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[2] Two commonly used proxies based on the distribution of glycerol dialkyl glycerol tetraethers
(GDGTs) are the TEX86 (TetraEther indeX of 86 carbon atoms) paleothermometer for sea surface
temperature reconstructions and the BIT (Branched Isoprenoid Tetraether) index for reconstructing
soil organic matter input to the ocean. An initial round-robin study of two sediment extracts, in
which 15 laboratories participated, showed relatively consistent TEX86 values (reproducibility 63–
4�C when translated to temperature) but a large spread in BIT measurements (reproducibility
60.41 on a scale of 0–1). Here we report results of a second round-robin study with 35
laboratories in which three sediments, one sediment extract, and two mixtures of pure, isolated
GDGTs were analyzed. The results for TEX86 and BIT index showed improvement compared to
the previous round-robin study. The reproducibility, indicating interlaboratory variation, of TEX86

values ranged from 1.3 to 3.0�C when translated to temperature. These results are similar to those
of other temperature proxies used in paleoceanography. Comparison of the results obtained from
one of the three sediments showed that TEX86 and BIT indices are not significantly affected by
interlaboratory differences in sediment extraction techniques. BIT values of the sediments and
extracts were at the extremes of the index with values close to 0 or 1, and showed good
reproducibility (ranging from 0.013 to 0.042). However, the measured BIT values for the two
GDGT mixtures, with known molar ratios of crenarchaeol and branched GDGTs, had intermediate
BIT values and showed poor reproducibility and a large overestimation of the ‘‘true’’ (i.e., molar-
based) BIT index. The latter is likely due to, among other factors, the higher mass spectrometric
response of branched GDGTs compared to crenarchaeol, which also varies among mass
spectrometers. Correction for this different mass spectrometric response showed a considerable
improvement in the reproducibility of BIT index measurements among laboratories, as well as a
substantially improved estimation of molar-based BIT values. This suggests that standard mixtures
should be used in order to obtain consistent, and molar-based, BIT values.
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1. Introduction

[3] Reconstruction of ancient seawater tempera-
tures is of considerable importance in understand-
ing climate change. Over the past decades several
geochemical temperature proxies have been devel-
oped to reconstruct past sea surface temperatures
(SSTs) based on inorganic or organic fossil
remains. Two of the most popular tools are the
Mg/Ca ratio of planktonic foraminifera [N€urnberg
et al., 1996; Elderfield and Ganssen, 2000] and
the Uk0

37 ratio based on long-chain C37 alkenones
derived from haptophyte algae [Brassell et al.,
1986; Prahl and Wakeham, 1987]. Another
organic SST proxy is based on archaeal glycerol
dialkyl glycerol tetraether (GDGT) lipids, the
TEX86 index [Schouten et al., 2002]. These lipids
are biosynthesized by marine archaea that synthe-
size GDGTs containing 0–3 cyclopentyl moieties
(GDGT-0–GDGT-3; see structures in Figure 1).
Members of the phylum Thaumarchaeota also syn-
thesize crenarchaeol, a compound with a cyclo-
hexyl moiety in addition to four cyclopentyl
moieties (Figure 1), and smaller quantities of a
crenarchaeol regioisomer (Cren0). The TEX86 ratio
was proposed as a mean to quantify the relative
distribution of GDGTs [Schouten et al., 2002]:

TEX 865
GDGT-2½ �1 GDGT-3½ �1 Cren0½ �

GDGT-1½ �1 GDGT-2½ �1 GDGT-3½ �1 Cren0½ � (1)

[4] The TEX86 index has been calibrated with
annual-mean SST using marine sediment core tops
[Kim et al., 2008, 2010a]. This relationship has
recently been reevaluated and two novel indices
were proposed:

TEX H
865log

GDGT-2½ �1 GDGT-3½ �1 Cren0½ �
GDGT-1½ �1 GDGT-2½ �1 GDGT-3½ �1 Cren0½ �

� �

(2)

TEX L
865log

GDGT-2½ �
GDGT-1½ �1 GDGT-2½ �1 GDGT-3½ �

� �
(3)

[5] The TEXH
86 is suggested to be applicable in

warm, tropical regions, whereas TEXL
86 is cali-

brated for cold, polar regions [Kim et al., 2010a].
Besides SST reconstruction, the TEX86 proxy is
also used in some lakes to infer (paleo) surface
water temperatures using a lake core top calibra-
tion [Powers et al., 2004, 2010].

[6] In addition to archaeal GDGTs, bacterial
GDGTs with nonisoprenoidal carbon skeletons are
also frequently encountered in marine sediments
(GDGT-I–GDGT-III, Figure 1). Several studies
have shown that bacterial GDGTs are especially
abundant in soils and peats [e.g., Weijers et al.,
2006] but decrease in marine sediments with
increasing distance from the coast, suggesting a
predominantly terrestrial origin [Hopmans et al.,
2004; Herfort et al., 2006; Kim et al., 2006]. Hop-
mans et al. [2004] proposed the BIT index to
quantify the abundance of these bacterial GDGTs
relative to crenarchaeol as a proxy for the input of
terrestrial organic matter (OM) into marine
sediments:

BIT 5
GDGT-I½ �1 GDGT-II½ �1 GDGT-III½ �

½Crenarchaeol �1 GDGT-I½ �1 GDGT-II½ �1 GDGT-III½ �
(4)

[7] Subsequent studies have shown that this proxy
can be applied to trace soil OM in coastal marine
environments [e.g., Huguet et al., 2007; Walsh
et al., 2008; Smith et al., 2010] as long as the
export fluxes of crenarchaeol to sediments are
comparable among sites [Fietz et al., 2011; Smith
et al., 2012] and the relative proportions of cren-
archaeol versus marine OM and branched GDGTs
versus soil OM remain constant. Furthermore,
Weijers et al. [2006] found that a high input of soil
OM in marine sediments can potentially bias
TEX86 values as soils can also contribute
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isoprenoidal GDGTs. They recommended simulta-
neous reporting of BIT indices in order to monitor
for this effect. BIT values can range from 0.01 in
open marine sediments to 1 in some soils
[Schouten et al., 2013, and references cited
therein].

[8] A prerequisite for the wider application of geo-
chemical proxies is the robustness of analytical
reproducibility. GDGTs are analyzed by high-
performance liquid chromatography (HPLC)
coupled to mass spectrometry (MS) [Hopmans
et al., 2000; Schouten et al., 2007; Escala et al.,
2007]. A common procedure to validate analytical
methodology and help laboratories detect and
remediate inaccuracies in their results is to conduct
a round-robin test (also known as proficiency test or
interlaboratory comparison) [Thompson et al.,
2006], as has been done for the Uk0

37 ratio of long-
chain C37 alkenones [Rosell-Mel�e et al., 2001] and

for the Mg/Ca ratio of (foraminiferal) carbonates
[Rosenthal et al., 2004; Greaves et al., 2008]. An
initial round-robin study for TEX86 and BIT analy-
ses was performed in 2008 [Schouten et al., 2009]
on filtered polar fractions obtained from extracts of
two sediments. For TEX86 the repeatability (i.e.,
intralaboratory variation) was 0.028 and 0.017,
respectively, for the two sediment extracts. This
translates to 61–2�C of calculated temperature var-
iation using contemporary TEX86-SST calibrations.
The reproducibility, indicating interlaboratory vari-
ation, of TEX86 measurements was substantially
higher: 0.050 and 0.067, respectively, or 63–4�C
when translated to temperature. These temperature
uncertainties were higher than those obtained in
round-robin studies of the Mg/Ca (2–3�C) and Uk0

37
(1–2�C) paleothermometers and suggest relatively
large variations between laboratories in TEX86

measurements. Repeatability of BIT measurements
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Figure 1. Structures and [M1H]1 protonated molecules of GDGTs analyzed in the round-robin study.
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for the sediment extract with substantial amounts of
soil OM input was relatively small, 0.029, but
reproducibility between laboratories was large,
0.410 on a scale of 0–1. This large dispersion was
attributed to the large structural differences between
the GDGTs used in the BIT index (e.g., the higher-
molecular-weight crenarchaeol versus the lower-
molecular-weight branched GDGTs), which may
give rise to variable responses in the different mass
spectrometers used.

[9] Here we describe the results of an anonymized
second round-robin study involving 35 laborato-
ries. The six samples distributed consisted of three
different homogenized sediments, one sediment
extract, and two mixtures of isolated branched
GDGTs and crenarchaeol mixed in known, pre-
weighed quantities. The results shed light on the
effect of extraction and separation techniques on
the analyses of TEX86 and BIT indices of sedi-
ments as well as on the necessity of using standard
mixtures to calibrate the BIT index.

2. Materials and Methods

[10] A general invitation was sent to a large num-
ber of laboratories to participate in an anonymous
round-robin study, to which 36 laboratories
responded positively. These laboratories received
three 60 mL vials containing homogenized sedi-
ment (labeled ‘‘Sediments A, B, or C’’) prepared
at Harvard University and at the Royal Nether-
lands Institute for Sea Research (NIOZ) and three
3 mL vials containing mixtures of organic com-
pounds or extracts (labeled ‘‘organic fractions D,
E, and F’’) prepared at the NIOZ. Laboratories
were requested to analyze the samples when their
HPLC-MS setup was performing well according
to their criteria and to analyze sediments at least in
triplicate and the organic fractions at least fivefold.
The vials were distributed at the start of November
2011, and results reported here are those of the 35
laboratories, which reported their results before 1
April 2012 (see supporting information).1 Results
reported after the deadline were not considered in
this study. The study was performed ‘‘doubly
blind,’’ i.e., statistical treatment of the results was
performed by individuals (A.R.M. and S.S.)
unaware of the contents of the round-robin sam-
ples (prepared by A.P. and E.C.H.), and identities
of the laboratories were anonymized by Lloyd

Snowdon (Department of Geoscience, University
of Calgary, Canada), who was not involved in
analysis or statistical treatment of the data.

2.1. Sediment Origin

[11] Sediment A was obtained from Salt Pond,
Falmouth, Massachusetts, USA (41�320N,
70�370W; water depth 3 m). In July of 2011, 33 kg
of wet sediment was homogenized, dried, pulver-
ized, and rehomogenized. This yielded 4 kg dry
sediment, of which ca. 500 g was aliquoted in fifty
60 mL amber glass vials in 10 g portions.

[12] Sediment B was obtained from a 46 kg box
core from the Carolina Margin (35�500N,
74�500W; water depth ca. 600 m) in July of 1996
and stored frozen at 220�C. In August of 2011 it
was thawed and processed analogously to the Salt
Pond sample, yielding 18.2 kg dry sediment, of
which ca. 1 kg was aliquoted in fifty 60 mL amber
glass vials in 20 g portions.

[13] Sediment C was derived from the upper part
of a piston core (TY92-310G; 16�030N, 52�710E;
880 m water depth; 0 to 42 cm depth) taken in the
Arabian Sea. The sediment was freeze-dried and
ground using mortar and pestle to obtain 1.5 kg of
dry sediment. Approximately 500 g of the sedi-
ment was extracted to obtain ‘‘organic fraction F’’
(see below), while 1 kg of sediment was aliquoted
in fifty 60 mL amber glass vials in 20 g portions.

2.2. Preparation of Extract and Mixtures

[14] To obtain organic fraction F, Sediment C was
divided in several aliquots and extracted using an
Automated Solvent Extractor (ASE) 200, DIO-
NEX, 100�C, and 7.6 3 106 Pa with a mixture of
dichloromethane (DCM):methanol (MeOH) (9:1,
vol/vol). Total lipid extracts were separated over a
column filled with aluminum oxide into apolar and
polar fractions using hexane:DCM (9:1, vol/vol)
and DCM:MeOH (1:1, vol/vol), respectively.
Polar fractions were combined, condensed by
rotary evaporation, dried under a stream of nitro-
gen, and weighed and dissolved in hexane/isopro-
panol (99:1, vol/vol) in a concentration of 2 mg
mL21. Aliquots of 0.5 mg of polar fraction
(labeled organic fraction F) were filtered using a
PTFE (Polytetrafluoroethylene) 0.4 mm filter, dried
under a stream of nitrogen, and placed in fifty 3
mL vials.

[15] Organic fractions D and E contained mixtures
of three isolated GDGT standards: crenarchaeol,
GDGT-I, and GDGT-II. The branched GDGTs

1Additional supporting information may be found in the online
version of this article.
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were isolated from a large extract of sediment
derived from a piston core taken in the Dram-
mensfjord, Norway (D2-H; 59�40.110N, 10�

23.760E; water depth 113 m; sediment depth 746–
797 cm), while crenarchaeol was isolated from the
remainder of Sediment C. The sediments were
Soxhlet-extracted (24 h) using a mixture of DCM
and MeOH (7:1, vol/vol). The combined extracts
were separated over a column filled with alumi-
num oxide into an apolar and polar fraction using
hexane:DCM (9:1, vol/vol) and DCM: MeOH
(1:1, vol/vol), respectively. GDGTs were first iso-
lated in two stages using normal phase HPLC fol-
lowed by flow injection analysis according to
Smittenberg et al. [2002]. Columns used were a
semipreparative and an analytical Alltech Prevail
Cyano column (250 mm 3 10 mm, 5 mm, and
flow rate 3 mL min21 and 250 mm 3 4.6 mm, 5
mm, and flow rate 1 mL min21, respectively). The
isolated GDGTs were further cleaned using
reversed phase chromatography modified from

Ingalls et al. [2006]. Briefly, GDGTs were dis-
solved in ethyl acetate and injected onto a Zorbax
Eclipse XDB C-8 column (4.6 mm 3 150 mm; 5
mm; Agilent Technologies). GDGTs were eluted
with the following program with acetonitrile (A)
and ethyl acetate (B) as mobile phase: 0–10% B in
4 min, 10–35% B in 10 min, 35–69% B in 6 min,
69–100% B in 7 min, with a flow rate of 1 mL
min21. This yielded 5.0 mg of crenarchaeol, 3.8
mg of GDGT-I, and 3.7 mg of GDGT-II. The
purity of the GDGTs was first assessed by full
scan (m/z 300–2000) HPLC-atmospheric pressure
chemical ionization (APCI)/MS, which did not
reveal major fragments other than those from the
GDGTs [cf. Hopmans et al., 2000]. In addition,
we performed 1H and 13C NMR analyses on the
purified compounds. All the major signals of the
GDGTs could be assigned [see Schouten et al.,
2013, Figure 7]. Only in the case of GDGT-II
some minor signals were found that could not be
attributed to GDGTs. Although the exact purity

Table 1. Sample Work Up of Sedimentsa

Laboratory
Number Extraction Solvent Treatment Column Fraction

1 ASE DCM:MeOH, 9:1 Al2O3 column DCM:MeOH, 1:1
2 ASE DCM:MeOH, 9:1 Al2O3 column DCM:MeOH, 1:1
3 Ultrasonic DCM:MeOH, 1:1 None
4 Ultrasonic H2O:MeOH:DCM, 4:10:5 Al2O3 column DCM:MeOH, 1:1
5 Microwave DCM:MeOH, 3:1 SiO2 column MeOH
6 Ultrasonic DCM:MeOH, 9:1 Al2O3 column DCM:MeOH, 1:1
7 Soxhlet MeOH:DCM, 9:1 SiO2 column DCM:MeOH, 1:1
8 ASE DCM:MeOH, 9:1 Al2O3 column DCM:MeOH, 1:1
9 Ultrasonic DCM:MeOH, 3:1 Hydrolysis, SiO2 column DCM:MeOH, 1:1
10 Microwave DCM:MeOH, 9:1 SiO2 column DCM:MeOH, 1:1
11 ASE DCM:MeOH, 9:1 SiO2 column MeOH
12 Ultrasonic DCM:MeOH, 2:1 Al2O3 column DCM:MeOH, 1:1
13 ASE DCM:MeOH, 9:1 Al2O3 column DCM:MeOH, 1:1
14 n.r.
15 Ultrasonic MeOH, MeOH:DCM (1:1), DCM SiO2 column MeOH
16 Ultrasonic CHCl3:MeOH:ammonium acetate buffer, 2:1:0.8
17 Ultrasonic MeOH, MeOH:DCM (1:1), DCM Hydrolysis, Al2O3 column DCM:MeOH, 1:1
18 ASE DCM:MeOH, 6:4 SiO2 column Toluene:MeOH, 3:1
19 ASE DCM:MeOH, 9:1 SiO2 column DCM:MeOH, 1:1
20 ASE DCM:MeOH, 9:1 Al2O3 column DCM:MeOH, 1:1
21 ASE DCM:MeOH, 93:7 Al2O3 column DCM:MeOH, 1:1
22 ASE DCM:MeOH, 9:1 Al2O3 column DCM:MeOH, 1:1
23 ASE DCM:MeOH, 9:1 None
24 Ultrasonic MeOH, MeOH:DCM (1:1), DCM SiO2 column DCM:MeOH, 1:1
25 Microwave DCM:MeOH, 3:1 Hydrolysis None
26 ASE DCM:MeOH, 9:1 Al2O3 column DCM:MeOH, 1:1
27 ASE DCM:MeOH, 9:1 Al2O3 column DCM:MeOH, 1:1
28 ASE/Soxhlet DCM:MeOH, 2:1 SiO2/Al2O3 column DCM:MeOH, 1:1
29 Ultrasonic MeOH, MeOH:DCM (1:1), DCM H2O extraction of Hex:IPa
30 Ultrasonic CHCl3:MeOH:phosphate buffer, trichloroacetic acid None
31 ASE DCM:MeOH, 9:1 Al2O3 column DCM:MeOH, 1:1
32 n.r.
33 Microwave DCM:MeOH, 9:1 Hydrolysis, NH2-SiO2 column DCM:acetone, 9:1
34 Ultrasonic CHCl3:MeOH:phosphate buffer, 2:1:0.8 None
35 Soxhlet DCM:MeOH, 2:1 Al2O3 column DCM:MeOH, 1:2

aASE, accelerated solvent extraction; n.r., not reported.
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cannot be assessed, the MS and NMR data suggest
that GDGTs are likely to be more than �90%
pure. Isolated GDGTs were weighed on a micro-
balance (accuracy 0.1 mg), and two mixtures were
prepared, Mixtures D and E. Each vial of Mixture
D contained 500 mL, pipetted using a positive dis-
placement micropipette with precision of 0.5%, of
a 25 mL solution containing 200 mg of crenarch-
aeol, 50 mg of branched GDGT-II, and 75 mg of
branched GDGT-I. The final ratio of GDGTs was
200:50:75 (wt/wt/wt) leading to a mass-based
‘‘BIT’’ value (BITmass) of 0.385 and a molar-based
‘‘BIT’’ value (BITmol) of 0.440. Each vial of Mix-
ture E contained 500 mL of a 25 mL solution con-
taining 1000 mg of isolated crenarchaeol, 100 mg
of isolated branched GDGT-II, and 50 mg of iso-
lated branched GDGT-I. The final ratio of GDGTs
was 100:10:5 (wt/wt/wt) leading to a BITmass of
0.130 and a BITmol value of 0.158. Uncertainties
in the weighing of compounds, pipetting of mix-
tures, and compound purity lead to an uncertainty
of �0.01 in BIT values.

2.3. TEX86 and BIT Analyses

[16] The sediments were extracted and fractio-
nated according to the protocols used by each indi-
vidual laboratory (Table 1). GDGT Mixtures D
and E and Extract F were analyzed as provided.
All laboratories used HPLC/APCI/MS to analyze
GDGTs (Table 2).

2.4. Statistical Analysis

[17] The reporting and analysis of the data were
performed following some of the recommenda-
tions of the IUPAC (International Union of Pure
and Applied Chemistry, Basel, Switzerland) for
the proficiency testing of analytical chemistry lab-
oratories [Thompson et al., 2006]. The results, i.e.,
the laboratory means, were assessed using histo-
grams and Tukey box plots. The latter were used
as the only means employed to identify outliers,
which are those data that fall beyond the whiskers
(61.5 times the difference between the 3rd and 1st
quartiles or the interquartile range which includes

Table 2. HPLC-MS Methods Reported by Participants in the Round-Robin Studya

Laboratory
Number HPLC Column

HPLC
Gradient MS MS Type MS Method Integration

1 Prevail Cyano Hex:IPA Shimadzu 2010A Single quad SIM [M1H]1 ions
2 Prevail Cyano Hex:IPA PE Sciex API 300 Single quad Mass scanning [M1H]1 ions
3 Prevail Cyano Hex:IPA Bruker Esquire 30001 Ion trap Mass scanning [M1H]1 ions
4 Prevail Cyano Hex:IPA Agilent 6130 Single quad SIM [M1H]1 ions
5 Tracer Excel CN Hex:IPA Thermo TSQ Quantum Triple quad SIM [M1H]1 ions
6 Prevail Cyano Hex:IPA Agilent 6460A Triple quad SIM [M1H]1 ions
7 Prevail Cyano Hex:IPA Agilent XCT (Bruker) Ion trap Mass scanning n.r.
8 Prevail Cyano Hex:IPA Bruker HCTUltra ETD II Ion trap Mass scanning [M1H]1 ions
9 Prevail Cyano Hex:IPA Micromass Quattro Ultima Triple quad SIM [M1H]1 ions
10 Prevail Cyano Hex:IPA Agilent 6130 Single quad SIM [M1H]1 ions
11 Prevail Cyano Hex:IPA Agilent 6130 Single quad SIM [M1H]1 ions
12 Prevail Cyano Hex:IPA Agilent 6120 Single quad SIM [M1H]1 ions
13 Prevail Cyano Hex:IPA Thermo LCQ Deca XP Ion trap ‘‘SIM’’ [M1H]1 ions
14 n.r.
15 Prevail Cyano Hex/DCM:IPA Agilent 6120 Single quad SIM [M1H]1 ions
16 Prevail Cyano Hex:IPA n.r. Ion trap ‘‘SIM’’ [M1H]1, 11 ions
17 Prevail Cyano Hex:IPA Agilent 6410 Triple quad SIM [M1H]1 ions
18 Prevail Cyano Hex:IPA Bruker Daltonics mTOF TOF-MS Mass scanning [M1H]1, 11 ions
19 Prevail Cyano Hex:IPA Thermo LSQ Fleet Ion trap n.r. n.r.
20 Prevail Cyano Hex:IPA Agilent 6460 Triple quad SIM [M1H]1 ions
21 Prevail Cyano Hex:IPA Micromass Quattro Ultima Triple quad SIM [M1H]1 ions
22 Prevail Cyano Hex:IPA Thermo LTQ Orbitrap XL Orbitrap Mass scanning [M1H]1 ions
23 Prevail Cyano Hex:IPA Thermo TSQ Quantum Triple quad SIM [M1H]1, 11 ions
24 Prevail Cyano Hex:IPA Agilent 6460 Triple quad SIM [M1H]1 ions
25 Prevail Cyano Hex:IPA Thermo LSQ Ion trap Mass scanning [M1H]1, 11 ions
26 Prevail Cyano Hex:IPA Agilent 6130 Single quad SIM [M1H]1 ions
27 Prevail Cyano Hex:IPA Agilent 1100 Single quad SIM [M1H]1 ions
28 Prevail Cyano Hex:IPA Agilent 6130 Single quad SIM [M1H]1 ions
29 Prevail Cyano Hex:IPA Agilent 1100 Single quad SIM [M1H]1 ions
30 Prevail Cyano Hex:IPA Agilent 6130 Single quad SIM [M1H]1 ions
31 Prevail Cyano Hex:IPA Agilent 1100 SL Single quad SIM [M1H]1 ions
32 Prevail Cyano Hex:IPA Agilent 1200 SL Single quad SIM [M1H]1 ions
33 Prevail Cyano Hex:IPA Agilent 1200 Single quad SIM [M1H]1 ions
34 Prevail Cyano Hex:IPA Agilent 1200 SL Single quad SIM [M1H]1 ions
35 Prevail Cyano Hex:IPA Thermo TSQ Quantum Triple quad SIM [M1H]1 ions

aHex, hexane; IPA, isopropanol; DCM, dichloromethane; SIM, selected ion monitoring; TOF, time of flight; n.r., not reported.
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25% of all data higher and 25% of all the data
lower than the median). Performance of each lab
was assessed using the Z-score, which is a measure
of the distance between their data and the commu-
nity mean (see Table S1). In addition, a one-way
analysis of variance test was used to analyze the
means and calculate the interlaboratory and the
intralaboratory variance. Outliers were removed
before these calculations. Values of variance have
also been expressed in the form of relative stand-
ard deviation (equivalent to coefficient of varia-
tion, in percentage units). The reproducibility (sR)
is the interlaboratory precision, and the repeatabil-
ity (sr) is an estimate of the reliability of a method
for a particular laboratory [Nilsson et al., 1997]
that reflects the precision of the analysis of repli-
cate test samples. The repeatability and reproduci-
bility values have also been expressed using
confidence intervals as recommended by the ISO
5725 guidelines [International Organization for
Standardization, 1986].

3. Results and Discussion

[18] The results of the TEX86 and BIT analyses of
the different laboratories are listed in Tables 3 and
4, respectively, and plotted in Figures 2 and 3,
respectively, while the extraction methods and
HPLC-MS conditions used are summarized in
Tables 1 and 2, respectively. The most common
method involved extractions using a DCM/MeOH
mixture, typically followed by some form of col-
umn chromatography (Table 1). The HPLC meth-
ods used by the different laboratories are listed in
Table 2 and nearly all were similar to that of
Schouten et al. [2007] (i.e., a cyano column eluted
with a gradient of isopropanol in hexane). How-
ever, a variety of mass spectrometry techniques
were used: 24 laboratories used quadrupole-MS
(15 used a single quadrupole and 9 used a triple
quadrupole in single quadrupole mode), 7 labora-
tories used ion trap-MS, 1 laboratory used a time-
of-flight-MS, and 1 laboratory used an Orbitrap

Table 3. Reported Results of TEX86 Analysis of Sediments A, B, and C and Extract Fa

Laboratory
Number

TEX86

A SD n
TEX86

B SD n
TEX86

C SD n
TEX86

F SD n

1 0.426 0.042 2 0.510 0.024 3 0.681 0.014 3 0.681 0.006 8
2 0.603 0.006 3 0.487 0.006 3 0.740 0.010 3 0.740 0.007 5
3 0.562 0.013 3 0.520 0.005 3 0.686 0.002 3 0.697 0.017 6
4 0.589 0.004 3 0.562 0.008 3 0.724 0.005 3 0.708 0.004 5
5 0.574 0.001 3 0.602 0.001 3 0.676 0.002 3 0.677 0.005 3
6 0.590 0.004 3 0.536 0.002 3 0.694 0.003 3 0.685 0.002 5
7 0.540 0.009 3 0.553 0.005 3 0.716 0.001 3 0.708 0.008 5
8 0.577 0.013 3 0.541 0.013 3 0.696 0.002 3 0.695 0.003 5
9 0.414 0.006 3 0.505 0.001 3 0.662 0.003 3 0.682 0.002 3
10 0.586 0.003 3 0.542 0.005 3 0.710 0.003 3 0.707 0.006 3
11 0.490 0.000 3 0.583 0.006 3 0.740 0.000 3 0.720 0.000 5
12 0.504 0.009 3 0.546 0.012 3 0.709 0.010 3 0.710 0.004 7
13 0.497 0.000 1 0.476 0.000 1 0.637 0.000 1 0.637 0.015 4
14 0.453 0.000 1 0.560 0.000 1 0.695 0.000 1 0.699 0.014 3
15 0.552 0.009 3 0.527 0.006 3 0.680 0.002 3 0.679 0.002 5
16 n.r. 0.473 0.006 3 0.648 0.003 3 0.645 0.003 4
17 0.491 0.019 3 0.558 0.021 3 0.726 0.003 3 0.738 0.002 3
18 0.590 0.002 2 0.547 0.009 3 0.711 0.002 3 0.722 0.003 6
19 0.529 0.002 3 0.545 0.001 3 0.707 0.002 3 0.702 0.002 3
20 0.547 0.010 3 0.549 0.002 3 0.730 0.021 3 0.740 0.095 3
21 0.481 0.005 3 0.514 0.011 3 0.664 0.004 3 0.668 0.004 5
22 n.r. 0.575 0.000 1 0.687 0.000 1 0.685 0.003 5
23 0.528 0.043 3 0.543 0.017 3 0.701 0.002 3 0.682 0.007 3
24 0.573 0.014 2 0.547 0.014 2 0.710 0.000 2 0.716 0.005 5
25 0.588 0.011 3 0.573 0.019 3 0.701 0.009 3 0.706 0.002 5
26 0.553 0.031 3 0.568 0.004 3 0.728 0.003 3 0.729 0.004 7
27 0.557 0.037 3 0.538 0.004 3 0.709 0.001 3 0.693 0.005 5
28 0.579 0.006 3 0.544 0.011 3 0.703 0.009 3 0.704 0.003 3
29 0.520 0.030 3 0.636 0.011 3 0.723 0.009 3 0.717 0.015 3
30 0.464 0.005 3 0.535 0.003 3 0.702 0.002 3 0.701 0.001 5
31 0.574 0.005 3 0.520 0.000 3 0.692 0.002 3 0.692 0.004 5
32 0.646 0.006 3 0.563 0.003 3 0.724 0.002 3 0.717 0.003 3
33 0.497 0.004 3 0.574 0.002 3 0.731 0.001 3 0.726 0.006 6
34 0.610 0.014 3 0.569 0.048 3 0.729 0.003 3 0.750 0.006 5
35 0.533 0.009 3 0.577 0.003 3 0.704 0.002 3 0.704 0.007 5

an.r., not reported.
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MS. Note that most laboratories analyzed the sam-
ples within 1–2 days, and thus the reported stand-
ard deviations do not represent the long-term
laboratory repeatability.

3.1. TEX86 Analysis of Sediments and
Extract

[19] The results of the TEX86 analysis are listed in
Table 3, summarized in Table 5, and shown in Fig-
ure 2. Sediment C is from a tropical marine envi-
ronment, the Arabian Sea, while Sediments A and
B are from a temperate lake (Salt Pond, USA) and
coastal shelf (Carolina Margin), respectively.
These different environments are well reflected in
the TEX86 values, which are substantially higher
(mean value 0.702, median value 0.704) for the
tropical sediment than for the sediments from the
temperate environments (mean 0.540 and 0.546,
respectively, and median 0.552 and 0.546, respec-
tively; Table 5). The results have a reasonably
Gaussian-like distribution (Figure 4), with smaller

ranges in TEX86 values for Sediment C and
Extract F compared to Sediments A and B. We
statistically identified (see section 2.4) one outlier
for Sediment B (Laboratory 29), which was
removed from subsequent statistical treatment.

[20] The estimated repeatability for TEX86, after
removal of the outlier, ranged from 0.006 to 0.016
(Table 5). Reproducibility, however, is larger and
ranged from 0.023 to 0.053. The better reproduci-
bility and repeatability of Sediment C is probably
due to the higher abundances of the minor
GDGTs, GDGT-1–GDGT-3 and the crenarchaeol
regioisomer, relative to GDGT-0 and crenarch-
aeol. This likely has enabled a more reliable quan-
tification of these minor compounds, as amounts
were not only above the limit of detection but also
above the limit of quantification, which is prob-
ably an order of magnitude higher than the limit of
detection [cf. Schouten et al., 2007]. Oddly
enough, Extract F, the extract of Sediment C, has a
somewhat worse repeatability and reproducibility

Table 4. Reported Results of BIT Index Analysis for Sediments A, B, and C, the GDGT Mixtures D and E, and Extract F

Laboratory
Number

BIT
A SD n

BIT
B SD n

BIT
C SD n

BIT
D SD n

BIT
E SD n

BIT
F SD n

1 0.975 0.010 3 0.285 0.147 3 0.074 0.000 1 0.827 0.012 7 0.670 0.008 5 0.085 0.006 8
2 0.957 0.006 3 0.267 0.006 3 0.247 0.006 3 0.830 0.000 5 0.706 0.009 5 0.296 0.009 5
3 0.897 0.009 3 0.021 0.000 3 0.004 0.000 3 0.390 0.023 6 0.136 0.013 6 0.004 0.000 6
4 0.972 0.004 3 0.156 0.022 3 0.043 0.006 3 0.742 0.004 5 0.458 0.004 5 0.048 0.004 5
5 0.966 0.001 3 0.124 0.013 3 0.033 0.001 3 0.711 0.022 3 0.438 0.019 3 0.066 0.002 3
6 0.945 0.002 3 0.092 0.005 3 0.028 0.001 3 0.689 0.002 5 0.374 0.003 5 0.047 0.001 5
7 0.904 0.003 3 0.028 0.001 3 0.007 0.000 3 0.406 0.006 5 0.155 0.008 5 0.003 0.000 5
8 0.957 0.006 3 0.067 0.001 3 0.036 0.001 3 0.610 0.036 5 0.354 0.002 5 0.038 0.000 5
9 0.940 0.003 3 0.075 0.003 3 0.023 0.000 3 0.612 0.003 3 0.330 0.005 3 0.021 0.001 3
10 0.926 0.022 3 0.067 0.006 3 0.020 0.000 3 0.620 0.000 3 0.280 0.000 3 0.020 0.000 3
11 0.943 0.006 3 0.070 0.000 3 0.020 0.000 3 0.602 0.008 5 0.322 0.004 5 0.026 0.005 5
12 0.963 0.001 3 0.110 0.002 3 0.034 0.005 3 0.754 0.005 5 0.441 0.019 5 0.021 0.002 7
13 0.951 0.000 1 n.r. n.r. n.r. n.r. n.r.
14 0.967 0.003 3 0.097 0.000 1 0.036 0.000 1 0.695 0.005 4 0.429 0.009 3 0.034 0.002 3
15 0.974 0.003 3 0.126 0.005 3 0.055 0.002 3 0.765 0.013 3 0.556 0.035 3 0.061 0.002 5
16 n.r. 0.157 0.002 3 0.079 0.004 3 0.785 0.002 3 0.582 0.006 3 0.104 0.001 4
17 0.920 0.008 2 0.149 0.016 3 0.043 0.002 3 0.757 0.001 3 0.428 0.003 3 0.040 0.001 3
18 0.971 0.001 3 0.033 0.003 3 0.008 0.000 3 0.461 0.004 6 0.200 0.005 6 0.021 0.005 6
19 0.960 0.007 3 0.122 0.002 3 0.026 0.002 3 0.650 0.003 3 0.329 0.002 3 0.024 0.001 3
20 0.970 0.000 3 0.111 0.019 3 0.030 0.000 3 0.740 0.104 3 0.370 0.017 3 0.037 0.006 3
21 0.961 0.000 1 0.199 0.002 3 0.081 0.002 3 0.814 0.011 5 0.540 0.007 5 0.080 0.000 5
22 n.r. 0.151 0.000 1 0.060 0.000 1 0.698 0.008 6 0.433 0.007 5 0.058 0.008 5
23 0.942 0.019 3 0.114 0.002 3 0.033 0.001 3 0.719 0.006 3 0.425 0.005 3 0.058 0.003 3
24 0.972 0.012 2 0.093 0.005 2 0.028 0.002 2 0.758 0.004 5 0.542 0.004 5 0.020 0.000 5
25 0.917 0.002 3 0.049 0.001 3 0.011 0.001 3 0.504 0.005 5 0.216 0.001 5 0.014 0.000 5
26 0.963 0.003 3 0.116 0.001 3 0.031 0.002 3 0.738 0.008 5 0.420 0.000 5 0.040 0.010 7
27 0.930 0.006 3 0.054 0.002 3 0.014 0.001 3 0.539 0.005 5 0.247 0.003 5 0.019 0.001 5
28 0.941 0.007 3 0.070 0.026 3 0.017 0.002 3 0.609 0.001 3 0.372 0.001 3 0.022 0.007 3
29 0.990 0.000 3 0.284 0.036 3 0.181 0.052 3 0.823 0.006 3 0.637 0.015 3 0.183 0.006 3
30 0.957 0.002 3 0.126 0.034 3 0.037 0.002 3 0.708 0.001 5 0.393 0.006 5 0.040 0.001 5
31 0.940 0.000 3 0.060 0.000 3 0.010 0.000 3 0.630 0.000 5 0.334 0.005 5 0.010 0.000 5
32 0.959 0.004 3 0.110 0.004 3 0.040 0.001 3 0.719 0.001 3 0.393 0.001 3 0.034 0.000 3
33 0.957 0.001 3 0.093 0.001 3 0.024 0.001 3 0.718 0.003 5 0.542 0.008 5 0.024 0.002 6
34 0.977 0.000 3 0.114 0.005 3 0.027 0.001 3 0.769 0.009 5 0.361 0.007 5 0.025 0.001 5
35 0.932 0.002 3 0.069 0.001 3 0.024 0.001 3 0.579 0.001 5 0.291 0.009 5 0.031 0.004 5
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than the results of the sediment, in part due to the
poor repeatability of the measurement of Extract F
by Laboratory 20 (Figure 2d).

[21] If we convert these TEX86 values to tempera-
tures (based on Kim et al. [2008], rather than Kim
et al. [2010a], to allow comparison with the
round-robin results of Schouten et al. [2009]), then

the repeatability of TEX86 analysis ranges from
0.4 to 0.9�C, while the reproducibility ranges from
1.3 to 3.0�C. This performance is better than the
initial round-robin exercise of Schouten et al.
[2009]. There, for the two samples (an Arabian
Sea sediment extract and a Drammensfjord sedi-
ment extract) the estimated repeatability was
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0.028 (1.6�C) and 0.017 (1.0�C), respectively,
with reproducibility of 0.067 (3.8�C) and 0.050
(2.8�C), respectively.

[22] To investigate potential causes for differences
among laboratories, we plotted TEX86 values of
Sediment B against Sediment C (Figure 5a). The
differences between TEX86 measurements are con-
sistent within individual laboratories, i.e., most
laboratories tend to have all of their values either
lower or higher than the mean. This suggests that
the differences between laboratories are not caused
by heterogeneity between individual vials of the

samples. Rather, it suggests that differences are
caused by instrumental characteristics, as previ-
ously suggested [Schouten et al., 2009].

[23] The results obtained for TEX86 analysis thus
compare well to those obtained in the previous
round-robin study, particularly in light of the fact
that most results are now obtained for sediments
rather than extracts. Intralaboratory precision
(repeatability) has improved to <1�C. This sug-
gests that improvements have been made in inter-
nal lab consistency over the years, possibly by
increased experience with HPLC-MS techniques

Table 5. Summary Statistics of TEX86 Analysis of Sediments A, B, and C and Extract Fa

Sediment
A

Sediment
B

Sediment
C

Extract
F

Number of laboratories reporting results 33 35 35 35
Number of outliersb 0 1 0 0
Outliers laboratory number 29
Mean 0.540 0.546 0.702 0.702
Mean exc. outliers 0.540 0.543 0.702 0.702
Median 0.552 0.546 0.704 0.704
Repeatability standard deviation, sr 0.016 0.013 0.006 0.014
Repeatability relative standard deviation 3% 2% 1% 2%
Repeatability limit 0.046 0.036 0.017 0.039
Reproducibility standard deviation, sR 0.053 0.030 0.023 0.027
Reproducibility relative standard deviation 10% 5% 3% 4%
Reproducibility limit 0.148 0.083 0.066 0.075

aMedian, repeatability, and reproducibility are calculated after outlier removal.
bOutliers were determined from box plots of the data (i.e., data that fall beyond the whiskers).
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Figure 4. Histogram of TEX86 values of (a) Sediment A, (b) Sediment B, (c) Sediment C, and (d) Extract F.
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as speculated by Schouten et al. [2009] and/or
improved MS systems with higher sensitivity.
There is also some improvement in consistency
between labs (i.e., the reproducibility improved)
which, when translated into temperature, corre-
sponds to reducing the variability from 3–4 to 1–
3�C. The TEX86 analysis now performs relatively
well compared to round-robin studies of other
paleothermometers. Rosell-Mel�e et al. [2001]
found for Uk1

37 analyses of several sediments a
repeatability of 1.6�C, slightly worse than our
results, but their reproducibility of 2.1�C is similar
or better than obtained in our study. Rosenthal
et al. [2004] reported a repeatability of 1–2�C and
a reproducibility of 2–3�C for Mg/Ca analysis of
foraminifera, numbers which are similar to this
study. Hence, it seems that TEX86 measurements
in the different geochemical labs have become
comparable in robustness and consistency to those
of other temperature proxy measurements.

3.2. BIT Analysis of Sediments and
Extract

[24] The results of the analysis of the BIT index
are displayed in Tables 4 and 6 and Figures 3, 6,
and 7b. Sediment C is an open marine setting with

a small contribution of soil OM, and thus, values
are nearly all below 0.1 (Figures 3c and 6c, Table
4) with a mean value, after outlier removal, of
0.027 (Table 6). Extract F, the extract of Sediment
C, had a similar mean BIT value of 0.037 (Figures
3f and 6f and Tables 4 and 6). Sediment A is from
a lake (Salt Pond, MA, USA) that likely contains
substantial amounts of soil organic carbon. Indeed,
higher BIT indices were measured for this sedi-
ment than for Sediment C (Figures 3a and 6a,
Table 4) with a mean value of 0.951 (Table 6).
Sediment B is from a coastal shelf (Carolina Mar-
gin), which in principle can contain a range of soil
OM input [Schouten et al., 2013, and references
cited therein]. The BIT values were consistently
low (Figures 3b and 6c, Table 4) with a mean
value, after outlier removal, of 0.096 (Table 6),
suggesting relatively little input of soil OM in this
region.

[25] The three sediments and the extract thus have
fairly extreme values, close to 0 (Sediments B and
C and Extract F; Figure 7b) or close to 1 (Sedi-
ment A; Figure 7b). This has consequences for the
repeatability and reproducibility, as numbers close
to the extreme end of the indices will artificially
have a better repeatability and reproducibility.
Indeed, repeatability varied between 0.002 and
0.017 and reproducibility varied between 0.013
and 0.042, slightly better than for TEX86 analysis
(Tables 5 and 6). The results are similar to the
Arabian Sea extract analyzed in the previous
round-robin study, which also had a low BIT index
value, but much better than the repeatability and
reproducibility of the Drammensfjord extract
which had an intermediate BIT index value of
0.588 (mean of measurements) [Schouten et al.,
2009]. Indeed, the two mixtures of isolated
GDGTs, which had intermediate BIT indices,
show a much larger repeatability and reproducibil-
ity, as their values are not close to the extremes
(see 3.4). Nevertheless, the results do suggest that
extreme values of BIT indices are fairly consis-
tently measured between laboratories (Figure 7b),
in contrast to intermediate values between �0.2
and �0.8, suggesting at least sediments with rela-
tively ‘‘low’’ or ‘‘high’’ soil OM input can be
distinguished.

3.3. Impact of Sample Work Up and Mass
Spectrometry Techniques

[26] The inclusion of both sediment and its extract
(Sediment C and Extract F, respectively) in the
round-robin analysis allowed the impact of
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extraction methods to be evaluated. Several differ-
ent extraction techniques were used including
ultrasonic, microwave, accelerated solvent and
Soxhlet extraction (Table 1). Most of the solvents
used consisted of mixtures of DCM and MeOH,
although in some cases a ‘‘Bligh & Dyer’’ type
extraction, using a buffer [Bligh and Dyer, 1959],
was used. The extracts were also processed in dif-
ferent ways including no treatment, hydrolysis, or
column separations using SiO2 or Al2O3 (Table 1).
A first evaluation can be made by comparing the
mean and median BIT and TEX86 values of Sedi-

ment C and Extract F. This showed that both
TEX86 (0.702 versus 0.702) and BIT values (0.027
versus 0.037) are nearly identical and well within
the repeatability limits (Tables 5 and 6). Thus, on
a general level the impact of sample processing is
relatively small, although it should be noted that a
substantial number of the participants used a simi-
lar workup for the Sediment C as was used for pre-
paring Extract F. Comparison on the individual
laboratory level between TEX86 values obtained
from Sediment C and Extract F shows differences
varying from 20.019 to 0.021 corresponding to
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20.8 to 0.9�C when converted to temperature
using Kim et al. [2008]. Differences in BIT values
vary only between 20.013 and 0.049. These dif-
ferences are all relatively minor, suggesting that
the type of extraction method and extract process-
ing do not have a large impact on GDGT distribu-
tions, in agreement with previous observations
[Schouten et al., 2007; Escala et al., 2009; Leng-
ger et al., 2012].

[27] The different types of mass spectrometers used
allow us to assess potential differences between
mass spectrometry techniques (Table S2). Compari-
son of the TEX86 and BIT measurements of triple
quadrupole mass spectrometers with those of single
quadrupole mass spectrometers, the most com-
monly used technique, shows no significant differ-
ences (Student’s t test, p> 0.05). This is perhaps
not surprising as the triple quadrupole mass spec-
trometers were used in single quadrupole mode.
However, comparison of the results of ion trap
mass spectrometers with those of single quadrupole
mass spectrometers shows significant differences
(Student’s t test, p < 0.05), i.e., slightly lower val-
ues for TEX86 values of Sediment C (0.684 versus
0.713) and Extract F (0.684 versus 0.710) and sub-
stantially lower BIT values for standard Mixtures D
(0.558 versus 0.711) and E (0.295 versus 0.445).
This may suggest that ion trap mass spectrometers,
in general, yield slightly lower TEX86 values but
especially lower BIT values.

3.4. Comparison of MS-Based BIT Index
and Mass-Based BIT Index

[28] Until now the BIT index, as well as the
TEX86, has been an empirical ratio solely based on
MS response. The last round-robin exercise dem-

onstrated that this approach had especially large
consequences for the BIT index as the extract ana-
lyzed with intermediate BIT value (mean 0.588)

Table 6. Summary Statistics of BIT Analysis of Sediments A, B, and C, the GDGT Mixtures D and E, and Extract Fa

Sediment
A

Sediment
B Sediment C

Mixture
D

Mixture
E

Extract
F

Number of laboratories 33 34 34 34 34 35
Number of outliersb 0 3 4 2 1 2
Outliers I.D. 1, 2, 29 2, 16, 21, 29 3, 7 2 2, 29
Mean 0.951 0.114 0.043 0.676 0.403 0.047
Mean exc. Outliers 0.951 0.096 0.027 0.690 0.384 0.037
Median 0.957 0.110 0.031 0.710 0.393 0.034
Repeatability standard deviation, sr 0.007 0.011 0.002 0.017 0.009 0.004
Repeatability relative standard deviation 1% 11% 7% 3% 2% 11%
Repeatability limit 0.020 0.030 0.005 0.048 0.026 0.011
Reproducibility standard deviation, sR 0.022 0.042 0.013 0.107 0.139 0.024
Reproducibility relative standard deviation 2% 43% 49% 15% 36% 66%
Reproducibility limit 0.062 0.177 0.038 0.299 0.390 0.068

aMedian, repeatability, and reproducibility are calculated after outlier removal.
bOutliers were determined from box plots of the data (i.e., data that fall beyond the whiskers).
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had a very large spread in values (from 0.340 to
0.821) due to the different MS instrument
responses [cf. Escala et al., 2009]. The use of mix-
tures of GDGT standards in the current round-
robin analysis allows, for the first time, a compari-
son between BIT values measured by the HPLC-
MS (BITMS) with those based on mass (BITmass)
or moles (BITmol) of GDGTs. Two GDGT mix-
tures were prepared with different ratios between
crenarchaeol versus branched GDGT-I and
GDGT-II (i.e., a BITmol of 0.440: Mixture D and
0.158: Mixture E), respectively. As expected,
highly variable BITMS values ranging from 0.390
to 0.830 for Mixture D and 0.136 to 0.706 for Mix-
ture E, respectively, were reported (Figures 3d and
3e and Table 4). A broad range of nonuniform dis-
tributions was found (Figures 6d and 6e), similar
to the previous round-robin results, leading to poor

reproducibilities for BIT measurements of the
GDGT mixtures (Table 6). Comparison of the
BITMS values of each laboratory showed that the
trends were consistent between laboratories, i.e.,
laboratories producing high BITMS values of Mix-
ture D also produced high BITMS values for Mix-
ture E and vice versa (Figure 5). Interestingly,
nearly all BITMS values reported were higher than
the BITmol of the GDGT mixtures (Figure 5b).
Only laboratories 3, 7, and 18 obtained BITMS val-
ues similar (i.e., within 0.05) to that of the BITmol

of the GDGT mixtures. This suggests that BIT val-
ues previously reported in the literature were
nearly all overestimating the ‘‘true’’ molar-based
BIT index. The cause of the overestimation is
likely due to a higher response factor of branched
GDGTs compared to crenarchaeol in most of the
MS systems used. The three laboratories that have
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BITMS values close to BITmol values all use a
Bruker-manufactured MS, suggesting that certain
MS systems may suffer less from this differential
MS response. In any case, the results highlight the
need to use GDGT standards to properly estimate
BITmol values or even concentrations of branched
GDGTs [cf. Huguet et al., 2006].

[29] The overestimation of BIT values may have
several implications. For example, it likely means
that past efforts to estimate the relative amount of
soil organic carbon in marine sediments based on
the BIT index [e.g., Weijers et al., 2009; Belicka
and Harvey, 2009; Kim et al., 2010b] may have
overestimated the contribution of soil organic car-
bon. However, this error is likely minor compared
to the assumption that concentrations of branched
GDGTs in soil organic carbon and crenarchaeol in
marine organic carbon are similar and do not vary

over time [cf. Weijers et al., 2009]. Nevertheless,
the use of GDGT standards will likely lead to a
better assessment of the relative contribution of
soil organic carbon in the marine environment.
Another point is that BIT values >0.3 are used to
indicate potential biases in TEX86 due to input of
soil-derived isoprenoid GDGTs [Weijers et al.,
2006]. However, as discussed in Schouten et al.
[2013], the recommended cutoff value heavily
depends on the ‘‘terrestrial TEX86’’ value as well
as the concentrations of isoprenoid versus
branched GDGTs, which will likely vary on a
regional scale. Thus, TEX86 might be biased at
BIT values <0.3 or not biased at BIT values >0.3.
In our previous round-robin study [Schouten et al.,
2009] we suggested to correlate BIT values with
TEX86 values and in case of significant correla-
tions use this as a red flag. Our results here do not
change this recommendation.

Table 7. BITMS Values of Mixture E, the Calculated Correction Factor for Differences in MS Response of Branched GDGTs and
Crenarchaeol, the BITMS Values of Mixture D, and Corrected BITmol Values of Mixture D After Applications of Equations (5)
and (6)a

Laboratory
Number

BITMS

Mixture
E

Correction
factor

BITMS

Mixture
D SD n

Estimated
BITmol

Mixture D

1 0.670 10.8 0.827 0.012 7 0.307
2 0.706 12.8 0.830 0.000 5 0.276
3 0.136 0.84 0.390 0.023 6 0.433
4 0.458 4.50 0.742 0.004 5 0.390
5 0.438 4.15 0.711 0.022 3 0.372
6 0.374 3.18 0.689 0.002 5 0.411
7 0.155 0.98 0.406 0.006 5 0.412
8 0.354 2.92 0.610 0.036 5 0.349
9 0.330 2.62 0.612 0.003 3 0.376
10 0.280 2.07 0.620 0.000 3 0.441
11 0.322 2.53 0.602 0.008 5 0.374
12 0.441 4.20 0.754 0.005 5 0.422
13 n.r. n.r.
14 0.429 4.00 0.695 0.005 4 0.363
15 0.556 6.66 0.765 0.013 3 0.328
16 0.582 7.41 0.785 0.002 3 0.330
17 0.428 3.98 0.757 0.001 3 0.439
18 0.200 1.33 0.461 0.004 6 0.391
19 0.329 2.61 0.650 0.003 3 0.416
20 0.370 3.12 0.740 0.104 3 0.477
21 0.540 6.25 0.814 0.011 5 0.412
22 0.433 4.06 0.698 0.008 6 0.363
23 0.425 3.93 0.719 0.006 3 0.394
24 0.542 6.3 0.758 0.004 5 0.332
25 0.216 1.47 0.504 0.005 5 0.409
26 0.420 3.85 0.738 0.008 5 0.422
27 0.247 1.75 0.539 0.005 5 0.401
28 0.372 3.15 0.609 0.001 3 0.331
29 0.637 9.34 0.823 0.006 3 0.332
30 0.393 3.44 0.708 0.001 5 0.413
31 0.334 2.67 0.630 0.000 5 0.390
32 0.393 3.44 0.719 0.001 3 0.426
33 0.542 6.30 0.718 0.003 5 0.288
34 0.361 3.01 0.769 0.009 5 0.526
35 0.291 2.18 0.579 0.001 5 0.386

an.r., not reported.
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[30] The use of two GDGT mixtures also allows
the differences in relative response of crenarchaeol
versus branched GDGTs to be assessed for each
MS. These specific response factors can be used to
correct BITMS values to BITmol values. We first
calculated a correction factor, Fcorr, for the differ-
ences in MS response for crenarchaeol versus
branched GDGTs for each MS system based on
the results of GDGT Mixture E:

Fcorr 5
C=B
1

BITMS
21

(5)

in which C/B is the molar ratio of crenarchaeol
versus branched GDGTs of standard Mixture E,
i.e., 5.32 (0.78 mmol of crenarchaeol versus 0.097
mmol of GDGT-II and 0.049 mmol of GDGT-I).
This correction factor can then be applied to the
reported BITMS values of Mixture D to estimate
BITmol values for this mixture:

Estimated BITmol 5
1

Fcorr
BITMS

2Fcorr11
(6)

[31] The calculations show that corrected BITmol

values are in a much smaller range than the
reported BITMS values and have a more unimodal
distribution (Figures 8a and 8b and Table 7). Repro-
ducibility also substantially improves from 0.107 to
0.059, and the mean and median values of the esti-
mated BITmol values, 0.386 and 0.391, are now
much closer to the actual BITmol value of 0.440
(Figure 8c). This shows that the use of GDGT
standard mixtures can substantially improve interla-
boratory consistency of the BIT index and leads to
better estimates of BITmol values.

4. Conclusions

[32] Our extensive round-robin study of TEX86

and BIT analyses, involving 35 laboratories and
using 3 sediments, 1 sediment extract, and 2
GDGT mixtures, showed that measurements of the
TEX86 and BIT index were improved compared to
the previous round-robin study, i.e., an improved
intralaboratory precision (repeatability) as well as
improved consistency (reproducibility) between
labs. Importantly, comparison of the results
obtained from one sediment and its extract showed
that TEX86 and BIT index are not affected sub-
stantially by sediment extraction and processing
techniques. Comparison of measured BIT values
with those of two GDGT mixtures with known
ratios of crenarchaeol and branched GDGTs

showed that measured BIT values generally over-
estimate the BIT index based on the molar ratios
of the GDGTs. A correction for this different mass
spectrometric response based on the GDGT mix-
ture showed a considerable improvement in the
reproducibility of BIT index measurements
between laboratories, suggesting that standard
mixtures should be used in order to obtain consist-
ent BIT values as well as molar-based BIT values.
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