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Abstract

This study addresses, within the framework of modern continuum mechanics, the
existing "first order" constitutive models for finite deformation elasto-plasticity.
Currently available theories are presented in a unified and comprehensive review
and non-trivial consequences of the basic hypotheses are explored.

Extension of the classical infinitesimal theory of plasticity to the large deforma-
tion range requires three fundamental steps: the selection of the underlying finite
strain elasticity theory, the choice of a pair of stress and strain measures and the
appropriate characterization of plastic flow.

A comparison is made between related hyper-elastic and hypo-elastic stress-strain
laws. Theoretical and practical advantages and disadvantages of the use of these
theories in the formulation of elasto-plastic constitutive equations are discussed.

Large strain plastic flow can be modeled via the product decomposition of the defor-
mation gradient or via the additive decomposition of the strain tensor. Constitutive
equations based on the latter approach are shown to restrict the choice of strain
measure to the Hencky strain and to present plastic-strain induced anisotropic elas-
tic response.

Based on the previous considerations, a hyper-elastic based constitutive model for
large deformation elasto-plasticity based on the product decomposition of the de-
formation gradient is presented. A time integration algorithm is developed and
implemented. Comparison is made with an equivalent constitutive model based on
the additive decomposition of the strain tensor. The two theories are shown to pre-
dict very similar results within the range of applicability of an isotropic hardening
model.

Thesis Supervisor: Dr. Klaus-Jfirgen Bathe
Title: Professor of Mechanical Engineering
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Introduction

Constitutive modeling of elasto-plastic materials in the finite deformation range

has received considerable attention over the past years. The availability of powerful

computers and efficient finite element techniques have made feasible the solution of

large scale finite deformation problems, thus increasing the demand for more realistic

and accurate models.

The formulation of constitutive equations with good predictive capabilities presents

difficulties arising from many sources. Even in the small strain limit the phenomeno-

logical experimental database is so rich that no simple model accounts for the observed

behavior. However, first-order approximations are well established, as in the case of

the classical infinitesimal theory of plasticity.

Extensions of the isotropic and kinematic hardening theories to the large strain

range are not straightforward, and a number of alternative choices, all having identical

"small strain limit", can be made. Basic questions arise about the proper kinematic

description of plastic flow, the characterization of the underlying elastic behavior, and

the choice of adequate stress and strain measures among other relevant issues.

It is the purpose of this study to address, within the framework of modern con-

tinuum mechanics, the existing "first order" constitutive models for finite deformation

13



Introduction

elasto-plasticity. Currently available theories are presented in a unified and compre-

hensive review and non-trivial consequences of the underlying hypotheses are explored.

A time integration algorithm for a hyperelastic-based rate-independent isotropic

hardening constitutive model with the assumption of product decomposition of the

deformation gradient is presented, and results predicted by this theory are compared

with an equivalent theory based on the assumption of additive decomposition of the

strain tensor.

The thesis is divided in eleven chapters. Chapter 1 introduces the notation to be

used, some of the required results of tensor algebra and basic kinematic concepts such

as the material, spatial and referential descriptions of a physical quantity and related

differential operators.

Chapter 2 summarizes the principles of mass conservation and balance of linear

and angular momentum, and the theorem of power expended. With the definition of

the first Piola-Kirchhoff stress tensor, the referential form of these principles and the

associated field equations are obtained.

Chapter 3 summarizes the continuum version of the first and second thermody-

namic laws and the reduced dissipation inequality. It presents the field equations in

both the spatial and referential form.

Chapter 4 deals with generalized work-conjugate strain and stress measures. After

some kinematic results concerning the stretching and strain rate tensors are obtained,

14



Introduction

explicit formulae for the stress measures are presented. A tensorial version of these

formulae is obtained for the case of collinear stress and strain tensors.

Chapter 5 introduces the basics of constitutive modeling and the framework of

thermodynamics with internal variables. Most of the Chapter is devoted to the principle

of material frame indifference, and the concepts of objectivity and invariance under rigid

body motions. The discussion on invariant constitutive equations motivates the use of

the results of Chapter 4.

Chapter 6 deals with the derivation of constitutive equations for thermo-elasto-

plasticity based on the assumption of additive decomposition of the strain tensor. The

response functions are reduced by means of the Coleman-Noll methodology, material

symmetry considerations and further simplifying assumptions. The structure of consti-

tutive equations for temperature dependent and therefore also for isothermal processes

is obtained. These equations allow in general for rate-dependency of plastic flow. The

rate-independent limit of the models is referred to as well.

Chapter 7 analyses the consequences of the assumptions made in the constitutive

equations of Chapter 6. It is shown that the only strain measure consistent with the

condition of plastic deformation being isochoric is the Hencky strain. In general, the

additive decomposition of the strain tensor is shown to predict changes in the initial

elastic response moduli depending on the plastic state. As a consequence of previous

plastic flow, initially isotropic elastic response becomes anisotropic, the higher the level

15



Introduction

of plastic stretching the lower the ratio of "modified" over initial shear moduli.

Chapter 8 introduces the alternative description of plastic flow based on the prod-

uct decomposition of the deformation gradient. Paralleling the developments of Chapter

6, constitutive equations for large strain thermo-elasto-plasticity are derived. Using the

reduced dissipation inequality, similar symmetry considerations and some simplifying

assumptions, a reduced model is obtained. In particular, the isothermal case and the

rate-independent limit are considered.

Chapter 9 refers to the elasticity description underlying an elasto-plastic model.

After recalling the basic definitions of elastic, hyper-elastic and hypo-elastic response, a

comparison is made between the simplest hypo-elastic stress-strain law and its related

hyper-elastic counterpart. It is shown that for the hypo-elastic description to be a good

approximation of the hyper-elastic (total) one, both elastic stretches and stretch rates

have to be small. A hyper-elastic stress-strain law, however, seems to be the natural

choice, presenting both theoretical and practical advantages.

Chapter 10 presents a time integration procedure for a hyperelastic-based rate in-

dependent isotropic hardening model of the type discussed in Chapter 8. This algorithm

has been implemented and tested in the finite element program ADINA [1987]. Of

special interest is the comparison with an equally hyperelastic-based rate independent

isotropic hardening model of the type discussed in Chapter 6. The formulations based

on the additive decomposition of the strain tensor and the product decomposition of

16



Introduction

the deformation gradient lead to the same results for problems where the elastic and

plastic stretch tensors commute. When this is not the case the differences are shown to

be very small for the range of moderate strains, where the isotropic hardening model

is adequate.

Finally, Chapter 11 presents a final discussion, overview and conclusions.

17



Chapter 1

Basic concepts and notation

1.1 Tensor notation

First rank tensors-vectors-are denoted by lowercase letters in boldface, e. g.

x , v. Second rank tensors-referred to simply by tensors-are denoted by uppercase

letters in boldface, e. g. U, T. Fourth order tensors are also of interest, and will be

denoted by bold calligraphic letters, e. g. 4C, x.

Let V be the space of all vectors v. Given a basis {ei} in V, the tensors v ,

T and 'W admit the representation,

v = vi ej,

T = Tij ei(ej,

'H =Hijkl ejoejoekoel.

(1)

(2)

(3)

In these equations repeated indices

' 0' denotes tensor product.

indicate summation from 1 to 3 and the symbol

18



Chapter 1: Basic concepts and notation

The dot product of vector v and vector u is the scalar v - u. In coordinate

representation,

V - U = Viu. (4)

The product AB of the second order tensors A and B is the second order tensor

AB given by

(AB)v = A(Bv), (5)

for all vectors v . In coordinate representation,

AB = AikBke®ge,. (6)

The dot product of the second order tensors A and B is the scalar A - B given by

A -B = tr(A' TB), (7)

where 'tr ' is the trace operator. In coordinate representation,

A - B = Ai Bi .

The conmutator [A, B] of tensors A and B is the tensor

[A, B] = AB - BA.

(8)

(9)

For a second order tensor T operating on a vector n one defines

Tn = Tini et.

Tn as the vector

(10)

19



Chapter 1: Basic concepts and notation

For a fourth order tensor L operating on a second order tensor E one defines L[E] as

the second order tensor

C[E] = LijklEklej®ej. (11)

The second order identity tensor is denoted by 1 . The fourth order symmetric identity

tensor is denoted by I. In coordinate representation,

1 = &jej®ej , (12)

I = (bikbjl + b1b6j)ejoej&ek &el , (13)

where bij is the Kronecker delta.

The eigenvalues A2 of a second order tensor U are the roots of the characteristic

polinomial of U,

p(A) = det(U - Al) = -A3 + A 21,(U) - A1 2 (U)+ I3 (U), (14)

where 'det' is the determinant operator and I;(U) are the principal invariants of

tensor U. These can be written as

I(U) = trU, (15)

I2 (U) = tr(adj U), (16)

I3 (U) = det U, (17)

where 'adj ' is the adjugate operator, given by

adj U = (det U) U-T . (18)

20



Chapter 1: Basic concepts and notation

The Cayley-Hamilton theorem states that every tensor U satisfies its own char-

acteristic equation,

- U 3 + U 21(U) - UI2 (U) + 1 3(U) = 0. (19)

We denote by C the space of all second order tensors. The following subsets of

will be referred to

L+ ={X E L, det X > 0}, (20)

S ={ T E , T T = T} , (21)

S+ ={ U E S, v.Uv>0 Vv#AO}, (22)

O= {R E , RT R = 1}, (23)

0+ ={RE , det R = 1}, (24)

L+ is the set of all second order tensors with positive determinant, S is the subspace

of all symmetric second order tensors, S+ is the set of all symmetric positive definite

second order tensors, 0 is the orthogonal group and 0+ is the proper orthogonal

group.

Let X E C+. Then the Polar Decomposition Theorem states that there exist

tensors U, V E S+ and R E 0+ such that

X = RU = VR. (25)

Moreover, each of these decompositions is unique.

21



Chapter 1: Basic concepts and notation

The exponential exp A of a second order tensor A is the second order tensor

defined by the series (see for example HIRSCH and SMALE [1974])

expA = . (26)
n=O

Let A E C . Then the following proposition holds

det(exp A) = exp(tr A). (27)

1.2 Kinematics

1.2.1 Bodies, configurations and motions

A "body" B is a set of elements which, at some point in time, can be put into

one-to-one correspondence with some region (an open connected subset) R of the

Euclidean point space E. An element p of B is called a "particle" or "material

point". A one-to-one mapping

p :B -+ R;p - x,

(28)
x = (p),

is called a "configuration" of the body, R = p(B) is the region occupied by B in the

configuration p .

22



Chapter 1: Basic concepts and notation

A "motion" X of the body is a one-parameter family of configurations {p} where

,TE [-, 71]. So

x = Vr(p) = X(p, r), (29)

is the position at time r of particle p, and R = Vr(B) = x(B, r) is the region occupied

by the body at time r.

The motion of a body can be described as relative to a "reference configuration".

Let the configuration Vt be chosen as reference configuration,

xt = Vt(p) = X(p, t) (30)

is the position at time t of particle p , and Rt = Vt (B) = x(B, t) is the region occupied

by the body at time t. The one-to-one mapping

*: Rt -- Rr; Xt ' x, (31)

defined by

x = X(xt, r) = r (pi- 1 (Xt)), (32)

is called a "deformation" of the body from the reference configuration Vt to the con-

figuration Lp, and gives the position x at time 7 of the particle p which at time t

was at xt .
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Chapter 1: Basic concepts and notation

1.2.2 Spatial and referential descriptions

Let 9 be any physical quantity associated with the particles of a body (e. g.

temperature). The "material description" of 9 relates the physical quantity directly

with the material points p, and is defined as the mapping

(P, r) - 0 = i(p, T) . (33)

The "spatial description" of 9 relates the physical quantity with the particles by

means of their position at the current time, and is defined as the mapping

(x, r ) - 0 = #(x, r) . (34)

Finally, the "referential description" of 9 relates the physical quantity with the

particles by means of their position in the reference configuration, and is defined by

the mapping

(xt, r) F-+ 9 = 9 (Xt, r). (35)

The spatial and referential descriptions of quantity 9 are related to the material

description by proper composition with the configurations p, and , ,

0 = #(P, r), (36)

9 = 9(x, r) = ( (x) r), (37)

9 = O(xt , r) = 6(p' (Xt), T). (38)
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Chapter 1: Basic concepts and notation

The spatial and referencial descriptions are also called "eulerian" and "lagrangian"

descriptions respectively.

Unless otherwise specified, the "original configuration" po , corresponding to time

t = 0 will be used as the reference configuration for the lagrangian description.

1.2.3 Differential operators

The total time derivative of quantity 6, denoted by , is by definition the partial

derivative of 9 with respect to time for a given material point, i. e.

0 9= T) (39)
ar

Given a fixed reference frame {ej}, let the position vectors x and xo be repre-

sented by x = xiej and xO = xiei respectively. We define the differential operators

V and VO by

V = e- (40)ax ax,'

VO= a = a (41)

The gradients of a scalar a in the current and reference configuration are the

vector fields

Va= 'a(x ) ej, (42)axi
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Chapter 1: Basic concepts and notation

aa^(xo,r )V Oa =)ej, (43)

and the gradients of a vector a in the current and reference configuration are the tensor

fields

OiL;(x, i-)Va = ejoej , (44)
Ox q

V 8a O(xo, r)
Yo a e s j ,(45)

The divergences of a vector a in the current and reference configurations are the

scalar fields

V a = ,dj(x~i) (46)
Ox

Vo a = O&(Xo, 7) (47)Ox?

and the divergences of a tensor T in the current and reference configurations are the

vector fields

V T j(x,,r) j(8V.-T = Oi(7)ei , (48)Ox,

Vo T = 9ij(xo,i-) (49)

We mention without proof the following forms of the divergence formula,

I TndA = V -TdV, (50)
ap P

[x(Tn) - (Tn)®x] dA = J(x®(V - T) - (V - T)®x + TT - T] dV. (51)
ap P
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Chapter 1: Basic concepts and notation

1.2.4 Fundamental kinematic quantities

The velocity vector v and acceleration vector a are obtained by differentiation

of the position vector with respect to time for a given material point,

~~ Ox(p,r) (52V = a 7- (52)

a = x =2 .(~ (53)

The "deformation gradient" is the second order tensor

X = Vok(xo, r) = eoej. (54)

Note that X depends on the selection of the reference configuration. The deformation

gradient maps "material fibers" from the reference to the current configuration,

dx = Xdxo. (55)

Since by assumption, a deformation cannot change space orientation, the jacobian

J = det X has to be positive for all times, and the deformation gradient admits the

rigth and left polar decompositions

X = RU, (56)

X = VR, (57)

where R is called the rotation tensor and U, V are called the right and left stretch

tensors, respectively. The rotation tensor is related to changes in direction of material

27

ii li 1111 1111 I 11



Chapter 1: Basic concepts and notation

fibers and the stretch tensors are related to changes in lengths and relative angles

between material fibers.

The "velocity gradient" is the second order tensor(x, r) =

Ovi(x,r )
e oe . (58)

19xj

Note that no reference configuration is involved in its definition. The symmetric and

antisymmetric parts of the velocity gradient,

D= }(L + LT), (59)

W = (L - L T), (60)

are called respectively "stretching" and "spin" tensors. The stretching tensor is related

to the rate of change in lengths and relative angles of the material fibers and the spin

tensor is related to the angular velocities of the material fibers.

Finally, we mention that the time rate of change of the jacobian J is given by

i = Jtr(D) = JV - v. (61)
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The mechanical principles

2.1 Conservation of mass

Let B be a body. The mass function m gives the mass m(P) of a part P of B.

For all pairs PI, P2 of disjoint parts of B, the mass function satisfies

m(P 1 U P2) = m(P1 ) + m(P2 ), (1)

and if p is any configuration of B

m(P) -* 0, (2)

as the volume of P = o(P) tends to zero. Properties (1-2) imply the existence of a

scalar field p defined over B such that

m(P) = pdV, (3)

P

p = p(x, r) is called "mass density" or simply "density" of B in the configuration <p .
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Chapter 2: The mechanical principles

Let X be a motion of the body. The principle of mass conservation states that the

mass of any part of B remains constant over the motion, i. e.

dm
Y-() = 0 VP c B. (4)

In terms of the mass density,

d pdV =0 VP c B. (5)

P

Note that in this equation the region of integration P = X(P, r) depends on r . To

perform the differentiation we change integration variables,

p dV = JpJ dV = ( J + pj)dV, (6)

P PO PO

and recalling that J = JV - v (equation 1.61) we obtain

J(+ pV - v) dV = 0 VP C B. (7)
P

Under proper conditions, we obtain the "continuity equation"

+ pV -v = 0 Vx E B. (8)

This is the field equation associated with the principle of mass conservation.

The continuity equation can be written in terms of the reference configuration.

Integrating equation (5) from time 0 to time r,

J pdV = po dV , (9)
P PO
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Chapter 2: The mechanical principles

where po is the mass density in the original configuration. Changing integration vari-

ables on the left hand side and combining terms,

J(pJ - po) dVo = 0 VPo c Bo. (10)

PO

Under proper conditions we obtain the continuity equation in terms of the reference

configuration V ,

pJ = po Vxo E Bo. (11)

Let v be any vector field associated with the motion, then

dJpvdV = pirdV. (12)
P P

This result follows from a change in integration variable and equation (11),

pv dV = pv J dVo povdVo= po idVo= pi dV. (13)
P PO PO PO P

2.2 Linear and angular momentum principles

Let X be a motion of body B. Let P C B and P = X(P, r). The linear momentum

1 of part P at time r and the angular momentum h with respect to point o of part

P at time -r are defined respectively by

I(P, ) = pv dV, (14)
P
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Chapter 2: The mechanical principles

h(7, o, r) = p(x - o) x v dV, (15)

P

where the symbol x indicates vector product.

We consider two kinds of forces acting on a part P of B. Body forces b are

forces per unit mass acting on every particle of P. Surface forces t are forces per unit

current area acting on the boundary OP of P, t is called "traction vector". Body

forces are supposed to depend on position and time, thus b = b(x, r). Surface forces

depend on position, time and the surface OP. The dependence with OP is supposed

to be only through the unit normal n, thus t = i(x, r, n) .

If distributed torques are not considered, the resultant force f acting on P at

time r and the resultant torque m with respect to point o acting on P at time r

are given respectively by

f(P,r)= IpbdV+ tdA, (16)

P aP

m(,o,7)= p(x-o) x bdV+ (x-o) x tdA. (17)

P aP

The mechanical principles, also called laws of motion, state that given an inertial

reference frame, the time rates of change of linear and angular momentum of any part

P C B are respectively equal to the total force and torque acting on P, i. e.

dl
(P, r) = f(-P r) VPCB, (18)

dh
-(P, , r) = m(P, o, r) VP C B,Vo E V, (19)
d7
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for all parts P of the body and for any point o. In terms of the definitions (14-17),

the laws of motion read

+JpvdV=
P

d
d p(x- o) x vdV=

P

I
P

pbdV+
OP

x-o) x bdV+
P(

P I
(x - o) x tdA VPCB,VoEV.

In virtue of result (12), and considering the point o as fixed, the left hand sides can

be written as

- IpvdV=
dP

P
I
P

d p(x - o) x vdV=

P P

and substituting in equations (20-21) we obtain

J p(b-a)dV+ tdA=0

P oP

I
P

p(x-o) x (b-a)dV + (x-o)

pa dV

p(x - o) x adV,

VP cB,

x tdA = 0 VPCB,VoEV.

Each term in equation (25) is a polar vector. If the associated skew-symmetric tensors

are used instead we have

I
P

p[(x - o)o(b - a) - (b - a)o(x - o)] dV
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+ [(x - o)ot - to(x - o)] dA = 0 VP C B,Vo V. (26)

The main consequence of the linear momentum principle (20) is that the traction

vector t depends linearly on the unit normal n, i. e. there is a second order tensor

T , called "stress tensor" such that t = Tn or

t(x, r, n) = T(x, r)n. (27)

This result is called Cauchy's theorem. The proof is based on the application of the

linear momentum principle to an infinitesimal tetrahedron. The vector t is called

Cauchy, or true, traction vector and T is called Cauchy, or true, stress tensor.

Substituting Cauchy's theorem in equations (24) and (26),

J p(b- a)dV+ J TndA = 0, (28)
P aP

p(x- o)o(b - a) - (b - a)o(x - o)] dV

P

+ J [(x - o)®(Tn) - (Tn)®(x - o)] dA = 0. (29)
OP

and using the divergence formulae (1.50-1.51),

S[V . T + p(b - a)] dV = 0, (30)
P

{(x - o)[V - T + p(b - a)]

-[V - T + p(b - a)]o(x - o)+ TT - T } dV =0. (31)
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Chapter 2: The mechanical principles

Under proper continuity conditions, we obtain the "equation of motion"

V - T + pb = pa VX E B, (32)

and the symmetry condition

T'T = T Vx E B. (33)

Note that the Cauchy stress tensor is symmetric only when no torques are present.

2.3 The theorem of power expended

The kinetic energy T(P, r) of part P at time r is defined by

T(P,r ) =
I
P

pv. v dV (34)

where v is the velocity vector.

The "stress power" W(P, r) of part P at time r is defined by

W(P, r) =
I
P

T-D dV, (35)

where T is the stress tensor and D is the stretching tensor.

Let R(P, -r) denote the rate at which work is done by the external forces acting on

R(P, r) =
I
P

pb - v dV +
I

t - v dA , (36)
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where b is the body force per unit mass and t is the traction vector.

The theorem of power expended states that the sum of the rate of change of kinetic

energy and the stress power of any part P of the body equals the rate of work done

by external forces on P , i. e.

dT

(P )+WP r (P ) V Pc B. (37)

In terms of the definitions (34-36) we have

J I pv-vdV+ T-DdV= pb.vdV+ t-vdA VP c B. (38)
P P P aP

To prove this result, we start by multiplying the equation of motion by the velocity

vector and integrate over P,

7(V . T+pb- pa) - vdV = 0. (39)
P

The first term on the left hand side of this equation can be transformed by means of

the divergence formula,

(V -T)-vdV = TTv.ndA- T -VvdV
P aP P

= Tn - vdA - JTLdV

OP P

= t . vdA -J T.DdV, (40)

ap P

where use was made of Cauchy's formula t = Tn. Note that Vv = L = D + W and

T. W=0.
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The third term of the left hand side of equation (39) represents the time rate of change

of kinetic energy,

pa v dV = p07v dVo
f I dv
P PO

JIpov - vdV

PO

Sd pv - v dV. (41)
P

Combining equations (39-41) we obtain the required result.

The theorem of power expended is a consequence of the balance law for linear

momentum and therefore is valid for any continuum.

The stress power can be interpreted as the rate of internal work. We write it as

W = JwdV, (42)

P

where w is the stress power per unit reference volume, given by

w = T - D. (43)

2.4 The first Piola-Kirchhoff stress

Let P be a part of body B. Let X be a motion of the body and pO a reference

configuration. Consider a surface So C po(B) and let S = k(SO, r). The image n dA
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of the area element nodAo of So in S is given by Nanson's formula

ndA = JX-T no dAo.

Recall that

tdA = TndA,

is the contact force acting at time - on the area element n dA . We use relation (44)

to rewrite the contact force as

TndA = JTX -T no dAo . (46)

The first Piola-Kirchhoff stress tensor P is defined by

P = JTX~ T , (47)

then, in terms of the first Piola-Kirchhoff stress

TndA = Pno dAo (48)

The first Piola-Kirchhoff traction vector to is defined by

to = Pno , (49)

it follows from equations (45), (48) and (49) that

tdA = to dAo ,
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consequently, the first Piola-Kirchhoff traction vector gives the contact force acting on

n dA per unit reference area.

We use a referential description for P and to ,

P = P(xo,r), (51)

to = to(xo,r, no). (52)

Let {ei} be the reference frame and choose no = ej , then

P1ij(xo, -r) = e - P(xo, r)ej = ei io(xo, r, ej), (53)

it follows that Pi3 is the force per unit reference area in the direction ei acting on

the surface which was normal to the direction ej in the reference configuration.

2.5 The mechanical principles in referential form

In terms of the reference configuration, the linear momentum 1 and the angular

momentum h with respect to point o of part P at time r can be written as

1](,r) = pov dVo , (54)

PO

h(p, o, r) = Jpo(x - o) x vdVo. (55)

PO
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Similarly, the resultant force f and torque m with respect to point o acting on

P at time r can be written as

f(P,) = JpobdVo + to dAo, (56)

m(Po,r) = po(x - o) x bdVo + (x - o) x to dAo, (57)

PO OPO

where use has been made of the first Piola-Kirchhoff traction vector to defined in (49).

Therefore, in terms of the reference configuration, the mechanical principles read

IpovdVo =I pobdVo +f to dA 0 ,

PO Po OPo

x- o) x vdVo = po(x - o) x bdV +
PO PO OPO

Taking the time derivatives inside the integrals, we obtain

(x - o) x to dAo.

Jpo(b - a)dVo + to dAo = 0, (60)

po(x - o) x (b - a) dVo + J(x - o) x to dAo = 0. (61)

PO OPo

Each term in equation (61) is a polar vector. If the associated skew-symmetric tensors

are used instead we have

Po [(x - o)®(b - a) -(b - a)o(x - o)] dV

PO

+ J [(x - o)oto - too(x - o)] dA0 = 0.

OPO

(62)
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Substituting for the first Piola-Kirchhoff traction vector in terms of the first Piola-

Kirchhoff stress tensor in equations (60) and (62), and integrating by parts,

[Vo. -
PO

P+po(b- a)] dVo = 0,

If{(x - o)o[Vo -P + po(b -
PO

(63)

a)]

-[Vo -P + po(b - a)]®(x - ) + XP T - PXT } dV = 0,

from where we obtain the equation of motion in referential form

(64)

VO - P + pob = pa Vxo E Bo,

and the condition

XPT = PXT

Next, the kinetic energy can be written

T(7'-,r) =
I

PO

Vxo E Bo.

I pov - v dV.

In virtue of the definition (47) of the first Piola-Kirchhoff stress,

JT -D = JT - L = JT - (kX-') = JTX - T . = P

and the stress power W can been written as

JT -D dVo = I

PO

P -X dVo .
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W =

PO

wo dV = I
PO
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where wo = JT -D = P - X is the stress power per unit reference volume.

Finally, in terms of the reference configuration, the rate of external work reads,

R(P,r) = Jpob - v dV + J to - vdA, (70)

where to is the first Piola-Kirchhoff traction vector.

Combining equations (67-70) we obtain the referential form of the theorem of power

expended,

d pov - vdVo + P dVo pob - v dVo + to - vdAo . (71)
d] 2P0 p b o PoP0 P0 P0 ao
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The thermodynamical principles

3.1 First law of thermodynamics

3.1.1 Internal energy

Central to the first law of thermodynamics is the assumption of existence of an

internal energy function U such that U(P, r) is the energy stored in part P of the

continuum at time T , in addition to the kinetic energy of P.

For all pairs P1, P2 of disjoint parts of B the internal energy function satisfies,

U(P1 U P2,r) = U(P1, 7) + U(P2,T ), (1)

and if p is any configuration of B,

(2)U(P, r) -+ 0,
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as the volume of P = p(P) tends to zero. Properties (1-2) imply the existence of a

scalar field e = (x, -r) defined over B such that

U(P, r) = pe dV, (3)

P

e is called the specific internal energy, or internal energy per unit mass.

3.1.2 Heat

The rate of heating of a part P of a body B during a motion X is supposed

to be due to two sources, heat generated within P and heat entering P through its

boundary. The rate at which heat is generated within P is called "heat supply". The

rate at which heat is entering P is called "heat flux". Let r be the heat supply per

unit mass and let h be the heat flux per unit current area. Then the total rate of

heating Q of part P is

Q(P,)= prdV+ JhdA. (4)

P OP

The heat supply r depends at least on the particle p and time r while the heat

flux h depends at least on p, r and the surface OP. It will be further assumed

that the dependence of h on OP is reduced to the normal n to the surface. Thus

r=r(x,,7) and h= I(x,r,n).
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3.1.3 Energy balance

The first law of thermodynamics postulates that the sum of the rates of increase

of kinetic and internal energy of any part P of a body B equals the sum of the rates

of external work and heating, i. e.

dT dU--(, ) -P, ) R?,r) Pr) V Pc B. (5)

In terms of the definitions (2.34), (2.36), (3) and (4),

d i1 d f
d 1 pv .v dV + pe dV=

P P

pb - vdV + t - vdA + pr dV + Jh dA VP c B. (6)

P OP P aP

The balance of energy equation (6), together with the equations of motion (2.32-

2.33) and the continuity equation (2.8) imply that the heat flux h = h(x, T, n) depends

linearly on the normal vector n, i. e. there is a vector q = q(x, r) such that h = -q.n

or

h(x, r, n) = -q(x, 7) n n . (7)

This result is called Fourier's theorem. The proof is based on the application of energy

balance principle (6) to an infinitesimal tetrahedron. The vector q is called "heat flux

vector". (The minus sign is chosen so that q pointing inwards corresponds to heat

entering the body.)
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Substituting the rate of external work in equation (6) in terms of the theorem of

power expended (2.38), and using (7),

I pidV =
P

I
P

T-DdV+
I
P

pr dV - Jq . n dA,

ap

which, on using the divergence theorem, leads to

J(pi - T -D - pr +V - q) dV = 0

P

VP c B. (6)

Under proper continuity conditions we obtain the field equation associated with

the first law of thermodynamics,

p = T - D + pr -V - q. (10)

3.2 Second law of thermodynamics

3.2.1 Entropy

The entropy function S gives the entropy S(P, r) of a part P of the body at

time r. For all pairs P1, P2 of disjoint parts of B the entropy function satisfies,

S(P 1 U P 2 , r) = S(Pi, 7) + S(P2, 7 ), (11)
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and if <p is any configuration of B,

S(Pir) -+ 0, (12)

as the volume of P = <p(P) tends to zero. Properties (11) and (12) imply the existence

of a scalar field rj = (x, r) defined over B such that

S(P, 7-) = Jpr dV,
P

r is called the specific entropy, or entropy per unit mass.

3.2.2 The Clausius-Duhem inequality

The rate of entropy supply in a part P of the body at time r is given by

I
P

p dV,

where 9 = #(x, r) is the absolute temperature of particle p at time r .

The rate of entropy flux into P at time r is given by

I
ap

h
- dA.
9

We denote by M(P, r) the sum of the entropy supply in P and the rate of entropy

flux into P
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The second law of thermodynamics for a continuum, known as the Clausius-Duhem

inequality, states that the rate of entropy increase of P is always greater than or equal

to the sum of the rate of entropy flux and entropy supply, i. e.

dS
-Pr) > M(P, r) VP c B. (16)

In terms of the definitions (13-15), the second law reads

d pr dV [
P P

pr dV + hdA

fP

Substituting Fourier's theorem (7) in the second term on the right hand side of

this inequality, and using the divergence formula (1.50),

dA=- (2).ndA=- v.() dV,
aP op P

(18)

and equation (17) may be written,

P77 - P- + V - !!]dV > 0
PV>

P

VP c B. (16)

Under proper continuity conditions, we obtain the field equation associated with the

second law of thermodynamics,

Vx c B. (20)
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3.3 The reduced dissipation inequality

Consider the local form of the thermodynamic laws that we have deduced so far

pE= T - D + pr - V - q, (21)

pilp PrV.(22)

The second term of the right hand side of (22) is equal to

V 0 -1V - q - 0-2 q - VO. (23)

We denote by g the temperature gradient vector VO,

g = V. (24)

Then, multiplying (22) by the temperature 9 and using equations (23-24),

pil pr - V - q + -1 q - g. (25)

and substituting for pr - V - q in terms of (21) we obtain,

pi - T - D - p&O, + -1 q -g < 0. (26)

In many applications, it is useful to perform a Legendre transformation from en-

tropy to temperature. For this purpose, the free-energy density 4 is defined by

4 = E - 9r7. (27)
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Thus, the time rate of change of the free-energy is

= i - 917 - 0 , (28)

and substituting in equation (26) we arrive at the "reduced dissipation inequality"

po - T - D+ pr7+0-'q -g <0. (29)

3.4 The thermodynamical principles in referential form

Let P be a part of

configuration. Consider

image n dA of the area

(2.44)

body B. Let X be a motion o:

a material surface So C <p(B)

element no dAo of So in S

F the body and cp a reference

and let S = Ic(So, r). The

is given by Nanson's formula

ndA = JX T no dAo. (30)

By Fourier's theorem (7), the heat flux through area element n dA at time 7 can be

written in terms of the heat flux vector as

hdA = -q - ndA. (31)

We use equation (30) to rewrite the heat flux as

hdA = -Jq - X T no dAo = -JX~'q - no dAo.
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We define the heat flux vector qo = qio(xo, r, no) with respect to the reference config-

uration by

o= JX-1q, (33)

then, in terms of qo ,

q - ndA qo no dAo. (34)

Let {ei} be a reference frame and choose no = ei , then in virtue of equation

(34), the components qo - ei of the heat flux vector with respect to the reference

configuration can be interpreted as the heat flux through material surface elements

that in the reference configuration where normal to the coordinate axes.

Having defined qo we can now write the heat and entropy fluxes in terms of the

reference configuration as

J hdA=- qndA= - J -q nodAo, (35)

OP ap aPo

J.dA= - J -q.ndA= - -'qo-nodAo. (36)

opaapo

and the sums of heat and entropy supply and flux read

Q(Pr)= por dVo - qo - no dAo , (37)

M(Pr) = po dVo - J -1qo -no dAo. (38)

In terms of <p, the specific internal energy U and the entropy S can be written as

U(P, 7) = JfpoedVo , (39)

PO
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S('P,ir) = J
PO

pori dVo . (40)

Combining equations (2.67), (2.70) and (37-40) we write the first and second laws

with respect to configuration p as follows

ipov. vdV +
d

Ti J poEdVo =
PO

I
PO

po b - v dV + I to . vdA
a PO

+ Jpor dVo - JqO no dAo

PO 0 Po

po dVo- J
OPo

0~ qo - no dAo

Vxo E Bo ,

Vxo E Bo

Substituting for the rate of change of kinetic energy in equation (41) in terms of the

theorem of power expended in referential form (2.71),

dJpo dVo =1
PO PO

P - dV0 + J por dV - J
PO 8Po

Using the divergence formula in equations (42) and (43),

J(poe - P - X - por + VO - q4o) dV = 0,
PO

[Poi- Po + Vo
1P

PO

(- ] dVo 0 Vxo E Bo.

Under proper continuity conditions, we obtain the field equations associated with the

thermodynamic laws in referential form,

poE = P - + por - V0 .o Vx0 E Bo ,
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poi dVo !

PO
I

PO

(41)

(42)

qo - no dAo. (43)
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po Po r Vxo E Bo. (47)

Finally, to obtain the reduced dissipation inequality in referential form, we note

that

Vo - -= -Vo - % 0 -2q 0 *go, (48)

where we have denoted by go the gradient of the temperature with respect to the

reference coordinates,

go = V00.

Then, multiplying (47) by the temperature 9 and using equations (48-49),

poO9? por - Vo - qo + 9-1qo -go .

Substituting for por - Vo - qo in terms of (46), we obtain

poi - P -k - poO9 +-q 0 -go < 0.

Performing the Legendre transformation as defined by the free-energy function given

in (27), we obtain the desired result,

po - P -X + poq9 + ~'qo - go ; 0. (52)
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Chapter 4

Stress and strain measures

4.1 Some basic kinematic results

4.1.1 Stretch and rotation tensors

Let B be a body. Consider a deformation x of B from a reference configuration

oo to configuration V. Since by definition the deformation is one-to-one and preserves

orientation, its jacobian has to be positive, i. e., the deformation gradient X satisfies

J = det X > 0 for all points in the region po(B) occupied by the body in the reference

configuration. Thus X E L+ and we have the polar decompositions

X = RU,

X=VR,

(1)

(2)

where U E S+ is the "right stretch tensor", V E S+ is the "left stretch tensor" and
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R E 0+ is called "rotation tensor". Given any X E C+ , the tensors U, V and R

are uniquely defined. It follows from (1) and (2) that the stretch tensors are related by

V = RURT . (3)

Since the right stretch tensor is positive definite, it admits the eigen-decomposition

3

U= Ari®ri, (4)

where the eigenvalues Ai satisfy 0 < A A2  A3 and the eigenvectors ri are taken

to be unit vectors.

Substituting equation (4) into (3),

3 3

V = R Ariori RT = A(Rrj)o(Rr 2 ), (5)

we conclude that Ai are the eigenvalues of the left stretch tensor V and the unit

vectors

]i = Rri , (6)

are corresponding eigenvectors of V.

The common eigenvalues Ai of U and V are called "principal stretches".

Given a reference frame {e} , we define the "principal stretches tensor" A by

3

A = A eAoe.. (7)
i=1
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Let {ri(r)} be an orthonormal set such that for each r, ri(r) are eigenvectors of

U(r). We call {ri(r)} a "lagrangian frame". The orthonormal set {1(r)} obtained

using equation (6) is the corresponding "eulerian frame".

Given a lagrangian frame, we construct the "lagrangian" and "eulerian" rotation

tensors RL, RE by

3

RL = rjoe,,, (8)
i=1

3

RE = S 1le. (9)

Thus RL represents a rotation from the reference frame to the lagrangian frame, and

RE represents a rotation from the reference frame to the eulerian frame,

ri = RLe , (10)

ii = REel. (11)

Substituting (6) into equation (9) we conclude that the rotation tensors are related by

RE = RRL. (12)

The definitions of the principal stretches tensor A and the lagrangian and eulerian

rotation tensors RL , RE depend on the choice of reference frame { ej } . They are

introduced only to simplify the notation. In virtue of (7-9) the eigen-decompositions

of the stretch tensors can be written as

U= RLAR'j, (13)
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V=REARF' (14)

4.1.2 Rates of rotation

We define the spin tensor QR by the equation

(15)

and, given a lagrangian frame, we define the spin tensors RL

NL = RLQlL

NE = RE E.

and flE by the equations

(16)

(17)

In view of equation (12) relating the rotations, the spin tensors are not independent.

To see this, we solve (12) for R and differentiate with respect to time,

i = RERT + RE Rl (18)

substitute the definitions (15-17),

ORR= (RE E)RT + RE(QRT) (19)

and rearrange,

(20)1RR = RE(fE
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Left-multiplying by RT and using again (12) we finally obtain,

fI = RE (E - UL)RE (21)

4.1.3 The velocity gradient

The velocity gradient L, defined in (1.58), can be decomposed into the sum

L = D + W , (22)

of its symmetric part D, called the "stretching tensor", and its skew-symmetric part

W , called the "spin tensor". The stretching tensor is related to the rate at which

the material fibers are changing their length and relative angles, and the spin tensor is

related to the average angular velocity of material fibers at a point.

The purpose of this section is to relate the stretching and spin tensors, D and W,

to the time rate of change of the principal stretches A and the spins fL and , .

From equation (1) we have

X = NU + R&, (23)

X-1 = U-1 R T , (24)

which substituted into the definition of the velocity gradient lead to

L = XX- 1 = NRT + R U-'RT . (25)
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In view of definition (15),

L = R + ROU-'RT ,

and taking the transpose,

Adding and subtracting equations (26-27), we obtain for the stretching and spin tensors

D = }R(UU-' + U-'U)R T ,

W = 1R + R(&U-' - U-1 U)R T

Next, we differentiate equation (13) with respect to time,

= RLART + NLART + RLA .

recall definition (16) and rearrange,

U=RL(A +LA -AL)Rj.

Besides, taking the inverse of equation (13),

U-1 = RLM 1 R T

and combining (31) and (32) we obtain

UU~ = RL(AA-' + RL - AL A-1)R ,

U-U = RL(A- fL +A- 1 92L A)R .
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Note that since A and A-' are collinear,

A-'A = AA~1 (35)

The results obtained in equations (33-34) can now be substituted into equations

(28-29), which in combination with equation (21) lead to the final result

D = RE L - AL A[-)] R ,

W = RE E- (ALA+ALA-1)]R .

(36)

(37)

4.2 Strain measures

4.2.1 Scale functions

The fundamental measures of the deformation of a body are the right and left

stretch tensors, U and V. It is customary, however, to define a "strain tensor" as

follows. A "scale function" is a function g : (0, oo) -4 R; A F-- e = g(A) with the

conditions

g'(A) > 0 for all A > 0,
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g(1) = 0, (39)

g'(1) = 1. (40)

Let the scale function acting on the principal stretches tensor A given in equation

(7) be defined as the tensor-valued function

3

g(A)= g(Aj)ejoei. (41)

A "lagrangian strain measure" E is defined as the second order tensor

E = RLg(A)R T (42)

The eigenvalues of E are equal to e, = g(A 2 ) and are called "principal strains."

The tensor E diagonalizes in the lagrangian frame, and therefore is collinear with the

right stretch tensor U.

It is apparent now that a scale function has to satisfy condition (38) for strain

to be an increasing function of stretch, and condition (39) for strain to be zero when

the deformation is the identity. Condition (40) is required so that the strain measures

linearize properly to the small strain case.

4.2.2 Strain rates

The time rate of change of the strain measure defined above is to be obtained next.
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Let
3

g'(A) = (Aj)eoe; .

Then taking the time derivative in equation (42),

E = RL Ag'(A)RLT + RLg(A)RL + RLg(A)k'L, (44)

and using the definition (16) and rearranging we obtain

k = RL [Ag'(A) + fiLg(A) - g(A)L] R . (45)

4.3 Stress measures

4.3.1 Work conjugacy

We recall the definition (2.69) of the stress power per unit reference volume wo,

wo = JT -D , (46)

where J is the jacobian of the deformation, T is the Cauchy, or true, stress tensor

and D is the stretching tensor. In terms of the first Piola-Kirchhoff stress tensor,

wO = P -X.X (47)
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The stress power can be written in terms of the rate of strain E,

WO = S -, (48)

where S is a second order symmetric tensor called "stress measure". The stress mea-

sure S is said to be "work conjugate" to the strain measure E. Given a scale function

g, the associated stress measure S has to satisfy the equation

JT-D =S -, (49)

for all possible motions X.

4.3.2 An explicit formula for stress measures

The purpose of this section is to obtain an explicit expression for S in terms of

the Cauchy stress tensor and the principal stretches A .

We proceed by writing the strain rate E and the stretching tensor D in terms

of the independent rate quantities A and QL as in equations (36) and (45),

D = RE [AA-1 + !(AQLA - AQLA-1 )]RE , (50)

E = RL [Ag'(A) + QLg(A) - g(A)QL]R . (51)

Substituting these results in equation (49),

JT - RE [A' + I(A L - A-')]RT
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= S RL[Ag'(A) ,g(A) - g(A)L]Rj , (52)

and denoting by SL and TE the rotated tensors

TE = R TRE, (53)

SL = R SRL, (54)

we obtain

JTE* [A-' + !(A'-LA - AQLA )]

= SL ' [Ag'(A) + flLg(A) - g(A)Q2L] (55)

The next step is to isolate the rate quantities on one side of the dot operator,

JTEA- + IJ(A'TEA - ATE 1 ) L

= SLg'(A) A + [SLg(A) - g(A)SL L (56)

and group the corresponding terms,

[JTEV' - g(A)SL]

+{ J[A 1 TEE ] - [SLg(A) - g(A)SL] L = - (57)

Equation (57) has to hold for any tensor A that diagonalizes in the reference frame

and any skew-symmetric tensor 1L . Pick first A = e,®e , where there is no sum on

a , and fL = 0 , then

[JTE ' - (A)SL] . oa = e. [JTEA- g'(A)SL] e, (58)
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and recalling that

g(A)ea = g(A)e, ,

g'(A)ea = g'(A a)e,,

we obtain

J
ea - SLea - AgOA )(e.. TkAc) (no sum on a).

Substituting this result into equation (57), the condition

{ } J[A~'TEA-ATEA 1 ] - [SLg(A) -g(A)SL] -QL = 0, (63)

has to be satisfied for every skew-symmetric tensor 2L . This implies that the quantity

between braces in equation (63) has to be a symmetric tensor. Since, on the other

hand,

{ J[A-1TEA-ATEA- 1] - - g(A)SL] }T

S-{ J[A-1 TEAATEA1] - [SLg(A) -g(A)SL]} (64)

it necessarily follows that

SJ [A-'TA - ATA-] -[SLg(A) - g(A)SL] = 0 (65)

Taking dot product with eaoe ,

} Jece - [A~ 1 TA - ATEA 1]e,3 = e,* [Sg(A) - g(A)SL] ea,
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and using equations (59-60),

} J(A# A;' - AaA')(e - TE)[g(A) - g (A)](e S )

We can now solve (67) for the components of SL ,

ec - SLea ,3  E e/)
g(Ajj) - g(Aa)

Note that equation (68) requires that A,8 # A.. For

is obtained by the limiting process

(no sumon a,/3). (68)

A8 = A, the right hand side

lim = .e1 (69)
-- , g(A,3) - g(Aa) Aag'(Aa)

Denoting by [SL), and [TE af the components of SL and TE in the reference

frame,

[SLI# = '=SL ,

[TE]a/3 = ec* T'Ee,

(70)

(71)

we obtain from equations (62) and (68),

[SL]i = [

7 1  #- [TE ,
2g(A#) _ g(Ace)

if te =s

otherwise.

(72)

There is no sum over repeated indices in this expression. The final result, an expression

for the stress measure in terms of the Cauchy stress and principal stretches, can now
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be written in terms of the components given in equation (72),

3 3

S = RL ( Z[SL c,,eaoe)Rl .
ce=1 6=1

(73)

Let g, be a second scale function. The corresponding strain measure E* can be

written in terms of E as follows,

E* = RLg(g'(RTERL))R , (74)

and in virtue of equation (72), the stress measures S* and S are related by

9(a) "[SL]Cc ,
g'(Aa)

g(A#) - g(A) [SL] ,

g,(A#) - g*(Ao,)

if f = a;

otherwise.
(75)

Note that the work conjugate pair (E, S) depends on the choice p of reference

configuration. When necessary, this dependence will be indicated by writing (E., SV) .

4.3.3 A particular class of measures

The most commonly used scale functions belong to the family

g,(A) = 1 (A2 - 1). (76)
2n

The associated strain and stress measures are denoted En and S". For this family

g' (A) = A2n- 1 and the stress measures are obtained from equation (72),
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[SLa/ = {J
j [TE Cea,
a

AA'-AaA-l[T

For n = 1, El') is the Green-Lagrange strain tensor and S(') is the Second

Piola-Kirchhoff stress tensor. These measures admit the explicit expressions

E ) = I(X T X - 1),

S-) = JX-' TX-,

For n = -1 , E(-' is the Almansi strain tensor. It can be easily shown that

E- = {(1 _ X-X- T ),

S(-') JX TX T .

4.3.4 The logarithmic strain and stress pair

As a limiting case, the scale function

go(A) = lim g,(A) = In A,n-f

defines the Hencky strain tensor

E(') = RL ln(A)R .
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Since g'(A) = A- 1 , the associated stress tensor as obtained from equation (72) is

J[TEICo, if a;

[SLk, = A, A-1 A A-' (84)
J (A a 

l8A[TE aP, otherwise.

4.4 Collinear stress and strain tensors

Given any scale function, equations (42) and (72) determine the associated strain

and stress measures. It is not possible to write (72) in a tensorial form for the general

case. There is, however, a particular case of considerable interest in which this can be

achieved.

Assume that the stress measure is collinear with the strain measure, i. e. their

principal axes coincide. It follows that

[S, E] = SE - ES = 0 , (85)

where [S, E] denotes the commutator of S and E.

We have seen that if a strain measure is given by

E = RLg(A)R , (86)

then the work conjugate stress measure defined by

wO = JT -D = S , (87)
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has to satisfy

[JTEA' - '(A)SL] -A=o,

for all tensors A that diagonalize in the reference frame, and

[SLg(A) -g(A)SL] - IJ [A 1 TA - ATEA-'] =0,

Recalling definition (54) and using (86) we have

[S, E] = RL [SL ig(A)]RL'

it follows from (85) that

[SL, g(A)] = SLg(A) - g(A)SL 0

and equation (89) reduces to

A-1TEA-ATEA 1 =0.

We conclude that assumption (85) implies

[TEA] 0,

or

[T, V]= 0.

(88)

(89)

(90)

(91)

(92)

(93)

(94)

Conversely, if the Cauchy stress tensor diagonalizes in the eulerian triad, then the

strain and stress measures are collinear.
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In other words, tensors TE and S, diagonalize in the reference frame and equa-

tion (88) is thus equivalent to

JTEV 1 -g'(A)SL = 0 . (95)

Solving for SL ,

SL = JTE{Ag'(A)}',

and using equations (12) and (53-54) we finally obtain

S = JRT TR{ Ug'(U)}- 1

(96)

(97)

This formula is an explicit expression for any stress

tensor and the deformation gradient.

For the class (76) of scale functions, where g' (A)

measure in terms of the stress

= A2- we have

S = JRT TRU-2n (98)

and for the Hencky strain measure, where g(A) = In A and g'(A) = 1/A, equation (97)

simplifies to

S = JRT TR. (99)
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Constitutive equations

5.1 Basic assumptions

5.1.1 Thermo-mechanical processes

Let B be a body. A "thermo-mechanical process" of B is the ordered array

(X, 0, p, 0, T, 7, q) (1)

of functions defined over the body B and a time interval [ro, r1] . In this array, X is a

motion, 9 is the temperature, p is the mass density, 0 is the free energy density, T

is the Cauchy stress tensor, r is the entropy density, and q is the heat flux vector.

A thermo-mechanical process has to satisfy the continuity equation (2.8)

(2)+ V = 0
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the equations of motion (2.32-2.33),

V - T + pb= pa, (3)

TT = T, (4)

the first law of thermodynamics in the form (obtained from (3.21) and (3.28),)

p( b+9iq+9O)= T-D+pr-V-q, (5)

and the Clausius-Duhem inequality

pi ;> P -_V-. 50)(6)

These equations, which are valid for any continuum, are not sufficient to determine

the list (1) of functions in a process. Roughly speaking, there are eight equations (and

one inequality) and nineteen unknowns. The system (2-5) is supplemented by a set of

(eleven) "constitutive equations" that describe the material of which the body is made.

One possible choice of constitutive equations is obtained by specifying the free

energy density 0 , stress T, entropy density q; and heat flux vector q as functionals

of the motion X and of the temperature field history 9,

4 = 05x [ro,rj(X, 0), (7)

T = Tf x[r,,],(X,&), (8)

7 = r713x[ro,(X, 9) , (9)
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q = q13. (X,) . (10)

The subindexes B x [ro, 7] remind us that these are not functions of a vector and a

scalar argument, but rather functionals of the functions X, defined over B x [ro, r].

Note that only the history of the motion and temperature up to time r are involved,

future does not affect present.

5.1.2 The principle of local action

We would expect that the response at a particle is affected only by the motion and

temperature of a neighborhood of the particle. More specifically, let i and 9 be the

referential descriptions of motion and temperature, then

^(xo, r) = i(xo, r) + Vok(xo, 7)(x' - xo) + ... , (11)

O(x', -r) = O(xo, r) + VoO(xo, 7)(x' - xo) +... , (12)

are Taylor series expansions of the motion and temperature fields around xo at time

7 . In terms of the deformation gradient X and the temperature gradient go = X'g,

x' = x + X(x - xo)+..., (13)

9' =O+(X'g).(x' -xo)+... . (14)

The principle of local action states that material response at a particle p depends only
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on the history of the motion and temperature and their first spatial derivatives at p,

0= 0[,](xX,,g;p), (15)

T = T[ro,](x, X, , g; p), (16)

r7 = 77[r , 7(x, X, , g ; p), (17)

q = qr7 ,,.](x, X, , g ; P), (18)

where now the functionals depend on functions of time only. We include p as an

argument to indicate that the dependence on (x, X, 0, g) can vary with the particle.

5.1.3 Thermodynamics with internal variables

Within the framework of themodynamics with internal variables (see COLEMAN

and GURTIN [1967]), dependence on motion and temperature time history is achieved

by means of an array of internal or "hidden" variables. To be specific, we consider

a simple case where this array contains a second order tensor 4 and a scalar a.

Physically meaningful choices of 4< and o- will be discussed in Chapters 6 and 8. At

this point we are interested in the structure of the constitutive equations and some

preliminary results.

The variables <b, a are considered to be governed by a set of rate-type equations
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of the form

<P = 4(x, X, 0, g, 4,cr;p), (19)

= &(x, X, 9, g, 4,I o-; P), 1(20)

with initial conditions (4), o-o). Equations (19-20) are called "evolution equations"

for the array (4, a). Substituting for the histories of motion and temperature up to

time 7 in (19-20), the evolution equations reduce to first order differential equations

that determine 4 and o up to time r-. The constitutive equations (15-18) are then

written in terms of the motion, temperature, and internal variables at time r,

0 = O(x, X, 0, g, 4, o; p), (21)

T = T(x, X, 0, g, 4, u-; p),1 (22)

rq = (x, X, 0, g, 4, o-; p), (23)

q = Q(x, X, , g, 4,o ; p), (24)

where now , i, i and 4 are functions of the scalars 0, -, vectors x, q, and tensors

X, 4. Note that the presence of the deformation gradient in equations (19-24) is

sufficient for the response functions to depend on the choice of reference configuration

p. When necessary, this dependence will be indicated by writing , OV, y Tp , 9o

and q,.
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5.2 Material frame indifference

5.2.1 Rigid body motions

Roughly speaking, the principle of material frame indifference states that the re-

sponse of a material is not altered by rigid body motions. Although this may sound

trivial, it imposes important restrictions on the constitutive functions. We next for-

malize the principle.

Let X* and X be two motions of a body B related by a time-dependent rigid body

motion,

X* = QX + C (25)

where for each 7 , Q(ir) is a proper orthogonal tensor and c(r) is a vector. Let the

associated temperature-field histories 9* and 9 be the related by

= , (26)

i. e., each particle experiments the same temperature history in both motions.

Assuming that Q(o) = 1 and c(o) = 0, we have from (25)

XO = X*(P, 0) = X(p, 0), (27)
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thus the original configurations of motions X* and X coincide. Let this configuration

be selected as reference configuration. Then in view of (25) the referential descriptions

of motion are related by

f*(xo, r) = Q(7)k(xo, r) + c(r). (28)

Combining equations (26) and (25) we see that

are related by

the spatial descriptions of temperature

0*(Qx + c, r) = (x, r). (29)

Differentiating equation (28) with respect

fields satisfy

to time, the velocity and acceleration

V* = Qv + Ox+ ,

a* = Qa + Qx + 2Qv).

(30)

(31)

Differentiating equation (28) with respect to xo and (29) with respect to x we

obtain for the deformation and temperature gradients,

X* = QX,

g* = Qg.

(32)

(33)

Since det Q = 1 it follows that J* = J and in virtue of the continuity equation (2.11),

p*= p.
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Substituting respectively the right and left polar decompositions of X and X*

in equation (32)

R*U* = QRU,

V*R* = QVR,

(34)

(35)

since the polar decompositions of a tensor are unique, we must have

R* = QR (36)

(37)

(38)V* = QVQ T .

Next, differentiating equation (32) with respect to time and recalling that the

velocity gradient is given by L = XX-' ,

L*=QLQ T + QQ T , (39)

from where the stretching and spin tensors are related by

D* = QD QT', (40)

(41)W* = QWQ T + (QQ T

Note that the relationship between any other kinematical quantity in the two

motions can be deduced.
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We assume at this point that the internal variables 4, o- are defined in such a way

that they transform as

* =i, (42)

- = -(43)

5.2.2 Objectivity

In general, a scalar field a, a vector field a, and a tensor field A are said to be

"objective" if for all rigid body motions (Q, c),

(*(Qx + c, 7) = (x, r), (44)

i*(Qx + c, r) = QA(x, r), (45)

A*(Qx + c, r) = QA(x, r)QT , (46)

where a* , a* and A* are the corresponding fields associated with the motion X* =

Qx + c.

Thus for example the density, the temperature gradient and the stretching tensors

are objective, while the velocity vector, the deformation gradient, and the spin tensor

are not objective.

Objectivity can be interpreted as follows. Let {ei} be a fixed reference frame and
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let {el} be a frame that follows the rigid body motion, i. e.

e = Qei for i = 1, 3, (47)

then using equations (45-46),

a* - e = (Qa) - (Qei) = a - ei , (48)

e - A*e* = (Qei) -(QAQ')(Qej) = ei - Aej , (49)

therefore the components of an objective vector or tensor in the motion X* with respect

to a frame that follows the rigid body motion i are equal to their components in the

motion X with respect to a fixed reference frame.

Note that the time rate of change of an objective vector or tensor are not objective.

Let a and A be objective, then

h* = Qa+ 4a, (50)

A* = QAQT+ QAQT+ QAQ T . (51)

5.2.3 The principle of material frame indifference

The principle of material frame indifference postulates that the free energy density,

the stress tensor, the entropy density and the heat flux vector are objective, i. e., for
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all time-dependent rigid body motions (Q, c),

T* =QTQ T ,

7* = ,

(52)

(53)

(54)

q* = Qq, (55)

where 0*, b, T*, T, 7*, q and q*, q are respectively the internal energy density,

stress tensor, entropy density and heat flux vector associated with the motions X* and

X.

In virtue of the geometric relation

n* = Qn, (56)

it follows from Cauchy's and Fourier's theorems (2.27) and (3.7) that the traction vector

and the heat flux are objective,

t* = Qt, (57)

h* = h. (58)

5.2.4 Invariance under rigid body motions

Having specified the transformation rules for the variables that define a thermo-

mechanical process, we now turn to the constitutive equations (19-24). Material re-
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sponse is not altered by rigid body motions if the same functions T, i4, , and 4, b

relate the quantities associated with the motion X*, i. e.,

0 * = (x*, X*, *, g*, V*, o* ; p), (59)

T* = T(x*,X*,9*,g*,4 *,o *;p), (60)

r/* = (x*, X*, *, g*, 4*, 0* ; p), (61)

q* = q(x*,X*,8*,g*, P*,o *;p), (62)

= N(x*,X*, 9*, g*, *,* ;p). (63)

3* = c(x*, X*, 0%g*, *, o* ;p). (64)

Substituting in (59-64), equations (25-26), (32-33), (42-43) and (52-55) we obtain

3 = 4(Qx + c, QX, 9, Qg, 4, a; p), (65)

QTQ T = T(Qx + c, QX,0, Qg, 4,o;p), (66)

77 = q(Qx + c, QX, 9, Qg, 4, o; p), (67)

Qq = q(Qx + c, QX, 0, Qglo; p), (68)

4 = t(Qx + c, QX, 9, Qg, 4, or; p), (69)

a = &(Qx + c, QX,9, Qg,' , a-; p) VQ E 0+,Vc E E. (70)

These are the restrictions that the principle of material frame indifference imposes onto

the constitutive equations.

As a first consequence, we see that since conditions (65-70) have to be valid for

all vectors c E E , it follows that the response functions cannot depent on the position
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vector x and we write

0 = O(X, ,g, 4, a; p), (71)

T = T(X, 0,g, 4, a; p), (72)

rq = f(X, 0, g, 4P, a; p), (73)

q = q(X, 0, g, 4, a; p), (74)

<4> = (D>(X, 0, g, (D, a; P) , (75)
(75

-= (X, 0, g, ,o ; p). (76)

5.3 Invariant constitutive equations

A scalar field #, a vector field b, and a tensor field B are said to be "invariant

under rigid body motions" if for all time-dependent rigid body motions (Q, c),

1*(Qx + c, r) = P3(x, r), (77)

b*(Qx + c, 7) = b(x, r), (78)

B*(Qx + c, -r) = (x, 7), (79)

where /*, b* and B* are the corresponding fields associated with the motion X* =

QX + c. We see that in the case of a scalar field, invariance and objectivity are

84



Chapter 5: Constitutive equations

equivalent. If, however, a vector b and a tensor B are invariant, then their time rates

of change are also invariant,

b*= b, (80)

h =h . (81)

Conditions (65-70) imposed by the principle of material frame indifference to the

constitutive equations would be automatically satisfied if the variables characterizing

the process were substituted for by an array of corresponding invariant variables.

Consider first the temperature gradient g and heat flux vector q. We recall the

definitions (3.49) and (3.33),

go = X T g , (82)

qO = JX-'q, (83)

then using equations (32-33) and (55), we obtain

go = go , (84)

q* = qo (85)

i. e., the temperature gradient and heat flux vector with respect to the reference con-

figuration are invariant vectors.

We next note here that in virtue of equation (37), the right stretch tensor is

invariant, it follows that

A* = A, (86)
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R* = RL, (87)

where A and RL have been defined in equations (4.7) and (4.8). Any strain measure

is consequently an invariant tensor,

E* = E. (88)

Recalling equation (4.12), and using (36) and (87), we see that

R* = R*R* = QRR =QRE , (89)

and in virtue of equations (4.53), (53) and (89),

T* = (R* )T T*R* = (RQT )( T Q T)(QRE) = TE. (90)

This result, together with equations (86-87) and the stress measure formula (4.72)

allows us to conclude that any stress measure is also an invariant tensor,

S* = S. (91)

Given the deformation gradient X , equations (82-91) establish a one to one cor-

respondence between the objective variables g, q and T and the invariant variables

go, qo and S. Note that equations (42-43) indicate that we have assumed the inter-

nal variables 4<I, o to be invariant. Then we can substitute the constitutive equations

(71-76) by the set

= (X, 0, go, , o-; p), (92)
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S = S(X, 0, go, P, or; P), (93)

S = S(X,0,g, 4,cy ; p), (94)

qo = 40(X, ,goJ , o,; p) (95)

4) = P(X, , go, 4, 0 ; P), (96)

6 = 6,(X, 0, go, , a; P). (97)

Restrictions (65-70) now reduce to the condition that equations (92-97) remain

invariant under a change X -+ QX, for all Q E 0+ - By selecting Q = RT E 0+

we conclude from RTX = U that the response functions depend on the deformation

gradient only through the right stretch tensor U. Since given a scale function (4.38-

4.40) there is a one-to-one correspondence between U and the strain measure E , we

can finally write

= (E, , go, 4, o; p), (98)

S = S(E, 0, go, 4,, ; p), (99)

7 = i(Ej , go, 4, o; p), (100)

qo = 40 (El , go, 4, o; p), (101)

0(E,, go, , or; p), (102)

6r = (E, 0, go, D, or; p) -(103)

This set of constitutive equations is entirely equivalent to the original (19-24) and

satisfies automatically the principle of material frame indifference.
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Note that the choice of invariant variables is not unique, and therefore other sets of

invariant constitutive equations (see Chapters 6 and 8) can be developed. The purpose

of this section has been to show the general procedure.
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Thermo-elasto-plasticity I

6.1 State variables

One of the simplest elasto-plastic constitutive models is based on the array (EP, o-)

of plastic (internal) variables. The scalar o, called "deformation resistance", has the

dimensions of stress and represents isotropic resistance to plastic flow. It allows for

isotropic "hardening" of the material. The "plastic strain tensor" EP , in a sense to

be made more precise, accounts for plastic deformation. The (total) strain tensor E

is assumed to admit the following additive decomposition

E = Ee + EP , (1)

where E- = E - EP is the "elastic" strain tensor. Among the earliest models that used

this approach for a large strain formulation are those of GREEN and NAGHDI [1965],

and PERZYNA and WOJNO [1966,1968].

In virtue of the discussion in Section 5.2 and with the selection (EP, -), the array
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of variables that characterize a thermo-elasto-plastic process is given by

(X, 0, g, p, 0, T, 7, q, EP, or) . (2)

Motivated by the results of Section 5.3, we next obtain a set of invariant variables

corresponding to (2).

In view of equation (4.49), given a scale function g, the stress power per unit

reference volume can be written as

wO = JT . D = S , (3)

where the strain and stress measures are given by

E = RLg(A)R ,

S = RLSLRL,

(4)

(5)

and from (4.72),

[SL] = { J
Aag(A,) E

1 }- AJAfl' [RE TR]a8 ,2 g(A#) - g(Aa)

As stated in equations (5.88) and (5.91), the strain and stress measures are invariant,

E* = El ,(7)

S*= S. (8)
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The plastic strain tensor is assumed to be invariant under rigid body motions,

(EP)* =E. (9)

As a consequence of (9) and equation (7) the elastic strain tensor E' introduced in

(1) inherits the invariance property,

(Ee)* = Ee. (10)

According to (5.82-5.83), we write the temperature gradient and heat flux vector

with respect to the reference configuration as

go = X T g,

qo = JX'q,

these vectors being invariant under rigid body motions (5.84-5.85),

(11)

(12)

(13)

(14)q* = q0 -

With these givens we take the array of invariant variables associated with (2) to be

(15)

6.2 Consequences of the reduced dissipation inequality

Racall the reduced dissipation inequality written with respect to the reference

91

(9)

(E e, 0,go, IP~IOS,?I, goI EP Io-).



Chapter 6: Thermo-elas to-plasticity I

configuration (3.52),

po - wo + poqij +- 1qo -go 0. (16)

In view of equations (3) and (1) we write the stress power per unit reference volume as

Wo= w + wP, (17)

W=S- , (18)

w= S -E, (19)

and the reduced dissipation inequality reads,

po - S .ke + po<0 -S - + 0 go . go < 0. (20)

As in Section (5.3), we specify constitutive equations for the variables (4, S, rq, qo)

and evolution equations for (EP, a). The variables (E', 0, go, EP, a) are taken to be

independent.

At this point it is convenient to make the assumption that the plastic strain ten-

sor is not a state variable, in the sense that plastic deformation, other variables held

constant, does not modify the state of a material neighborhood. This simplifying as-

sumption does not follow from basic principles, and its use is justified a posteriori.

Consequently we write the following set of material response functions,

0 = 4(E', 0, go, a), (21)

S = S(E, 0, go, a), (22)
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r7 = j(E, 0, go, o), (23)

qO = go(E', 0, go, o), (24)

= E (E, 9, go, ), (25)

S= (E1, 0, go, ), (26)

where mention of the dependence on the particle p has been supressed for simplicity.

Equations (21-26) satisfy the principle of material frame indifference for any choice of

response functions , S, , 40 , E and &.

Differentiating equation (21) with respect to time,

. o - e ao &$ +a 'O,=- E- +-+- go+-7 (27)

substituting in (20) and rearranging,

(PoEe S ). + ( +71 +Po go

+po- - 0 +' oq -go <0. (28)

There are two possible interpretations of inequality (28). We can consider the

response functions (b, S, , qO, E, a) as arbitrary, and then (28) is a restriction of

the processes that the body can undergo. Or, we can say that (28) must hold for all

processes, and consider it as a restriction on (4, 5, I, o, E ,

Following COLEMAN and NOLL [1963] we adopt the second interpretation, and

assume that the form (28) of the reduced dissipation inequality is required to hold for
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all values of the variables (Ee, 0, go) and all values of the derivatives (E, 9,g). The

following results hold.

(a.1) Given the free-energy response function yb, the stress and entropy response

functions are obtained from

= PO , (29)

(30)

(a.2) The free-energy does not depend on the temperature gradient go ,

=0.
ago

(31)

It follows form (a) that the stress and entropy response functions do not depend on the

temperature gradient either.

(a.3) The following inequality must hold for all processes,

(o E
PO-T-- S - N+O-'qo -go < 0 .

Bo-
(32)

If the plastic response functions E and * do not depend on the temperature

gradient go , (a.3) leads to

(a.4) the functions E and a satisfy the internal (plastic) dissipation inequality,

Po -0 - S and (33)

(a.5) the function qo satisfies the heat conduction inequality,

40 -go < 0. (34)
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Conditions (a.4-a.5) do not follow from our general assumptions, but it could be

proved that with some symmetry restrictions, E and a* depend on go only through

higher order terms. Hereafter we consider that (a.4-a.5) hold.

We have therefore reduced the set (21-26) of constitutive equations to

' = (Ee,9 , o), (35)

go = go(E', 6, go, o) , (36)

N = E (E*, 1 , a), (37)

6- = or(Ee, 1, a), (38)

with the stress and entropy response functions given by (a.1), the plastic variables

satisfying the internal dissipation inequality (a.4) and the heat flux vector satisfying

the heat conduction inequality (a.5).
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6.3 Material symmetry

6.3.1 Change in reference configuration

Let po and pW be two reference configurations. The vectors

x0 = PO(p), (39)

give respectively the position of particle p in configurations po and p0 . These two

configurations are related by the deformation h such that

= h(xo) = o*( j'(xo)) (41)

gives the position in configuration p of the particle p that in configuration o is at

position xO . We consider changes in reference configuration h of the form

x* = h(xo) = QOxo + r, (42)

where Q0 is a proper orthogonal tensor and r is a vector. Equation (42) represents

a time-independent rotation.

Consider next a configuration o with x = p(p). Let k and i, denote respec-

tively the deformations from po and p to p,

x = i(xo), (43)
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x = k,(x*).

These two deformations are related by

x = k(xo) = *(h^(xo)),

Differentiating with respect to xo we obtain for the deformation gradients

X*

(46)

or, solving for X* ,

(47)

and since det Q0 = 1 we have for the Jacobians,

J, = J.

Let po, p* and p be the densities at particle p in the configurations (po, <p and

<p respectively. By conservation of mass,

P O 
P

A9j J*

and in virtue of (47),

PO = Po .

Substituting the right and left polar decompositions of X, and X in (47),

RU,= RUQ 0,

(49)

(50)

(51)
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V.R. = VRQo.

Since the polar decompositions of a tensor are unique, we must have

R =-RQ ,

U= QOUQT,

V* = V.

In virtue of equations (53) and (55), and recalling equation (4.12)

RL*= QORL,

RE* =RE ,

we conclude from (56) and (57) that under a time independent rotation of the reference

configuration a strain measure transforms as

E* = QOEQT. (59)

The elastic and plastic strain tensors E', EP are assumed to inherit the same

transformation rule,

E* = QOEeQ. (6(60)

(61)
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(53)

(54)

(55)
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and similarly for the time rate of change of the plastic strain rate we have from (61),

0= Q0  7Q . (62)

Using equations (47-48) and the definitions (11-12) we have for the temperature

gradients and the heat flux vectors with respect to V* and po,

g* = Xig = QoX Tg = Qogo, (63)

q* = J*X' q = JQOX-q = Qoqo. (64)

To summarize, under a time-independent rotation of the reference configuration

the independent variables transform as

(Ee,9,gou) - (QOEQ 0,OQog 0 ,T), (65)

and the dependent variables transform as

(1q 0o,3,) F-+ (0,Qoqo,Qo Q0ra). (66)

Let (0b, q, E , ) and ( , q0*, E, *&) be the material response functions defined

by equations (35-38) with respect to configurations oo and V* respectively, then in

virtue of (65-66),

0,(QoEeQ 0, a) = 0, (67)

q*(QoEeQT ,O, Qo g o) = Qoqo(Ee, 0,go, o), (68)
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E*(QoEeQ, , ) = QOE (E, , 0a)Q (69)

r*(QoEQo , , a) = 0(Ee 1, o). (70)

If the material response functions with respect to one configuration is given, equations

(67-70) can be used to derive the material response fuctions with respect to any other

configuration.

6.3.2 Material symmetry group

Let p and VO be two reference configurations. We say that pV and po are

"thermo-mechanically equivalent" at point p if

0(Ee, 0, a) = O(Ee, 0, o), (71)

Q*(EeOgo, ,) = Qo o(Ee,O,go,Or), (72)

E) (E ,o= QOE (Ee,9,O)Q , (73)

a*(Ee,9,0.) = 7(Ee,9, a), (74)

for all possible values of the variables (E', 0, go, a) .

In virtue of the change in configuration formulas (67-70), configuration p0 , defined

by the rotation tensor Q0 is thermo-mechanically equivalent to configuration V at

point p if and only if

(QoE*QT1,, o) = (Ee,0, or), (75)
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40(QoEeQ,9, Qogoa) = Qoqo(Ee,9,gor ), (76)

E (QOE*QT,0, ) = QOE (E,,U)Q0 r 0 (77)

*(QoEeQ- ,9, ) = a(EA, a). (78)

for all possible values of the variables (Ee, 9, go, o) .

Given a reference configuration W of body B and given the material response

functions (0, 0 , E , d) with respect to o , we define !,(p) as the collection of all

tensors Qo E 0+ which satisfy equations (75-78) for all possible values of the variables

(Ee, ,go,a).

It can be easily proved that if Qo E !9,(p) then QJ1 E 9,(p) and if Q1, Q2 E

9,(p) then (QI Q 2) E g9(p). Therefore 9,(p) has the structure of a group and is

called "material symmetry group".

If Qo E 9W(p), then Qo is the gradient of a deformation that maps P onto

another configuration which is thermo-mechanically equivalent to p0.

We say that a material is isotropic at p in configuration o if !9(p) = 0+ .

6.3.3 Material response functions for an isotropic solid

If the material is assumed to be isotropic, then conditions (75-78) must hold for

every Qo E (9, and using well known representation theorems (TRUESDELL and NOLL
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[1965]) we have the following results.

(b.1) The free-energy response function is given by

(79)

where t is the list

I, =I(E*), I2(E*) , 3(Ee), 0, a-}, (80)

and I(Ee) are the invariants of tensor E" . In view of equations (29) and (79-80),

and considering that

all'IT

0I2

013

- Ii1 -E

=121 - I 1Ee + (Ee) 2 ,

(81)

(82)

(83)

we obtain for the stress response function

S = aol + a1Ee + a2 (Ee) 2 , (84)

where

ao = pr ( +

a = pr -

aa

I I + 12 ,

a12 0913)/

+ 11-- , I
0h )
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The entropy response function follows from equation (30),

7b(e)
r/ g~) =- 0 .

(b.2) The heat flux vector response fuction is given by

qO = [bol + bjEe + b2 (Ee )2 ]go ,

(88)

(89)

where the coefficients bi are functions of the augmented list

t, (go -go), (Ego -go), (Ego - Eego)}. (90)

(b.3) The time rate of change of the plastic strain tensor has to be symmetric, and it

is given by

E" = col + ciE'+ c2 (E')2 , (91)

where the coefficients ci are functions of the list f.

Finally the deformation resistence response function is given by

(92)

In this way, by enforcing the second law of thermodynamics and assuming isotropic

response, the twenty-one functions of eleven scalar arguments (21-26) have been reduced

to the eight functions 4, bi, ci and & of the lists (80) and (90).

To summarize, the most general set of constitutive equations for large-strain,

isotropic thermo-elasto-plasticity with the assumption of additive decomposition of
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the strain tensor is given by

(93)

S =aol + ajEe + a2 (Ee) 2 , (94)

= () , (95)

o= [bol + biEe + b2 (Ee)2 ]go , (96)

k= co1 +ciE + c 2 (Ee) 2 , (97)

-= 6C), (98)

where t = {I,(Ee), 0, o-}, a, and i are given in (85-88), bi depend on the list (90)

and ci depend on t. Furthermore, the heat flux response function has to satisfy

inequality (a.5) and the plastic response functions have to satisfy inequality (a.4).

6.4 Reduced constitutive equations

As a first approximation to (93-98), we consider the system

= - + p)If(Ee) - 2pI2 (Ee)] , (99)
Pr2

S = AI1 (Ee)1 + 2pE , (100)

= - I + I(E*) + 2 -k ,2(E), (101)

qo= -kgo, (102)
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N'=70 1(E') 1 + 71jE* (103)

-= r(104)

e= {I1,2,9,0}, (105)

where A, P, k depend on 6 and yo,-y depend on the list i.

The stress-strain law (100) can be written as

S = C[Ee], (106)

where L is the elastic moduli tensor, given by

LC= Al®l +2piI. (107)

Note that 'T = L. Using the elastic moduli tensor the free-energy function can be

written as

11 E= -Ed .4 [Ee]. (108)2po

In equation (102), k is the thermal conductivity coefficient. If k > 0, the heat

conduction inequality (34) is automatically satisfied.

Taking the trace in equations (100) and (103),

tr S = (3A + 2p)tr E', (109)

tr N = (3-0 + 71)trEe , (110)

and combining results,

trEN = (3 o +/) tr S (111)
(3A+ 2y)
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If we require that hydrostatic (pressure) loading does not produce plastic flow in the

range of strains considered, we must have

37o + 71 = 0, (112)

and (103) reduces to

E = 7 1 E', (113)

where the prime stands for the deviatoric part of the strain tensor,

Ee' = Ee - } (tr Ee)1 (114)

Taking the deviatoric part of the stress tensor in equation (100)

S' = 2pE', (115)

we use this equation to write the evolution equation for the plastic stretching tensor in

the more familiar form

k = 
p S,

(116)

where - = -1/(2p) .

Defining the equivalent tensile stress s and the equivalent plastic strain rate 6P by

6P = S' . k',

de = aNt-.N ,

106
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we obtain from (116),

3J?
U P =(119)2s

It is customary to write the evolution equation for the deformation resistance (104)

in the form

& = (f) = h(f)6P(f), (120)

where h(t) is the "hardening function". (Note that the same letter h has been used

to denote heat flux.)

Plastic flow is observed to depend only on s and to be independent of the first

invariant of stress (pressure).

With these considerations, the reduced constitutive equations for isotropic thermo-

elasto-plasticity with the assumption of additive decomposition of the strain tensor can

be summarized as

1
#b - Ee .I [EeI, (121)2 po

S C[Ee], (122)

1 8
= Ee - [Eel, (123)2po ao

q0 = -kgo , (124)

= 3P(C) , (125)2s

&= h()ep(), (126)
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where

=Al ® +2 PI,

i = {s, 9, a-},

(127)

(128)

and A,/p and k depend on 9.

6.5 Isothermal processes

An isothermal process is such that the temperature field is uniform and constant

over time. In this case

9(xo, r) = 00 , (129)

ko(xo, r) = 0 , (130)

for all xo and for all r , and it follows from equations (123-124) that

(xo, r) = 0,

40(xo, 7) = 0,

(131)

(132)

throughout the process.

A consistent set of reduced constitutive equations for isothermal elasto-plastic

processes with additive decomposition of strain can be obtained from (121-128) by
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using equations (129-130),

1
= -E- 4C[Ee], (133)2 po

S =1[Ee], (134)

.e = 6eP(s, a)S', (135)
2s

& = h(s, o)eP(s, a), (136)

where

Z= Alol +2p, (137)

and A, p are the Lame constants.

6.6 Rate-independent plasticity

Implicit in the preceeding constitutive model for thermo-elasto-plasticity is the

fact that plastic flow occurs a any level of stress, (see equations (97-98) or (135-136).)

A large class of materials, however, have negligible plastic stretching at stress levels

below a specific limit.

The rate-independent theory of plasticity assumes the existence of an elastic range

in the stress-temperature space characterized by a "loading function"

Y = Y(Ee, , ) (138)
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For a given value of ur, the elastic range E, is given by

Ea = {(Ee, )/y(E, 9, a) < 01. (139)

For any pair (E', 9) E E, , we have E" = 0 and & = 0 , i. e. there is no plastic

flow and the process is said to be purely elastic.

When a process passes through a point on the "yield surface"

Y(Ee,,a) = 0, (140)

three cases are possible. To describe them we first define the "trial elastic" rate of

change of Y by

ktr = y k + ay (141)
8E* 89 11

When ytr > 0, & : 0 and we have "loading". When ytr = 0, & = 0 and we have

"neutral loading". Finally, when ytr < 0, & = 0 and we have "unloading". Plastic

flow is assumed to occur only under loading condition.

Differentiating with respect to time equation (140), we obtain the "consistency

condition" that has to be satisfied during plastic flow,

aY e aY aY
MY -E +- +-0 =0. (142)

For an isotropic material, the loading function (138) reduces to

Y = Y(), (143)
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where

i = {I1(E), I2(E'), I3(E*), 0, -} . (144)

To summarize, we write the evolution equations for the plastic variables in the

case of isotropic, rate independent plasticity as

N! = aco l + ciEe + c2 (Ee) 2 ], (145)

& = aW) , (146)

where the coefficients ci depend on t and a is a switching parameter, given by

if Y = 0 and ytr > 0,
if Y < 0 or (Y = 0 and ytr <0).

(147)

A frequently used yield surface is given by the Von Mises loading function,

Y = S - o-, (148)

The trial elastic rate of change of the Von Mises loading function for isothermal pro-

cesses is given by

r EcY (149)
S

Hence, the rate-independent counterpart of equations (133-137) is given by

1
1 E' - C[E],

2po

S 3eP(a-)2 S
2s
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with the switching parameter defined as

if s = a and S' . N > 0,
if s < a or (s = o- and S'

and the consistency condition
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a = ah(-)6P(or), (153)

(154)

a = as. (155)
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Chapter 7

Comments on the additive decomposition

7.1 Incompressibility of plastic flow

A deformation is volume-preserving, or isochoric, if the volume of any material

element is preserved. Since

dV = JdVo , (1)

where J = det X is the jacobian of the deformation, a necessary and sufficient condi-

tion for a deformation to be isochoric is that

J = det X = 1 Vxo E BO.

Micromechanical and experimental considerations lead to the conclusion that plas-

tic flow is approximately isochoric. We explore the restrictions that this assumption

imposes on the material model defined in (6.121-6.128).

Let B be a body. Let xi be an elastoplastic deformation such that the current
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configuration is stress-free,

S = T = 0, (3)

it follows from the stress-strain law (6.122)

S = L[Ee] = C[E - EP], (4)

that the elastic strain vanishes and that total strain equals plastic strain,

E' = 0, (5)

E = EP. (6)

Note that the motion that took place between the reference and the current config-

urations had in general both elastic and plastic strain histories, we only assume that

elastic strain (and stress) is zero in the current configuration. Such deformation is

called "purely plastic" in that total strain equals plastic strain. It follows from our

preceeding statement that the deformation should be isochoric, i. e.,

J = A 2A = 1. (7)

Using equations (6.125) and (6) we have

trE = trEP = 0, (8)

or, equivalently

trE = tr [RLg(A)Rf] = g(Al) + g(A2 ) + g(A 3 ) = 0 .
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Solving for A3 in (7) and substituting in (9),

g(A) + g(A2)+g ( .)
AI A2 0

(10)

This condition has to be satisfied for all Al, A2 . Differentiating with respect to A, and

A2 we obtain respectively

(1 )=
kAAJ= 0,g'(A2 ) - '

9'(A2) - .A29 /A 1 \
= 0 ,

(11)

(12)

eliminating g'(- -) and rearranging, we obtain

A g'(l) = Ag'(A 2 ).

Since A1 and A 2 are independent we must have

Ag'(A) = c,

g(A) = cln A,

and in virtue of the condition g'(1) = 1 the constant c = 1 . We conclude that the

only scale function that satisfies

g(A) + g(A2 ) + g(A3 ) = 0 ,

for all A, A2 , A3 such that

AIA 2A 3 = 1,
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is the logarithmic function

g(A) = ln A. (18)

Hence, in the framework of the constitutive model (6.121-6.128) incompressibility

of plastic flow restricts the choice of scale function, the Hencky strain measure and its

conjugate stress are the only strain-stress pair "physically admissible".

7.2 Effects of plastic history on elastic moduli

7.2.1 Small strains limit

Let B be a body and let x be a motion of B referred to the configuration <po ,

x = i(xo, r) (19)

is the position at time r of the particle p E B that

At time 0 we have for the kinematic variables,

at time 0 was at xO .

X(o) = ,

J(o) = 1,

U(o) = 1,
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R(o) = 1,

A(o) = 1,

g(A(o)) = 0,

g'(A(o)) = 1 ,

E(o) = 0.

Recalling equations (4.50-4.51) for the stretching and strain rate tensors,

D = RE [AL L A+ ()RA ,

E = RL [Ag'(A) + QLg(A) - g(A)QL]R .

and using (24-26) we have at time 0,

E(o) = D(o) = RL(o)A(o)RT(o).

We assume that comfiguration po is unstressed, i. e. that

T(o) = 0.

From the definition (4.49) of the stress measure S,

S-E=JT.D,

and (31), we have

S(o) = 0.
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Differentiating equation (32) with respect to time,

S. -k+S = jT -D+ Jt-D+ JT -b,

and using (21), (27), (30), (31) and (33),

S(o) -D(o) = t(o) -D(o),

we conclude that

S(o) = t(o).

We finally assume that there is no plastic strain in the configuration <o ,

EP(o) = 0.

With these givens, we consider the Taylor series expansions around r = 0,

E(r) = E(o) + E(O)r + t9(r-2),

S(r) = S(o) + S(O)T + 19(72),

EP(r) = EP(o) + P(0)7 + t(r2),

in view of equations (27), (30), (33), (36) and (37),

E(r) = D(o)r + 19(r2),

S(r) = T(O)- + t9(72).

EP(r) = EP(o)7 + 9(72),
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We recall at this point the stress-strain law (6.122)

S = C[Ee] = I[E - EP],

At time r, (44) reads

S(r) = L[E(r) - EP(r)],

substituting (41-43) in (45),

I'(o)r 7= [D(o) - k(o)] + t9(7 2 ),

dividing by r and taking limit as r -+ 0,

''(o) = [D(o) - k (P)].

Equation (47) governs the initial stress-strain response.

An "initially elastic" process is such that

E (0) = 0,

thus, for an initially elastic process the stress-strain response is governed by

'(o) = [D(o)].

Note that (49) is independent of the scale function.

119

(44)

(45)

(46)

(47)

(48)

(49)



Chapter 7: Comments on the additive decomposition

7.2.2 Motion referred to an intermediate configuration

Let t be any time in the interval [0,1r] and let <pt be the configuration of B at

time t ,

(50)xt = k(xo, t)

is the position at time t of the particle p E B that at time 0 was at xO

The motion X can be referred to configuration <p as follows,

x = k(i-'(xtt), r)

is the position at time r of the particle p E B

"relative" deformation gradient Xt is defined by

that at time t was at xt .

X . x (52)

and it follows from equation (51) that

Xt(r) = X(r)X~1(t) (53)

Differentiating equation (53) with respect to r and taking the inverse of (53) we

obtain respectively

Xit(r) = X(r)X-(t), (54)

Xt-'(r) = X(t)X i(r). (55)
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from where we have for the velocity gradient

L = ) X- 1 = XtX-'. (56)

The relative deformation gradient admits the polar decomposition

Xt = RtUt ,

Xt= VtRt.

(57)

(58)

Based on the eigen-decomposition of the relative right stretch tensor

(59)

we write the relative strain tensor as

Et = Rtg(At)(R )T.

By an analogous procedure to the one used in Chapter 4, we

(60)

obtain the following

expressions for the relative stretching tensor and the strain rate tensor, (see equations

(28-29),)

D = Rt [AtA-' + .(A-'.i4At - A(61A))](Rt)T (61)

(62)Nt = R[JAtg'(At) + f4g(At) - g(At)Q'](Rt)T

At time t we have from (53) and (57-60),

Xt(t) = 1 , (63)

121

Ut = Rt At(R )t ,T
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Jt(t) = 1 ,

Ut(t)

Rt(t)

= 1,

=1,

At(t) = 1 ,

g(At(t)) = 0,

g'(At(t)) = 1 ,

Et(t) = 0 ,

and from (61-62),

5,(t) = D(t) = Rt it(Rt) T . (71)

The relative stress measure St is defined by the equation

St - kE = JtT - D , (72)

and may be written in terms of T, the relative rotations Rt , R' and the relative

stretches At by means of an equation analogous to (4.72).

In what follows we assume that configuration Sct is unstressed, i. e.

T(t) = 0, (73)

then from (72) we have

St(t) = 0. (74)
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Differentiating (72) with respect to r,

(75)

and evaluating at 7 = t, we obtain by means of (64), (70), (71), (73) and (74)

(76)St(t) - D(t) = T(t) - D(t)

from where it follows that

St(t) = T(t), (77)

Consider times r in a neighborhood of t. We write a Taylor series expansion of

the relative strain and stress tensors,

Et(r) = Et(t) + Nt(t)(7 - t) + t9 [(r - t) 2 ]

St(T) = St(t) + St(t)(r - t) + t9[(r - t) 2]

(78)

(79)

and using equations (70), (71), (74) and (77),

Et(r) = D(t)(r - t) + ?9[(7 - t)2]

St(r) = T(t)(r - t) + t9[(7 - t)2 ]

(80)

(81)

Motivated by (49) and (80-81), we define the initial elastic response moduli tensor

C(t) at time t from the unstressed configuration pt by the equation

(82)T'(t) = C(t)[D(t)].

123

Sit -kt + St -Zt = jt T -D + Jt!' - D + Jt T -b ,I
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Note that in virtue of (49),

C(o) = L, (83)

but, unlike the case of oo , the plastic strain tensor EP(t) at Vt is in general nonzero.

For the initial elastic response to be independent of the plastic strain, we should have

C(t) = 'C (84)

for all unstressed configurations ot .

7.2.3 Initial elastic response moduli

Let configuration Vt be unstressed,

T(t) = 0,

and consider an initially elastic process from Vt ,

E() = 0.

Then, in virtue of the stress strain law (44) we have at time t,

S(t) = C[E(t) - EP(t)]

(t) = L[E(t)].
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Equation (32), combined with (85) leads to

(89)S(t) = 0,

and we obtain from (87) that

E(t) = E(t) (90)

In order to obtain an expression for the initial elastic response moduli tensor C

defined in (82), we start from (88) and seek expressions to relate S(t) to T(t) and

N(t) to D(t).

Consider first equations (28-29) for the stretching and strain rate tensors,

D = RE[AA-' + L(A'1,A -

k = RL [Ag'(A) + fLg(A) - g(A)QL] R .

(91)

(92)

which are equivalent to

R DRE AA- + !(A-1-LA - L

RLNRL = Ag'(A) + -Lg(A) - g(A)QL

Taking dot product with ea®eO,

[R TDRE]qf = eQ., [AA1- + .1(A- 1 2L A - A2L A 1 ) e~E L L

= A [Aap+ -(A -'A)- A A-')[f2L1a, 

(93)

(94)

(95)

[RTNRL]Qg = e. - [Ag'(A) + iLg(A) - g(A)QL] ep
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= g'(A8)[A]ai + (g(\C) - g(P))[fLIa P (96)

Considering that the matrix [A] is diagonal and [fL] is skew-symmetric, we use (95)

to solve for the components of stretch rate and lagrangian spin,

[A)aa = A,[R'DRE aa (no sum on a),

[aL sbtt g 2(A ()Aeb - A Aes[RireDRd

and substituting in (96) we obtain the desired result

(97)

(98)

Aag'(Aa)[RTDREICea,

[R T5RL a/ 2 g(A 8) - g(Aa)
2 _ -- [R D REA 'e, otherwise. (99)

For an expression of the stress measure rate 5(t) in terms of t(t) we consider

equation (34), which, together with (85) and (89) gives

5(t) - k(t) = J(t)1T(t) - D(t). (100)

and using a similar procedure to that of Section 4.3, (see equation (4.72),) we obtain

( J
,R[R 1T TRE ,

[R T RL A (,g(, E Ce

L -A ,8J A a A a f [ R i T R E 1 a p ,2 g(A#) -g(Aa ) E

(101)

otherwise.

Since the tensor L is isotropic, equation (88) is equivalent to

RLSRL = L[RL5RLI. (102)
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Recalling that

C= Al

or equivalently

where

K =

is the bulk modulus, we have from (102),

el +21J, (103)

(104)

\+ 2t,

f *Utr[R TRL aa,
[RLSRL I 1 T L

2p [RL kRL ]a 1,

(105)

(106)
if #=a;

otherwise.

Substituting (99) and (101) into (106) and solving for the components of [Ri TRE]

we obtain the final result,

[Ri TRE]a

3nJ-1[Acjg'(Acj)J2 [R TDRE]CMJ 2r
2pJ-1 2 g(A,[) - g(A

2~~~~,6J1 [ - Ac,,A-'J[RDE]/,

At the unstressed configuration vo the total strain tensor equals the plastic strain

tensor, as indicated by equation (90).

plastic stretches from configuration po

It follows that A(t) = AP where AP are the

to vp . Thus, evaluating equation (106) at

- = t
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3UJ1[AP g(AP )] 2 [R'(t)D(t)RE(t)] if a;

I(AP) - g(A p) T (108)
2/ J 2 A g(A [RE(t)D(t)RE (t a, otherwise.

where J, = J(t) is the jacobian of the plastic deformation.

Comparing equation (108) with the equation defining the initial elastic response

moduli tensor C,

i(t) = C(t)[D(t)], (109)

we observe that the initial elastic response from an unstressed configuration as predicted

by the constitutive model (6.121-6.128) is anisotropic, and is characterized by the

"modified" bulk and shear moduli,

'a = KJ, [Aag'(Aa)2, (110)

g(AP) - g(A )

P'O = pJ,-1 _2 AA-- P -1(111)

For the class gn of scale functions defined in (4.76) we have

9n(A) = 1 (A - (112)

g,(A) = A2n-1 , (113)

substituting in (110-111),

4n= nJp(AP)4", (114)

[ (A ) 2 n - (,p)
2
n 2

/1 - A28AP~' (115)
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If the logarithmic scale function is selected, then g(A) = In A and g'(A) = 1/A .

Furthermore, in virtue of the discussion in Section 1 we have J, = 1. The modified

moduli are in this case

' = ,

ln(A) - ln(AP )

Note that only in this case the bulk modulus is not affected by plastic history.

(116)

(117)

7.2.4 An example

To illustrate the results of the previous Subsection, we select a particular purely

plastic deformation, and compute the modified shear moduli predicted by equation

(117).

As a representative example we consider a case of two-dimensional plastic flow. A

specimen is subjected to the displacement controlled isochoric deformation given by

AP = 1,

AP = 1/A,

(118)

(119)

(120)A = A

and R = 1.
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The initial elastic response of the specimen after the deformation (118-120) is

characterized by "modified" shear moduli. These moduli are obtained by substituting

(118-120) in (117),

23 I4nA 2

-2 = 2 -2 , (121)

-13 = 2lnA (122)

IL12 = 2(123)
P A -LA- I

Note that these moduli have the symmetry property

P',8(1/A) = p'8(A), (124)

thus is enough to show the dependence on plastic stretch A for A > 1.

Figure 7.1 shows schematically the deformation stages, and the plot of p'23/y as a

function of A, for values of A up to 2. Note that for this level of plastic stretch (100%

engineering strain) the in-plane shear modulus decays to 54.7% of its original value.

Figure 7.2 shows the corresponding plot for P'2 = Pi3 . For A = 2 (100% engi-

neering strain,) the out-of-plane shear moduli decay to 85.4% of their original value.

We mention in this context that the range of application of a large strain elasto-

plastic model with isotropic hardening does not extend beyond 30-40% engineering

strains. Figures 7.1-7.2 show the modified shear moduli in a 0-100% engineering shear

strain range only for illustrative purposes.
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Chapter 8

Thermo-elasto-plasticity II

8.1 Plastic variables

A class of elasto-plastic constitutive models that has received much attention is

based on the array (XP, a) of plastic (internal) variables. The scalar a, called "de-

formation resistence", has the dimensions of stress and represents isotropic resistence

to plastic flow. It provides a scalar dependence of the history of plastic flow.

An elastoplastic deformation of a body from an original configuration o to con-

figuration p may be characterized by the well known multiplicative decomposition of

the deformation gradient (LEE [1969])

X = XeXP (1)

where X* and XP represent the elastic and plastic deformation gradients, respectively.

Central to this assumption is the concept of a relaxed intermediate configuration v, ,

which is obtained conceptually at each particle by unloading a material neighborhood
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from the current configuration to a state of zero stress in such a way that no unelastic

process takes place during the deformation. Note that this defines <p, except for a

rigid body motion. To resolve this difficulty, MANDEL [1973a, 1973b] introduced the

concept of a director triad to determine the orientation of a material neighborhood. In

the case of a single cristal, for example, the director triad is related to the atomic lattice

of the cristal. Following MANDEL [1973b] we call isoclinic configuration the relaxed

intermediate configuration that preserves the orientation that the director triad had in

the original configuration. The plastic deformation gradient XP is therefore uniquely

defined as mapping the original configuration onto the isoclinic configuration. Since

plastic deformation is assumed to be incompressible, JP = det XP = 1 .

Having specified XP , the elastic deformation gradient X' is given by

Xe = X(Xp)- 1 , (2)

and the multiplicative decomposition (1) follows.

Note that since J = det X > 0 we must have J' = det X* = J > 0 and therefore

the elastic deformation gradient admits the polar decomposition

Xe = ReUe, (3)

Xe = VeR, (4)

where R' is the elastic rotation tensor and U' and V' are the elastic rigth and left

stretch tensors, respectively.
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Next we recall the definition of velocity gradient

L = X-' 1, (5)

and of stretching and spin tensors, D and W respectively,

L =D + W ,

D =sym (L),

W = skw (L).

From equation (2) we readily obtain

k = keXP + XexCP

X -1 = (XP)-'(X)- ,

hence the velocity gradient can be decomposed in the sum of two terms,

L= Le +LP ,

where

L = Xe(Xe)-1 ,

LP = XeXP(XP)-1(Xe)-',

L' and LP are called elastic and plastic velocity gradients.
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Furthermore, the elastic stretching and spin tensors are given by

Le = De + W , (14)

De = sym(Le), (15)

W = skw(Le), (16)

and similarly, the plastic stretching and spin tensors are given by

LP = DP + WP ,(17)

DP = sym(LP), (18)

WP = skw (LP). (19)

In virtue of equations (6), (11), (14) and (17) the stretching and spin tensors can

be written as

D = De+ DP, (20)

W = We+ WP. (21)

8.2 Elastic-plastic processes

Given the plastic variables XP, o, it follows from the discussion in Section 5.2

that the array of variables that characterize an elasto-plastic process is given by

(X, 0, g, p, 0, T, r1, q, X P, a-). (22)
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In the spirit of Section 5.3 we now turn to the selection of an array of invariant

variables corresponding to (22). This can be accomplished by refering all vector and

tensor variables to a reference configuration.

We select the isoclinic configuration <p, as reference configuration. With this

choice, the deformation gradient equals its elastic part and the array (22) reads

(X , I, g, 9 1 P, T, r7, q, XP, o-). (23)

It has been argued (see for example ANAND [1985]) that the plastic deformation

gradient XP is not a state variable, because it represents a deformation such that the

neighborhood of a particle before and after plastic deformation is essentially the same.

Consequently, (23) reduces to

(X*, e, g,7 91, , T, r7, q, o-). (24)

The definition of the isoclinic configuration implies that the plastic deformation is

invariant under rigid body motions,

(XP)* = XP. (25)

It follows from the transformation rule (5.32) and the multiplicative decomposition (1)

that the elastic deformation gradient transforms according to

(Xe)* = QX . (26)
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According to (5.82-5.83), we write the temperature gradient and heat flux vector

with respect to the isoclinic configuration as

(27)

(28)

g, = (Xe) T g,

q, = Je(xe)-lq,

it follows from equations (5.33),(5.55) and (26) that

9* =9r,q* q
gr =-

(29)

(30)

Next, according to the definition (2.69), the stress power per unit volume in the

isoclinic configuration is given by

Wr = JeT -D. (31)

Substituting for D in terms of equation (20), the stress power can be decomposed as

Wr = Wr + W 7., (32)

where the elastic and plastic stress powers we and wP are given respectively byre r

W e = J' T -D' ,

WP = Je T - DP .
Wr

(33)

(34)

Let the elastic right stretch tensor defined in (3) be decomposed as

Ue = Re Ae(R ) T , (35)
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where Re is the elastic lagrangian rotation matrix and A' stores the elastic principal

stretches Af , then an "elastic strain measure" is a tensor

= Rg(Ae)(Re)l', (36)

where g is a scale function as defined in (4.38-4.40).

The tensor pair (S', Ee) is said to be "elastic work conjugate" if for any elasto-

plastic process,

Se -Ee = Je T -D', (37)

S' is the elastic stress measure associated with the elastic strain measure E'.

As described in Section 4.3 (for the case of total work conjugacy), given the elastic

deformation gradient Xe , there is an one-to-one correspondence between the elastic

stress measure and the Cauchy stress. In fact,

e T Te , if 0 = a;

1 = e Aa(A -- e otherw ise,(38)

where Se and Te are given by

T = (R )T TR, (39)

L= (Re )SeR , (40)

and

Re = Re Re .(41)
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By an argument entirely similar to that of equations (5.86-5.91), we conclude that

the elastic strain and stress measures are invariant under rigid body motions, i. e.,

(Ee)* = Ee,

(Se)* = Se,

(42)

(43)

In view of (29-30) and (42-43), we select the following array of invariant variables

correponding to (24),

(44)

8.3 Consequences of the reduced dissipation inequality

We recall at this point the referential form of the reduced dissipation inequality

(3.52),

pr| - wr + prr+ ~9qr g, < 0 .

According to equations (32), (34) and (37), we have

reference volume Wr

W. = We + Wp,

r S

WP = Je T . DP.r
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In virtue of the symmetry of the stress tensor and equation (13), the plastic power

expended can be written in terms of invariant variables as follows,

WP= Je7T [Xe XP(Xp)-,(Xe)-,]

= [je(Xe) T T(Xe)- T ]_ )PX -1

= {[(Xe) T Xe][Je(Xe)~ T(X )-T]} [X P(XP)-1]

2el) + 1)Sel) . Lp (9

where E e) is the elastic Green-Lagrange strain tensor and Se1 ) is the elastic second

Piola-Kirchhoff stress tensor (see equations (4.78-4.79)), and Lr is defined by

L= k= X (XP)-1 (50)

Note that given Xe, the tensors E ') and Se1 ) can be written in terms of Ee and

Se respectively by means of equations (4.74-4.75).

Substituting equations (47) and (49) in (45), we obtain for the referential form of

the reduced dissipation inequality,

POr?> - S ke . e + pr, 9 - 2(E e) + 1)Sel) .L + -'q,- g, <0. (51)

We therefore select (E', 9 g,., o-) as the array of governing variables. The variables

(0, S', r, q,.) are considered to be dependend. The corresponding set of constitutive

equations for elastic-plastic processes is given by

(, g,,) (52)

141



Chapter 8: Thermo-elasto-plasticity II

Se = Se(Ee 0, g, a) , (53)

77 = (E, 1, g,. a), (54)

q, = q,(E , ,gr, O), (55)

LP =LP(Ee,9,g ,,), (56)

61 = (E, 1, g,., a), (57)

where mention of the dependence on the particle p has been supressed for simplicity.

Equations (52-57) satisfy the principle of material frame indifference for any choice of

response functions b, Se, q ,4., L and 0.

Taking the total time derivative in (52),

r-0-E +--, (58)

substituting in (51) and rearranging terms,

pr -Se) ke + pr (k+ r)

+ Pr -gr + Pr 6 - 2(El) + 1)S - LP + 0-'qg,. (59)

There are two possible interpretations of inequality (59). We can consider the

response functions ( , 5 , q, 4,., Li, &) as arbitrary, and then (59) is a restriction of

the processes that the body can undergo. Or, we can say that (59) must hold for all

processes, and consider it as a restriction on (4, S, , ,, I, L ).
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Following COLEMAN and NOLL [1963] we adopt the second interpretation, and

assume that the form (59) of the reduced dissipation inequality is required to hold for

all values of the variables (E', , g,.) and all values of the derivatives (Ne, 4,g,) The

following results hold.

(a.1) Given the free-energy response function ? , the stress and entropy response

functions are obtained from

Pr =(60)

7 = .(61)

(a.2) The free-energy does not depend on the temperature gradient g,.,

=0. (62)
6g,.

It follows form (a.1) that the stress and entropy response functions do not depend on

the temperature gradient either.

(a.3) The following inequality must hold for all processes,

Pr Or-2(El+)1- LP +0-q, < (63)

If the plastic variables LP and 7 do not depend on the temperature gradient g,.,

(a.3) leads to

(a.4) the functions L4 and a satisfy the internal (plastic) dissipation inequality,

Pr 0 - 2(Eel) + 1)Sel) Li < 0, and (64)
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(a.5) the function q,. satisfies the heat conduction inequality,

qr-gr < 0. (65)

Conditions (a.4-a.5) do not follow from our general assumptions, but it could be

proved that with some symmetry restrictions, L4 and - depend on g,. only through

higher order terms. Hereafter we consider that (a.4-a.5) hold.

We have therefore reduced the set (52-57) of constitutive equations to

0 = (E, 1, or), (66)

q,. = ',.(Ee, , ,. 9 ) , (67)

LP = I/(E, , 1(r), (68)

o = &r(E, , 0or), (69)

with the stress and entropy response functions given by (a.1), the plastic variables

satisfying the internal dissipation inequality (a.4) and the heat flux vector satisfying

the heat conduction inequality (a.5).

8.4 Material symmetry

Motivated by our discussion in Section 6.3 and following HAHN [1974] we define

the instantaneous symmetry group S(t) at XP, o to be the group of all unimodular
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tensors H that satisfy

= tI(HEeHT ,, ),

Hq, = q,(HEeHT , 6, Hg,., a),

H LH HT = Lp( H EH Hi,01,), 1

0H = r(HEH T, 6, ),

(70)

(71)

(72)

(73)

An elastic-plastic material is called isotropic at XP, a if S(t) contains the or-

thogonal group 0. If the material is isotropic at every XP, or, then it is said to be

isotropic.

If the material is assumed to be isotropic, then conditions (70-73) must hold for

every H E 0, and using well known representation theorems (TRUESDELL and NOLL

[1965]). we have the following results.

(b.1) The free-energy response function is given by

(74)

where t is the list

t = {11 (Ee), 12 (Ee), I3 (Ee), 0, a}, (75)

and I(Ee) are the invariants of tensor E e. In view of equations (60) and (74-75),

and considering that

Ia"
OE'-
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aI = Ill -E ,

we obtain for the stress response function

S e = ao1 + ajE + a2 (Ee) 2

where

ao = pr + I, + 12 ,

ai = -pr + 1 ,j

8b
a 2 = Pr .

The entropy response function follows from equation (61),

(b.2) The heat flux vector response function is given by

q. = [bo1 + b 1Ee + b2 (Ee ) 2 ] gr,

where the coefficients bi are functions of the augmented list

{f, (g,. -g,.), (E'g,. -g,.), (E'g,. -E'g,)}

(b.3) If the plastic velocity gradient is written in terms of its symmetric and skewsym-

metric parts,

LP = D + WP,

146

(86)

81 = 121 - I1 Ee + (Ee) 2 ,

(77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)



Chapter 8: Thermo- elasto-plasticity II

then we have

DP = col + cE' + c2(Ee) 2 , (87)

WP = 0, (88)

where the coefficients ci are functions of the list f.

Finally the deformation resistance response function is given by

& = r(e). (89)

In this way, by enforcing the second law of thermodynamics and assuming isotropic

response, the twenty-one functions of eleven scalar arguments (52-57) have been reduced

to the eight functions b, bi, ci and - of the lists (75) and (85).

To summarize, the most general set of constitutive equations for large-strain,

isotropic thermo-elasto-plasticity with the assumption of product decomposition of the

deformation gradient is given by

(90)

Se = a01 + aiEe + a2 (Ee)2 , (91)

r= (), (92)

q, = [bol + bjEe + b2 (Ee)2]g,, (93)

DP = co l + ciEe + c2 (Ee)2 , (94)

WP = 0, (95)

147



Chapter 8: Thermo-elasto-plasticity II

& 
= )

(96)

where f = {I,(Ee),, -}, a, and are given in (80-83), bi depend on the list (85)

and ci depend on t. Furthermore, the heat flux response function has to satisfy

inequality (a.5) and the plastic response functions have to satisfy inequality (a.4).

8.5 Reduced constitutive equations

As a first approximation to (90-96), we consider the system

1
0p = - [(!-A + p)I,2(Ee) - 2pI2 (Ee)] ,Pr
e = AI(Ee)1 + 2*Ee

771 1 aA + p I,(e + ptI2E)

Pr = - ~ 2 ao + a (o+272E),

r = -kgr,,

P = -0 I1(Ee)i + 1 Ee,

r =

t= {I1, I2, , 1O-} ,

where A,M, k depend on 0 and yo, -y1 depend on the list f.
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The stress-strain law (98) can be written as

Se = C[E], (105)

where L is the elastic moduli tensor, given by

L= Al1 +2 PI. (106)

Note that T = C. Using the elastic moduli tensor the free-energy function can be

written as

1
= -E - [E*]. (107)

2p,

In equation (100), k is the thermal conductivity coefficient. If k > 0, the heat

conduction inequality (65) is automatically satisfied.

Since plastic flow is assumed to be incompressible, JP = 1 and

jP = JPtr [X(XP)-'] = 0 , (108)

which, in virtue of (50) and (102) imply tr DP = 0. Imposing this condition on (101)

we must have 370 + -y1 = 0 and (101) reduces to

DP = 71 Ee', (109)

where the prime stands for the deviatoric part of the strain tensor,

Ee' = Ee --1 (tr E)1 .(110)
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Taking the deviatoric part of the stress tensor in equation (98)

Se' = 2pEe', (111)

we use this equation to write the evolution equation for the plastic stretching tensor in

the more familiar form

DP = 7s', (112)

where y = -y/( 2 p) .

Define the "equivalent tensile stress" s an the "equivalent plastic stretching" dP by

S = se' - S ',
2

d~=)p

(113)

(114)

we obtain from (112),

3dP
(115)

Paralleling definition (6.120), we write the evolution equation for the deformation

resistance (103) in the form

-= &r(s) = h(f)dP(f), (116)

where h(C) is the "hardening function". (Note that the same letter h has been used

to denote heat flux.)

Plastic flow is observed to depend only on s and to be independent of the first

invariant of stress (pressure).
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The reduced constitutive equations for isotropic thermo-elasto-plasticity can be

summarized as

1
= -E - [Ee,2pr

Se = L[E], I

1
2pr

q, = -k g,

Of
0 

-[Eel,

3dP(f)2s

WP = 0

& = h(e)dp(e),

f= Al +21p,

f = {s,6,-},

and A,py and k depend on 0.

8.6 Isothermal processes

An isothermal process is such that the temperature field is uniform and constant
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over time. In this case

O(Xr, r) = 0, (126)

gr(Xr, r) = 0, (127)

and it follows from equations (119-120) that

/(Xr, 7r) = 0, (128)

qr(Xr, r) = 0, (129)

throughout the process.

A consistent set of reduced constitutive equations for isothermal elasto-plastic

processes can be obtained from (117-125) by using equations (128-129),

1
'i 1 = -Ed- 4[Ee], (130)

2Pr

Se = C[Ee], (131)

DP = 3dP(s, o)Se' (132)
2s

WP = 0, (133)

-= h(s, a)dP(s, a), (134)

where

C = Al ol + 2pI, (135)

and A, p are the Lame constants.
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8.7 Rate-independent case

In view of the discussion in Section 6.6 on rate-independent plasticity and equations

(6.138-6.142), the rate-independent counterpart of the constitutive equations (130-135)

is given by

1
-Ee -L[EeI, (136)

2 Pr

Se = [EeI, (137)

D = a ) Se', (138)
2s

= 0, (139)

6 = ah(o)dP(a), (140)

with the switching parameter a defined as

a{1 ifs=caandSe'.E>0, (141)
10 ifs < aor (s =uand Se' -E< 0),

and the consistency condition

& = as . (142)
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Hyper and hypo-elasticity

9.1 Introduction

A set of plasticity constitutive equations is said to be "based" on the elasticity

model to which it reduces when no plastic flow occurs (i.e., when none of the plas-

tic variables is changing with time). There are two classes of elasticity constitutive

equations on which large strain plasticity models have been based, namely that of the

hyper-elastic type and that of the hypo-elastic type.

The derivations of constitutive equations for large strain thermo-elasto-plasticity

of Chapters 6 and 8 lead naturally to hyper-elastic based models. However, since

in this context hypo-elastic based models have received much attention, we consider

appropriate to compare the two approaches and draw some conclusions.

We first define properly the concepts of hyper and hypo-elasticity, and then estab-

lish a connection between the most commonly used hyper and hypo-elastic stress-strain

laws in plasticity formulations.
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9.2 Definitions

9.2.1 Elasticity

A material is "elastic" if the stress response function depends only on the defor-

mation gradient,

T = T(X). (1)

The most general constitutive equation for an elastic material, consistent with the

principle of material frame indifference is given by

T = 'I(X) = RT(U)R , (2)

where T is any function T : S+ --+ S. Note that T is arbitrary, while T is given

by equation (2).

As has been discussed in Chapter 4, an equivalent way of writing (2) using a pair

of work conjugate stress and strain measures is

S = S(E). (3)
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9.2.2 Hyper-elasticity

A "smooth cyclic motion" on a time interval [to, tj] is a motion x = x(p, r) such

that

X(P, to) = X(p, ti) VpEB, (4)

i(p, to)= r(p,ti) VpEB. (5)

Recall that the rate at which work is done by external forces acting on a part P C B

at time r can be written as (equation (2.70),)

R(Pr)= pob.vdV+ to.vdAo. (6)

An elastic material is said to be "hyperelastic" (or conservative or Green elastic) if

tj

IR(P,r) dr = 0, (7)
to

for all parts P of B and all smooth cyclic motions on [to, ti] .

In virtue of the referential form of the Theorem of Power Expended (2.71) and the

definition (4.48) of stress measure, condition (7) can be written as

tj

I S - dVo dr = 0. (8)
to PO

Using this equation it can be proved that an elastic material is hyperelastic if and only

if there exists a function b = (E) such that

S= .- .(9)
1E
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In the absence of plastic flow, the stress strain law derived in Chapters 6 and 8

reduce to

S = C{E], (10)

which is of the hyper-elastic type, with the free energy function playing the role of

"elastic potential".

9.2.3 Hypo-elasticity

A material is said to be "hypo-elastic" if the stress tensor is determined from the

constitutive equation (TRUESDELL and NOLL [1965], p. 404)

V
T =7-t(T)[D],

where

T =T-WT+TW,

(11)

(12)

is the Jaumann stress rate, W is the spin tensor and D is the stretching tensor. The

tensor function 'W(T)[D] is linear in D and isotropic in T and D. The tensor T

in (11) can be replaced by any of the infinitely many objective stress rates of the form

V
T + B[T, D],I

where B[T, D] is an arbitrary bilinear isotropic tensor function of T and D.
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The most commonly used stress-strain law for hypo-elastic based plasticity consti-

tutive equations is given by

T = C[D], (14)

where is the elastic moduli tensor defined in (6.107).

9.3 Hyper and hypo-elasticity, a comparison

Consider a hyper-elastic material, with stress strain law given by

S =2[E], (15)

where E and S are based on the logarithmic scale function. It follows from (15) that

the stress and strain tensors are collinear, and the stress measure can be written in

terms of the Cauchy stress as in equation (4.99),

S = JR' TR. (16)

We consider isothermal processes, for which the tensor L is constant. Consequently,

the rate form of (15) is given by

S= [E]. (17)

Our purpose is to relate the stress and strain rates S and k to the Jaumann

derivative T and the stretching tensor D respectively.
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Taking time derivative in (16) we obtain for the rate of change of the stress measure

= jRT TR + JR'T tR + JR T TR + JR T TR,

and using (1.61), and (4.15)

S = JRT { 't+ TtrD - 12,T + TDR}R .

From the definition (12) of Jaumann stress rate we have

T=T +WT-TW,

and substituting in (19)

S = JR { T + TtrD - (DR - W)T + T(QR - W)}R

or equivalently

V V

RS RT = T + (J - 1)T + J{TtrD -(DR - W)T+ T(DR - W)*

Note that from equations (4.29) and (4.33-4.34) we have

RW = RE [L L(A
1QA +L A- 1 )]R ,

and

T(QR - W) -(RR - W)T

= RE TE [-RL + (A'QLA + ARLA2]

159

(18)

(19)

(20)

(21)

(22)

(23)



Chapter 9: Hyper and hypo-elasticity

- [-RL +!(A'fLA L Af2L )]TE}R ( 24)

where TE = R TRE. Equation (24) can be simplified to

T(R -- W) -- (RR - W)T

= RE -[TE4fLI+ !(A1[TEjfL A+A[TE, L]A-1)}R,

where [TEt L E= TQL - LTE -

Also, combining equations (15-16) and the definition (4.83),

JRT TR = [RL ln(A)RfL,

and rearranging we obtain

TE= J' 4 C[ln(A)],

T = J-11[RE ln(A)RI],

Recalling expressions (4.50-4.51) for the stretching and strain rate tensors,

D = RE{AA 1 + L(AfLA - ALA 1)}R,

=RL {A' L InA-nA QL}R ,

we have using (4.12)

RNRT = RE{AA1 +QLlnA-nAQL}R,
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and combining this expression with (29)

RER T = D + RE nAlnA f -1L(A LA-AQLA')}R.

Since the elastic moduli tensor C is isotropic, we have from (17)

RSR T = C[RkRT],

substituting in this expression the results (22) and (32),

T + (J - 1)T + J{ TtrD - (R - W)T+ T(QR - W)}

= 4 [D + RE{ L nA - InAQL - !(A-fLA - AQLA')}R T.

and rearranging,

T - L[D] = (1 - J)T - J{TtrD - (SIR- W)T + T(QR - W)

+L[RE{ LlnA-kA L -!(A LA-AQLA )}R T].

Finally, using (25) and (30) we obtain

T - C[D] = (1 - J)T - JTtr(AA-)

+RE J[TEL] E LJ(A[TE L]A+A[TE QLIA-)

+.C[1L LnA-lnA 2L - (A'QLA - AQLA')]RT (36)

We have therefore written the rate form of the hyper-elastic stress-strain law (17) in a

way that is convenient for the comparison with the hypo-elastic relation (14). The right
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hand side of equation (34) represents the "error" of the hypo-elastic approximation to

(15). We explore in the next section conditions under which this error is small.

9.4 Small strains limit

Let e be the tensor

(37)

with

i =A. (38)

In what follows, we assume that the components of e are small.

expansions hold,

J = det(1 + E) = 1 + tre + O(e 2 ),

1 - J = -tr e + O(f2),

ln A = 4E + O(c 2),

A-1 = 1 - + O(e 2 ).

In virtue of (27-28), (30), (17), (19) and these expansions,

TE = E] + O(e 2 ),

T = [REcER'j+ ((2)

The following

(39)

(40)

(41)

(42)

(43)

(44)
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S= f[RL iRL] + O(C),

'=L[RLiR]+0(f)

T = L[RLERL] + 0(e),

from where we have

(1 - J)T = -tr (e)L[RE eR ] + 0(e2),

JTtr (AA- 1 ) = tr (i)L[REcRT] + 0(E2).

On the other hand,

[TEQLI= [C[c],L] +0(E 2 ),

A- 1 [TE,1L]A= [C [c]IL +0(E2),

A[TEIL]A1 = [ 4C[C],QL] +0(c 2 ),

therefore

J[TEhL]- 1J(M'[TE, iL]A+A[TEL] A-')= =( 2 ).

Also, we have

QL lnA = flLc + 0(c2),

ln ARL = EQL + 0(f 2 ),
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(45)

(46)

(47)
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A-1 9L A = L f-fL + 1LE + O(e2) (57)

AMLA- 1 = OL + ffL - SLE + O(E), (58)

from where,

fL In A - In A 1 .-(A-1LA -AL A- ) = O(2). (59)

Combining (36) with (49-50), (54) and (59) we finally obtain

T -C[D] =-REC[itre+Etr i]R + (E2 ). (60)

9.5 Summary

We conclude from (60) that for the hypo-elastic stress-strain law to be a good

approximation of the hyper-elastic (non-dissipative) law, both the stretches A and the

stretch rates A have to be small. That is the case of a quasistatic elasto-plastic process

where the elastic stretches are small.

However, we mention the following disadvantages of a hypo-elastic approach

1. In a purely elastic process, such law is in general not conservative, i.e. it predicts

energy dissipation (or energy generation!) for smooth cyclic processes.

2. For a time integration procedure of a hypo-elastic based formulation, special care

is necessary to ensure numerical objectivity (see for example WEBER [1988]). A
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Chapter 9: Hyper and hypo-elasicity

hyper-elastic based formulation, on the contrary, has numerical objectivity "built

in

3. A hypo-elastic material is said to be of grade n if 'W(T) is a polinomial of degree

n in the components of T. For n = 0 (as is the case of the stress-strain law

(14) ), definition (11) is not invariant under change of objective stress rate, since

from (13) we see that two objective stress rates differ from one another in terms

linear in T. This fact has led to the proposal of many alternative stress rates,

with none of them having a clear advantage over any other. (see TRUESDELL and

NOLL [1965], p. 404, footnote 1 and p. 405, footnote 5.)
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Chapter 10

Time integration algorithm

10.1 Constitutive equations

We consider the set of constitutive equations for large strain elasto-plastic isother-

mal processes derived in Chapter 8. The purpose of this Chapter is to present an

integration algorithm for the rate independent model of Section 8.6. We first summa-

rize the governing equations.

Constitutive equation for stress.

The stress-strain law is taken to be

Se =e C[E'], (1)

where C is the fourth-order isotropic elastic moduli tensor, given by

where A and p are the Lame constants.
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Chapter 10: Time integration algorithm

We adopt the Hencky strain measure

E = R' In A-(R'),

and its elastic work conjugate stress measure

= Je(R )T TR

(3)

(4)

Evolution equation for XP .

The evolution equation for the plastic deformation gradient is

XP =LP, (5)

where the plastic stretching tensor is specified by the flow rule

3d?
Djr = a--dPSe', (6)2s

and the plastic spin tensor is taken to be zero,

W = 0. (7)

In these equations the equivalent tensile stress s and the equivalent plastic strain rate

dP are given by

2

dP= V.D P

(8)

(9)
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and the loading parameter a is defined by

if s = o and S' . > O,
if s < aor (s = o and Se' . E <0).

In virtue of equation (7) we rewrite (5) as

X = DXP .

The evolution equation for a.

The evolution equation for the deformation resistance is given by the hardening

rule

& = ah d, 
(

where h is the hardening function

h = h(o,).

Finally the consistency condition requires that

6 = as.

Combining (12) and (14) we solve for adP,

(13)

(14)

(15)adP = a,

and substitute in the flow rule to obtain

DP = a--S,
2hs
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10.2 Computational procedure

In a displacement-based finite element procedure for nonlinear problems, the so-

lution of the discretized equilibrium equations is obtained for each time step by an

iterative technique. The result of each iteration is an estimate of the incremental

displacement that is used to compute the stresses and other field variables at the in-

tegration points. If these stresses do not satisfy equilibrium to within given tolerance,

then the estimate of the incremental displacement is revised and the process repeated

until convergence is achieved.

We assume therefore that we are given the deformation gradient X, and the list

{SeI, XP, Un}, (17)

at time - = 4n , with the Cauchy stress Tn satisfying equilibrium, and the deformation

gradient Xn+1 at time r = tn+1 = tn + At .

Our purpose is to develop a time integration algorithm to obtain

{n+1, Xn+11 0'n+1} , (18)

and the Cauchy stress Tn+1 at time tn+1 . A similar time integration algorithm for

the case of a rate-dependent model has been developed by WEBER and ANAND [1988].

SIMo [1988a] and [1988b] formulates an equivalent theory based on maximum plastic

dissipation but with more restrictive assumptions concerning the stress-strain pair.
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Chapter 10: Time integration algorithm

The integration procedure for the present rate-independent model corresponds to

the well-known "radial return" algorithm of WILKINS [1964 (see also KRIEG and KEY

[1976], KRIEG and KRIEG [1977] and SCHREYER et al. [1979]).

10.2.1 Trial elastic state

Consider the evolution equation for XP,

(19)

we select the one-step, implicit integration operator given by

(20)

We note that this operator satisfies the consistency conditions

lim XP = X,
At- nnI

and

dXP
lim n+1

At-+o dtngl
= P = DP XP,

i. e. is first order accurate in t.

The time rate of change of the equivalent tensile stress is approximated using an

Euler backward operator

Sn+1 = Sn+x;- Sn (23)
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and combining this with (16) we obtain

AtD + = a 3nsn+ n se+
r~n~l 2hn+lSn+1 +

where

hn+1 = I(Sn+1).

Taking the inverse in equation (20),

(Xn+1)-' = (XP)-'exp(-AtDp,n+l),

premultiplying by Xn. 1 and recalling that Xe = X(XP)-1, we obtain

Xn+ = X exp(-rAt De,n+l)

where

(24)

(25)

(26)

(27)

(28)

is the "trial" deformation gradient. Solving equation (27) for X*, ,

(29)

and substituting the polar decompositions

(30)

(31)

n+1 =n +1

X e = Re, Ue,,
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we obtain

R'U' = Rn+1 Un+1 exp(At D ) (32)

In virtue of the flow rule (6), the stress-strain rule (1) and the definition of the

strain measure (3),

[DP, Se] = 0 , (33)

[se, E"] = 0 , (34)

[Ee, Ue] = 0, (35)

it follows that the elastic stretch tensor and the plastic stretching tensor are collinear,

[Ue, DP] = 0, (36)

and in particular

[Ue+ 1, exp(AtD$,n 1 )] = 0. (37)

Since each of the tensors U 1n+1 and exp(At Drn+1 ) are symmetric positive definite,

and they commute, the product Un+1 exp(At Dirn) is positive definite. It follows

from equation (32) and the uniqueness of the polar decomposition that

U n +U 1 exp(At D , (38)

Re = Ren (39)

Taking logarithms in equation (38), and using the property In(AB) = In A + In B

whenever [A, B] = 0,

E = E+ + D(40)
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where

E = In U,

is the "trial elastic strain". Using the stress-strain law (1) in (40) we obtain

s:=sn+1 + fL[At Dp,+ 1],

where S, = 4c[E'] is the "trial elastic stress".

10.2.2 The effective stress function

Now, using equation (24),

At DPr = 3(sn+ 1 - -n) e I'r,n+1 2hn+lSn+1 n+1 7

and recalling the definition of the elastic moduli tensor (2)

=2pAt D, = 3pa Sn+1 - Sn SeI
r+n+1 +n+1

from where equation (42) is equivalent to

S e = Se +1 + 3psjfn+1 - Sn Se
E o (hn+sn+ 1

Equation (45) implies that

tr (S') = tr (Sn+1)
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and for the deviatoric parts,

set'= [1+3poSn+1 - Sn] Set (47)
hn+I-Sn+l +

Taking dot product of equation (47) with itself,

S'' . Se' 1 + 3pa Sn+1 - Sn ] e2 I1 Se, (48)
hn+lSn+1l 2 + +

recalling definition (8) of the equivalent tensile stress, and defining an "trial equivalent

tensile stress" by

s= Set Se' (49)

we can rewrite (48) as

r 12

S2 = 1+ 3paSn+1 -Sn 82 (50)
hn+sn+[ n+

or equivalently,

f(sn+l) = (sn+l - s*)h(Sn+1 ) + 3pa(sn+l - sn) = 0, (51)

where f(sn+1) is the "effective stress function" (KoJ1d and BATHE [1987]).

Note that if s* < o, then the process is elastic, a = 0 and sn+1 = s. The

updated stress-strain state is equal to the trial elastic state.

10.2.3 Stress and strain updates

If s, > O-n we consider the process plastic, a = 1 and Sn+1 is obtained by solving

f(sn+1 ) = 0. (52)
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Once Sn+1 is obtained, we compute

0n+1 = Sn+1, (53)

(54)0n+1 = 3p Sn+1 - Sn
sn+I h(sn+1)

and from (47),

I= (1 + On+ 1)-Se' (55)

Combining (46) with (56) we obtain for the stress update

S+ = se + tr I( ln+1 - n+1 +F S~

and for the elastic strain update

E e = L-I[Se+

Taking the determinant in equation (20) and recalling the identity

det[exp(A)] = exp[tr (A)] VA ES, (58)

we have

Jn+1 = Jn . (59)

Since Jp = 1, equation (60) ensures that plastic incompressibility is preserved by the

integration algorithm and

JnI+1 = Jn+1 .

175

(60)

(56)

(57)

r- '



Chapter 10: Time integration algorithm

The updated Cauchy stress tensor is obtained by inverting equation (4),

Tn+1 = (Sn+1) 'Re+ 13"+1(R+ 1 )T , (61)

and using (39) and (61),

Tn+1 = Jn~.4 1 RSe+1 (R*) T , (62)

where

Jn+1 = det(Xn+1 ) = det(Xe).

10.2.4 Plastic deformation gradient update

The update for the plastic deformation gradient is obtained from (20),

Xn+1 = exp(At Dp,n+1)Xp-

Using (54) and (55), we rewrite equation (24) as

At DP 3(sn+1 - 8n) Se,
-l 2hn+ 1sn+1  n+I

Pn+1 le
in+1

#n+1 set
2(1 +n+) *

#n+1 _Ee'
1+ #n+1 *

= 7n+1Ee'

(63)

(64)

(65)
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where we have defined for convenience

n+1 = n+1
1+fln+1

From the eigen-decomposition of the trial elastic strain,

E = (R*), ln A*,(R*),

we have for the trace

tr Ee- = tr (In A')

= ln A* 1 + In A* 2

= ln(A 1 A, A)3 )

= in J*

= lnJn+,

+ In A* 3

(68)

and for the deviatoric part

E' = (R'), In A,(R') - (InJn+1)l

= (R), [In A - (In Jn431)1](Re)

= (Re)* n(J,~ 3Ae)(Re) .

Combining equations (65) and (69)

At D, , nJ, A*)(Rr n+1 =7+ R) n
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and taking the tensor exponential,

exp(At D,n+l) = (R'). exp [7Yn+1 ln(J-,~ (Ae)] (Re)

= (Re)* [J-1/ 3Ae] 7n (Re) , (71)

and substituting in (64) we obtain for the plastic deformation gradient update

(72)

10.2.5 Summary

The time integration algorithm presented in this section requires the following

steps.

1. Obtain the trial deformation gradient

X = Xn+1(X)-1 .

2. Perform the polar and eigen decompositions

X* = R"(Re)*Ae(R)

3. Obtain the trial elastic strain and stress tensors

E* = (Re)* In Ae(Re) , (75)
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S = 4 [E].

4. Decompose the trial elastic stress into its volumetric and deviatoric parts

S= S'+ .(tr S)1.

5. Obtain the trial equivalent tensile stress

1 2Set.SelI S = 2 * *

6. If s* < On then the process is elastic and

Sn+1 = 8* ,

0n+1 = On

s e=seSn+1 =S* ,

Tn+1 Jn4 1 RS(Re,)T

EXIT.

Else, the process is elasto-plastic. Obtain sn+1 by solving

(sn+1 - S*)h(sn+1 ) + 3p(sn+1 - 8n) = 0 .

7. Update the deformation resistance

(86)0n+1 = Sn+1 -
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8. Calculate the constants #n+1 and 7n+1 ,

#n+1 - S , (87)
Sn+1h(sn+1)

7n+1 = 1n+1 . (88)
1 + #n+1

9. Update the stress and elastic strain tensors

Se - 7n+ si't + tr(S)1 , (89)n+ fn+1

E+1 = n+~ ( L +1]. (90)

9. Update the Cauchy stress tensor

= det(A), (91)

Tn+= J 1 R, Re+,S+ 1(R +1 )T . (92)

10. Update the plastic deformation gradient

X'n+ = (Re) [J -1/ A e -+1 (R e)TXp. (93)

10.3 Numerical results

The algorithm presented in the last Section has been implemented in the finite

element program ADINA [1987] and compared with an algorithm for a similar elasto-

plastic model based on the additive decomposition of the strain tensor (ROLPH and
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BATHE [1984]). For completeness, this model and its corresponding time integration

algorithm is described in the Appendix.

Two basic displacements-driven experiments were performed.

First, stress predictions were obtained with both theories for an in-plane isochoric

deformation, characterized by the deformation gradient

1 0 0
[X]= 0 A 0

(0 0 1/A)

where A E [1, 2] . The results for the Cauchy stress components [T] 33 and [T] 22 are

compared in Figures 10.1 and 10.2. It is seen that for this particular case (where no

rotations are involved), both theories coincide.

Second, stress predictions were obtained with both theories for a simple shear

deformation, characterized by the deformation gradient

1 0 0
[X]= 0 1 -y

(0 0 1)

where -y E [0, 1] . The results for the Cauchy stress components [T] 23 , [T]22 and

[T] 33 are compared in Figures 10.3, 10.4 and 10.5. In this cases the stresses predicted

are not the same, but the differences are extremely small over the range of applicability

of an isotropic hardening theory. A broader range of engineering strain -Y (0-100%)

has been plotted only for illustrative purposes.
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Summary and Conclusions

This study has considered the extension of the classical infinitesimal theory of

plasticity with isotropic hardening to the large deformation range.

Within the framework of modern continuum mechanics, this objective is achieved

by using consequences of basic principles and some additional assumptions. This thesis

focuses in both these aspects.

Three fundamental topics have been adressed: (a) the characterization of plastic

flow, (b) the selection of stress and strain measures and (c) the underlying elasticity

description.

Constitutive equations based on the additive decomposition of the strain tensor

into an elastic and a plastic part, as developed in Chapter 6, are shown to present

some undesirable effects. As discussed in Chapter 7, the only strain measure consistent

with the condition of plastic deformation being isochoric is the Hencky strain. More

important, the initial elastic response moduli depend on the plastic state. As a conse-

quence of previous plastic flow, initially isotropic elastic response becomes anisotropic.

The bulk modulus remains unmodified only in the case of logarithmic stress and strain

measures. The shearing modulus presents a "decay" for any choice of scale function.

The higher the level of plastic stretching, the lower the ratio of "modified" over initial
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shear moduli.

In the case of the constitutive equations based on the product decomposition of the

deformation gradient into an elastic and a plastic part, as developed in Chapter 8, the

elastic strain tensor is obtained from the elastic deformation gradient, thus ensuring

independence of initial elastic response with plastic flow. The elastic moduli do not

present any spurious decay in the sense of Chapter 7. In addition, the corresponding

flow rule ensures that plastic deformation is isochoric independently of the choice of

strain measure.

Chapter 9 compares hyper-elastic with hypo-elastic response. Hyper-elastic based

elasto-plastic constitutive equations follow naturally from basic principles as exempli-

fied in Chapters 6 and 8. The hypo-elastic approach is shown to give a good approx-

imation when both the elastic stretches and the elastic stretch rates are small. The

hypo-elastic stress-strain law of grade 0 used in the comparison (see equation 9.14) is

the most commonly used for large deformation plasticity. This model, however, has the

theoretical disadvantage of not being invariant under change of objective stress rates.

A consequence of this feature has been the proposal of many alternative stress rates,

with none of them having a clear advantage over any other one.

Hypo-elastic response, in general, is not conservative (in the hyper-elastic sense), purely

elastic smooth cyclic motions dissipate or generate energy. Even is these effects are

small, they are in contradiction with the first law of thermodynamics for a continuum.
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From a practical point of view, with the specification of an appropriate elastic potential,

hyper-elasticity allows for the automatic extension of an elasto-plastic model to the

finite elastic deformation range.

In general, time integration algorithms for hypo-elastic based constitutive equations

do not preserve the objectivity property of the continuum theory, i.e. they are not

numerically objective. Additional modifications to the governing equations have to be

made to ensure numerical objectivity. On the contrary, hyper-elastic based constitutive

equations lead naturally to numerically objective time integration algorithms. This is

so because no objective tensor rate is used in the formulation, but total invariant tensors

are used instead.

Based on these considerations, a hyper-elastic based, rate-independent constitutive

model for large deformation elasto-plasticity based on the product decomposition of the

deformation gradient is presented. This model contains the features which have been

found most appropriate in the preceeding discussion. A time integration algorithm is

given in detail in Chapter 10 and its implementation tested against a similar model

based on the additive decomposition of the strain tensor. The two theories are shown

to predict the same results for a case where no rotations are involved and the elastic

and plastic stretch tensors commute. When this is not the case, as in the simple

shear experiment considered, shear stresses as predicted by both theories are basically

identical within the range of applicability of an isotropic hardening model. Also, the
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predictions for normal stresses are close in this range.

Finally, we mention that a natural extension of this study is the development of

a hyper-elastic based, combined isotropic-kinematic hardening constitutive model for

large deformation plasticity.
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Appendix

A.1 Constitutive equations

We consider the set of constitutive equations for large strain elasto-plastic isother-

mal processes of the type derived in Chapter 6. A solution procedure for this constitu-

tive model has been introduced by ROLPH and BATHE [1984]. We first summarize the

governing equations.

Constitutive equation for stress.

The stress-strain law is taken to be

S = C[E - EP], (1)

where C is the fourth-order isotropic elastic moduli tensor, given by

C = Al o1 + 2/I, (2)

where A and y are the Lame constants.

We adopt the Hencky strain measure

E = R, In A(RL7, (3)
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and its total work conjugate stress measure S, given by equation (4.72).

Evolution equation for EP .

The evolution equation for the plastic strain tensor is given by the flow rule

P = a U , s2s (4)

In this equation the equivalent tensile stress s and the equivalent plastic strain rate

P are given by

s /1 = S'- S', 5

6P = ztN - Nk, (6)3 y

and the loading parameter a is defined by

if s = a and S'. k > 0,
if s < a or (s = o and S' . < 0).

(7)

The evolution equation for a.

The evolution equation for the deformation resistance is given by the hardening

rule

&- = ah d (8)

where h is the hardening function

h = h(a). (9)
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Finally the consistency condition requires that

-= as.

Combining (8) and (10) we solve for a 6P,

(10)

(11)

and substitute in the flow rule (4) to obtain

E = a(12S)
2hs

A.2 Computational procedure

We assume that we are given the deformation gradient Xn and the list

{snEP, (13)

at time r = tn , with the Cauchy stress Tn satisfying equilibrium, and the deformation

gradient X,+1 at time r = tn+ 1 = tn + At .

The time integration algorithm gives the updates

{Sn+1, Ern+ 1, On+1}, (14

and the Cauchy stress Tn+1 at time tn+1 -
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A.2.1 Trial elastic state

The time rate of change of the plastic strain tensor and the equivalent tensile stress

are approximated using the Euler backward operators

EPn+ - EP
n+1 =n+

Sn+1 - Sn
= At

(15)

(16)

Given the deformation gradient update Xn+ 1 , we perform the polar and eigen-

decompositions

Xn+1 = Rn+1RL,n+,An+1RL,f+1, , (17)

and evaluate the total strain update En+ 1 ,

En+1 = RL,n+1 In An+1R T+1. (18)

Then we define a "trial elastic strain" by

(19)

solving for EP and substituting in (15) we have

(20)

where

Ee g= E - En+1 (21)
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Using the stress-strain law (1) in (20),

S, - Sn+= [AtkI

where S, = L[E] is the "trial elastic stress".

A.2.2 The effective stress function

Substituting (16) into equation (12),

At p 3(sn+1 - Sn)I,
n+1 2hn+ Sn+- n+

(22)

(23)

where

hn+1 = I(Sn+1). (24)

Using equation (23), and recalling the definition of the elastic moduli tensor (2) we

obtain

L[AtENO 1 ] = 2pztFN$ 1 = 3p +- Sn /
n+1 n+1 

from where equation (22) is equivalent to

Sn= +1+ - Sn SS* = Sn+1 + 3poz n+- gn+1 .hn+1Sn+1

Equation (26) implies that

tr (S*) = tr (Sn+I)

(25)

(26)

(27)
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and for the deviatoric parts,

3paSn+1 - Sn 1.
hn+1sn+i n+1'

(28)

Taking dot product of equation (28) with itself,

s' .s' = [1+ 3pSn+1 - ] 2
11+3ahn+lSn+1l

n+1 n+1

recalling definition (5) of the equivalent tensile stress, and defining an "trial equivalent

tensile stress" by

(30),S 2 = i S'.S'

we can rewrite (29) as

S2= i

2
Sn+1 - Sn 2+ 3ya hn+1sn+1] n+1 (31)

or equivalently,

f(Sn+1) = (sn+1 - S*)h(Sn+1) + 3,pa(sn+1 - Sn) = 0,

where f(sn+1) is the "effective stress function" (KoJid and BATHE [1987]).

Note that if s* < on , then the process is elastic, a = 0 and Sn+1 = S, .

(32)

The

updated stress-strain state is equal to the trial elastic state.

A.2.3 Stress and strain updates

If s, > on we consider the process plastic, a = 1 and sn+1 is obtained by solving

f(sn+1) = 0. (33)
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Once sn+1 is obtained, we compute

Un+1 = sn+I ,

#n+1 = 3p Sn+1 - Sn

Sn+ih(Sn+i)

and from (28),

n+I = (1 + gn+1)-'S'. .

Combining (27) with (36) we obtain for the stress update

Sn+1 = Sn+1 + 1 tr(S.)1.

The elastic strain update is then given by

E+1 = n+1.

and the plastic strain tensor update is obtained by taking the difference

EP+ = E - E+

To obtain the Cauchy stress update, we compute

Jn+1 = det(Xn+i) = det(An+1),

and from (4.54)

SL,n+l = R Tllf÷1Ln1Uecnb+aenwo,n+eSn+tRo,n+n(

Use can be made now of equation (4.84),
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(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)



Appendix

[TE] = {
2J- 1  ln(A,3,n+l) - n(AC1,+ 1 ) L[SL,fl+l]a,A,+ A-'+ - an+1A-'n+1#,n+a~,n+1 - a,n+l 6,na S'+1lp,

if 0= a;

otherwise,

from where

Tn+1 = RE,n+1 TE,n+lRET+1- (42)

In this equation,

RE,n+1 = Rn IRL,n+1 - (43)

A.2.4 Summary

The time integration algorithm presented in this section requires the following

steps.

1. Perform the polar and eigen decompositions

Xn+1 = Rn+1RL,n+1An+1R Tn+1-

2. Obtain the total strain update

Ent+ = RL,n+i In An+,iRn+ -

3. Obtain the trial elastic strain and stress tensors

E= E -

(44)

(45)

(46)

198



S* = C{Ee,].

4. Decompose the trial elastic stress into its volumetric and deviatoric parts

S, = S*' + .1(tr S*)l .

5. Obtain the trial equivalent tensile stress

S* S, - S',.V2*

6. If s, < o then the process is elastic and

sn+1 = S* ,

Un+1 = Un ,

Sn+1 = S* ,

Tn+1 = J 1 RS(R,)T ,

EXIT.

Else, the process is elasto-plastic. Obtain sn+1 by solving

(sn+1 - s*)h(Sn+1) + 3p(sn+1 - sn) = 0.

7. Update the deformation resistance

0n+1 = Sn+1 .
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(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)



8. Calculate the constant #n+,

ln+1 =: 3p Sn+1 - Sn
sn+1 h(sn+1 )

9. Update the stress and elastic and plastic strain tensors

Sn+1 = (1 + Pn+ 1)~ S*' + +tr(S*)1,

E+1 = E~'[Sn+1, 

EPn+ = En+ - E+ -e

10. Update the Cauchy stress tensor

SL,n+l = RT,n+1Ln+1RL,n+l,

J4j [SL,n+l]aa ,

[TnE+1 
-

j 2J,8 #,n+, A-' +1

in (A a,n+' )
Aaen+iA-113,n+1

RE,n+1 =Rn+1RL,n+1,

Tn+1 = RE,n+1 E,n+1R + -T

Appendix

(58)

(59)

(60)

(61)

(62)

(63)
otherwise,

(64)

(65)
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