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ABSTRACT

Parkinson's disease (PD) affects over 10 million people worldwide and has no cure.
Moreover, current treatments for PD have limited efficacy. Studies that advance our
understanding of the mechanism of neurodegeneration in PD will provide guidance in our search
for effective therapies for this neurodegenerative disorder.

PD is characterized clinically by motor deficits - namely resting tremors, rigidity,
bradykinesia and postural instability - and pathologically by intraneuronal inclusions in the
substantia nigra. Several studies suggest that a-synuclein, the major component of these
intracellular inclusions, plays a major role in the neurodegenerative process. Therefore
understanding the structural properties of a-synuclein and its aggregation mechanism is of
particular interest.

a-synuclein is particularly challenging to study because it is an Intrinsically Disordered
Protein (IDP); i.e., it lacks a well-defined structure in aqueous solution. Unlike folded proteins,
IDPs typically interconvert between many different conformations during their biological
lifetime. In this thesis we apply novel methods to develop models for IDPs and apply them to a-
synuclein. The overriding hypothesis that forms the basis of this work is that IDPs in solution
can be modeled as a finite set of energetically favorable structures, where each structure
corresponds to an energy minimum on a complex energy landscape. The number of structures in
the resulting ensemble is related to the resolution in which one wishes to view the energy
landscape of the protein. We demonstrate that this approach leads to new insights into the
aggregation mechanism of a-synuclein.
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Chapter I

Studying Intrinsically Disordered Proteins Using
Computational Methods

L.A Introduction

The archetypical structure-function paradigm states that there exists a unique mapping

between a protein's function and its native structure. However, a growing body of work suggests

that many proteins do not adopt a single folded state under physiological conditions (Uversky

2002, Radivojac, Iakoucheva et al. 2007). Some proteins, such as k-repressor, have short

disordered linkers between two separate, folded, domains (Zhou 2001). Others, including a

variety of other 'transcription factors such as p53, contain folded domains associated with

extended regions of disorder, which are thought to facilitate the recognition of different protein

targets (von Hippel 2004, Liu, Perumal et al. 2006).

The fact that many proteins sample a heterogeneous set of conformations during their

biological lifetime argues for an alternate view of protein structure. In this regard, classification

schemes based on an order-disorder continuum are likely to be more i propos. On one end of the

spectrum are proteins that adopt a unique fold under physiological conditions and on the other

end are proteins classified as intrinsically disordered proteins (IDPs) (Fisher and Stultz 2011)

which sample a large number of structurally dissimilar states in solution (Huang and Stultz

2009). As a result, traditional methods for protein structure determination that employ NMR

spectroscopy or X-ray crystallography, which while appropriate for studying folded proteins, are

ill suited for studying IDPs.

Despite these difficulties studying IDPs is of paramount importance because many have

been implicated as key protagonists in a number of neurodegenerative disorders, including

Alzheimer's, Parkinson's and Huntington's disease, through their tendency to aggregate into

toxic structures (Huang and Stultz 2009). As such, they constitute a sought after starting-point

for rational drug design methods aimed at alleviating, or reversing, the symptoms of these

disorders. In order to move forward it is therefore critical to understand the thermally accessible

11



state of IDPs. Several computational methods have been developed to provide insight into the

underlying set of accessible conformations that IDP can adopt during its biological lifetime.

I.A. 1 What are intrinsically disordered proteins?

It has been suggested that the energy landscape of a natively folded protein resembles a

funnel, where the minimum corresponds to the most thermodynamically stable conformation.

The global minimum is structurally unique and the fact that such proteins remain folded for

much of their biological lifetime suggests that the free energy minimum is significantly lower

than any other state. The free energy landscape of an IDP is, by contrast, comparatively 'flat'

(see Figure 1.1). The shape of the energy landscape enables the protein to sample a large number

of local energy minima through thermal fluctuations alone (Uversky, Gillespie, et al. 2000).

IM

Conformations
Figure I.1: The 'funnel' shaped energy landscape for natively folded proteins (on the left) in comparison
to the relatively 'flat' energy landscape of an IDP (on the left).

To describe an IDP's structure, one must account for this inherent conformational

heterogeneity. In this thesis, we demonstrate how computational methods can be used to

understand the thermodynamics of IDPs. Our overriding hypothesis is that IDPs in solution can

be modeled as a finite set of energetically favorable structures where each structure corresponds

to an energy minimum over a complex energy landscape. We illustrate these principles using the

IDP a-synuclein.
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I.B Generating Ensembles for Intrinsically Disordered Proteins

IDPs can be modeled using structural ensembles. An ensemble is defined as a set of N

structures SN = {s1 , S2, --- SN), (a structural library) and a set of their relative stabilities or

weights WN = {W1, W2 , --- WN} (Huang and Stultz 2008, Huang and Stultz 2009, Fisher, Huang

et al. 2010, Fisher and Stultz 2011, Fisher and Stultz 2011). By choosing N, the number of

structures, one is effectively choosing the resolution in which one view's the IDP's energy

landscape. In practice, structures and weights are generated such that calculated ensemble

average quantities agree with a pre-specified set of experimental observables.

The first step in these ensemble construction methods is the generation of a diverse

structural library; this is typically done using MD simulations, Monte Carlo sampling methods,

or statistical coil models. As the sizes of the proteins that are of interest are relatively large,

special methods are needed to ensure that a wide range of conformational space is sampled in a

reasonable amount of CPU time. Methods such as replica exchange (Sugita and Okamoto 1999),

accelerated MD (Chen and Horing 2007) or fragmenting the protein using MD on each of the

segments followed by piecing the segments together (Fisher, Huang et al. 2010) all facilitate a

broad sampling of conformational space. Statistical coil models use a residue specific statistical

distribution, which is generated based on backbone conformational frequencies and excluded

volume constraints (Jha, Colubri et al. 2005). In some of these cases, the statistical distribution

is generated by using the frequencies of phi/psi dihedral angles taken from non-helix, non-turn,

non-p strand residues within folded proteins. Statistical coil models have the advantage that they

can generate many different conformations in a relatively short time, however, many of the

initial conformations in the set may be energetically unfavorable as the method does not sample

conformations according to a physically meaningful potential energy function (Cho, Nodet et al.

2009, Marsh and Forman-Kay 2009). Moreover, complex relations within the sequence, such as

long-range contacts between residues that are distant in the primary sequence cannot be

addressed simply by using these models. (The Flexible-Meccano algorithm provides an option

to manually add prior knowledge modifications (Ozenne, Bauer et al. 2012)).

Once a structural library is generated, relative stabilities (or structural weights) need to be

assigned to the various conformations. This can be done in a variety of ways; the most common
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one is to select a subset of conformations that yields calculated observables that agree with

experiment. It should be noted that selecting a subset of structures is equivalent to applying a

particular weighting scheme to the structural library where structures that are not selected are

assigned a weight of zero (Choy and Forman-Kay 2001, Chen, Campbell et al. 2007, Cho, Nodet

et al. 2009, Marsh and Forman-Kay 2009, Fisher, Huang et al. 2010, Jensen, Salmon et al. 2010).

The final set of structures and structural weights forms the structural ensemble. Some methods

attempt to combine both the structure generation step and the assignments of structural weights

in a single step. In one method the empirical potential energy function is modified to ensure that

MD structures are sampled in a manner to yield ensemble averages that agree with experiment

(Allison, Varnai et al. 2009, Esteban-Martin, Fenwick et al. 2009). This approach has yielded

some promising results.

One inherent problem in generating a structural ensemble for IDPs is the degeneracy of

the problem. In practice one tries to generate a structurally heterogeneous set of conformations

for the structural library that captures, in some sense, the diversity of structures that are

accessible to the IDP of interest. Weights are then assigned to yield calculated ensemble

averages that agree with experiment. The ensemble generation procedure is therefore

mathematically well defined. However, the number of experimental restraints that are available

for a given IDP typically pales in comparison to the number of structures in the library. This

leads to an inherently underdetermined problem; i.e., there are many different 'ensembles'

(structures and weights) that yield calculated observables that are consistent with experiment.

Several methods were developed in the past in an attempt to handle the degeneracy

problem. These can be divided into two main approaches. In one approach multiple different

ensembles are generated for an IDP, all of which agree with experiments. Structural features that

are shared among the different ensembles are then considered representative of the underlying

real ensemble (Huang and Stultz 2008, Marsh and Forman-Kay 2009). In the second approach

one first pre-defines a "prior" probability distribution, based for example on the potential energy

of the conformations, and then an ensemble is generated such that it agrees with experiments as

well as have maximal similarity with the prior. This is defined as the maximal entropy, or

minimal information approach (Pitera and Chodera 2012, Boomsma, Ferkinghoff-Borg et al.

2014, Lane, Schwantes et al. 2014). While both methods have their merits, none of them provide

quantitative estimates of the uncertainty in the final model.
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In this thesis we employ a previously developed method, called Bayesian weighting

(BW), for ensemble construction that quantifies one's uncertainty in the underlying ensemble.

For a given structural library the method calculates a posterior probability distribution over all

possible ways of weighting structures in the structural library. In practice, the BW ensemble

consists of a structural library and the Bayes' estimate for the structure weights. A central

feature of the approach is that the method calculates an "uncertainty parameter" that is associated

with model correctness. An empirical study suggests that when the uncertainty parameter is 0, it

is likely that the model is correct. By contrast, when the uncertainty parameter is equal to 1,

there is little reason to have confidence that the resulting model is accurate. Nevertheless, even

when one's uncertainty is high we can still provide confidence intervals for quantities that are

calculated from the ensemble. In this sense, rigorous hypothesis testing can still be performed.

The Bayesian Weighting algorithm was used successfully on several different IDPs. In

the first study a structural ensemble for K18 truncated form of tau protein (Fisher, Huang et al.

2010) was generated. In this study, chemical shifts, RDCs and Rg determined by SAXS were

used to guide the generation of the posterior distribution. Since the uncertainty parameter was

not equal to 0, confidence intervals were assigned to each of the predicted measurements that

were made. In that study it was suggested that long-range contacts incorporate the PHF6* and

PHF6, aggregation initiating hexapeptide motifs, within "hairpin like" formations, which may

help protect the protein from aggregating (Fisher, Huang et al. 2010).

I.C a-Synuclein

a-Synuclein is a 140-residue IDP that is primarily expressed in presynaptic neurons

throughout the central nervous system (Iwai, Masliah et al. 1995) and has been implicated as a

causative agent in Parkinson's disease (PD), along with a number of other neurodegenerative

diseases known collectively as synucleinopathies (Bellucci, Zaltieri et al. 2012). Over the last

two decades there have been several key findings that suggest that a-synuclein plays a key role

in both familial and sporadic PD pathogenesis (Venda, Cragg et al. 2010). Two genetic

abnormalities were identified in early-onset familial form of PD: Duplication or triplication of

the a-synuclein, SNCA, gene locus and three missense mutations (A53T, A30P and E46K) in the
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SNCA gene. Recently two more mutations were discovered H50Q (Appel-Cresswell, Vilarino-

Guell et al. 2013) and G51D (Lesage, Anheim et al. 2013). In addition, the pathological

hallmark of PD is the existence of intraneuronal protein inclusions primarily found in the

substantia nigra pars compacta known as Lewy bodies and Lewy Neurites (Lewy 1912). These

aggregates are primarily composed of a-synuclein (Spillantini, Schmidt et al. 1997). Lastly,

several animal models, where overexpressed wild type or mutant forms of a-synuclein were

used, have neuronal inclusions, neurodegeneration and in some cases motor dysfunction akin to

what is seen in PD (Whitworth 2011, Crabtree and Zhang 2012, Low and Aebischer 2012).

The a-synuclein sequence is divided into three regions: The N-terminal region (residues

1-60), the central region (residues 61-95) called the NAC (Non-A component of Alzheimer's

disease amyloid) and the C-terminal region (residues 96-140). The N-terminal region contains 4

(of the 7) 11 -mer repeats with a KTKEGV motif. These repeats, reminiscent of apolipoproteins,

can potentially form an amphipathic a-helix with a conserved acidic basic and hydrophobic

arrangement (George, Jin et al. 1995). The NAC region contains the remaining repeats, it is

highly hydrophobic and amyloidogenic. The C-terminal is acidic and is proline rich.

a-Synuclein has been referred to as a 'chameleon' due to its tendency to adopt different

conformations under different conditions (Uversky 2003, Drescher, Huber et al. 2012). While a-

synuclein is thought to predominantly exist as a disordered monomer in solution (Weinreb, Zhen

et al. 1996, Fauvet, Kamdem et al. 2012), it can form secondary structure in different

environments. The N-terminal region (residues 1-60) and non-amyloid-beta-component (NAC)

region (residues 61-95) have shown a tendency to form amphipathic helices in association with

micelles (Ulmer, Bax et al. 2005, Georgieva, Ramlall et al. 2008), supporting the notion that a-

synuclein is involved in vesicle trafficking (Cooper, Gitler et al. 2006). The resulting helices

appear to exist as two anti-parallel helices (Ulmer, Bax et al. 2005), or a single extended helix of

variable length (Georgieva, Ramlall et al. 2008), depending on the size and composition of the

vesicle with which it associates (Jao, Hegde et al. 2008). a-Synuclein fibrils have shown

significant P-sheet secondary structure (Serpell, Berriman et al. 2000, Uversky, Li et al. 2001), as

have certain protofibrillar oligomers, which are thought to lead to toxicity by increasing vesicle

membrane permeabilization (Volles, Lee et al. 2001). The dual propensity of residues 1-95

highlights the fact that relatively ordered states, transient as they may be, also populate the
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otherwise disordered conformational landscape of a-synuclein. Building structural ensemble for

a-synuclein can potentially explain its chameleon nature.
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Chapter II

Using Segmentation for Enhanced Sampling of Disordered
Proteins

II.A Introduction

Intrinsically Disordered proteins (IDPs) are a class of proteins that, unlike archetypical

folded proteins, are characterized by lacking a well-defined structure. These proteins therefore

must be described by a heterogeneous set of rapidly interconverting conformations. IDPs have

relatively flat energy landscapes that are comprised of multiple local energy minima that are

separated by small barriers (Figure II.1). The shape of the energy landscape enables them to

rapidly interconvert between different conformations (Uversky, Oldfield et al. 2008, Fisher and

Stultz 2011).

Conformations
Figure II.1: Comparison of the energy landscape of a typical natively folded protein (on the left) and the one for a

disordered protein (on the right).

Traditional experimental methods for studying folded proteins are often not applicable to

IDPs. Experimental measurements on IDPs are typically made on time scales that are long with

respect to the interconversion rates between distinct conformational states. Consequently

experimentally measured quantities correspond to ensemble averages over a heterogeneous set of
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structures. Using computational models designed to deconvolve these experimental observations

is essential for developing a comprehensive understanding of these systems (Fisher and Stultz

2011).

One could generate a representative set of conformations that models accessible states of

an IDP by directly sampling conformations from an empirical potential energy surface.

However, exhaustive sampling for flexible polymers of just modest size is computationally

prohibitive. For example, a freely jointed polypeptide chain of 140 residues can potentially

sample approximately 3140 configurations, assuming that each monomer (amino-acid) can adopt

one of three distinct states; e.g., helix, coil or strand. If it takes about one picosecond to explore

each of these conformations computationally, it will take 105 sec or more than 1047 years to

explore all of them, thus a high-resolution detailed conformational description becomes

computationally intractable. Therefore it is desirable to build "low resolution" models,

consisting of a relatively small number of conformers, which capture the dominant

thermodynamically accessible states of the protein. To this end, we define. an ensemble as a

finite set of energetically favorable conformations, denoted as {Si}, and their relative stabilities

{wi} (Fisher, Huang et al. 2010). Weight assignment is done in a manner that agrees with

available experimental data (Figure 11.2). One of the major challenges in building these models

is generating a set of conformations that are sufficiently diverse to capture the range of

conformations the protein can adopt.
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Energy Landscape

Conformational
Sampling

Experimental
Data

Ensemble Formulation

{Structures: S , ,I 3 * ,A 9 4 ,

{Weights: w ,w2  W3 ,W 4  ,...,WN }

Figure 1.2: Schematic showing our approach for building a conformational ensemble. The method entails
sampling a set of energetically favorable conformations on a complex energy landscape, followed by assigning
population weights to confomers.

There are several approaches for generating a heterogeneous set of conformations for a

flexible protein. The first is a statistical coil based methodology - where backbone dihedral

angles are sampled from the experimental dihedral propensity for a given amino acid. These

propensities for the backbone dihedral angels are derived from regions within structured proteins

that do not adopt well-defined secondary structure (Jha, Colubri et al. 2005, Ozenne, Bauer et al.

2012). In this sense, the potential energy surface is derived from empirically calculated statistics

from folded proteins - an approach that is not necessarily appropriate to describe an IDP. In

addition this statistical "random coil" description on its own does not allow for long-range

contacts, which were shown to be important within a-synuclein for example (Bernado,
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Bertoncini et al. 2005). Other approaches utilize physical, but empirical, potential energy

functions that model interactions between atoms in the protein as well as protein-solvent

interactions. Sampling on this potential energy surface is typically done with either Monte Carlo

or Molecular Dynamics (MD) simulations (Karplus and McCammon 2002, Rauscher and Pomes

2010). In this work we chose a technique, named Replica Exchange Molecular Dynamics

(REMD) simulations, that allows for enhanced sampling of the energy landscape (Sugita and

Okamoto 1999), in a reasonable amount of CPU time. We apply these methods to create a

structural ensemble for a-synuclein, a 140 amino acid long IDP that has been suggested to play a

role in the pathogenesis of Parkinson's disease.

II.B Results and Discussion

II.B. 1 Generating a Library of Energetically Favorable Conformations

To create a structural library we need to generate a set of energetically favorable, yet

structurally diverse, conformations. In this endeavor it is important to first decide on an

unambiguous measure that quantifies the diversity in our structural library. One can quantify the

structural diversity of a set of conformations using many different metrics. In this work we

chose the radius of gyration, a measure of structure compactness, as a metric to quantify

diversity. While we strive to achieve diversity in the range of radii of gyration in the structural

library, we demonstrate that with this criterion we also obtained structures of diverse secondary

structure content.

The most straightforward way to generate a set of energetically favorable conformations

is to run MD simulations with the full protein sequence, thereby allowing the system to sample

states that are accessible at the chosen temperature. As mentioned above, while this approach is

fruitful for folded protein it is impractical for IDPs. We therefore used a common technique for

enhanced sampling (REMD) (Sugita and Okamoto 1999). In this method several copies, or

replicas, of the protein run in parallel at different temperatures. After a certain number of MD

steps, conformations from different replicas are allowed to swap according to the usual

Metropolis criterion, i.e. a transition is made with probability max{1, exp[-AE/kB(-AT)]1,

where AE and AT are the energy difference and temperature difference, respectively, between
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two replicas. Simulations were run with an implicit solvent model. Using implicit solvent

model reduces the degrees of freedom in the system, relative to explicit solvent models, and

therefore yields faster calculations. In this work we used the EEF1 implicit solvent model

(Lazaridis and Karplus 1999) and the CHARMM force field (Brooks, Bruccoleri et al. 1983) for

our replica exchange simulations. In a study comparing different implicit solvent models to the

TIP3P explicit solvent model (Neria, Fischer et al. 1996, Lazaridis and Karplus 1999) using a six

residue amyloidogenic peptide, it was found that EEF1 implicit solvent model generally

reproduces the set of energy minima sampled using a TIP3P model of explicit solvent (Lazaridis

and Karplus 1999, Steinbach 2004, Huang and Stultz 2007, Strodel and Wales 2008).

We ran a 1 Ons REMD simulation using the full a-synuclein sequence (see methods for

details). The total CPU time was approximately 36 hours for this simulation. Structures from

the room temperature replica were collected every picosecond from the last 5ns to generate a

library consisting of 5000 structures.

As can be seen in Figure 11.3 these simulations yielded radii of gyration in a narrow range

of values; i.e., structures arising from the simulation are almost as compact as what one would

expect from a folded protein having the same amino-acid length (Figure II.3A) (Gast,

Damaschun et al. 1995). To further assess the extent of structural heterogeneity we computed

the root-mean-square deviations (RMSD) between all pairs of structures in the library. There a

non-negligible fraction of the structures are very similar; e.g., approximately 14% of the pairs

have an RMSD less than 5A (Figure II.3B).

A. B.

1002

Figure II.3: Full-length Protein Structural Library Diversity -A. Radius of gyration calculated from the 5000
structures that make the structural library of the full-length protein REMD simulations. B. Pair-wise RMSD for each

unique pairing within the structural library.
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These data suggest that simulating the full-length protein with REMD yields a structural

ensemble that has a limited amount of heterogeneity. Moreover, generating these data required

more than 36 hours of simulation time. We therefore examined an alternate approach structure

generation. The method divides the protein into smaller segments and then exhaustively samples

the conformational space of each segment. Structures for the full-length protein are then

constructed by piecing together conformations of the individual segments. By running molecular

dynamics over segments compared to the full-length protein, we are reducing the size of the

system, thereby shortening the simulation time. Since segments simulations can be done in

parallel we can sample the full-length conformational space in a fraction of the CPU time. The

use of protein fragments to deduce the structure of the full-length protein has shown success both

experimentally (Marqusee, Robbins et al. 1989, Shin, Merutka et al. 1993, Waltho, Feher et al.

1993, Blanco, Rivas et al. 1994, Zerella, Evans et al. 1999, Eliezer, Chung et al. 2000) and

computationally (Bystroff and Garde 2003, Ho and Dill 2006, Voelz, Shell et al. 2009) for folded

proteins.

To this end we decided to divide the sequence of a-synuclein into eight residue long

overlapping segments resulting in 28 segments in total (Figure 11.4) (the C-terminal segment was

five residues long). The size of the segments (8 residues) was chosen based on the experimental

average persistence length of a denatured polypeptide (Damaschun, Damaschun et al. 1993,

Schwalbe, Fiebig et al. 1997). In addition, it was shown that for folded proteins, in some cases,

one can independently sample 8 long peptide fragments and reproduce the native structure of

these fragments within the context of the whole protein (Ho and Dill 2006). This suggests

secondary structure elements can be captured by short sequences when non-local interactions can

be neglected. Each segment had three overlapping residues with adjacent segments as can be

seen in Figure 11.4.
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Full length a-synuclein (140 amino acids)

I j

REM1

Figure 11.4: A schematic describing the process of segmenting the protein. The full-length sequence is divided
into 8 aa-long segments where each neighboring segments overlap with 3 residues; the last segment is only 5
residues long. Each of these segments undergoes sampling using REMD

Full-length a-synuclein conformations were generated by piecing together segments one

at a time, starting with the N-terminal segment. Each segment was clustered using the three

overlapping residues at its ends. The segment to be added to the growing polypeptide chains was

chosen from the cluster that had the most structural similarity in the overlapping region. A

similar protocol was used to describe K18, an intrinsically disordered protein of comparable size,

130 amino acids long (Fisher, Huang et al. 2010).

The first residue coordinates of the overlapping segments were taken from the C-terminal

region of the one segment and the two others from the N-terminal region of the adjoining

segment. At the end of the procedure, the full length structure was subjected to 1000 steps of

steepest descent minimization followed by 10,000 steps of adopted basis Newton-Raphson

minimization with the EEF1 implicit solvent model (Lazaridis and Karplus 1999) to relieve any

bad contacts in. the molecule. Moreover, minimization of the combined full length

conformations helps to re-introduce, in part, long range interactions that are ignored by

segmenting the protein and independently sampling each segment. The procedure is depicted in

Figure 11.5. Only structures with a negative energy were chosen for the structural library. This

resulted in a structural library of approximately 80,000 structures.
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Energyi minimization

Figure 11.5: Combining the segments together was performed to increase the conformational similarity of the
overlapping residues. This figure shows the dendograms generated by clustering using the pairwise RMSD of the
first three residues of each segments. For example, there are only two clusters in the second segment, the green and
the orange, from each of these clusters we randomly choose a representative. The first segment is the combined
with the representative that has the highest similarity in the overlapping residues. This process is repeated until a
full-length a-synuclein conformation is built. The structure composed of the combined segments is then subjected
to energy minimization.

The total CPU time for an 8 aa-long segment took 8.5 hours (compared to the 36 of the

full-length protein simulation). Since these simulations are run independently, and in parallel,

one can effectively simulate the entire protein in under 9 hours. However additional time is

required for the minimization procedure after the protein was pieced together. For the 80,000

structures minimization added additional ~2.5 hours using an architecture that allows us to run

all the segments in parallel, i.e. 28 nodes with 16 virtual cores (1 virtual core for each replica).

In sum, simulating the full-length approach produced 5000 conformations within 36 hours while

the segmentation approach yielded 80,000 conformations within ~11 hours.

We calculated how the segment-based approach compares with the full-length approach

in terms of heterogeneity. Due to the size difference of the structural libraries, i.e., 80,000

structures compared to 5,000 structures. We find that using the segment-based approach

achieves more diversity with respect to the radius of gyration (Figure II.6A). The pair-wise
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RMSDs suggest that the structures are more diverse; i.e., the peak at <5 angstroms that was

present in the full-length data is not present in data arising from the segment-based approach.

A. B.
Full-length Full-length
Segmentation 02 Segmentation

Figue I.6:A. Rdiu ofgyration (Rg) calculated from the REMD of the full-length vs the segment-based
approach. Since the segment based approach yielded 80,000 structure and the full-length approach yielded only
5000 structures, we randomly selected a sample of 5,000 structures from the segment-based approach library and
calculated the Rg and the pair-wise RMSD distribution for that sample. The random sampling process was repeated
a 100 times and each bin represents the mean ieo. B. Pair-wise RMSD distribution for a simulation of the full-
length protein (red) compared to the segment-based simulation (blue).

II.B.2 Evaluating the Structural Library

Using a segment based approach generates a structural library that is more diverse than

that generated from simulations with the full-length protein. However, it is not clear from these

data alone whether the range of radii of gyration is sufficient for our purposes. To estimate the

range of radii of gyration that should be sampled we rely on previous observations made by

Flory and Fiske (Flory 1953, Flory and Fisk 1966). To estimate the upper bound associated with

the expected gyration, we rely on the calculated distribution of the Rg for a freely jointed chain

that has a mean value of a self-avoiding polymer chain -- a value obtained from the Flory power

law (Flory 1953,.Flory and Fisk 1966) (see methods section). The lower bound is calculated

using an empirical formula for compact globular proteins (Gast, Damaschun et al. 1995) (see

methods section). The resulting radius of gyration range is between 16A and 71A. As can be

seen in Figure II.7, the Rg histogram over 80,000 structures did not cover the desired Rg range.
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Figure 11.7: Histogram of the radius of gyration for the 80,000 structures generated using the segment based
approach and energy minimization of the combined structures. The arrows denote the predefined Rg range required
for structural diversity.

In order to cover a wider range of radii of gyration, these 80,000 structures were

subjected to additional energy minimizations using a Rg restraint. Rg restraints varied from 27 to

75 A. This procedure resulted in approximately 300,000 structures.

distribution of the radius of gyration of this expanded structural library.

120001 I I I

0
U

10000

8000-

6000-

4000-

2000-

Figure 11.8 shows the

Rg[A]

Figure 11.8: Histogram of the radius of gyration for the 300,000 structures generated using the segment based
approach and energy minimization of the combined structures. The arrows denote the predefined Rg range required
for structural diversity.
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In addition to spanning a wide range of radii of gyration, structures in our structural

library also sample varying amounts of secondary structure content (Figure 11.9).

A. B. C.

Figure 11.9: Secondary structure diversity: examples of structures that have the most helical content (A.), the most
strand content (B.) and an example of an unstructured conformation (C.).

While the method we described provides an efficient way to obtain a diverse set of

structures, the scheme also carries some disadvantages. For example, the rapid method for

piecing together different sequence fragments also led to structures that contained "knots"

(Virnau, Mirny et al. 2006) (see example in Figure 11.10).

Figure 11.10: A close up look at a structure containing a trefoil knot (31).

While knots have been observed in a very small number of folded proteins (Dzubiella

2009), it is unlikely that they would be sampled by disordered proteins. Indeed, it has been

shown that knots. in folded structures tend to persist even under denaturing conditions (King,

Jacobitz et al. 2010). Thus knots present an irreversible process, one that will likely hinder the
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fast interconversion of conformers that is characteristic of IDPs. We therefore reasoned that

knots should not be present in IDPs and used the program KNOTS to automatically identify

structures containing knots and removed them from the library (Kolesov, Virnau et al. 2007).

The speed in which knots can be identified made it more efficient to generate structures using a

fast segment-based method followed by removal of knotted structures. After removing these

structures we were left with a structural library of -100,000 structures. As we see in Figure

11.11, the resulting library spans the Rg range we predefined to indicate diversity.

3500
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2500
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0
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Rg[A]

Figure 11.11: Histogram of the radius of gyration for the structural library that resulted from energy-minimized
combined structures in addition to Rg-restrained minimization and removal of knotted structures. The arrows denote
the predefined R, range required for structural diversity.

The structural library was reduced in size to 299 structures (see Figure 11.12) that largely

captures the structural diversity present in the larger library that contained 100,000 structures.

This was achieved using a previously described pruning algorithm (Fisher, Huang et al. 2010).

(A similar procedure was done to build a model for the K18 tau segment of comparable size (130

residues)) (Fisher, Huang et al. 2010). Reducing the size of the library facilitates the estimation

of structural weights - a process needed to arrive at the final ensemble.
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Figure 11.12: An alignment of all 299 structures that were used to construct the a-synuclein ensemble.

Once we have obtained a diverse structural library, we were left with the task of

determining the relative stabilities of the structures within. These relative stabilities are

determined with the aid of experimental data. However, since the number of experimental

constraints pales in comparison to the number of degrees of freedom we are left with an

underdetermined task for which many combinations of relative stabilities and structures can lead

to ensembles that agree with the experimental experiment. In the next chapter we will discuss

how one is able to use a Bayesian methodology that produces a distribution, over all the possible

sets of weights for a given set of structures and experimental observables.

II.C Methods

II.C. 1 Radius of gyration calculations

According to Flory the Rg of a random coil follows a simple scaling law:

(Rg) = RON'

Where N is the number of monomers in the polymer chain (in our case 140). The values

for the constant RO and the scaling factor v were obtained from an extensive SAXS study of 28
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proteins under strong denaturing conditions, where the best-fit values for the power law are:

RO = 1.927.21gA and v = 0.598 + 0.028 and the bounds represent 95% confidence intervals

(Kohn, Millett et al. 2004, Kohn, Millett et al. 2005). To extend the range for the probability

distribution we chose to use the higher bounds for the formula of the mean radius of gyration

(i.e. RO = 2.198A and v = 0.626). Therefore the calculated average radius of gyration is

(Rg) = 48.5A.

The empirical distribution of the Rg is (Flory and Fisk 1966):

7 / 2

P(Rg) = A(R2 3 e g 
R9

~g) - gjexp 2 kRg2)

Where A is a normalization constant. It can be shown that under this distribution

(Rg 2 ) 1.08(Rg) 2 (see Appendix for detailed derivation) and therefore the distribution formula

is fully -defined and we can sample from it and calculate the 95th percentile as the upper bound

for the Rg. To calculate the lower bound we used an empirical formula for the Rg of globular

proteins (Rg) = 2.9N1/3 where N is again the number of residues (Gast, Damaschun et al. 1995).

II.C.2 Replica Exchange Molecular Dynamics simulations

The following protocol was used for both the full-length protein simulations and the

segments simulations.

Molecular dynamics simulations were performed using the CHARMM force field

(Brooks, Bruccoleri et al. 1983) with EEF1 implicit solvent (Lazaridis and Karplus 1999). A

total of 16 replicas, each at a different temperature, were used. Temperatures were spaced

exponentially in the range 280-700 K. Simulations were run for 10 ns, and structures were

collected from the last 5 ns of the 298 K heat bath, allowing 5 ns of equilibration period. A total

of 5000 conformations per simulation were collected. Each conformation was subjected to a

short minimization procedure of 500 steps of adopted basis Newton-Raphson, again with the

EEF 1 implicit solvent model (Lazaridis and Karplus 1999).
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Chapter III

Explaining the Structural Plasticity of a-Synuclein

III.A Abstract

Given that a-synuclein has been implicated in the pathogenesis of several

neurodegenerative disorders, deciphering the structure of this protein is of particular importance.

While monomeric a-synuclein is disordered in solution, it can form aggregates rich in cross-p

structure; relatively long helical segments when bound to micelles or lipid vesicles; and a

relatively ordered helical tetramer within the native cell environment. To understand the

physical basis underlying this structural plasticity, we generated an ensemble for monomeric a-

synuclein using a Bayesian formalism that combines data from NMR chemical shifts, RDCs and

SAXS with molecular simulations. An analysis of the resulting ensemble suggests that a non-

negligible fraction of the ensemble (0.08, 95% confidence interval 0.03-0.12) places the minimal

toxic aggregation-prone segment in a-synuclein, NAC(8-18), in a solvent exposed and extended

conformation that can form cross-$ structure. Our data also suggest that a sizeable fraction of

structures in the ensemble (0.14, 95% confidence interval 0.04-0.23) contains long range

contacts between the N- and C-termini. Moreover, a significant fraction of structures that

contain these long range contacts also place the NAC(8-18) segment in a solvent exposed

orientation - a finding in contrast to the theory that such long range contacts help to prevent

aggregation. Lastly, our data suggest that a-synuclein samples structures with amphipathic

helices that can self-associate via hydrophobic contacts to form tetrameric structures. Overall,

these observations represent a comprehensive view of the unfolded ensemble of monomeric a-

synuclein and explain how different conformations can arise from the monomeric protein.

This chapter was published in similar form in: Ullman, 0., Fisher, C.K., and Stultz, C.M.
Explaining the Structural Plasticity of a-Synuclein. JAm Chem Soc 2011, 133, 19536-19546

33



III.B Introduction

a-Synuclein is a 140 amino acid protein that has been implicated in several

neurodegenerative diseases, often referred to as synucleopathies, such as Parkinson's disease

(PD), Dementia with Lewy bodies (DLB) and Multiple System Atrophy (MSA) (Spillantini and

Goedert 2000, Galvin, Lee et al. 2001, Goedert 2001). PD, in particular, is neuropathologically

characterized by a-synuclein aggregates and the loss of dopaminergic neurons within the

substantia nigra (Forno 1996, Spillantini, Crowther et al. 1998). While a number of theories

have been advanced to explain how a-synuclein self-association is related to neuronal

dysfunction, the precise relationship between a-synuclein aggregation and cell death remains

unclear (Maries, Dass et al. 2003). Consequently, understanding the structural basis of a-

synuclein self-association is of particular importance.

Although monomeric a-synuclein is intrinsically disordered in aqueous solution and is

therefore considered an intrinsically disordered protein (IDP), it cannot be simply described as a

random coil (Weinreb, Zhen et al. 1996, Eliezer, Kutluay et al. 2001, Uversky 2003). For

example, the average radius of gyration of a random coil that is 140 amino acids long is larger

than the measured average radius of gyration for a-synuclein obtained via small angle x-ray

scattering (SAXS) experiments (Li, Uversky et al. 2001). This suggests that a-synuclein is, on

average, more compact than the classic random coil.

In addition, a-synuclein can form ordered structures under different experimental

conditions. The amino acid sequence of a-synuclein contains 11-residue imperfect repeats that

are distributed among the highly basic N-terminal region of the protein (residues 1-60), and the

hydrophobic NAC region (Non-A Component of a-synuclein, residues 61-95). These repeats

were proposed to form amphipathic a-helices capable of interacting with different types of lipid

structures (George, Jin et al. 1995, Davidson, Jonas et al. 1998). It was found that when a-

synuclein is bound to micelles, two helices can form (Bussell and Eliezer 2003, Chandra, Chen et

al. 2003). The first helix encompasses residues 3 to 37 and is therefore contained within the N-

terminal region and the second helix is formed between residues 45 and 92 - a region that begins

in the N-terminal region and extends into the NAC region. The two helices are aligned

antiparallel to one another (Ulmer, Bax et al. 2005, Borbat, Ramlall et al. 2006). Other studies

suggest that a-synuclein can also form a continuous helix that begins in the N terminal and
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continues through to the NAC region and that the precise form of the helical segment depends on

the precise experimental conditions (Georgieva, Ramlall et al. 2008, Jao, Hegde et al. 2008,

Ferreon, Gambin et al. 2009, Trexler and Rhoades 2009). For example, in a recent study it was

found, using pulsed dipolar ESR spectroscopy, that depending on the relative protein-to-

detergent concentrations, a-synuclein can adopt either a single extended helix form or the broken

helix form, similar to the one previously described (Georgieva, Ramlall et al. 2010). Moreover,

recent data further suggests that under physiologic conditions, a-synuclein exists in a tetrameric

form that has considerable helical content (Bartels, Choi et al. 2011).

By contrast, a-synuclein aggregation is characterized by an increase in p-sheet content.

Atomic force microscopy and Raman spectroscopy demonstrated that soluble a-synuclein

oligomers have reduced a-helical content relative to protofilaments, and that the p sheet content

is relatively increased in protofilaments and filaments (Apetri, Maiti et al. 2006). Fiber

diffraction of a-synuclein fibrils further demonstrated the presence of cross-P structure which is

characteristic of amyloid fibrils (Serpell, Berriman et al. 2000). Consequently, the available

experimental evidence suggests that a-synuclein can adopt helical structures or extended

structures depending on the binding partner and experimental conditions.

A number of studies have constructed a-synuclein ensembles, using a combination of

computational methods and experiments, to better understand the nature of the unfolded state

(Bernado, Bertoncini et al. 2005, Dedmon, Lindorff-Larsen et al. 2005, Allison, Varnai et al.

2009, Koo, Choi et al. 2009, Wu, Weinstock et al. 2009). Some of these studies combine data

obtained from NMR, PRE, and conformational sampling to construct an appropriate ensemble

(Bernado, Bertoncini et al. 2005, Dedmon, Lindorff-Larsen et al. 2005, Allison, Varnai et al.

2009, Wu, Weinstock et al. 2009). While these studies have provided insights into the accessible

states of a-synuclein in solution, there are still many unanswered questions regarding the

unfolded state of this protein, including the precise role of secondary structure in the unfolded

ensemble and the presence of long range contacts, in particular. In addition, the recent

observation that a-synuclein can also form ordered helical tetramers in the native cell

environment has not been addressed in the previous studies.

In this work we use a recently developed Bayesian Weighting (BW) algorithm to

construct an ensemble for wild-type (WT) a-synuclein (Fisher, Huang et al. 2010). Data from

NMR chemical shifts (Rao, Kim et al. 2009), RDCs (Bertoncini, Fernandez et al. 2005) and
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SAXS (Binolfi, Rasia et al. 2006) experiments are used to guide the construction of the

ensemble. An analysis of the ensemble: 1) helps to clarify the role of secondary structure

propensity and the different binding characteristics of a-synuclein; 2) identifies potential

aggregation prone structures within the ensemble; 3) clarifies the relationship between long

range contacts and aggregation propensity; and 4) provides insights into how the disordered

monomeric protein can form tetrameric helical structures.

III.C Results and Discussion

III.C. 1 Construction of an a-Synuclein Ensemble

We began by generating a relatively large structural library of energetically favorable

conformations and then used a Bayesian weighting (BW) algorithm (Fisher, Huang et al. 2010)

to assign weights (or relative stabilities) for each conformer in the library. Hence an 'ensemble'

is defined as a set of structures, {SJ} and a corresponding set of weights ii = {wi} where wi is the

weight (or probability) of structure Si and Z wi = 1.

For a given structural library there are many possible ways to weight the different

structures within the structural library, and each possible weighting scheme represents a different

ensemble. The BW method assigns a probability to every possible weighting scheme, and hence

every possible ensemble, that can be constructed from the structural library. Parenthetically we

note that since some of the wi can be 0, finding a correct weighting scheme also enables us to

eliminate exclude structures from the structural library if they consistently lead to ensembles that

are inconsistent with the experimental data.

The probability of a given ensemble is calculated using methods from Bayesian statistics

as described in our previous work (Fisher, Huang et al. 2010) and as reviewed in the Methods.

Overall the probability of an ensemble is related to the agreement between the data predicted by

the ensemble and the experimental data. In the Bayesian formalism we compute a probability

distribution (which we refer to as the posterior density) over all possible ensembles, and this

distribution is used to make statements about the conformational properties of a-synuclein.

Since the posterior density is a multi-dimensional function, we summarize its properties in two

ways. First, we calculate the average weight of each structure in the structural library using the
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posterior density function. The ensemble consisting of the structures (Si} and these average

weights, WB = fwy} is called the Bayes ensemble; i.e., it is the Bayesian analogue of a 'best fit'

ensemble. Of course, the average of a distribution may not be very informative if the standard

deviation, a measure of uncertainty, is large. To reflect this, we use the distribution over

ensembles (the posterior density) to calculate confidence intervals for conformational

characteristics of a-synuclein as a way of quantifying statistical uncertainty. Note that the

confidence intervals do not refer to a specific ensemble, but rather to the distribution over all

possible ensembles that could be constructed from the structural library.

An advantage of the BW formalism is that it provides a built in estimate of the

uncertainty in the Bayes ensemble. Since agreement with experiment alone does not ensure that

an ensemble is correct, such quantitative measures of uncertainty are important (Fisher, Huang et

al. 2010). A further advantage of the method is that even when the uncertainty in the Bayes

ensemble is relatively large, we can calculate error bars to quantify the uncertainty in any

observable quantity that is calculated from the ensemble.

First, we constructed a structural library of 100,000 energetically stable structures by

breaking the protein into overlapping 8-residue segments and exhaustively sampling the

conformational space of each segment using Replica Exchange Molecular Dynamics (REMD)

(Sugita and Okamoto 1999). Segments were then joined to form a structure of the full 140

residue protein. To reduce the number of conformations to a more manageable size, the

structural library was pruned using a coarse clustering method to generate a set of 299 structures

that largely preserves the structural heterogeneity that was present in the original structural

library (Figure 111.1).
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Figure III.1: An alignment of all structures within the a-synuclein ensemble.

Application of the BW algorithm to obtain the Bayes weight for each structure yielded a

Bayes ensemble that agrees with measured NMR chemical shifts (Rao, Kim et al. 2009) (Figure

III.2A) and RDCs (Figure III.2B) (Bertoncini, Fernandez et al. 2005) as well as SAXS derived

radius of gyration (Binolfi, Rasia et al. 2006) (ensemble average value 41 1A.vs. experimentally

determined value of 40 2A). These data demonstrate that the BW algorithm accomplishes its

goal of generating ensembles that agree with the input experimental data.
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Figure 111.2: Ensemble Agreement with Experimental Data. Comparison of experimental results with
the corresponding calculated (A) chemical shifts and (B) RDCs. Correlation coefficients are explicitly
shown. Calculated Root Mean Square Error (RMSE) for the Chemical shifts was found to be within
accuracy provided by SHIFTX (Neal, Nip et al. 2003)

As discussed above, the BW method provides a built in metric, called the the uncertainty

parameter, that quantifies our uncertainty in the Bayes ensemble, and is analogous to the

standard deviation of a Gaussian distribution (Fisher, Huang et al. 2010). If it is likely that the

Bayes ensemble is correct, the uncertainty parameter approaches 0. Conversely, if it is unlikely

that the Bayes ensemble is correct, then the uncertainty parameter approaches 1. In other words,

as the uncertainty parameter approaches 1, we cannot say with any certainty that the constructed

ensemble is correct. In the present case, the uncertainty parameter is 0.4. In this scenario, we

can further quantify our uncertainty by computing confidence intervals for specific

conformational characteristics.

An analysis of the Bayes ensemble provides additional information about the relative

distribution of different conformer sizes that are accessible to the protein. As shown in Figure

111.3, the ensemble itself contains structures with radii of gyration that range from approximately
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20A to 60A. To put these values into perspective we note that the average radius of gyration for

a globular folded protein containing 140aa is approximately 15A, while the average radius of

gyration for a random coil with the same amino acid length is approximately 52A (Uversky, Li et

al. 2001). The fraction of the ensemble with a radius of gyration near 20A is 0.09 (95%

confidence interval 0.05-0.19) while the fraction that has a radius of gyration greater than that

would be expected based on the random coil calculation is 0.17 (95% confidence interval 0.13-

0.22). This suggests that a-synuclein samples structures that are nearly as compact as a globular

protein of the same size in addition to structures that are more extended than that of the average

random coil value.
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Figure 111.3: Distribution of radii of gyration in the calculated ensemble. 95% confidence intervals show
that the bar heights are significantly different from zero.

III.C.2 Residual Secondary Structure in a-Synuclein

To assess the secondary structure content in the Bayes ensemble, we used the STRIDE

secondary structure assignment algorithm (Heinig and Frishman 2004), to calculate the

propensity of each residue, in every structure in the ensemble, to adopt one of three mutually

exclusive classes of secondary structure: helix, strand (also referred to as extended) and Other

(see Methods). Analysis of individual structures within the ensemble reveals that the highest

helical content is 20% while the highest strand content is approximately 28%. Of note, the

highest weighted structures in the Bayes ensemble have helical content less than 15% and strand

content less than 25% (Figure 111.4). Nevertheless, the ensemble average secondary structure

content is considerably less; i.e., the overall strand content is less than 11% and the helical

content less than 2% (Table 111.1). However, the ensemble average, which corresponds to the
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experimentally observed value, is in excellent agreement with estimated secondary structure

content obtained from CD spectroscopy (Rekas, Knott et al. 2010) (Table III.1). Although the
experimental error bounds and the confidence intervals from the BW algorithm are relatively

large for the helical and strand content, both BW and CD spectroscopy agree that the protein has
minimal helical and strand content.
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Ensemble Average CD

Helix 0.03 (0.02-0.04) 0.02 0.03
Strand 0.11 (0.10-0.13) 0.11 0.07
Other 0.85 (0.84-0.87) 0.86 0.22

Table 111.1: Ensemble Average Secondary Structure Content (with 95% confidence
Experimental values obtained from CD spectroscopy (with experimental error bounds).

intervals) and

In addition to the overall secondary content of the protein, we also computed the

expected (or ensemble average) relative helix and strand propensities for each residue in the

protein with their corresponding 95% confidence intervals (Figure 111.5). On average, most of

the helical propensity resides in residues 52-64. This region contains a highly conserved
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hexamer motif within the 51h 11 -mer imperfect repeat, which is proposed to form amphipathic a-

helices (George, Jin et al. 1995, Davidson, Jonas et al. 1998). Additionally, within the NAC

segment the strand propensity is peaked in the immediate vicinity of residue 78. Interestingly,

this region, NAC(8-18), has been experimentally determined to be the minimal toxic aggregate

forming segment in a-synuclein in vitro (El-Agnaf and Irvine 2002).

JIM-C terminal (W6140)
0.5r

0.4-

C 0.3 -

LL0.2-

0.1

0 20 40 60 80 100 2140
Residue Number

Figure 111.5: Ensemble average secondary structure propensity. For each residue we present the
probability to adopt a helical structure (orange area) vs. a strand structure (blue area). The thickness of the
lines corresponds to the 95% confidence interval.

To further demonstrate that a-synculein samples structures with varying amounts of

secondary structure, we explicitly show four conformations in Figure 111.6. The N-terminal

region is marked in blue, the NAC region in red and the C-terminal region in yellow. In Figure

III.6A-C three structures are shown that contain varying degrees of helical content in the N-

terminal and NAC region. Figure III.6A shows a structure containing a helix between residues

42-64; this helical conformation is in agreement with the contiguous helix model. Figure III.6B

shows a structure that contains a helix in residues 74-82 in the middle of the NAC region and

Figure III.6C presents two helices, one in the range 52-62 and the other in the range 15-24.

Figure III.6D shows a structure with significant strand content in the NAC region - in particular

residues 68-94.
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C.

Figure 111.6: Representative Ensemble Conformations. A sample of structures from the ensemble of a-
synuclein. In all structures blue denotes the N terminal region (residues 1-60); red denotes the NAC
region (residues 61-95) and yellow denotes C terminal region (residues 96-140).

III.C.3 Long Range Contacts in a-Synuclein

A number of studies have used Paramagnetic Relaxation Enhancement (PRE)

experiments to detect long range contacts in a-synuclein (Bernado, Bertoncini et al. 2005,

Dedmon, Lindorff-Larsen et al. 2005, Sung and Eliezer 2007, Koo, Choi et al. 2009, Rospigliosi,

McClendon et al. 2009, Wu, Weinstock et al. 2009). These experiments allow for the detection

of interactions between a paramagnetic group and nuclear spins of residues at a distance up to

25A away (Gillespie and Shortle 1997). Some of these studies argue that long range contacts,

especially involving the N-terminal (residues 1-60) and C-termini (residues 96-140), can be

found in the unfolded ensemble of a-synuclein. To determine whether our data are consistent

with these observations, we computed the distribution of such long range contacts the Bayes

ensemble. For these calculations we define a long range contact between the N- and C-terminal

regions to occur when the center of mass of the N-terminal region (residues 1-60) and the center

of mass of the C-terminal region (residues 96-140) are within 25A. We computed these center of

mass distances for each structure and used these data to compute the distribution of such

distances along with the associated confidence intervals (Figure 111.7). Figure 111.7 demonstrates

that structures in the Bayes ensemble span a wide range of N- to C- terminal distances, ranging

from less than 25A to more than 125A. In addition, a significant fraction (0.14 with a 95%

confidence interval of 0.04-0.23) of the ensemble has structures that place the center of masses

of the N- and C-terminal regions within 25A of one another.
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Figure 111.7: Distribution of N- to C-terminal distances in the calculated ensemble. The x-axis represents
the distance between the center of mass of the N-terminal region and the center of mass of the C-terminal
region. 95% confidence intervals show that the bar heights are significantly different from zero.. Two
low probability structures had N- to C-terminal distances higher than 125A we therefore excluded this
information from the distribution.

Since results from PRE experiments correspond to ensemble averages, we also computed

a Residual Contact Map (which is a function of the ensemble average number of long range

contacts per residue) to better compare our results to the previous PRE data (Figure III.8A). This

pseudo-energy difference map represents the stability of a long range contact between two

residues in the Bayes ensemble compared to what one would expect from a random coil

ensemble (see Methods) (Dedmon, Lindorff-Larsen et al. 2005, Allison, Varnai et al. 2009).

These data suggest that there is a distinct preference for forming long range contacts between the

C terminal (residues ~120-140) and the N terminal region (residues 1-61) and also between the C

terminal and the NAC region (residues ~61-70). In essence, residues 120-140 in the C-terminal

region make contact with residues 1-70, which encompass both the N-terminal region and the

beginning of the NAC segment. A less favorable contact forms between the NAC region

(residues -80-95) and the N terminal region (residues ~1-30); i.e., data are in qualitative

agreement with prior experimental observations made from PRE data (Dedmon, Lindorff-Larsen

et al. 2005, Allison, Varnai et al. 2009). In this regard, it is important to note again that our a-

synuclein ensemble was generated without incorporating any data from prior PRE experiments

and, therefore, no explicit distance constraints were used to construct the model.

In Figure III.8B, we show the most stable contact for each residue, along with the

corresponding 95% confidence interval. The relatively small error bars for residues 20-70 and
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residues 120-135 suggests that the model is relatively certain about these particular inter-residue

contacts. However, the large error bars between residues 70-90 argues that the model is unsure

about the inter-residue contacts in this region. These data complement the residual contact map

in Figure III.8A; e.g., the residual contact map suggests that there is a relatively small preference

for forming long range contacts between the NAC (residues -80-95) and the N terminal region

(residues -1-30), however, the uncertainty analysis (Figure III.8B) suggests that the model is

very uncertain about this particular observation.
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Figure 111.8: Stabilized Long-Range Contacts. Pseudo-energy values are calculated for each contact as

-fr(pYosembk C ). A contact is defined between residues where the Ca atoms are less than 25A apart.

A large negative pseudo-energy (in blue) represents contacts that are energetically favorable in the
ensemble compared to the random coil ensemble (in units of kT). Positive values (color range yellow to
red) represent relatively unfavorable contacts. B. For each residue we calculated the contact that is
associated with the lowest pseudo-energy along with the 95% confidence interval. The x-axis is the
residue number and the y-axis is the position of the residue that forms the lowest energy contact. We
used the following color code to depict the different regions of the protein, blue-N terminal region
(residues 1-60); red-NAC region (residues 61-95) and yellow-C terminal region (residues 96-140).

III.C.4 Potential Aggregation Prone Conformers in a-Synuclein

Given that a relatively small segment of a-synuclein, consisting of residues 68-78, which

is found in the NAC region (i.e., NAC(8-18)), was experimentally determined to be the minimal

toxic aggregate-prone segment in a-synuclein in vitro (El-Agnaf and Irvine 2002), we explored

the conformational preferences of this segment. Structures that place this segment in a solvent

exposed and extended orientation may be more likely to form toxic aggregates containing cross-

f structure.

Figure 111.9 shows the normalized solvent accessible surface area (SASA) of the NAC(8-

18) region versus the number of residues in that segment that are in an extended conformation, as

identified by STRIDE (Heinig and Frishman 2004). Calculations of the SASA only included the
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atoms H-N-Ca-C-O as this ensures that large SASA values identify structures that can form the

intermolecular hydrogen bonds that are needed for cross-P structure formation. The Bayes

ensemble contains several structures that place the aggregation prone segment, NAC(8-18), in a

relatively extended and solvent exposed orientation. We define a residue as solvent exposed

when it has a normalized SASA > 40%, as this cutoff has been used in previous studies and

useful results were obtained (Stultz, White et al. 1993). In total, the fraction of structures that

have the NAC(8-18) segment in a relatively extended and solvent exposed orientation is 0.08

with a 95% confidence interval 0.03-.12.

It has been postulated that the formation of long range contacts in a-synuclein may

provide a mechanism to shield regions of the NAC segment (Dedmon, Lindorff-Larsen et al.

2005). Burying regions of the NAC segment could potentially hinder the formation of cross-p

structure and the formation of toxic aggregates. To investigate the relationship between solvent

exposure of the NAC(8-18) segment and long range contacts, we computed the SASA of the

structures that have the center of mass of the N-terminal and C-terminal regions within 25A. We

find that the majority of structures that have the afore-mentioned long range contacts also place

the NAC(8-18) segment in a solvent exposed orientation; i.e., 65% of structures (28%-100%,

confidence interval) of structures with long range contacts have the NAC(8-18) segment with a

SASA> 40%.
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Figure 111.9: The SASA vs. number of residues in an Extended orientation for the NAC(8-18) region.
Two relatively high weighted structures with an exposed and a significant Extended content (more than 3
residues) for the NAC(8-18) segments are explicitly shown.

III.C.5 A Potential Mechanism for Helical Self-Association

In a recent study a-synuclein was isolated from human RBCs in a tetrameric form and the

CD spectrum of this tetramer was quite distinct from that of recombinant a-synuclein obtained

from K coli (Bartels, Choi et al. 2011). Indeed, the spectrum of the tetramer had minima at 208

and 222 suggesting that, on average, the tetrameric structure had considerable helical structure.

Our data suggest that monomeric a-synuclein samples structures that have at most 20%

helical content (Figure 111.4). The structure with the highest helical content is shown in Figure

111.10A. In general, the associated helix has a hydrophobic patch on one side (Figure 111.10B),

that is akin to hydrophobic faces that have been observed in other proteins that form helical

bundles (Mathews, Bethge et al. 1979, Banner, Kokkinidis et al. 1987, Kamtekar and Hecht

1995). These data are consistent with a model where helical segments within structures in the
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unfolded ensemble associate via hydrophobic interactions to form a tetrameric structure. If self-

association of preformed helical structures was the dominant mechanism underlying the

formation of tetrameric structures, then the expected helical content of the a-synuclein tetramers

would be at most 20%. Interestingly, using the CD spectrum of the tetrameric structure (kindly

provided by Tim Bartels and Dennis Selkoe), we obtain a predicted helical content of 29%, with

an error of approximately 10%, using the program K2d (Andrade, Chacon et al. 1993, Merelo,

Andrade et al. 1994).
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Figure 111.10: A. Structure of the conformation within the ensemble that has the longest helical segment
(expanded view of structure shown in Figure III.6A). As before, blue denotes the N terminal region
(residues 1-60); red denotes the NAC region (residues 61-95) and yellow denotes C terminal region
(residues 96-140). B. Associated helical wheel: orange - non polar residues orange, green - polar
uncharged residues, blue - basic, pink - acidic.

More recently, Wang et al (Wang, Perovic et al. 2011) were able to obtain NMR data on

a tetrameric form of a-synuclein that was purified from E coli. Weak (i,i+3) Nuclear Overhauser

Enhancements (NOEs) and secondary chemical shifts indicated helical propensity in residues 4-

103. Intermolecular PREs, obtained using mixtures of a-synculein with and without the spin

label, suggested that the tetramer forms by the association of amphipathic helices formed within

the region consisting of residues 50-103. It is important to note, however, that the NMR data are

not consistent with a fully folded helix. Instead, they suggest transient helical formation with an

overall helical content of approximately 20% (Tom Pochapsky, personal communication)

(Wang, Perovic et al. 2011). These data are qualitatively consistent with our model presented in
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Fig. 10, which includes an amphipathic helix consisting of residues 47-64, and with our finding

of a-helical propensity throughout the N-terminal region.

III.D Conclusion

Although monomeric a-synuclein is intrinsically disordered in solution it can adopt

conformations that have varying secondary structure content depending on its environment

(Uversky 2003). A number of spectroscopic studies suggested that WT-a-synuclein in the

presence of membranes can form helical structures, and two types of helical configurations have

been observed: a continuous extended helix and two antiparallel helices separated by a short

linker (Bussell and Eliezer 2003, Chandra, Chen et al. 2003, Ulmer, Bax et al. 2005, Borbat,

Ramlall et al. 2006, Georgieva, Ramlall et al. 2008, Jao, Hegde et al. 2008, Ferreon, Gambin et

al. 2009, Trexler and Rhoades 2009, Georgieva, Ramlall et al. 2010). By contrast, a-synuclein

was shown to acquire significant P sheet content when it self-associates in vitro (Apetri, Maiti et

al. 2006). The most ordered form of these aggregates are fibrils which were found to contain

cross-f-sheet structures (Serpell, Berriman et al. 2000). Most recently, an a-synuclein tetramer

has been isolated from both human red blood cells and E. coli and it has been argued that this

structure is the dominant form under physiological conditions (Bartels, Choi et al. 2011, Wang,

Perovic et al. 2011). While initial reports suggested this structure was a 'folded tetramer' rather

than an 'unfolded monomer', it is important to note that the data from recent NMR studies

suggest that the actual amount of structural order is fairly low in the tetramer and that there is

only fractional helix formation (Wang, Perovic et al. 2011). These observations highlight the

need to obtain an accurate structural ensemble that describes the accessible states of the protein.

While a number of studies have generated ensembles for the unfolded state of a-

synuclein (Bernado, Bertoncini et al. 2005, Dedmon, Lindorff-Larsen et al. 2005, Allison, Varnai

et al. 2009, Koo, Choi et al. 2009, Wu, Weinstock et al. 2009), the majority of these ensembles

has not provided a detailed analysis of residual secondary content within the ensemble and have

not addressed recent data on what has been described as a physiologically dominant helical

tetramer (Bartels, Choi et al. 2011). More importantly, existing studies have led to contradictory

observations. Although one prior study suggested a small preference for residues 6-37 (in the N
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terminal) to form helices compared to residues 103-140 (in the C terminal) (Allison, Varnai et al.

2009), another study did not find significant helical structure within the ensemble (Wu,

Weinstock et al. 2009). Therefore, to further explore the nature of the unfolded state of a-

synuclein and to understand the differential binding characteristics of the protein, we constructed

and analyzed an ensemble that represents the unfolded state of monomeric a-synuclein in

solution.

As we have previously noted, the construction of models that adequately represent the

unfolded state of a protein is inherently difficult for a number of reasons. First, there is the

conformational sampling problem; i.e., sampling all possible conformations of even a modestly

sized protein is intractable. Nevertheless, the form of the underlying energy surfaces helps

because the space of energetically favorable conformations is likely far less than the space of all

possible conformations. Some studies have shown that straightforward Boltzmann sampling for

some IDPs yield calculated observables that are in reasonable agreement with experiment,

thereby suggesting that extensive sampling, by itself, is a plausible approach for generating

representative ensembles for IDPs (Fawzi, Phillips et al. 2008, Sgourakis, Merced-Serrano et al.

2011). However, while it is reasonable to apply such a direct sampling approach to relatively

small proteins, the prospect of extensively sampling the relevant conformational space of a

protein that is 140 residues in length (at 300K) is daunting. In this regard, a number of

approaches that do not rely on direct Boltzmann sampling of large proteins have been developed

and useful insights have been obtained using these methods (Feldman and Hogue 2000, Bernad6,

Blanchard et al. 2005, Jha, Colubri et al. 2005, Marsh and Forman-Kay 2009).

In the present study we use a fragment based approach to sample energetically favorable

conformations of the entire 140 residue protein. The motivation for this approach arose from a

prior study that demonstrated that sampling the conformational states of fragments from folded

proteins may reproduce the backbone structure of that peptide's structure in the context of the

entire protein (Ho and Dill 2006). In our method, the protein was divided into eight residue long

overlapping segments and REMD was used to sample the conformational space of each peptide.

Eight residue segments were chosen because this length corresponds, roughly, to the average

persistence length of a polypeptide (Jha, Colubri et al. 2005). Structures for a-synuclein were

generated by combining these overlapping segments, and subsequent energy minimization of

each reconstructed conformer ensures that each structure corresponds to local energy minima on
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the potential energy surface of the protein. While the approach is computationally efficient, we

recognize that focusing on sampling small peptides may limit the formation of long range

interactions within the final ensemble. To mitigate this, once the peptide fragments have been

combined to generate the a-synuclein sequence, the entire protein is energy minimized thereby

allowing the different peptides to "see" with one another. Using the resulting structural library

with the BW algorithm we arrive at a Bayes ensemble that: 1) contains conformations that

correspond to local energy minima on the potential energy surface and 2) agrees with the

available experimental data. Nevertheless, while our approach is computationally very efficient,

we recognize that other sampling approaches for the initial structural library (e.g. using different

lengths for the peptide segments) may lead to different structural libraries and this fact introduces

some uncertainty in our analysis.

One additional source of uncertainty is the inherent degeneracy of the problem of

constructing a good ensemble, even after the precise structural library has been specified. Given

that the number of degrees of freedom (i.e., the number of energetically favorable

conformations) is typically much greater than the number of independent experimental

observables, the problem of choosing, or weighting, a set of structures is inherently degenerate;

i.e., there are many possible ways of weighting the structures that will agree with any given set

of experimental observations (Fisher, Huang et al. 2010).

To deal with these sources of uncertainty, the BW method calculates a probability

distribution over the space of ensembles. This posterior density function naturally leads to a new

metric, the uncertainty parameter, which quantifies our uncertainty in the Bayes ensemble. This

uncertainty parameter is akin to the standard deviation in a Gaussian distribution and reflects the

overall spread of the calculated this probability distribution. The uncertainty parameter varies

between 0 and 1 where a value of 0 suggests that the Bayes ensemble is correct. By contrast

when the uncertainty parameter is non-zero one cannot be certain that the Bayes ensemble is

correct. However, in this latter instance one can express values with the appropriate confidence

intervals (Fisher, Huang et al. 2010). Therefore, the method provides a rigorous means to

quantify the overall uncertainty in the final results.

The BW algorithm yields a Bayes ensemble that is in agreement with data obtained using

NMR chemical shifts (Rao, Kim et al. 2009), RDCs (Bertoncini, Fernandez et al. 2005) and the

radius of gyration as determined by SAXS experiments (Binolfi, Rasia et al. 2006). Surprisingly

51



we find that some conformers in the ensemble are nearly as compact as a folded globular protein

with the same amino-acid length. In addition, the Bayes ensemble contains structures that have a

radius of gyration that is larger than the average radius of gyration that would be expected from a

140 residue random coil. This highlights the fact that a single experimental value for the radius

of gyration provides little insight into the full range of conformations that the protein can adopt

in solution. Two recent experimental studies suggested the existence of distinct classes of

conformers describing a-synuclein equilibrium (Sandal, Valle et al. 2008, Frimpong, Abzalimov

et al. 2010). Both studies argue that a-synuclein contains a range of conformations, where some

are quite compact and others are quite extended and random-coil like. Our data are in agreement

with these observations and quantify the extent range of radii of gyration within the ensemble.

Moreover, these studies highlight the fact that while the overall secondary structure content of

the ensemble is negligible (about 7% of the population was suggested to contain "$-like"

conformation), there are subpopulations of structures that have more significant helical and

strand content - a finding in agreement with our observations.

The resulting structural ensemble provides additional insight into the secondary structure

propensities within different regions of the protein. We find that the Bayes ensemble contains

several structures that have helical segments of varying length in the N-terminal region,

extending into the NAC segment. In total, the helical regions span residues 1-92; i.e., the

segment that has been shown to adopt either a continuous helix or a broken helix in the presence

of lipid membranes (Ferreon, Gambin et al. 2009, Trexler and Rhoades 2009, Georgieva,

Ramlall et al. 2010). These data are consistent with a model of lipid binding where interaction

with the membrane stabilizes these helical segments leading to the formation of either a

continuous or a broken helix, depending on the precise experimental conditions. In this sense,

the presence of relatively short helical segments may serve as intermediates that enable fast and

efficient binding to lipid membranes. These data are of particular importance because

interactions between a-synuclein, in its helical form, and membranes may play a role in cellular

dysfunction in patients with Parkinson's disease (Auluck, Caraveo et al. 2010).

By contrast, on average, significant probability for extended structure is found throughout

the a-synuclein sequence. These data are in qualitative agreement with previous Raman

spectroscopic studies that suggest that the protein adopts an ensemble of rapidly interconverting

secondary structural elements (Frishman and Argos 1995). Of particular interest is the region
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spanning residues 68-78 in the NAC segment because this has been shown to be the minimal

toxic peptide that is also can initiate a-synuclein aggregation in vitro (El-Agnaf and Irvine 2002).

The probability of extended structure is relatively peaked around this region, thereby suggesting

that this segment has an intrinsic predisposition to form extended structure that may initiate the

formation of P-sheet rich aggregates. However, in order to form intermolecular hydrogen bonds

with other a-synuclein molecules, this segment must be exposed to solvent. Therefore,

structures that place this segment in a solvent exposed and extended conformation may be more

prone to form toxic aggregates. Our analysis suggests that approximately 8%, with a 95%

confidence interval of 3-12%, of the structures in the ensemble have the NAC(8-18) segment in

an extended and solvent exposed orientation. This suggests that the unfolded ensemble of a-

synuclein contains preformed conformations that can readily form $-sheet rich toxic aggregates.

In addition to these insights, our data further clarify the role of long range contacts in the

protein. Previous studies that have constructed ensembles based on the results of PRE

experiments have found conflicting findings, even though many of these experiments were

performed under similar experimental conditions. One study suggested that long-range

interactions occur between residues 85-95 of the NAC and the C terminal region (specifically

residues 110-130) (Bernado, Bertoncini et al. 2005). Other studies suggested the formation of

long range contacts between the highly charged C-terminus (residues 120-140) and the large

hydrophobic center (residues 30-100) resulting in a hydrodynamic radius significantly smaller

than that expected for a random coil structure (Dedmon, Lindorff-Larsen et al. 2005, Allison,

Varnai et al. 2009). In another study, done under similar conditions, it was suggested that long

range contacts form between the N-terminus and the NAC region in contrast to the previously

mentioned studies (Wu, Weinstock et al. 2009). Therefore, while these data have provided new

insights into the nature of the unfolded state of a-synuclein in solution, they leave the precise

role of any long range interactions in the protein unclear.

Our data suggest that, on average, there are long range contacts between the N and C

termini of the molecule. Interestingly, the Bayesian estimates allow us to say with confidence

that the N-terminal region and the first nine residues from the N terminal portion of the NAC

make, on average, contacts with the C-terminal region of the protein - a result that is in

qualitative agreement with prior studies (Dedmon, Lindorff-Larsen et al. 2005, Allison, Varnai et

al. 2009). It has been suggested that these long range interactions provide a mechanism that
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effectively shields the aggregation prone region, and thereby minimizes the extent of aggregation

(Bertoncini, Jung et al. 2005, Dedmon, Lindorff-Larsen et al. 2005, Allison, Varnai et al. 2009).

However, a more detailed look at the actual distribution of structures within the ensemble (as

opposed to an analysis of the ensemble average data) finds that most of the structures in our

ensemble that contain long range contacts between the N- and C-termini also place the NAC(8-

18) segment in a solvent exposed conformation. An example of one such structure is shown in

Figure III.6D. Consequently, it is not clear that separation of the N- and C- termini is required to

expose the most aggregation prone regions of the sequence. This claim is supported by recent

PRE experiments comparing WT a-synuclein and A30P, E46K and A53T naturally occurring

mutants, which were all shown to have a higher aggregation rate in vitro. Results of this study

suggest that A30P and A53T mutants did not have a significant decrease in the N- and C-termini

contacts. Moreover, E46K presented an increase in these long range contacts (Rospigliosi,

McClendon et al. 2009). These data bring into question whether long range contacts play a key

role in regulating aggregation of a-synuclein.

We note that our model did not use any PRE derived distance restraints. While PRE-

derived data have provided valuable information into the presence or absence of long range

contacts in several IDPs, it requires introducing a paramagnetic probe into the protein (Mittag

and Forman-Kay 2007). However, it may be that such probes alter the accessible states of the

unmodified protein. In light of these observations, and the fact that some of the PRE-derived

results are contradictory, we did not explicitly use PRE-derived data when building our

ensemble. Nevertheless, we obtain results that corroborate and clarify many aspects of the prior

PRE studies.

In addition, we recognize that there may be additional contacts between the N-terminal,

NAC, and C-terminal regions, but we cannot make statements about these interactions with

confidence given the very wide error bars associated with residues in the more central region of

the NAC segment (Figure III.8B). Interestingly, our uncertainty in the precise contacts that

involve the entire NAC region is also reflected in the literature as the NAC region is suggested to

interact with the C terminal in some studies while other studies suggest that it interacts with the

N terminal instead (Bertoncini, Jung et al. 2005, Dedmon, Lindorff-Larsen et al. 2005, Sung and

Eliezer 2007, Cho, Nodet et al. 2009, Rospigliosi, McClendon et al. 2009, Wu, Weinstock et al.

2009). In short, our model is unable to distinguish between these two possibilities with certainty.
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Recent data suggest that a-synuclein forms helical tetramers under physiological

conditions (Bartels, Choi et al. 2011, Wang, Perovic et al. 2011). Our data suggest that

monomeric a-synuclein samples structures that have at most 20% helical content and that some

of these helices are amphipathic in character. These data are consistent with a model where

tetrameric structures are formed via the interaction of hydrophobic patches on these amphipathic

helices. Indeed there are many examples in the literature of such four-helical bundle structures

composed of amphipathic helices (Mathews, Bethge et al. 1979, Banner, Kokkinidis et al. 1987,

Kamtekar and Hecht 1995). Wang et al. independently proposed a model for the tetrameric state

of a-synuclein on the basis of NMR data in which transiently formed amphipathic helices

interact in just such a manner (Wang, Perovic et al. 2011).

Our results argue that the unfolded state of a-synuclein contains a heterogeneous set of

conformations of both highly compact and extended structures, and that while the overall

secondary structure content of these structures are low, there are regions that have a relatively

high propensity for helical and extended structure. Regions with a significant propensity for

either helical or strand content may facilitate the formation of lipid-associated helical structures,

helical tetrameric. structures, and aggregates that are rich in P-sheets. Our results also provide

quantitative estimates for the percentage of structures that are compact, have long-range contacts

between the N- and C-termini, and that have the minimal toxic aggregation fragment of a-

synuclein that is in a position that is poised to make intermolecular P strands. In sum, these data

provide a comprehensive view of the unfolded ensemble of monomeric a-synuclein in solution

and explains how different ordered structures conformers can arise from this disordered protein.

III.E Methods

III.E. 1 Generation of an a-Synuclein Structural Library

The sequence of a-synuclein was divided into eight residue long segments resulting in 28

segments in total (the C-terminal segment was five residues long). Each segment had three

residues overlap with the adjacent segments. A similar protocol was used to describe K18, an

intrinsically disordered protein of comparable size, 130 amino acids long (Fisher, Huang et al.

2010). The size of the segments was chosen based on the average persistence length of a
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polypeptide (Jha, Colubri et al. 2005). Conformations for segments of this length were shown to

be successfully sampled using a replica exchange molecular dynamics (REMD) (Sugita and

Okamoto 1999) procedure (Fink 2006).

Each segment underwent REMD with the EEF1 (Lazaridis and Karplus 1999) implicit

solvent model using CHARMM (Brooks, Bruccoleri et al. 1983). A total of 16 replicas, each at

a different temperature were used. Temperatures were spaced exponentially in the range 280 to

700K. Segments were run for 1 Ons, and structures were collected from the last 5ns of the 298K

heat bath, allowing 5ns of equilibration period. A total of 5000 conformations per segment were

collected.

Full length a-Synuclein conformations were generated by piecing together the segments

one at a time, starting with the N-terminal segment. Each segment was clustered according to

the three overlapping residues at its ends. The segment to be added to the growing polypeptide

chains was chosen from the cluster that had the most structural similarity in the overplaying

region. The first residue coordinates of the overlapping segments were taken from the C

terminal of the one segment and the two others from the N terminal of the adjoining segment. At

the end of the procedure the full length structure was subjected to 1,000 steps of steepest descent

minimization followed by 10,000 steps of adopted basis Newton-Raphson minimization to

relieve any bad contacts in the molecule. Only structures with a negative energy were chosen for

the structural library. Following the process we found the structural library generated was

composed of structures that were mainly compact when comparing their radius of gyration (Rg)

to the one obtained by SAXS experiments. Therefore the combined pre-energy minimization

structures were used in additional energy minimization using an Rg restraint. Rg restraints

varied from 27A to 75A. This process ensures that a wide range of conformations were

generated. At the end of the process ~100,000 structures were generated.

The structural library was reduced in size to 299 structures using our previously

described pruning algorithm (Fisher, Huang et al. 2010). This number of structures was shown

to be able to provide a good model for the K18 tau segment of comparable size (130 residues)

(Fisher, Huang et al. 2010).
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III.E.2 Generation of an a-Synuclein Ensemble from the Pruned Structural Library and the

Calculation of Confidence Intervals

In order to obtain the sets of weights for the pruned structural library, we employed the

BW algorithm as previously described (Fisher, Huang et al. 2010). In this method, one generates

a posterior distribution which represents the probability of all possible weighting schemes over

the 299 structures, given the available experimental data. Experimental measurements used were

C, Ca, Cp and N chemical shifts (Rao, Kim et al. 2009), N-H RDCs (Bertoncini, Fernandez et al.

2005) and radius of gyration (Binolfi, Rasia et al. 2006). The carbonyl chemical shift value for

residue 140 from the set of experimental data points was not used, as it was an extreme outlier

from the other data (Rao, Kim et al. 2009). To implement the BW method we first need to

calculate the corresponding chemical shifts for each atom, along with RDCs and the radius of

gyration, in each structure. Chemical shifts were calculated with SHIFTX (Neal, Nip et al.

2003), and the radii of gyration were calculated with CHARMM (Brooks, Bruccoleri et al.

1983). The RDCs of each individual conformer in the ensemble was calculated with PALES

(Zweckstetter and Bax 2000) based on a 'global alignment' model, i.e. using the entire protein

structure. This is in contrast to a 'local alignment' model, in which the RDCs are calculated from

short segments of the protein. It has been suggested that one can reproduce experimental RDCs

with a smaller number of conformers when using a local alignment model as compared to a

global alignment model (Marsh, Baker et al. 2008, Nodet, Salmon et al. 2009); nevertheless, we

were able to obtain good agreement with the experimental RDCs using the global alignment

method with a relatively small number of highly populated conformers.

The BW algorithm incorporates information from both the experimental errors and the

errors associated with predictions for the experimental values of interest (Fisher, Huang et al.

2010). Experimental errors were taken to be 0.3ppm (chemical shifts), 1Hz (RDCs) and 2A

(Radius of Gyration), respectively. As prediction errors for chemical shift values have been

rather extensively studied, they were also included in the expression for the posterior distribution

(Neal, Nip et al. 2003, Fisher, Huang et al. 2010).

Here, we provide a very brief review of the theoretical aspects of the BW framework; for

a comprehensive description see Fisher et al (Fisher, Huang et al. 2010). Formally, the posterior

probability distribution conditioned on the observed experimental data is obtained from Bayes'

rule:
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f -j-(M'W)f-(W)

wherefg (W) is a the prior probability distribution - for brevity, the specific form will

not be reproduced here - and f i-w(mjW) is the likelihood function for the vector of

experimental observations, m. We assume that the likelihood function can be decomposed as

fig(mw) = f (mR RDC Iw (nCSW) where each of the components is

(multivariate)-Gaussian. Specifically, the likelihood functions are:

R = -1/2 exp [m-ER[niV]) 2]
ff m m) ) = (2E Eexp

V1, 2 29 1fiR IRDCcC ND (1E -1/2 m (M-AERg [mjW d
-oo t,RDC

NCS

f1K1 (_m_) = I [2 7r1,Cs + aCs)]1/2 exp (,-?cs[mIc)
1=1

Here, the letter e denotes an experimental error, a denotes a prediction error and k is a

factor for uniformly scaling the RDCs to account for uncertainty in the magnitude of alignment.

The Bayes estimate for the weight for each structure corresponds to the expected (or

average) value of that structure's weight over the posterior distribution; i.e. w B (wj)BW =

f dWwjf IK(Wjmr). The uncertainty parameter is the average distance from the Bayes weights,

or cYB [f dw 2 WB W w )]1/ 2 , where W2 (WB W) is metric on the space of weight

vectors called the Jensen-Shannon divergence (Fisher, Huang et al. 2010). To calculate these

expected values, samples are taken from the posterior distribution using a Monte Carlo algorithm

with Gibbs Sampling (Fisher, Huang et al. 2010). Each sample corresponds to a different

weighting scheme over the 299 structures. 100 million samples were generated as an

equilibration period for the Markov Chain generated from the Monte Carlo algorithm. This was

followed by an additional 1 billion samples, which constitutes the "production run". We

followed the running average of the posterior divergence to ensure that convergence was

reached. To calculate the Bayesian averages and the associated confidence intervals, we used

50,000 equally spaced samples from the 1 billion samples; this reduces the overall computation

time. For a given quantity (e.g., the expected solvent exposure of a given residue), we computed
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this quantity using the chosen samples, yielding 50,000 estimates for the value of interest. The

95% confidence interval was obtained by finding the lower bound that excluded the bottom 2.5%

of the estimates and the upper bound that excluded the top 2.5% of the estimates.

III.E.3 Random Coil Ensemble

The Residual Contact Map shown in Figure II.8A represents the stability of a long range

contact between two residues in our ensemble compared to what one would expect from a

random coil ensemble. Therefore to compute the contact map, we first need to generate a

random coil ensemble for a-synuclein. We used the publicly available random coil ensemble

posted in a web repository (Jha, Colubri et al. 2005). The ensemble contains 5000 structures; we

therefore randomly selected 299 structures to insure the two ensembles are of the same size. The

selection process was repeated 20 times in order to reflect the full ensemble and each

measurement of interest was averaged over this collection. The random coil model used to form

this ensemble uses statistical potential and excluded volume constraints (Jha, Colubri et al.

2005), no a-synuclein experimental data was included in generating the ensemble.

III.E.4 Secondary Structure Assignments

We clustered STRIDE results of a-helix, pi-helix and 3-10 helix into a super class that we

refer to as Helix. In addition we cluster isolated bridge and extended results into a second super

class we named Extended (or Strand). All other secondary structure assignments were combined

into a single class denoted as Other. In order to have consistent definitions when comparing to

the results obtained from CD spectroscopy (which assigned a helix, strand, turn and

unstructured) (Rekas, Knott et al. 2010), we grouped the "turn" and the "unstructured"

assignments into one category called "Other".

III.E.5 Solvent Accessible Surface Calculations

The solvent exposure surface area for each conformation was calculated using

CHARMM (Brooks, Bruccoleri et al. 1983). The SASA of the entire protein was computed, but

only data from the solvent exposure of the backbone atoms N-H-C-Ca-O were used, since these

represent atoms that are essential for the formation of cross-P sheet interactions. The calculated

SASA was normalized by dividing by solvent accessible surface of the backbone atoms when a-

synuclein is in a fully extended conformation. A residue is said to be solvent exposed when its
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normalized SASA > 40%, as this cutoff has been used in previous studies and useful results were

obtained (Stultz, White et al. 1993).

III.E.6 Calculating Distributions of Ensemble Properties

Two plots were generated presenting probabilities calculated from the posterior

distribution. The radius of gyration for each structure in the ensemble is calculated in

CHARMM (Brooks, Bruccoleri et al. 1983) using the N-C-Ca atoms, structures are binned

together in bins of 1 OA. Summation of the structures probabilities (their weights) in each bin

comprises the probability of that bin. 95% confidence intervals were then obtained using the

50,000 samples from the posterior distribution as outlined above. The histogram of N-terminal

center-of-mass to C-terminal center-of-mass distances was generated in a similar fashion.

Distances were calculated in CHARMM (Brooks, Bruccoleri et al. 1983) using the center of

mass of N-C-Ca backbone atoms for residues 1-60, the N-terminal, and the center of mass of N-

C-Ca backbone atoms for residues 96-140 - the C terminal. Structures we binned in bins of

25A, corresponding to the maximal distance defined for formation of long range contacts and

again the 95% confidence intervals were then obtained from the 50,000 samples from the

posterior distribution.

III.E.7 Helical wheel diagram

To generate the helical wheel, we used the freely available Helical Wheel program

(http://cti.itc.virginia.edu/~cmg/Demo/wheel/wheelApp.html). Amino-acid sequences taken

from the conformation with the longest continuous helical structure were input to the Helical

Wheel program to generate the associated diagram.
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Chapter IV

The Dynamic Structure of a-Synuclein Multimers

IV.A Abstract

a-Synuclein, a protein that forms ordered aggregates in the brains of patients with

Parkinson's disease, is intrinsically disordered in the monomeric state. Several studies, however,

suggest that it can form soluble multimers in vivo that have significant secondary structure

content. A number of studies demonstrate that a-synuclein can form P-strand rich oligomers that

are neurotoxic, and recent observations argue for the existence of soluble helical tetrameric

species in cellulo that do not form toxic aggregates. To gain further insight into the different

types of multimeric states that this protein can adopt we generated an ensemble for an a-

synuclein construct that contains a 10 residue N-terminal extension, which forms multimers

when isolated from E coli. Data from NMR chemical shifts and residual dipolar couplings were

used to guide the construction of the ensemble. Our data suggest that the dominant state of this

ensemble is a disordered monomer, complemented by a small fraction of helical trimers and

tetramers. Interestingly, the ensemble also contains trimeric and tetrameric oligomers that are

rich in P-strand content. These data help to reconcile seemingly contradictory observations that

indicate the presence of a helical tetramer in cellulo on the one hand, and a disordered monomer

on the other. Furthermore, our findings are consistent with the notion that the helical tetrameric

state provides a mechanism for storing a-synuclein when the protein concentration is high;

thereby preventing non-membrane bound monomers from aggregating.

This chapter was published in similar form in: Gurry, T.*, Ullman, O.*, Fisher, C.k., and
Stultz, C.M. The Dynamic Structure of a-Synuclein Multimers. J. Am. Chem. Soc. 2013, 135,
3865-3872 (*Both authors contributed equally to this work)
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IV.B Introduction

a-Synuclein is a 140-residue protein that has been implicated in the. pathogenesis of a

number of neurodegenerative diseases, collectively known as synucleinopathies, the most well-

known of which is Parkinson's disease (Bellucci, Zaltieri et al. 2012). The most notable

pathological characteristic of these diseases is the aggregation of a-synuclein into amyloid

fibrils, which have significant P-sheet secondary structure (Spillantini, Schmidt et al. 1997,

Uversky, Li et al. 2001). Although there is disagreement regarding whether the soluble

oligomeric aggregates or insoluble aggregates are the most neurotoxic species, it is clear that a-

synuclein self-association plays an integral role in neuronal dysfunction and death (Conway, Lee

et al. 2000, Bucciantini, Giannoni et al. 2002, Kayed, Head et al. 2003, Danzer, Haasen et al.

2007, Winner, Jappelli et al. 2011). Given the importance of this protein in these

neurodegenerative disorders, studies that help to elucidate its structure are of paramount

importance.

However, the conformational landscape of a-synuclein is notoriously difficult to study,

earning it the moniker of 'chameleon' due to its tendency to adopt different conformations under

different experimental conditions (Uversky 2003, Drescher, Huber et al. 2012). This has led to

seemingly contradictory data about the dominant putative states in solution versus those under

physiologic conditions (Bartels, Choi et al. 2011, Wang, Perovic et al. 2011, Fauvet, Kamdem et

al. 2012). While it is clear that monomeric a-synuclein is an intrinsically disordered protein

(Weinreb, Zhen et al. 1996) in solution, recent data suggests that it can adopt a tetrameric state

that has a relatively high helical content under physiologic conditions (Bartels, Choi et al. 2011,

Wang, Perovic et al. 2011, Trexler and Rhoades 2012). By contrast, others have suggested that

a-synuclein retains its monomeric disordered state in cellulo (Binolfi, Theillet et al. 2012,

Fauvet, Kamdem et al. 2012).

Recently, NMR studies on an a-synuclein construct isolated from F coli, which contains

a 10 residue N-terminal extension, suggested that the protein can exist as a "dynamic tetramer"

(Wang, Perovic et al. 2011). In short, these data are consistent with a model where the protein

rapidly interconverts between different conformers, where some of these conformations are

multimeric structures (trimers and tetramers) that contain significant helical content. To obtain a

more comprehensive view of the types of structures that this particular a-synuclein construct can
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adopt, we generated an atomistic model for a-synuclein in its multimeric form. While we

recognize that it is not possible to capture all possible monomeric and multimeric conformations

that this protein can adopt in solution, our hope was to build a low-resolution description of the

dominant states of the protein. More precisely, we define a conformational ensemble to consist

of a structural library S = [' J}' where Si is the Cartesian coordinates of structure i, and a

corresponding set of weights iV = {wjj}, where wi is the population weight of structure i. In

this sense, the number of structures in the ensemble, n, is a function of the resolution with which

one wishes to view the conformational landscape of the system.

As prior studies on this construct suggest that the purified protein contains primarily

monomers, trimers and tetramers, we focused on these specific forms for our ensemble (Wang,

Perovic et al. 2011). Since we had previously constructed an ensemble for monomeric a-

synuclein using NMR chemical shifts, RDCs and SAXS data (Ullman, Fisher et al. 2011), we

used these structures to represent the disordered, monomeric fraction. Using NMR chemical

shifts and NH RDCs obtained on an a-synuclein construct, which contains a 10 residue N-

terminal extension, we determine the relative fractions of different multimeric forms within the

ensemble.

IV.C Results and Discussion

To generate a set of energetically favorable multimers for the ensemble, we began with a

set of "seed" structures that served as starting points from which a diverse library of multimeric

structures could be built. Our previous study on a-synuclein suggested that the monomeric

protein can sample amphipathic helices, which could in principle self-associate to form higher

order structures (Ullman, Fisher et al. 2011). Hence, we constructed trimeric and tetrameric

structures using amphipathic helices from the monomeric ensemble. Structures for both the

trimeric and tetrameric species were obtained by threading these amphipathic helices onto three-

and four-helix bundles, respectively, from the Protein Data Bank (PDB) such that the

hydrophobic faces of these helices form the contact-interface (see Methods). A second helical

tetrameric model was constructed using the available NMR data (Wang, Perovic et al. 2011).

The model derived from the NMR data was obtained from a limited set of NOEs because a high
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degree of spectral overlap is present even in three-dimensional data sets. Consequently, the

resulting model is not intended to represent a "high-resolution" structure of the helical tetramer.

Instead, it is a model, constructed from limited experimental data, which serves as a starting

point for additional simulations. Indeed, all seed structures represent initial structures (derived

from experimental data and from prior studies on the monomeric state) from which to begin

sampling, rather than high-resolution structures for trimeric and tetrameric structures.

Each seed structure was subjected to replica exchange molecular dynamics (Sugita and

Okamoto 1999) (16 replicas, each replica run for 20ns). Structures from the 298K window were

output every picosecond and added to the structural library. In total, the structural library

contained 60,000 structures (monomers, trimers and tetramers). All of these structures were then

clustered using a crude pruning algorithm to ensure that the final set of structures largely retained

the structural heterogeneity present in the original 60,000. The final set of structures, including

monomers, trimers and tetramers, contained 533 conformers.

We note that each of the replica exchange simulations began with a predominantly helical

seed structure because several studies suggest that a-synuclein multimers had significant helical

content (Bartels, Choi et al. 2011, Wang, Perovic et al. 2011, Trexler and Rhoades 2012).

However, many of the helical multimers rearranged to form strand-rich conformers during the

course of the simulations. Hence the final set of 533 structures constitutes a heterogeneous set of

conformers that have a range of both helical and strand content.

The final step in our ensemble construction procedure was to assign population weights

to each of the 533 structures. One approach to accomplish this is to obtain a single set of

weights, ii = {wi} 1 , such that calculated observables from the final ensemble agree with the

corresponding experimentally determined values. However, as we have previously shown,

agreement with experiment alone is insufficient to ensure that the constructed ensemble is

correct (Fisher, Huang et al. 2010, Fisher and Stultz 2011). This is because the construction of

ensembles for disordered systems is an inherently degenerate problem; i.e., the number of

experimental constraints pales in comparison to the number of degrees of freedom for the

system. To overcome this limitation, we used a previously developed formalism, grounded in

Bayesian statistics, to compute the population weights. This Bayesian Weighting (BW)

algorithm computes the full posterior distribution over all possible ways of weighting structures

in the structural library. From this posterior distribution we can compute an uncertainty measure,
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0 5 WB < 1, which describes the spread of the posterior distribution - a metric that is akin to

the standard deviation of a Gaussian distribution (Fisher, Huang et al. 2010, Fisher 2012). Our

prior work suggests that the numeric value of OWB is correlated with model correctness. When

UTB = 0, we can be relatively certain that the model is correct. By contrast when a-B = 1, it is

likely that the ensemble is far from the truth. Nevertheless, when aWB # 0, we can construct

rigorous confidence intervals for quantities of interest that are calculated from the ensemble.

The ability to calculate rigorous confidence intervals enables us to perform rigorous hypothesis

tests and therefore determine what conclusions we can make from the ensemble with statistical

significance.

The final Bayes' ensemble consists of a set of weights, WjB = {wP}, which corresponds to

the expected value of the weights calculated from the posterior distribution, and the structural

library S = {st}U. The algorithm also ensures that we restrict our analysis to the most

important conformers. More precisely, ith structure is excluded from the ensemble when we can

say with 95% confidence that wi : c. In the end, a total of 311 structures survived this criterion.

While the resulting Bayes' ensemble achieves a good fit to the NMR experimental data (Figure

IV.1), the corresponding uncertainty parameter is non-zero: U B= 0.47. Consequently, we

express ensemble average values along with their corresponding 95% confidence intervals.
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Figure IV.1: Calculated ensemble averages vs. experimental measurements. (A) N, Ca and Co chemical
shits; (B) N-H residual dipolar couplings. Correlation coefficients for each plot are explicitly shown.
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The ensemble is composed mostly of monomeric species (64.1% 6.4%) with tetrameric

species making up the next most common species (28.2% 6%), and trimeric structures making

up only 7.7% 3.6%. Since we have already reported on the types of structures that are sampled

in the monomeric protein (Ullman, Fisher et al. 2011), here we focus on the types of multimeric

structures that appear in the ensemble. Both trimeric and tetrameric structures mainly come in

two forms, either predominantly helical, or predominately strand. A small fraction of multimeric

structures contain so little secondary structure that they fall into neither category. Representative

structures from each species are shown in Figure IV.2.
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Figure IV.2: Types of a-synuclein structures in our ensemble. Monomers are aligned to each other (A) to

demonstrate that they form a structurally heterogeneous set. For the multimeric species, the top 8
structures from each category in terms of secondary structure content are shown: (B) helical-rich trimers;

(C) strand-rich trimers; (D) helical-rich tetramers; and (E) strand-rich tetramers.

To determine how each of these multimers may influence a-synuclein self-association,

we focus on the position and conformation of the subsequence NAC(8-18), which corresponds to

the minimal segment of a-synuclein that can initiate the formation of toxic P-strand rich
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aggregates in vitro (El-Agnaf and Irvine 2002). This is of particular interest because toxic

soluble oligomers of a-synuclein and other related IDPs contain significant P-structure (Volles,

Lee et al. 2001, Laganowsky, Liu et al. 2012). Of all the multimeric species in the ensemble, the

normalized solvent accessibility of the NAC(8-18) region in helical tetramers is significantly

lower than for other types of structures, with an expected value of only 30.6% 1.0% (Figure

IV.3). For comparison, the solvent exposure of the NAC(8-18) region in the monomeric fraction

is 58.6% 4.2%. Consequently, helical tetrameric species bury the NAC(8-18) segment relative

to the monomeric state. Our findings are consistent with a model where the NAC(8-18) segment

initiates the formation of P-rich structures, which then progress to form higher order aggregates.

In the P-rich conformers, the NAC(8-18) segment has already been incorporated into [ sheet and

therefore it is not surprising that their solvent accessibility is reduced. In the helical tetramer the

NAC(8-18) segment is hidden in a non-amyloidogenic conformation and is therefore not

available to initiate the formation of P-strand rich multimers.

MAC(S-1S) % N-terminal 1-48 % solvent
solvent exposure exposure

A

45.7 *L 1.0% 2S.9 0.7%

A 41.1 :k 0.6% 35.6 :1 0.5%
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30.6 * 1.0% 34.1 k 1.0%
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38.4 *1.4% 43.9;k 1.5%

Figure IV.3: Normalized solvent accessibility ( 95% confidence intervals) for the NAC(8-18) region
and N-terminal residues 1-48 for (A) helical-rich trimers, (B) strand-rich trimers, (C) helical-rich
tetramers and (D) strand-rich tetramers. Representative structures are shown on the left. The N-terminal
residues are shown in cyan, the NAC(8-18) in red and the remaining residues in green.
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Several studies also suggest that the N-terminal region of a-synuclein may act as an

initiation site for the formation of strand-rich oligomeric aggregates. The observation that

aggregation-inhibiting small molecules bind preferentially to the N-terminal region of human a-

synuclein is consistent with this notion (Cho, Nodet et al. 2009). More importantly, 15N

relaxation experiments performed on monomeric mouse a-synuclein (which has faster

aggregation kinetics than the human homolog) suggest that the N-terminal region of the protein

has decreased backbone flexibility as compared to both a random coil model as well as

measurements on human a-synuclein - a finding suggesting that secondary structure formation is

more prevalent in the mouse form of the protein (Wu, Kim et al. 2008). It has further been

proposed that KTK(E/Q)GV, which are mainly found within the first 48 residues of the protein,

can serve as initiation sites for aggregation in mouse a-synuclein (Wu, Kim et al. 2008).

Therefore, we computed the average solvent accessibility of the N-terminal 48 residues in each

multimeric state to explore the conformation of the N-terminal region of a-synuclein in each of

these multimeric states, as shown in Figure IV.3. Helical trimers and tetramers preferentially

place the N-terminal region of a-synuclein in positions that are hidden from solvent; i.e., the

solvent exposure of these regions is 28.9% 0.7% and 34.1% 1.0% for helical trimers and

tetramers, respectively. We note that several studies suggest that the N-terminal region of a-

synuclein plays a critical role in the formation of helical structures (Bodner, Dobson et al. 2009,

Vamvaca, Volles et al. 2009, Bartels, Ahlstrom et al. 2010), hence this region may be important

for assembly of the helical tetramer. By contrast, the solvent exposure for the monomeric state is

52.5% 3.6%. Figure IV.4 shows two structures that involve the N-terminal residues in P-sheet

formation, highlighting the P-strand propensity of these residues.

AB

Figure IV.4: Two representative structures of strand-rich tetramers. The N-terminal residues 1-48 of the
monomers participating in sheets are shown in cyan. NAC 8-18 residues participating in sheets are
shown in red.
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Interestingly, however, -strand rich trimers and tetramers, preferentially have the N-

terminal residues 1-48 involved in a sheet that contains the NAC(8-18) segment; i.e., the

segment that can initiate a-synuclein aggregation in vitro (Figure IV.4). Although it is not clear

whether the NAC component or the N-terminal region provides the primary impetus behind the

oligomerization propensity of a-synuclein, our data are consistent with a model whereby the

initial stages in toxic oligomer formation is the formation of an N-terminal rich P-strand region

that contains the NAC(8-18) segment. In this regard, it is interesting that the helical tetrameric

species sequesters both of these regions from the surrounding solvent by involving them in the

formation of helices, as shown in Figure IV.3, supporting the notion that this structure acts as a

non-toxic storage mechanism.

IV.D Conclusions

In this study we constructed an ensemble for the multimeric state of a-synuclein. Our

data reveal a number of important insights into the types of structures that multimeric forms of

the protein can adopt. Given that generating a comprehensive list of the thermally accessible

states of both the monomeric and multimeric protein is not tractable, our goal was to generate a

low-resolution description of the dominant states that are available to the protein. However,

even with this proviso additional assumptions are needed to make the calculations feasible. In

this regard we restricted our sampling of multimeric states to trimers and tetramers; i.e., the

primary multimeric states that have been observed when a-synuclein constructs are isolated from

E coli, red blood cells and human neuroblastoma cell lines (Bartels, Choi et al. 2011, Wang,

Perovic et al. 2011). Replica exchange molecular dynamics (REMD) simulations were used to

generate a representative set of heterogeneous set of energetically favorable conformers that

served as the template from which a structural ensemble could be built. Given that earlier

studies had described the existence of helical trimers and tetramers of a-synuclein, the REMD

simulations began using a predefined set of seed structures that were intended to capture

conformations that were observed in earlier experiments on a-synuclein multimers. Given that

our previous study suggested that the monomeric a-synuclein can sample amphipathic helices,

69



we generated a model for helical trimers and tetramers assuming that multimeric structures were

formed from self-association of these amphipathic helices. A second model seed structure was

derived from limited NMR data on a-synuclein at high concentrations. Given the limited

number of NOEs obtained, it was not possible to uniquely determine the structure of any

tetrameric state; therefore the resulting seed structure serves as fodder for additional simulations,

rather than a detailed high-resolution structure of the tetrameric state. Although the REMD

simulations began with these seed structures, the resulting trajectories sample a wide region of

conformational space leading to the generation of some structures that are very different from the

initial seeds (Figures Al and A2 in the Appendix). The Bayesian Weighting (BW) method is

then used to construct a probability density over all possible ways of assigning population

weights to structures arising from the trajectories (Fisher, Huang et al. 2010). These data are

then used to calculate ensemble average properties with their corresponding confidence intervals.

Given that construction of an ensemble for an intrinsically disordered protein is an

inherently degenerate problem, it is important to provide estimates of one's uncertainty in the

resulting ensemble (Fisher, Huang et al. 2010, Fisher and Stultz 2011). One advantage of the

BW formalism is that it has a built in measure of uncertainty, 0 UWB 1, that is correlated

with model correctness (Fisher, Huang et al. 2010). When crB = 0, we can be relatively certain

that the model is correct. By contrast when aB = 1, it is likely that the ensemble is far from the

truth. In the present case, this uncertainty parameter is non-zero: a-B= 0.47. However, even

when the uncertainty parameter is non-zero, one can still quantify the uncertainty in calculated

ensemble average quantities via the use of confidence intervals. In this work, we present

ensemble averages +/- 95% confidence intervals. Confidence intervals comprise a standard

statistical method to quantify uncertainty in an underlying model. The meaning of the

confidence interval for the ensemble average (M), is that if one calculated (M) from many

different ensembles (that also fit the experimental data), then those values would fall within the

95% confidence intervals approximately 95% of the time. The 95% confidence interval

therefore provides a quantitative measure for the range of values one would see if they

constructed many different ensembles. Overall we find that helical tetramers represent a

relatively small fraction (5.1% 2.9% ) of an otherwise predominantly disordered, monomeric,

ensemble. These findings are consistent with recent bacterial in-cell experiments that suggest
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that a-synuclein is predominantly disordered within the crowded intracellular environment

(Binolfi, Theillet et al. 2012).

Our data suggest that the multimeric ensemble contains tetrameric states that have

significant helical content. However, while some groups have been able to isolate helical

tetramers by using gentle purification protocols, the isolation of such structures by other groups

has remained elusive (Bartels, Choi et al. 2011, Fauvet, Kamdem et al. 2012, Kang, Moriarty et

al. 2012). These latter experiments have led some to conclude that a-synuclein predominantly

exists as a disordered monomer under physiologic conditions (Fauvet, Kamdem et al. 2012). We

believe our data help to reconcile these seemingly contradictory observations. Our findings

argue that helical tetramers are present within the unfolded ensemble, albeit at very low

concentrations. Successful isolation of helical tetramers would therefore require additional

measures to increase the relative population weight of these states. Indeed, it has been shown that

the tetrameric species elute from purification columns in a concentration-dependent manner

when the protein is acetylated at its N-terminus (Trexler and Rhoades 2012). This suggests that

the relative abundance of this species is a function, in part, of the post-translational state of the

protein, the purification protocol, and the protein concentration. These observations are

consistent with the notion that the helical tetramer provides a mechanism for in cellulo a-

synuclein storage when the protein concentration is high. Formation of aggregation resistant

helical tetramers may provide a method to sequester non-membrane bound monomers in a form

that both prevents them from aggregating and preserves them in a conformation amenable to

lipid binding upon dissociation. It is likely that other factors, such as the ionic strength of the

medium and presence of divalent metal cations (Dudzik, Walter et al. 2011), would affect the

relative stabilities of these various conformations: it has been shown, for instance, that the

abundance of P-rich monomers structures increases in the presence of high ionic strength, as well

as upon inclusion of Cu2+ (Sandal, Valle et al. 2008).

To understand why helical states are aggregation resistant, we focus on the minimal

segment, NAC(8-18), needed to initiate a-synuclein aggregation in vitro (El-Agnaf and Irvine

2002). Of all the multimeric states in our ensemble, the solvent exposure of the NAC(8-18) is

the lowest for the helical tetramer. Burying the NAC(8-18) segment ensures that is not available

to initiate the formation of P-strand rich oligomers. In the P-rich tetramer conformers, the

NAC(8-18) segment has already been subsumed in a central 1 sheet and therefore it is not
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surprising that its solvent accessibility is reduced relative to the monomeric state. Our findings

are consistent with a model where the NAC(8-18) segment initiates the formation of P-rich

tetramer structures, which then progress to form higher order aggregates.

The appearance of strand-rich states in our ensemble is somewhat surprising given that

previously published CD spectra of multimeric a-synuclein suggested that the protein had

considerable helical content on average (Bartels, Choi et al. 2011, Wang, Perovic et al. 2011).

Although the reported CD spectra have distinct minima at 208nm and 222nm - a finding

indicative of considerable helical content - estimating the precise helical content from CD

spectra alone is problematic (Manavalan and Johnson 1985, Greenfield 2007). For example, we

used several different algorithms to quantify the helical content from the published CD spectrum

of a-synuclein isolated from human red blood cells (Bartels, Choi et al. 2011), and depending on

the algorithm used, the amount of helix varied from 10% to 80%. Hence, while the CD spectrum

suggests that the helical content of the tetrameric species is higher than that of the monomeric

protein, quantifying the amount of helicity from the CD spectrum alone is a non-trivial exercise.

In addition, the multimeric ensemble was generated using data from NMR experiments that were

performed at a concentration (0.5mM) that was at least an order of magnitude greater than the

concentration used for the CD experiments (~0.02mM). This is important because the

concentration of a-synuclein in vitro can influence its secondary structure propensity and the

precise effect may vary on the post-translational state of the protein (Jarrett and Lansbury 1993,

Iwai, Yoshimoto et al. 1995, Trexler and Rhoades 2012). Therefore it is not clear whether the

published CD spectrum reflects the structure of a-synuclein under the conditions used for the

NMR experiments.

Lastly, we note that a limitation of our study is that the NMR data were obtained on an a-

synuclein construct that contains a 10-residue N-terminal extension relative to the wild-type

protein. While the experimental data provided useful constraints that could be fruitfully applied

to generate an ensemble, a-synuclein isolated from human neuroblastoma and red blood cell

lines does not have an N-terminal extension and instead is acetylated at the N-terminus (Bartels,

Choi et al. 2011). Nevertheless, our construct shares important characteristics with the N-

acetylated protein. First, the monomeric form of the construct bearing a 10-residue N-terminal

extension has a CD spectrum that is similar to that of the monomeric N-terminal acetylated form

of a-synuclein (Fauvet, Kamdem et al. 2012) and both constructs form tetrameric structures with
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increased a-helical content (Bartels, Choi et al. 2011, Wang, Perovic et al. 2011, Trexler and

Rhoades 2012). Lastly, monomeric forms of both constructs have similar aggregation profiles

while the tetrameric forms of both constructs do not aggregate (Bartels, Choi et al. 2011, Wang,

Perovic et al. 2011). These similarities suggest that acetylation of the N-terminal and the 10

residues elongation of the N terminal region in a-synuclein serve a similar purpose with regard to

their effect on the a-synuclein, albeit N-terminal acetylation may result in more dramatic effects

to the conformational distribution of the protein relative to the N-terminal extension.

Nonetheless, since the sequence of this construct differs slightly from the wild-type protein, we

cannot exclude the possibility that wild-type a-synuclein isolated from other cell types, such as

neurons or red blood cells, may not be well described by the ensemble presented here.

IV.E Materials and Methods

IV.E. 1 Generation of seed structures

Our previous study on a-synuclein suggested that the monomeric, protein can sample

amphipathic helices, which could in principle self-associate to form helical trimers and tetramers

(Ullman, Fisher et al. 2011).

All simulations used a model of a-synuclein that did not include the 10-residue N-

terminal extension. An initial trimeric structure of the protein was generated by taking a

monomer from the monomeric a-synuclein ensemble that has an amphipathic helix between

residues 52 and 64 and threading the helix to a three-helix bundle from a crystal structure of

myosin (PDB ID code 3GN4) (Mukherjea, Llinas et al. 2009), where the hydrophobic faces of

the amphipathic helix were oriented such that they face inwards. An initial tetrameric structure

was generated by threading the same monomer to a four-helix bundle from a crystal structure of

ferritin (PDB ID code 1FHA) (Lawson, Artymiuk et al. 1991, Berman, Westbrook et al. 2000).

These structures were chosen from the PDB such that the helix bundles in the structure used for

threading the monomer were of sufficient length to accommodate the entire 12-residue helix in

our monomer structure, while retaining a high enough resolution to be informative. A second

initial helical tetrameric model was constructed using the available NMR data (Wang, Perovic et
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al. 2011). The model derived from the NMR data was obtained from a limited set of NOEs; i.e.,

we were not able to identify a sufficient number of sequential (Hac-HN i, i+3) NOEs in 15N-

edited NOESY spectra (see below). Consequently, the resulting model is not intended to

represent a "high-resolution" structure of the helical tetramer. Instead, its only purpose is to

serve as a structure (derived from limited experimental data) that is the starting point for

additional simulations. More generally, each seed structure serves as a starting point from which

to begin more extensive sampling.

IV.E.2 Generation of a-synuclein structural library

The conformational space of a-synuclein was sampled by subjecting the initial seed

structures to replica exchange molecular dynamics (REMD) simulations (Sugita and Okamoto

1999). Each initial structure underwent REMD with the EEF1 (Lazaridis and Karplus 1999)

implicit solvent model as implemented in the CHARMM (Brooks, Bruccoleri et al. 1983) force

field. Sixteen replicas were used, with temperatures equally spaced in 5K increments over the

293-368K range. Prior studies of IDPs with this implicit solvent model have yielded useful

insights (Huang and Stultz 2008, Fisher, Huang et al. 2010, Ullman, Fisher et al. 2011). Initially,

higher temperature replicas were explored, along with quenched molecular dynamics simulations

at higher temperatures, but we found that these led to dissociation of multimers into monomers

free of intermolecular contacts. We therefore limited the highest temperature to 368K, the

highest temperature at which intermolecular contacts were retained in oligomers for the duration

of the trajectory. Each replica was run for 20 ns, and structures were collected at each

picosecond. A total of 20,000 conformations per REMD simulation were collected, all from the

298K window, making a total of 60,000 conformations for the trimeric and tetrameric structures.

The set of 60,000 structures was pruned down by enforcing a minimum pairwise RMSD

of 9A to ensure that the resulting library would span a range of heterogeneous conformations.

The resulting set contained 234 structures. These were then combined with 299 monomer

structures from a previously constructed monomeric ensemble of a-synuclein (Ullman, Fisher et

al. 2011) to yield our structural library S = { 13 of 533 conformers.
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IV.E.3 Generation of the ensemble and calculation of confidence intervals

To obtain the set of weights associated with each conformer in our structural library, we

employ the Variational Bayesian Weighting algorithm (VBW) previously described (Fisher

2012), which is a variational approximation to a Bayesian Weighting formalism used in the past

(Fisher, Huang et al. 2010, Ullman, Fisher et al. 2011). This algorithm generates a posterior

distribution f (iv (I in,S) for the weights, conditioned on the set of 533 structures, and the

provided experimental measurements. The form of the posterior distribution is dictated by

Bayes' rule:

where the term f(iv S) is the prior distribution and fl (ih I -Cv,S) is the likelihood

function for the experimental observations m , whose full descriptions can be found in the

original publication of the method (Fisher 2012). Experimental observables, specifically Ca, C$,

N, H and Ha chemical shifts from a previous work (Wang, Perovic et al. 2011) in combination

with backbone NH residual dipolar couplings (RDCs), were used. Predicted measurements for

each conformer were generated using SHIFTX (Neal, Nip et al. 2003) for chemical shifts and

PALES (Zweckstetter 2008) for residual dipolar couplings. Residual dipolar couplings were

uniformly scaled to account for uncertainty in the magnitude of the alignment tensor. Similarly,

like-atom chemical shifts were uniformly offset to account for uncertainty in chemical shift

referencing. To increase computational efficiency and analytical tractability, an approximation

from variational Bayesian inference was applied by choosing a simpler probability density

function (PDF) (Fisher 2012), which approximates the full posterior distribution, calculated from

equation (1). For a vector of weights, a natural choice is the Dirichlet distribution with

parameters {a, > 0j} . This results in an approximate PDF for the weights (Fisher 2012):

(a )
g(|,S=w"' (2)
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where a is the Dirichlet parameter associated with weight i and a. = a,. The

Kullback-Leibler distance (i.e., the KL divergence) between g(i I 6,S) and fj,'s(i I in,S) is

then minimized to find the optimal set of Dirichlet parameters, 66'= {a' , which provides an

approximation to the true posterior from which one can easily calculate quantities of interest.

We then compute the Bayes estimate for the weights iiB = B }, which is the expected

value of the vector of weights over the new approximate posterior distribution:

7fVB =f dg(- 10',S)iv (3)

The Bayes estimate can be calculated from the Dirichlet PDF according to:

S(4)
ao

where a' = a,'. The uncertainty parameter OrrB , called the posterior expected

divergence, corresponds to the average distance from the Bayes weights over the entire space of

weights:

Bdi2(_B,_)g(V 'S) BB (5)

where Q2 (7Bv) is the Jensen-Shannon divergence, a metric which quantifies the

distance between the vectors WB and W' (Fisher, Huang et al. 2010).

The covariance between the weights of conformers i andj can be calculated analytically

from:

a,'a'b..-a'a'
cov(w ,w 1 )=.'3 ' Y

a2 (a'+1)
(6)

where ,, is the Kronecker Delta function. Any quantity D that can be calculated for a

given conformer can then be assigned a variance across the ensemble according to:

var(D)= DD cov(w,, wj)
j
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95% confidence intervals can then be computed using a Gaussian approximation from

CI=1.54xl.96x var(D) , where 1.54 is an empirical factor relating the variational

approximation of the posterior distribution to the true posterior distribution under the complete

BW formalism (Fisher 2012).

A backward elimination procedure starting with our initial structural library of 533

conformers was used to ensure that the ensemble only contained essential structures. The

procedure computed the VBW posterior distribution iteratively. After each iteration, all non-

essential structures were identified by finding the largest set I such that the joint probability that

each weight of the structures in I fell below a cut-off exceeded a chosen confidence level, i.e.

P(, s c) ;?1- 6 where P () denotes the cumulative distribution function of the weights.

The cut-off (c) and confidence level (0) were set to 0.005 and 0.05 (95%), respectively. Each of

the non-essential structures in I were removed and the weighting procedure repeated. This

process was iterated until convergence, i.e. until the cardinality of I was zero.

IV.E.4 Secondary structure assignments

Secondary structure was assigned using DSSP (Kabsch and Sander 1983). A residue was

assigned to the class of 'helix' if it was assigned as a-helix, 7-helix or 3-10 helix by DSSP.

Similarly, a residue was assigned to the class of 'strand' if it was assigned as a bridge or

extended by DSSP. The remaining assignments were grouped into the class of 'other'.

Structures appearing in the uppermost quartile of tetramers ranked by helical content were

classified as helical tetramers, and structures in the uppermost quartile of tetramers ranked by

strand content were classified as strand tetramers. Trimers were classified in the same manner.

IV.E.5 Solvent accessibility calculations

Solvent accessible surface area (SASA) was calculated for each conformation using

CHARMM(Brooks, Bruccoleri et al. 1983). Since only the backbone atoms N, H, C, Ca and 0

are involved in the formation of secondary structure, only SASA values for these atoms were

considered. The solvent accessibility for the entire protein was computed by summing each

atom's SASA value and normalized by dividing the result by the SASA of the a-synuclein

backbone atoms when in a fully extended conformation.
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IV.E.6 NMR studies

It is important to note that these NMR studies were insufficient to uniquely determine the

structure of a helical tetrameric state (primarily due to an insufficient number of measured

NOEs). Hence, the structure arising from these studies represents a model that only serves as the

starting point for further simulations, as opposed to a well-defined structure for the helical

tetramer.

Samples of 15N and 13C labeled aSyn for NMR spectroscopy were prepared using

uniformly 13C- and 15N-labeled media (supplemented M9 media, 13C source being glucose).

NMR samples were typically prepared to a final concentration of ~0.5 mM in 100 mM Tris-HCl

pH 7.4, 100 mM NaCl, 0.1% BOG, 10% glycerol, 10% D 20. All NMR spectroscopy was

performed on a Bruker Avance 800 NMR spectrometer operating at 800.13 MHz ('H), 81.08

MHz (1 5 N) and 201.19 MHz (13C) and equipped with a TCI cryoprobe and pulsed field gradients.

Experiments used for sequential resonance assignments include three-dimensional (3D)

experiments HNCA, HNCACB, 15 N-HSQC TOCSY and 5N-HSQC NOESY. Quadrature

detection was obtained in the 15N dimension of 3D experiments using sensitivity-enhanced

gradient coherence selection(Kay, Keifer et al. 1992), and in the 3 C dimension using States-

TPPI, with coherence selection obtained by phase cycling. In all cases, spectral widths of

8802.82 Hz ('H) and 2920.56 Hz (1 5 N) were used. For 13 C, spectral widths of 6451.61 Hz

(HNCA) and 15105.74 Hz (HNCACB) were used. All experiments were performed at 298 K

unless otherwise noted. NMR data were processed using TOPSPIN (Bruker Biospin Inc.), and

data analyzed using either TOPSPIN or SPARKY (Goddard and Kneller).

-"N, 13 C'-15 N and 13 C'- 3 Ca residual dipolar couplings (RDCs) were recorded for a

1N- and 3 C-labeled wild-type aSyn oligomer sample in the presence and absence of alignment

media using a standard IPAP-HSQC sequence or a variation of a standard HNCO pulse

sequence. Sample alignment was accomplished using a 5% polyacrylamide stretched gel. We

chose to use PA rather than bicelle or liquid crystalline phases for alignment because such phases

contain long chain hydrocarbon moieties that might be expected to bind aSyn and could interfere

with oligomer formation.

The stretched gel was prepared using a commercial apparatus (New Era, Vineland, NJ)

according to the manufacturer's protocol and following guidelines by A. Bax.(Bax 2003) After

polymerization was complete, the gel was dialyzed against water overnight at room temperature,
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and then incubated with a 0.5 mM aSyn sample in standard NMR buffer for 48 h at 4 'C. The

diameter of the gel was 6.0 mm before and 4.2 mm after stretching. Alignment was confirmed

by observing the residual quadrupolar splitting (9.4 Hz) of the 2H water signal.

We used solution NMR to localize the transient formation of a-helices in aSyn.

Resonance assignments were made using standard methods (HNCO, HN(CO)CA, HNCA,

HNCACB, 15N-edited NOESY and TOCSY). Although a high degree of spectral overlap is

present even in three-dimensional data sets, we were able to identify a number of sequential (Ha-

HN i, i+3) NOEs in 15N-edited NOESY spectra to confirm the transient existence of a-helical

structure between residues Phe4-Thr43 and His50-Asnl03. In many cases, these NOEs are quite

weak, consistent with fractional occupancy, however, only the most reliable (strongest)

experimental NOEs were used in model construction. Note that if long stretches of NOEs

interrupted by several residue pairs without NOEs were observed, the missing pairs were

included in the helical restraints applied in XPLOR-NIH. A total of 73 unique inter-residue

NOEs per monomer were used to construct a model for the helical tetramer.

Given the relatively small number of NOEs any structure arising from these data merely

represents a model (derived from limited experimental data) that serves as fodder for additional

simulations, rather than a detailed high-resolution structure of the tetrameric state.

A combined torsional and Cartesian dynamics simulated annealing method was used to

calculate an average tetramer structure using XPLOR-NIH v. 2.18(Schwieters, Kuszewski et al.

2003). Secondary structural restraints were applied to those regions of the polypeptide identified

as forming a-helical structure from sequential NOEs. RDC restraints were applied for residues

1-103 and in some cases, non-crystallographic symmetry restraints were applied to residues 4-36,

47-85 and 89-98. Preliminary structures were crafted manually using PyMOL (Schrodinger

2010), and initial values for alignment tensors determined by singular value decomposition

(SVD) using the program PALES (Zweckstetter 2008). As refinement proceeded, best-fit

structures were used to recalculate the alignment tensors via a combined SVD-least squares fit

which permits the rhombic terms to be fixed at zero. This was applied iteratively until no further

improvements of fit were observed. PyMOL was also used for visualization of the structures

generated by XPLOR-NIH. Proton chemical shifts were referenced directly to the water signal

at 4.7 ppm, while 5N and13 C shifts were indirectly referenced (Wishart, Bigam et al. 1995). All
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NMR experiments were performed by Iva Perovic and Thomas Pochapsky. Structural models

for the multimeric state of a-synuclein will be freely available via http://www.rle.mit.edu/cbg.
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Chapter V

Conclusions

The leitmotif of this work is that IDPs in solution can be modeled as a finite set of

energetically favorable structures, where each structure corresponds to an energy minimum over

a complex energy landscape. We introduced the notion of IDPs as a class of proteins that lack a

well-defined structure in solution. IDPs can adopt a range of rapidly interconverting dissimilar

conformations. As such, the energy landscape of an IDP can be described by a complex

relatively "flat" surface where energy minima are separated by very small barriers.

In practice it is useful to model IDPs using sets of conformations that represent, at low

resolution, the types of structures that the protein can adopt during its biological lifetime. By

using a finite set of conformations we essentially specify the resolution of our model, the smaller

the number of conformations used, the lower (i.e., poorer) the model resolution.

To build ensembles for IDPs we used a previously developed method that is grounded in

Bayesian statistics. The advantage of this method is that it overcomes a longstanding, but rarely

acknowledged, shortcoming of the IDP construction process - namely that building ensembles

that agree with experiment is an inherently degenerate problem. More precisely, the number of

experimental observables used to build the model pales in comparison with the number of

degrees of freedom needed to determine the contribution of each structure to the model. Put in

other words, for a given set of conformations, one can reproduce the available experimental data

using many different ensembles. The Bayesian framework provides a statistically sound

platform for generating ensembles. It has the added benefit that it enables us to quantify our

uncertainty in the resulting structural models. Moreover, with the Bayesian framework we can

calculate rigorous confidence intervals for quantities that are calculated from the ensemble. We

apply these methods to the IDP, a-synuclein, which plays a role in the pathogenesis of

Parkinson's disease. Our goal was to generate a structural ensemble for a-synuclein that agrees

with experimental data, and to use this model to better understand the mechanism underlying a-

synuclein self-association - the process that has been associated with neuronal death and

dysfunction.
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The first step in any ensemble generation method is the construction of a diverse set of

energetically favorable conformations. We demonstrated that using a segment-based approach

efficiently generates a diverse set of structures. We then combined these structures with

experimental data to develop an ensemble for a-synuclein. Our data helps explain the proteins

ability to adopt a variety of structures under different experimental conditions.

Lastly we developed an ensemble for multimeric a-synuclein. This study is particularly

poignant because recent data suggests that a-synuclein exists as a helical tetramer within the

intracellular environment, and that this tetrameric state is aggregation resistant. We therefore

collaborated with Prof. Thomas Pochapsky (Brandeis University) to generate a model for an a-

synuclein construct that forms multimeric states (one of which is a helical multimer) in solution.

We found that the sample is in fact primarily monomeric and that only a small fraction is

tetrameric. An analysis of the helical tetrameric state argues that the tetramer does not aggregate

because it places aggregation prone segments in environments that are hidden from solvent.

While these data are encouraging, much still needs to be done to make these methods

generally applicable to other IDPs. One of the major challenges in generating structural models

for IDPs, from the computational point of view, is the lack of readily available experimental

data. Since experimental data serves as a benchmark for creating a reasonable structural

ensemble, the more data one can incorporate in creating the ensemble the better models one can

build. Therefore creating a platform similar to the RCSB Protein Data Bank (Berman,

Westbrook et al. 2000), solely devoted to disordered proteins, where one can have access to the

raw experimental data such as NMR chemical shifts, SAXS, RDCs to name a few, can help in

progressing the efforts to create computational structural models for many IDPs. If experimental

and computational groups are encouraged to deposit their data, it can help identify knowledge

gaps as well as encourage collaborations by generating a community. DisProt database has

already made some progress on this matter, by indexing and referencing many disordered

proteins and proteins containing disordered regions (Sickmeier, Hamilton et al. 2007). However,

it does not provide access to raw data, only reference to articles and the experimental conditions.

In order to assess the agreement with experiments we calculate predicted experimental

observables from the structure coordinates and compared those with the actual experimental

observable. For example, we used SHIFTX (Neal, Nip et al. 2003) to calculate NMR chemical

shifts and PALES (Zweckstetter 2008) to calculate NH RDCs from individual conformers.
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Errors associated with the prediction of experimental data from three-dimensional structures add

to the uncertainty in the underlying model. In particular we found that the predicted error for Ha

chemical shifts, when using SHIFTX, is on par with the chemical shift dispersion for typical

IDPs. Using these data therefore does not provide additional information in model construction

and we had to discard of it. It is therefore essential to create more accurate algorithms, thus

ensuring that one can maximize the number of experimental observations used in building the

models.
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Appendix A

Calculating the radius of gyration range from its distribution

The distribution of the radius of gyration for a linear chain non-perturbed by volume

exclusion is given by(Flory and Fisk 1966):

(1) P(R,) = A(R z) 3 exp
7 ( 

DR2 \2 q112)

Where A is a normalization constant

Using:

(2) f xnexp[-ax2 ]dx =

(2k-1)!!

2k+lak a
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We can calculate the mean radius of gyration and the mean squared radius o F gyration:
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Using the expression for the mean radius of gyration from equation (3) we find:

(5) (Rg2)0.5 = 7 s = 1.04(R)

We use the Flory power law(Flory 1953):

(6) (R) = RoNv

where N is the number of monomers in the polymer chain (in our case 140), RO is a

proportionality constant that is a function of the polymer's mean persistence length among other

things, and v is the exponential scaling factor. We obtained the values of the scaling factor and

the constant from an extensive SAXS study of 28 proteins under strong denaturing conditions,

where the best-fit values for the power law are: RO = 1.927-023A and v = 0.598 + 0.028

where the bounds represent 95% confidence intervals (Kohn, Millett et al. 2004, Kohn, Millett et

al. 2005). To extend the range for the probability distribution we chose to use the higher bounds

for the formula of the mean radius of gyration (i.e. RO = 2.198A and v = 0.626). Therefore the

calculated average radius of gyration is (R.) = 48.5A.

Sampling from the distribution in equation (1) where we use the relation in equation 7

and the calculated value for (R.), we find that the 95% percentile boundary to be 71^.
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Appendix B

Supporting figures for chapter IV
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Appendix C

List of Acronyms

BW

CD

CHARMM

CPU

DLB

DSSP

EEF1

ESR

HSQC

IDP

KL

MD

MSA

NAC

NMR

NOE

NOESY

PALES

PD

PDB

PDF

PHF6

PRE

RBC

RCSB

RDC

REMD

Bayesian Weighting

Circular Dichroism

Chemistry at HARvard Molecular Mechanics

Central Processing Unit

Dementia with Lewy bodies

Define Secondary Structure of Proteins

Effective Energy Function 1

Electron Spin Resonance

Heteronculear Single Quantum Correlation

Intrinsically Disordered Protein

Kullback-Leibler

Molecular Dynamics

Multiple System Atrophy

Non-Amyloid f Component

Nuclear Magnetic Resonance

Nuclear Overhauser Enhancement

Nuclear Overhauser Enhancement SpectroscopY

Prediction of AlignmEnt from Structure

Parkinson's disease

Protein Data Bank

Probability Density Function

Paired Helical Filaments 6

Paramagnetic Relaxation Enhancement

Red Blood Cell

the Research Collaboratory for Structural Bioinformatics

Residual Dipolar Coupling

Replica Exchange Molecular Dynamics
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RMSD Root-Mean-Square Deviation

RMSE Root-Mean-Square Error

SASA Solvent-Accessible Surface Area

SAXS Small-Angle X-ray Scattering

STRIDE secondary STRuctural IDEntification

SVD Singular Value Decomposition

TIP3P Transferable Intermolecular Potential 3P

TOCSY TOtal Correlation SpectroscopY

VBW Variational Bayesian Weighting

WT Wild-Type
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