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ABSTRACT

The purpose of this thesis project is to develop, implement, and validate a neural network which
will classify compound muscle action potentials (CMAPs). The two classes of signals are “via-
ble” and “non-viable.” This classification system will be used as part of a quality assurance mech-
anism on the NC-stat nerve conduction monitoring system. The results show that standard
backpropagation neural networks provide exceptional classification results on novel waveforms.
Also, principal components analysis is a powerful preprocessing technique which allows for a sig-
nificant reduction in processing efficiency, while maintaining performance standards. This system
is implementable as a real-time quality control process for the NC-stat.
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Chapter 1

Introduction

1.1 Company and Product

This thesis project is being researched with the help of scientists and physicians from Neu-
roMetrix, Inc. This company has created novel tools for the diagnosis of neuromuscular
disorders. Among those tools is a device called NC-Stat which is used to detect systemic

and entrapment neuropathies of the median nerve.

The NC-Stat nerve conduction monitoring system consists of a hand-held electronic
monitor, single use disposable biosensors and a docking station that communicates with a
remote information service. This device measures median nerve distal motor latency
(DML) and F-wave latency by stimulating the nerve with short, painless, electrical
impulses and detecting and processing the biopotentials evoked in the thenar muscles of
the hand. The DML and F-wave latency provide the clinician with the highly valuable
objective information to complement the history and physical examination thereby opti-

mizing patient care and decreasing associated costs.

1.2 Problem Statement

The ability to quantitatively evaluate peripheral nerve function in the point-of-care setting
(e.g. in the physicians office) has recently been advanced by the development of hand-held
nerve conduction monitoring systems such as the NC-stat. These instruments allow physi-
cians to objectively diagnose and manage common neuromuscular conditions such as Car-
pal Tunnel Syndrome, diabetic neuropathy and back pain. However, because these
instruments measure relatively complex and low-level bioelectrical signals, the probability
of acquiring non-viable signals due to noise or various artifacts (e.g. due to nerve stimula-

tion) is significant. Furthermore, because the users of these diagnostic devices are not



experts in the field of neurodiagnosis, it is the responsibility of the instrument to differen-
tiate viable from non-viable signals. This distinction is particularly important in the clini-
cal environment because misclassification of signals can lead to potentially dangerous

misdiagnoses.

Thus far, the aforementioned classification problem has been approached using tradi-
tional signal processing techniques with some success; However, these techniques require
rigorous characterizations of the universe of non-viable signals, which is a very difficult
task. An alternative approach to the algorithmic techniques, is to utilize neural networks to
learn and capture the "expert" knowledge carried by an experienced clinical neurophysiol-
ogist. It is the general aim of this research project to develop, implement and validate

such a neural network as part of the NC-stat nerve conduction monitoring system.

1.2.1 Description of Signals

Before the goals of this project can be stated, the waveforms in question must be
described in more detail. The signals acquired by the NC-stat which measure the DML
and M-wave are also known as compound muscle action potentials (CMAPs). These sig-
nals have distinct regions that follow a certain structural pattern (Please refer to Figure
1.1). The first part of the signal (0-1 ms) is characterized by an artifact region that gives no
relevant information about the DML or M-wave. After this region comes a delay region
for about 5 ms that leads to a takeoff point. This point is where the DML value is calcu-

lated. Following the takeoff is the actual M-wave continuing until about 13 ms.
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Figure 1.1: Viable Compound Muscle Action Potentials

These signals represent the viable CMAPs that can be used by the neurophysiologist.
There is a well-defined takeoff point where the DML can be calculated. However, the NC-
stat does not always produce viable signals. The following signals represent non-viable
signals that have been acquired by the device (Figure 1.2). The most common causes of
poor waveforms are that the sensor has not equilibrated to the patients skin because the
wrist was not clean, the cleansing alcohol has not dried or the test was initiated too soon

after placement of the sensor.
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Figure 1.2: Non-Viable Compound Muscle Action Potentials

These non-viable waveforms can be characterized by some subtle qualities. First, there
is no clear takeoff point for the signals, so no accurate DML can be calculated. Also, there
is clear saturation in the signals, causing discrepancies in the M-wave. This also affects the
takeoff value. Non-viable signals occur infrequently, but must be detected by the device so
that new signals can be acquired. A classification system which distinguishes between
these two types of signals can be used as a quality coﬁtrol mechanism on the NC-stat that

can potentially save valuable resources.
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1.3 Goals

The project consists of the following three specific aims:

1. Investigate, design and prototype a neural network that classifies non-invasively
measured compound muscle action potentials (CMAPs) as "viable" or "non-viable."

(Please see Figures 1.1 and 1.2) This specific aim will include the following sub aims.

* Construct and catalog appropriate training and validation databases from the existing
NeuroMetrix database of normal and pathologic CMAPs.

» Work with neurophysiologist at NeuroMetrix to define concept of CMAP "viability"
and classify CMAPs in training and learning databases.

* Define rigorous criteria for comparing performance of different implementations of
networks and network models. Sensitivity and specificity of neural network classifications
will be included among the criteria.

* Explore various network types, learning strategies and other parameters and converge
on the best implementations.

2. Engage in a detailed exploration of the best implementations obtained in specific
aim #1 with the goal of identifying the optimal neural network candidate for subsequent
real-time implementation. This specific aim will include the following sub aims.

» Thorough quantitative comparison of the best implementations.

* Definition of decision criteria.

* Application of decision criteria to determine optimal implementation.

3. Develop a real-time implementation of the optimal neural network on the multipro-
cessor NC-stat nerve conduction monitoring system. This specific aim will include the fol-

lowing sub aims.

11
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* Create a detailed system specification.

* Propose a design that will meet thespe01ﬁcat10ns N

; ifnpléinént the ciesigfl .‘ Implementatlonwﬂl :‘t‘).e subrmttedto bothk a sfaﬁc (code
feviéw) and dynamic (proceésing Qf siﬁlul;ted data} validation ﬁnd verification prior to
release. |

* Design and conduct a prospective experiment that evaluates the performance of the
NC-stat with the real time CMAP classification neural network. This experiment will
demonstrate that the network correctly classifies non-viable CMAPs which will be created
by physically (e.g. modifying the electrocherr;ical transduction gel in the sensor) or elec-

tronically (e.g. introducing an impedance mismatch) altering the detection sensor.
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Chapter 2

Background

2.1 Neural Networks

The system is being implemented with the use of neural networks. A neural network is a
massively parallel distributed processor that has a natural propensity for storing experien-
tial knowledge and making it available for use [1]. The fundamental architecture of a neu-
ral network is based upon many neurons interconnected with differént weights and
parameters. The most important property of a neural network is its ability to "learn" from
its environment. Learning is a process by which the weights and parameters of a network
are adapted through an ongoing process of stimulation by the environment in which the
network is embedded. The learning is an iterative process that depends on many different

parameters.

There are two different classes of learning: supervised and unsupervised. In supervised
learning, a neural net is "trained" or "learned” with a set of training data and output using
one of many different types of training algorithms [1]. Then the resulting trained network
is tested with other test data in order to evaluate its performance. This process is iterated
until a desired performance is established. Some parameters which the training and learn-
ing depend on are the size and variety of the training data, the size of the neural net, the
learning algorithm used, and the resemblance of the test data to the training data. The dif-
ference with unsupervised, or self-organized learning, is that there is no external teacher to
oversee the learning process. There are no specific examples of the function to be learned
by the net. Unsupervised learning algorithms perform clustering of the data into similar

groups based on the features or measured attributes serving as input to the network [2].

13
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Both supervised and unsupervised pattern classification can be performed by neural net-

works.

The architecture of the neural network is a vital characteristic which must be chosen
carefully. This architecture will be dlfferent dependmg on the kind of tra1n1ng (supervrsed
or unsupervised) selected Superv1sed pattern classrﬁcatron is often accomphshed by
means oi a feedforward architecture like a hackpropagation network. This is the architec;Q

ture that W111 be prrmarily mvestrgated for th1s problem due to 1ts popularrty and proven

§ e

"effectrveness Backpropagatron refers to the ad]ustment of the Werghts of a net in order to

reach an optimal output (i.e. minimize the error). |

The topology‘ of a nenral network refers to the number of hidden layers ‘(excluding
input and output 1ayers) and the number of 'neurons bper layer (see Figure 2.1). Determin-
ing the number of layers and neurons for a network is similar to picking which training
algorithm to use. Backpropagation networks require the investigator to guess the number
of hidden units that will be adequate to solve the problem. It is usually an iterative process
in which the number and sizes of the layers are varied until an optimal solution (if one
exists) is found. The general rule of thumb is that each hidden layer in a network correlates
to one feature of the input. For example, if a net contained two hidden layers, then the net-
work is probably extracting two features from the input. There are many trade-offs that
must be considered when choosing an architecture for a neural network. The larger a net-

work becomes, the more training and processing time that the network requires.

The training algorithm is another important' aspeet to the creation and performance of
a neural network. Many training algorithms already exist and have been proven to provide
good results for specific problems. The training algorithm is what determines how the
weights are adjusted during each pass of the traininglof n backpropagation network. Some

algorithms, such as batch training and gradient descent training, use very simple

14



approaches to weight adjustments. Others, like the Quasi-Newton method, involve sophis-
ticated algorithms whose ultimate goal is to minimize the error of the projected outputs
from the actual outputs [1]. Choosing which training algorithm to use for a particular
problem, pattern classification in this case, is usually based on a trial-and-error basis.

There is no specific training algorithm that works well for a problem.

Hidden Layers

Input Output

Figure 2.1: Neural Network

2.2 Principal Component Analysis

Another common statistical technique, principal component analysis (PCA), can be
appiied to this pattern classiﬁcétion problém. PCA is an 6rdination method whose goal is
to reduce the dimensionality of a set of data. PCA is often used as a preprocessing tech-
nique to inputs for neural networks to solve these types of problems. Since the dimension-
ality of the input (CMAP) in this problem is a vector composed of 128 points, it would be
beneficial to reduce the number of dimensions while maintaining the same vital character-
istics of the data.

The principal components of a set of data are found by first forming the covariance (or

correlation) matrix of a set of patterns and then finding the minimal set of orthogonal vec-
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tors that span the space of the covariance matrix. Once the basis set has been found, it is
possible to reconstruct any vector in the space with a linear combination of the basis vec-
tors. So the principal components are vectors that maximize their linear correlation with

all other variables. They summarize the general variation in the data.

2.3 Why Neural Networks

Neural networks are universal approximators, and they work best if the system you are
using them to model has a high tolerance to error. They work very well for capturing asso-
ciations or discovering regularities within a set of patterns where: the number of variables
or diversity of the data is very great; the relationships between variables are vaguely
understood; or, the relationships are difficult to describe adequately with conventional

approaches.

Depending on the nature of the application and the strength of the internal data pat-
terns, a neural net is generally expected to train quite well. This applies to problems where
the relationships may be quite dynamic or non-linear [2]. Neural networks provide an ana-
lytical alternative to conventional techniques which are often limited by strict assumptions
of normality, linearity, variable independence etc. Because a neural net can capture many
kinds of relationships it allows the user to Aquickly and relatively easily model phenomena

which otherwise may have been very difficult or impossible to explain otherwise [2].

The appeal of neural networks as pattern classification systems is based upon several
considerations. They appear to perform as well or better than other classification tech-
niques and require no assumptions about the nature of the distribution of the input data. A
comparison of neural networks to classical methods, like K-nearest neighbor and discrim-
inant analysis, has shown that neural networks can achieve equal or better performance

using a much smaller set of training data.
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2.4 Related Research

Much research has been completed in the area of neural networks and pattern classifica-
tion. The most commonly cited applications of neural networks can generally be termed as
classification problems. Even though this precise problem has never been explored, other
classification problems can be related closely. These problems range from the field of
medicine to the world financial markets. Here are a few examples of problems involving

the classification of bioelectrical signals with the use of neural networks.

Studies have been completed regarding the usefulness of neural networks in medical
diagnostic applications. In a paper written by Chappell, Lee, and Taylor [4], a comparison
was made between neural network solutions versus traditional statistical methods in the
classification of somatosensory evoked potentials. In this particular problem, quantitative
studies and heuristic insight led to the definition of four distinct classes of the potentials.
“Benchmarking neural network solutions against statistical techniques has been under-
taken and the results seem favorable.” This was concluded from the results of the classifi-
cation problem involving these somatosensory evoked potentials recorded from patients
with severe head injuries. The results indicated that the classification was system was suc-
cessful 77% of the time, which was greater than that of any other statistical technique.

A very similar problem to classification of CMAPs is that of ECG Beat Classification,
researched by Hu, Mani, Palreddy, and Tompkins [5]. The classification of these beats has
been a difficult problem due to the large dimension of the feature space and significant
overlap between class boundaries. The approach used in this paper involved the use of
feedforward networks along with Self Organizing Maps (SOM). The feature space was
divided into several regions and individual classifiers were developed for each region sep-

arately. An architecture was proposed which yielded classification percentages in the high

17



P e T -

sedaa

b wed edbiokodesals

to mid-nineties. This paper shows that classification of the ECG beats using feedforward
neural networks was a viable and successful apprqach. “

fhe classification of Visuél Evoked Potentials (VEP) by feedforward neural networks
was studied by Dorronsoro, Gonzalez, Lopez, and Siguénza [6]. VEP have served for the
discrimination between normal and pathological stages, or early detection of diseases such
as multiple sclerosis, hypothyroidism, aﬁd aging relateci problems. The object of the study
was to classify the VEP into two different categoriés. The VEP were acquired from exper-
iments performed on rats. The two classes of signals were control and hypothyroid rats.
The feedforward network created consisted of two hidden layers that classified with a 71%
success rate. This was superior to the 65% classification rate achieved by the human

experts.
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Chapter 3

Experiments and Results

3.1 Research Specifications

MATLAB provides a neural network toolbox that makes it easy to create and simulate vir-
tually any type of neural network. Most of the research (training and testing) was con-
ducted using this robust toolbox. It is a powerful toolbox which is easy to use with a prior

knowledge of MATLAB commands.
3.1.1 Data Sets

In order to have trained and tested the neural networks thoroughly, it was imperative to
obtain viable data. The data sets for this project are split into two categories: non-viable
and viable CMAPs. The data sets with viable CMAPs were constructed from studies com-
pleted by Dr. Shai Gozani at NeuroMetrix. The non-viable signals were carefully con-
structed from filtered white noise. These sets grew enormously over the course of the
entire project. Initially, there were only 60 unique viable signals to train and test with.
Towards the end of the project, there existed three different sets of data from different
studies totalling around 1200 acceptable CMAPs.

The abnormal CMAPs were easier to gather since this set consisted of signals that
didn’t resemble the normal CMAPs to any degree. At first, the set was composed of only
band-limited white noise with the same power spectrum as the initial 60 normal CMAP
data set. The band-limited white noise was an effective way to approximate non-viable

signals since none were available at the time. The size of data set of band-limited white

noise was unlimited, yet all of the signals were limited to the same power spectrum to that

19
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of the viable signals. Also, the signals were scaled randomly according to amplitude statis-
tics of the viable data set. The distribution amplitudes of the viable CMAPs was acquired
and the noise was scaled randomly using this d1str1but10nThls was a true unbiased Samplé
that represented the entire universe of possible non-viable CMAPs (See Figure 3.1). As
more data was recorded, more non-viable signéls recorded from the device became avail-

able.

Filtered Noise Signals

Figure 3.1: Diagram of Signals

Each data set was systematically labeled and stored in text files for easy access. It was
necessary to develop a systematic approach to construct and catalog these data sets. As
more data became available, it became more difficult to tfack and update the data sets, so a
standard technique was valuable for maintaining the data. Once the data was obtained, it
was also helpful to use the expertise of neurophysiologists to categorize the signals. As the
data sets grew larger, distinguishing between viable and non-viable CMAPs became more
difficult. Thus, an expert was needed to help classify such signals and other signals already

existing in data sets.

20



As mentioned before, the construction of the training and validation sets are very criti-
cal for the performance of a neural network. In general, most of the viable CMAPs look
alike in appearance. This made it easy to pick signals for training versus testing. A random
process separated the signals into two different groups. The next question to be answered
was how many signals to choose for training. This depended on how many signals were
available. In the beginning of the research, very few viable signals were in the database, so
the both the training and testing sets were limited in number. However, once this data set
became larger, it was difficult to pinpoint the ideal number of signals to achieve the opti-
mal solution. This was again an iterative process where the number of signals in the train-
ing set were varied and corresponding results were assessed (this is evident in the results
below). The same method was applied for the non-viable (band limited white noise) sig-

nals.

3.1.2 Evaluation of Neural Networks

When a backpropagation neural network is trained with this MATLAB toolbox, the
number of epochs must be specified. The epochs refer to how many passes (back and
forth) the training algorithm makes adjusting the weights of the c'onnections in the net-
work. After each epoch, a mean-squared error (MSE) is calculated using the target output
values and the actual output values of the network at that point. The object of training a
neural network would be to minimize this particular error. However, a lower MSE does not
necessarily mean that the network performs better. Another issue to consider is the possi-
bility that the training leads to a local minimum error (i.e. a solution only for a certain part
of the problem) instead of reaching to a global minimum. If the MSE is high and does not
change after training for a few epochs, then the training has most probably led to a local

minimum.

21



'The evaluation of the neural networks is based on sensitivity and specificity on the test
data sets. These two performance criteria rely on statistics produced by the testing sets.
The statistics can be broken down as true positives (TP), false positives (FP), true nega-
tives (TN) and false negatives (FN). Sensitivity is the percentage of true CMAPs that are
correctly detected (Sens = TP/»(TP+FN‘))k.' These statistics were available from the results
of the viable CMAP validation set. Speciﬁcity is the fraction of non-viable CMAPs
detected as false CMAPs (Spec = TN/(TN+FP)). The specificity was determined from the

results of the non-viable CMAP test set.

Each of the signals in the training set was trained with a set of target values. Since
there are only two sets of signals to categorize, it was obvious to train one set to achieve a
value of zero and the other set to target the value of one. This way it was easy to distin-
guish how the signals were classified in the validation data sets. However, some of the val-
1dat10n 31gnals produced outputs in the entire range of zero to one. This made it necessary
to create some method of clas31fy1ng these s1gnals whrch vwere categonaed 1nktheﬁ Mmld-
dle.” Therefore, a cutoff had to be estabhshed for classrﬁcation of the validation CMAPs
and noise. In1t1ally this cutoff was set toa predeﬁned value (0.7), and all of the networks
were evaluated with sensitivity and specificity measurements using this cutoff value. How-
ever, as the research progressed, a more effective method was used to evaluate the perfor-
mance of the netoworks. This evaluation technique involved the use of ROC curves to
determine the most optimal cutoff value.

Receiver Operating Characteristic, or ROC, analysis can be used to compare the per-
formance of classifiers when prior probabilities of occurrence and/or costs of misclassifi-
cation are either unknown or varying [2]. The ROC curves for this problem are made up of

sensitivity and specificity readings for different values of the cutoff. If the cutoff is
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changed for a particular network, then the performance of the network should change
accordingly. This evaluation technique allows for the determination of the optimal cutoff
for a particular neural network, depending on which performance value (sensitivity or
specificity) needs priority. Ideally, one would want both criteria to approach unity. How-
ever, trade-offs must be made. Among these criteria for the classification of CMAPs, sen-
sitivity is considered most critical. This is because missing a valid CMAP would be more
expensive and time-consuming than missing an invalid signal. ROC analysis can be used
to easily and robustly assess the performance of all classifiers, whether they are neural net-
works or statistical models.

The entire analysis was performed in MATLAB. The toolbox allowed a simple way to
record and test the neural nets that were created. If the net produced acceptable results,
then the neural net was saved and tested with other data sets as they became available. The
evaluation of each network included a ROC curve and corresponding sensitivity/specific-

ity readings.
3.2 Phase One Results

The research was performed in two separate phases. The first phase (performed before the
proposal for this project was written) tried to narrow the possible types and sizes of neural
nets that could solve the problem. The next phase tried to pinpoint the most optimal struc-
ture and actually implement the network in a real-time environment. The results are pre-
sented in tables which give the different neural network architectures and corresponding
performances on the test data. Each row of the table gives the parameters for that particu-

lar network.

23



The first phase of the research started with an initial set of sixty viable signals. The set
of non-viable data was created (as mentioned above) from white noise which was filtered,
yielding signals that had the same power spectrum as that of the viable signals. The filter
was created using the power spectrum of the viable data set. The next step was to identify
how to split up the data sets into training and testing portions. Since only sixty viable
CMAPs were available, the initial training set consisted of thirty randomly chosen viable
CMAPs and fifty random noise signals as non-viable CMAPs. More noise signals were
used in training because of the broadness of the spectrum of non-viable signals. The argu-
ment was that if more non-viable signals were included in training, then this would give a
better representation of the possible non-viable CMAPs to the network. Since the viable
CMAPs looked very similar to each other, the number of valid signals for training should

not matter as much.

The next task to complete was to identify the relative size of the neural networks that
would be needed to correctly classify these CMAPs. This was a trial and error session
where many different layers and sizes of networks were trained. The input to every net-
work was 128 points representing the signal. The output was a single value computed by a
sigmoidal transfer function that limited the range from zero to one. The number of hidden
layers and neurons per layer were essential parameters that were varied during this study.
Another parameter explored in this phase was the training algorithm. The factors used to

assess the algorithms were training time (slow or fast) and performance of the network
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(MSE, sensitivity, specificity). Table 3.1 summarizes the findings of this phase of the

research (these were standard backpropagation feed-forward neural networks):

# qf Neurons in Traiqing MSE Siz_e of Sensitivity/
Hidden Layers | Algorithm Training Set | Specificity
5 BFG 0.098 80 (30/50) 0.6/0.8
8 DA 0.006 80 (30/50) 0.9/0.8
10 LM 0.088 80 (30/50) 0.7/0.83
40 RP 0.089 80 (30/50) 0.8/0.83
10,3 LM 0.037 80 (30/50) 0.9/0.8
10,3 DX 0.056 80 (30/50) 0.83/0.93
8 DX 0.007 80 (30/50) 0.97/0.73
8,2 LM 0.058 130 (30/100) 0.75/0.9
10 SCG 0.009 130 (30/100) | 0.96/0.91
10,3 DX 0.024 130 (30/100) 0.9/0.85
10,5 DX 0.011 130 (30/100) | 0.92/0.91
12,5 DX 0.007 130 (30/100) | 0.99/0.89

Table 3.1: Phase One Results

The table can be interpreted as follows:

* The first column describes the topology of the network. The values répresent the
number of neurons in ea;:h hidden lay¢r af there are two values, then that netwqu has two
hidden layers).

* The second column tells which training algorithm was used. BFG = BFGS quasi-
Newton backpropagation; DA = gradient descent with adaptive learning rate; LM = Lev-
enburg-Marquardt backpropagation; DX = batch training with momentum and variable
learning rate; SCG = scaled conjugate gradient training; RP = resilient backpropagation

* The third column gives the final mean-squared error value after training.

25
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« The fourth column is the number of signals used for training. It is further broken
down by how many were viable and how many were non-viable (viable/non-viable).

* The final column gives the sensitivity and specificity readings of the network on the
test sets, Whicﬁ are the same sizes as the training sets.

3.21 Analysis of Phase One Results

Many conclusions cbuld Be drawn from these results:

* The number of neﬁroris for the bestvpf-:rf(’)nnin.g networks were in the ten to twelve
range. Also, two hidden layers seemed to do better than a single hidden layer on average.

* As far aé training algﬁ)ﬁthm; the DX (batch training with momentum and variable
learning rate) aigorithm achieved the best performance in terms of speed and sensitivity/
specificity. This algorithm trained in the smallest amount of time compared to SCG, LM,
and RP. It also produced some of the best performance numbers. This algorithm is a sim-
ple gradient descent training, or .

* MSE did not really factory i.nfo the evaluation process, since most of the errors were
significantly small (as suspected earlier) and there Waé no correlation between é sméll
MSE and ifnpfOVéd peffoﬁﬁahbé. ‘

* As the number of non-viable signals increased in the training set, performance of the
networks tended to improve.

* For the better performing networks, both thé sensitivity and specificity values seemed
to lie in the same ballpark (i.e. there was not much trade-off if one value was preferred

over another).
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These findings are based on a consistent cutoff value of 0.7. This was because ROC
analysis was introduced in the next phase of the research. The 0.7 value was arbitrary and

seemed to give the most optimal performance numbers for every network.

These results gave a very good impression of the type and topology of neural network
that should be used to solve this classification problem. This was a good start to the next
phase of the research, where the most optimal network was explored and implemented in a

real-time system.

3.3 Phase Two Results

This phase of the research attempted to pinpoint the exact topology of a neural net-
work that would perform best in the classification of viable compound muscle action
potentials. Also, this presented an opportunity for other techniques and parameters to be

explored and analyzed.

3.3.1 Backpropagation Networks

One important aspect of the evaluation of the networks added in this phase was the
ROC analysis. This allowed for an optimal cutoff value to be chosen for each separate net-
work. Also, the DX training algorithm was isolated in this part, due to the positive results
from the first section. This gave for the opportunity to study this specific algorithm in
depth. The first series of networks trained were an extension from the previous phase of
research. Every net was a fully connected backpropagation network with two hidden lay-

ers of varying size. Here are the results of this set of networks:
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# of Neurons in

Learning

Hidden Layers Rate Cutoff Value Sensitivity Specificity
10,5 0.03 0.7 0.93 0.84
10,5 0.02 0.7 0.93 0.90
10,6 0.02 0.7 0.95 0.87
10,6 0.015 0.9 0.90 0.92
11,4 0.03 0.8 0.94 0.86
11,4 0.03 0.9 0.87 0.92
11,4 0.025 0.8 0.91 0.89
11,5 0.035 0.7 0.91 0.94
11,5 0.035 0.8 0.86 0.96
11,6 0.02 0.7 0.93 0.92
11,6 0.02 0.8 0.91 0.95
12,4 0.02 0.6 0.85 0.92
12,4 0.02 0.5 0.93 0.86
12,5 0.04 0.5 0.94 0.90
12,5 0.04 0.6 0.91 0.92
12,5 0.04 0.7 0.90 0.94
12,6 0.02 0.7 0.93 0.90
12,6 0.02 0.7 0.92 0.92
13,4 0.02 0.6 0.93 0.91
134 0.02 0.7 0.92 0.93
13,5 0.03 0.7 0.93 0.92
13,5 0.03 0.8 0.89 0.95
13,6 0.04 0.5 0.93 0.90
13,6 0.04 0.6 0.92 0.93

Table 3.2: Phase Two Results

28




Additional viable data was obtained from studies for this phase of the research. The
viable CMAP set included over 260 signals. This table does not include a MSE column
due to its insignificance in the network evaluation process. Instead, there are columns for
the initial learning rate value and cutoff value for each network. There are many redundant
network topologies because either one of these parameters is varied for each network.
Another column that is excluded from Table 3.2 is the number of signals in the training
set. In this series of networks, the training set was kept constant at 40 viable and 40 non-
viable CMAPs. However, the sizes testing data sets were dramatically increased. The via-
ble CMAP test set consisted of 222 signals and the non-viable test set was composed of
460 noise signals. The validation sets were large in order to thoroughly test the robustness

of the networks.

The learning rate was an important characteristic to keep track of for this set of net-
works because the training algorithm was DX. Since DX varies the learning rate through-
out the training process, it could be hypothesized that the initial learning rate could have
an effect on the outcome of the neural network. However, from the results shown above,
there is no correlation between setting a particular initial learning rate and better perfor-
mance of the network. This means that the leamning rate varies so much during training
that it didn’t really matter what the initial learning rate was.

The cutoff value was noted for each network trained. From the data, it could be gath-
ered that as the cutoff was changed, trade-offs had to be made between sensitivity and
specificity values. For example, rows five and six (with the [11,4] sized hidden layers)
compare the same neural network, but with different cutoff values. The network from row
five produced a slightly better sensitivity, whereas the network from row six gave a higher
specificity. This showed that the same network can be used to prioritize either sensitivity

or specificity based on which cutoff value is chosen. This was also evident from the ROC
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curve produced by this particular network (See Figure 3.1). This curve plots specificity
versus sensitivity for all cutoff values and gives a detailed visual representation of the

ROC analysis.

Figure 3.2: ROC Curve (Each diamond represents a cutoff value from 0-1)

ROC Curve — [11,4] Network with Learning Rate = 0.03
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~The overal-i gohclusion vt‘hat could,beyd»rgwgiffl_rqu this set pii‘resuits ,‘W,?‘S‘t,:h@‘t. ‘r-r;los.t of
these networks provided adequate p¢rfo’1>'m:'<1nc.<?e‘.‘ It was _]ust a matter of vwhich. topplggy
was prgferred over another (this will be discussed further inkthe Chapter 4). Also, the
hypothesis from the earlier phase thatj more nop-viablg signals in the training set will lead
to better performance was proved wrong with these findings.
In the next series of networks, the size of the training set was increased from 80 wave-
forms to 120 (60 viable and 60 non-viable). This experiment was performed to explore the
possibility of better performance due to an increase in the number of total training signals.

The results are shown in Table 3.3.
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ggi?ﬁg:; Le&;rtling Cutoff Value Sensitivity Specificity
11,6 0.02 0.6 93 90
11,6 0.02 0.7 93 90
11,6 0.02 0.8 87 94
11,6 0.03 0.4 94 84
11,6 0.03 0.5 94 87
11,6 0.03 0.6 92 89
11,6 0.03 0.7 91 91
12,5 0.03 0.5 92 87
12,5 0.03 0.6 91 89
12,5 0.03 0.7 89 93

Table 3.3: Phase Two Results

Only a few topologies of the networks were trained in this session. It was clear that
increasing the training set did not have a significant positive effect on the sensitivity and
specificity values. In faét, this seemed to decrease the values in some cases. Since the
smaller training sets required less time to train, it was more beneficial to have a smaller
training set.

3.3.2 Backpropagation Networks with Principal Components Analysis

Up to this point in the research, no preprocessing techniques had been applied to the
inputs (CMAPs) of the neural network. Since each CMAP consists of 128 elements, it was
reasonable to assume that some sort of processing could reduce this size, while maintain-

ing the important traits of the waveform.
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As mentioned in section 2.2, principal components analysis (PCA) is a popular tech-
nique used to reduce the dimensionality of vectors. This analysis transforms the input data
so that the elements of the input vectors will be uncorrelated. In addition, the size of the
input vectors may be reduced by retaining only those components which contribute more
than a specified fraction of the total variation of the data set [3]. In order to perform a cor-
reet PCA analysis, the entire set of data must be normalized such that the mean of zero and
a standard deviation of one. Once the nonr%elization is completed, a fraction»rvnust be spec-

ified to limit the number of principal cbmpenente. ‘

The routine in MATLAB which performs the PCA analysis uses singular value
decomposition to compute the principal components. The input vectors are multiplied by a
matrix whose rows consist of the eigenvectors of the input covariance matrix. This pro-
duces transformed input vectors whose components are uncorrelated and ordered éccord—
ing to the magnitude of their variance. Those components which contribute only a small
amount to the total variance in the data set are eliminated [3]. However, MATLAB places
a restriction on the data that must be processes (the training set). The number of signals
must be greater than the number of elements in the signals. Hence, the trainihg set size had

to be greater than 128.

Principal components analysis was implemented in the next series of experiments‘ as
preprocessing for the training set. The only parameter for this processing was the variation
percentage, or the number principal components to be calculated for the data set. As this
percentage was varied, the number of components fluctuated. For example, processing the
training set (composed of 70 viable and 70 non—vieble CMAPe) vwith a 95 percent reten-

tion of the variance of the data (or only those components which contribute more than five
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percent to the variance in the data set) produced six components. Therefore, the dimen-
sionality of the input to the neural network could potentially be reduced from 128 ele-
ments to only six elements. This represented a significant reduction and added the
possibility of PCA to aid in the classification system.

Table 3.4 presents the results from neural networks trained with preprocessed input

data.using various values of principal components.

Components (%) | # of Neurons Cutoff Sensitivity Specificity
6 (95 %) 0 0.9 0.88 0.89
6 1 0.9 0.88 0.89
6 3 0.5 0.90 0.93
6 4 0.9 0.94 0.93
6 5 0.8 0.93 0.92
5 (93 %) 0 0.8 0.88 0.90
5 1 0.8 0.88 0.90
5 2 0.8 0.90 0.87
5 4 0.6 0.94 0.94
5 5 0.7 0.91 091
4 (91 %) 0 0.5 0.90 0.87
4 1 0.7 0.89 : 0.87
4 2 0.5 0.94 0.78
4 3 0.7 0.91 0.95
4 4 0.5 0.92 0.95
4 5 0.6 0.94 0.95
3 (89 %) 5 0.5 0.83 0.86
3 6 04 0.88 0.90

Table 3.4: Phase Two Results
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The first column represents the number components in the input to the network along
with the corresponding percentage used in the PCA calculations. All of the networks only
contained one hidden layer, whose size is noted in the second column of the table. For
each network, only one cutoff value is listed because it was chosen as the most optimal

cutoff in terms of sensitivity and specificity values.

n-component
signa
Feedforward
INPUT
SOA Neural Net w/ OUTPUT
; 128 element : 1 hidden layer
signal

Figure 3.3: Diagrani of Neural Nets with PCA experiments

The results from this series of experiments was astonishing. The sensitivity and speci-
ficity values for all the networks trained matched or beat the networks with no prepro-
cessed inputs. Both the sensitivity and specificity values reached the mid-nineties, a feat
yet to be accomplished by the earlier experiments. Only one hidden layer was used in the
neural network because it was hypothesized that the principal components ahalysis would
basically “act” as a layer in the network. However, the PCA seemed to perform much bet-
terthan a layer by comparmg theseresults to the earherresults It v<>:vo.u1d alSo be seen.that
as the number of cbmponents decreased from the PCA, the performance of the network

also steadily decreased. This is confirmed by the fact thét PCA usually becomes less effec-
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tive on the data as the number of components decreases. (Additional discussion is pro-

vided in Chapter 4).
3.3.3 Unsupervised Neural Networks

As a additional experiment, unsupervised neural networks were trained with this data
to compare against the supervised training methods (please see section 2.1 for a discussion
on supervised vs. unsupervised training). It has been noted in academia that unsupervised
training tends to perform better than supervised training. All of the previous results were
accumulated from supervised training. Unsupervised learning is also known as competi-
tive learning.

The basic way to train an unsupervised network is to present the training data without
any target values. This allows the network itself to classify the signals the best way it
seems fit. The only parameter to be specified is the number of categories for the data to be

separated into. The training set was kept constant at 60 viable and 60 non-viable CMAPs.

Here are the results with two categories

Category 1 Category 2
Training Set 57 3
Test Set 187 15

Table 3.5: Viable CMAPs with 2 Categories

Category 1 Category 2
Training Set 16 44
Test Set 119 321

Table 3.6: Non-Viable CMAPs with 2 Categories
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Table 3.5 presents the results from the viable CMAP data sets. This showed that the
network could recognize a viable CMAP and categorized most of them into the first cate-
gory. However, the findings from the neit table seemed to show that this was not exactly
true. The network also classified many of the non-viable CMAPs into the first category.
This result, although not disastrous, left much doubt that unsupervised training could out-
perform supervised training. |

Training with three and four categories was also explored during this analysis:

Category 1 Category 2 Category 3
Training Set 7 53 0
© | Test Set 35 162 5
Table 3.7: Viable CMAPs with 3 Categories
Category 1 Category 2 Category 3
Training Set 19 10 31
Test Set 133 76 231

Table 3.8: Non-Viable CMAPs with 3 Categories

Category 1 Category 2 Category 3 Category 4
Training Set 0 51 9 0
Test Set 4 142 53 3
Table 3.9: Viable CMAPs with 4 Categories
Category 1 Category 2 Category 3 Category 4
Training Set 23 8 7 22
Test Set 146 54 63 177

Table 3.10: Non-Viable CMAPs with 4 Categories
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These numbers also supported the data from the previous page that the classification
scheme works well for the viable waveforms, but performs inadequately for the non-viable
signals. The unsupervised training was performed to provide a comparison for the super-

vised training and also to provide more insight into the training.
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Chapter 4

Discussion and Conclusion

4.1 Analysis of Results

From the results summarized in the previous chapter, it can be seen that many ade-
quate solutions have been proposed to the classification of compound muscle action poten-
tials. However, the main question that must be answered is which solution provides the

best and most efficient performance?
4.1.1 PCA versus no PCA

The critical issue in determining an optimal solution is whether preprocessing using
principal components is advantageous for the performance of the neural network. This
issue requires a more in-depth analysis of both solutions and other factors, such as real-

time implementation, must be heavily considered.

In order to make a true comparison between the two methods, specific networks must
be chosen from both techniques (Tables 3.2, 3.4). The network chosen from the non-PCA
technique (Table 3.2) contains two hidden layers with 12 and 6 neurons, respectively. The
network chosen with PCA preprocessing (Table 3.4) contains an input of 5 components
and one hidden layer of 4 neurons. Both of these networks perform very well with the test
data. The network with PCA performed slightly better (compared with only sensitivity and
specificity values) than the other net (See Figures 4.1 and 4.2 for a comparison of the
respective ROC curves).

One way to compare these two networks is to evaluate how much work the PCA is

actually performing compared to one hidden layer of a neural network. This analysis can
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be done by creating a network that has the same structure as the network utilizing the

PCA, but performing no preprocessing at all. The results are shown in Table 4.1.

# ?:H:;:rin # ;g:ilrlzl;zrin Cutoff Sensitivity Specificity
5 4 0.6 0.64 0.69
5 5 0.5 0.65 0.60
6 3 0.6 0.80 0.81
6 4 0.7 0.77 0.72

Table 4.1: Neural Networks with no Preprocessing

From the results in the previous table, one can see that the principal components anal-
ysis actually executes a more thorough reduction of the input vectors than a normal hidden
layer of a neural network. The PCA is extracting more information out of the input than a

hidden layer of equal size in the number of neurons.

There is another advantage to using a network with PCA preprocessing. The input to
the network is much smaller. The network without preprocessing consists of an input of
128 elements, which is significantly larger than only six inputs. However, this advantage
comes with the cost of actually performing the principal component analysis to each input

of the network.

An important comparison that must be made is the number of floating point operatioris
(FLOPs) that are performed by each network. This is vital to the implementation of the
network on a real-time system because it dramatically affects the evaluation and process-
ing time. Since the network that utilizes the PCA is much smaller in terms of connections
and operations, it is obvious that this network will compute the least number of FLOPs

when classifying a waveform. To be precise, there is a 98.4 percent reduction (24 vs.
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1536) in the number of FLOPs when using PCA. This translates to an enormous decrease

in the processing time for the neural network, with no loss in performance.

Overall, the network that utilizes the PCA tends to have many more advantages than
the network with no preprocessing. It performs much less FLOPs and gives a better per-
formance rating in terms of sensitivity and specificity values. Even though there is some
overhead for performing the PCA on the input vector, it is minimal compared to the

advantage in performance that is gained.

4.2 Implementation

Due to the advantages discussed above, the network employing the PCA was chosen
for the implementation onto the NC-stat device. The chip on the device has some limita-
tions, such as 4K RAM and 128K code-space. However, this is enough space to write C
code which simulates this particular neural network (Please see Appendix A). The input to
the code is a 128 component vector and the output was a 1 or 0, specifying whether the
signal is viable or not. All parameters, such as cutoff value, PCA matrix values, and neural
network weights are constants which can be easily altered for future networks. The code
performs the PCA on the input and processes the resulting vector with the neural network
to produce an output.

Even though significant results have not been collected for the implementation at this
point, early results indicate that the implementation is performing quite well with real-
time data. The early results show that the system correctly classifies viable waveforms at

about 100 percent. However, there is not enough data to evaluate the performance of this

system on non-viable waveforms. These results indicate that implementation of this sys-
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tem on the processor can provide an accurate, real-time quality control mechanism to

detect non-viable CMAPs.
4.3 Conclusions

The research and experiments performed for this thesis project have uncovered significant
results that have not been documented in neural network classification systems for these

types of waveforms. These conclusions can be summarized as follows:

* Backpropagation neural networks provide more than satisfactory performance in the

classification of compound muscle action potentials.

- » Principal component analysis is a substantial preprocessing technique which signifi-
cantly increases the performance of the classification system.

-+ This systém, which employs PCA ‘al‘ong‘w‘itl"'n the néﬁral network processing is a
highly robust and implementable module whichv can serve as an dependable quality assur-
ance mechanism.

These three conclusions are realized and supported by the results found in this thesis
project. As a whole, these will benefit future studies in classification systems and provide
for an accurate, reliable, and efficient real-time quality assurance for CMAPs on the NC-

stat nerve conduction monitoring system.
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Appendix A

Implementation of Neural Network System in C

#include <math.h>
#include <stdio.h>

#define Components 4
#define Neurons 5
#define CutOff 0.6

void main()

{

float waveform[128] = {}; /* input signal */

float TransMat[Components][128] = {}; /* transformation matrix for PCA */

const float Weightsl[Neurons][Components] = {-0.6569,-0.1151,0.7364,0.1997.-
0.3516,0.1908,0.3209,-3.9678,-0.1910,-0.2028,0.1445,0.0481,-0.7301,0.4180,0.3342 -
3.4112,-1.2722,0.6372,0.6512,-0.2259}; /* Network weights for layer 1 */

const float Weights2[Neurons] = {-4.3996,5.6339,-0.9494,-5.5742,-0.3925};
/* Network weights for layer 2 */

const float Biases[Neurons] = {4.3907,3.2281,1.0915,-1.8211,-2.0014};

/* Bias values for layer 1 */

const float LastBias = -0.6951; /*Bias value for layer 2 */

const float Means[128] = { }; /* normalization values */

const float Stdevs[128] = {};

int i,j;

float output,f1;

float trans[Components];
float layer1[Neurons];

/* normalize the input */
for 1=0;i<128;1++) {
waveform[i] = (waveform[i] - Means[i]) / Stdevs[i];

}

/* transform input using PCA */
for (i = 0; 1 < Components; i++) {
f1=0;
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for (j =0;j < 128; j++) {

f1 = f1 + TransMat[i][j] * waveform[j];
}
trans[i] = f1,

}

/* process with the neural network */
for (i = 0; i < Neurons; i++) {
for (j = 0; j < Components; j++) {
layerl{i] = layer1[i] + Weights1[i][j] * trans[j];
}
layerl[i] = layerl[i] + Biases[i];
layerl[i] =2/ (1 + exp(-2 * layerl[i])) - 1;
output = output + layer1[i] * Weights2[i];
}

/* compute output */
output = 1/ (1 + exp(-1 * (output + LastBias)));
printf("%6.4f" ,output);

}
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