consider a function J : R® — R, a point z in the state space R", and any direction

vector g in R".

Definition 1.2.1 Directional Derivative of J along g: The directional deriva-
tive LyJ of a function J : R" — R along the direction of the vector g, at a point

z € R" is defined as

J(z + ég) — J(x)

A L.
L,J(z) = ’lsl_r’% 3 (1.5)
provided that the limit exists. Consider a set of vectors, g1, -+, gm, forming a matric

G = [g1, ", 9m). We denote by LgJ(x) the column vector whose i-th element is
L, J(z), that is,

[I>

LgJ(x) [LglJ(x)f"’Lng(l')]T' (1.6)

In the next section, we use the concept of the directional derivative in order to im-

plement approximate policy iteration.

1.2.2 Discrete time representation of the system dynamics

As discussed above, the approximate policy iteration algorithm requires extensive
off-line simulation of (1.1). Therefore, we discuss how the system is represented in
discrete time, before presenting the algorithm. The discrete time representation that

we use for (1.1) is

Tyl = Ty + (s(f(fl't) + G(a:t)ut) (17)

19



This is obtained via a first order Taylor expansion of the function z(t). The closed

loop system corresponding to a policy p(z) is represented in discrete time by

T = e + 0(f(z1) + Gz () (1.8)

The integral cost function (1.3) is replaced by the infinite sum

> 6(zf Qxy + uf Ruy), (1.9)
t=0
and the cost function (1.4) corresponding to a policy p is replaced by the function J:f

given by N
JH(xo) =Y 6(zf Quy + p(z:) Rp(ay)). (1.10)

t=0

where z; denotes the trajectory which starts off at zy at time 0, that is, z,—¢ = .
A more proper notation should be z7°, but we simplify it. The superscript ¢ denotes
discrete time. We keep the interval length 4 fixed throughout the policy iteration
process. In practice, it may be desirable to vary it at different stages of the policy
iteration process, but by assuming that it is kept constant we simplify presentation
of the results.

In general, first order Taylor expansion for the dynamics is not a sound discretiza-
tion strategy, unless ¢ is sufficiently small and the functions f, G, and p are sufficiently
smooth. Here, a brute force approach is assumed. Since the simulations are done off-
line, we choose ¢ as small as needed so that the trajectories of (1.8) closely resemble
the trajectories of (1.1). To determine whether a certain value of § is small enough,
we compare trajectories of (1.8) to Runge-Kutta simulations of (1.1). Of course, if
we are forced to choose a very low value of , we run into problems of excessive com-
putational requirements. This issue, however, is beyond the scope of the thesis. Our

experience with applications of the algorithm (Chapters 7 and 8) indicates that this

20



is not a serious issue for many interesting practical cases. Thus, we have

Assumption 1.2.1 The discretization interval § is judiciously chosen small enough
so that the representation (1.8) and (1.9) captures all the important attributes of (1.1)
and (1.8)

In the next sections we describe the design method. We only consider the case
where we are given an initial stabilizing controller yo, such that JS (zo) (and J¢ (zo),
based on Assumption 1.2.1) is finite for every finite o € R", and we seek to design
improved controllers, with respect to the specified cost. The case in which no stabi-
lizing controller is available and we have to work with an open loop unstable system

is considered separately in Chapter 4.

1.2.3 Policy Iteration

As an introduction to the design method, we describe the policy iteration algorithm
for the discrete time optimal control problem (1.8), (1.9). This is an ezact algorithm;
there is no approximation. Approximations are introduced in the approximate policy

iteration algorithm, which we present in the next section.

Assumption 1.2.2 A stabilizing controller pg is available such that Jjo(:co) is finite

for every finite o € R".

The Policy Iteration algorithm generates a sequence of policies p,, p2, - - - that prov-
ably satisfy:
d d d
Juo(z) > I3 (2) > Jp(x) > ---, , forevery z €R™

Starting from the k-th policy pg, there is a two step process leading to pyy1:

Policy Evaluation: Compute Jg, (z) for every z;

21



Policy Improvement: Obtain pu;(z) as:

pr+1(x) = arg mfi{nm {d(xTQa: + uT Ru) + J,‘fk (x +0(f(z) + G(x)u))} (1.11)

ue

At every z, determining pxy1(x) amounts to a minimization problem over u. Let’s
take a closer look at the Policy Improvement step. Assume that at time ¢ = 0 the
value of the state is z, and that we have the option to freely choose a control input
up at t = 0, but for all ¢ > 1 we are forced to use u; = pi(z;). Then, the best way to

take advantage of the option to freely select ug is

uy = arg mliRr.l'" {6(3:TQ$ + p(z)TRu(z)) + Jgk (x+6(f(z) + G(m)u)} )

ue

The trajectory with ug as above at t = 0 and u, = pi(z;) thereafter, is of improved
cost in comparison to the one resulting from u; = pg(z;) for all ¢ > 0. Applying the
same strategy to select an control at every z, results in the improved controller px 1.

Clearly, implementation of policy iteration is practically impossible, since both
steps of the algorithm involve a computation for every z € R", and the policy im-
provement step requires the solution of a generally nonconvex optimization problem.

This motivates the approximate policy iteration algorithm. However, before we
move on we cite two results which ensure that it makes sense to use a policy iteration
algorithm for optimal control. They are technical results ensuring that if we do exact
policy iteration, we will asymptotically find an optimal controller. Notice that this
is not a trivial property of the algorithm, and there are classes of optimal decision

making problems where it may not be satisfied.

Existence of an optimal stationary policy:

The optimal control problem (1.7)- (1.9) has the following features:

22



1. Consider the space I' = R" x R™, that is, the cross product between the state

and control spaces. It turns out that I' can be written in the form
r=u2,lY,

for a sequence of compact sets I'* C T2 C ...
2. The stage cost function z7Qz + T Ru is continuous on T'.

3. The stage cost function satisfies

lim inf {:ETQx + uTRu} = o0.

j—)oo (z,u)er‘j —-Ti-1

4. The dynamics = + §(f(z) + G(x)u) are continuous in z, u.
For this optimal control problem it can be argued on the basis of Corollary 14.1 in [60)
that there exists a stationary optimal policy p*.

Validity of policy iteration:

Consider any policy p such that J¢(x) < oo for every z. Then, every trajectory
under that policy converges to 0 asymptotically as ¢ — oo. Therefore, the opti-
mal control problem satisfies the assumptions of Theorem 4.4.1 in [35], which was

originally shown in [34]. According to it, we have:
Lemma 1.2.1 (Based on Hernardez-Lerma and Munoz de Ozak, 1992)
1. If Jgnﬂ = J;fn for some n, then p, is optimal.

2. In general, limg_, J? =

. = Jq, pointwise (where J; is the optimal cost function).

23



1.2.4 Approximate Policy Iteration

We consider the case where a stabilizing controller py is available and Assump-
tion 1.2.2 holds. Approximate policy iteration is again a two-step algorithm. However,
the second step now changes name and is called the “policy update” step, since there
are no guarantees that the new policy is an improvement. Quite the contrary, for
large approximation errors it might even turn out to be unstable. Assume that we
are at the (k+ 1)-th step of the iteration, the stabilizing controller py is available and
we want to compute the (k + 1)-th controller:

Step 1: Approximate Policy Evaluation amounts to determining a function jﬂk as an

approximator of J% . This is a two stage process.
e g

(a) The first stage consists of selecting a sample z!, 2

,...of the state space, and com-
puting via simulation (with the use of (1.8) and (1.9)) the value of J¢ at all those
points, J¢ (z'), J¢ (2?),---,J2 (zV). To compute J¢ (z*), we simulate the trajectory
of (1.8) which starts off at z*. We simulate it for a long enough time, T}, such that the
sum Y120 6(zT Qzy + pux ()T Rpx(z4))dt has essentially converged to the value J¢ ().

(b) In the second stage, we select an architecture to be used for approximation of Jgk.

By an approximation architecture we mean a function structure of the form
T () + -+ Ty e (2), (1.12)

where h;(z) are nonlinear functions of z, and r; ,, are scalar parameters, whose values
are to be selected such that (1.12) best matches the actual cost JZ . The architecture,
with the best values of the coefficients r;,, ’s is used to interpolate between and
extrapolate J¢, (z'), JZ (¢2),- -, JE, (¢") throughout the state space R". We choose
this architecture to be twice differentiable, that is, every h; is twice differentiable.

This allows us to perform the policy evaluation step in a convenient way, as shown

in the sequel. It also leads to a differentiable py,;. Given the collection of samples

24



Je (z'), J2 (2%),- -+, JE ("), and having selected an architecture (1.12), we select

Y g R
the parameters 7;,, such that (1.12) best matches Jg, (z'), J¢ (2?),---,J2 (zV) in a
least square sense:

i = g i || I, (@), T (0] = D). T @) e (113)

The last minimization is a standard linear least squares problem, and can be easily
computed.

Remark 1: Notice that according to Assumption 1.2.1, J,, is about as good an
approximation of J; as of J;fk, and it is viewed as such in the thesis.

Remark 2: The sample z!,---,z" clearly cannot cover but a bounded region of
the state space, including the origin. Outside that region, the cost function is ex-
trapolated. Obviously, the quality of approximation outside that bounded region is
potentially very poor. This is a limitation of every computational method. However,
this does not pose any serious limitation, from a practical point of view, since in
practice the system may only operate in a bounded region around the origin. This
region is defined by specification limits, safety limits, and/or input saturation limits.
This is the region of interest, for which sound cost function approximation is crucial.
Remark 3: We do not propose any systematic way of appropriately selecting the
samples z!, - - -, zV. This is beyond the scope of the thesis. The samples are left to the
judicious selection of the control designer, who has to make sure that it is evenly dis-
tributed so as to adequately represent the whole region of interest. The effectiveness
of the sample choice influences the success of the approximation. A bad selection is
reflected in the approximation error. In the thesis we derive several conditions on the
approximation error such that approximate policy iteration produces good controller
designs. The sample selection is indirectly accounted for via those conditions on the

approximation error.

25



Remark 4: The choice of the “basis functions” h; is also based on engineering insight
in relation to a given dynamic system and cost function. In Chapter 6, we propose an
alternative, systematic way for generating an approximation, which comes with the
advantage of generality and the potential disadvantage of increased computational
complexity since it uses no insight that might simplify the cost function approxima-
tion task. Our decision to present our material with architectures of the type (1.12) in
the first few chapters is due to its relative simplicity in comparison to the systematic

architecture that is introduced in Chapter 6.

Step 2: Policy Update amounts to obtaining the updated policy px4; by virtue of (1.11),

where the approximate cost function is in place of the actual cost function J;fk:

pr1(z) = arg renﬁlm {6(:1:TQ1: + uT Ru) + j;fk (z+6(f(z) + G’(:v)u))} (1.14)

At every z, determining p;(z) amounts to solving a minimization problem over u.
However, since jgk is in general a nonconvex function, the minimization problem is
not easy to solve in general. To alleviate this problem, notice that differentiability of

the architecture allows us to write the following Taylor expansion based simplification:
Ju (@ + 6(f (@) + G(2)u)) = Jpy (2) + 0L 2y Sy () + 6 Ly o (T) - s (1.15)

where the vector of directional derivatives LgJ of a function J along directions
91, -, gm has been defined in (1.5) and (1.6), and where Lg(s)J,, (z) - u is the inner
product of a row and column vector of the same size. With the above simplification,

we implement the policy update step as

pri1(z) = argming,{ 6(3:TQI + uTRu) + jl-'-k () + 0L j“k (x)

26



+6 - La(@) Ju, () - u}

= argmin,{ ufRu+ Lg()Jy, (z) - u} (1.16)

Although a certain amount of imprecision was introduced in (1.16), as compared
to (1.14), it is beneficial because it results in a convex minimization problem. The
latter actually has a closed form solution, which allows easy implementation of the

new policy x4 as follows:

1 N
p+1(z) = —5 R 'La(z) Iy, (z) (1.17)

The above form of policy update implementation has been suggested before by [79, 23].
Whereas the imprecision introduced in (1.15) is guaranteed to be small for small 4, it
is questionable whether this is the case after the minimization operation. However, it
turns out in Chapter 3 that the amount of imprecision introduced by replacing (1.14)
by (1.16) is of order o(d) as § — 0, as revealed by relation (3.11) and the arguments
following (3.11).

Finally, the updated closed loop system is given by

i = [(2) ~ G(&) (R Lo (@) (118

1.3 Thesis Outline

The thesis objective amounts to addressing two basic questions:

(a) Feasibility of approximate policy iteration as a practically useful design method,
which can be used in a real world of limited computational capacity and, consequently,
of limited function approximation capabilities.

(b) Potential viability of the method as a control design tool; even with the feasibility

27



question answered, practicality of the method for control design depends on whether
the task of a multivariable function approximation can be carried out relatively easily
in an application. We propose ways in which the structure of the dynamics can be
used to relax the approximation burden; we also suggest a general architecture, which
can be used systematically with the advantage of a systematic way to evaluate the
quality of the approximation; and, finally, we report our application experience with
the method, which is positive and quite convincing.

In detail, Chapters 2 and 3 mainly address the question of feasibility. In Chap-
ter 2 we develop bounds on the allowed approximation error j,,k — J;,, under which
the resulting closed loop system controlled by px; is exponentially stable. We also
develop bounds on the allowed approximation error under which the resulting closed
loop system controlled by p.; has better performance than the closed loop system
under u; with respect to the cost of the form (1.3).

In Chapter 3 we develop an upper bound on the suboptimality of the controllers
resulting from the method as a function of the approximation errors at each iteration
of the algorithm. The bound is conservative, and therefore not of great practical
importance, but certainly of conceptual importance since it establishes the overall
soundness of the approach.

The second question is addressed primarily in Chapters 5 and 6: In Chapter 5,
we consider a class of nonlinear systems with a special structure. Based on the
structure, we propose a special approximation architecture which makes the cost
function approximation less complex. We show an analytical result that provides a
proof of concept.

In Chapter 4, we address the case where the open loop system is unstable. We
modify the problem (1.8)- (1.9) appropriately so that we always have an initial policy
with finite cost, even though no stabilizing controller is a priori available for the

system. We show theoretically the feasibility of the approach, and we discuss its

28



implementation.

In Chapter 6, we propose a particular architecture, which can be used system-
atically for approximation. For this architecture, in conjuction with the stability
criterion of Chapter 2, we develop a systematic criterion for evaluating the function
approximation.

In Chapter 7, we apply the policy iteration method to a missile control problem.
We evaluate the general method, as well as the simplification ideas of Chapter 5.
Finally, in Chapter 8 we report the application of the method to the beam-and-
ball problem. This is an unstable system, and it is widely used in the nonlinear
control academic community as a benchmark for evaluation. For approximation, the

architecture proposed in Chapter 6 is used.

29



30



Chapter 2

Conditions for Stability and Cost
Improvement after a Single

Iteration

Whereas a single ezact policy iteration is guaranteed to produce a controller of im-
proved performance with respect to the cost functional (1.9), no guarantees are pro-
vided by a single approzimate policy iteration. Poor cost function approximation may
result in a poorly performing controller. Even worse, it may result in an unstable con-
troller. Clearly, the soundness of approximate policy iteration relies on the designer’s
approximation capabilities. Past attempts to use the algorithm or its variants for
optimal control in certain applications have naturally recognized that fact. However,
there has never been an effort to come up with a general soundness criterion, that is, a
sufficient condition on the quality of approximation such that the controller obtained
by the iteration is stable. In this chapter, we develop such conditions. The condi-
tions provide some valuable insight into approximate policy iteration, which will be

discussed in the sequel. Furthermore, in Chapter 6, we will show that the conditions

31



can be transformed into a systematic tool for checking the soundness of approximate

policy iteration for any given application.

2.1 Description and Assumptions on the System

We assume that we are given an asymptotically stable closed-loop nonlinear dynamic

system of the form

¢ = f(z) + G(z)p(z), (2.1)

where the dimensions and form of z, f(z), G(z), p(z) are described in Section 1.1.
There is a bounded region X, which includes the origin such that every trajectory
of the closed loop system (2.1) starting off at some point zy € X, asymptotically
converges to the origin, which is the only equilibrium point of (2.1). As discussed in
Chapter 1, the region X, represents the area of operation of the underlying physical
system, which is always bounded. From the point of view of approximate policy
iteration, the requirement of simulating system trajectories imposes the restriction of
designing controllers for a bounded region around the origin, which can be selected

as large as desired. We state the following assumption:

Assumption 2.1.1 All trajectories starting inside Xy belong to a bounded region

Xinw O Xo, which is a subset of a compact region X D Xin,-

The region X represents our best knowledge of X;,,, since the latter cannot be known
exactly. In order to simplify the arguments made in this chapter, we assume that all
trajectories of (2.1) starting inside X asymptotically converge to the origin. Now, we

make assumptions on the differentiability properties of the dynamics.

Assumption 2.1.2 We assume that f(z), G(z), p(z) are continuously differentiable
n X.

32



Assumption 2.1.2 is needed in order to make the criterion that we develop simple. It
may look restrictive from a practical point of view, but it turns out that it is not as
restrictive as it seems. In practice, the dynamics of many systems may not be dif-
ferentiable. As examples we mention systems with saturations in the control inputs,
and gain-scheduled controllers. These systems exhibit non-differentiability on some
(n — 1)-dimensional surfaces, away from the origin. However, such non-differentiable
dynamics can often be approximated (and thus modeled) arbitrarily well by a dif-
ferentiable or even smooth dynamic model. A smooth model is actually a better
representation of the real world in many cases. For example, actuator saturations are
typically smooth nonlinearities modeled by a nondifferentiable saturation function for
model simplicity. Furthermore, in the case that a controller is nondifferentiable away
from the origin, it may be replaced in practice by a differentiable one. Similarly, there
are cases where a controller is discontinuous on some (n — 1)-dimensional surfaces,
away from the origin. Again, such a controller may in many cases be replaced by
a differentiable controller [46]. In a different scenario, it is a proven fact that some
nonlinear systems admit discontinuous stabilizing controllers, whereas they may not
be stabilized by any continuous controller [18, 5, 75]. In many of these cases, any sta-
bilizing controller is discontinuous on a (n — 1)-dimensional surface passing through
the origin, such that the dynamics f(z)+ G(z)u(z) near the surface, point away from
it. Consequently, the surface essentially divides the state space into two separate
parts, and our analysis would apply to each of those two parts.

In the same spirit, there are systems that do not admit continuously differentiable
controllers [13, 14]. For example, there are systems for which any stabilizing con-
troller has to be nondifferentiable at the origin [63]. We believe that our analysis and
results for the differentiable case generalize to many such cases. For some, we might
have to use a different form of cost functional (for example, higher even powers of =

and/or u). However, we do not pursue those directions in the thesis, partly because

33



the continuously differentiable case encompasses a very large number of interesting
nonlinear control problems, including those for which we argued in the previous para-
graph, partly because the purpose of the thesis is developing some basic ideas rather
than exhaustively addressing all the different classes of nonlinear systems which can
be possibly addressed by the same ideas, and, finally, partly because the main chal-
lenge of such extensions is purely mathematical and might not offer much insight into
the control problem.

Next, we give the definition of exponential stability, which in conjuction with
continuous differentiability of u implies that the cost function JS(zo) is finite for
finite o. The exponential stability assumption proves very useful in this chapter, by

helping us give simple and clear technical mathematical arguments.

Definition 2.1.1 of Exponential Stability Let us denote by x,,(t) the trajectory
of (2.1) which starts off at zy at time 0. That is, T5,(0) = z¢, for any T, € R". The
system (2.1) is exponentially stable if there ezist a scalar 8 > 0 and a scalar v > 0

such that, for all zo € X, the trajectory z,,(t) satisfies

220 ()] < Bllzolle™. (2.2)

Assumption 2.1.3 The system (2.1) is ezponentially stable.

Lemma 2.1.1 Let the system (2.1) satisfy Assumptions 2.1.2 and 2.1.3. Consider

some zo € X. Then, the value of the cost function J(z¢) is finite:

' JZ(mO) = /Ooo(zzo (t)Tszo (t) + u(l‘ze(t))TRu(zzo (t)))dt < oo, (2.3)

34



Proof:

Consider o € X. From exponential stability it follows directly that

/0 " (220 ()7 Qg (1)) dlt < 0. (2.4)

From exponential stability, it follows that the trajectory z,,(¢) is bounded. Therefore,
from the continuous differentiability of u and the fact that u(0) = 0, it follows that

there exists a constant M;, > 0 such that

(220 N < Magllzao (), V2.

Therefore,

[ o () iy ()t < . (2.5)

From (2.4) and (2.5), it follows that
J3;(z0) < o0.

Remark: There are cases where the system (2.1) may not be exponentially stable,
but Ji(xo) is still finite. If J5(zo) is infinite, we may use a different cost function
for our optimal control problem, involving higher even powers of z and/or u(z),
and J;(z¢) may then become finite. Results similar to those shown in this thesis
would also be possible with such a cost function. Selecting a quadratic cost function
and assuming exponential stability in this thesis is adopted only in order to simplify
presentation of the ideas and concepts suggested.

We also make the following assumption on the rate of convergence of z,(t), namely

that it is not faster than exponential.

35



Assumption 2.1.4 There exist positive constants 3, and v, such that

1z20 (DI = Billzolle™". (2.6)

This is not a restrictive assumption, since 3 is allowed to be small and =, is allowed
to be large.

Next, we state a lemma on the shape of the integrand in the cost function, z7Qz+
p(z)T Ru(z). We remind the assumption that p(0) = 0, which is justified by the fact
that the equilibrium point 0 is the targeted point of operation, and once there, the

state is desired to remain there.

Lemma 2.1.2 There exzist positive constants k, and ko such that
killzl” < 27Qz + u(z)" Rp(z) < koflz]?, (2.7)

for all z in the set X.

This result is used in the exponential stability arguments involved in the proof of
Theorem 2.3.1. A detailed proof of Lemma 2.1.2 is omitted. The lower bound proof
is straightforward. The upper bound proof draws from differentiability of u(z) at the
origin, which implies that p(z) looks roughly linear close to 0, and therefore the ratio
ﬂfni%ﬂ is bounded. Clearly, this is the case away from the origin as well, and the

argument follows.

From Assumptions 2.1.3, 2.1.4 and Lemma 2.1.2 it follows that

k1B l|zoll?e ™2™ < i@ (1) R (1)) + 2o (1) Qg (t) < kafB[|moPe™™"  (2.8)

36



From the last pair of inequalities we have the following corollary on the shape of the

cost function Jﬁ in X;n,:

Corollary 2.1.1 The cost function J;; satisfies

2
LA (2.9)

k 2
——iyﬂ Llzol|? < JE(zo0) <
1

for all xq € X.

Before stating the last assumption, let us give the definition of a a-level set of J|

corresponding to a real value a > 0 as the locus of points x such that Ji(z) < a.

Assumption 2.1.5 There ezists a positive a such that the a-level set of J; is a

superset of Xin, and a subset of X.

The significance of this assumption is discussed in the proof of Theorem 2.3.1.

2.2 Directional Derivatives of the Cost Function

In this section, we prove that the directional derivative of the cost function J; along
a direction g exists and is continuous at all x € X. Note that the result is proved for
any fixed vector g, and there should be no confusion with the input vector notation
g(z). For notational simplification, we define the closed loop dynamics (2.1) under
policy p, F,, as

F(z) = f(z) + G(z) (). (2.10)

This notation is used throughout this section. The function F}, is continuously differ-
entiable, and F,(0) = 0.
Consider a point zo € X. Let us denote by z(t,d) the trajectory of (2.1) which

37



starts off at zo + d¢g at time t = 0, for every ¢ such that |§] < 1:

oz (t,6)
ot

= F,(z(t,8)),  2(0,8) =10 +dg (2.11)

The restriction in size of § means that we are interested in the case of small §. Then,
we state a lemma which is a direct consequence of a result in [28]. The same result is
also proved in §4, p. 40 [43], or as Theorem 3.1 in p. 95 of [30]. An alternative proof
can be found in §2.5.7 of [2]:

Lemma 2.2.1 The trajectory z(t, §) is differentiable with respect to 8, and the vector
partial derivative %;’_52(,5,5) of £(t,8) with respect to § is continuous in 6.

We denote this partial derivative %2'—62 by z5(t, ).

We then show the following result:

Proposition 2.2.1 If F, is continuously differentiable, then the directional deriva-
tive of Ji; in the direction of a vector g € R", L,J5(x0), exists and is continuous at

any g € X.
Proof:
Integration of (2.11) gives z(t,d) as

zm®=%+@+£ﬂ@@m@. (2.12)

We differentiate (2.12) with respect to ¢. Since F), is continuously differentiable, we
can apply Leibniz’s rule (Theorem 11.1, p. 282 in [51]) and obtain the derivative of

the integral by differentiation of the integrand:

z5(t, ) £ axété, %) =g+ /Ot [BF“—(;iﬂ] z5(t, 6)ds, (2.13)

38



where by aF}";‘i(a:) we denote the (n x n)-matrix whose ij-th element is given by

5] e @14

The dynamics of x5 are therefore given by

31358(:, 8 _ [an(;it,d))] ea(t,5). 25(0.6) = g .19

The quantity inside the brackets is the linearized dynamics of (2.1). We will show that
in the limit ¢ — oo, z4(t, ) converges to 0 exponentially. Since (2.1) is exponentially

stable, it follows [76, 41] that its linearization at the origin

. 0F,(0)
= |— 2.1
z [ 9 | % (2.16)
is exponentially stable. We denote the matrix in (2.16) by A,. It follows that
lle®e!]] < me™, (2.17)

for some positive constants m, A\. From exponential stability of (2.1) and continuous

differentiability of F), it follows that for any given € > 0, we can find T, > 0 such that

OF,(z(t, 0))
—— -4 2.18
for every t € [T,,00), where by || - || we denote both a norm on R" and its induced

matrix norm. Consider the sub-trajectory z;(t,8) for t € [T,,00). According to

Theorem 2, p. 36, in [7], applied to the linear time-varying system (2.15),

lz5(t, 8)|| < ml|z5(0, 8)lle” A=) = ml|glle= 7Y, t€ [T, 00).  (2.19)

39



We choose € = aX/m for some a € (0, 1) in order to guarantee that this sub-trajectory
is exponentially stable. It follows that z5(¢,d) converges exponentially to 0 as t — 0.
This fact will prove useful in the sequel of the proof.

We define the function J; : R x R — R given by

Jg(t,6) = /Ot(:r(s,d)TQ:v(s,(s) + pu(z(s,6))TRu(x(s, 6)))ds (2.20)

which converges to J:(zo + dg) as t — oo. The partial derivative of J¢(¢,8) with
respect to ¢ is proven to exist and be continuous, for every ¢, in Section 2.4.2, p.
113, of [2]. We denote it by Jy5(t,d). By taking derivatives of (2.20), and applying

Leibniz’s rule, we obtain:

Jrs(t,6) 2 W = /0 t { l2$T(s, §)Q + 2u(x(s, 5))TRM] z5(s, 5)} ds.

oz

(2.21)
Since z(s, ¢) is bounded in s and |§] < 1, and u continuously differentiable, it follows
that %%(:’—6)1 is bounded. From continuity of p, it follows that p(z(t,d)) is bounded,
and therefore that 2u(z(t, <5)):'"Ra—‘“(%:’—‘5zl is bounded. In conjuction with the expo-
nential convergence of z;5(¢,d), it follows that the integrand in (2.21) is summable
over [0,00). Let us confine ¢ in a bounded interval [—¢s,€5]. Then, in conjuction
with (2.19), it follows that the absolute value of the integrand in (2.21) is bounded

by an expression
constant - e~ A=melt t € [T, ), d € [—e€s, €5

for some positive constant, and this expression is integrable between T, and oco. Fur-
thermore, the integrand of (2.21) is continuous. Therefore, we can apply Leibniz’s rule

for the tail of the integral (2.21) between T, and oo (Theorem 11.10, p.295 in [51}).

40



We can also apply Leibniz’s rule between time 0 and 7,. We then conclude that the
limit
Jim J55(t,6) (222

exists and is equal to the derivative d—Jﬁ(Z‘;—Hg), for 6 € [—€5,€¢5]. At & = 0, this
derivative is equal to Ly J, ﬁ(xo), that is, the directional derivative of J in the direction
g at the point xg.

Finally, to prove continuity of L,J; at xo, we notice that the procedure followed for
To to obtain Jgs(t, 0) can be followed for any y € X. We then denote the dependence

on y as J};(t,0) Then, we can define a function J,, : R" x R — R, where
Tn(y,t) 2 J%(¢,0). (2.23)
If z,(t,6) is the trajectory satisfying
T,(t, 8) = Fu(zy(t,6)), z,(t =0,0) =y + dyg, (2.24)
then this function is given by (cf. (2.21)):

_w;g;, o _ /ot{ [22] (5,0)Q + p(zy(s, 0))TRM] - ,5(s,0)}ds.

oz,
(2.25)

As time t — 00, Ji,(y,t) converges to LyJ;(y). Consider a real €; > 0. Then, there

Im(y,t) =

exists a real T, > 0 such that:
c € ¢ €
| Jm (20, Te) — LyJu(-'EO)” < 31’ | S, Te) — Lg‘]u($0)” < _3l (2.26)

Furthermore, from continuity of the dynamics in (2.24), it follows that the function

z,(T,,0) is continuous in y. Therefore, there exists a real e; > 0 such that, for all

41



|z — zo|| < €r:

| T (@0, Te) = Jm (@, Te)|| < %1 (2.27)

By combining the last inequality with inequalities (2.26), it follows that
|1 LgJ5(z) — LgJi(zo)|| < €1,

for every ||z — zo|| < €. W

2.3 Sufficient Condition for Stability of a Single

Iterate

We consider the case in which an exponentially stable policy u(z) is given, and we
perform an approximate policy iteration which results in a new policy y4'. As we saw
in Chapter 1, we approximate J§ by J, and, recalling definition (1.6) and (1.17), the

new controller is given by

/J‘I(I) = [:U'Il(l‘)7 Tt ,N;n(ﬂ?)]T = —%R-ng(.’L‘)ju(:L')
iR YLy Ju(@), +, Ly Ju(@)]T. (2.28)

Unless jy is a “good” approximation of Jf, the resulting controller, 4’ is not guaran-
teed to perform well; it is not even guaranteed to be stable. The result of this section
provides a sufficient condition on the approximation error such that stability of y' is
guaranteed. A thorough discussion of the result is given in Section 2.4. Before stating
the theorem, note the input weight matrix R can be written in the form R = RT R,
where R; is some square nonsingular matrix, by virtue of being a symmetric positive

definite matrix (cf. Theorem 8.14 in [22]).

42



Theorem 2.3.1 Assume that f, G, u and j,,, are continuously differentiable. Let the

square nonsingular matriz R, be such that R = RTR,. If

~a7Qw — 5yu(@) Rals) - [Rapu(@) + R Lo 5@ [Rupie) + Ry Lo (o)

1 -
+§LGJZ($)TR_1[LGJE($) — LaJu(z)] < —(l=]|?, (2.29)
for every x € X and for some positive constant (, then the closed loop system
z = f(z) + G(z)u'(z), (2.30)

is ezponentially stable and, therefore, the corresponding cost function Jj, s finite.

Proof: We will show that J; is a Lyapunov function for the system described
by (2.30), provided that (2.29) is satisfied. Since 0 is an equilibrium point of (2.1), it
follows that J5(0) = 0. Obviously, J; is strictly positive in the rest of X. Before we
consider the decay rate of Jg along the trajectories of the system described by (2.30),
we obtain a valuable relation by examining its rate of change along the trajectories
of the system described by (2.1). By continuous differentiability of J; and the chain
rule, it follows that the rate of change of J; along the trajectories of the system

described by (2.1) is given by

%Jﬁ(m(t)) = VJi(z(®)) - (f(z(®)) + G(z(®)u(z(8))) = Lyreui(x(t).  (2.31)

Since J§ is continuously differentiable (Proposition 2.2.1), it follows that its directional

derivatives are linear with respect to the direction vector (Lemma (4.1.5), p. 255,
of [24]), that is,

Lipsewi(a(®) = LypJu(z(t) + Loudy(=(t)"

43



= LgJg(z(t) + LaJ5(x(t)T - u(z)
= L;J;(z(t)) + Ly, J5(z(t)) - a(z) + ... +

+ Ly TS (1)) - ftm(2), (2.32)

where z(t) denotes a trajectory of (2.1). Existence of the directional derivatives was

established in Proposition 2.2.1. Furthermore,

T®) = [ (2 Qu(r) + u(a(n) Ru(z(r))) dr.

t
Therefore, differentiation with respect to ¢ leads to

9 J(e(0) = ~2(t)"Q(t) ~ ula(0)" Ru(x(t) (2.33)

We combine (2.31) with (2.32) and (2.33) to obtain
LyJ5(x) + LaJ(x)  u(z) = —2" Qz — p(z)" Ru(z). (2.34)

Note that (2.34) holds for every z in X, since every z is part of at least one possible
trajectory of the system (that is, the trajectory which starts off at z at time ¢ = 0).
Using the form (2.28) of 4/, the rate of change of J; along the trajectories of (2.30)

is given, in a similar manner to (2.32), by

Lipsam Jo(@() = LyJo(a() + LaJy(a(0) ' (x(r)
= L) — 5Ll @O R Lada(t)  (235)

44



Since every z is part of a possible trajectory of (2.30), the dependence on time in (2.35)

can be omitted. We solve (2.34) for L 7J5(z) and replace in (2.35), thus obtaining

Ligsan J5(#) = =27 Qx — (@) Ru(z) = LaJ5(w)" (a) ~ LLaJe(a(®) B Lo, (x)

(2.36)
Splitting —p(z)” Ru(z) into —1 u(2)7 Ru(z) — su(z)T Ryu(r) and adding and subtract-
ing 3LgJ;(z)" R~ LgJS() in the right hand side of (2.36) proves that

Lisreuydi(zr) = | —z7Qz — ju(z)" Ru(z)

—3lBap(@) + Ry Lo (o)) [Rup(z) + Ry Lo JE(z)]
+3L6J(z)" R LaJS(x) — LaJd, (). (2.37)

Clearly, if (2.29) is satisfied, then
Lisrouy () < —Cllz]f? (2.38)

and this implies that Ji; 1s a Lyapunov function for (2.30). The function Jy, is a
Lyapunov function for the closed loop system under p# and . In conjuction with
Assumption (2.1.5), it turns out that all trajectories of the closed loop system under
p' starting inside X, never leave X, since (2.38) holds throughout X. The last
inequality (2.38), in conjuction with (2.9), also implies that (2.30) is exponentially
stable, according to Corollary 3.4, p.140, in [41]. m

45



2.4 Discussion and interpretation of the stability

criterion

In the previous section, we developed a condition (2.29) on the difference between
the directional derivatives of the actual cost function of (2.1) and of the approzimate
function J,, along the directions of the input vectors g;(z). Condition (2.29) suffices
to guarantee exponential stability of the policy p'. It is notable that the sufficient
criterion only involves these directional derivatives, and not the actual difference be-
tween the functions. This is a direct consequence of the very nature of the dynamic
system and optimal control problem. The dynamics and cost function are differen-
tiable in the state. This enables the first order Taylor expansions, (1.7) and (1.15),
which not only result in algorithm simplifications, but also in the stability condition.
Notably, the Taylor expansion allowed us to obtain a closed form expression for p'.
We construct j” based on samples of the discrete time system’s cost function. The
working assumption here is that the discretization interval ¢ is small enough such
that J; and J;f are close. It is the designer’s responsibility to select, given a dynamic
system, a small enough & such that the error introduced by discretization is “small”;
“small”, in the sense that the approximation j”, which is tuned via the samples of
Jﬁ, satisfies (2.29). Since policy evaluation is performed off-line, the designer is not
constrained (at least in theory) about the size of 6 that he/she wishes to use.
Consider the case where there is no approximation error in the directional deriva-
tive. That is, assume that LgJ,(z) = LeJj(z) for every x. In that case, we expect
that the policy ' is exponentially stabilizing. Indeed, the left hand side of (2.29) is

a sum of negative terms,

~27Qz = p(a) " Ru(x) ~ 5[ Rap(@) + R Lo JE(@) [Rup(a) + R Lo (x)], (2:39)

46



which is less than or equal to —%||z||*> according to Lemma 2.1.2, and thus J is an
exponential Lyapunov function for (2.30). Furthermore, it is obvious that there exists
at least a &||z||? positive margin that can be tolerated. Therefore, condition (2.29)
does allow a nonzero approximation error despite which the updated controller y’' is
stabilizing.

Let us discuss some aspects of the criterion, for the single input case, for simplicity.

We observe the following fact:

Remark 2.4.1 Suppose that the directional derivative ng”(x) has the same sign as
LyJi (), and '
|LgJ,(z)| > |LgJE (). (2.40)

It follows that
LyJe(x) (LyJg(z) — Lydu(z)) <0, (2.41)

which in turn implies that the sufficient condition (2.29) is satisfied at z.

Indeed, if L,J¢(x) > 0, and (2.40) holds, then [LyJg(z) — LyJu(z)] < 0, and (2.41)
follows. Similarly, if L,J(z) < 0, and (2.40) holds, then [L,JS(z) — LyJu(x)] > 0,
and (2.41) again follows. This shows that if the assumptions of Remark 2.4.1 hold,
then (2.29) is satisfied regardless of the size of LyJ,(z). In other words, there is an
infinite gain margin of [1,00) in the approximation of LyJ:(z). Let us discuss this
from a Lyapunov function point of view. Consider the policy p. generated via policy

iteration over u, assuming zero cost function approximation error, that is,

o) = —%R_ngJﬁ(a:). (2.42)

As we saw above, J; is a Lyapunov function for the system z = f (z) + g(z)pe().
Let S(z) = {y € R" | Ji(y) = Ji(z)}, that is S(z) is a level surface of the Lya-

punov function J which goes through z. At the point z, the vector sum of f (z)

47



and g(z)u(z) is pointing at the direction where J strictly decreases. According
to Remark 2.4.1, the vector sum of f(z) and g(z)un,(z), for any pn,(z) of the same
sign and larger absolute value than u.(z), would still point towards the direction of
decreasing Jj;.

In the case that the drift dynamics f(z) point towards the direction of increasing
J§, tending to destabilize the system, the product g(z)u.(z) has to point towards
decreasing values of Ji, or else their sum would not. Then, it is easy to see that any
9(z)pum(x), with u,,(z) as above, points even more strongly towards the direction of
decreasing J;;. So does the vector sum.

However, even in the opposite case that f(z) points towards decreasing J5;, we can
conclude that g(z)u.(z) does so too! For if it did not, there would be some p,(z), of
the same sign as p.(z) and of large enough magnitude, such that the vector sum of
f(z) and g(z)pm(z) points towards increasing J;. This is a contradiction based on
Theorem 2.3.1.

This is a useful conclusion, because it demonstrates that ezact policy iteration
generates a policy p which always pushes towards the direction of decreasing J;, thus
trying to minimize cost accumulation. Cost minimization via a single policy iteration,
clearly amounts to decreasing values of J; along any trajectory of the closed loop
system. This possibly explains why this function gave us such a reasonable criterion,
and suggests that it would not be easy to obtain a less conservative criterion by any
other means.

Finally, similar arguments to the above can be made for the multi-input case
where u € R™. In this case, each input u;, © = 1,...,m, multiplies the i-th column
g9i(z) of the input matrix G(z), and the above arguments hold for each pair of input

u; and the corresponding input vector g;(z).

48



2.5 Sufficient Condition for Cost Improvement of

a single Iteration

We consider the case in which a policy p is given such that Jﬁ(x) < 00, and we
perform an approximate policy iteration which results in a policy ' given by (2.28).
In this section, we develop conditions on the approximation error, such that the cost
function Jg of the closed loop system under policy y' is smaller than J;. We now

state the result:

Theorem 2.5.1 Let f, G, u be continuously differentiable, and let J,, be selected
twice continuously differentiable, so that u' is continuously differentiable. Assume
that the error in approzimating J;; by jﬂ 1s small enough such that the closed loop

system under u' is ezponentially stable, and J, () < oo forallz e X. If
(4(2)" Ri (z) — w(z)" Rps(x)) + LaJ5(2) (1 () — u(z)) < 0 (2.43)

for x € X, then the performance of the closed loop system under u' is improved
compared to the performance of the closed loop system under p with respect to the

cost functional (1.3), that is,
Ju(z) < J5(z), (2.44)
for all z € X. By plugging in the form p'(z) = —%R_ngju(x), the sufficient condi-

tion (2.43) takes the form

(3E07@) B Ladu(@) = w(@)" Ruls)) + La i@ (~ 3R Ladul@) - u(@) <0,

(2.45)
forallz € X.

49



Proof:
We rewrite equality (2.34),

LyJi(z) + LeJS(z) u(z) = —27Qx — w(z)T Ru(z), for every z € X, (2.46)

which expresses the rate of change of the cost function J; along a trajectory of the
closed loop system under p as the negative integrand of the integral that defines gy
Equality (2.46) is used later in the proof.

We consider any point zy in X, which we fix for the rest of the proof. We denote by
y(t) the trajectory of the closed loop system under policy ' which starts off at z, at
time t = 0, that is,

y(t) = f(y@) + Gy()u'(y(t), y(0) = zo. (2.47)

We define the function I(t) as:

I(t) 2 LiJs(y(8) + La TS (y(®) 1 (3(2) + v()TQu(t) + 1/ (u(£)) TRy (y(2)). (2.48)

Consider the right hand side of the above definition. The sum of its first two terms is
equal to the rate of change of J; along a trajectory of the closed loop system under
. The sum of the last two terms is the integrand of the integral that defines Ji(To).

Therefore, by integrating I(t) between time 0 and oo, we obtain:

LT r0dt = (L) + LeTsw®) W () de
+ 152 (v TQu(t) + W (y()T Ry (y(t))) dt
- 57 g dt + T (o)

= lime,o0 Ji(y(t) — J5(T0) + S5 (o)

30



= T (o) — T (o), (2.49)

where lim;_, o J;(y(t)) = 0 by virtue of exponential stability of the closed loop system
under y' and J5(0) = 0.
By adding and subtracting LaJS(y(t))Tu(y(t)) and p(y(t))TRu(y(t)) in (2.48), and

then by rearranging the terms, I(t) is written as:

I(t) = LyJi(y(t) + LeJi(y() W (y (1) + Le i (y(1) T u(y(1)
—LaJi(y(®)) u(y(®) + y(0)TQy(t) + ' (y(t) "Ry (y(1))
+u(y(®)T Ru(y(t) — u(y ()T Ru(y(t))

= LpJs(y() + LaJS(y(8)Tuly(®) + y(&)TQu(t) + n(y(t))TRu(y(t)) +
+LaJS(y(0)T (1 (1) — u(y(t))
+ (1 () TR (y(t)) — ply(t)TRu(y(1))) (2.50)

By virtue of (2.46), the sum of the first four terms on the right side of the last equality
is equal to 0. It then follows from (2.43) that

I(t) = (W(y®)TRe (y(1)) — wy(®)TRu(y()))
+LaJS(y())T (W (y(t)) — uly(t))
< 0 (2.51)

It follows that the integral of I(t) is nonpositive. Therefore, (2.49) implies that
Ji(m0) < J5(20). (2.52)

This completes the proof, since (2.52) holds for any z; in X. |

o1



2.6 Discussion of the cost improvement result

To see whether inequality (2.45) constitutes a meaningful sufficient condition for
improvement, we examine if it holds in the case of no approximation error in the
directional derivatives, that is, LGj” = LgJ5(z). Then, the left hand side of inequal-
ity (2.45) becomes:

~ 3 La (@) B LT () — pla) Ru(w) - LaJ5(z) n@) =

1 ™
= — |sR'LgJ(z) + Rip(z) ~R{'LgJi(z) + Ryp(z)|, (2.53)
2 2

which is clearly less than or equal to 0. Thus, inequality (2.45) is automatically
satisfied and shows that policy iteration results in a non-deteriorating policy in the
case where there is no approximation error in the directional derivative of the cost
function. This verifies that Theorem 2.5.1 gives a sound sufficient condition.

We give an illustrative example of what the criterion on improvement predicts.
Consider the case where a system is open loop stable, that is, it is asymptotically
stable under the policy 4 = 0. For simplicity, assume that the input is scalar and
R = 1. Assume that at some point z, the vector g(x) points towards the direction of
decreasing values of J, that is, L,J;(z) < 0. The improvement criterion (2.43) for

an updated policy p’ is satisfied if
W) + LeJg (@) (z) = i (@) (1 (z) + Lo J5(x)) <0 (2.54)
Thus, the criterion is satisfied only in the case that
0 < p(z) < —LyJS(x).
The improving control is positive, which implies that the vector g(z)u'(z) points

92



towards decreasing values of J;. Therefore, the rate of change of J; along trajectories
of the closed loop system under the improving controller 4’ is faster than in the open
loop case. However, ' does not result in improvement if its value exceeds some limit.

This is expected, since the size of the control is penalized in the cost function.

53



o4



Chapter 3

Upper Bound on Suboptimality as

Iterations Repeat

It now is assumed that the control designer manages to generate a sequence

11, Mo, - - -, Mk, - - - Of exponentially stable policies. In Chapter 2, we provided a suf-
ficient condition on the approximation error that guarantee exponential stability of
each of these policies, and a sufficient condition that guarantee improvement after
a single iteration. Nevertheless, in practice, the controllers that are generated are
suboptimal. Our objective in this chapter is to establish an upper bound on the
suboptimality of the controllers that are generated after a large number of iterations.
A meaningful upper bound has to be a monotonically increasing function of the ap-
proximation error, and vanish when the approximation error vanishes. For practical
purposes, these worst case bounds might prove quite conservative. However, they are
of theoretical value as well as of conceptual importance for the designer, since they
indicate what improvement or degradation he/she should expect by tightening or
relaxing his/her efforts at the stage of cost function approximation. Similar subopti-

mality bounds have only recently been given in the cases of discounted cost problems

99



or stochastic shortest path problems for systems with countable state spaces. These
results were developed by Bertsekas and Tsitsiklis in Chapter 6 of [11]. The work in
this chapter draws from their ideas and extends them to the undiscounted problem
for systems with euclidean state spaces, which constitute the subject of this thesis.
In this chapter, for simplicity of notation, we assume that the control input u is
scalar. For the same reason, we consider the case where the state and input weight
matrices are ) = I, R = 1. The general case follows with slight modifications.
Preview:
We consider the case where we implement approximate policy iteration as described in
Chapter 1, with a discretization interval . The policy update rule is given by (1.17).
We assume that the absolute value error between the directional derivative of the
approximate cost function L,J,, (z) and the directional derivative L,Jg (z) of the
discretized system cost function is upper bounded by a function e(z) over all k. We
derive an upper bound on suboptimality of the generated policies. The upper bound
is achieved after a certain number of iterations. In the case where €(x) decreases
to 0 uniformly over z, the upper bound collapses to a minimum. This minimum is
in general nonzero, even in the case where we allow the discretization interval § to
asymptotically decrease to 0. At this point, it is unclear whether the upper bound
can be made to collapse to zero with a different line of proof, or with a somewhat

different set of assumptions.

3.1 Error Definitions

As was discussed in Chapter 1, we employ approximate policy iteration in order to
design a suboptimal controller/policy for the problem (1.7), (1.9), which constitutes
a discrete time representation of the original, continuous time problem, (1.1), (1.3).

The sampling time, 4, is fixed throughout the policy iteration process. In this chapter,

o6



we omit the superscript ¢ in the symbol that we use to denote the actual cost function

of

Tepr = T+ 0(f(ze) + 9(z)ws), oo = 0. (3.1)

under a policy u; = pg(z:). The actual cost function of this discrete time system is

thus denoted by J,,, and J,, (z,) represents the cost

Nk

6(z{ Qz¢ + ul Ruy), (3.2)

t

Il
=)

accumulated along the trajectory starting at z,, under control uy = pp(zy). The
approzimate cost function is denoted by j,,k. It is assumed that the vectors f, g are
differentiable. The same is assumed of each policy px, K =1,2,.... For the latter, it
suffices that the initial policy uo is differentiable and that our choice of j,,k is twice

differentiable, by virtue of (1.17). The following proposition can then be shown:

Proposition 3.1.1 Assuming that f, g, p are continuously differentiable and the
system (3.1) controlled by policy py, is ezponentially stable, then the actual cost func-
ton Jy,, of (8.1) is continuously differentiable.

By virtue of this proposition, it makes sense to use differentiable approximator func-
tions J,, and the policy update rule (1.17). Nevertheless, by using (1.17) we introduce
a policy-update-error, which is induced by the approximation (1.15). We will take a
closer look at this. First, we introduce some shorthand notation, which will be used
throughout the chapter. For any function J : R® — R, we consider the function
TJ : R" — R obtained by applying one exact discrete-time dynamic programming

iteration as follows:

(TJ)(z) = muin{d(xTx + ) + J(z + 6(f(z) + g(z)u))} (3.3)

o7



Similarly, for any function J : R" — R and policy p we consider the function 7},J :
R" — R defined as

(Tu)(2) = 8(z" = + p(2)*) + J(z + 6(f(2) + g(a)u(z)))}. (3.4)

Given a policy yx and the corresponding approximate cost function juk, let us denote

by pg,, the policy resulting from the ezact policy update
Hi1(2) = arg TJ, (z) = argmin{6(z"z + u?) + J, (¢ + 6(f(z) + g(z)u))}. (3.5)

By applying Taylor’s theorem (cf. (3.6.2) in p. 198 of [24]), J,,, (z + 6(f(z) + g(z)u))

is written as

i (@) +8 L sy g(0yw) Tun (2) (25 0) = T (@) +8(Lp(a) Ty () +u- Ly(a) T (2)) + (2, )

(3.6)
where C(z,u) is of order 0(6), as § — 0, for any fixed z and u. However, we actually
implement policy updating according to (1.16) which, in contrast to (3.5), is a convex

optimization problem with a closed form solution (1.17). Thus,
Lky1 = arg muin{du2 +8LyJ,, -u} (3.7

The function ¢(z, u§,,(x)) is denoted by ¢;(z). It follows that

TJ, =T Ju =0570+8(ug, )2+ Ju +0LsJ,, +0Lyd,, - i, +C. (3.8)

e
k+1

58



We wish to characterize the difference between 7)., | J,, and T'J,,. From the definition

of T

" +1juk and differentiability of J,,, we obtain

Tuk+1juk = 6$Tx + 6uk+1($)2 + juk (I) + 6ijﬂk + Jngﬂk " Bik41 + 52(1")’ (3'9)

where () 2 C(z, prs1(z)) is of order o(8) as § — 0 (for any fixed z). We define a

new function é , which will be used in the sequel, as
c A T e 7 e
£(z) = dprr()? + 6Ly (2) - i (z) — 5ﬂk+1($)2 —6LgJu (x) - pipa(z)  (3.10)

By subtracting (3.9) from (3.8) and using the definition (3.10), we obtain

TppiiJu (@) = T, (2) = £(2) + Co() — (i(2) > 0. (3.11)

The above difference is non-negative by virtue of the fact that T.J,, (z) minimizes the
expression in (3.3). At the same time, € is non-positive, by virtue of p;,, minimizing
the expression in (3.7). Therefore, the difference (y(x) — (;(z) is non-negative. From
these arguments, it follows that £(z) is smaller in absolute value than (y(x) — ¢ (z)
for every z. It follows that £(z) is of order o(6) as § — 0, for any fixed z. The sum
£(z) + Co(z) — (i(z) represents the error introduced in the policy update step. For
small d, this error is negligible.

Similar expansions based on Taylor’s theorem can be applied to T'J,, (z) and

T,

Hk+1

J,. (z). By applying Taylor’s theorem on J,,, we obtain

Ju(z +6(f(z) + g(z)u) = Ju () + 6(Lj(z) s (z) +u- Lo()Ju, (z)) + ((=, u), (3.12)

99



where ((z,u) is of order o(4), as § — 0, for any fixed z and u. We define the policies

Vg, and vy, resulting from J),,
Vi (z) = argTJ, (z) = arg muin{d(:ch + u?) + J, (z + 8(f(z) + g(z)u)}, (3.13)

that is, ¢, is the policy obtained by a single ezact policy iteration step from p;. We

also define

1
ves1(z) = argmin{du® + Ly J,, (z)u} = —5 Lo () (3.14)

We also define the following functions:

G(z) 2 ((x, v (2)) (3.15)
Gal) 2 ¢(x, vera (@) (3.16)
Ga(z) £ ¢(2, 41 (2)) (3.17)
£(2) & i1 (2)? + 8LgJ () - visr (3) — 608,41 (2)2 — SLgJ,, (2) - v, () (3.18)

In a similar fashion to (3.11), we have
Tuk+1J#k (I) = TJMk ((IJ) + 5(1') + CQ(-T") - Cl (3:) 2 0. (3'19)

It can be shown that &£(z) is of order o(d), as § — 0 (for any fixed z), similarly to

£(z). We also define the function 7 as

n(z) £ £(z) + G(z) - G (o), (3.20)

which is of order o(6), as § — 0, for any fixed z.
The optimal policy which minimizes the cost (3.2) for the system (3.1) is denoted

by p* and the optimal cost function by J*. No differentiability guarantees can be

60



established for either.
Some more notation needs to be introduced. First, we introduce the following

notation for the approximation error between ngmc and LgJ,,:

a

ex(2) (Lg(z)jnk (z) = Ly(z)Jus (2))*. (3.21)

We also introduce a more compact notation for the dynamics of (3.1):

Fi(z) £ 2 + 6(f(z) + g9(z) (). (3.22)

Consider a trajectory of (3.1) that starts at z. We use the notation F}(z) to denote
the operator that maps x to the point reached by the system after :—steps along this
trajectory. That is, F{(z) = z, Fi(z) = Fx(z), F¢(z) = Fx(Fk(z)), and, in general:

Fy(z) = Fi(Fi(- - Fi(z) ) (3.23)

i—times

Similarly, we may define the operator F'(z) for the system under optimal control,
p*. Since all policies uo, p41,- - - and p* are exponentially stable, all trajectories of the
discrete time dynamic system under these policies converge to the origin. Any ball
around the origin, no matter how small it is, will be reached by a trajectory of the
system in finite time. At the same time, the cost function J,, decreases continuously
along the trajectory and converges to 0 as the trajectory converges to the origin.

Therefore, for every £ > 0 we can define:

Mi(z,€) 2minfis Vo (Fin@)] < 5 and Wy, (Fip@) < 53 (3:24)
Ne(@, &) 2min{i; o, (Fi@)] < 5 and [F(Fi@) < 5} (329

61



We assume that the following bounds exist and are finite:

€(z) 2 sgp ex(z) (3.26)
M(z,£) & sup Mi(z, ) (3.27)
N(z,) & sup N(z, £) (3.28)

If we keep applying approximate policy iteration indefinitely, and thereby generate
an infinite sequence of exponentially stable policies, there is a certain possibility that
the above suprema do not exist. At any time during the policy iteration process,
there exists no way to guarantee that no future policy will result in longer transients
than the already generated policies. Therefore, finiteness of the bounds e(z), M (z,&)
and N(z,€) is not guaranteed and we have to assume it. Before stating the result,

we also need to make the definitions that follow:

n(z) £ N(z, e(z)) (3.29)
Hi(z) £ Fl, (Fi(z)) (3.30)
mi(z) & M(H;(z), ge(Hi(x)), (3.31)

where § is the discretization interval used in (1.7). The above quantities appear in
the upper bound given below.

A last reminder before the result. We use extensively the directiona] derivative func-
tion L,J. In the following upper bound, as well as throughout the proof that follows,

by L,J(z), we denote the expression Lyy(J(x))

3.2 The Upper Bound

We now formulate the main result of this chapter:

62



Theorem 3.2.1 Let the policy approzimation errors ex(x) at the k-th iteration. Con-
sider the definitions of the quantities £(x), (1(z), (2(x), E(x), 51(1:), fg(x) which result
from adopting the policy update rule (3.7) in place of the ezact formula (3.5). Then,
an upper bound on suboptimality of the policies uy, for k > n(x), where n(z) is defined
in (8.29), is given by

Juo(@) = T (@) € €(@) + § THY T e(Fi(2) + T T n(Fi(z) +
+ O Be(Hy(2)) + § TP e(FL_i(Hi(x))) +
+ YT n(FL_ (Hi(2)))} (3.32)

Before giving the proof of the theorem, we make some remarks on the upper
bound. The function €(z) represents the cost function approximation error at z,
whereas 7(s) is a measure of the errors introduced by the Taylor based simplifications
we have made in the policy update step. In the sequel, we shall try to interpret each
term of the bound. In particular, we examine how the upper bound behaves as the
approximation error on the directional derivative of the cost function uniformly goes
to 0, as well as when the discretization constant ¢ goes to 0.

The first term, €(z) clearly vanishes as the approximation error on the directional
derivative of the cost function vanishes uniformly. Let us consider the second term,
%Z:‘if,)_l €(Fi(z)). The sum is taken along a trajectory of the closed loop system
under optimal control. It clearly vanishes as the approximation error goes to 0. We
now consider how the sum behaves as the discretization constant § goes to 0. Clearly
in that case, n(z) increases roughly as 1/§. However, this does not imply that the term
increases as ¢ decreases. Indeed, the sum is multiplied by §. Therefore, it converges,

as § — 0, to the integral of the error ¢(z) along a trajectory of the corresponding

63



continuous time system.

The term Y79~ n(Fi(z)) is not multiplied by . However, as § decreases to 0, 7(-)
decreases to 0 faster than §. Since n(z) increases linearly as § decreases, it follows
that the term vanishes at the limit § — 0.

The fourth term is the sum Y5~ %€(H;(z)). The interpretation of this term is
similar to that of the second term, only along the trajectory H;(z), i =0,---n(z) —1.
This trajectory is a slight variation of the trajectory F'(z), as can be seen from the
definition of H;(z) (3.30).

The fifth term is the sum of the sums %Z;-":"(I) e(Fl_is1(Hi(z))),i=0,--,n(z) — 1.
Clearly, as the approximation error vanishes uniformly, the term vanishes. Each of
these sums approximates the integral of the error along the trajectory that starts off
at H;(r) and ends when the state has become less or equal to e(H;(z)). As § decreases
towards 0, the term approaches the a finite time horizon integral of the approximation
error. It then looks like the overall term might increase as the discretization constant
d decreases, since n(z) then increases linearly with 6. The above discussion suggests
that, when given the option to use more computational power, it is more preferable to
use 1t towards improving the cost function approzimation error € by making additional
trajectory simulations, rather than towards more accurate simulations by decreasing
the constant 9.

The sixth term is the sum of the sums Y7, n(F; V1 (Hi())). As § decreases towards
0, the error 7 in general decreases roughly at a rate 62, as it follows from Taylor
expansion theory. Since m; increases roughly at the rate 1/4, it follows that each of
these sums decreases roughly as 6. Since n(z) increases roughly at a rate 4, it follows
that the overall term might converge towards a constant as J vanishes. This shows
that our chosen strategy of approximate policy update (1.17) or (3.7) may result in an
amount of suboptimality that does not vanish even if we choose very small §. At this

point, it is not clear whether this term can be made to collapse to zero with a different

64



line of proof or with a somewhat different set of assumptions. It can be argued that
the upper bound collapses to zero if the policy update is implemented exactly, instead
of the form (3.7) which results from the Taylor expansion simplification (3.6) (see the
remark below). The fact that the sixth term cannot be guaranteed to collapse to 0
as 6 — 0 might account for the particular way in which the policy update step is
implemented.

In conclusion, the upper bound on suboptimality goes to a minimum as the approxi-
mation error € vanishes uniformly. The minimum may not be 0, probably as a result
of our chosen strategy of approximate policy iteration implementation. Thereby, a
tradeoff is revealed between practical implementability of policy iteration and the
degree to which optimality can be achieved.

An important remark follows which supports the last argument:

Remark:

We can show that if we do not assume a certain implementation strategy for ap-
proximate policy iteration, and we simply assume some cost function approximation
error and some appropriate policy update error along the lines of Proposition 6.2 in
Chapter 6 of [11], the resulting error bounds on the suboptimality do vanish as both

the approzrimation error and the update error vanish.

We compare this result to the similar results by Bertsekas and Tsitsiklis in Proposi-
tions 6.2 and 6.3 of [11] for the finite state discounted problem and stochastic shortest
path problem, respectively, from which this result draws a lot. The key element of
Bertsekas and Tsitsiklis’ results is the knowledge of the rate at which cost is accu-
mulated along a trajectory. A similar notion in our derivation is introduced via the
assumption that the upper bounds M(z,&) and N(z,&) exist (cf. (3.27) and (3.28)
respectively). As discussed above, the upper bounds of Bertsekas and Tsitsiklis van-

ish as the approximation and update errors collapse to 0, whereas the bound (3.32)

65



does not, for the reasons discussed above. Finally, in Theorem 3.2.1 the maximum
number of iterations necessary for achieving our upper bound is given, whereas in
the results of Bertsekas and Tsitsiklis it is only shown that their upper bounds are
achieved asymptotically as the number of iterations goes to infinity. It should be kept
in mind that that we only deal here with deterministic problems. For deterministic
finite state shortest path problems, the results in [11] can also be extended to provide

a bound on the number of iterations.

3.3 Proof of the Theorem

We now proceed with deriving the upper bound (3.32).
Proof of Theorem 3.2.1:
Throughout the proof, whenever we write the symbol of a function without an argu-

J, J,,. (z)). Using the

ment, z is implied as the argument (e.g. T}, ., J,,

in place of T,

k+1 k+1

definition (3.16) of ¢, and Taylor’s expansion, we have:
ToerJue =027+ 607, + Ju +0LpJy, + 0Ly J vk + G (3.33)

By plugging (3.33) and (3.14) into (3.19), we obtain

) )
TJ, = szl + Z(ngﬂk)z + Ju, +0LgJy, + §L9Jﬂk(_L9’]ﬂk) +G—€6—0G+G

1)
= 6271 - Z(LgJMk)2 +Ju, +6Lpd,, —E+ G (3.34)
Using appropriate Taylor expansions and the form px.; = —%ng”k, we write the
difference 7}, , J,, — Tmc+1juk as

Tﬂk+1J#k - Tl-lk+1jl-‘k = 5(zT$ + (Lg—{fk)_) + Ju +O0Lpdy, + %(LQJ#k)(_ngﬂk) + (G-

66



LgJy, )? 5 7 7 7 -
—6(:L'T$ + (—4“)—) - Jﬂk - JLfJuk - %(LgJﬂk)(_Lng‘k) - <2

6{(Lf‘]l-‘k - ijmc) + %ngﬂk(ngﬂk - Lng-"Ic)}

e = Ju + G — G (3.35)
By combining (3.11) and (3.35), we obtain

Tuk+1 Jﬂk = 6{(Lf*]m¢ - ijuk) + %ngﬂ'k (nguk - LyJuk)}
Ay = du + G =G+ T, +E+ 6 -G (3.36)

By plugging (3.9) into (3.11), we obtain

TJMk = Tﬂk+1 jﬂk - é - (;:2 + él
7 2 ~ ~ ~ -~ ~ ~ ~ ~
= 6(aTo+ Lty 4 J + 6L, + 26(Lodu)(~Ledu) + G — € -G+
— §(aTz — Loty 4 J 4 6L, —E+ G (3.37)

We subtract (3.34) from (3.37) and we have:

T, = T, +06z27z— §(LyJ,, ) + Ju + 0Ly, + G — £—
—0zTz + %(LgJﬂk)2 = Ju = 0Ly + €= G

2 T 2 ~ ~
= TJﬂk + ‘5{(%{1%) - (Lg{;uk) + Lmec - LfJI-‘k} + Juk - Jﬂk

+Gh-E+E- G (3.38)
By plugging (3.38) for T'J,, into (3.36), we have:

- 1 - - - -
Tuk+1 Juk = 6{(LfJIJk - LfJﬂk) + §L9Juk (LgJuk - LgJuk)} + Juk - Jllk + C3 — (2

(LoJu)® _ (LgJu)?

+€+ G -G+ T, +6{ . .

+ ijﬂk - L.fJ"'k}

67



= Jy + O —E+E-G
) < -
= TJMk + Z{(LQJI%)2 + (Lg‘]uk)2 - 2(L9Jﬂk)(LgJuk)} +€ - Cl + 41{3-39)

1) ~
< (LgJuy, — LgJy, )2+ 7. (3.40)

< ka+4

We used the fact that T'J,, < J,,, which follows from definition of T'J,,, and the
definition (3.20) of the function 7. Finally, by using definition (3.21) we write (3.40)

as

4
Tir I (7) < T () + Je€

“en(z) +n(2) (3.41)

It can be easily verified by definition of 7, . J,

Hk+1" Kk+1 (

4) that

T

Be+1

J,

Hk+1

=J

Hk+1"

(3.42)
We subtract (3.42) from (3.41) to obtain

T,

0
uk+1J#k - Tﬂk+1Juk+1 < Juk - Juk+1 + Zek +n

which, after bringing J,, and J,, , to the left and using definition (3.4), leads to

k+1

J,

Hk+1

—Ju < T S = T S + %6’“ +7

Hi+1

= d(aTe+ Shedly 4 g, (FL(2)) — §(aTa + Chelly

—Ju (Fia (7)) + gex + 1
= Jueir (Frpr(2)) = Ty (Fi(2)) + gek + 7. (3.43)

We now apply (3.43) recursively to the difference J,,  (Fi,,(z)) — Ju, (Fiii(2)) to

obtain

Tues () = T (2) £ Ty (F1(2) = Ty (Fis1 (7)) +

68



+iee(Fiqr (2))n(Fey (2)) +

+2ec(z) + n(z). (3.44)

Proceeding recursively up to the time step M;(z, %ek(x)) along the trajectory that

starts at x, we obtain

My (z,8ex(x)) i
T (@) = T (2) € fer(@) + 5Ty " e(Fiy (2)) +

s, :
+yp@as@ g (2)). (3.45)

At this point, we will work towards establishing a similar inequality involving u*
and J*. The intermediate result (3.45) will then be used in order to conclude the
proof. Observe that T'J,, < T,J,, for any policy u, including p*. This is a direct
consequence of the definitions (3.3) and (3.4). Observe, also, that T,.J* = J*. Using
these facts, equality (3.39) implies

T,

Hk+1

Jl—‘k

VAN

Ty Juy + $(Lgdu, — LgJu)? + 1
= Ty Jyuy — Ty J* = J* 4+ (L J s, — LoJu)? +1
= o{zTz + (1)} + Ju (F(2)) — 6{zTz + (1)}
—J*(FXz)) + J* + 8(LgJu, — LgJu)? +1
= J,(F}2)) = J(FN=)) + J* + &(LgJu, — LgJu )2 +n  (3.46)

Again, we observe that T}, J,, ., = J,,,,. Therefore,
Toeridue = Juer = T Junn + T - (3.47)

By subtracting (3.47) from (3.46), by using the definition of ¢, and (3.45), and by

69



and T,

Hi+1

expanding T}, .. J,

Bk+1Y k1 Juk’ we obtain

Jus (2) = J*(2) < T (Fi(2)) = J*(F2(2)) + 3er(2) +1(2) + Ty Siesr — T
= Ju(Fl (@) = J*(Fi(2)) + qei() + 6{z"z + pi1a (2)7}

e (Fe1(2) = 6{z7z + pe(2)*} = o (Fiya (2)) + (2)
= Tu (F(2)) = J(F2(2)) + qer(®) + Jup, (Fipa (7)) =

—Ju (Fiya (2)) + n(z) (3.48)

Juk

Consider k¥ > 1. By applying the last inequality on the difference J,, (F}(z)) —
J*(F}(z)), we obtain

Jue(Fy (z)) = J*(Fi(2)) < Juer (F2(2)) = J*(F2(2)) + ge-1(F} (2))
+Ju, (Fi (F(2))) = ., (Fe (F (2))) + n(FL (2)) (3.49)

By plugging (3.49) into (3.48) we obtain, for k > 1,

Juss (2) = J*(2) <y, (FA(2)) = J*(F2(2)) + § ico &-i(Fi(2)) + Tisg n(Fi(2)) +
Si—o{ Juisros Frsr i (Fi(2))) = Ju (Fiyy o(Fi(2)))} (3.50)

In turn, we may write an inequality similar to (3.49), for £ > 2, for the difference
Jyo_,(F2(z)) — J*(F2(z)), and then replace in (3.50). Then the left hand side of the
latter will include the term J, _,(F3(z)) — J*(F3(z)). We repeat the same procedure
for this term. By repeating the above steps up to n and by using the definition (3.29)

of n(z), we obtain for k > n(z) — 1:

Jﬂk+1 (1’) - J*(I) < Jﬂk+1 n(z)(Fn(z)) - J*(F"(;p))
+H SO e i(Fiz) + R n(Fi(=)

70



+ T80 un i (Fleri(Fi@))) = T (Flyr_i(Fi(2)))} (3.51)

We now use inequality (3.45) to replace the terms of the last sum in (3.51). At this
point comes handy the notation H;(z), defined in (3.30):

Ty (@) = J*(2) < Tis1oniey(F2()) = J*(F2(2))
+3 50 ei(Fi(x)) + T8 n(Fi(z))
+ i i (Hi(2) + § ST ek—i(Fi_ipy (Hi()))
+Z i=0 n(Flg—i-H(Hi(I)))} (3.52)

where we also used the definition (3.31) of m;, and indirectly, that of e(z, ) (3.26).

The latter, in conjuction with the definition of n(z) is used in the final step, which

follows:

T (@) = (@) € €e(2) + S M9 e(Fi(a)) + 29 n(Fi(z)) +
+ YD e (Hi(2)) + & S e(FE_ iy (Hi(z))) +
+ ET:io n(Flg—i-H(Hi(x)))}' (3.53)

Finally, we replace k for k¥ + 1 in (3.53) and (3.32) follows. W

71



72



Chapter 4

Design of Stabilizing Controllers
for Unstable Systems

Instability is the most serious problem facing a control engineer. In practice, a system
is unstable when a trajectory of the system starting from a non-equilibrium point
grows out of some finite bounds. Exceeding those bounds is unacceptable for a device.
The bounds may represent some worst case performance specification limits or, even
more importantly, some safety limits. As an example of the latter case, consider
the longitudinal dynamics of a conventional aircraft, controlled exclusively by its
aerodynamic surfaces and thrust, but not by any novel ways like thrust vectoring.
If the angle of attack of such an aircraft ever exceeds the stall angle threshold, it
enters a situation from which there is not enough actuator power to recover. Then,
the airplane is due to flip over and, eventually crash out of control.

The mathematical models that are typically used to describe the dynamics of a
device do not recognize these limitations. They are based on the system’s dynamic
behavior inside the limits of acceptable operation, without accounting for the state

magnitude physical limitations. Instability for these models amounts to their trajec-

73



tories starting from a non-equilibrium point growing unbounded. Such models might
have several advantages. A potential advantage is linearity. There exists a variety
of control design tools for linear models. If a system can be modeled by a linear
model with a high degree of accuracy inside the region of acceptable operation, then
good controllers can be designed via linear control design tools which ensure that
the dynamic variables of the system will never exceed the safety limitations. In that
case, not including the limitations in the model, makes sure that the design task is
relatively straightforward, and the designed controllers are such that the closed loop
system does indeed operate desirably, within the specification or safety limits. Even
for systems that we model with nonlinear models, we keep the model simpler and
less nonlinear by not including these limitations, thus, making the use of analytical
approaches for the control design problem easier.

It turns out, however, that this strategy potentially has the exact opposite effect
on difficulty as far as computational methods are concerned. In particular, policy
iteration fails for models that allow the dynamic variables to grow infinite in size.
To see this, consider the optimal control problem addressed in this thesis. Clearly,
the cost function J(z) of the type (1.9) for an unstable discrete time system whose
state grows unbounded is infinite for all x € R". This makes policy iteration an
impossible method. Consider the policy update step (1.16). The updated controller
at a state z is derived on the basis of a comparison between the cost functions among
the states that are neighboring z. If the value of the cost is oo, such a comparison
is meaningless. This fact is recognized in the (exact) dynamic programming theory.
All convergence results assume knowledge of a certain initial policy under which the
cost function is finite for all states. The reader is referred to Chapter 1 and Section
2.2.2 of [10].

In this chapter, we show that by incorporating bounds on the dynamic variables in

models of unstable systems, approximate policy iteration becomes a feasible method

74



for designing stable controllers. That is, we pose an optimal control problem for the
new model of the system, the solution of which is a stable controller, as will be shown.
The suboptimal controller that we obtain with approximate policy iteration should
be stable as well, provided that the approximation errors are small. The resulting
stable controller forces any trajectory that starts within the bounds to converge to the
equilibrium point or just remain within the bounds. As argued above, this approach
makes very good sense from an application point of view, as well.

Control over a selected bounded region around the origin is known as semiglobal
control in the literature. Recently, several researchers have proposed semiglobal con-
trollers for different classes of nonlinear systems [40, 38, 69, 20]. The dual advantage
of practicality and feasibility of computational methods has been exploited in [39].

More applications of semiglobal control can be found in {77, 19].

4.1 Model Formulation

We are given a model

Ty = f(z) + G(z0)y, o € R ueU CR™ (4.1)

of a nonlinear system in discrete time, where U is a bounded region that includes 0.
We assume that there exists no known controller which stabilizes the above model.
The discrete time model is derived from a continuous time model of the form (1.1).
Notice, that the discrete time representation (4.1) is more general than and includes
representation (1.7) which has been used throughout this work. The requirement to
specify a bounded region U that u belongs to, is needed for the theoretical guarantees
of the approach to be developed in the sequel of this chapter. We are free to select U

as large as we desire, but bounded. This is by all means a realistic assumption from a

75



practical point of view, too, as in all real life applications such bounds exist. The origin
0 is an unstable equilibrium point of the open loop system. The trajectories of (4.1)

with u = 0 starting from almost any nonzero state z, at time 0 grow unbounded:
Jlim ||z¢|| = oo, if zg#0 (4.2)

The training region TR, which includes the origin, is specified by the control engineer.
It is the region for which a stable controller is desirable; that is, a controller u(x) such

that any trajectory of the closed loop system
Tiy1 = f(.'L't) + G(.’L‘t)ﬂ(.’l)g), Tg € TR (43)

starting off from a point zy in TR will remain bounded, or converge to the origin.
The control engineer also specifies the region of acceptable operation RAO, such that
TR C RAO. Both regions TR and RAO are compact, that is, closed and bounded.

For example, they may be of the form

TR = {z:|z] < Rrr}
RAO = {z:|z| < Rrao} (4.4)

0 < RTR < RRAO

In that case, the surface {z : ||z|| = Rrr} ({z : ||lz|| = Rrao}) is the boundary
of region TR (region RAQO). See Figure 4.1 The following model is then adopted to

describe the underlying physical process:

f(ze) + G(z)u if z; € RAO
Tt+1 = . (4.5)
Ty otherwise

76



o
N,

Figure 4.1: The regions RAO and TR

Let u = u(z) be any controller (policy). Consider a state o € TR. Then, we denote
by z% (t) the trajectory of (4.5) controlled by u which starts off at zo at time ¢ = 0:

f(2h, (1) + G(ag, (1) (e, (2), if 2, (t) € RAO

(4.6)
zh (1) otherwise

h (t+1) = {

Tk (0) = .

Notice that we changed the notation a little bit in (4.6), in order to avoid subscript
jamming: the dependence on the discrete time index appears in a parenthesis following

the state vector, rather than subscripted as in (4.1).

Definition 4.1.1 Given a controller (policy) p and a value of the state o € TR, the
instant of destabilization N,(xo) with respect to RAQ is the instant at which the trajec-
tory z#  leaves RAO. For example, if RAO is of the type RAO = {z : ||z|| < Rrao},
then

N,(zo) = min{t € Z7 : ||z (t)|| > Rrao} (4.7)

7



Optimal Control Problem: We are stating an optimal control problem for (4.5).

The optimization objective is finding a policy p* such that

p" = argmin { T ot (2 (8T Qat () + (et ()T Rus(a, (1)) +
M T2 o1 @ (28, (T Qa (1) + p(at (8)T Ru(as, (1)}, (4.8)

for every o € TR,

where a € (0,1) is a cost discount factor, M > 1 is the unacceptable operation weight
factor, @@ and R are symmetric, positive definite state and control weight factors
respectively.

Remark: Selecting M to be large, is motivated by our desire to heavily penalize
the unstable part of a trajectory so as to make the generated policies pay a high price
for going out of the bounds imposed by RAO. As expected, it turns out to be an
instrumental element of the stability proofs that follow in the next section (part II of
Proposition 4.2.1).

We denote the cost function associated with a certain policy p, with discount factor

a and unacceptable operation weight factor M, by J‘(“"’M ):

T (4) 2 { Sd™ at (i (8T Qak () + plas (1) Ru(zt, (1)) +
HM 20 oy @ (2 (8T Qa (8) + (s, (6)T Rus(as, () } - (4.9)
The cost function J‘(f"M ) turns out to be finite for every policy u:

Proposition 4.1.1 The cost function Jl(f"M) : TR — R 1is finite, for trajectories
x# (t) of the type (4.6).

Proof:

78



Since RAO is a bounded region, it follows that ||z% (t)|| is upper bounded by a bound
Tmaz , for all policy g and initial conditions zy. Similarly, since U is a bounded region
all admissible controls p(z) for all z are upper bounded by a bound wu,,,. Also,

« € (0,1) and M > 1 by choice. Therefore, for any =, and g, it follows from (4.9):

|
NgE

JEM (ze) < MY at (wh, ()7 Qak, (8) + ulat, (1) Ruslat, (1))

o~
Il
o

< M-

WK

0" (Amaz (@7, ()12 + Amaz (R) | (%, (9)11%)

o~
|l
[=]

< M(’\maz (Q)J"?naz + ’\maz(R)ufnaz) Z o
t=0

1
1-a’

IA

M(’\mal‘(Q)ernaz + /\ﬂml‘(R)uz?naz) (4.10)

where Aoz (@) (Amaz(R)) is the maximum eigenvalue of the positive definite matrix

Q (R). From (4.10) it follows that J{**) is bounded.

Finiteness of the cost function for any controller/policy p is the motivation behind
modeling the unstable system in the form (4.5). It allows the use of policy iteration
to solve the optimal control problem (4.8). However, at this point it is important to
notice that the optimal controller 4* may not be stable, in the sense of forcing the
state to converge to the origin or simply remain close to it! We demonstrate this with
the following example:

Example:

Consider a dynamic system

, r,u€R (4.11)

2z, +u if |24 <2
Ti41 = ]
T, otherwise

with training region |z| < 2. We consider an optimal control problem of the type (4.8)

79



with M =1, € (0,1), @ =1 and R = 1. It is easy to realize that a policy u cannot

be stable unless it satisfies:

< -9 if 7, € 0,2
@y = ST ifmelo] (4.12)
> 2z, if 7, € [~2,0)

Let u, be a stable policy. Consider the cost function:

T (o) = ot (ke (1) + pa(ater(1))?)
t=0

333 + ust($0)2

v

v

2 2
Ty + 4zg

512, (4.13)

for any discount factor a € (0,1). In contrast, the policy p,(z) = 0 for all z € [-2, 2],

is clearly not stable. Consider the cost function

H@) = 3o (22 (8) + un(zh2 (2))?)
S Z at . 22
t=0
4
= 4.14
— (4.14)

If @ < 0.2 and for all |zg| > 1, then Jl(“j:’l)(a:o) <5< Jf“j‘;l)(zo). Thus, p, induces a
lower cost than pg for |zo| > 1. It follows that a stable policy p, cannot be optimal
for a < 0.2. Therefore,

In general, the solution of the optimal control problem (4.5), (4.8) need not be a stable
policy.

The reason behind this is the discount factor «. If there was no discount in the

80



cost, then the optimal policy would be stable. At the same time, the role of the
discount factor is instrumental for the purpose of using the policy iteration algorithm
for unstable systems.

In the next section, we argue that for a given problem, there are ranges of « (close
to one, but smaller) and M (large enough), assuring that the optimal policy for the
problem (4.5), (4.8) is indeed a stable policy.

4.2 Discounted Problem and Stability of the Op-
timal Policy

We define a notion of stability and a notion of exponential stability for a system of

the type (4.5), with the following definitions:

Definition 4.2.1 A policy y, : RAO — R is called an RAO-safe policy if, for any
xo € TR, the trajectory x4 (t) belongs to RAO for every t > 0.

The following definition is another version of 2.1.1, and plays a major role in the

stability result which follows in the sequel of this section.

Definition 4.2.2 A RAO-safe policy pes : RAO — R for system (4.5) is called an
exponentially stable policy if there ezist a positive C and a q € (0,1) such that,
for all xy € TR,

xhes (t)TQsc;‘;’(t)+ues (Ig‘;’(t))TRues(mi‘;“ () < Ca:ngoq‘, for all z, € TR. (4.15)

0

We need the definition of a Q-closed ball of radius e in order to subsequently define

the notion of an e-attractive policy.

81



Definition 4.2.3 The Q-closed ball B, with center at the origin of R" and radius
€ > 0 is defined to be the set of all x € R" such that z7Qz < e.

Definition 4.2.4 A RAO-safe policy pp, 1s called e-attractive if every trajectory
xtbe (t) which starts off at zo € TR goes inside the Q-closed ball B, that is, for

every o € TR there ezists an instant ty, such that zht(t;,) € B..
We now give the definition of stabilizability for (4.5):

Definition 4.2.5 The system (4.5) is stabilizable if there ezists a RAO-safe pol-
icy ps. The system (4.5) is called exponentially stabilizable if there ezxists an
exponentially stable policy pies.

Determining the stabilizability properties of a nonlinear dynamic system is an issue
which has received a great amount of research effort. There exist systematic tests for
stabilizability of several classes of nonlinear dynamic systems [33, 1, 66] as well as
several contributions studying the general problem of nonlinear stabilizability [44, 32].
In this work, we assume that stabilizability can somehow be examined, and if a system
is stabilizable, then policy iteration is the tool we propose for finding a stabilizing
policy.

Let us now examine whether the optimal policy of the problem (4.5), (4.8) is stable,

or e-attractive and how this depends on the values of @ and M.

Proposition 4.2.1 I. Assume that a system of the form (4.5) is stabilizable.
Then, for any given discount factor ., there exists a real M(«) such that the
solution of the optimal control problem (4.8) is stable for discount factor o and
unacceptable operation weight factor M > M(«a). The dependence of M («a) on
o s

M(a) = —, (4.16)

for some constant b > 1.

82



II. Assume that (4.5) is ezponentially stabilizable and let p.s; be an exponentially
stabilizing policy. Then, for every € > 0, there ezists a number a, € (0,1) such
that the solution of the optimal control problem (4.8) is an e-attractive policy

for any discount factor o € [, 1) and any unacceptable operation weight factor

M>1.

Remark: The nonlinear system can be linearized around the origin and an asymp-
totically stable linear controller 7y can be designed for the linearized system. It is
well known [76] that the nonlinear closed loop system under that linear controller is
then locally asymptotically stable, that is, there exists a neighborhood of the origin
such that all trajectories starting off in that neighborhood converge to the origin. The
number € can be small enough such that B, is subset of that neighborhood. Assume
that a nonlinear policy pus, forces all trajectories of the closed loop system under g,
to go inside B,. Then, a switching feedback strategy can be implemented such that
the controller switches from p, to ppr;r as soon as a trajectory reaches B.. The
resulting controlled system is asymptotically stable. This paradigm motivates part II
| of Proposition 4.2.1.

Proof of Proposition 4.2.1:

I. Consider the set
X;={z; ¢ RAO : z; = f(z) + G(z)u, z € RAO,ueU}. (4.17)

This is the set of all possible terminal points of all trajectories which start off
inside TR and leave RAQO, under all admissible policies i that are not RAO-safe.
We define a number c as

A, T
= 4.1
¢ xflg)f{f{w ;Qzy} (4.18)

83



that is, c is a lower bound on the value that the function z7Qz takes in X;.
By assumption, there exists a RAO-safe policy u;. The cost function Jg (z0)
is bounded over zo € RAO (the unacceptable operation weight factor in the
superscript is omitted because it is of no meaning for an RAO-safe policy).
Let jﬁ: be an upper bound over z; € RAQO. Consider a policy p, which is not
RAO-safe and some discount factor a € (0,1). Let the set S,, be defined as

S..2{ £€RAO:3z)€TR and t>0

u

such that z4:(t) = z,and N, (7) =1} (4.19)

Consider a point z; € S,,. Then, we can find a number M(a) > 1 such that:

oo oo a2 _
M) 3 @)Y a'c= M(a)eg— > J;,
t= N“u(z,)+l t=2
>za (24 ()T Qs (8) + ma(a (1)) Rpss (2 (1)) (4.20)

From the definition of ¢ (4.18), it follows that:

=
2
™
Qe«
IA
=
2
MS

of (e (t)" Qb (t))

IA
=
L
M8

o (2 ()T Q™ (£) + a2 (1)) Rpsu (2 (1))

IN

1
> a'(z

t=0

/\

()7 Qzt (t) + pu( ()T Ry (242 (2)) )

Za (2 (87 Qax (t) + pra(he (1) Bzt (1))

= Jo M(a)( ) (4.21)

84



By combining (4.20) with (4.21), we obtain for z, € S,,:

iat (2t (7 Qi (1) + ol () Rusa(ats (1)) < J@MD(z). (4.22)

This shows that no RAO-unsafe policy is optimal for z, € S,, with respect
to (4.8) with discount factor o and weight factor M («a). Considering any other
7o € TR, the trajectory z4* has to go through S,,. Thus, u, cannot be optimal.
Therefore, the optimal policy has to be RAO-safe.

The same conclusion follows easily for all weight factors M > M(a), since

J’(“:’M(“))(zo) < Jl(f:yM)(:ro)

for all M > M (a), by inspection. It then follows from (4.20) that M («a) can be

chosen as:
l-a -,
M(a) = caz Hs (4.23)
In order to show (4.16), we define
d2 max 27Qz + maxu” Ru. (4.24)
TERAO uelU

Notice that d is a well defined number, since both RAO and U are compact
sets, while zTQz and uT Ru are continuous functions. From the definitions of
d, Jg. it follows that

jo< L g (4.25)

I-"s—l_a

Therefore, it follows from (4.20) that M (a) can be selected as

b
"o

M(a) = - (4.26)

85



IL

where b = d/c. It can be easily verified that d > ¢, thus b > 1.

By assumption, the exponentially stable policy s is such that

Ty’ (t)TQl"zLS’ (t) + pes(zhe? (t))TRﬂes(I’;;’ (t)) < CaTQxzoq', for all o € TR.
(4.27)
Let D be an upper bound on = Qz, over TR, that is, D is such that

D > 17 Quy, for all 9 € TR (4.28)

Consistent with our notation so far, we denote by J}m the undiscounted cost
function along trajectories z4e forced by pe, (where the superscript 1 denotes

that @ = 1). By virtue of (4.27) and (4.28), along any trajectory we have:

T (o) = L2 {zher ()T Qb () + pres(ate? ()T Rptes(zer (1)) ]

< 2220(CalQaoqt) < 1CD (4.29)

which implies that, for every n € (0,1):

1 1
ZJY (z9) < ———CD 4.30
g hes (30 S S (4.30)

Now, let us assume that there exists a RAO-safe policy ps, and some o € TR
such that
2 ()T Qa4 (t) > €, forall ¢>0. (4.31)

Note that the following arguments also go through if a policy which is not
RAO-safe is considered instead of u,, provided that the unacceptable operation

weight factor M is greater than or equal to 1. Consider such a z,. Then, there

86



exists a positive integer N(zg,7n) such that:

N(zo,m) CD
/-‘s T ¥ Zo, >
2 e (07 Qu5 (0} 2 Niwo,n)e > s

(4.32)

Inequality (4.32) shows that N(zo,n) = which is independent of zg,

cD
ne(1—q)’
therefore we can instead denote the integer by N(n). In order to ease notational
congestion to some degree, we omit the dependence on 7 in the sequel and write

N instead of N(n). By virtue of (4.30) and (4.32) it follows that

tg{w‘z‘;(t)TQw (t) + ps (s (1)) Rpss (223 (1)) }

> S et (07 Qe 0} > s
> nJ;“ (zo) (4.33)
We pick a number a(n) € (0,1) as
a(n) = ¥/mn, where N = % (4.34)

Again, as with N(n), in the sequel we omit the dependence of a(n) on 7. Then,
it follows from (4.34), (4.33) and the definition of J;  that:

Zat{w (t)TQuly (8) + ps (a3 (1) Rpss (2 (1))}

Mz

> ! e (07 Qe (1) + i (a (0) Russ (@ (0))

Z_:O {als (1) Quls () + ps (2t (1)) Russ (2l (1)) }

= nZ{w“’ ()T Qs (t) + ps(z (1)) Rus(zhs ()} > n J., (o)

87



oo

0{lﬂ"“( 1)T Qe (t) + pes (w7 (1)) Ruses (ks (1))}

8 |

> > ozl (1) Quly (t) + pes(ahy (1)) Rutes (245 (1))} (4.35)

t=0

The conclusion from (4.35) is that, for every zq € S,,, pes is of lower cost than
s, for the optimal control problem with @ = a(n) (or a € [a(n), 1), as can be
easily seen). Therefore, the optimal policy is an e-attractive policy for a given

by (4.34). [

4.3 Approximate Policy Iteration

In the previous section, we concluded that if (4.5) is stabilizable, then we can formu-
late an optimal control problem of the form (4.8) with the right values of discount
factor and unacceptable operation weight factor, whose solution is stable.

To solve the optimal control problem, we use approximate policy iteration. Given
a RAO-unsafe policy u, we select a and M, and perform a number of simulations
starting from different initial conditions. By integrating (4.8) along each simulated
trajectory, we obtain a sample of the cost function Jl(f"’M ). After selecting an approx-
imation architecture of the type (1.12), we “tune” the architecture weights by means
of a least square fit (1.13). The resulting approximate cost function is denoted by j,‘.
The approximate policy iteration algorithm then calls for determining the updated

policy as

Umin(T) = arg HlellI]l {a:TQa: +uTRu + oJ,(f(z) + G(:c)u)} , for all z € RAO
(4.36)
Updating the policy in this manner calls for the solution of an optimization problem

in u for every z, which is in general hard. Therefore, in practice we simplify (4.36)

88



in some way, e.g. (1.16), and bring it to a form from which we can derive the up-
dated policy in closed form or in a computationally feasible manner. Actually, for
the (4.5), (4.8) type of problem we use something similar to (1.16), but we postpone
the presentation until Section 4.4. Nevertheless, the policy A(z) that we obtain does
not solve (4.36) exactly. Therefore, two sources of approximation errors are intro-
duced in the process. Let us assume that they are both bounded for z € RAO. The
errors and their bounds are expressed as

7 — jla,M)
max |, - J@M) < ¢ (4.37)

23 |{37 Q2 + e (@) Ritnin () + @, (/@) + G (5) (1))} —
= {70z + 4()" Riz) + alu(f(2) + G@)(z)}| < 6. (4.38)

Assume that starting from an initial policy uy we generate a sequence of policies
Ho, i1, - - - in the as described above via, approximate policy iteration. Assume, also,
that in every iteration the same error bounds ¢ and § are achieved. Then, it has been

shown by Bertsekas and Tsitsiklis and reported in [10], p.42 that

Proposition 4.3.1 The sequence of policies i generated by the approzimate policy

iteration algorithm satisfies

0 + 2ae

, (@M) (1) _ jlad ) O+ 20€
lim sup max (J (z) - J (z)) < 1=

k—oo ZTERAO Hk *

(4.39)

where J{*M) is the optimal cost function corresponding to the stable optimal policy

- It follows easily that

Corollary 4.3.1 If the policy iteration algorithm is performed eractly, that 15, € =0

89



and § =0, then

: (c,M) _ 7la,M) —
hﬂsogpxg}?jcou”k (z) = J,2")N(z)| =0 (4.40)

For nonzero errors € and &, the asymptotic bound on the difference in performance

between py and p, is proportional to € and §.

Remark: The bound (‘51"‘_253 is quite conservative. For example, if we select archi-
tectures which ensure that z(0) = 0 for every k, then J{®")(0) — JeM(0) = 0 for
every k.

On the basis of Corollary 4.3.1, the optimal policy is achievable provided that we
have the ability of flawless function approximation and exactly solving the minimiza-
tion problems (4.36), neither of which is realistic in practice. However, there is still
hope. Even in the realistic case of imperfect approximations and minimizations, the
policies that are generated are worse in performance than optimal by an amount that
only increases linearly with ¢ and . Engineering intuition dictates that there are
some thresholds ¢ and 8, such that if our approximations do not violate, then the
asyptotically resulting suboptimal policies will still be stable. Intuition is favored by
the proofs of Proposition 4.2.1. In those, the argument was that some stable policy,
in general suboptimal, is of lower cost than the unstable ones for the right values of

a and M. It follows that:

Corollary 4.3.2 (of Proposition 4.2.1 and Proposition 4.3.1):

In general, the policies us and pes of the proofs of parts I and II of Proposition 4.2.1
are suboptimal. This implies that indeed, there exist thresholds €4 and 64 of approzi-
mate policy iteration errors, such that if not violated by the approzimation errors, the

resulting policies as k increases are stable.

90



4.4 Implementation of Approximate Policy Itera-
tion

We consider the case where we are given an unstable nonlinear dynamic system in

continuous time,

& = fo(z) + g.()u, (4.41)

where u is scalar (for simplicity), f.(z) and g.(z) are continuously differentiable. We
do not know any stabilizing controller for (4.41), so we select some continuously dif-
ferentiable u.(z) to close the loop. We define TR and RAO. For a small discretization

interval 4, we use the discrete time model

(4.42)

b + 0(fe(xe) + ge(@e) pe(e)) ifr, € RAO
t41 =
T otherwise

as a simulator of (4.41). We select @ and M and define a discounted optimal control

problem

T (z0) £ { s at - 6 (whe ()T Qate (8) + pe(whe (£)T Rpse(wts (1)) +

M Sy e @ -8 (28 (0T Qats (8) + pelte (6)T Ruelats (1)) }

By following the procedure described in Section 4.3, we obtain a (smooth, by choice)

approximate cost function Jﬂc. Then, the policy update rule (4.36) takes the form

arg 15161[1]1 {d(zTQ:c + u' Ru) + ad,, (z + 6(f.(z) + gc(x)u))} , x € RAO (4.44)

91

(4.43)



In order to express the updated policy in a closed form, we introduce the first order

Taylor approximation
jﬂc ('T + 5(fc($) + gc(l')u)) =~ jﬂc (1") + 6L.fc(z) jﬂc (‘T) + ‘SLgc(z) jﬂc (l‘)u (445)
We plug (4.45) into (4.44) and we have:

argmin {5(s"Qz + u" Ru) + @y (v + 6(fe(2) + ge(2)w)) } =~
arg Lnel[rjl {6(:1:TQ33 +uTRu) + o (j,,c () + 6L f(zy e (2) + 6 L (2) J e (r)u)} =
arg Lneltrfl {5(uTRu) + 6aLg, 2y, (:v)u} ,
forall ze€ RAO

Therefore, in a similar way to (1.16), the updated policy takes the form

Ae) = =5 Lo Juc (@) (4.46)

The policy f is smooth by virtue of smoothness of J, .. The approximate policy

iteration procedure can then continue the same way.

92



Chapter 5

Approximation architecture for a

class of nonlinear systems

In Chapter 2 we developed bounds on the allowed approximation errors such that a
single policy iteration results in a stable policy. We also developed bounds on the
allowed approximation error such that a single iteration results in cost improvement.
It turns out that the allowed errors are large. In principle, it suffices to compute a
limited amount of cost function samples so that approximate policy iteration pro-
duces stable and improved policies. The results of Chapter 2 are confidence results.
They alone constitute enough justification for using approximate policy iteration in
nonlinear control design problems. Nevertheless, the task of cost function approx-
imation can be very demanding, despite the large allowed errors. In particular, in
high dimensional problems, it is reasonable to expect that the amount of cost func-
tion samples required to generate an acceptable approximation is large and a large
amount of computation is required in order to generate them.

In this chapter, we argue that insight into the dynamic structure of a given problem

is a potential partial substitute for computations in the cost function approximation

93



task. That would alleviate part of the computational burden and make approximate
policy iteration more popular to control designers. In other words, insight may be
used to enhance the practicality of the method by making the task of cost function
approximation more tractable.

As a paradigm, we work with a special class of nonlinear systems, and propose a
certain way in which part of the approximation burden can be relaxed. Hopefully, the
paradigm can be extended to other classes of systems, as well. However, this special
class of systems is important in its own right, since it encompasses a large number of
dynamic systems of great practical interest.

We consider nonlinear systems for which it is known that only a few (in many
cases, one or two) physical quantities enter the system dynamics in a nonlinear way.

The system can then be modeled in the form

TN _ fN(-TN) N AN(J,‘N) oL+ gN(fL'N) u, (51)

Ty fr(zn) Ar(zy) gr(zn)

where zy € RF and z; € R" " are the components of the state that enter the
dynamics in a nonlinear or linear fashion, respectively, and u € R™ is the control
vector. Let the origin [07, 07]T be an equilibrium point of (5.1), when v = 0. That
is, fn(0) = 0, fL(0) = 0. Due to the linear fashion in which a number of states
enter the dynamics, linear controllers can be designed for fixed values of the zy-
component of the state. The exact procedure is described below. These controllers
can be heuristically interpolated to synthesize a controller, which is linear in z; and
nonlinear in zy; the dependence on zy arises from the interpolation. The most
popular approach of this type, quite commonly used in practice, is gain scheduling.
Gain scheduling often proves successful in practice, especially in cases where the

dynamics of z; are dominant in comparison to the dynamics of . In that case, z,

94



be of high accuracy, provided that the dependence on Ty can be adequately approx-
imated. However, having pre-determined the way that the approximation looks like
with respect to zy leaves the designer with the easier task of approximating in the

k-dimensiona] space of . Policy iteration becomes easier to yse. As a direct applica-

5.1 Description and assumptions

Consider a trim point of the s stem, that is, a point [zT, 7.7 satisfyin
p Y Nfs Ty g

In(zny) L | Anlasy) — u =0, (5.2)

fr (sz) AL (fo) gL(INf)

A trim point is an equilibrium point, of (5.1). Therefore, the dynamics can be lin-

earized around a trim point, and a linear controller can be designed for it, via one of

95



many standard linear control design techniques available. This is a key observation,
upon which gain scheduling and other control design approaches for (5.1) are based.

In gain scheduling, stabilizing linear controllers are designed for the system’s lin-
earizations around several trim points corresponding to fixed values of the zy vari-
ables. The latter are called the scheduling variables. Additional logic is then used
to interpolate between these controllers based on measurements of the scheduling
variables. The states which enter the dynamics in a nonlinear fashion are treated as
scheduling variables, since each linearization of (5.1) corresponds to a different value of
zn. This approach has been studied extensively by several researchers [78, 57, 58, 53],
and has been relied upon heavily in several applications. The closed-loop is theoret-
ically guaranteed to be stable only if the scheduling variables zy evolve slowly with
time [57, 58]. However, in practice the gain-scheduled controllers have proved quite
reliable in many real world applications. The gain-scheduled controller as described
above is linear in the £, component of the state. An alternative way for designing gain
scheduled controllers with certain stability and performance guarantees has been de-
veloped recently in [47, 46]. Finally, a recent different formulation of the gain schedul-
ing problem is that of Linear Parameter Varying (LPV) systems [3, 4, 6, 50, 56].

We assume that a gain scheduled controller

p(z) = pn(zn)zL, (5.3)

where uy(zy) is @ m x (n — k) matrix, has been successfully designed for (5.1), such

that [07, 07]7 is an exponentially stable equilibrium point of the closed loop system

TN _ In(zn) N An(znN) o+ gn(zN) i (2x)z, (5.4)
T fr(zn) Ar(zn) gr(zn)

for every initial condition [z%,, z7,]7 belonging to a bounded region X, that contains

96



the origin.

Assumption 5.1.1 All trajectories starting inside X, belong to a bounded region
Xinw O Xo, which is a subset of the following compact region X :

A IN
X,'m, cX= s.t. ”.’L’No“ S N and ”IL'L()” § L ¢ - (55)

0y 4

Definition 5.1.1 A function f(z) satisfies a Lipschitz condition with constant | in

an open region D if

1f() = Fll < Uiz -yl

for all x and y that belong in D. MW

We state the following assumption on the system dynamics:

Assumption 5.1.2 The functions fn, fr, An, AL, 9N, 9L, in Of TN are continuously

differentiable with respect to xn n Xip,-

Note that many gain scheduled controllers used in applications are continuous, but
non-differentiable with respect to the scheduled variables £ on some switching sur-
faces of dimension n — 1. Any such controller can be replaced by a continuously
differentiable feedback control function, which can be selected arbitrarily close to the
original non-differentiable one, and such that all stability and performance properties
of the latter are preserved. An example of such a “smoothing” operation is given
in Chapter 6. Therefore, Assumption 5.1.2 is a reasonable assumption to make and
simplifies the subsequent analysis significantly.

Some Notation:

Consider a continuously differentiable function f : R™ — R", which maps a vector

97



T = [z1,  Tw]T to a vector f(z) = [fi(z), -, fn(z)]". Recall from (2.14) that by

%ﬁ(:z:) we denote the (n x m)-matrix whose ij-th element is given by

of dfi

L] -5, (5:5)
ij

Consider a continuously differentiable function 4 : R™ — R™*"2 which maps a

vector T = [z)," - - Tm|T to a matrix A(z) = [a;;(z)]. By g—z(z) we denote the (n; xny)-

matrix whose ij-th element is given by

[g—ﬁ(ﬂ]” - %Z,J (2). (5.7)

We now make the following assumption on the part of the input vector which corre-

sponds to the scheduling variables zy:

Assumption 5.1.3 The part of the input vector that influences the dynamics of the
upper part of the state is 0 at x = 0, that is, gn(0) =0

Assumption 5.1.3 ensures that the dynamics of zy are small even if uy(zy)zy is
large. Therefore, even if x is large, the dynamics of the scheduling variables are still
small. This assumption is justified on the basis of the dynamics of several interesting
applications, including control of the longitudinal dynamics of aircraft.

Based on the continuous differentiability Assumption 5.1.2, the following can be in-

ferred about the dynamics:
Lemma 5.1.1 1. The system (5.4) is Lipschitz in X with a constant lyy,.

2. Ap(zn), pun(zn), (grpn)(zN) are Lipschitz in X, with constants la,, 1., lg,

respectively.

3. The norms of all the terms in the dynamics of the zy state component, as well

98



as the nonlinear term || fL(zn)||, are upper bounded:

Ifn(zn)ll < A |[An(za)ll < A2, lgn(zw)l < As,
lgr(zn) — g (O)|| < Ay, [[fe(zn)ll < A5

in X, where Ay, Ay, Az, Ay, As are positive numbers.

for all l o

I

4. The following inequalities hold:

3fN($N) 3fL($N) k 3AN($N)
— I < _— .
|——— zn | <A, | . | <Az, | Z T | < Aslly~ll,

0AL(z k (Ogn(z
152 (25D ) 1< ottt 132 (2250 ) 1 < ol

i =1

dgL( o s
135 (2 ) < s, 13 2
=1 xN

i

for every in the compact region X, where the upper bounds Ag, A7, Ag,
TL

Ag, A1g, A11, A1z are positive numbers.

Lemma 5.1.1 follows from continuous differentiability of the dynamics and compact-
ness of X (establishment of inequality ||gn(zn)|] < Aj also uses Assumption 5.1.3).
A detailed proof is omitted.

Suppose that the gain-scheduled controller ux(zy)zp interpolates differentiably be-
tween the linear controllers C(zn1)zyL, -+, C(zng)zL. These are designed around a
collection of ¢ trim points specified by the values zy1,- - -, zng of the scheduled vari-
ables respectively. The i-th controller C(zy;) is designed such that the linear time

invariant closed loop system

¢ = Ap(zni)C + gr(zni)C(Tni)C (5.8)

99



is exponentially stable. Suppose that the heuristic interpolation is successful, such

that the closed loop system (5.4) is exponentially stable.

Assumption 5.1.4 The linear time invariant systems

¢ = Ar(zno)C + gr(zno) v (Tio)C (5.9)

are ezponentially stable for all zxno such that there exists a x o € R™™* for which

[z%,, zE,]T belongs to Xiny.

Assumption 5.1.4 essentially views the dynamics of z; as a stable linear time varying
system. It is reasonable to assume that the dynamics of any fixed instance of a linear
time varying system is stable. This is precisely the paradigm used for justification of
gain scheduled control.

Finally, we state an assumption on the exponential rate of decay of the above

systems:

Assumption 5.1.5 Consider a trajectory [z%(t), zL(t)]T of (5.4) with initial con-
ditions (1%, TL,)T € Xiny, and a trajectory ((t) of any system of the form (5.9) for
Tno such that there exists a 1o for which [z%,, zTy]T belongs to Xin,. It is assumed

that 1 (t) as well as ((t) decay ezponentially as

@l < Bllzzolle™, KA < BliSolle™, (5.10)

for all initial conditions (x5, %,)T € Xiny and {, € R*.

Remark:
Note that the dynamics z; and ¢ are of comparable size. Thus, we may use a single

constant 3 and exponent v for the exponential decay of both z.(¢) and {(t) in order

100



to simplify notation.

Consider the following cost function associated with system (5.1):

INo * T T, T
Jy :/ (zpQzr + zpuyRunzyr)dt (5.11)
TrLo 0
evaluated at a value [z%,, z%,]T. The integral is taken along the trajectory which

results from initial condition [z%,, z%,]T. The weight factors Q and R are positive

definite. They decompose into
Q@=Q{Q,, R=RR, (5.12)

where ; and R; are square matrices of the appropriate dimensions. From exponen-

INO

tial stability, it follows that J, is finite for all [z%,, x%,]7 belonging to

TrLo
Xo. From differentiability of the dynamics, and in conjuction with Proposition 2.2.1,

it follows that the directional derivatives of J, along any direction exist.

Remark: In the cost function (5.11) there is no term involving the scheduling vari-
ables zy. Therefore, the resulting controllers do not aim at forcing zy to converge
to 0. This is the case with other approaches [50] for gain scheduled control and is
motivated by the fact that in many practical applications we are only interested in
controlling the variables z; and the scheduling variables zn are simply viewed as
exogenous factors which make the task of controlling z; complicated. In contrast
to this paradigm, the problem formulation of [47, 46] aims at controlling both zy
and z7. The latter approach is more general and is motivated by practical problems.
Such is the missile control problem, which is studied in Chapter 7. Omitting a term

that weighs z in the cost function here makes easier the derivation of the continuity

101



result in Section 5.2. However, the main hypothesis of this chapter, namely, that an
architecture which is quadratic in z, is a potentially good approximation strategy for
the class of systems considered, is arguably valid even if such a term is included, as

discussed in Section 5.3.

In the sequel, we consider a certain fixed initial condition [z%,, zT,]7 in Xj of (5.1)
at time t = 0, and let [z%(¢), zZ(¢)]T be the resulting trajectory. Consider the

linear time invariant system

é = AL(-'L'NO)C + gL(J?No)uN(Z'No)C, where ”.’L‘N()H <ry (513)

as in (5.9). Let Jp7; be the cost function associated with (5.13),

Turr(G) = [ (CTQG + ¢ (ano) Run(z o)t (514)

evaluated at a value (y. Notice that Jpp; also depends on zpyyg, since the dynam-
ics (5.13) depend on zyp; however, this dependence is omitted for simplicity. The
integral is taken along the trajectory of (5.13) which results from initial condition
Co- From exponential stability, Jorr(o) is finite for every ¢ in R"*. It is also

differentiable, by virtue of Proposition 2.2.1.

5.2 A continuity result

Before stating the main result of the chapter, we state a result from the theory of

ordinary differential equations which is useful in the proof of the main result:

Theorem 5.2.1 ( [41], Theorem 2.5, p.79)

Let f(t,z) be a piecewise continuous function in t that satisfies a Lipschitz condition

102



inz on [0,T] x W with a Lipschitz constant |, where W C R" is an open connected

set. Let y(t) and z(t) be solutions of

Z.} = f(tv y): y(O) =%
and
z=f(t,2)+g(t, z2), 2(0)=z

such that y(t), z(t) € W for allt € [0,T]. Suppose that
”g(t7$)“ < H, Vt € [O,T] x W

for some p > 0, and

190 = 2ol < .

Then,

ly(t) = 2l < 7e" + (e~ 1)
for allt € [0,T).
We now state the following continuity result:

Proposition 5.2.1 The difference

L Ju v — Ly, (ano)Jrr1(Z1L0) (5.15)
[ g (zw0) }

gr(z o)

between the directional derwatives of J,, and Jyrr varies continuously with the size of
the nonlinearity (ezpressed by A;, i1 =1,---,12).

As the size of the nonlinearity goes to 0, the difference is small and asymptotically

103



collapses to 0.

5.3 Discussion of the Proposition

Proposition 5.2.1 indicates that a function which is quadratic in z1o (Jrr7) is a good
approximation to the cost of the nonlinear system, if the nonlinearity is small. The
argument is clearly true if the dynamics are linear. If a small amount of nonlinearity
is introduced, continuity implies that deviation from a function which is quadratic
in xpo is small. Therefore, an architecture which is quadratic in z¢ is a good cost
function approximation.

As we take the limits A; — 0, it follows that zn () ~ zxo for practically all ¢. It
then looks like f(zn(t)) ~ fL(zno) may not be close to 0, and a nonzero value of
the control is needed in order to ensure that the lower equation of (5.4) is equal to
0 (since it is assumed that z; asymptotically converges to 0). In consequence, the
cost function would not be finite. It turns out that this is not a legitimate concern.
Indeed, notice that, as the limit A5 — 0 is taken, and by virtue of the nonlinear
dynamics (5.4) Lipschitz property (Lemma 5.1.1, part 1), the initial value z 5o must
be near points in the state space such that ||fL|| is 0. One such point is the origin
(although there may be others too). It is then clear that the control is near 0 when
zy, is close to the origin.

In the case where the only point where f;, is 0 is the origin, we could have included
an additional term that weighs the deviation of the scheduling variables z from 0
in the cost function without essentially changing the result. We omitted doing so for
simplicity.

Example: We present an example of a simple, academic nonlinear system of the
form (5.4) and demonstrate that the directional derivative of J, is approximated very

well by the directional derivative of Jy 7, in the sense of Proposition 5.2.1. The latter

104



derivative is a linear function of z;o. We consider the two-state system:

ty = —zy(cosh(zy)— 1)+ (cosh(zn) — 1)z

. 1 1

t, = —zn(cosh(zy)—1) - 5(:5%, + 1)z — §($§, + 1u
u = I,

where x5, z; and the input u are scalars. It can be easily verified that the above
system is asymptotically stable with a Lyapunov function V = z%, + z2. The cost
function J,([zno, Zro]T) is the integral [y co(z? +u?)dt = [, 0o(2x%)dt computed along
the trajectory that starts off at [0, Z10]T. We compute the directional derivatives of
J, along the input vector [0, —3(z%,+1)]” for varying values of the state [zxo, Z10]T,
where z ¢ is kept fixed and zpo varies as -5,-4,-3,...,5. We repeat the process for
zno=0.1, 1, 5.

Notice that, as zyo becomes small, the A; bounds of the nonlinear dynamics become
small.

The numerical computation of the directional derivatives is performed via integration
of an appropriate system of differential equations, as described in detail later in the
thesis, in Section 6.1.2. For each of the three values of ¢ we formulate the appro-
priate Linear Time Invariant system of the form (5.13) with the corresponding cost
function Jyr;. For each fixed value of z¢ of 0.1, 1 and 5, we compute the directional
derivatives of each system for values of zpy varying as -5,-4,-3,...,5, and plot them
against the corresponding directional derivatives of J, as they vary for varying z ..
The plots are included in Figures 5.1, 5.2 and 5.3 for zn¢ =0.1, 1, 5 respectively.
From these plots we see that the directional derivative of the nonlinear system as a
function of z ¢ is approximated very well for small values of zy (corresponding to

small values of the size of the dynamics nonlinearities, as expressed by A;’s). As the

size of z o, and therefore the size of the nonlinearity, increases, then the linear ap-

105



_6 ' L A 1 s " L s )
-5 -4 -3 -2 -1 o 1 2 3 a4 5
xLO

Figure 5.1: zn9 = 0.1 and z 1 varying between -5 and 5: the directional derivative of
J,, as a function of z,y versus the directional derivative of Jyr; as a function of z

_6 L s A L n L L L '
-5 -4 -3 -2 -1 o 1 2 3 4 5
xLO

Figure 5.2: zx9 = 1 and zo varying between -5 and 5: the directional derivative of
J,, as a function of o versus the directional derivative of Jyr; as a function of z

106



150

100 &

—-50}

—-100 -

-150 -

. N N 2 L L L 1
-5 —4 -3 -2 -1 o 1 2 3 4 5
xLO

Figure 5.3: zy9 = 5 and z¢ varying between -5 and 5: the directional derivative of
J, as a function of x;¢ versus the directional derivative of J7; as a function of z

proximation is not very good. At large values of the size of the nonlinearity (zyo=5),
the approximation is totally inaccurate. However, the linear approximation is valid
for a large range of rpg, as demonstrated in Figure 5.2 for zyg=1. Therefore, for
systems of the form (5.4) it is always recommendable to try a cost function approx-
imation architecture which is quadratic in the variables z; (which translates into a

linear dependence of the directional derivative of J, on z.

5.4 Proof of the Proposition

Throughout the proof, we define several terms denoted D;, ¢+ = 1,...,11, in order
to simplify the formulas. In each definition we use the symbol é, so that they are

recognized by the reader.

. . . Ino | .
Consider a certain point in Xy. We want to find an upper bound on the

Tro

107



absolute value of the difference between the two directional derivatives:

TNo gn (T No) INo
I +o —Ju — Jirr(zro + 8g1(zno)) + Jrri(zro)
1 Tro gr(zno) Zro
50 5
(5.16)
T T
Since § — 0, we only need to consider § small enough such that o +6 gx (o)
ZLo 9.(zwo)

belongs to Xj.

. . . INo
Given a certain point

t Tn(t
in Xy, we denote by [ zx(h) } and [ Zn(t) ] the

Tro zr(t)

trajectories that satisfy (5.4) and the initial conditions

zn(0 z Zn(0 T T
nO) | _ | om and n(O) | _ | am s gn (T o)
z1(0) TLo z.,(0) T Lo 9(zno)
respectively. Similarly, we denote by z(t) and Z(t) the trajectories that satisfy (5.13)

and the initial conditions
Tro and ZTro + JgL(.’L‘No)

respectively.

Step 1.

To start with the proof, we are showing an important property of the cost integrals,
which stems from the exponential stability Assumption 5.1.5, and which is very useful

for the rest of the proof.
Lemma 5.4.1 If Assumption 5.1.5 holds, then:

1. The accumulated cost from some time T > 0 up to oo along any trajectory of

108




system (5.4) is upper bounded by

2
O o, (5.17)
Y
where
Al
C= §(|IQII7‘2 + IRl % 7Tl (5.18)

2. The accumulated cost from some time T > 0 up to oo along any trajectory of

system (5.13), is upper bounded by

2
CB oy
b

. (5.19)

Proof of Lemma 5.4.1:

1. Let us consider any trajectory [z%(¢), zT(t)], starting from [z%,, z%,] at time

t = 0. The accumulated cost
/Too (szIL + ‘TINN(‘TN)TR,UN(-TN)ZL‘L) dt
is upper bounded by
/T°° 71 Qudt + /Too zpun(zn)" Ry (zn)zdt.

By virtue of Assumptions 5.1.1 and 5.1.5, Lemma 5.1.1, and norm properties, the

above sum of integrals is upper bounded by

< Qe lPdt + 72 IRl ()Pl | *dt
< IR QU solPedt + J | RIEI |z |26 ool e dt
< B2 (IQlr + IRIrEriiz) Fe"

109



2. The proof follows in the same way as the proof of Part 1. W

Step 2.
[ 20 I i [ o () D 5.20)
Zr(t) zr(t)
(

(2(t) — 2(t)) (5.21)

We define the following signals:

[ yn(t) ]
yr(t)

w(t)

lI>

(>

[@(t)} _ [m(t)]+ . yN(t>} 6522
z(t) (1) yL(t)
zZ(t) = z(t) + dw(t). (5.23)
We write the dynamics of [z%,, ZT]T:
[zN} _ [fN(f:N) AN(EN)}EH gN(ch)]uN(EN)a-,L (5.24)
) fu(@n) AL(Zn) 9.(Zn)

By using (5.20), and by neglecting the §? terms, which converge to 0 faster than ¢ as
8 — 0, we obtain from (5.24):

iy fu(ay) + 620y, Anlow) | Ea(Fw) |
3 = I L . L
fulan) + 6%y y Ar(en) Sha (M)

k 3&1\/
dzn, YN;

+ l gn(zw) } pn(TN)ZL + 6 [ =

gr(zn) Il %’,ﬁym

16 [ gwlon) } (Xk: Jin yNi) ZL

:| uN(CL‘N)SE‘L +

o1 Oz,

110



. 0AN (zn)
N s afgm(:N)y An(zn) + 2 ( o, Y )
_ yL ’
B Uy y Ar(zy) T (%)f»_“y”’)
gn(zN) T g%y :
+ pn(zN)yr + v B pn(Tn)TL +
gr(zn) =1 aﬂzﬁzy”‘

Let us denote the expression inside the curly brackets by a vector function

YN(:EN, ZL,YN, yL)

YL(:L.Na ZL, YN, yL)
and yg, are given by

] . From (5.22) and (5.25), it turns out that the dynamics of yy
YN
UL

,‘Z = AL(.’EN())Z —+ gL(IL'No),U,N(.’L'No)Z + 5(AL(.’L'N0)’U) + gL(IL‘No)}LN(.’L'No)’lU) (527)

(5.26)

Yn(zn, zr, YN, yL)
Yo(zn, o, YN, YL)

Similarly, we get

from which, in conjuction with (5.23), we obtain the dynamics of w as

W = (Ar(zNno) + gr(zNo) N (TNo)) w (5.28)

Step 3. We apply Theorem 5.2.1 on the signals z(¢) and Z(¢), both of which
obey (5.3), but start at initial conditions that differ by 8[gx(zno), 97 (zno)]7. We

define g. 2 ||[¢% (zn0), 9% (zno)]T|| and by virtue of Theorem 5.2.1 we conclude that,

111

(5.25)



for every T > 0

P bl e ]
Z.(t) zr(t) YL gr(zNo)

= lun @I < g™ and lyL(t)]] < gee'eT (5.29)

< 6 elNLT — J‘gcelNLT

for every t € [0,T)]. In a similar way, we argue by virtue of Theorem 5.2.1 that
lw®)l < llgr(zno)lle'*TT < geetri™ (5.30)

for every T > 0, for all t € [0, T], where [p7; is a Lipschitz constant of system (5.13).
Step 4. We consider the cost integral J,. We use definition (5.20) to write Zy and

71, and we drop the terms including 62 factors, for 6 — 0.
z
L™+
Tro

+(zr + 0yr)" (un(zn) +5Z

gN(INO) R SN _T _ \T N
= T QT + T In) Run(Zn)Zp)dt =
o D | @FQzs + T (@) Rysw (2)71)

= / {x{QzL + 25y,7:Q$L +

yN )TR(/J'N(-TN + 4 Z )(.’L‘L + 6yL)}dt =

aN aN

=/ .’L‘LQ$L+.'L'LMN(.’L'N) RMN(.'L'N).'L‘L)dt'i‘

+26/ {y{QxL +.’EL/,LN .'I?N)TRZ Dz yN Iy +yL/lN($N)RﬂN(IEN)IIIL}dt (5 31)

It follows from (5.31) that
N EN——
0 ZLo 9(zno) ZLo

112




= 2/ {v1 (Q + pn(zn) Run(zn))zL + 2L pn(TN) RZ %ymu}dt (5.32)

i

Similarly it can be shown that

- {JLTI(mLo +0g91(zno)) — Jiri(Tro)} = 2/ T(Q + un(zno) Run(zno))z)dt  (5.33)

Our objective for the rest of the proof is to derive an upper bound on the difference

2 [ WE(Q + uv(ew) Ru(ew)os + afux (@) TRz: S un. L)t~

2 / T(Q + pn(zwo)T Run (o)) 2)dt (5.34)

and show that the bound collapses to 0 as A — 0.
Step 5.

It turns out from Lemma 5.4.1 that

1 ()
‘3 (/T (Z1QiL + T un(Tn)" Run(Tn)TL)dt

- /Too(foxL + xfuN(ﬂBN)TRMN(J?N)JJL)dt)‘

< ——QCﬁZ e 2T,

< (5.35)

Thus, the rate at which the difference between the accumulated costs from ¢ = T
up to oo along T and z is decaying exponentially with 7. Since such bounds exist
for every 4, it follows from differentiability of J, that if we take the limit of the left
side of (5.35) as 6 — 0, the limit exists and it decays exponentially in 7. In other
words, there exists a function Cy(6) such that the left hand side of inequality (5.35)

is upper bounded by
Oni(0)0? oyt
oy

113



and

lim

6—0

Cni(d)
0

= CNLa

where Cy, is a well defined real number. In conjuction with (5.31), it follows that,

for every T > 0,

’ / yL Q+MN .’L‘N) R,U,N(.I‘N)).'L‘L +.’L’LuN TN RZ a—yN .’L‘L)dt

< CNL(5)ﬂ o—2T
<=

where lim CL(&) =CnL.

6—0 )

Similarly, it can be argued that there exists a function Cpr;(§) such that

Crri(8)3?
\ / T(Q + pn(zno) Run(zno))2)dt| < H(Is—f)/)ﬁe_27T
where hm —CLTI((S) =Crr1
50 0

We now define the function €(7") as follows:

Definition: Given a positive T, €(T') is defined as

e(T) £ max { —C_'N;y e T C__LT’;IﬂQ e~ T }

This definition will not be used again until Step 9.
Step 6.

114

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)



We define h(z) 2 Ap(zno)z + gr(zno)un(Zno)z and consider the system:

z = Ap(zwnoe)z+ gr(zno)n(TNno)2

= h(z), z(0) = zpo. (5.41)

We also define

ho(zr,t) 2 fr(zn () + (AL(en () — Ar(eno))zr + ((9r1n) (@n () — (grun) (@no))ze

(5.42)
and consider the system:
i = fu(zn(t) + Alzn(t))zr + go(zn(t))un(zn(t))ze
= h(zr) + hy(zL, 1), z(0) = zpo (5.43)

In order to apply Theorem 5.2.1 on systems (5.41) and (5.43), we need to determine

an upper bound on ||hy(zL,t)||. From the dynamic equation of ||zy|| we obtain
T
2n(T) — zno = /0 (fv(zn) + An(an)zs + (gviw)(@n)zL)dt  (5.44)
It follows from (5.44) in conjuction with Lemma 5.1.1 that
lzn (T) = znoll < T(Ay + Aary + Agluryry) £ Di(T, A) (5.45)
From (5.45) and Lemma 5.1.1, we obtain:

Ihp(zz, )| < As+1a, Di(T, A)+1,,Di(T,A) £ Do(T, A), for all t € [0,T] (5.46)

115



Also,
lR(21) = h(22)]] < |AL(zNo) + gL(z o) (TNl - |21 — 22l (5.47)

Thus, the Lipschitz constant of h is given by lprr = ||AL(zno) + 9L(zNvo) v (o]
Then, it follows from Theorem 5.2.1 that:

Dy (T, A)

l (€T —1) 2 Dy(T, ),  forall t€[0,T]. (5.48)
LTI

12(t) — zL(@)]| <

From (5.48) we obtain

21 = llzcll < Nl2(2) — zL(B)]| < Ds(T, A)

4

2@ < llzcll + Ds(T, A)

4

|2l < 72+ Ds(T, A) (5.49)

Step 7.

We consider the dynamic system (5.28). We define H (w) 2 (Ar(zno) + gr(zno)ien (T o)) W,

and we consider the trajectory
w=Hw),  w(0)=gr(zno)- (5.50)
We define G(yi, t) & Yi(zn(t), zL,yn(t), yr(t)) — H(yL), and consider the trajectory:
g = Yi(zn, zr,yn,ye) = H(yr) + G(ye,t),  yu(0) = gr(zno)- (5.51)

From (5.26) and (5.25), it turns out that

Glun,t) = YN () 4 (Au(an(®) - Aavo)s + Y (MN—)ym) zL+

or N i=1 oz N;

116



+ (92 (zn (1)) un(TN) — gr(Tno)n (TNo)) Yr +

(Z yN) un(zZN)TL + 9L (Z By ) zL (5.52)

Based on Lemma 5.1.1 and inequalities (5.45) and (5.29), it turns out that |G (yL,?)||

is upper bounded, as

Gy, Il < Arllyn(@) + La llon (@) — znollllyn ()] + Aollyn (@) Izl +
Foullzn () — znollllyL (D)

+Anllyn(@Olarnllzell + Adldrllynlllizellilgr (0) | Avellyn ||z
(A7 4+ 14, Di(T, A) + Agrp + 1y, Dy (T, A)

IA

+A11lurN'rL + A4A127‘L =+ ||gL(O)||A12rL) gcelNLT

[I>

Dy(T, A), for all t € [0,T]. (5.53)

By applying Theorem 5.2.1 on (5.50) and (5.51), we obtain:

Dy(T, A)

l (m1T — 1) £ Dy(T,A)  forall t€[0,T]. (5.54)
LTI

llyo(t) —w(®) <

As a direct consequence of (5.54) and (5.29), we have for every t € [0, T):

lw@I = Iy (Ol < llye(t) — w®)|l < Ds(T, )
= lw@)l < llyz @) + Ds(T, A)
= lw(t)l] < gee'¥** + D5(T, A) (5.55)

Step 8.

117



The next step is to show that the difference

2 /0 ' [yf (@ + un(ew)"Run(n)) 1 + 2L un(en)"R (Z g—ug—yzv) :::Ll dt —

2 / T(Q + 1% (no) Run(zno)) dt (5.56)

is small. We have:

p ‘ /OT (47 QzL — wQz) dt’ - [ (207 QT Qs — 207 QTQu2) d]
- 5 (WFQT — wTQT)(Quzs + Q12)+
+ (W7QT +wTQT)(Qizr — Q12)) dt|
5 (WF — w")Qzr + 2) + (v +wT)Q(zr, — 2)) ]

< |(v] — w")Q(zr + 2) + (v] +w")Q(xr — 2)|T
< [Iyz = w)lllQUIzll + 21D + (lyell + lwiDIIQNlizz — 2] T
< [Ds(T, A)||QII(2r. + Ds(T, A))+

+(29.6™:T + D5(T, A))||QI| D3 (T, A)| T

>

Ds(T, A) (5.57)

In a similar manner to (5.57), we obtain

2 ’/OT (nyN(xN)TRuN(l‘N)fEL - wTNN(IN)TRuN(IL‘N)Z) dt| <
< |wF = w)un(n) Ru(an) (@ + 2) + (¥ +w")un(en)" Ru(@y) (@ — 2)| T
< (lly = whllpzx @) PRIzl + Tzl) + (luzl + lwl)len @) IPIRIz - 21)
< (Ds(T, A)2ry || RI|(2rL + Ds(T, A)) + (296 + D5 (T, A))ary || RI| Ds(T, A)) T
£ Dy(T, A) (5.58)

118



Finally,

o| [ o) R (3 % ) | < 2Pl RISl

< QT%lurNHRHAugce’“TT
£ Dy(T,N) (5.59)
We define
D(T,A) £ Ds(T, A) + D1(T, A) + Dg(T, A) + Do(T, A) (5.60)

to conclude that

| / [yL Q + un(zn) " Run(zn)) o1 + 2h pv(zw)T R (Z g“—”yN) IL] dt—

_2/ Q + “N ltNo)RﬂN(:L‘No)) dt’ < D(T, A)

Step 9.

Shorthand notation:

To keep the rest of the proof short, we are introducing the notation I(t) for the
difference between the two integrands in (5.34), (5.56),

1) £ 2(E(@ + ivlow) Run(exen + eLun(an) RS 5% i) -

—2(w (Q+NN(CUN0) Run(zno))z) (5.62)

We can write:

/0°°1(t)dt / (t)dt + / 1(t)dt (5.63)

119

(5.61)



D(T,Deltat)

D(T,Delta2)

Figure 5.4: The functions ¢(7T") and D(T, A) for two values A; > A, of A

From the definition (5.40) of the function ¢(7") and from (5.61), it follows that
| / t)dt| < e(T) + D(T, A) (5.64)

Consider the two functions €(T") and D(T, A), for a fixed value of A. For T ranging

from 0 to oo, the function €¢(7') ranges from a finite value €(0) given by
¢(0) = min % I ZNo iy gn (T o) _J, InNo ’
ZrLo gn(Tno) TLo
1
5 {Jrrr(zro + 89.(Xno)) — JLTI(J?LO)}} (5.65)

to limr_,00 €(T) = 0. At the same time, D(T, A) ranges from D(0,A) = 0to oo, as T
ranges from 0 to co. The two continuous curves intersect at some point T5(A) such

that €(T;(A)) = D(T5(A), A). Therefore,

| /0 Y I(#)dt] < 2D(Ty(A), A) (5.66)

120



Step 10.

Let us now examine what happens at the limit Al = 0. From what we have seen
so far, the function €(T) is independent of the size of A (more precisely, it is upper
bounded by a fixed function of A, see (5.36) and (5.38) ). However, for any fixed
value of T, the function D(T,A) ranges from 0 as lA]l = 0 to oo, as ||A|| grows
unbounded. See Figure 5.4. As ||A|| decreases, the curve D(T, A) shifts downwards.
Thus, it intersects with the ¢(T') curve closer to 0, and actually converges to 0 as

1Al =0

121



122



Chapter 6

A Grid-based Approximation

Architecture

In Chapters 2, 3 and 4 we developed bounds on the approximation error under which
approximate policy iteration is a valid too] for nonlinear control design. However,
success is not guaranteed, unless these error bounds are respected. Let us recall
the way suggested so far in the thesis for cost function approximation, so as to mo-
tivate the alternative approximation architecture proposed in this chapter. By an
approximation architecture we refer to a set of functions mapping R™ to R which
is parametrized by a collection of scalar variables, r,, - - *»Tm- The values of these
variables are selected so that the resulting function (among all functions belonging to
the architecture), jﬂk best matches the actual cost function Jy;,- For example, so far

in this thesis we have considered architectures of the form (1.12),
rhi(z) + -+ rphg (), (6.1)

These are linear combinations of a collection of nonlinear functions hi,--+, hym. As

shown in Chapter 1, for each policy pi, the values of r; are selected so as to minimize

123



the least square error between the architecture and the actual cost function, based
on a sample of the latter (1.13). There are a couple of advantages associated with an
architecture of this type. First, the designer can choose the nonlinear functions at will,
and thus use his/her skills and insight in order to produce a simple approximation
function. Second, the architecture is linear with respect to the free parameters r;, and
therefore some computationally easy ways can be used in order to “tune” the latter
so that the actual cost function is best matched, e.g. (1.13). At the same time, there
is a potentially serious disadvantage to this approach in that there are no guarantees,
other than the designer’s ingenuity, that a good cost function approximation can be
constructed for a given system. This problem can potentially be addressed via use
of systematic approximation approaches. One such approach is via use of neural
networks. The neural network architectures are nonlinear with respect to the tunable
parameters ;. They consist of a weighted chain of nonlinear functions, where r; are
the weights. It can be shown that, as the size of the neural network grows, any function
can be approximated arbitrarily well. Among the disadvantages of a neural network
is the difficulty of determining the minimum size such that the resulting architecture
is acceptable for a given cost function. Another disadvantage is associated with the
difficulty in computing the values of the weights r; such that the matching criteria
between the network architecture and the actual cost function are best met. Another
systematic approach is via the use of an architecture of the type (6.1), where each
hi(z) is a polynomial term with respect to the scalar elements of z. According to
the multivariable Stone-Weirstrass theorem, if all polynomial terms of size up to
L are included, and in the limit as L — oo, any function can be approximated
arbitrarily closely by the architecture. As in the case of neural networks, determining
the minimum value of L that results in an acceptable approximation is not an easy
task.

In this chapter we propose an alternative systematic approximation architecture.

124



It is based on a grid of the state space. Given a policy u, approximate policy itera-
tion results in an updated controller p'. If the cost function of the closed loop system
under y is denoted by Jg, then u' is proportional to the approximate directional
derivative of J: in the direction of the input matrix G. Thus, we compute the direc-
tional derivative of Jj at the vertices of the grid (via integration of a set of differential
equations, as shown in Section 6.1), and we use affine interpolation to approximate
the directional derivative throughout the rest of the state space. Among the advan-
tages of the approach is simplicity and ease of implementation. Another advantage
is that the criteria developed in Chapter 2 can be systematically checked for such
an architecture. The disadvantage of the approach is the universal disadvantage of
any systematic computational approach for approximating a function in a Euclidean
state space, that is, dimensionality. For a given problem, any grid refinement aiming
at improving approximation results in exponential growth of the requirements for
computing the approximate cost function. Furthermore, computational requirements
grow exponentially with the dimension of the state space. However, the advantages
of the architecture over other systematic approximation strategies make it a very
attractive alternative. In the rest of the chapter, we describe the architecture, and
develop a convex optimization test for checking whether the stability criterion (2.29)

is satisfied.

6.1 Approximation Architecture

6.1.1 Grid Selection

Suppose that we start with a system controlled by a policy g,

z = f(z) + G(z)pu(z), z(t=0)=x, (6.2)

125



where z € R™ and K(z) € R™, such that the origin 0 is the only equilibrium point
of (6.2). Assume that (6.2) is asymptotically stable and that (o) is finite for all z,
belonging to a bounded region Xy which includes the origin. Let the dynamics satisfy
the continuous differentiability assumptions of Chapter 2. The actual cost function is
denoted by Jy;. Assume that all trajectories that start off in Xo belong to a bounded

region X, D X,, which is a subset of a bounded region X of the form
X = [‘rll"rl” X [zf-,,xg] Xoeee X [‘T;’xm’ (63)

where ! < 0 < z? for all 4 = 1,...n. In other words, X is a rectangle in R”™; the ¢-th
coordinate of each vertex of X is either z} or z!'. Region Xo represents the region for
which it is desirable to design an improved policy. We then select X ag a superset of
Xiny in order to include the trajectories of the closed loop system under policy u which
start off in Xo. For each coordinate i, we select a set P, = {zi = T}, s, Thy =71}
of M; scalar reals, such that =<z <. < Ty, = z4. The grid is defined as
the set of points of R" whose i-th coordinate belongs to P, for each i. An example of

regions Xy, X;.., X in R? and the grid is shown in Figure 6.1.

6.1.2 Computing the Directional Derivative of the Cost Func-
tion
Recall from Section 2.2 that the directional derivative of the actual cost function J;j

along a direction 9(zo) at a point Zo is given by the limit lim,_,, JIm(zg,t), where I

is defined in (2.23). Recall from (2.25) that J,, obeys the differential equation

ango, ) o (1,000 + 1, (2, O))TRW] Zas(,0), I (z0,0) = 0,
0 (6.4)

126



Figure 6.1: An example of the regions Xy, X;,,, X and the-grid in R2

where z,,(t,0) is defined in (2.24) as the solution of the system’s dynamics (6.2)
with initial condition z,,(t = 0,0) = zo, and z,,5(¢,0) is given as the solution of
a system of differential equations (2.15), with initial condition z;,5(0,0) = g(zo).
The differential equations (6.4), (6.2), (2.15) form a system of differential equations,
whose solution converges as ¢t — oo. Under initial conditions as described above,
the limit of equation (6.4) as t — oo converges to LyJ;;(7o). Therefore, we integrate
this system of differential equations numerically in order to compute LgJﬁ(a:O), in
the case that the input matrix is a column vector g (scalar input case). In the
case that the input matrix G is a n X m matrix (the input belongs to R™ and
G(zo) = [91(0),---,9m(20)]), then each directional derivative Ly, J;(zo), for i =
1,...,m is computed via integration of the system of differential equations with the
appropriate initial conditions (J,(zo,0) = 0, z,,(t = 0,0) = zo, Tz,5(0,0) = gi(zo)
). Then, LgJi(zo) = [Lg, JE(20), - - -, Ly, J(20)]" by definition (1.6). The strategy
for numerical integration could be as simple as an Euler scheme with a small interval

d, as described in Chapter 1. In the next section we propose an affine interpolation

127



Figure 6.2: An example of an elementary subrectangle Y in R?.

scheme f,y,,-(z) as an approximation of Ly,(5)Ji(z) in Y, fori=1,...,m.

6.1.3 Implementation of Approximate Policy Iteration

We numerically compute the directional derivative LgJj; at all vertices of the grid.
We refer to any subrectangle of the grid which does not include any points of the
grid other than its own vertices as an elementary subrectangle. Each elementary
subrectangle has 2" vertices, where n is the dimension of the state space. Consider
an elementary subrectangle, which we denote by Y throughout the rest of the chapter
for notational convenience. See Figure 6.2. Consider some z that belongs to Y, and
we select Ly; in the form of an affine function T, + oy of xfori=1,...,m,
where c¥; is a column vector of dimension n and ay; a scalar. The affine functional
is selected such that, for each ¢, z7¢c}; + af; is an affine interpolation of the values
of Ly, JS at the vertices of Y. The interpolation scheme is such that the vertices that
are closer to = have a higher contribution to the value of z7¢y; + of;. Such is the

scheme used in Chapter 8 for control of the beam-and-ball system. A different affine

128



interpolation possibility involves a least square fitting of an affine functional to the
values at the vertices. Both these interpolation schemes are discontinuous at the facets
of the rectangle. Remarks 1, 2 and 3 below include some important comments on the
issue of interpolation. The approximation L(z) is formed as the vector [L1, ..., L,]7,

and the updated controller y' takes the following form in Y:

1 .= 1__ T
W(@) = —5R Ly(e) = R [oTy +oby, . 2T+ o (6.5)

Remark 1:

We note that for n = 1 an affine averaging scheme with the property that :cTc’;,,,--{-a‘,‘,,i
is equal to the actual value of Ly, J; at the 2 vertices of Y can be selected. However,
this is not possible for any n > 2 and rectangular gridding. Indeed, if that was to be
the case, then a system of 2" equations (one for each vertex) with n+1 unknowns (the
n elements of cy; plus o4;) would be required to have a solution. Any affine averaging
scheme thus fails to generate the right value at the vertices. Nevertheless, it should
accomplish to generate a good approximation of the actual function throughout Y.
An example of such an affine representation is given in Chapter 8 and successfully
applied to a beam-and-ball problem.

Remark 2:

Following up on Remark 1, let us note here that, given a subrectangle Y, we may
adopt a strategy of computing the actual value of Ly, J; only at a number of n + 1
vertices, and then determine an affine interpolation scheme based on those via solution
of a system of n + 1 algebraic equations with n + 1 unknowns. In that case, we may
be ignoring some potentially vital information, but we reduce the computational
requirements of the scheme significantly, especially as the dimension of the state
space is large, in which case computing L, J; at n + 1 rather than at 2" vertices

might be of great benefit. Such a scheme remains to be tested in practice in order

129



to evaluate its practicality for approximation. An alternative strategy, used widely
in finite element methods [42], involves appropriately dividing the state space in
simplices instead of rectangles, and it results in an affine approximation that takes
the actual values at the vertices of the simplices. In R?, the simplex is a triangle.
In R3 it is a tetrahedron. In any higher dimension, n, the corresponding simplex is
the generalization of the triangle and the tetrahedron in R". For rigorous definitions,
see [45] or other texts in algebraic topology. The simplices are convex sets. Therefore,
tests such as the one developed below in Section 6.2, for a rectangular gridding can
be developed for a simplice gridding. Another alternative which should be explored,
involves a polynomial interpolation of appropriate higher degree, depending on the
dimension of the state space, such that the interpolation generates the right value at
all vertices. We do not pursue this direction any further, but we recommended it for
future research in Section 9.1. In this thesis, we restrict our attention to rectangles
and affine interpolation approximation for simplicity and in order to demonstrate the
main features of a grid-based approximation strategy.

Remark 3:

The piecewise affine interpolation schemes proposed above are discontinuous at the
facets of the subrectangles in general, whereas the scheme proposed in Remark 2
is discontinuous. It is easy to show that such such piecewise affine schemes can be
approximated very well by smooth functions. For an example with a function in
one real variable, see Figure 6.3. In that case, the results of Chapter 2 go through
without need for more elaborate mathematical arguments in order to account for
nondifferentiability or discontinuity, while the estimation tests presented in Section 6.2
are still quite accurate since the piecewise affine function is approximated very well
by its smooth counterpart. Therefore, in the next section we work with piecewise
affine functions which enable us to obtain easily computable checks of stability of the

iterate.

130



L L L L L L 2 L L
0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
x

Figure 6.3: The top plot is the graph of a piecewise continuous function y(z) given by
y(z) = zifz < land y(z) = z+1ifz > 1. The bottom plot is the graph of the smooth
function y'(z) = 3 {[L — tanh(100(z — 1))z + 1 + tanh(100(z — 1))](z + 1)}, which
is a good approximation of y(z).

6.2 A Convex Optimization Test for Checking Asymp-
totic Stability of the Iterate

For simplicity of notation, we consider the case of a scalar input, that is, m = 1. Also
for simplicity, we assume unity state and input weights in the cost function, Q=1
and R = 1/2. Then, L,JS is approximated by Ly(z) = 17¢y + of in Y, and the
updated policy in Y is given by

W (z) = —Ly(z) = —(aTc} +of). (6.6)

Recall the criterion for asymptotic stability of the iterate ¢ (Proposition 2.3.1). We
consider asymptotic rather than exponential stability for simplicity, since the right

side of the criterion (2.29) is 0 for asymptotic stability. The closed loop system under

131



y' is asymptotically stable if

~aTo (@)’ — (a(e) + LyJi(@) + L@ LJo@) - B (@) <0, (67)

for all z € Y, and all elementary subrectangles Y.

Assume that the policy p is also of the form (6.6), that is, it is obtained via
approximate policy iteration and gridding. Assume that the grid used for obtaining
p is the same as that used for approximating L,Jg in order to derive y'. In other
words, p is assumed to be affine in every elementary subrectangle Y. Let u have the
form:

w(r) = —(zfey +ay), T€EY (6.8)

Let us focus on an elementary subrectangle Y. Our objective in this section is to
develop an algorithm for computing bounds on the difference between LgJﬁ(m) and
Ly(z), for z €Y such that (6.7) is satisfied throughout Y. Such bounds allow the de-
signer to estimate the soundness of Ly asan approximator of L, J¢ in Y, by comparing
them to samples of the actual error at points in Y. Each sample can be obtained by
direct computation of the L,J; as described in Section 6.1.2.

Development of the Algorithm: We now develop the algorithm for computing
the bounds in steps. We express the directional derivative of the actual cost function,

LyJ:(x) as the product of a scalar €(z) and the approximation Ly (z):

LyJi(z) = e(z)Ly(z), T€EY (6.9)

Then, the last of the terms appearing in the condition for asymptotic stability is

written as

Ly J5(2)(LyJj(z) = Ly () = Ly (z)’e(z)(e(z) — 1) (6.10)

132



Consider the case when €(z) € [0,1]. Then, €(z)(e(z) — 1) < 0 and the condition is
automatically satisfied. Indeed, e(z) € [0,1] is the case when Ly (z) has the same sign
as and larger absolute value than L,J;(z). On the contrary, if e(z) < 0 or e(z) > 1,
it has to be checked whether the expression at the right side of (6.10) is negative.

In the sequel, we assume that for all z €Y, ¢(z) € [e,,0), for some scalar ¢, <
0. We then develop a test such that if it succeeds, then it is guaranteed that the
asymptotic stability test for z €Y is satisfied. If the test fails, we conduct a binary
search in ¢, < 0 so as to find the smallest negative €, such that the test succeeds.
Similarly, we assume that for all z €Y, e(z) € (1,¢p], for some scalar ¢, > 1. We
repeat the same procedure and find the largest value of ¢, such that the test succeeds.
Clearly, the case where €(z) € [e,,0) for some z €Y, €(z) € [0, 1] for some z €Y and
€(z) € (1,¢,) in the remainder of Y is covered by the combination of the two tests
above. Thereby, we establish bounds on €(z) such that (6.9) is satisfied in Y.
Step 1:
Assume that for all z €Y, €(z) € [e,,0), for some scalar ¢, < 0. Condition (6.7) is

written as follows:
1 1 c c c T
—zTg — Zp,(.q;)2 - (E,u(m) + LyJ5(2))? + Ly J(z)(LyJi(z) — Ly (x)) < 0.  (6.11)

After simple algebraic manipulations, the terms that are quadratic in L,J;(z) cancel

out, and the condition becomes:
1 . -
—zTg — §“<I)2 — LyJi(z)p(x) — LyJ;(7) Ly (7) <0, (6.12)
for all z € Y, which, in conjuction with (6.6), (6.8) and (6.10), becomes:

o | -1 — %c}/c,T, + ¢(z) (c’{,cﬁ - c@T)] T

133



+z7 [—aycy + €(z) (aydy + obcy — 204c4)]

1
+ [—Eaff + €(z) (a‘{,ay - ai‘?)] <0, forall z€Y. (6.13)

We introduce some shorthand notation by defining the matrices

As(e) £ [—I - %CYC{, +e€ (Cl;'C% — c’{,T)]

A (e) 2 [—aycy + € (aydy + aycy — 205 ¢y)]

1
Ag(e) = [—Eaf, +e€ (a‘{,ay — a@z)] :

We then pose the following optimization problem (P):

Compute €1, defined as the infimum over all ¢, < 0 such that

T Ay(en)T + 77 As(€0) + Ao(€n) <0, forallzeY (6.14)
and €, defined as the supremum over all €, > 1 such that

T Ay(e,)x + 27 Ai(ep) + Aole,) <0, forallz €Y (6.15)

Then, clearly, condition (6.13) holds for every z in Y if €(z) € (€jou, €up) for every z
in Y. Therefore, €, and €,, constitute the bounds we are looking for. As mentioned
above, the optimization problem (P) would be solvable via binary search over ¢, < 0
and €, > 1 if the feasibility conditions (6.14) and (6.15) were easy to check for a fixed
value of €, and ¢,, respectively. However, they are not easy to check because the
functionals on the left side of conditions (6.14) and (6.15) are nonconvex in general.
In the next step, we introduce a modification of the feasibility problem (6.14) or (6.15)
such that if the modified problem is feasible, then the original problem (6.14) or (6.15)

respectively is feasible as well.

134



Step 2:

We consider the feasibility problem (6.14). The same arguments follow similarly for
problem (6.15). It is possible to find a matrix Ty € R™" and a vector by € R"
such that the affine coordinate transformation w = Tyz + by maps the elementary

subrectangle Y to a cube W defined as
W = {w = [wy,...,w,]T € R™™ such that |w;| <1, i=1,. n} (6.16)

The inequality z7 As(e,)T + =7 A (€,) + Ao(€n) < O takes the form wTPy(e,)w +
wT Py (€,) + Po(€,) < 0 in the new coordinate system, where the matrix Py(e,), the
vector P;(e,) and the scalar Py(e,) can be computed easily.

We now introduce yet another set of coordinates z € R" and y € R and we let
w=—.
Y
It follows that the inequality w” Py(€,)w + wT Py (€,) + Po(e,) < 0 is now written as
2T Py(€n)z + 2T Py(€n)y + y? Po(en) < 0
or, equivalently, in matrix form

[2" 4] IPZ(G") ) || 2 <0. (6.17)

5Pi(en)T  Polen) y

An equivalent form of the constraint |w;| < 1 is w? < 1 which in the coordinates z, y

135



takes the form 22 < y?, for i = 1,...n. The latter takes the matrix form

[zT y] <0, (6.18)

0 -1 Y
where K; is the (n x m)-matrix with all elements 0 except the ¢-th element of its
diagonal, which is equal to 1. With all the above changes of coordinates, the original
feasibility problem (6.14) is transformed into the problem of feasibility of (6.17) under
constraints (6.18) for 1 = 1,...,n. The left sides of these inequalities are nonconvex
functions of [z y]T in general. However, a Lagrangean multiplier method called the

S-procedure [81, 16] can be used to obtain a related convex feasibility problem. The

S-procedure amounts to posing the following problem:

Determine if there ezist positive scalars 1y, ..., T, such that
Py(e, 1Pi(en Kiy 0 K, 0
2(en)  3Pi(en) . + =Ty <0. (6.19)
%Pl(en)T Py(en) 0 -1 0 -1
It can be easily verified that if (6.19) is satisfied for some positive scalars 7y, ..., T,,

then the problem (6.17) under constraints (6.18) is feasible, and, consequently, the
original problem (6.14) is feasible. The problem (6.19) is a convex feasibility problem,
and can be solved via efficient computational methods [48]. Let us note here that
whereas feasibility of problem (6.19) implies feasibility of the original problem (6.14),
the converse does not hold in general. Therefore, this approach may be conservative
in the sense that the smallest ¢, < 0 such that (6.19) is feasible may be larger than
€10w- Similar arguments hold for the feasibility problem (6.15). However, computa-
tional experience shows that the conservatism may be quite low in many practical
cases. An approach to estimating the conservatism of the S-procedure and a thorough

computational study, in a different context, is given in [15].

136



A similar test can be developed along the lines of Steps 1 and 2 for computing
the supremum over €, > 1 such that the criterion for asymptotic stability holds (with
some conservatism due to the S-procedure).

To summarize the overall procedure, for each subrectangle Y, we conduct a binary
search over €, < 0 to determine (to a specified degree of accuracy) the infimum over
€, < 0 such that (6.19) holds. Let €, be that number. Along the same lines, we

determine a number €, > 1, such that if

€(z) € [€n, &), forall z € Y, (6.20)

then the criterion for asymptotic stability of p' is satisfied. We then collect some
samples of ¢(z) randomly throughout Y via simulation. We repeat the same process
for every elementary subrectangle Y. If any of these samples in any subrectangle does
not satisfy (6.20), then we refine the grid and repeat the same procedure. If, on the
other hand, all the samples of €(z) in all subrectangles satisfy (6.20), there is still
no guarantee that the criterion is satisfied everywhere. Nevertheless, this is strongly
suggested. It is finally up to the designer to accept or refine the current grid. The
decision can be based on factors like how large is the number of samples of ¢(z) that
were obtained, and how close are these samples to the boundaries €, and g, of the
allowed interval. Based on these factors, the designer may decide to refine the grid
at certain parts of the state space and keep it as it is (or even make it more coarse)
in other areas.

Finally, in Section 9.1 we discuss the possibility of a convex feasibility test for
determining bounds on €(z) throughout the state space. Such a test might be possible
by virtue of the fact that L,J; is given as the solution of a system of linear parameter
varying differential equations (see Section 2.2). Such a test, in conjuction with the

test of this section, would form a (possibly conservative) entirely systematic way

137



for checking whether a specific grid-based approximation satisfies the criterion for

asymptotic stability. This topic is recommended for future research.

138



Chapter 7

Missile Autopilot Design

In this chapter, we use approximate policy iteration to design a nonlinear controller for
a missile. We follow the procedure described in Chapter 1. The initial controller is a
gain-scheduled controller given by Shamma and Cloutier in [59]. The ideas presented
in Chapter 5 are used in selection of an appropriate cost function approximation
architecture. The objective is controller design such that the closed loop system
achieves perfect normal acceleration tracking of varying size step input commands.
The punchline of the chapter is depicted in Figure 7.2. The figure demonstrates that
approximate policy iteration results in about 8-fold reduction in the cost of the closed
loop systems under the generated controllers between iterations 2 and 22, whereas a
comparison to Shamma and Cloutier’s controller is not applicable because we augment

the system dynamics we explain in the sequel.

139



7.1 Problem Formulation

7.1.1 Missile Dynamics

The missile dynamics considered here are taken from [52]. They are representive
of a missile traveling at Mach 3 at an altitude of 20,000 ft. It is a 2-dimensional
dynamic system, with states « (angle of attack, measured in degrees) and ¢ (pitch

rate, measured in deg/sec). The dynamic equations are as follows:

& = fg%sv(av_/f)z +q (7.1)
i = fm/I,, (7.2)

where d = 0.75 ft. is the reference diameter, f = 180/7 is the radians-to-degrees
conversion factor, g = 32.2 ft/s? is the acceleration of gravity, I, = 182.5 slug-ft® is
the pitch moment of inertia, m = C,,,@Sd is the pitch moment in ft-lb, @) = 6132.8
1b-ft2 is the dynamic pressure, S = 0.44 ft? is the reference area, V = 3109.3 ft/s is
the speed, W = 450 Ib is the weight, and Z = CzQS is the normal force in lb. The

normal force and pitch moment aerodynamic coefficients are approximated by

Cy = 0.00021503 — 0.0195a|a| + 0.051a — 0.0345

C,, = 0.000103a® — 0.00945a|a| — 0.170a — 0.2066,

where by 6 we denote the fin deflection, which is the control input of the missile.
These approximations are accurate for « in the range of +£20 deg.

The objective of the autopilot is to control the normal acceleration

140



which is measured in g. In modern air-to-air or surface-to-air missiles, an onboard
guidance system (e.g. of the proportional navigation or line-of-sight type) provides
appropriate normal acceleration commands by using, for example, the reflected radio
frequency energy resulting from an illuminating radar sitting on the ground or carried
onboard the missile for course adjustment [12]. The guidance system updates the
normal acceleration command on line so as to track the target, whereas the autopilot
aims at achieving command following. The autopilot performance objective is to
track normal acceleration step commands of size in the range +20g, with a steady
state accuracy of less than 0.5% and a time constant of 0.2sec.

In order to simplify notation, we denote the two states of the plant by z; and z,
(angle of attack and pitch rate, respectively) and the control input (fin deflection) by
u. The plant dynamics then take the form

x x
I, = cos(a—l)(aqa:? + a3z |11 | + a4zy) + T2 + cos(a—l)asu (7.4)

1 1
.’1'72 = aﬁa:‘;' + (17.’1,'1|.’L‘1| + agx; + agl, (75)
where ay, - - -, ag, are constants which can be inferred from equations (7.1), (7.2) and

the definitions of Z and m. The output (normal acceleration) is denoted by y, and it
is given by

y = am(agz:{ + a3z |T1| + asx1) + (ajoas)u (7.6)

where a;p 1s a constant which can be inferred from the definition of the normal
acceleration (7.3) and the definitions of Z, W and a,, a3, a4, as.
For simulation purposes, we introduce the following discrete time representation

of the plant dynamics, as discussed in Chapter 1:

ri(t+1) = z1(t) + 0 {cos(2)(arz: (1) + asz1 (t) |71 (2)] + @471 (1))

141



L

n()

Figure 7.1: The augmented system: the plant P denotes the missile

+25(t) + cos(2)asul(t) } (7.7)
£l72(t + 1) = l‘2(t) + 6{0,6.'131 (t)3 + ar7xq (t)l.’IIl(t)l =+ aglfl(t) + CLg’U.(t)} (78)

y(t) = ap(aazy(t)® + azzy(8)|z1(2)| + asz1(t)) + (@10as)u(t) (7.9)

7.1.2 State Augmentation

To ensure perfect tracking, we introduce an integrator in the loop, as shown in Fig-
ure 7.1. The integrator is implemented as an accumulator in discrete time, and it

constitutes an extra dynamic component whose state is a scalar e evolving in time as:
e(t+1)=e(t)+d[r(t) —y(t)], (7.10)

where 7(t) is the step command. It can be clearly seen that unless the tracking error
r(t) — y(¢) is zero, the accumulator is not at equilibrium. To account for the varying

size of the step command, we view the step command r(t) as an extra state variable,

142



with dynamics

r(t+1) = r(t), r(0) = 7, (7.11)

where 7y is the size of the command. By viewing r(t) as an extra state of the system,
we ensure that the controllers obtained via approximate policy iteration satisfy the
command following specification regardless of the step size. The resulting augmented

dynamic system is shown in Figure 7.1, and its dynamics are given by

Ti(t+1) = a1(t) + 8 {cos(2L)(arm1 () + a5z (t) |21 (8)] + 0421 (1))
+23(t) + cos(2)azu(t) }

ay

To(t+ 1) = z2(t) + 0{aez1(t)® + arzi(8)|z1(2)| + asz1(t) + agu(t)}

e(t+1) = e(t) +46[r(t) —y(t)], (7.12)
r(t+1) = r(t)
y(t) =  ajolaezi(t)? + aszz,(t)|z1(t)] + aszy (t)) + (ajoas)u(t).

7.1.3 Optimal Control Problem

If the size of the step command is rg, that is, 7(t) = ro for all ¢ > 0, then the objective
is that the output asymptotically converges to 7y as t — oco. From the dynamics of
the system, it can be shown that, for every rq, there exist functions z s5(70), Z2,s5(70)

and u,s(ro) such that, as t — oo,

y(t) — ro if and only if

z1(t) = T16s(ro) and  zo(t) = Zo45(r0) and  u(t) = uss(ro)- (7.13)

Of those, u,; is obtained as a function of z, s (angle of attack) by setting the left hand

side of (7.5) to 0 and replacing z; and u by z; 45 and u,,, respectively. Then, the ex-

143



pression of u,, as a function of z, 45 can be replaced in the output equation (7.6), and
y by 1o to obtain an algebraic expression whose solution gives z 55 as a function of rq.
This expression has multiple roots. However, plant specific dynamic considerations
can assist us to select the right one, as follows. In specific, a positive (negative), con-
stant normal acceleration y can only be generated by a negative (positive), constant
angle of attack z; (see ([12], page 240). Let us consider the case where ry is positive.
The algebraic expression mentioned above has two negative roots. However, in the
output range of interest, that is, [0,20g] of ro, only one of the two negative roots
is in the [—20deg, 0] range where the normal force and pitch moment aerodynamic
coefficient approximations hold (see Section 7.1.1). In fact, the root that is discarded
takes values in the below -100deg range. Finally, exactly analogous arguments hold
in the case where rj is negative. The remaining steady state value, 5, can be easily
obtained via (7.4).

The above discussion reveals that an algebraic expression of degree 3 has to be
solved on-line in order to obtain the values z; s5(ro) Z2,55(70) and wuss(rg). This may
be difficult to implement in practice. Instead, we can tabulate the solutions of the
expression (computed off-line) and use a look-up table in order to use those values
on-line.

Furthermore, since the controller that we use (to be described shortly) uses feed-
back from the integrator state, there exists a function ey; ,(r9) which gives the steady
state value of the integrator state for a given controller such that y(t) — rq is equiva-
lent to (7.13) and e(t) — e,5,(r0) for the closed loop system under controller p. This
value depends on the particular controller, the command r¢, and the steady state
values 1 45(70), T2,5(T0), Uss(ro). In addition, it would be desirable to impose an
integrator state initial condition e(0) which is close to ey, so as to avoid undesirable

output transients caused by the long integrator state transients.

144



For a closed loop under a controller u, we define the following cost function:

Ju(@o) = 2o 0 {(21(t) — T1,66(r0))* + (22(t) — T2,65(r0))?
+20(e(t) — €qs,u(r0))? + (1(z(t)) — uss(r0))?} (7.14)

where the trajectory [z,(2), z2(t), e(t), 7(¢)]T results from initial condition
Iy = [zl,o,xg,o,eo,ro]T. The relatively high weight on the integrator state is an
indirect attempt to increase the damping of the resulting closed loop systems under
the designed controllers. Other than that, there is no other considerations involved in
selecting the weights of the cost function. The main purpose of this application is to
demonstrate the possibility of approximate policy iteration as a tool of improving on
a cost function. No cost function adjustment has taken place in order to improve
the transient responses of the obtained designs. In a sense, we do not focus as
much on meeting the particular transient response requirements posed in Section 7.1.1
as on improving on the cost function (7.14). Nevertheless, a comparison between
the controllers obtained and a controller specifically designed to address the missile
transient response specifications follows at the end of the chapter.
Since the difference (e(t) —ess,.(70)) depends on the controller i, we define the variable
é(t) as

é(t) = e(t) = €as (o), (7.15)

which obeys (7.10), that is, the same dynamic equation as e(t).

7.2 Iteration 1

In [59], Shamma and Cloutier develop a gain-scheduled controller for the missile con-

trol problem. Let us denote Shamma and Cloutier’s controller by po. This controller

145



receives feedback from the angle of attack x;, the pitch rate z,, the normal accel-
eration y, and from the “dummy” reference command state variable r to generate
the control input u. It is a dynamic controller, linear in z, and nonlinear in z; and
r The state e(t), that is introduced by us, is not part of the closed loop under .
The term of the cost function that penalizes the integrator state, 20(e(t) — e ,(70))?,
is totally meaningless in Iteration 1, since es; (7o) is non-existent. In Iteration 1,
instead of the term 20(e(t) — ey ,(r0))> we use the term 3(e(t) — esinal)?, where
€finat 18 the final value of the integrator state at the time that the trajectory ends
(1.0 sec, as described below). This replacement is a heuristic, which is motivated by
the fact that the output tracking error of the closed loop system under g is small,
and therefore the rate at which e(t) grows is small as soon as steady state has been
reached, but justified only by the fact that it works and provides an asymptotically
stable controller u, after one policy iteration. The weight factor of % was also used
for this term in Iteration 1, instead of 20, so as to reduce the weight of this heuristic
term in the cost function.

The controller py does not achieve perfect tracking. At steady state, there is a
small tracking error ro —y(t), where ry is the size of the step command. Consequently,
the cost function J,, as defined in (7.14) for the system (7.12) under control p, is not
finite. However, we choose to apply approximate policy iteration to this system, using
a simple heuristic. We simulate trajectories of the closed loop system under g until
a fixed time T = 1.0 sec (the trajectories under pg reach steady state by T = 1.0 sec)
and we do approximate policy iteration on the basis of the cost accumulated between
time 0 and 1.0 sec. From now on, this is what we denote by J,,(zo) (for any other
policy p, J, is still defined by the infinite sum (7.14)).

We compute via simulation the cost function J,, at 400 sample points, which are

146



chosen randomly and uniformly in the region:
Xo = [—20,20] x [—40,40] X [egs (7o) — 2.5, €55,u(T0) + 2.5] x [-20, 20]. (7.16)

For example, the initial value of the pitch rate z, belongs to the interval [—40, 40] for
all simulated trajectories, and the size of the step command ry belongs to the interval
[—20,20] for all simulated trajectories. Notice, that we evaluate the cost function
at integrator state values ranging close to its steady state value, ey, (7). It turns
out that this range is adequate for approximation architecture parameter tuning. It
reflects our desire to impose integrator state initial conditions that are close to the
steady state value so as to avoid possible large output transients triggered by large

integrator state transients.

7.2.1 Approximation Architecture

We observe that the dynamics of the closed loop system under p are linear with
respect to 5 and e. Therefore, we try approximation architectures that are quadratic
in =5 and e. After choosing an architecture, we apply policy update. We keep changing
the architecture, until obtaining an updated controller which performs satisfactorily.

After some trial and error, we end up with the architecture:

Juo (21,22, 6,7]7) = mal(@)? + Mol (2) (21 = @1,66) + M3l(@) (@2 — Tae) +
+myl(z)e + msl(z)r + me(z1 — T1,45)% +
+my(Ty — Tass)® + mge® + mor? +
+mao(T1 — T1,65) (T2 — Ta,55) + M1 (21 — Z155)e +
+mya(x1 — T1,65)7 + Mas(T2 — Tos5)€ +

+mis(To — Toes)T + Myser, (7.17)

147



where

A
l(z) = azx(z, — 131,35)3 + a3(T1 — T155)|T1 — T1ss| + aa(T1 — T1,55),

and where by m; we denote the tunable parameters of the architecture (the latter were
denoted by 7; in Chapter 1, but we change that notation so as to avoid confusion with
the reference command state 7(t)).

The best values of m; are determined on the basis of the 400 samples of J,, by means

of a least squares fit. The updated controller p; is given by
m(z) = ~LyJ(z) = V() - g(a), (7.18)

where the input vector g(z) is easily inferred from the dynamics (7.14), and VJ(z)
denotes the gradient of J at z. The rightmost equality in (7.18) follows from differ-
entiability of J. The updated controller is linear in z,, e, as well as .

The values of m;, 7 = 1,...15 such that Juo best approximates J,,, were computed as
0.8551, 3.4608, 0.0391, 0.2224, -0.5316, 5.7962, 0.1566, -0.7490, 1.0331, 0.7613, 0.2720,
-3.8163, 0.0485, -0.5639, 0.3129, respectively. As explained above, these values are

used to update the controller, that is, obtain y,.

7.3 Iterations 2 through 22

The closed loop system under controller u; achieves perfect tracking of step com-
mands. The cost function J,, defined according to (7.14) is finite. Based on py,
we repeat policy iteration another 22 times. At each iteration, we use the same ap-
proximation architecture, and the cost function is sampled at 400 points that are

randomly generated in the region X, defined by (7.16). These points are different

148



cost of the trajectory resulting from a(0)=0;q(0)=0;8(0)=—0.5;r=20
4000 T T T T

3500 |-
3000 |
2500

2 2000
1500 |

1000 -

500 L —

o

1 1 1 s
[o] 5 10 15 20 25
iteration number

Figure 7.2: Decrease in value of the cost function evaluated at z, = 0 z, = 0,
€ = —0.5, r = 20 as the iteration number increases.

at each iteration. In Figure 7.2, we plot the value of the cost function at the point
Ty =0z =0, =—0.5r =20. We see that the value of the cost function reduces
by about a factor of 8. The decrease in cost is rapid over the first 6 iterations. After
that, there is a decrease at a slower rate up to iteration 13. At iteration 14 we see a
sharp increase, but the value decreases again at iteration 15. The oscillatory behavior
observed after the iteration 6 is due to the fact that approximation is not perfect.
Such an oscillatory behavior is also reported in the examples of Chapter 8 in [11].
Note that this behavior of the cost function as a function of iteration number shown
in Figure 7.2 for a single value of the states, seems to be typical of all initial conditions
that belong to X, as indicated by other simulations that we have performed.

In conclusion, the missile control application demonstrates the effectiveness of ap-
proximate policy iteration in producing controllers of improved performance. In this
problem, the task of function approximation was made easier by taking into account

the structure of the system dynamics.

149



normal acceleration step response (ro=15g)
T T T T T T T T T

1 i 1

i 1 L n " L
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time (sec)

Figure 7.3: Normal acceleration response to a step command of size 15g of the closed
loop systems under po (its response starts at 0 at time 0), under pg (the response
with the largest overshoot) and under p,6

7.3.1 Sample Transient Responses

Although no effort was made to meet the step response performance criteria of 5%
accuracy in less than 0.2sec, some of the generated controllers come very close to
meeting those criteria. Note that even the initial controller, pg, of Shamma and
Cloutier [59] fails to meet the 0.2sec criterion. As we see in the sequel, approximate
policy iteration generates controllers under which the closed loop system is faster
than under pg, but whose accuracy is worse. We also show representative transient
response plots of some of the generated controllers which totally to meet the step
response performance criteria.

We simulate the step response of the closed loop system under several controllers for
step command size 1y = 15g, and initial conditions z,(0) = 0,z,(0) = 0, and €(0) =
—0.5. In these simulations, we include actuator saturation at £20deg. Actuator
saturation were not part of the model used in approximate policy iteration to generate

the controllers. It turns out that including has a minor effect on the closed loop

150



normal acceleration step response (rO=15g)
T T T T T T T

1 1 1 i ) \ L 1
o 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1
time (sec)

Figure 7.4: Normal acceleration response to a step command of size 15g of the closed
loop systems under p, (its response starts at 0 at time 0) and under p,4.

responses, despite the fact that the unsaturated actuator commands can be quite
large for a very small time at the beginning of the transients. Actuator dynamics also
do not have but a minor effect, but this section’s simulations do not include those.
Figure 7.3 shows the responses of the closed loop systems under g, g and p16. Notice
that the system under po does not satisfy the 0.2sec specification. Under either pg or
116, the response is significantly faster. However, the 5% accuracy requirement is not
satisfied; under u,6, a 6.5% accuracy is achieved in 0.2sec, whereas urider pg a 10%
accuracy in 0.18sec.

In Figure 7.4, we compare pg to p14. The closed loop system under p,4 is about twice
as fast as under pg, but it exhibits large overshoot.

Finally, in Figure 7.5 we show the responses under controllers y;; and under poq.
Both are slow and they overshoot. The presence of the integrator may guarantee that
100% accuracy is eventually achieved, but the transients are not good.,

By comparing the responses of us, 11, t14, H16, K20, We realize that they behave very

differently, despite the fact that their costs are comparable (see Figure fig:costredu).

151



normal acceleration step response (ro=15g)
20 T T T T T T T T T

)
o 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
time (sec)

Figure 7.5: Normal acceleration response to a step command of size 15g of the closed
loop systems under pg (its response starts at 0 at time 0), under uyy (the response
with the largest overshoot) and under p;;

However, we do not attempt to analyze this phenomenon any further.

The way to go about improving the transients of the closed loop systems under con-
trollers generated by approximation policy iteration is by adjusting the cost function
weights, like in the case of Linear Quadratic control. The sole objective of this chap-
ter and the missile application is to demonstrate the success of approximate policy
iteration in reducing the value of the cost function and show that the approach is an

effective tool in an important real life control application.

152



Chapter 8

Beam-and-Ball Problem

The beam-and-ball problem has proved to be a challenging nonlinear control problem
of stabilizing an unstable system. Thus, it is used as a benchmark problem in the field
of nonlinear control. It remains a challenging benchmark for new control approaches,
in spite of several recent interesting solutions [70, 55, 49]. We apply the approach
presented in Chapter 4 for control of an unstable system, using the grid architecture
proposed in Chapter 6.

The physical system is shown in Figure 8.1. The system description given below
follows Section 5.4.3 in ([55]). The beam is assumed to be of infinite length for
convenience. The beam is forced to rotate in a vertical plane by applying a torque
at the center of rotation, and the ball is free to roll along the beam. In practice,
the ball’s motion is a combined roll and slip, for large values of the beam’s angular
acceleration, but here we assume that it only rolls. Let us denote by r the position of
the ball on the beam, where r = 0 is the beam’s center of rotation, by 8 the angle of
the beam, and by 7 the control torque applied to the beam. Let the viscosity friction

coefficient be # = 0.1, and the acceleration of gravity g = 9.81, and let the dynamic

153



Figure 8.1: The beam and ball system: the torque is applied at the center of rotation.
The beam’s length is assumed infinite, although the beam of the figure is finite.

equations governing the system be

0 = 7+ gsin(d) + B — rd?

T o= (r+ 1)0' + 2776 + gr cos(6)

The state variables of the system are z; =7, o = 7, 3 = 0 (in radians) and z, = 6
(in radians/sec). The state is the column vector [z, z z3 :r4]T. The torque 7 is
the scalar control input u of the system. Then, the dynamics of the system can be

written as :

1 = o
Ty = —fz,— gsin(zs) + 1173
I-g = T4
IL:4 = u

154



We start with an initial policy po(z) = 0 for all z. The system under g, that is,
the open loop system, is unstable. The discrete time dynamics under the controller

to = 0 are given by

.’131(t + 1) = .'L'l(t) + 6I2(t)

) Ta(t+1) = zo(t) + 6(—PBr2(t) — gsin(z3(t)) + z1(t)z4(t)?) ®.1)
153(t + 1) = l‘3(t) + 6$4(t)
Ta(t+1) = z4(t) + Spo(z(t)) = z4(t)

For the unstable open loop system, we pose a discounted optimal control problem
for a redefined dynamic system as in Chapter 4. The Training Region (TR) and the
Region of Acceptable Operation (RAQO) are defined later. Let us consider the stage
cost z7Qx + Ru?, where Q is a 4 X 4 symmetric positive definite matrix, and R is
a positive definite scalar. Since the initial controller pq is identically equal to 0 for
every z, the value of R for the policy evaluation step of the 1st iteration is irrelevant.
However, the controller 1, depends on R. We select R = 0.1. The weight matrix @)
is a diagonal matrix @Q = diag(Q;, @2, @3, Q4), and its elements are taken as ), = 4,
Q2 = 0.2, Q3 = 40, Q4 = 8. The values of the cost function are chosen in a way
that distributes the weight among the position of the ball, x;, and the angle of the
beam, z3, roughly evenly. However, the angle rate z, is weighted about 10 times
less, and the rate of change of the ball’s position even less. Otherwise, if for example
x4 were heavily weighted, then the controller would tend to rotate the beam at low
rates. Therefore, if the beam is tilted towards one side, it will keep tilting towards
that direction for a long time, and during that time the ball will be rolling away from
the center of rotation. In the case that z, is heavily weighted, then the controller will
tend to keep the beam into the horizontal position, so that x5 is small. But if the

ball is not close to the center of rotation, it can only be forced quickly back to the

155



C

Figure 8.2: The initial condition from which the designed controllers are required to
bring the system to equilibrium at z = 0.

center of rotation by tilting the beam at a large angle, so that the ball is accelerated

by gravity towards the center of rotation. For the problem of stabilization, we select

the Training Region (TR) as

’

TR = <

\ L

I
T2
z3

Ty

[71] <2, |72 <4, |z3] <90

T

180’

m
< 90—
[wal < 90755

v~

(8.2)

/

Our objective is to design a controller that brings the system from the initial position

r1(0) = —1, z2(0) = 0, z3(0) = 907 /180 (90 degrees), z4(0) = 0 to the equilibrium

position where all state variables are 0. The system configuration at the above initial

condition is shown in Figure 8.2. Clearly, if the system is not controlled, the ball will

roll-off to —oo under the influence of gravity. The Region of Acceptable Operation

156



(RAO) is selected as

([ 2, | ‘W, 0 0 0 |[z ] \
Ty 0 W 0 O To
RAO = \ D[z T2 T3 x4 0 o W o < 150.0,
T3 3 T3
L T4 ] i 0 0 0 W4 1L T3 ] J

(8.3)
where the square diagonal matrix W = diag(W;, W,, W3, W,) is selected equal to the
state weight matrix of the cost function (). Consequently, the cost function J;fo is
constant over the boundary of RAO. We pose the problem of finding a policy that

attains the minimum in

arg min { ) ot -8 (w4, (OTQak (1) + p(at, (£)T Ru(zt, (1)) +
+M T2 oy @ 8 (2 (8T Qa (1) + p(ak, (8)T R4, (1))}, (8.4)

for every zy € TR,

which corresponds to a integral quadratic cost for the continuous time problem, as
discussed in Section 4.4. Recall from Chapter 4 that by N,(zo) we denote the instant
when the trajectory starting off at z, at time 0 leaves RAO. For all times after N, (z,),
the value of the state does not change in accordance with the redefined dynamics,
as described in Chapter 4. The discount factor is chosen as a = 0.995, and the
unacceptable operation weight factor is given the value M = 20. The sampling
interval 4 is chosen at 0.0001sec. Finally, the “radius” 150 of the RAO (8.3) has been
chosen slightly smaller than twice the maximum of the distance between points of
TR and the origin 0 € R*.

The approximation strategy followed based on a grid architecture along the lines

of Chapter 6. The grid used is defined by the following divisions of each of the four

157



axes of the state space:

[-2,-1.55,—1.1,-0.65,—0.2,0,0.2,0.65,1.1,1.55,2] :  grid of z,
[-4,-3.1,-2.2,—-1.3,-0.4,0,0.4,1.3,2.2,3.1,4] :  grid of z,

™

[~90, =70, ~50, ~30, ~10,10,30,50,70,90] == = grid of a5
[—90, —70, —50, —30, —10, 10, 30, 50, 70, 90] 1%0 . grid of z4

The set of the vertices of the grid is the set of all possible quadruples (¢, ¢, 7, 8) such
that e takes values in the top vector (grid of z;) among the four vectors above,
in the second vector from the top (grid of z;) and so on. Notice that the gridded
area coincides with TR, by choice. The grid is a design tool, and it could have been
chosen larger than the TR so as to account for trajectories which start off inside TR
but go outside of it. It turns out that this is not necessary in the present example, and

a stabilizing controller for the entire TR can be designed on the basis of the above grid.

8.1 Policy Evaluation, Cost Function Approxima-
tion, and Policy Update

We compute the directional derivative of the cost function J,, as described in Sec-
tion 6.1.2 at all vertices of the grid. Consider an elementary subrectangle Y of the grid
(defined in Section 6.1.3). This is a rectangle in R*, with 16 vertices and 8 facets. We
denote the 16 vertices by z1, za,. .., 216, and the 8 facets by S5, Ss,...,Ss. We order
the facets in such a way that S is facing opposite to S;,4, for 2 = 1,...,4. To make
1 3,4

2
EETEEARES

the above description more precise, let z; = [z |7, for every i = 1,...,16,

where 2}, 22, 22 and z} are the coordinates of z;. Each facet is defined by a set of 8

158



vertices all of which share one common coordinate. For example, they may all have
the same value of z!. The opposite facet is defined by the rest of the vertices. Any
two opposite facets do not share any common vertex. We define the pairs {5, Ss},
{S2, 6}, {S;, S7}, {Ss, Sg} of opposite facets. As an example, let all vertices of Sh
have the same value of their first coordinate and let that value be & If, for example,

the vertex z; belongs to Sy, then 2z = [¢,, 23,23, 287, All vertices of S5 then have the

same value of their first coordinate, as well. Let that value be &, where & #&,.

We then define the quantities vy, vy, .. . vg as follows:
al )
Vi = g Z L!]JMO(Zj)7 t= 1)""8- (85)
{4:2;€8:}

The quantity v;, for each i, is the mean value of LyJ,, over all the vertices that
belong to the facet S;. The division over 8 in (8.5) is because each facet S; contains
8 vertices. We return to the example of the facets S, and Ss, mentioned in the

previous paragraph. Let & > &. Let z = [xl,x2,x3,x4]T belong to the elementary

3

subrectangle Y, where z!, 2%, 23 and 2! are the coordinates of z. We define the
g

function V) 5(z) as

Visl) & ot [0 - ) s + 0], e, (8.6)

(&a - é-a

The function Vi s represents an averaging scheme between the two facets S; and Ss,

and its definition (8.6) is equivalent to

V15(~’E) — U Us — 1
—_—— — -—, zeY. 8.7
ld*fa {b_ga ( )

Similarly, we define the functions Va6, Va7 and Vig. Finally, the approximation of

159



Ly of L,J,, in the elementary subrectangle Y is defined as the mean value

Ly(z)

1>
|

[Vis(z) + Vag(z) + Va7(z) + Vas(z)], zeY. (8.8)

This is a affine function of z of the form described in Chapter 6, for all z in Y.
Consider a value of the state z which does not belong to TR. Let Y be the
elementary subrectangle whose Euclidean distance from z is the closest among all
elementary subrectangles of the grid. We then approximate L,J,,(x) by Ly (z), which
is defined by (8.8). This constitutes an extrapolation scheme outside TR.
Overall, the approximation of L,J,, is a piecewise affine function of the state,

discontinuous at the facets of each subrectangle, denoted by L.J,,.

8.2 Iteration 1

The controller p,(z) is defined as

1-
ul(IE) = —ELJM()’ (89)

where R = 0.1 is the control input weight factor in the cost function. The closed loop
system under p; is not RAO-safe, but it is stable in the sense that its trajectories
remain bounded, when the initial conditions belong to TR. In Figures (8.3) and (8.4)
we show the trajectories of the position of the ball z;(¢) and the beam angle z3(t),
respectively, when the initial conditions are given by z,(0) = —1, z5(0) = 0, z3(0) =
907 /180 (90 degrees), z4(0) = O (the situation shown in Figure 8.2). The closed loop
system under p; moves towards the direction of decreasing beam angle, but during
the transition between 90 and 0 degrees the ball rolls away from the origin under

the influence of gravity. At the moment that the beam’s angle becomes negative,

160



after 1 iteration

ball position (m)

L L
o 50 100 150
time (sec)

Figure 8.3: The trajectory of the ball’s position z;(¢) when the initial conditions are
71(0) = —1, 22(0) = 0, z3(0) = 907/180 (90 degrees), z4(0) = 0, under policy y;.

after 1 iteration

100

60

40

beamangle (degrees)

20

-20 . .
o 50 100 150

time (sec)

Figure 8.4: The trajectory of the beam’s angle z3(t) when the initial conditions are
£1(0) = —1, 25(0) = 0, z3(0) = 907 /180 (90 degrees), £4(0) = 0, under policy p;.

161



gravity tends to bring the ball towards the center of rotation. The ball decelerates
and eventually starts moving towards the center of rotation. It overshoots, and the
controller responds by forcing the beam angle z3 to positive values. The closed loop
system is asymptotically stable, but z;(¢) experiences extremely large transients. The
closed loop system clearly demonstrates the effectiveness of the approach suggested
in Chapter 4 for stabilizing unstable systems.

Although the closed loop system under pu, clearly is not RAO-safe, we view it as
a stable system with large transients and perform policy iteration so as to come up
with a better controller, which results in better transients.

It turns out that if we use the same cost function and grid, and apply policy
iteration to the closed loop system under ui, the next iterate is unstable. We thus look
for a different cost function. We use a cost function (undiscounted) with state weight
factor of the form @ = diag(Q:, @2, @3, Q4), with @; = 0.00004, Q> = 0.000002,
Q23 = 0.0004, Q4 = 0.00008 and control input weight factor R = 10.0. Notice that
the matrix Q used in this iteration is the matrix () used in the previous iteration
divided by 10°. The reason that this change is necessary to produce an improved
controller has to do with the fact that the transients of the closed loop system under
w1 are very large. A large value of () translates into large values of the cost function.
Consequently, any nonlinearity in the cost function is amplified and a finer grid is
needed for approximation in order to account for the amplified nonlinearity. A smaller
QQ enables us to use the same grid as in the previous iteration with success. Note also
that the input is weighted a lot more heavily than in the previous iteration. We
choose to do so on the basis of the same argument. Since the approximate directional
derivative of the cost function EJM is multiplied by —1/R to give the new iterate ps,
the factor —1/R serves as a means of attenuating the approximation errors. At the
same time, the torque input’s level required to make the ball move towards the center

of rotation, is not necessarily large. Indeed, it suffices to tilt the beam such that the

162



after 2 iterations
10

ball position (m)

L 1
o 50 100 150
time (sec)

Figure 8.5: The trajectory of the ball’s position z;(¢) when the initial conditions are
z,(0) = —1, z5(0) = 0, z3(0) = 907/180 (90 degrees), z4(0) = 0, under policy p,.

ball is elevated with respect to the center of rotation. Then, gravity acting on the
ball tends to bring it towards the center of rotation.
Finally, at the policy evaluation step of the closed loop system under y;, we simulate

150sec long trajectories with a sampling interval § = 0.01sec.

8.3 Iteration 2

The next iterate u, results in a closed loop system that experiences improved tran-
sients compared to the system controlled by p,, for all initial conditions that belong
to TR. In Figures (8.5) and (8.6) we show the trajectories of the position of the ball
z,(t) and the beam angle z3(t), respectively, when the initial conditions are given by
z1(0) = —1, z2(0) = 0, z3(0) = 907 /180 (90 degrees), z4(0) = 0 (the situation shown
in Figure 8.2). It is clear that the transient of z, is quite improved in comparison
to the transient of Figure 8.3. In fact, the controller used to produce the transients

of Figures 8.5 and 8.6 is a hybrid of the controller generated via policy iteration and

163



after 2 iterations
100

ool _

60 - —

40 - -

20| 4

beamangle (degrees)

L L
o 50 100 150
time (sec)

Figure 8.6: The trajectory of the beam’s angle z3(¢) when the initial conditions are
z1(0) = —1, z2(0) = 0, z3(0) = 907/180 (90 degrees), z4(0) = 0, under policy p,.

a linear controller which is designed on the basis of the linearized system around the
equilibrium point. We switch to the linear controller when the state approaches the
origin. This is because, if we use the nonlinear controller resulting from policy itera-
tion, the trajectories do not converge asymptotically to 0, but they oscillate around it.
We attribute this to the rather crude strategy that we use to interpolate between the
vertices of the grid. A more sophisticated method has to be employed, as discussed
in Chapter 6. However, the important thing is that the nonlinear controller forces
the trajectories close enough to the origin such that the use of a linear controller can
be used for fine tuning.

Finally, we note that the transients of the closed loop system under p; compare
quite well to the best available controllers for the beam and ball problem, in terms of
the worst distance of the ball from the center of rotation during the transient, and in
terms of the settling time. The only significant exception is that of the settling time
reported in [49], which is around 20 seconds, in comparison to roughly 50 seconds of

our controller. However, it is quite likely that better performance can be obtained by

164



use of different parameters ) and R and/or a finer grid.

The conclusion from these two iterations is that approximate policy iteration is
effective in stabilization problems, as well as performance improvement problems. No
further iterations were performed, since the main objectives of this application have

essentially already been achieved with first two iterations.

165



166



Chapter 9

Conclusions and Recommendations

for Future Research

We proposed an approach for designing controllers for nonlinear, continuous time
plants via approximate policy iteration. Existing methods for nonlinear control de-
sign typically work for special classes of systems and do not address the issue of
performance. Approximate policy iteration is a (sub)optimal control design method
which applies to general nonlinear systems, and it addresses performance by trying to
minimize an appropriate cost functional. The design is semiglobal, that is, the closed
loop system under a resulting controller is stable and meets the low cost criterion
if the initial condition belongs to a bounded region which includes the equilibrium
point. There is no restriction in selecting this bounded region as large as needed for
any specific application.

In the case where an initial stabilizing controller (policy) is available, we ap-
proximate the cost function of the closed loop system under this initial controller.
Approximation is necessary, since computing the exact cost function is an intractable

task. Based on the approximate cost function, we come up with an updated con-

167



troller. Improvement with respect to the cost function depends upon the quality of
cost function approximation. Errors on the approximation of the cost function of
the continuous time closed loop system are introduced in the following stages of the

design process:

1. Discretization by means of first order Taylor expansion, with discretization in-

terval ¢ (1.7).

2. Selection of state samples in which the actual cost function of the discretized

system is computed.

3. Cost function approximation by means of an architecture which is tuned on the

basis of the cost function samples.

Furthermore, our implementation of the policy update step is a departure from the
update rule of the exact policy iteration algorithm. The update rule that we propose
is easily implementable. However, it introduces an extra error which is shown to be
small for a single iteration, if the discretization interval is small.

In Section 2.3, we developed bounds on the approximation error such that the up-
dated controller after a single iteration is stable. We used Lyapunov function theory
to derive these bounds. The allowed error bounds are large, as argued in Section 2.4.
In Section 2.5, we developed bounds on the approximation error such that the con-
tinuous time closed loop system under the updated controller after a single iteration
is improved with respect to the cost in comparison to the closed loop system under
the controller before the iteration. Once again, the allowed error bounds are large, as
argued in Section 2.6. The conclusion that we draw from Chapter 2 is that approxi-
mate policy iteration is feasible as a practical design tool, since limited approximation

accuracy (within the error bounds) suffices to result in improved controllers.

168



In Chapter 3, we determined the worst case suboptimality of the closed loop sys-
tems under the resulting policies, as the iteration number increases. The worst case
suboptimality bounds that we developed shrink as the cost function approximation
error vanishes. However, suboptimality may not vanish even in the case of no approx-
imation error, due to the closed form implementation of the policies which introduces
a policy update step error, as discussed in Chapter 1.

In Chapter 4, we addressed the problem of designing a stabilizing controller for
an unstable system. We proposed a modification of the system dynamics such that
the modified system is an accurate representation of the original system in a selected
region of the state space, the region of acceptable operation. We then posed an
appropriate optimal control problem for the modified system and showed that the
optimal controller is a stabilizing controller for the original system. The system
dynamics modification enables the use of approximate policy iteration for determining
a stabilizing controller. From a real world application point of view, the modification
is justified by the fact that in practice we are typically interested in stable operation
in a bounded region around the equilibrium point. This region is specified by safety
limits or precision tolerances. The development in Chapter 4 thus shows feasibility of
the approximate policy iteration design approach for designing stabilizing controllers
for unstable systems.

The confidence results of Chapters 2-4 show that the bounds on the allowed ap-
proximation errors can be large. Next, we look for ways to simplify the task of cost
function approximation. This is a potentially nontrivial task despite the large allowed
errors, especially in large dimensions. In Chapters 5-6, we proposed two natural ap-
proaches for cost function approximation, with the potential of simplifying the task.

We suggested that insight into the structure of the dynamics can be used in
order to partially determine the form of the actual cost function. In Chapter 5, we

proposed a simplification of the approximation task in the specific class of systems

169



whose dynamics are linear with respect to some of the states. In conjuction with a
quadratic cost function, a natural cost function approximation is quadratic in this
part of the state.

For general systems, we suggested a grid-based approximation strategy, which
consists of computing the appropriate directional derivatives of the cost function at
the vertices of a state space grid and approximating via interpolation throughout
the remainder of the state space. The feasibility results of Chapter 2 are in favor of
a grid approach, since they suggests that not too fine a grid could suffice in many
cases. Furthermore, in Chapter 6 it was shown that the error bounds for stability
of the next iterate developed in Chapter 2 can be checked with the help of a convex
feasibility test, which is enabled by a grid-based, piecewise affine approximation of
the directional derivative.

In conclusion, Chapters 5 and 6 include our ideas for enhancing practicality of
approximate policy iteration as a nonlinear control design approach.

Finally, the method was evaluated via two design examples. In Chapter 7, we
successfully applied the method to a stabilized missile control problem. The control
objective is step command following of the normal acceleration output. The state was
augmented by an integrator state and a reference command state to ensure perfect
following for all sizes of the step. The augmented state was 4-dimensional. The
selected approximation architecture was quadratic in 3 of the states, along the lines
of the simplification suggested in Chapter 5. The result was cost reduction by roughly
a factor of 8 in 22 iterations. In Chapter 8, we applied the method to the problem of
stabilization of a beam-and-ball system. The system dynamics were modified along
the lines of Chapter 4, and a grid architecture was used, along the lines of Chapter
6. The system was stabilized in a single iteration, whereas a second policy iteration

resulted in a controller of improved performance.

170



9.1 Recommendations for future research

We suggest several directions which can be further pursued on this nonlinear control
design approach. Some of the suggested topics aim at enhancing practicality of the

method by making the cost function approximation task easier:

1. The directional derivative of the actual cost function is given by the solution of
a system of linear parameter-varying differential equations, as shown in Chapter
2. As discussed in Chapter 6, this fact could potentially be used to formulate a
convex optimization problem whose solution would be an upper bound on the
approximation error of a grid-based, piecewise linear approximation architecture
presented in Chapter 6. In conjuction with the test developed in Chapter 6 for
determining an upper bound on the allowed approximation error, such a test
would provide a systematic method for checking the sufficient conditions for
stability of the next iterate. According to the result of these tests, it could be
determined whether a grid is sufficiently fine. Along the same lines, such tests
could be developed for checking the sufficient conditions for cost improvement

after a single iteration.

2. In Chapter 8 we described a linear interpolation scheme between the values of
the cost function directional derivatives at the vertices of a grid. As argued in
Chapter 6, it is not possible to find a linear interpolation which matches the
values at the vertices, or such that the values in the interior of the elementary
subrectangle range between the minimum and the maximum of the vertex val-
ues. An alternative interpolation strategy with the above properties could be
implemented if the state space is divided into simplices instead of rectangles. A
different suggestion is to use polynomial interpolation of higher even degrees be-

tween the vertices of the rectangle, instead of linear interpolations. In the latter

171



case, developing new convex tests for checking the soundness of approximation

would constitute a future research task.

Another suggested direction is that of robust nonlinear control. Each policy iter-
ation results into a Lyapunov function for the system (the cost function associated
with the closed loop under the corresponding policy). Each of these functions is not
available in closed form, but it is approximated. Then, the robustness properties of
the closed loop system can be evaluated by means of the approximated Lyapunov
function, along the lines of [25]. Policy iteration can be repeated until satisfactory

robustness is achieved.

172



Bibliography

[1] D. Aeyels. Local and global controllability for nonlinear systems. Syst. Control
Letters, 5:19-26, October 1984.

[2] V.M. Alekseev, V.M. Tikhomirov, and S.V. Fomin. Optimal Control. Contem-

porary Soviet Mathematics. Consultants Bureau, New York, 1987.

[3] P. Apkarian and P. Gahinet. A convex characterization of gain-scheduled H,

controllers. IEEE Trans. Aut. Control, 40(5):853-864, May 1995.

[4] P. Apkarian, P. Gahinet, and G. Becker. Self-scheduled H, control of linear
parameter-varying systems: a design example. Automatica, 31(9):1251-1261,
September 1995.

[6] Z. Artstein. Stabilization with relaxed controls. Nonlinear Analysis, Theory,

Methods & Applications, 7(11):1163-1173, 1983.

[6] G. Becker and A. Packard. Robust performance of linear parametrically varying
systems using parametrically-dependent linear feedback. Syst. Control Letters,

23(3):205-215, September 1994.
[7] R. Bellman. Stability Theory of Differential Equations. McGraw-Hill, 1953.

(8] R. Bellman. Dynamic Programming. Princeton Univ. Press, Princeton, NJ, 1957.

173



(9]

[10]

11)

[12]

[13]

[14]

[15]

[16]

[17]

D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 1. Athena

Scientific, Belmont, MA, 1995.

D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 2. Athena

Scientific, Belmont, MA, 1995.

D.P. Bertsekas and J.N. Tsitsiklis. Neuro-dynamic Programming. Athena Scien-
tific, Belmont, MA, 1996.

J. H. Blakelock. Automatic Control of Aircraft and Missiles. John Wiley & Sons,
second edition, 1991.

A. M. Bloch and N. H. McClamroch. Control of mechanical systems with classical
nonholonomic constraints. In Proc. IEEE Conf. on Decision and Control, pages

201-205, Tampa, Florida, December 1989.

A. M. Bloch, M. Reyhanoglu, and N. H. McClamroch. Control and stabilization
of nonholonomic dynamic systems. IEEE Trans. Aut. Control, 37(11):1746-1757,
November 1992.

C. Boussios and E. Feron. Estimating the conservatism of Popov’s criterion for

real parametric uncertainties. Syst. Control Letters, 31:173-183, 1997.

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matriz Inequalities
in System and Control Theory, volume 15 of STAM Studies in Applied Mathe-
matics. STAM, 1994.

S. J. Bradtke, B. E. Ydstie, and A. G. Barto. Adaptive linear control using

policy iteration. In Proc. American Control Conf., pages 3475-3479, Baltimore,
MD, 1994.

174



(18] R. W. Brockett. Asymptotic stability and feedback stabilization. In R. W.
Brockett, R. S. Millman, and H. J. Sussman, editors, Differential Geometric
Control Theory, pages 181-191. Birkhauser, Boston, MA, 1983.

[19] T. Burg, D. Dawson, and P. Vedagarbha. A redesigned DCAL controller without
velocity measurements: theory and demonstration. Robotica, 15(3):337-346, May

1997.

[20] C.-P. Chao and P. M. Fitzsimons. Stabilization of a large class of nonlinear

systems using conic sector bounds. Automatica, 33(5):945-953, May 1997.

[21] M. G. Crandall and P. L. Lions. Two approximations of solutions of Hamilton-

Jacobi equations. Mathematics of Computation, 43:1-19, 1984.
[22] K. B. Datta. Matriz and Linear Algebra. Prentice-Hall, New Delhi, India, 1991.

[23] P. Dayan and S. P. Singh. Improving policies without measuring merits. In
D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural

Information Processing Systems 8, pages 1059-1065. MIT Press, Cambridge,
MA, 1996.

[24] T.M. Flett. Differential Analysis. Cambridge University Press, Cambridge, UK,
1980.

[25] R. A. Freeman and P. V. Kokotovic. Robust Nonlinear Control Design. Systems
and Control: Foundations and Applications. Birkhauser, Boston, 1996.

[26] S. Torkel Glad. On the gain margin of nonlinear and optimal regulators. IEEE
Trans. Aut. Control, 29(7):615-620, July 1984.

[27] S. Torkel Glad. Robustness of nonlinear state feedback - a survey. Automatica,

23(4):425-435, 1987.

175



[28]

[29]

[30]

[31]

[32]

[33]

[34]

(35]

[36]

[37]

T. H. Gronwall. Note on the derivatives with respect to a parameter of the
solutions of a system of differential equations. Annals of Math., 20(2):292-296,
1919.

W. Hackbusch. Multi-Grid Methods and Applications. Springer-Verlag, New
York, NY, 1985.

P. Hartman. Ordinary Differential Equations. John Wiley & Sons, New York,
1964.

J. K. Hedrick and S. Gopalswamy. Nonlinear flight control design via sliding
methods. AIAA Journal of Guidance, Navigation and Control, 13(5), 1990.

R. Hermann and A. J. Krener. Nonlinear controllability and observability. IEEE
Trans. Aut. Control, 22(5):728-740, October 1977.

H. Hermes. Control systems which generate decomposable Lie algebras. Journal

of Differential Equations, 44(2):166-187, 1982.

O. Hernandez-Lerma and M. Munoz de Ozak. Discrete-time MCPs with dis-

counted unbounded costs: Optimality criteria. Kybernetika (Prague), 28:191-
212, 1992.

Q. Hernandez-Lerma and J. B. Lasserre. Discrete-Time Markov Control Pro-

cesses. Springer-Verlag, New York, 1996.

R. A. Howard. Dynamic Programming and Markov Processes. MIT Technology
Press, Cambridge, MA, 1960.

L. R. Hunt, R. Su, and G. Meyer. Global transformations of nonlinear systems.

IEEE Trans. Aut. Control, 28:24-31, 1983.

176



[38] A. Isidori. A remark on the problem of semiglobal nonlinear output regulation.

IEEFE Trans. Aut. Control, 42(12):1734-1738, December 1997.

[39] J. Kaloust, C. Ham, and Z. Qu. Nonlinear autopilot control design for a 2-DOF
helicopter model. In IEE Proceedings-Control Theory and Applications, volume
144, pages 612-616, November 1997.

[40] H. K. Khalil. Robust servomechanism output feedback controllers for feedback
linearizable systems. Automatica, 30(10):1587-1599, October 1994.

[41] H. K. Khalil. Nonlinear Systems. Prentice Hall, Upper Saddle River, second
edition, 1996.

[42] H. J. Kushner and P. Dupuis. Numerical Methods for Stochastic Control Problems
in Continuous Time. Springer-Verlag, New York, NY, 1992.

[43] S. Lefschetz. Differential Equations: Geometric Theory. Interscience Publishers,
New York, second edition, 1963.

[44] W. Lin. Feedback stabilization of general nonlinear control systems: A passive

system approach. Syst. Control Letters, 25:41-52, 1995.

[45] C. R. F. Maunder. Algebraic Topology. The New University Mathematics Series.
Van Nostrand Reinhold Company, London, 1970.

[46] M. W. McConley. A Computationally Efficient Lyapunov-Based Procedure for
Control of Nonlinear Systems with Stability and Performance Guarantees. PhD
thesis, M.I.T., Cambridge, MA, 1997.

[47) M. W. McConley, B. D. Appleby, M. A. Dahleh, and E. Feron. A control Lya-

punov function approach to robust stabilization of nonlinear systems. In Proc.

177



34th Annual Allerton Conf. on Communication, Control and Computing, pages

372-381, Allerton House, Monticello, Illinois, October 1996.

[48] Y. Nesterov and A. Nemirovsky. Interior-point polynomial methods in convez

programming, volume 13 of SIAM Studies in Applied Mathematics. SIAM, 1994.

[49] R. Olfati-Saber and A. Megretski. Controller design for the beam-and-ball sys-
tem. Submitted to the 1998 IEEE Conference on Decision and Control, 1998.

[50] A. Packard. Gain scheduling via linear fractional transformations. Syst. Control

Letters, 22(2):79-92, February 1994.

[51] M. H. Protter and Jr. C. B. Morrey. A First Course in Real Analysis. Springer-
Verlag, New York, 1977.

[52] R. Reichert. Modern robust control for missile autopilot design. In Proceedings of

the American Control Conference, pages 2368-2373, San Diego, CA, June 1990.

[63] W. J. Rugh. Analytical framework for gain scheduling. IEEE Control Syst. Mag.,
11(1):79-84, January 1991.

[54] A. Saberi, P. V. Kokotovic, and H. J. Sussmann. Global stabilization of partially
linear composite systems. SIAM J. on Control and Optimization, 28:1491-1503,
1990.

[55] R. Sepulchre, M. Jankovic, and P. Kokotovic. Constructive Nonlinear Control.
Springer-Verlag, London, 1997.

[56] S. M. Shahruz and S. Behtash. Design of controllers for linear parameter-varying
systems by the gain scheduling technique. Journal of Mathematical Analysis and

Applications, 168(1):195-217, July 1992.

178



[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

J. S. Shamma and M. Athans. Analysis of gain scheduled control for nonlinear

plants. IEEE Trans. Aut. Control, 35(8):898-907, August 1990.

J. S. Shamma and M. Athans. Guaranteed properties of gain scheduled control

for linear parameter-varying plants. Automatica, 27(3):559-564, May 1991.

J. S. Shamma and J. R. Cloutier. Gain-scheduled missile autopilot design using
linear parameter varying transformations. AIAA Journal of Guidance, Control

and Dynamics, 16(2):256-263, 1993.

S. E. Shreve and D. P. Bertsekas. Universally measurable policies in dynamic

programming. Mathematics of Operations Research, 4(1):15-30, February 1979.

J. J. Slotine. Sliding controller design for nonlinear systems. International Jour-

nal of Control, 40(2):421-434, 1984.

J. J. Slotine and W. Li. Applied Nonlinear Control. Prentice-Hall, Englewood
Cliffs, NJ, 1991.

E. D. Sontag. Feedback stabilization of nonlinear systems. In M. A. Kaashoek,
J. H. van Schuppen, and A. C. M. Ran, editors, Robust Control of Linear Systems
and Nonlinear Control, pages 61-81. Birkhauser, Cambridge, MA, 1990.

C. Y. Su and Y. Stepanenko. Sliding mode control of nonholonomic mechanical
systems: underactuated manipulators case. In A. J. Krener and D. Q. Mayne,
editors, Nonlinear Control Systems Design 1995, pages 565-569. Pergamon, 1995.
Published for the IFAC.

R. Su. On the linear equivalents of nonlinear systems. Syst. Control Letters,

2:48-52, 1982.

179



[66]

[67]

[68]

[69]

[70]

[711]

[72]

[73]

[74]

H. J. Sussman. Lie brackets and local controllability: a sufficient condition for
scalar-input systems. SIAM J. on Control and Optimization, 21(5):686-713,
1983.

H. J. Sussmann. Semigroup representations, bilinear approximation of input-
output maps, and generalized inputs. In G. Marchesini and S. K. Mitter, editors,
Proceedings of the International Symposium on Mathematical Systems Theory,

pages 172-191, Udine, Italy, June 1976.

R. S. Sutton and A. G. Barto. Reinforcement Learning. MIT Press, Cambridge,
MA, 1998.

A. Teel and L. Praly. Tools for semiglobal stabilization by partial state and out-
put feedback. STAM J. on Control and Optimization, 33(5):1443-1488, Septem-
ber 1995.

A. R. Teel. Semi-global stabilization of the ’ball and beam’ using ’output’ feed-
back. In Proceedings of 1993 American Control Conference, volume 3, pages

2577-2581, San Francisco, CA, 1993.

G. Tesauro, D. S. Touretzky, and T. K. Leen, editors. Advances in Neural Infor-
mation Processing Systems 7. MIT Press, Cambridge, MA, 1995.

D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors. Advances in Neural
Information Processing Systems 8. MIT Press, Cambridge, MA, 1996.

J. N. Tsitsiklis and M. Athans. Guaranteed robustness properties of multivariable
nonlinear stochastic optimal regulators. IEEE Trans. Aut. Control, 29(8):690~-
696, August 1984.

V. L. Utkin. Sliding Modes and their Applications. Mir, Moscow, 1978.

180



[75] P. P. Varaiya and R. Liu. Bounded-input bounded-output stability of nonlinear
time-varying differential systems. SIAM J. on Control, pages 698-704, 1966.

[76] M. Vidyasagar. Nonlinear Systems Analysis. Prentice-Hall, Englewood Cliffs,
second edition, 1993.

[77] B. Vik and T. I. Fossen. Semiglobal exponential output feedback control of ships.
IEEE Transactions on Control Systems Technology, 5(3):360-370, May 1997.

[78] J. Wang and W. J. Rugh. Parameterized linear systems and linearization families

for nonlinear systems. IEEE Trans. Circuits Syst., 34(6):650-657, June 1987.

[79] P. Werbos. A menu of designs for reinforcement learning over time. In
W. T. Miller ITIrd, R. S. Sutton, and P. Werbos, editors, Neural Networks for
Control, pages 67-96. MIT Press, Cambridge, MA, 1991.

[80] D. A. White and D. A. Sofge, editors. Handbook of Intelligent Control. Van
Nostrand Reinhold, New York, NY, 1992.

[81] V. A. Yakubovich. The S-procedure in non-linear control theory. Vestnik
Leningrad Univ. Math., 4:73-93, 1977.

181






