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Abstract

This dissertation consists of three chapters that combine new theoretical results on the convergence,
consistency and asymptotic normality of non-parametric estimators with applications in health
economics. The first chapter is devoted exclusively to the econometric theory underlying non-
parametric instrumental variables estimation. Chapter II (joint with Whitney Newey), presents
the theorems relating to non-parametric estimation of the sample selection model along with an
application that studies the effects of restrictions in abortion care on the birthweight of babies. In
Chapter III, the focus in on implementing the nonparametric instrumental variables estimators in
a study which documents how the growth in Health maintenance Organizations (HMOs) over the
last decade has inversely affected the county cesarean-section rate.

I begin with Chapter I which studies non-parametric estimation of the model
y=m(z,d) +€

where m is unknown and is the object of estimation; the variables d are assumed to be correlated
with the error term ¢, and d are either dummy variables or discrete variables with finite support;
z is uncorrelated with €. I present the non-parametric instrumental variables estimators for such
a model, and discuss how the discrete nature of d is critical in deriving the identification condi-
tion. The identification condition in turn suggests the natural estimators of the model. The key
result underlying each of the proposed estimators is a simple transformation which allows us to
parametrize the endogenous component of a non-parametric model. This tranform is also shown
to be useful in other non-parametric models (without endogenous regressors) where it is typically
assumed that the regressors are continuously distributed. Allowing for discrete variables requires
substantial modification in the asymptotic theory unless the suggeted transform is used. Finally,
it is shown how an important application of the proposed estimators is to the non-parametric es-
timation of flexible panel data models. The current set of estimators for these models relies on
an analogue of the differencing technique proposed for the linear model which also differences out
the time-invariant regressors. Non-parametric 1V is suggested as the natural fix to this problem,
yielding the non-parametric analogue to Hausman and Taylor (1981).

In Chapter II we consider non-parametric estimation of the sample selection model of Heck-
man (1974), by allowing for a non-parametric selection rule as well as a non-parametric primary
regression model. The estimator we develop significantly generalizes existing sample selection es-
timators which are all semi-parametric since some part of their model is parametrically specified.



We impose no assumptions on the regression functions, and leave the joint distribution of the er-
ror terms unspecified. The only restriction we impose is the additivity of the error terms in each
step; a weak restriction. Using power series or polynomial spline series approximations, we show
that interesting functionals of our estimator are /n-consistent, and asymptotically normal. We
present an application which studies the effect of medical, prenatal and abortion services available
to pregnant women on the distribution of the birthweights of their newborns (a selected outcome),
also reporting corresponding estimates from parametrically specified and semi-parametric models
to facilitate comparison between the older and newer methods. We show that the proposed esti-
mator is easily computable, yields non-trivial differences from parametric models, and obviates any
incorrect parametric assumptions that are a potential drawback of existing estimators.

Chapter III takes on a more applied tone, extending the body of research on the demand-
inducing behaviour of physicians. Apart from the ethical issues that arise, induced demand for those
medical services which produce the same outcome as less costly substitues is an important policy
issue in the ongoing national debate on health care reform. I identify one such medical category -
- that of the delivery of babies - - and illustrate through an induced-demand model, and empirical
evidence, how increased managed care activity results in altering the compositio n of deliveries from
the more highly-reimbursed cesarean-section towards natural childbirths. Using a variety of linear,
non-linear and non-parametric specifications, I show that while demand inducement plays a role
in the c-section rate, its effect is swamped out by the contemporaneous increase in managed care
activity that effectively induces demand for naturals. Further, this compositional change does not
come with associated changes in the “quality ” of births (for e.g, the neo-natal infant mortality rate,
complications at birth, Apgar scores). The results obtained in this paper suggest that on average,
a 10% increase in HMO penetration rates results in a 1.8% decrease in cesarean-section rates,
translating into net cost savings of $11 billion at 1992 cesarean rates and cesarean reimbursement
schedules. The natural implication for policy design is that policies which favor the growth of
managed care will result in first-order cost savings from this medical service.

Thesis Supervisor: Whitney K. Newey
Title: Professor of Economics

Thesis Supervisor: Jerry A. Hausman
Title: Professor of Economics
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Chapter 1

Non-parametric Estimation Methods

for Instrumental Variables

1.1 Introduction

The recent surge in the semi-parametric and non-parametric approach to econometric estimation
has extended the standard methods in several ways [Manski (1985, 1987), Han (1988), Newey
(1990, 1994a), Andrews (1995) Powell (1987), Honoré (1992)]. One area which has received very
little attention in this growing body of work is that of instrumental variables (I.V) estimation. It is
useful to consider non-parametric instrumental variables estimation since the analysis of structural
models arises very frequently in actual empirical work; relaxing the restrictions of parametric models
may aid in avoiding the inconsistencies that arise from incorrect modelling assumptions. This paper
presents new theory for the estimation of non-parametric structural models. Two sets of estimators

are developed, and the corresponding large sample results are presented.

The research in non-parametric instrumental variables (NPIV) estimation is thus far restricted
to Roehrig (1988), Newey and Powell (1989) and Newey, Powell and Vella (1997). Roehrig (1988)
presented general conditions under which non-parametric systems of equations are identified. Newey
and Powell (1988) weaken the specification of the stochastic component of Roehrig’s model and
consider the estimation of a system of equations, demonstrating that a non-parametric two-stage
least squares estimator is ill-defined asymptotically; there is no distribution theory. In Newey,
Powell and Vella (1997), the analysis avoids studying a system of equations, instead considering

the identification and estimation of a non-parametric triangular simultaneous equations model.



The triangularity assumption, while restrictive, is an important feature of deriving their two-step

NPIV estimator.

In this paper, I demonstrate that an analysis of non-parametric models in which the endogeneity
stems from dummy (or more generally, discrete) endogenous variables provides additional struc-
ture that is extremely useful in deriving NPIV estimators.! The results presented have two main
implications. First, it is shown that the “non-existence” result presented by Newey and Powell
(1989) arises only if the endogeneity is associated strictly with continuously distributed variables.
With dummy endogenous variables, the NPIV estimator is asymptotically well-defined for both,
systems of equations as well as triangular specifications of simultaneous equations models. This
result is encouraging, since most of the available microeconometrics data take on a discrete or
dummy variable form. Second, much of the available theory for non-parametric models (without
endogenous variables) relies on the assumption that the regressors are continuously distributed. A
second result of this paper is that in models with discrete variables, a reformulation of the problem
by exploiting the discrete nature of the data allows us to relax this assumption and expand the

applicability of the existing estimators.

The essential result of this paper is that in any non-parametric model with dummy variables, a
simple transform allows us to parametrize the noncontinuous component. This is always possible
since the dummy variable may simply be ‘pulled out’ of the unknown function, which can then be
evaluated at each of the two support points. It is shown that for models in which the endogeneity
is derived strictly from dummy variables, this transform is critical in deriving the identification
condition. The transform is as follows (for d denoting the vector of endogenous dummy variables

and z a vector of exogenous continuous variables)

y = m(z,d)+e
= m(z)[d] + (z)[1 - d]
= m(z) + [m(z) — m(z))d
= m(z) + m(z)d (1.1.1)

where m(-), i2(-), m(-) and () are unknown and unrestricted functions and € 1s the disturbance.

'For the rest of the paper, we will simply focus on the dummy variable case to simplify the exposition. All of the
results extend simply to the discrete variable with finite support case.
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This transformation always holds; therefore, even though the results below focus on the case where
d is endogenous, the results may be equally applied to any non-parametric model with dummy
variables. The latter exercise is useful, since much of the literature on nonparametric estimation is
motivated by assuming continuously distributed variables. Allowing for noncontinuously distributed

variables requires some modification in the asymptotic theory.

For most of the paper we will only consider the case where the endogeneity arises strictly from
the dummy variables. One interesting hybrid case is treated in Section 4. The model we will focus
on is a general simultaneous equation system where the conditional mean restrictions Efe|z] = 0

and E[v|z] = 0 hold:

y = m(mbd)-"c
d = f(z2,y)+v (1.1.2)

where m(-) or f(-) is the object of estimation, z = [z, z2] is a vector of exogenous variables and
z = [z1,7] is a vector of available instruments such that dim(z, +21) > dim(y) and dim(z2 +z1) >
dim(d). In section II, we begin by showing how this order condition would be insufficient to identify

the model if d was continuously distributed

I present the NPIV estimator for this model. The construction of the estimator resembles that
of parametric two-stage least squares, obtaining an estimate of the endogenous dummy variable in
the first step and using this estimate as an instrument in step two. The estimator presented here
is based on series estimation, with a focus on power series. Other results include the mean-square

convergence rate and asymptotic normality of the proposed estimator.

Two modifications of the model are also considered. First, we extend the analysis to that of
discrete endogenous variables and present the corresponding NPIV estimator. Next, we consider
a triangular model and present an estimator complementing that of Newey et al (1997), whose
estimator is derived using continuity of the regressors as an assumption. As with parametric
linear IV, the NPIV estimators here are equally applicable to endogeneity arising from equilibrium
conditions, measurement error, or unobservable individual heterogeneity. In Section IV we show
how the current set of estimators for non-parametric panel data models rely on the first-differencing
method used for linear panel models, and result in differencing out the time-invariant component.

NPIV estimation is proposed as a solution to this problem, providing the non-parametic analog to

11



the method proposed by Hausman and Taylor (1981).

In Section II we begin by defining the problems associated with non-parametric IV estimation
of simultaneous equations models, and present the identification conditions for (1.2). Section III
presents the NPIV estimator, along with convergence rates and asymptotic normality. In Section
IV, we study two simple extensions of the model, and in Section V, an application of the cstimator

to the panel problem is presented. Section VI concludes.

1.2 Identification

To demonstrate why the discrete nature of d is critical in deriving the identification condition
of (1.2), begin by assuming d is continuously distributed. Denote w for the set of all exogenous
variables, i.e, w = [z,2]. In the analysis below, we will focus on m as the object of estimation.
Obviously, an isomorphic exercise can be carried out to estimate f(z2,y). With the .assumed

conditional mean restrictions on the error terms, it follows that
Blylw] = Elm(ey,d)w) = [ m(z1,d)f (o1, dw)dw (1.2.2)

where f(:|w) is a conditional density. This equation relates the reduced form of the model to the
structural form. Since both E[y|w) and f(-|w) can be estimated from the data, they can be treated

as identified components of the equation, leaving m(-) as the only unknown function in equation

(2.1).

In the form given above, for known E[y|w] and f(-|w), and for unknown m(-), equation (2.1)
represents an integral equation of the first kind, for which it is well-established that a continuous
map from E[y|w] to m need not exist [Newey and Powell (1988), Wahba (1979), H4rdle and Linton
(1991)). This problem arises precisely because the differential operator (i.e, the inverse operator
from m to E[yjw]) is typically discontinuous. The implication is that for very small changes in
Ely|w)], the solution to the integral equation may fluctuate widely. Since a primary condition for
identification is a one-to-one and continuous map from the structure to the reduced form, m is

unidentified in (2.1). Note that this problematic feature arises exactly because m(-) is unknown.

It now follows quite simply how a special case of the non-parametric model in (2.1) with the

12



endogenous variables (d) are dummies can be identified:?

E[ylw] = E[m(zi, d)jw] = / m(z1,d)f (21, dw)dw
= [thtz1) + m(e)d)f (o1, dw)dw

- / (1) f (21, djw)dw + / m(z1)d f(z1, djw)dw
= m(z) + m(z) E[d|w) (1.2.2)

thus avoiding the discontinuity of the differential operator that arises with the integral equation of

the first kind.

Each of the two additive components can now be identified in the following way. Without loss

of generality, assume the instrumental variables z are discrete, € {0,1} Then,

Ely|z, z = 0] = m(z)) + m(z1)Eld|z,z = 0]
Elylz, z = 1) = fia) + (a1 Eldjz, z = 1 (1.2.3)

and,

Ely|z,z = 0) - Ey|z,z = 1]
E[d|z,z = 0] — E[d|z,z = 1]

= 1i(z1) (1.2.4)

The formula in (2.4) is an explicit expression for the additive component m(z;) in terms of the
identified components E[d|z,z = i) and Ely|z,z = i], i = 0,1. The key condition underlying the
identification of (z,) is that given z, the conditional expectation of d must vary non-trivially for

different realizations of z, i.e, there be sufficient variation in the conditional mean of d:

Var[E(d|z,2)|z] >0 (1.2.5)

Below we show how exactly this condition is necessary to bound the relevant second moment matrix
away from singularity so that once identification of the model is assumed, the proposed instrumental

variables estimator will be well-defined.

The Wald representation in equation (2.4) underlying the identification of m(z;) suggests that

21t can similarly be shown how parametric simultaneous equations models avoid the non-identification problem
shown above.
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kernel estimation of the various components in the numerator and denominator is a straightforward
method to isolate 72. In particular applications 72 may be of interest in inference, as it represents the
additional effect on the conditional mean of y for the subset of observations for whom the dummy
takes on the value 1. Examples of such applications abound in the program evlaluation literature
where we might be interested, for example, in the effects on the wage effects of participation in the

AFDC program, or the effects of being drafted to serve in war.

For a scalar u let x(u) denote a kernel function such that Kx(u) = X (x(u/0)) and [ s(u)du =
1, where o denotes the bandwidth parameter. Next, define the multivariate kernel function,
K(u,...,uq) = l'[g=ln(uj). Let i = 1,...n denote the data point, and for d;, denoting dim(z,)
and d, denoting dim(z), define the weights:

ds T d =
1,2, Ko (215 — 7145) I L, Ko (2 — 20
Wa(-'fl,f)= Jj=1 a( 1j fl(;;)l ;5_1 a( k 2|k)
]

n
f(z1,2) =) K, (%1,2) (1.2.6)
i=1
Then we have the Nadaraya (1964) and Watson (1965) kernel smoother,
R n
E('ydilvi) = z Wa(ﬁhz)yi
i=1
- tn
E(di|z1,2) = ) Wo(Z1,2)d;
=1
(1.2.7)
which we can evaluate at Zz = 0 and Z = 1 and any value of z| to get the various components in
equation (2.4). An estimate of 72(z;) can now be obtained by substituting each of these in equation
(2.4).
1.2.1 Proposed Estimator

The estimation method proposed here is a new result on instrumental variables estimation. It is
the non-parametric correspondence of the standard I.V. estimator, and does not appear to have

been explored previously. New results are also derived for the convergence rate, and for asymptotic
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normality. As noted earlier, while this correspondence is valid for dummy endogenous variables,
it does not hold for a general model where the endogenous variables are continuously distributed,

due to a basic singularity of the second moment matrix problem discussed in the previous section.

The model we have is

y = m(z,d)+e
d = flza,y)+v (1.2.1.1)

Let w = [z, 2]. Then, the reduced form for the equation that we focus on is :
Elylw] = fa(z1) + m(z1) Eld|u) (12.12)

As typically done in series estimation, we begin by assuming that m(z,d) can be approximated by
a linear combination of K (n) functions of [z d], denoted pX (z,d), such that |m(z,d) — p¥ (z,d)'B] is
of an order that shrinks as K (n) gets large. The key problem is that the approximation of m(z,d)
by p¥ B, with B = (P'P)~ P'§, and P = [Py(z1,d), ..., Pa(z1,d)] is inconsistent for m(z,d) just as
least squares would be for the linear model. For the linear model we would, instead, choose a set
of instruments correlated with [z}, d] and uncorrelated with € such as [z}, 2], and obtain a matrix
of coefficients by computing [(z}, 2')(z1,d)']~! and (z},2')'y. Consider the extension of this basic

idea to the model in (2.1.2).

First note, that for the transformed model in (2.2.2), the series approximation will be additive,
consisting of a set of functions approximating m(z,), say P(z1) and a set of functions to approxi-
‘mate m(z;) » d such as P(z;) xd. Let T(w) = E(d|w) denote the optimal instrument, i = 1,...,n

denote the observations, and A(z),YT) = [P(z1) P(z1)Y] denote the matrix of functions of the

p¥(zu)' pX(z1)'Th
instruments with P(z,) = : P(z,,T) = : where the pf(-) represent

PK(Eln)’ PK(mln)’Tn

a K x 1 vector of functions and, let A(z,,d) = [P(z;) P(z1)d] denote a matrix of of functions

15



pX(zn)'d,

of the original set of variables with P; = : such that A(z;,T) and A(z:,d) are
pK(xln)'d'u

conformable for matrix multiplication. Then, our non-parametric instrumental variables estimator

of m(z,,d) is

m(z1,d) = Bop®(z1) + fip™(z1)d
BIV = [B(l) aB’l]v
B = [Alz,T)A(z1,d) ]~ A(z:1,T) 'y (1.2.1.3)

The L.V. estimator above is well-defined only if the matrix of second moments, [ A(z), T)A(z;,d) ],
is invertible. Thus, it is worth analyzing the technical details that ailows us to bound this matrix
away from singularity; this analysis is also useful as a comparison against the I.V. estimator for an
alternate model with continuously distributed random variables where the second moment matrix
will necessarily get arbitrarily close to singularity and is thus asymptotically ill-defined. For this
case, we find that if the model is identifed (by assumption, in equation (2.5) ), the second moment

matrix will be bounded away uniformly from zero.

Let E4(rya@) = E[A(z1, 1) A(z1,d);]. Retaining the notation that w = [z, z], we evaluate
Lam)a@) = E[A(z1, 1) Az, d)i)

E[p¥ (z1)p" (1)) E[p¥ (z1)p" (1) E[d|w]]
- (1.2.1.4)
| E[p¥(z1)p¥(21)' T(w)]  Elp" (1)p" (2:)'T () E[d|w] |
I T(w) ]
=E ® p (z1)p% (z1)’ (1.2.1.5)

|| Tw) T?(w) |
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1
We can restrict our focus to T = ; if we can establish that the smallest eigen-value

T T2
Amin(T) is bounded away from zero, the enitre matrix will have full column rank since standard

conditions on p¥(z,) will be sufficient to bound E[p¥ (z1)p"(z1)'] from singularity.

We have that |EYX| = Eg,[(w)?)] — Ex,[(w))?, which is the conditional variance of E(d|w). By
(2.5), necessary for identification, there exists some 4, 0 < d < 00, such that Var(E(d|lw)|z) > 6.
The additional step now is to show that Apin(Y) > 0 : denote Aj(w), A2(w) for the vectors of
eigen-values of Y. Then, since the trace of Y is the sum of its eigen-values, we have 1 + T%(w) =
A1(w) + A2(w) > 0. To rule out Apin = 0, note that A} + Az >0 and |[EY| > 0 imply that A A2 > 0.

Thus, A, A2 > 0 and Apn is bounded away from zero. Then,
1 Tw) |

E ® pX (z1)p¥ (z1)'| > Aminl ® Elp" (z1)p" (z1)'] (1.2.1.6)

| T(w) T?(w) |

which is bounded away from singularity under standard assumptions on E[p¥ (z,)p®(z,)'). So, the

proposed LV. estimator is well-defined asymptotically.

Bounding Ain away from zero using the approach above is precisely the condition that breaks
down in establishing the boundedness of the second moment matrix in LV. estimation with contin-
uously distributed random variables. Above, as in the standard parametric model, assuming that
the model is identified is equivalent to assuming invertibility of the matrix of second moments, and
ensures a one-to-one continuous map from the structure to the reduced form; this one-to-one map,
as shown in Newey and Powell (1988) cannot hold in the general model where assuming identifica-
tion is not equivalent to assuming a continous map from the structural to the reduced form. Thus,
discrete endogeneous variables are special, and appear to be the only case for which the standard

I.V. estimator has a non-parametric correspondence.

1.3 Estimation

The implementation of the instrumental variables estimator is done in two steps. Begin with the

first step in which the optimal instrument Y(w) = E(d|w) is computed. Least squares regression of
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the dummy variable d on an (L x 1) sequence of functions, r’(w) yields the instrument T = rL(w)'y
where 4 = (R'R)"R'd, R = (rl(w,),...,r%(wys)). Since the estimated object is a probability, we
use a trimming function to bound it between 0 and 1. Note that the above method is exactly
analogous to the linear IV method, and not least squares using the predicted values (or, “repeated
least squares”). This is simply because projecting non-linear functions of d onto the subspace

spanned by w is not equivalent to taking non-linear functions of a linear term projected onto w.

Step two uses the optimal instrument in constructing a set of functions in which each element
of A(z,d) is replaced by terms consisting of T. The estimation is no longer done by least squares;
instead, the two components of the estimator are computed and combined to yield 3’V as described

earlier:

m(z1,d) = fop™(z1) + Fip¥ (z1)d

Tle,d) =% 1 (a; <z1; <b;)1(0< d; < 1
1 ] J J ]

1=

N -t N
g = {Z Tz, di] | A(-"-‘li,Ti)A(Iu,di)]'} ’ {Z 7le1i, di] A(xli»Ti)'Ui}

i=1 i=1

where a; and b; are either pre-specified bounds or are themselves estimated.

1.3.1 Convergence Rates and Asymptotic Normality

The mean square error convergence rates for the IV estimator of m(z,,d) in simultaneous equations
models with dummy endogenous variables is presented below. The single contrasting feature of the
mean square convergence rate derived here, from the rate derived for a triangular simultaneous
equations model (e.g, Newey et al, 1997) is that the inclusion of all interaction terms between x;

and d yields a higher order for the model studied here, and thus, a slower convergence rate.

It is well known that convergence rates of additive interaction models depend on the order of
the model (where the order is bounded above by the dimension of the regressors in a fully non-
parametric model, and is bounded below by one in a fully additive no-interactions model) (Andrews

and Whang, 1991). Newey et al show that the correction for endogeneity in a triangular model is
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simply including the residual from the reduced form in the primary equation; the correction term
is additive. It is well known that additivity helps alleviate the curse of dimensionality in series
estimation, since the estimation correction for additive models is to have no interactions between
the additive sets of regressors. In contrast, the reduced form in (2.1.2), though additive, includes
every interaction between the two two sets of variables (z) and d). Accordingly, the convergence
rate for this estimator cannot attain Stone’s bound. We now present the set of assumptions needed

in order to prove the first lemma.

Assumption IV-1 {(y;,w;, z1;,di)}, (i = 1,...,n) i.i.d, Var(y|lw) is bounded and E[(y—m(z),d)!|w]
is bounded.

Assumption IV-2 For every K, there is a non-singular constant matriz D such that for Q¥ (z1,d) =
Dg¥(z1,d), i) the smallest eigenvalue of E[Q¥ (z1,d)Q% (z1,d)] is bounded away from zero uni-
formly in K and ii) there is a sequence of constants ((K )2K/n — 0 as n — oo.

Assumption IV-3 There is some a, Bk, such that [m — q%Pk| = O(K~) as K = o0
Assumption IV-4 There ezists a function D(m,m) which is linear in m such that for some
(C,6) > 0, and all 1, T, with |fa—m| < § and [Mm—m| < §, it is true that ||m —m—D(m—1;m|| <

C(lm — m|)? and | D(m; ) — D(m;m)|| < |m?||m — m|.

Note that, atypically, no assumption need be made requiring the endogenous component (i.e, the

dummy variables) to be continuously distributed.

Lemma 1 ( Mean-square error convergence Rate of the NPIV estimator )

If Assumpti ' KK Ae| =
ptions (IV-1)-(IV-4) are satisfied, - —= 0, asn = oo, and | 55| =

Op(en) for some €y, then,
/ 7[z1,d] [f(z1,d) — m(z1,d))’dF(z1,d) = Op(2en + % + K™%

Proof: Appendix A
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It is precisely the interaction between the sequence of functions approximating m(z;) and d that
results in this higher convergence rate relative to a triangular simultaneous equations model; the

higher convergence rate is captured by the leading term.

Next, turn to asymptotic normality of 12(z;,d). Some additional notation for the asymptotic
variance-covariance matrix of the estimated function is required prior to stating this result. The
sequence of approximating functions for the equation y = m(z,,d) + € is given by p¥(z,,d), or

equivalently A(z,,d) as shown above. Define

B acr),a@d) = E[A(z1i, T:) A(zri,di) ] (1.3.1.1)
Q) = E[A(z1,T) A(z1,T) Var(ylz, 2) ) (1.3.1.2)
Saw) = ElA(z1i,di) A(z1i,di)'] (1.3.1.3)
Qe = E[A(z1i,di) Az, di)! Var(ylz, z)) (1.3.1.4)
H = E[r(z1;,d;) ri(w;) ® A(z1i,d;)) (1.3.1.5)

The asymptotic variance of 1i(z;,d) = A(z),d) B’V is then given by:

V(i(z1,d) = A(z,d) V() Az, d)
= A(z),d) {EZ(l'r),A(d) [QA(T)c + (FI 2A(d) Q;(ld)c 2A(d) fUI')]z:',;(l'r),A(d)}A("’l;d)'

Lemma 2 [Asymptotic Normality of (z,,d) ]

If Assumptions IV -1-1V 4 are satisfied and /nK~*/" = 0,
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va V2 [m(z1,d) — m(z1,d)] S N(0,I)

Proof: Appendix A

1.4 Extensions

1.4.1 Triangular Simultaneous Equations Models

The first extension we discuss is to the triangular specification considered by Newey, Powell and
Vella (1997), which is a slightly more restrictive specification than the model considered in (1.2), but
one with much wider empirical applications. In their paper, Newey et al derive a two-step estimator
in which an estimate of the residual from the first step is included in the primary equation as a
regressor. An assumption required in deriving the large-sample properties of this estimator is that
the regressors be continuously distributed, an assumption that excludes the dummy endogenous
variables case. Here, we modify the theory using the transformation described earlier for the

triangular model 2-step NPIV estimator to cover a wider class of models.

Consider the model:

y = m(z,d)+te
d = f(z)+v (1.4.1.1)

where z = [z 73], Elv|z] =0, and Ele|z,v] = Ele|v]. Conditioning on all regressors,

E(y|z,d) m{z,,d) + E(e|z,d)
= m(z,,d) + E(e|z,v)
= m(z1,d) + E(elv)

= m(z),d) + A(v) (1.4.1.2)

where A(-) is an unknown function. This observation, which forms the basis for the estimation

strategy suggested by Newey et al indicates that the model may be estimated using approximating
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functions for both m and ), and no interactions between (z,,d) and & to reflect the additive nature
of the model. Although v is unavailable, the additive structure of the model permits an estimate

¥ from nonparametric estimation of step one.

Below we extend this model to the case where the (i) d are dummy endogenous and (ii) where

both d and z, are endogenous. For the case where only the d are endogenous,

y = m\zl)d) +€

= m(z)) +1(z)d + € (1.4.1.3)
using the transformation from (1.1), so that conditioning only on the exogenous variables,
E(y|z) = m(z1) + m(z1) E(d|z) (1.4.1.4)

which may be estimated by getting a nonparametric estimate of E(d|z) =d = rL(w)3 in the
first stage and using this to construct an approximating sequence for (4.1.4). For example, an
approximating sequence could consist of functions of z; and each of these functions multiplied by
d which we denote A¥ [zl,tf]. Note: the estimation strategy here is analogous to two-stage least

squares, but not the instrumental variables strategy suggested in the previous section. We have,

m(z1,d) = BAK[z),d] = o AK(z)) + B AK,[z1 + d)

[z, d] = H?;dl" 1 (a; <71 <b;)1(0<d; <1)

N -1 N
g= {Z"[zmdi] ( A(zli,di)A(zli:di)]'} ' {ZT[Tiiadi] A(xu,di)'yi}

=1 i=1
where AX(-) represents those functions in A¥[z;,d] consisting only of functions of z, and AZ4()
represents the rest. The consistency arguments and asymptotic normality results follow logically
from those presented in Newey et al with the primary difference being that the assumption requir-

ing the regressors to be continuously distributed (Assumption 3 for lemma 4.1 in Newey, Powell,

Vella (1997)) can be relaxed to allow for non-continuously distrributed variables in the parametric
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component. Then, Lemma 4.1 in Newey et al holds even if Assumption 3 does not; it is stated

below.

For a random matrix Y, denote |Y]l, = E[|Y||"]"/* Vv < 0o, ||Y|lcc denote the infimum of
constants C such that P (||Y]l < C) = 1, and for a matrix D, let | D|| = [trace(D'D)}'/?. Let w
denote the set of instrumental variables which includes those variables in = uncorrelated with 6,
& = yi — m(z1i,di), Vit = di — f(zi). Let W = {w : 7(w) = 1}. Denote r for the dimension of

[z1,d] and a for the dimensior of z.

Assumption NPV-1 {(y;,z:, di, i)}, (i =1,...,n) iid, Var(yi|z1i,d;i) and Var(d;|z;) bounded
away from zero, E[||v*|||z] is bounded, and E[e!|z,,d] is bounded.

Assumption NPV-2 w is continuously distributed with density that is bounded away from zero
on its support, and the support of w is a cartesian product of compact, connected intervals. The

density of w is bounded away from zero on W, and W is contained in the interior of the support of u.
Assumption NPV-3 f(-) is Lipschitz and continuously differentiable of order s, on the sup-
port of z, and m(-) is Lipschitz and continuously differentiable of order s on U.

Lemima 3

If Assumptions T1 — T2 are satisfied, the number of terms in K and L are fized to be

2 2
proportional, respectively, to n="/7*2% and n=%/*+2% and LIQ_K_ - 0, U(—Ln)-ji =0

as n — 0o,

[ rerd) bl d) — mios, a1, d) = Op(L + K2/ + 2 4 L72e)

Proof: Appendix A
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Next consider the case where both d and z, are endogenous. The system of equations we are

now considering is:

y=m(z),d) + ¢
d = f(z2) +va

z1 = g(z2) + vz

Again, the primary equation may be re-written as given in (4.1.3):
y =m(z1) +m(z1)d +e (1.4.1.5)

The strategy now is to condition on the exogenous variables as well as the continuously distributed

variables, not the entire set of regressors as done for the standard triangular model. Then,

E(ylz) = m(z1)+ rh(z1)E(d]z) + E(e|z2, vs)
= m(z1) + m(z1)E(d|z) + E(e|vz)
= m(z) + m(z1) E(d|z) + Mvz) (1.4.1.6)

The estimation of such a model takes place in three steps. In one step, the reduced form for
the continuously distributed endogenous variables is nonparametrically estimated and ¥, = z; —
§(z2) = z1 —r%(z2)'4, obtained; second, the reduced form for d is estimated to obtain an estimate
E(d|z2) = r(z2)'4a = d. Each of these estimates is used in constructing the approximating
sequence for the primary equation. Since the equation is additive in functions of z,, (ml,cf) and
Vr, the approximating sequence is composed of functions of each of these components and no
interactions of the three sets. For example, assume the approximating sequence is a K x 1 vector

of functions with these three components, AX [:cl,cf, ;] We then have,

ﬁl(ﬂ!l,d) = BAK[!I:I,J,I');] = Bo AK(:L'l) +ﬁ1 AK[.’BI *(i] +B2 AK[D,:]

1'[.‘12, d, U,] = H?;d;' 1 (a_,- <z < bj) l(cJ- Sy < dj) 1(0 < dj < 1)
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N -1 N
B= {Z rl@1i, diy i) | AX [215, di, i JAK (213, diy D ]'} : {Z Tlzri, diy vi] AX( 2140, vei '

i=1 =1

1.4.2 Discrete Endogenous Variables

Next consider the case where the endogeneity stems from discrete variables in the triangular simul-
taneous equation system above. Let ) represent continuous exogenous variables and d a discrete

variable with finite support [a;,ap), We proceed by rewriting (41) as:

y = m(z,d)+e

= my(z1)l{g=a,) + m2(z1){g=gp} +--- + mg(T1)1{d=a,} + € (1.4.2.1)

where 1(4) is the indicator function for the event A, and K is the number of points in supp(d).

Then,

E(ylz) = mi(z1)E(l{d=a,}|2) + ... + mk(21)E(1{d=q,}|Z)
= my(z1)(Pr(d = a1)|z) + ... + mk(z1)Pr(d = ap)|z) (1.4.2.2)

where the (E(1{4=,}|2), ..., E(1{d=a,}|Z)) can be estimated as a series of binary dependent vari-
able models just as in the dummy endogenous variables case. Series estimation of m is then carried
out by using interactions of functions of z, with each of the estimated probabilities. It may be
difficult to identify each m; function, (i = 1,..., K) separately, and this may not even be an in-
teresting exercise to pursue. Re-writing the model as we have done above allows us to recover an
estimate of m in a straighforward manner. Again, this exploits the discrete nature of the variable

to treat the model as one in which the endogenous variable were parametric.

1.5 Application of the Proposed NPIV Estimator to the Esti-
mation of Flexible Panel Data Models

One application of the proposed NPIV estimators is to the estimation of flexible panel data models

of the kind recently proposed by Porter (1996). Each of the existing set of estimators for non-
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parametric panel data models relies on an analogue of the differencing technique proposed for the
linear model; these include Manski (1987), Abrevaya (1996) and Porter (1997). An unaddressed
feature of these estimators is that differencing the model to annihilate the individual heterogeneity
term also differences out the time-invariant component, just as in the linear panel model, even if
m is nonlinear in the model y;; = m(zy, 2;) + 6; + €;;. We begin by demonstrating this problem in
the estimation of generalized panel models and then discuss how NPIV estimation can address this
problem. Thus, this section provides the nonparametric analogue to the method proposed by Haus-
man and Taylor (1981). The analysis below is not restricted to models with dummy endogenous

variables, although the discussion applies equally to such models.

Consider the panel model
vie = m(zit, zi) + 0i +e€ie (1.5.1)

where i(i = 1,...,n) indexes the individuals, ¢(t = 1,...,T) the time periods, y; is the dependent
variable and z;; and z; denote the time-variant and time-invariant variables respectively. Individual
heterogeneity, which is assumed to be correlated with some subset of teh regressors, enters additively
and is denoted 6;, ¢;, represents random noise and m(-,-) is the unknown and unrestricted function

that is the object of estimation.

Even though m(-, -) is unknown and potentially nonlinear, and in general m(zy, z;) - m(zi—1,2i) #
m(Zit — Tiy—1, 2 — zi = 0), the methods that have been used by researchers to estimate the model
by differencing does result in partialling out z. For example, Manski (1987) and Abrevaya (1996)
consider a special (semi-parametric) case of (5.1) where m is invertible and the model studied is
¢ Yie = m(z{,B + zjv + 0; + ni), which is estimated using rank-based methods. For this model
it is apparent how first-differencing results in the loss of all time-invariant variables. Surprisingly,
even the more general series and kernel based methods, which are the focus of Porter (1996)’s
work, are not robust to the differencing approach. Consider series estimation of (5.1) which begins
with the assumption that the unknown function m(-,-) can be approximated by a K x 1 vector
of approximating functions, p*(z,z) = (mk(z,2),...,PrK(z,2))'. For example, a power series
approximation yields:

L2 L3

L, Lq
m(zit, zi) = PN (Tie, ) = D 2By + D Y zhzB oy + Y 24,
HL=0 la=113=1 l4=1
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which produces the associated differenced approximating functions:

" (zit, zig-1,2) = PK(zit,zi)—PK(:vu 1, %)

L2
= Z(-"’u zlt l)ﬂh + Z Z(z:tzls ) - (znt lz )'le.ls (1'5-2)

la=113=1

Clearly, irrespective of the underlying true form of m(,-), the series differencing approach yields
no estimate of {4}, and thus, under the specification in (5.1), an estimate of the function m(-,"),
cannot be recovered. What is recovered, instead, is some time-varying component of m. Denoting
the unknown function as m(z;, z;) = m*(zit) + m®*(zi * z;) + m*(z;), differencing only allows an

estimate of the time-varying component of the function, ®(zy) + ™" (T * 2;).

To extend Hausman-Taylor (1981) to the estimation of this model, consider rewriting the equa-

tion as:
§ = y—m(zi) — MW (zie, i) = m*(z) +0; + 1 (1.5.3)

where 7;, is the new error term that arises from replacing m* and m®* with their estimated values.
The idea is that if m?(z) can now be estimated consistently, we will have consistent estimators of
each of the three components of m(-, ) and can thereby construct an estimate of m. The advantage
of differencing the model in lieu of applying the NPIV estimator directly is that the exogenous z

are valid instruments for those z that are correlated with 6 in the differenced equation.

Equation (5.3) can now be estimated by applying the appropriate NPIV estimator. If the z are
dummies, the model can be transformed and the dummy variable estimator proposed in Sections 2
and 4 can be applied. If the equation is a part of a triangular simultaneous equation system, and

the z are continuous variables, the estimator proposed by Newey et al (1997) may be applied.
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1.6 Conclusion

This paper extends the body of work on non-parametric instrumental variables (NPIV) estimation
by presenting the estimators for the set of models in which the endogeneity is either (1) strictly
associated with dummy (or more generally, discrete) variables in nonparametric systems of simulta-
neous equations or triangular simultaneous equations systems or (2) associated with both dummy

and continuvusly distributed variables in triangular simultaneous equations systems.

The essential results of this paper rest on the observation that for any non-parametric model,
a simple transformation parametrizes the discrete component of the model. This observation is
shown to be useful in two different ways. First, for any non-parametric sytems of simultaneous
equations, the model cannot be identified if the endogneiety stems from continuously distributed
variables. Newey and Powell (1998) link this problem to that of solving a linear integral equation
of the first kind for which no unique solution exists. We demonstrate that where the endogeneity
is strictly associated with dummy variables, rewriting the model so that the dummy variable is no
longer a component of the unknown function avoids this problem so that the model is identified;
the transiormation lies at the heart of this identification condition. The proposed estimator, based

on series estimation, is shown to be consistent and asymptotically normal.

For the estimator proposed by Newey, Powell and Vella (1997) for triangular simultaneous equa-
tions systems, we extend the applicability of the estimator to those models in which the endogeneity
either derives solely from dummy variables or from both dummy and continuous variables. The
estimator proposed by Newey et al requires continuously distributed variables. Relaxing this as-
sumption expands the applicability of the estimator without affecting the convergence rate or the

large sample properties.

There is a second benefit of applying the parametrizing transformation. For models without
endogeneity, the existing theory requires the regressors to be continuously distributed in deriving
the consistency and asymptotic normality results. This assumption is required only for those
regressors that are an argument of the unknown function. Applying the transformation by ‘pulling
out’ the discrete component of the model effectively parametrizes the discrete component for which
the standard assumption can be relaxed, allowing the existing theory to cover models with dummy
endogenous variables. These include program evaluation models which frequently arise in empirical

applications.
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Finally, we show that one application of the estimators proposed in the paper, as well as the
estimator due to Newey et al is to the estimation of flexible panel data models. Each of the existing
semi-parametric and non-parametric panel data estimators due to Manski (1987), Abrevaya (1996)
and Porter (1996) relies on an analogue of the first-differencing technique proposed for the linear
panel model and each of these suffers from an important drawback: they difference out the time-
invariant component of the model along with the individual fixed-effect. Section 5 demonstrates
this problem and discusses how NPIV estimation can be applied to the panel problem so that the
time-invariant component may be estimated even if the model is differenced to begin with. Thus,
we provide the non-parametric analogue to the method proposed by Hausman and Taylor (1981)

for the linear panel model.
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1.8 Appendix A

Proof for Lemma 1

y = m(z)+m(z,)d+e =m(zy,d)+e. Assume that m(-) can be approximated by some (K x1) func-
tions a¥ (z1,d). Let a¥ (z1, T) be another set of functions, so y = a¥ (z1)B) +a¥ (z1)dB, —mxk +m.
Let ag denote a¥(z,,d) and at denote a¥(z;, T). Ag = (Aa1,...,Adn) and Ay = (Ary,..., Arn).

Assume ||'—1:f5|| = Op(€n) for some €,. w denotes [z}, z] (z is the set of instruments).

Let A1V = (Ay Ad)~ Ay
= (A Ag)™ A (AaB + (mo — mK) + <) = (B - ) = (Aly A)™ Aly(mo — mK) + (Aly Ag)~ Alpe

A A
Denote2n=E( nA“), EATA.,=E( s T).

n

We're interested in characterizing ||’V — g]|:

18" - BII? <|I(AAg)~ Ay (mo —mK)||? +||(AYy Aa) ~ A'yel|? Analyzing each of the terms separately:

- TAd Y Ale
(o)™ Al = | (F220) 7 22ty
Alpe A\~ Alye
= -1 T T4d -1 T
= EAdAT n +[( n ) _EAdAT T

sz

EAdA'r

‘rAa\ ! A Alpe

Td T/d -1 TE |2 . . .
+ |( n ) [EA.,AT - ( n )] Xa, Ar |I* by the triangle inequality

2
-1 2 A !rAd -1 !rf

< IIEAaAT“ | n l( agar = n EAJATT

. A A Ale
Den oting A for 4,4y, Q for ( m )) and R, for (-—1-1—) the above expression is
= 125 4, P Ral? + R (Q)HQ - QYQ7VQ 1 (-Q)Q ' Rn

A eli?
+

Consider the second term in this expression first.

RL(Q)(@ - QY@ "0 (@ - Q)Q 'Ry

< CRL@)Q-Q)(@-Q)(@) 'R,

which holds if (1)[|Q — Q|| = 0,(1) and (2)Amin > C where A denotes an eigen-value; then, (1)
and (2) = Q invertible, and by Slutsky, Q invertible, or Apin(Q) > C = Anin(Q'Q) > C =
dmaz(Q7VQ7!) < C.

Further, if Amin(Q) > C wpa 1, = Apnaz(Q™") = Op(1) and C > Apaz(Q1Q71).
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Then, by Cauchy-Schwartz, CR,(@)(Q — Q)'(Q — O)(@)'Ra < CI(Q ~ Q) IQ" Ra?

< 0p(1) + |Ral>Amaz(Q7") (only if Q! is positive semi-definite, which is necessary to assume

for identification).

By assumption, we have ||R,|| = Op(en). An explicit expression for e, can be derived as follows:
A5 BRI = EEATATE — Brace(RlRy)lw) =

Analyzing R, = —-
/ ! / ! [

“‘—TA-T—G) |w) = trace (—érﬁ“i—TE(ceﬂw) = trace (ATA'r Var(elw)) < Ctrace (ATnAT) =

K

! /
CE (trace-wllw) = Ctrace E (le) =C =
n n n

E(trace (

Ad -1 ATG "2

Therefore, by Markov's inequality, || R, || = OP(%). It follows that E||—F

< Mmae(@)20p( ) + 04(1) Amas (@05 (CK /)

Al At A Afe CK

n

= Op(1)Op(en) + op(l)op(l)op(%) = Op(en + C‘TK)’ thus,

Assume sups, m(z1,d) - (a1, d) B = O(K )
- ' -1
w(m — )l = B (FL2) (m - AB)I? =

o1 Ale A\
I3 4 : "‘[( - d) "EA,,AT] Ay (m - a¥B)|1?

n

< IZ7a 202 + u( AeAe) " e - (ATA“‘)]E;‘,A,A (m - GBI
| (45) e - (4529t
(Denoting Ry for 1%), = 531, 2| 225| + 104(Q - Q)Q~! Ral?

< U500 7| 22 1Q" Rall? = 1Q~" P Ral? + 0p(1) Amaz @)% Rn 12

Analysing [ = |22 =SB < ke KB = ar ~ By + BelPlm o B <

lAt = Saxl? + [SarPllm — a¥BI?  (where || At — Sall? = 0p(1) and T4, is finite)
= C[(m - a¥B)(m — a¥B)] = C(K2).

2

< 1B75a, 1 | ==

AL A\ ! _
So we have: | (TT") A(m — AdD)|? = 0,(1)0,(en) + O, (CK )
and (8" = BII? = +Op(en + SK) + Op(en) + Op( 522

Now /[ﬁ"(zl’d)—m(zl’d)]zdF(zlid) = /[aK(zlad)’(ﬁlv_ﬁ)"'ak(zhd)(ﬁ)_m(zhd)]2dF(xlad)
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< IB" - BI? + [la¥ (B — m(z1,d)|*dF (z1,d)
= Oplen + £) + 0p(K 2 + £5) = Op(26n + 5 + K72°)

_Proof of Lemma 2 :

Methods for the asymptotic normality of series estimators are presented in Andrews (1992, 1994)
and Newey (1995, 1896, 1997a, 1997b). The proof below extend these since parts of the existing
proofs require conditioning on the entire set of variables to obtain the needed result, which is not
done here. Other modifications to account for the non-symmetric second moment matrix Ay Aq

are made. Adapting Newey (1995):
Let F = Var(ﬁlV) = —1/2 (EAfrAd)—IE'AJE(EA(rAd)_II where 2'/146 = E[aKa'K[(y - Th(zlid))2]

|F||? = trace(FF) = trace(Vy 1/2 '1/2) = C since T4 4, I8 finited and bounded (as neces-

sary for identification), and £14,, is bounded by Var(y|z) bounded.

Let M = (m(z11,d1),...,m(Tin,dn)) and let Mk (z1,d) = aX'Pk following Assumption (IV-3).
Let e =Y — M. Then,

ViVi'/? = aFis - m)

=ﬁF[ﬁ1—m—D(rh)+D(m)]+[FEA,TM“:/_] [J‘F( Ad'l—zA'TAd) ﬁ]+

n
. o
[f F( 144 ) (AT(M B A"ﬂ")] + [VAFID(m — D(m)]
newline which holds if 3’V & B, since D(rh) — D(m) = (B'V - B).

By assumption (IV-3) the last term is equal to 0 wpa 1. Applying Cauchy-Schwarz,

-1 ' - / -1
||fF( YAd4 )( 'r(MnAdﬁK))“2= \/EIIF% Ar(M - g¥B)||? = newline

Ar(M ';' AdPk) +[(A'!7“Ad) Ax(M — Aafx

n

' —
= VAIFS;, | M Adbdyp < e

- EATA.‘ "EATA,‘
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Ay A4 AY(M — AaBk) 2
) Taia, - I

by the triangle inequality, < C yn||S;L, AxM=Adk)2 ( ) B! p, 2 M= Adbic) 2
=C Mnaz(A71)20,(VRK™®) + 0p(1) || Rnll?.
=C Amaz(A71)205(VRK ™) + 0p(1)[(m — a® B)' (m — oK B)] = 0p(1)

’A -1 A[
Next, by Cauchy-Schwartz, \/nF (A—Tn-i - EATAJ) 'nie

YA -1 LA = Ale
< \/-"F( d) (EATAJ - ( Tn d)) A':‘Ad ; "2
A Ag\ ! A A Ale
< VIR (F229)  (Bara, - (2229)) 17 12220, 2207 o

=C 0p(1)Amaz(Z71 4,)205(€%) = 0p(1)

Denote Zin = F Zaya, K. Since for each n, Ziy is iid, Newey shows that E[Zi,] = 0, and
we take a transform of the functions in Ay so that $;E[Z%] = 1. Then, Z;Z;, 4 N (0,1)
and FBATAd-j'n- 4N (0,I). The remainder of Newey’s (1995) proof for Theorem 2 holds, so
VAV —m) S N(0,1). O

Proof of Lemma 3
Follows from the proof for Theorem 2 in Newey, Powell and Vella (1997). The convergence rate for

m(z,,d) is given by
/ 7(z1,d)[ti(z1,d) — m(z1,d)?dF (21, d) = Op(K/n + K~/* 4 Ljn + L~2/%)

If L is the number of functions used in the series approximation for the first step, it is apparent
that the convergence rate takes the form of the sum of the 2 convergence rates: that of the second

step alone (when the first did not have to be estimated) and the first step. From this it follows that
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for a particular choice of K and L, the sum is simply the maximum of the two rates (White 1990):

/T(w)[ml(z) - ml(z)]zdF(u) = Op(maz{n-Zr/r+2n'n-2a/a+2sl})
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Chapter 2

Nonparametric Estimation of the

Sample Selection Model

2.1 Introduction

The specification and estimation of sample selection models has been one of the most active areas
of research in the microeconometrics literature. Much of the interest in these models has emerged
from the fact that sample selection is pervasive, arising in several econometric applications including
topics in finance and labor economics, and is important for program evaluation and policy analy-
ses. First studied by James Heckman (1976), the prototypical sample selection model required a
complete specification of both the selection equation and the outcome equation, as well as the joint
distribution of the error terms for consistent estimation. Recognizing that incorrect parametric
modelling assumptions would lead to incorrect inference, a new literature has emerged with the
intent of weakening and gradually eliminating the restrictions on the model originally proposed by

Heckman to remove selectivity bias.

We contribute to this body of work by considering a non-parametric two-step estimator allowing
for a non-parametric selection rule as well as a non-parametric outcome equation. The motivation
for the work is twofold. First, sample selection is well known to be endemic in the evaluation of social
welfare programs ( e.g., Currie et al (1996), Kane and Staiger(1996)) and in policy analyses (e.g.,
the implications of a tax break on corporate investment behaviour) and is therefore a necessary tool
in such studies where accurately estimated parameters may be especially important for inference.

Thus, the estimator discussed here provides an alternative to those derived from parametrically-
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specified sample selection models, which are commonly used in applied work (e.g., Gronau 1976).

The second motivation is academic, and addresses the apparent asymmetry in the body of work
on sample selection. Specifically, the modelling of sample selection following Heckman has focussed
on weakening (or removing) parametric assumptions on either the sample selection rule or the out-
come equation, but not both together. All the existing estimators are therefore semi-parametric
since some aspect of these models are parametrically specified. Parametric assumptions on the
functional form of a model, on the regression functions or on the selection correction term are not
typically derived from some underlying economic theory, rendering parametric assumptions on any
part of a model unduly restrictive and leaving estimators obtained from such models potentially
inconsistent. The estimator we develop avoids specification errors due to any parametric assump-
tions by leaving the regression functions and the distribution of the pair of errors parametrically

unspecified.

Sample selection models with weak or few parametric assumptions have been previously stud-
ied in the literature. The common theme among the proposed estimators in this body of work has
been the assumption of an unknown joint distribution of the error terms and a focus on apply-
ing non-parametric regression methods to one equation (typically the selection rule) while leaving
the other equation has fully specified. Amongst these, some estimators proceed directly with a
non-parametric estimation of the parameters of interest, avoiding estimation of the unknown dis-
tribution altogether (Manski (1975), Han (1985), Cavanagh and Sherman (1993)) while others deal
squarely with estimating the joint distribution along with the parameters of a (fully specified) se-
lection equation using non-parametric methods; a non-parametric selection correction term is thus
obtained, and substituted into a parametrically specified second-step; examples of this strategy
include Coslett (1983) and Ichimura (1987). Estimation techniques have also been proposed for
models in which the selection mechanism is non-parametric, while the outcome equation is a stan-
dard linear. These include Newey (1988), Powell and Ahn (1991), and Kyriazidou (1997). While
Newey applies series estimation to the selection equation, and Powell and Ahn (1991) and Kyri-
azidou (1997) focus on kernel methods in order to derive the relevant correction term, and then

proceed by estimating a partially linear outcome equation.

In all these works, the emphasis has been on removing the parametric assumptions on the sample

selection rule, while little attention has been paid to the outcome equation. However, it appears that
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if the objective is to dispense with parametric assumptions in order to reduce inconsistencies due to
unknown functional forms, a semi-parametric treatment of the sample selection problem does not
deal adequately with potential misspecification. Indeed, the gains in avoiding specification errors
by weakening parametric restrictions on one part of the model may easily be lost by retaining
parametric forms in other parts of the model. In this paper, we seek to avoid this problem by
studying a model that exhibits no parametric assumptions at all, and only a weak restriction of

additive errors in each stage.

The innovation of our work is in exploiting the additive structure of the model both in construct-
ing the selection correction term in the first step and in non-parametric estimation of the outcome
equation in the second. The selection correction term is shown to depend on the conditional mean
of an indicator variable (which determines whether or not the dependent variable is observed), and
is non-parametrically estimated using series approximations. The two-step estimator is then shown
to achieve Stone’s (1982) bound. This paper also discusses interesting linear functionals of the

series estimate and derives the conditions under which the functionals are \/n-consistent.

In the next section we review the classic censored selection problem, and present the sample
selection model that is studied in this paper. In Section 3, we turn to a description of the two-step
estimator, reviewing with it series estimation and presenting asymptotic properties of the estimator,
Section 4 discusses functionals of the estimator, describes the construction of a consistent estimate
of its asymptotic variance, and derives asymptotic normality results. We extend our analysis to
a semi-parametric treatment of the model in Section 5. Following this, we present an application
of our estimator, also reporting corresponding estimates from parametrically specified and semi-

parametric models to facilitate comparison between the older and newer methods. Proofs follow.

2.2 Censored Sample Selection

Formal analysis of the classic (parametric) sample selection problem (e.g, Heckman, 1976) begins

with the model

Yi = 6i[mliﬁ0 +€i] i=1,...,n (2.2.1)
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where the dependent variable y is assumed to depend on regressors z, an unobservable error term e,
and the indicator 6 which determines whether the dependent variable is censored or not, accordingly
taking the value 0 or 1. The indicator variable in turn is assumed to depend on a binary variable
d, a set of conditioning variables z and unobservable error terms 7, through a standard binary

response model:
di = 1{z{v, + n; > 0} (2.2.2)

where 1(A) denotes the indicator function for the event A. Equation (2.2) may take on a latent
variable interpretation if we assume that data on y is obtained only if another random variable v

crosses a threshold, i.e., y observed only if

v; > 0, where

v o= Zptn
and y is unobservable when v < 0. We can then define

1, iffv;>0
0, iffv; <0

d; =

yielding (2.2). Thus, the close relationship between the pair of equations (2.1) and (2.2) arises
because ;= 1 holds if and only if d; > 0 is true (or, equivalently, if and only if n; > —z{v0).
Without making any assumptions about any corelations between the error pair (n;,€;) however,
least squares or instrumental variables estimation of (1) for the subset of observations with §; = 1
is valid and yields consistent estimates of By. Sample selection, and consequently “selectivity bias”,
occurs when we assume that the distribution of ¢; is not independent of the distribution of ;. Then,
conditional on the vector z; and the event that y; is observed, equation (2.1) is misspecified unless
a correction term is added to account for the non-random censoring., The selection correction term
derived from (2.1) — (2.2) is well known to be

Elei|zi, 6 =1) = E{e|zi,n > —zi70)}

= 0(zi70)
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for some function 6(-), leaving as the correctly specified equation of interest
¥i = ;00 + 0(2{70) + ¥ (2.2.3)

where 1; is an error term that distributed independently of z; and §; by construction. An alternative
but equivalent representation of (2.3) which will be useful for the analysis in this paper is derived by
noting the following (previously noted in Heckman and Robb (1990), and Ahn and Powell (1993)):

Pr(d; = 1) = Eldi|] = F_y(zl0) (2.24)
implying, for an invertible cumulative distribution function F of —7,
F~'E[d|z] = 2'yo (2.2.5)
so that we may express (2.3) as
Yi = Tifo + M E(di|z:)) + i (2.2.6)

where A(-) is the unknown composite transformation 8o F~!. For the estimation strategy considered
in this paper the non-parametric formulation of (2.6) is the model of interest, highlighting that
the appropriate correction involves an unknown function of the conditional mean of the selection

variable, d. !

The analysis of (2.3) or (2.6) typically proceeds in accordance with the estimation technique
chosen for the model. The popular parametric method follows Heckman'’s two-step strategy: (2)
estimating the parameters of the selection rule (y) to construct the parametric form of the correc-
tion term, and (ii) estimating the parameters of the primary regression model using instrumental
variables or least squares estimation,2 Three possible sources of specification error exist in this
parametric estimation: mis-specification of the unknown joint distribution, mis-specification of the

unknown regression function (or “single-index”) in the selection equation and mis-specificaiton of

'In an semi-parametric study of sample selection, Ahn and Powell (1991) use the conditional mean of d in a
similar correction term. The method outlined in their study, however, is unrelated to the approach taken here,
instead resembling a partially linear model.

?For example, for a joint normal distribution of the error terms, as is commonly assumed, the explicit form of the
correction term is shown to be proportional to the Inverse Mills’ ratio.
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the regression function in the outcome equation by a priori assuming linearity of the parameters
B in z. Semi-parametric estimation of (2.3) or (2.6) avoids at least one of the sources of para-
metric error by leaving the joint distribution of the error terms unspecified. Some studies further
weaken the possibility of parametric mis-specification by formulating a non-parametric selection
rule, thereby deriving flexible correction terms that are devoid of parametric error (e.g, Powell
(1987), Newey (1988), Powell and Ahn (1991)); these, however, leave open the possibility that the

selection correction is substitued in a parametrically mis-specified outcome equation,

We reformulate the classic selection model to avoid every source of parametric error, by studying
a model with no parametric assumptions and only one weak restriction that involves additivity of

the error terms in each stage. Our focus is on the model®

y = Hd=1}(go(z)+e¢]
d = 1 (m(2)+n>0) (2.2.7)

with the following assumptions on the pair of errors:

Ele|lz,n] = Eleln]
Efglz) = 0 (22.8)

go(z) represents an unknown function of the (g x 1) vector of variables, z and m,(z) is the unknown
transformation that relates the (g; x 1) vector z to the probability that data on y is observed. The
conditional mean restrictions on the error terms match those commonly assumed in the literature
on sample selection models; in particular, the correlation of (n,¢), which is the source of selectivity
bias. Equation (2.7) represent a generalization of the common sample selection specification where
it is typically assumed that g,(z) is linear in z and m,(2) is linear in z. Our more general formulation
of the model leaves the correction term as Efe|n > —n(2)] which entails a non-trivial problem when
neither the joint distribution is specified nor the form of = is known. This is the problem that we

seek to address in our paper.

Additivity of the error terms forms an integral part of the model. For example, one could

3Since d and 4 share a one-to-one relation, we formulate the model in terms of d alone, retaining this notation for
the rest of the paper.
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consider even more general forms of a selection model by specifying y = 1{d = 1} . [ go(z),¢€ ]
and similarly allowing for a multiplicative error in the selection rule. However, this specification
greatly complicates the analysis without adding any extra insight into the non-parametric analysis
of sample selectibn. Further, it is well known that imposing additivity leads to improved efficiency,
improved convergence rates and lower asymptotic variances of estimators of the functionals of g,(z)
( e.g., Stone, 1985; Newey, Powell and Vella, 1997 ). We therefore restrict ourselves to the analysis
of an additive non-parametric sample selection model, emphasizing that our results are especially

useful for those applications in which the analyst expects the model to be specified as in (2.7).

We outline a two-step procedure to estimate the model. In the first step we employ a non-
parametric regression of d on z in order to obtain an estimate of d = E[d|2]. The second step uses
the estimated d for the correction term in a non-parametric reéression of y on z and d. While
several non-parametric methods exist for this estimation, we focus on series estimation for both
steps. We show that series estimators are particularly useful when the model is additive, as we

have assumed.

2.3 Two-step Estimation

We begin by correctly specifying equation (7) under the assumed restrictions on the error terms.
Using the notation 6o(7(z)) = E[e|n > —mo(z)), evaluate, conditional on z, the expected value of y

when it is observed:

Elylz,d =1 = Elg(z) +elz,d = 1] (2.3.1)
= go(z) +O(mo(2)) (2.3.2)
= go(=) + Mo(Eld]2]) (2.3.3)
= ho(w) (2.3.4)

where A(-) = - FZ)(-) and is the non-parametric correspondence of equation (2.6). Denote w =
[z,eq], where ey represents E[d|z]. y is thus determined by an unknown function of z and an
unknown function of €4, and a non-parametric regression of y on w = {z,e;} would suffice in

uncovering the relation that we are interested in.* Since ey is itself unknown, it is replaced by an

“Note that although Ao(E[d|z]) is equivalently viewed as some unknown function, ¥o(z), estimating the model
in a single step as a function of (z,z) throws away information pertaining to d; further, E[d|2] is estimated on a
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estimate, é4, from a first step non-parametric regression of d on z. The estimation is therefore done

in two steps: (i) the estimation of &4, followed by (i7) the estimation of E[y|z, 2],

The function of interest, go(z) is one component of h(w), and thus additional steps are required
in order to isolate it from a non-parametric regression of y on [z,eq}, which results only in an
estimate of h(w). This identification essentially relies on exclusion restrictions. One method of
isolating go(z) is to employ a partial means estimator (e.g, Newey, 1994) to integrate out the A
component from fz(w); go(z) is then identified up to some additive constant term. To be precise,

let £(eq) denote the density of eq. Then,

f Ely|z,d = 1)¢(ea)deq = go(z) + / Mo(ea)é(ea)ded (2.3.5)

(3.5) provides us with an estimate of g(z) up to an additive constant ( where the additive constant
is [ Meg)deq.) Observe, however, that the partial means strategy to identifying g(x) is valid if and
only if integrating over e out does not result in integrating out g(z) as well, i.e., if and only if
g(z) can be held constant while e4 is changing. Since eq is functionally related to z through the
selection rule, this essentially requires that the set of variables that determine the probability of
being in the selected sample include at least one variable that is not in z. Re-stated, the partial
means approach to identifying g(z) is valid only if the dimension of z is strictly larger than that
of z, a condition similar to the standard order condition for instrumental variables estimation, and

not unrelated to identification in parametric sample selection models.

The estimation strategy proposed here uses series estimation in each stage. The utility of
considering a model additive in the errors is now apparent: First, without additivity, the correction
term would involve estimating the marginal density of € or equivalently, integrating out the
in order to obtain an expression for A\, adding an unnecessary complication. Second, with an
additive model, series estimation in the second stage is simple to impose, involving a non-parametric
regression of y on approximating functions of either z or d separately, but no combinations of the
two. Further, as discussed earlier, this additivity has the attractive feature of improving efficiency
and convergence rates of the series estimate as well as reducing the asymptotic variance of its

functionals’ (see Newey et al, 1997).

larger sample ie, the entire population, not just those for whom the outcome is observed, and thus, E[d|z] must be
computed on the whole sample.
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We open our discussion of the two-step estimator by focussing on the first step. For series
estimation of the selection rule, we first need to specify a (L x 1) sequence of functions that can
approximate the underlying function w(-) by some linear combination of the functions, with the
property that the approximation to m is arbitrarily close for large L. This underlying principle
of series estimation is a simple restatement of the well-known Weierstrass theorem. Various series
approximations exist, each with distinct virtues and each best suited to specific features of the data
on hand. The choice of the approximating functions, r”, and the dimension of L therefore depends
on what the modeler may know a priori about the extent of outliers or the expected shape of the
smoother, and whether the focus is on reducing multi-collinearity, improving convergence rates or

in easing computation.

For some positive integer L, let rl(w) = (ri,(w),...,rLr(w))’ denote the sequence of approx-
imating functions. Assume n observations, and let d = [d;,...,d,]). Then the non-parametric

correction term we are interested in, d, is obtained as follows:

N -1 N
‘r={2r"(z.->r"(z.-)'} -{Zr"(z.-)'di} (2.3.6)
i=1

=1

where 4 =(7,...,71)" is the vector of least squares coefficients obtained from regressing d on
rL(z). Since the primary regression model is given by y = go(z) + A(e4) + 1, the second step may
be estimated in a manner similar to that in step one, with appropriate changes to reflect that z is

replaced by w = [z,é4] and that z and é; enter the model separately, and additively.

Let p*(w) = (p1k (w),...,pxk(w))" be the (1 x K) series of approximating functions for step
two with the restriction that for any k € (1, K], pxx (w) is either a function of z or a function of d,
but not any combination of the two; this step is the estimation correspondence of the fact that the
model we study in equation (2.3) is additive in = and e4. Before employing the estimated é in the
non-parametric regression of the second stage, we recognize that the first step dependent variable
is a probability which necessitates bounding the values of d. A convenient method of doing this is
to use a trimming function which resrticts the domain of the data, considering only those values
deemed plausible by the analyst, allowing the exclusion of large values of the data that appear to

be outliers, and having the additional feature of facilitating the asymptotic results. Define

T(w) =3, 1(a; < z; < b;)1(0 < d < 1) (2.3.7)
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where ¢ = dim(z) and a; and b; are either pre-specified constants based on the analyst’s knowledge

of what values of z may represent outliers, or may themselves be estimated.

Let = (z,}), ¥ = p¥(#()) and # = (). The second step of the estimation is a regression
of y on pX (w), taking into account the restriction imposed in (3.7), which gives us the series estimate

of interest:

N -1 N

B = {ZPK(@)PK(@)'} . {Zpk(ﬁ’i)i} (2.3.8)
i=1 i=1

There is an important issue of identifying a constant term that arises in the estimation strategy

just described. Let the first element of the series pjx(w) be equal to one; further, let the next g

elements of the series (K,) depend only on z and the remaining K — K, depend on the estimated

é4. Consider, respectively, estimators of go(-) and Ao(-)

Ko+l
§(z) = ag+ ) Pi*pik(z) (2.3.9)

=2
K

Méa) = aa+ Y Pirpi(éa) (2.3.10)

i=Kg+2
Clearly the estimate of B = (G + &), and the constant terms cannot be separately identified
without additional restrictions. While in many applications, it is the local curvature of g as z
changes that is of particular importance ( in which case, identifying the constant may be unneces-
sary), in specific cases the level of g may be of specific interest. For example, we might be interested
in predicting the exact number of participants in a social welfare program in order to estimate the

costs of a program.

One approach to identifying the constant is to assume that the value of A(-) is known for some
eq = €4. For example, in the classic wage-hours sample selection problem, we could assume that at
the lowest observed value of z, the expected value of d is likely to approach zero; this accords with
the standard parametric formulation of sample selection, where A(-) is proportional to inverse of
the Mills ratio, [%—%] , which approaches zero at the tails; thus, one restriction could be to specify

that for z = z;,i, and €4 = E[dlz = Zmin), M&a) = 0.
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Then, a) is identified:

K
P Z ﬁi*pik(id), (2.3.11)

i=Kg+2
and oy can be estimated as oy, = ﬁ; — ay, yielding estimates of both of the components of h

separately:

§(z) = h(z,) - (&) (2.3.12)
AMed) = h(z,d) — h(z,e4) + A\(Ea) (2.3.13)

We discuss this in more detail in section 4 when we study functionals of the regression estimate h.

The two series estimators we consider in this paper are (1) power series and (2) smooth piecewise
polynomials, or splines, with evenly spaced break-points. Power series provide especially good
approprimations to smooth functions and are simple to compute but are adversely affected by
outliers in the data. A typical power series is modelled as increasing powers of a single function

such as
Prx = fF k=1,...,K; K=12,...

for some function f. Note that the first term of the series is & constant. The function f that is used
may be chosen according to the context of the model being studied, so for example, with no a priori
knowledge about the shape of the function, a convenient choice may be to use i (z) = %!, a
standard polynomial series approximation. Newey (1988) suggests a number of appropriate choices

in the context of sample selection; these include
Prx(z) = F(4 + 6(z)) (2.3.14)

where (') = [%%%], ¢(-) is the standard normal density and ®(-) represents the standard normal
distribution function; this example gives as its second term the inverse Mills’ ratio, the correction
term most commonly used in parametric estimation of the sample selection model. Another example
may be to specify prx(z) = [1 — ®(4 + 6z))*~!: a series that could reduce the effect of outliers of

z since it uses the bounded function &().
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Splines, or smooth piecewise polynomials with fixed joining points (or “knots”) for the polyno-
mial, are an alternate type of series whose distinct features are that they provide better approxima-
tions when outliers in the data are likely to be an issue and when the function being approximated
is assumed to be discontinuous. The knots may be placed at any points where the analyst thinks
the underlying function is changing rapidly and thus, applying knots requires some knowledge
about the features { the data; an alternate approach is to place the knots at equidistant points.
A typical mth degree spline for some univariate data z, with J known knot points, ji,...,js, may
be expressed as

054(2) = 27 alsismd (23.15)
1(z 2 ji)(z— i)™ ,1<i<J

For multivariate z, the approximating functions are products of the the functions in the single
variable case. Thus, for a cubic series with 10 knots, for example, the number of approximating
functions grows from 14 in the univariate case, to 256 for a bivariate z. In the work here we restrict
ourselves to evenly spaced knots (in the support of z, whose range must therefore be known) in
order to facilitate the theoretical results. For exposition, consider the case where the support of z
is on the interval [—1,1]. Denote for a scalar ¢, (c)+ = 1(c > 0)')c. Then, an mth degree spline

with J — 1 knots is defined to be a linear combination of:
U,4(z) = & lejsmel (2.3.16)

([t+1-2(G-m-1)/J)T m+2<j<m+J

Next, denote ¢, for the dimension of z, let u = (p1,. .., 44, ) denote a (1 x q)) vector of non-negative
integers, and let (1(!))§2, denote a sequence of such vectors. Then, for a set of vectors {u(l)} with
the restriction that p;(l) < (m + J) for each j and each [, the approximating series for z can be

expressed as:
rik(2) = L B0, (23)s (k= 1,0, K) (2:317)

where J; represents the number of knots for the jth component of z. Similarly, in the second step,
spline approximations can be applied while imposing additivity by considering terms that depend

only on E[d|z] or on z but no combinations of the two.
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2.3.1 Asymptotic Properties of the Two-step estimator

We now derive mean-square error and uniform convergence rates for our two-step estimator h as
well as the function §g. We illustrate the degree to which the mean square convergence rate of
the second step is affected because the first step has to be estimated, and discuss the relevance of
imposing additivity for the convergence rate. The technical details needed in deriving the theorems
of this section rely on various general results about convergence rates and asymptotic normality
for series estimators due to Newey (1994b, 1995, 1996). Theorem 1 is the essential result of this

section.

For a random matrix Y, denote ||Y||, = E[|Y||*]'/* ¥v < oo, ||Y|lec denote the infimum of
constants C such that P (||Y|| < C) = 1, and for a matrix D, let ||D|| = [trace(D'D)]*/2.

Assumption 1 The data, {(yi,zi,d;)} for i= 1, ..., n, is iid, and Var(y|w) and Var(d|z) are
bounded.

Denote W = {w : 7(w) = 1} for w = [z, e4).

Assumption 2 z is continuously distributed with density that is bounded away from zero on its
support, and the support of z is a cartesian product of compact, connected intervals. The
density of w is bounded away from zero on W, and W is'contained in the interior of the

support of w.

In an instrumental variables framework this assumption implies that the dimension of z is at least
as large as that of z, a condition familiar from parametric instrumental variables identification.
In the sample selection case, a similar result obtains: In order to identify g, in the equation
Y = go(z) + A(eq) + ¥, z must be a strict subset of z so that at least one determinant of the

probability that y is observed is not a determinant of y.

Assumption 3 7,(z) is continuously differentiable of order s, on the support of z and go(z) and

Ao(m(z)) are Lipschitz and continuously differentiable of order s on W.

The two derivative orders s, and s determine the rate of approximation for the conditional mean of
interest, h(w), by controlling the rate at which the series estimators (either power series or polyno-
mial splines in our case) approximate g, and A. Under Assumption 3, the rate of approximation for
h(w) is O(K ~*/9). Recall that ¢ = dim(z) and K represents the number of approximating functions

for the second step.
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The next assumption is a regularity condition needed to control the rates of growth of the

number of terms in the approximating functions in the first step (L) and second step (K).
Assumption 4a For power series, assume (K® + K2L){(L/n)'/? + L=/} 0.
Assumption 4b For splines, (K2 + KLY?){(L/n)!/? + L~"/9} — 0.
Theorem 1
Under Assumptions (1) — (4)
() [ rwlhe) - ho(w)dFa(w) = OplK/n+ K™/ Ljn-+ L72/%)
Further, for ¢ = 1/2 in the case of splines, and for c=1 in the case of power series

(§)  supueawlh(w) - ho(w)| = Op(KCI(K/n)/2 + K4 + (L/n)"/? + L~"/2),

Proof: Appendix

There are two main implications of Theorem 1:
() the mean square convergence rate for the second step estimator, h(w), is the slower of the
first-step optimal convergence rate and the second-step optimal rate when the first step does not
have to be estimated, and this is precisely due to the exclusion of the interaction terms between

and d.

As part (i) of Theorem 1 indicates, the convergence rate depends on the number of terms
included in K and L; this term resembles the convergence rate obtained in Stone (1985), where it
has been shown that optimality of the convergence rate depends on the manner in which K and L
are chosen. Consider fixing the number of terwis in K and L to be proportional, respectively, to

n9/(a+28) and p@/(91+2)); then, the convergence rate in part (i) reduces to
/ 7(w)[h(w) — ho(w)?dFo(w) = Op(maz{n~2/+2%), n=2n/(+20)})

According to the discussion in Stone (1985), the optimal mean-square convergence rate in part (i)

should be n=2¢/(a+28) Thys, implication (i) follows.

(#9) The second implication of Theorem 1 is that additivity in the regression function improves

the convergence rate; without additivity a similar result would hold but ¢ would be replaced by
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2q which will slow down the convergence rate of the estimator, and this is precisely due to the

exclusion of the interaction terms between z and d.?

Uniform convergence rates for j(z) follow from the conclusion of Theorem 1. In particular, for
h(w) = §(z) + A(éq), the restriction imposed on A to identify the constant term fixes A, alowing

an estimate of §(z) to be derived from k and thus yielding its convergence rate based on Theorem 1:

Theorem 2.1
For §(z) = h(z,d) - X and denoting W, as the coordinate projection of W on z

5upu,ew, |§(2) ~ go(2)| = Op(K°[(K/n)Y/? + K=3/% 4 (L/n)/? 4 L~01/9)),

Proof: Appendix

The mean-square convergence rate of §(z) can also be derived from the conclusion in part (i) of
Theorem 1 if the restriction on Ap used in identifying the constant term is a continuous functional
of A, such as, for example, a conditional expectation restriction; then, Theorem 1 holds with A and
ho replaced by g and go. For the type of restriction considered here (a point restriction), however,
the convergence rate of § does not simply follow, but the mean square convergence rate can be

derived from a function g(z) which “partials out” the constant term,

Theorem 2.2
For T = E(1(w)), define

9(z) = go(z) - / (z)dFo(w)dw/T
o@) = §@) - [rw)i(e)dF(w)duw/m

Then, / 7(w)[g(z) — g,(z)]2dFo(z) = Op(K/n + K219 4 Ljn + L~21/1)

Proof: Appendix

This completes our description of the two-step non-parametric sample selection estimator. An

estimate of the conditional mean E[y|lw] = ho(w) or of go(z) may be of interest in various settings

5This would be true whenever the second step’s convergence rate dominated in part (i). A more thorough discussion
of a similar result is in Newey, Powell and Vella (1995).
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that are frequently studied in applied work. These include studies of female hours of work (y) as
a function of demographic and other variables as has been studied by Hausman (1984) and Mroz
(1987), or analyses of ez-post wage income for participants of a social welfare program as examined
in Meyer (1989)’s study of Unemployment Insurance (UI) or Yelowitz's (1994) analysis of marriage-
rates and divorce-rates for AFDC participants, all of which involve sample selection issues. If the
objective is to study other features of the model such as the marginal effect of the conditioning
variables on the y, or the (local) concavity of convexity of the estimated conditional mean, we may
do so by extending the above results. We discuss regression derivatives and other functionals in

the following section.

2.4 Functionals of the two-step estimator

Often the regression estimate h(w) is of little intrinsic interest to the modeler, and the purpose of
estimation is some numerical characteristic of h(w). For example, one interesting functional that
may be of interest in public policy or program evaluation is the issue of a price (tax or subsidy)
change and the associated dead-weight loss; we would then focus our attention on some a =
f: go(z)dz. This functional has been studied by Hausman and Newey (1995) with an application
to gasoline demand; in this application go(z) is derived from the indirect utility function of an
individual. Their framework can easily be extended to studying, for example, the deadweight loss
associated with an increase in the marginal tax rates on a subset of the population, an application

likely to involve sample selection issues.

Studying the implications of a proposed policy change is another example that applied work
devotes much attention to. We might, for instance, be interested in the marginal change from a
income tax reduction on labor supply participation such as that studied by Nada Eissa (1994), or
the marginal effect on the birth-weight of babies following exogenous decreases in Medicaid funding
of specific medical services for single mothers-to-be (which is the application studied in this paper).
In the latter example, sample selection is an obvious problem since not all pregnancies result in

births, making observed birth-weight of a newborn an outcome of a selected sample.

For such studies, the comparative statics of interest to us is given by a functional a(hg) which
represents a linear map from hg to the reals, and encompasses a variety of functions that may be of

interest; for example, point estimates of g. As previously discussed, such estimates can be derived
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from the series estimate ho(w) when we restrict the value of A to be known as X at some particular

value of z. Then, the value of g at some particular (Z,d) can be derived as:

90(z) = a(ho) (2.4.1)
a(he) = ho(T,€) — X (2.4.2)

a natural estimate of which is obtained by “plugging in" the estimated value of / at the desired
values (%, ;). We restrict our focus to linear functionals of h such as this, denoting the functional
as = a(h). Another linear functional is an average derivative estimator of go(z) such as Stoker’s

(1986)

a(h) = [ ofaw )(a"‘“’))d (2.43)

where v(w) is some weight function. The average derivative is similar to the functional in (4.2), but
instead of measuring the strength of the relation between z and y at some particular z;, it obtains

an average effect over all the data points,

2.4.1 Asymptotics of Linear Functionals

We next state the conditions needed to derive the asymptotic behaviour of linear functionals of /
and show that the functionals are asymptotically normal. The utility of studying the asymptotics
is that with a consistent estimate of the asymptotic variance in hand, we may then do inference
on the estimated functionals, §. Our focus on linear functionals has the added advantage of fitting
into a general class of two-step estimators for which Whitney Newey (1984) has established an
explicit expression for the asymptotic variance. The class of estimators Newey studies is defined
by the property that the first step first-order conditions are uncorrelated with the second step
first-order conditions, a criterion satisfied here.5 We show that /nV1/2(4 — 6,) 4 N (0,1), so
that in large samples inference on  using the variance estimate V/n is valid. To characterize when

v/n-consistency holds, a further assumption needs to be made. In particular, \/n-consistency is

SThis holds since in the first step d is a function of z, and z is a conditioning variable in step two,
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attained only if the following condition (the Reisz representation theorem) holds:
a(h) = E[r(w)v(w)h(w)) (2.4.1.1)

such that E[r(w)||lv(w)||?] is finite for some vector of functions v(w). We will assume this condition

to hold in deriving the asymptotic results for the functionals.

Validity of (4.1.1) implies that yn(d — ) = N(0,V) for a variance matrix V. An exact
expression for the variance in this case can be derived: denote L for {b(z): for a sequence wxr, such
that {limy_,c0E[{b(2) — T*(2)aL}?] = 0}. Further, let K denote 7(w)v(w)dho/dd', and let p(z) be
the matrix of projections of the elements of K on L in the space of random variables with finite
variance. Then, if the reduced form ( the equation y = go(z) + A(E[d|z]) + 4 ) is left unrestricted,
L will typically comprise of all functions of z with finite variance, and p(z) will be the expectation

of K conditional on z. From this, the asymptotic variance in the \/n-consistent case will follow as:
V = E[r(w)v(w)v(w)' Var(y|w)] + Elp(z)Var(d|z)p(2)']

The variance of 8 in the more general case (where (4.1.1) does not hold and \/n-consistency cannot

be attained) is given below.

The specification of the selection rule has thus far been given a latent variable interpretation. An
equivalent representation is to specify a non-parametric version of the linear probability model. In
particular, note that the latent variable model gives E[d|z] = F_,(n(z)). An alternate formulation
would be to specify a version of the linear probability model: d; = k(2;) + v;. But since this implies
E[d|z] = k(z), series estimation of either specification results in the same estimate of E[d|z], i.e.,
k(-) = F_,(n(-)) and v = d — E[d|z]. Quite simply, in the non-parametric setting, a representation
of the reduced form in either a latent variable framework, or in a non-parametric version of the
linear probability model is equivalent; i.e, the latent variable representation is fully general. This
equivalence is ﬁseful, since calculation of the asymptotic variance of the second-step estimator is

greatly simplified using the non-parametric linear probability specification,

Define

)
n i n

0= PP £ i 7ipipi [ys — h(;))?
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!
AQ=Le® (%),where the subscript 1 refers to step one and ® denotes the Kronecker product.

n

(1% 77:)®(7'¢7'z) . h(w.) ﬁi"x"
S UL R ST

The variance of § is then simply A {Var(k)}4', or,
V=AQ'E+HQ'EHNQ A (2.4.1.2)

We use this estimator of the variance in deriving the asymptotic normality of 6, to which we turn

now. For this result, we need the regularity conditions listed below.

Assumption 5 02 = Var(y|w) is bounded away from zero. E[y*|w] is bounded, and E[||n||*|w] is
bounded. Also, ho(w) is twice continuously differentiable in d with bounded first and second

derivatives.

Assumption 6 There ezists v(w) and Bk such that E[r(w)[lv(w)|]?]) < oo,
a(ho) = E[r(w)v(w)ho(w)), a(prk) = E[r(w)v(w)pik (w)), Elr(w)|lv(w) — Brxp™ (w)|?]
— 0 as K — oo.

Denote a non-negative integer by § and |h|s = maz, <5 supwew|0*h(w)|.

Assumption 7 a(h) is a scalar, ||a(h)|| < |h|s for some § > 0, and there exists Bk such that as
K — 00, a(p¥'Bk) is bounded away from zero while E[{p* (w)'Bk}?] — 0.

Assumption 8 nK~*/4 - 0 and \/nL=*/% — 0; for power series (K°L + K8L? + KSL3 +
K2L%)/n — 0, and for splines (K°L + K4L? + K3L3 + KL% /n =0,

Assumption 9 One of these two conditions must hold: (a) z is univariate and if a spline is used
it is at least a quadratic one, and \/nK'™® — 0; (b) = is multi-variate, p* (w) is a power
series, ho(w) is differentiable of all orders, there is a constant C with the absolute value of

the jth derivative bounded above by C(C)?, and /nK~¢ — 0 for some € > 0.

"Note first, that given h = E; Bi*pix(z),6 = a(h) = AB, A= (a(pik)), ... ,a(pkK) is simply a linear combination
of the second-step least squares coefficients.
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Denote (5(K) = maz), <5 supwl|8¢pH (w)).

Theorem 3
If Aséumptions 1-3, 5, either 6 or 7, & 8 and 9 hold, then 6 = 6, + 0,(¢(K)/\/n) and

VaV2(6-6,) 45 N(o, 1) (2.4.1.3)
Further, if Assumption 6 is satisfied

V(6 - 6,) 4 N(0, V), VALY (2.4.1.4)
Proof: Appendix

2.5 Semi-parametric Estimation

We now consider how we may partially parametrize our general formulation to consider semi-
parametric estimation. Semi-parametric estimation is useful to consider since an analyst occasion-
ally has a priori knowledge about the functional form of at least part of the model; such information
can be incorporated into estimation and thereby ease the computational burden by reducing the
number of variables in non-parametric estimation. Partially parametric models have been used in
applications before (e.9, Hausman and Newey (1995)). The semi-parametric model we consider
is the familiar partially linear model (e.g, Robinson ( 1988)), in which we assume that the known

functional part of 90(z) is linear and additive:

¥y = go(z) +e (2.5.1)
160 + 920(z2) + € (25.2)

The results from Section 3 extend quite simply to the semi-parametric model here by restricting the
approximating functions in pX (w) to contain the the componenets of z; and functions (power series
or splines) of elements in T2. Similarly, a semi-parametric formulation of the selection equation
could be incorporated into the analysis, specifying m0(z) = 2179 + mg (2), and corresponding to this,

using components of z; and functions of components of 2, in the approximating series in r"(z).

Since the parameters in equation (5.2) are simply functionals of h(w), \/n-consistent estimates
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of § may be obtained under the same conditions as those listed in Section 4. There, the pri-
mary condition needed for /n consistency was the existence of a function v(w) such that a(hq)
= E[r(w)v(w)h(w)), for any linear functional a(hg). An explicit expression for () can be derived

here.

Define u(w) = z0 — E[z 10|20, d], the residual term from projecting z,9 on the space of (z2, d).
Assume ) is not almost surely predictable by (30, d) so that E[r(w)u(w)u(w)'] is bounded away

from zero. Then
B = E[E(u(w)u(w)') ™ 'u'h(w)) (2.5.3)

and v(w) = Efu(w)u(w)’]"'u(w). Thus, y/n-consitency and asymptotic normality of 3 follows

under the assumptions and results in Theorem 3.

2.6 Empirical Application

In order to demonstrate the practical purpose of the estimator introduced in this paper, we present
an empirical application in which sample selection is an obvious issue. We study the effects of the
provision of abortion services available to pregnant mothers on the distribution of birthweights of

their newborns. The outcome is selected since not every pregnancy results in a birth.

There is a large body of work that studies the effects of available abortion services and state
abortion laws on birth outcomes (e.g, Joyce 1987, Grossman and Jacobowitz 1981, Grossman
and Joyce 1990). An important finding of these studies is that exactly those women who are
least likely to have healthy babies are the same who are least likely to carry the fetus to term,
Therefore, restricted abortion access is likely to decrease the average health status of the set of
babies eventually born. Birthweight is one of the best indicators of a newborn’s health, and is
thus the outcome most often studied. Further, from a policy perspective, birthweight is a useful
measure, since low birthweight (less than 2500 grams) babies experience higher incidence of infant

mortality, and account for §7% of costly neo-natal intensive care (Schwartz 1989).

Selection arises in this study precisely because birthweight is observed only for the set of preg-
nanices carried to term; and, the woman who chooses to have an abortion cuts a remarkably

different profile from a woman who does not (see Joyce and Grossman [8]). The model is specified
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Birthweight; = 1(d = 1) o g( fc;, mc;, hef;) + ¢
d; = 1{n(mc; hcf;,Z;)+n; > 0} (2.6.1)

where i denotes a particular birth, fc is a vector of fetal characteristics such as its sex, race and birth-
order, mc denotes maternal characteristics some of which affect only birthweight (drinking/smoking
behaviour, employment, race, age), some of which affect only the probability of delivery (education,
marital status, religious affiliation), and some such as income which affect both. hcf denotes a
vector of health care facilities including the number of abortion providers and community health
centers, primary health care centres, the number of ob/gyns and local health departments offering
subsidized care. “Restriction” is a dummy which takes the value 1 for states which restrict Medicaid

funding of abortion.

An alternative specification considers semi-parametric estimation of equation (6.1). Non-linearities
may be important for some co-variates such as income, age, the number of large hospitals (denoted
mc;), and less so for co-variates such as the number of other siblings (denoted mc;). Further,

several of the co-variates are dummies which we simply pull out of the function g and =:

J K L
Birthweight; = 1(d = 1){g(mey;, heu) + Y fejiBj + Y mearime + Y heaithy + &}
Jj=1 k=1 =1

J K L
d; = 1{m(mey,hefz+ Y fejiBj + Y meakime + Y heaithy
j=1 k=1 =1

+Restriction; 8) + n; > 0} (2.6.2)

The list of variables used in each of the specifications in (6.1) and (6.2) are presented in the tables
along with the results. The data used in the study come from the National Longitudinal Survey of
Youth {NLSY) which is not a representative sample for this study as it over-samples young,'poor
and minority women who are most likely to require Medicaid funding and whose babies are most
likely to be of low birthweight. The sample consists of 6365 pregnant women, aged between 15 and
32 in the year of their pregnancy. Between 1980 and 1989, 88.1% of these women carried the fetus

to term.

We report a variety of results to facilitate the comparison between (i) least squares estimation
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without any correction for selection, (i) the Heckman 2-step estimator with jointly normal (e, 7),
(#ii) semi-parametric estimators with series estimation of the selection rule and least squares esti-
mation of the outcome equation (y = £+ A(eq)); and (iv) non-parametric estimation of both steps.
For non-parametric estimation of the selection rule, two alternate specifications are employed. One
uses power series which trims out predicted probabilities outside [0, 1], and the other uses functions
of the inverse of the Mills’ Ratio for the basis functions. The number of functions are chosen by

cross-validation of the data.

2.6.1 Results

The first two panels of table 2 report least squares estimates from linear models. In the first panel,
there is no correction for sample selection, and in the second panel the correction term comes from
a linear probability model. Simply correcting for sample selection magnifies the estimate on the
“Abortion Providers” variable about twofold, from 3.511 to 6.820. We infer that selection is an
important issue as the t-statistic on the selection correction term is significant at the 95% level.
The third panel reports estimates from a Heckman two-step estimator. Using probit in the first
step, as opposed to a linear probability model appears to have no differential effect, and thus the
estimated coefficients on “Abortion Providers” in both the second and third panels are close, and

the selection correction term using Heckman’s is again significant at the 95% level.

The fourth and fifth panels of table 2 report results from semi-parametric estimation of the
model. The estimated regressions are not as general as that in equation (6.2), since the outcome
equation is linear in the covariates and non-parametric only in the selection correction. By cross-
validation, second order terms in “Abortion Providers”, and interactions of this with income, age
and a dummy for low income are used in semi-parametric estimation of the selection rule, In the
outcome equation, two powers of the selection correction are found to be appropriate from cross

validation of the data.

The effect of considering semi-parametric estimation is to magnify the estimated coefficient on
“Abortion Providers” relative to a model where there is no correction for selection, and shrink it
somewhat relative to a model in which the selection correction term enters linearly. This result is
obtained either when power series or functions of the Mills’ ratio are used for the selection correction
term. However, note that the selection correction terms using functions of the Mills ratio (in panel

5) are not significant. Furthermore, note that while the coefficient on “Abortion Providers” is
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Table 1 : The Effects of Access to Medical, Prenatal and Abortion Services on Birthweight : Parametric

(Heckman, linear probability models), Semi-parametric selection correction and Non-parametric

selection correction

Least squares: Sample Selection Correction Semi-parametric Selection Correction Non-parametric

No comection Estimation in

for selection Linear in both Heckman Power series in Functions of Mills both steps

steps two-step A (m(w'y)) Ratio: @ [m(w'y))/
O o(w'y))
% Abortion Prv 3.511(2.061) 6.820 (3.062) | 6.793(3.874) | 5.58 (2.501) 5.586 (2.504) 31.75 (0.902)
Age 0.167(1.857) -0.021 (-0.158) | -0.051 (-0.55) | 0.066 (0.482) 0.0657 (0.478) -0,646 (-0.630)
Drink 0.330 (0.531) 0.246 (0.382) | 0.406(0.667) | 0.0931 (0.146) 0.084 (0.133) 0.1100(0,172)
Smoke -6.39 (-9.934) -6.23 (-9.225) | -5.99 (09.47) | -6.183 (-9.261) -6.182 (-9.628) -6,093 (-9.018)
AFQT 1.68 (3.015) 2.412 (3.665) | 2.534(4.411) .| 2.081 (3.003) 2.093 (3.029) 2.030 (2.846)
Other Clinics -0.15(-1.103) 0.024 (-1.181) | -0.261 (-1.73) | -0.143 (-0.695) -0.150 (-0.726) -0.1962 (-0.484)
Subsidized care -0.391 (-1.097) | -0.288 (-0.539) | -0.765 (-2.00) | -0.075 (-0.136) -0.0821 (-0.148) 0.0424 (0.075)
Income 0.352 (2.469) | 0.274(1.768) | 0.342(2.343) | 1.843 (3.186) 0.289 (1.886) 1.840 (3.186)
SCT (linear) - 19.98 (2.118) | -14.98(16.23) | 9.282 (1.707) 116.76 (0.216) 9.207(1.742)
SCT (square) - - - 3.840 (0.0333) -36.723 (1.283) 3.840 (0,060)
SCT (cubic) - - - - - -36.723 (-0.128)
SCT (fourth power) - - - - - -28.234 (-0.134)
Income? - - - - - -0.112 (-1.990)
Income’ - - - - - 0.0024 (1.942)
% AbortionProv? - - - - - -101.49 (-0.707)
% Abortion Prov? - - - - - 167.93 (0.746)
% Ab. Pr * Income - - - - - -1.123 (-1.931)
Notes:

SCT: Selection Correction Term. In the linear case this is simply E(d | covariates in the selection rule).







affected, none of the other coefficients (that were statistically significant) in the first three panels
appears to change noticeably. One interpretation is that the tight constraints in a linear selection
rule are invalid and weakening those restrictions allows a more accurately estimated coefficient on

“Abortion Providers”.

Finally, we report results from non-parametric estimation of both steps. We treat the dummy
variables as essentially parametric since they can simply be pulled out of the unknown function.
Power series in both “Abortion Providers” and “Income” are used, along with their interactions,
By cross-validation of the data I choose five functions of the co-variates and four in the selection
correction term. The average derivative estimate of the effects of abortion provision on birthweights,
evaluated at the means is very close to both the semi-parametric specifications at 5.76. The standard
errors are significantly inflated in the fully non-parametric specification, presumably yielding to the
curse of dimensionality. However, the non-parametric estimates are probably the most accurate
(even if imprecise) and thus, the conclusion of this exercise is that by restricting access to abortion,

states effectively increase the pool of newborns born with low birthweight.

2.7 Conclusion

The research effort on sample selection since Heckman (1974,1976) has been one of the most active
areas of microeconometrics research, motivated partly by the wide variety of applications that
selection arises in. Acknowledging some of the parametric limitations of Heckman's estimator,
a new literature has begun to emerge with the intent of weakening the parametric assumptions
to consider semi-parametric estimation of selection models. The existing set of estimators focus
on non-parametric estimation of either the selection rule or the outcome equation, but not both

together.

Our paper recognizes a limitation of this new literature, which only partly addresses the dis-
advantages embodied in using parametric assumptions in modelling sample selection. Specifically,
we develop an estimator that represents the most general formulation to date for sample selection,
requring no parametric assumptions on either the regression functions or the joint distribution of
the pair of stochast.c terms. The single restriction required for estimation is an additive error term

in both stages, a restriction that is weak and we expect to hold in a wide variety of applications.
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The proposed estimator is a simple two-step estimator that employs functions of the non-
parametrically estimated propensity score from the first step in the second. We derive theorems for
the mean-square and uniform convergence rates for the estimator, demonstrating its optimality in
terms of achieving Stone’s (1982) bound. We then show that interesting functionals of our estimator

are y/n-consistent, and asymptotically normal.

To test our estimator, we present an application which studies the effect of abortion services
available to pregnant women on the distribution of the birthweights of their newborns (a selected
outcome). We show that the proposed estimator is easily computable and yields non-ignorable

differences from parametric models.

2.8 References

Ahn, Hyung-Taik and James L. Powell (1993). “ Semiparametric Estimation of Censored Selection
Models with a Nonparametric Selection Mechanism,” Journal of Econometrics; v58 n1-2 July 1993,

pp. 3-29.

Cavanagh, Chris and Robert Sherman (1993). “Rank Estimators for Monotone Index Models,"
BellCore Working Paper 84 May 1992.

Cosslett, Steve (1983). “Distribution-Free Estimator of a Regression Model with Sample selec-
tivity,” manuscript, Center for Econometrics and Decision Sciences, University of Florida, June

1985.

Currie, Janet; Nixon, Lucia A., and Cole (1996). “Restrictions on Medicaid Funding of Abor-
tion,” The Journal of Human Resources, Volume 31, Number 1, Winter 1996.

Eissa, Nada (1995). “Taxation and Labor Supply of Married Women: The Tax Reform Act of
1986 As a Natural Experiment,” National Bureau of Economic Research Working Paper: 5023

Gronau, R (1973). “The Effects of Children on the Housewife’s value of time,” Joural of Po-
litical Economy, 81, s168-s199.

60



Grossman, Michael and Steven Jacobowitz (1981). “Variations in infant mortality rates among
counties of the United States: The Roles of public policieis and programs,” Demography 18(4),
695-713.

Grossman, Michael and Theodore Joyce (1990). “Unobservables, Pregnancy Resolutions, an Birth
Weight Production Functions in New York City,” Journal of Pulitical Economy, 98(5), 983-1007.

Han, Aaron (1985). “Non-parametric Analysis of a Generalized Regression Model: The Maxi-
mum Rank Correlation Estimator,” Journal of Econometrics; v35 n2/3 July 1987, pp. 303-16.

Hausman, J.A (1985). “The Econometrics of Nonlinear Budget Sets,” Econometrica; v53 n6
November 1985, pp. 1255-82.

Hausman, J.A and Newey W.K (1995). “Nonparametric estimation of exact consumer surplus

and deadweight loss,” Econometrica, 63, 1445-1476.

Heckman, J.J (1974). “Shadow Prices, Market Wages, and Labor Supply,” Econometrica, 42,
679-693.

Heckman, J.J (1976). “The Common Structure of Statistical Models of Trucation, Sample Se-
lection and Limited Dependent Variables and a Simple Estimator for Such Models, ” Annals of
Economics and Social Measurement, 5, 475-492.

Ichimura, H (1987). “Estimation of single index models,” MIT PhD.

Joyce, Theodore (1987). “The Impact of Induced Abortion on black and white birth outcomes
in the United States,” Demography, 24(2), 113-136.

Kane, Thomas J. and Staiger, Douglas (1996). “Teen Motherhood and Abortion Access,” Quar-
terly Journal of Economics; vl11 n2 May 1996, pp. 467-506.

61



Kyriazidou, E. (1997) . “ Estimation of a Panel Data Sample Selection Model”, Econometrica;

v65 n6 November 1997, pp. 1335-64.

Maddala G.S (1994). “A Survey of the Literature on Selectivity Bias as It Pertains to Health
Care Markets,”in Econometric methods and applications. Elgar; distributed in the U.S. by Ash-
gate, Brookfield, Vt., 1994, pp. 330-45.

Manski, Charles. 1975. “Maximum Score Estimation of the Stochastic Utility Model of Choice,”

Journal of Econometrics; v3 n3 Aug. 1975, pp. 205-28.

Meyer, Bruce (1989). “Unemployment Insurance and Unemployment Spells,” Econometrica; v58

n4 July 1990, pp. 757-82.

Mroz, Thomas (1987). “The Sensitivity of an Empirical Model of Married Women's Hours of
Work to Economic and Statistical Assumptions,” Econometrica; v55 n4 July 1987, pp. 765-99.

Newey, W.K (1984). “A Method of Moments Interpretation of Sequential Estimators,” Economics
Letters 14, 201-206.

Newey, W.K. (1988). “Two step series estimation of Sample Selection Models,” MIT Depart-

ment of Economics Working Paper.

Newey, W.K, Powel! J.L, Vella, F (1997). “Nonparametric Estimation of Triangular Simultaneous

Equations Models,” MIT, Department of Economics,

Schwartz, Rachel (1989). “What Price Prematurity?,” Family Planning Perspectives, 21(4), 170-
174. ‘

Stone C.J. (1982). “Optimal global rates of convergence for nonparametric regression.” Annals of

Statistics 10, 1040-1053.

62



Stone, C.J. (1985). “Additive regression and other nonparametric models.” Annals of Statis-

tics 13, 689-705.

2.9 Appendix A

Proofs of Theorem 1, Theorem 2.1 and Theorem 2.2 :
Follows directly from the proofs for Lemmas 4.1 and Al in Newey, Powell and Vella (1997).
Proof of Theorem 3 :

The proof for this theorem is an application of the proof for Theorem 5.1 of Newey, Powell and

Vella (1997).
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Chapter 3

Organization of Health Care and

Composition of Deliveries

3.1 Introduction

In recent years, much attention has been focussed on models of the demand-inducing behaviour
of physicians. The underlying hypothesis of such models is as follows: physicians derive utility
from income and leisure, and disutility from inducing demand for unnecessary services, The disu-
tility may arise from ethical considerations, or from reputation effects which penalize physicians by
lowering demand for their services in the future (Evans 1974, Dranove 1988, Pauly and McGuire
1991). A natural implication of the model is that when income is tailored to specific procedures,
physicans will exploit their agency relation with patients to perform more remunerative procedures
if the marginal benefit of a specific procedure outweighs the associated marginal costs, This ba-
sic implication of the induced-demand model has been explored in several empirical studies (e.g,
Cromwell and Mitchell, 1986; Grytten et al, 1991; Gruber and Owings, 1996) which demonstrate

that demand-inducing behaviour by physicians is widespread.

In this study, I focus on a specific medical service, that of the delivery of babies, to examine the
county-wide composition between cesarean-section (c-section) and natural deliveries and its link

to the growth in managed care.! There is widespread belief, and some empirical evidence, that a

'In this paper, “managed care” will primarily refer to Health Maintenance Organizations (HMOs). A more
inclusive definition could include HMOs as well as the physicians, hospitals and other providers that HMOs contract
with,
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high fraction of c-section deliveries are the result of induced-demand by obstetricians/gynecologists
(Stafford, 1980 ; Shiono et al, 1987; Dranove and Wehler, 1994; Gruber and Owings, 1996). In
1991, the average comprehensive fee for a cesarean was $7879 compared to the average cost of
a natural childbirth at $4456, which was 40% lower. Of this, the physician’s fee was $2,200 for
cesareans versus $1492 for a natural, representing a 30% differential (Health Insurance Association
of America, 1991). Furthermore, the average time required to perform a cesarean is shorter than
that for a natural, allowing a physician higher utility by skewing deliveries in favour of c-sections
until the marginal gain of higher income and a reduced workload is offset by the marginal cost
of inducement.? Over the 1965 — 1985 period, cesarean deliveries rose from 5% of all deliveries
to 25%, a five-fold increase that was arguably not all due to rapid changes in medical technology.
Gruber and Owings (1996) note that in the same time-period, fertility levels in the U.S. declined by
13.5%, representing a negative income shock to ob/gyns, and conclude that this exogenous source

of income-pressure led to the substitution towards the more highly reimbursed c-sections.

This paper argues that the inducement-effect of declining fertility levels on c-section deliveries
may be offset by a corresponding reverse effect on c-section rates due to increased managed care
activity, with the net result of decreasing the observed rate of c-section deliveries. I take as my
starting point a simple time-series correlation which suggests that this might in fact be the case
(Figure 1): after unabated growth in the number of cesareans from the mid 1960s until the late
1980s, cesareans have for the first time fallen gradually between 1990-1994 (Centre for Disease
Control, 1994); this is particularly striking when we take into account that fertility levels have
continued to fall in the 1990-1994 period, contradicting the basic premise of the induced-demand
hypothesis. Concurrently, HMOs grew from serving 8% of the health insurance industry in 1986, to
18.9% in 1988, and 25.3% in 1991 (HIAA, 1991). I argue that the surge in managed care activity has
altered both, the potential for inducing demand for c-sections by non-managed care physicians, as
well as the financial incentives and practice environment facing managed care physicians, resulting

in lower observed c-section rates.

Apart from the ethical issues that arise, induced demand for services which produce the same

2Another factor that may be of importance in deciding between a cesarean versus a vaginal delivery is that
cesareans can be scheduled. In fact, raw means in my data shows that amongst cesarean deliveries, 13% more
babies were born on Tuesday than on any other day of the week; doctor's day off has traditionally been Wednesday:,
Alternatively, ob/gyns may prefer not to perform surgeries on Monday immediately after the weekend. This suggests
a non-pecuniary behavioural motive for c-sections.
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outcome as less costly procedures is an important issue in the ongoing national debate on rising
health care costs. If specific procedures can be identified as those that arise largely due to induce-
ment, policies that structure financial incentives for using more cost-effective substitutes could be
designed to reduce national medical expenditures. For example, if greater managed care acitivity in
a market (measured as the market share of HMOs in a health care service area) results in altering
the composition of deliveries from the more highly reimbursed cesarean section towards natural
childbirths, policies that favour the growth of managed care will result in lowering health care
costs. In recent years, policies to re-structure the reimbursement of deliveries and re-organize the
practice environment for obstetrics have been widely discussed (Myers and Gleicher, 1988). The
evaluation of these policies rests on tangible evidence supporting such reform; this paper provides

such evidence.

From a policy perspective, targeting deliveries in an effort to control health care costs is likely
to be more successful than targeting other practices which are costly and have high incidence
(for example, coronary bypass or hysterectomies). Induced demand can take place at two levels:
inducement for the treatment, and conditional on requring a treatment, induced demand for a
specific service. For a policy to effectively address inducement, it must be possible to distinguish
inducement from necessity in the former, and there must exist close substitutes with very different
reimbursement schedules for the latter. In the case of deliveries, the issue of whether the treatment
(either a natural or a c-section) itself has been induced, does not arise, since ob/gyn and patient
information of the symptoms requiring treatment is symmetric. Further, deliveries comprise of two
well-defined services that are close substitutes and produce the same outcome. Insofar as there exists
a reimbursement differential for the two substitute services, one service must favour inducement

more than the other, and this service can be identified simply by comparing reimbursements.?

There are at least three principal mechanisms by which HMOs are known to affect the nature
of health care services in a market [Newhouse (1984), Luft et al (1986), Feldman and Dowd (1986),
Welch (1994), Baker and Corts (1996)]. First, the underlying principle of HMOs is preventive care,
which leads to early detection and prognosis, and thus, potentially avoids costly surgical treatment,

In 1991 HMO coverage of pre-natal and well-baby care exceeded coverage by traditional insurance,

3Contrast this with, for example, a coronary bypass where asymmetric information regarding the necessity of
treatment is severe, making it difficult to ascertain if demand has been induced. Further, conditional on requiring
treatment, there is no issue of inducement as no substitute service exists.
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with 98% of HMOs offering well-baby care compared to 39% of conventional insurance (Source
Book, 1991); there is corresponding evidence that pre-natal interventions result in better peri-natal
outcomes, decreasing the need for costly neo-natal intensive care (Joyce et al 1988, Wise et al 1988).
Increased HMO activity could therefore contribute in non-trivial ways to the reduction of costly
neo-natal care. This could arise because HMO physicians encourage the use of preventive services,
and also from HMO enrollees who perhaps self-select into HMOs because of unobserved tastes for
preventive care. Thus, hy altering the demand for the typical bundle of medical services, HMOs
may affect the health care system by reducing the frequency of particular treatments, as well as

the availability of specific procedures in the market.*

Second, HMOs play the dual role of insuring as well as purchasing (i.e., specifying the hospi-
tals/physicans where health care may be obtained under the terms of the contract), and thus have
strong incentives in price-shopping for low-cost physicians and providers who practice conservative
medicine. HMOs not only charge lower deductibles than traditional insurers, but typically set co-
payment rates to zero, thus bearing much of the marginal cost of each additional service provided.
By contrast, traditional insurers pay little attention to providers and medical services, instead,
charging higher premiums to offset higher bills. Thus, increased enrollment of the population in
HMOs might lead to changes in provider behaviour, fostering the spread of conservative practices
and lower costs amongst phsyicians and hospitals that want to compete for HMO customers. For
example, an ACOG report (1996) reveals that HMOs have become an important source of cus-
tomers for ob/gyns, with 80.1% of ob/gyns participating in salaried managed care positions in
1994, up from 67.2% in 1991, even though fee-for-service ob/gyns earned up to 256% higher incomes
in 1991.

Another mechanism by which HMOs may affect the nature of health care in a market is by
altering the financial incentives associated with physican services. One of the defining characteris-
tics of managed care is that reimbursement for services is often capitated or, physicians are paid
fixed salaries; both mechanisms are intended to reduce the incentives associated with performing

medically unnecessary procedures. Further, HMOs may design incentive schemes to reward phys-

4For another classic preventive medical service, take mammographies. In 1991, 96% of HMOs covered mammo-
graphies, while only 57% of traditional insurance companies did (HIAA, 1991), It is reported that mammographies
reduce the risk of breast cancer by upto a third suggesting that growth in HMOs can affect the net spending on
cancer therapy (National Cancer Institute, 1993). For instance, Baker and Brown (1997) find that increased HMO
activity results in the adoption of more mammography facilities as well as higher usage.
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icans for adopting practice styles that match their preferences for conservative practices. Clearly,
HMOs are likely to be more successful in severing the link between induced demand and income for
those services where (1) there is symmetric knowledge about symptoms favouring treatment and
(2) where services producing the same outcome can be reimbursed equally. Deliveries are one such

service,

Finally, another channel by which the growth in HMOs are thought to influence market-wide
activity in health care is by influencing non-managed care physicians to adopt the services offered
by managed care (see Baker and Brown, 1997). This line of argument is drawn from models of
physican learning which suggest that physicians tend to mimic the practices and behaviour of
other physicians in the market (e.g, Phelps, 1992).° Since HMOs favour physicians whose practice
patterns are aligned with their conservative, low-cost preferences, the growth in HMOs in an health
care market can alter the ratio of managed care to non-managed care physicians, and encourage the
diffusion of those practices preferred by managed care organizations. Much of the existing empirical
evidence on the effects of increased HMO activity documents such “spillover” phenomena. For
example, traditional insurers are known to respond to growing managed care activity by imposing
stricter guidelines on hospital use, increasing utilization review [Dowd (1988), Frank and Welch

(1985)}, resulting in decreased inpatient stays [McLaughlin (1987, 1988)).

Focussing on the effect of managed care on the composition of deliveries is useful, because the
cost savings from a compositional change will be substantial. Obstetrics/gynecologic operations
are the third most frequent procedure performed in the United States, with cesarean sections being
performed at the rate of 388.4 per 100,000 people in 1991 (Source Book of Health Insurance, 1991).
One study suggests that in 1991, over half the cesareans performed were unnecessary, resulting in
L.1 million extra inpatient days at a cost of over 1 billion (Public Health Citizen’s Research, 1997).
Consequently, U.S. government health officials have set a target of reducing the c-section rate
to 15% by the year 2000. If HMOs do have a market-altering effect of reducing the number of
unnecessary cesarean sections, they may induce large cost savings and help curb the rate of growth

in health care costs.

In the next section I discuss in some detail the mechanisms by which HMO affiliation may

influence physicians’ choices in the mode of delivery, and how changes in HMO market-shares can

80ne reason this might arise is that medical malpractice laws often use “standard” local practices as a banchmark
against which to judge negligence suits.
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result in altering the c-section rate, using a model of induced-demand. I then turn to an econometric
specification of the model to be estimated, testing the main implication of the theoretical model:
as HMO market shares rise, controlling for fertility levels, are c-section rates decreasing in HMO
market share? An important implication of the theoretical model is that there will be differential
effects on c-section rates depending on where along [0, 1) HMO penetration rates fall. Specifically,
the model predicts that c-sections are likely to be (weakly) rising in HMO penetration rates up to

a critical penetration, after which the cesarean rate will fall with increasing HMO penetration.

A distinguishing feature of the current work is in minimizing specification error in estimation by
using very general non-paremetric methods that allow for an unspecified non-linear relation between
c-section rates and HMO market shares. Using series estimation, I find that a penetration rate of
20% appears to be pivotal, beyond which every ten percent increase in HMO market-shares results
in an average decrease of 1.8 percent in cesarean delivery rates; a sizable effect that translates into
approximately $11 million in net savings at 1991-1992 reimbursement levels and c-section rates.
The effect is most pronounced for HMO penetration between 35% and 45%, and diminishes as
penetration rates approach 50%. The results establizh that any linear modelling techniques (even
those that correct for the endogeneity) highly understate the HMO effect, and completely ignore
important non-linearities. By contrast, the methodology offered in this paper is robust to a wide

variety of specification errors, simple to implement and simple to draw inference from.

This paper uses a rich data set containing information on all births in the United States in 1991
and 1992, collected by the National Centre for Health Statistics; this information is aggregated up to
the county-level and used along with county-level information on HMO market-shares, demographic
controls, county health care facilities, county business patterns and state health legislation acts.
An extension of the study determines whether the changes in c-section rates come with associated
changes in the quality of deliveries, say, because HMOs effectively induce demand for naturals. I
use a variety of measures of quality, ranging from neo-natal infant mortality rates, to the number
of documented complications at birth and Apgar Scores. I find no effect of HMO activity on
quality. From the perspective of health care reform, therefore, increased managed care activity is

an improvement in the sense of Pareto, decreasing costs without any obvious adverse effects,
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3.2 HMOs and C-Sections: Model and Links

3.2.1 A Model of Induced Demand, Market-Shares and C-section Rates

Begin with the canonical representation of physician utility:

U = UWY,LI)
Uy, UL >0,U;r <0 Uyy,UrL, Ui <0, (2.6.1)

where Y represents physician income, L represents leisure and I is the level of inducement. U; <0
arises from our assumption that, as professionals bound by a code of ethics, physicians derive
disutility from exploiting their agency relation to induce demand. Assume additively separable
preferences. The model below builds on the early work of Newhouse (1970) and Evans (1974),

extending it in several dimensions.

Let m denote Managed Care and, ¢t denote “traditional”, by which we will refer to ob/gyns
paid by conventional indemnity insurance. The following model of induced demand studies ¢ and
m ob/gyns separately, identifying the relative magnitudes of their response to a change in the stock
of births in their market. Such a change is exogenous, and represents a negative income shock, as
noted by Gruber and Owings (1996). Further, the model determines how changing market-shares of
managed care versus non-managed care affects the c-section delivery rate. Begin with non-managed

care physicans:

Traditional:
Let

U = UY,L4LIY
Y! = Y,N,+Y.C, (2.6.2)

where N is natural childbirths, C is cesareans, Y, is ob/gyn net revenue for a cesarean, Y, represents

ob/gyn net revenue for a natural, with Y — Y, > 0 as is well known.

L' =L —1,Ny — 7.C, (2.6.3)
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where 7, is the time per unit spent on a natural childbirth, 7. is the time per unit spent on a cesarean,
and T is the stock of leisure time. The average time for a natural childbirth is substantially greater
than that for a cesarean; hence, 7, — 7 > 0. Let B represent all births, and a represent the

market-share of traditional insurance. Then,

Bg = Fa,
C. = ¢(i)B
Ne = (1-¢(i))B (2.6.4)

where i will represent ‘inducement per birth’, or, the probability that a physician will induce
demand for a c-section for a given birth; it follows that I, the total level of inducement is, B%, and
#(i) is the c-section delivery rate with ¢'(-) > 0. We further assume that ¢"(i) = 0. Since some
fraction of births are appropriately diagnosed as requiring c-sections, assume ¢(0) > 0. The ob/gyn

solves:
max U(Y*, Lt IY), (2.6.5)
1 ]

subject to the constraints in equations (2) — (4). The first-order condition is: (suppressing the ¢

superscript)
Uy ()[B¢'())AY] + UL(")[B¢'(i)(A7))] + Ui()B =0 (2.6.6)

where AY represents (Y, — Y;), and At represents (1, — 7). Comparing this f.o.c. to the one
derived next for managed care ob/gyns will highlight clearly the relative inducement effects. The

comparative statics follow from differentiating the f.o.c:

0 __ $WIAYUyy()AY (i) + Ya) + ATULL()ATS(E) — )} + Uni() 4]
4B, B¢/ (i)?(AY )2Uyy () + ¢/ (1)2(AT)2ULL(") + Un ("))

<0 (26.7)

Signing the expression is simple since every term apart from Uy, Uyy and Uy is positive. Simply,
(7) states that an exogenous decline in a source of income leads to more inducement, While the
above analysis focuses on a decline in the stock of births, other exogenous shocks such as a man-
dated reduction in the c-section fee, yield the same comparative statics results. Consider next the

managed care ob/gyn:
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Managed Care:
Let |

U=umym™ L™ I™
Y™ =V (Nm + Chm) (2.6.8)

where Y is the capitated payment for a delivery irrespective of the specific mode of delivery chosen,

Let

Ly = L-mN-1C

B, = B(l-a),

Cm = ¢(i)Bm,

Ny = (1-¢(i))Bn (2.6.9)

Maximizing utility subject to the income, leisure and births constraints yields the first-order con-

dition:
UL(")[B¢'(})A7] + Ui(-)B =0 (2.6.10)

Let i*™ be the implicit solution to (10) and to facilitate comparison, assume equal market shares.
Substituting i*™ into (6), we see the immediate implication of capitated payments: there is no
income-related inducement effect since AY == 0. At the optimum the managed care ob/gyn trades
off the disutility of inducement with the utility of increased leisure from unnecessarily prescribing a
cesarean; by contrast, for the non-managed care ob/gyn, at a given level of inducement the marginal
gains include a pecuniary as well as a time component. (This is clearly visible in equation (6): B¢'(i)
represents the additional c-section births, each of which reimburses the non-managed care physician

AY; a term absent in the managed care ob/gyn’s optimization).® Thus, if Uyy,U;,UL, < 0

SThe leisure constraint makes little substantive difference, only affecting the scale of the results, Hence, we retain
it to prevent corner solutions: with no leisure-related constraint, the managed care ob/gyn would pick i*™ =0,
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globally, at the optimums:
™ < 2 P(E™) < P(E*) (2.6.11)

or, the cesarean rate is strictly lower for managed care.

Evaluating the change in inducement for an exogenous change in births,

_ii_ = - ATULL()(ATP(E) — 7)) + Uni(-) ¢
0Bm B¢/ 5)2(AT)2ULL(") + Un(')]

<0 (2.6.12)

Recalling that o denotes market-share for traditional insurance, equations (7) and (12) imply that:

8im it
a0 g <0
st . ,m
= a('wﬂ <0 (2.6.13)

The next comparative statics of interest is the question of what happens to the c-section rate as
managed care activity begins to grow. Let C be the total number of births, and ¢ = C/B denote

the c-section rate:
g=¢(i") a+¢({i™) (1 - a) (2.6.14)
Differentiating,

@_Qﬂ o ot o™
fa Oa

- 5) + (B0 - 66™) (2.6.15)

it _ . m
which cannot be signed a priori. The first term is positive, the second term (a Q[i%-z——]-) is negative

as shown in equation (13), and the third term is likely to be positive for some range of values of
«a around 0.5, but is of indeterminate sign in general. Thus, determining the sign and magnitude

of the comparative statics in (15) is an empirical question that is the focus of the analysis in this

paper.

I hypothesize that at high values of c, the non-managed care ob/gyn faces a large future income
stream via the large stock of births covered by traditional insurance, and thus has weak incentives

to induce demand. Consequently, for small local changes in a, the c-section rate might well be
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falling in a (the middle term is being weighted heavily). As HMO market shares begin to rise, non-
managed care physicians respond to their declining income stream by shifting births to c-sections,

and the inducement rate i* becomes larger than i™ almost surely, As a result, for local changes in o
() the inducement by HMO ob/gyns falls; and,

(#%) fewer births are covered by non-HMOs so that even if this fraction of births are more likely
to be delivered by c-section, there are fewer total c-sections, with the net result of decreasing the

c-section rate. Thus, c-section rates are non-linear, say quadratic, in traditional's market-share,
Note that the response of c-section rates to fertility rates is unambiguously negative:

oe o™ ait
—==(l-a)— + a— 6.
35 ( a)aB+aaB<0 (2.6.16)

Equation (16) is the basis for previous studies to examine the response of c-section rates to de-
clining fertility levels. Without controlling for contemporaneous changes in HMO market-shares,
however, there is no a priori reason to believe that the cumulative effect of falling fertility rates and
increasing managed care market-shares will be to increase c-section rates: the 1990-1994 decline in
fertility rates and the corresponding fall in c-section rates is testimony to this. The hypotheses are

two:

Hypothesis 1 : up to a critical penetration rate, a*, as managed care activity grows (i.e, a falls)

the c-section rate will fall:

— <0, Va > a* (2.6.17)

Hypothesis 2 : Beyond the critical penetration rate, increased penetration of HMOs will result
in decreasing the c-section rate. In particular, this response of c-section rates to managed care

growth will swamp out the opposing effect on c-section rates of declining fertility levels:

ac '
30> 0 Va< a (2.6.18)

74



In the empirical section I evaluate the hypotheses by examining the variation in county c-section

rates due to variations in HMO penetration, holding county fertility rates and other demographics
fixed. |

3.2.2 Cesarean Sections

I now illustrate the specific links between observed c-section rates and HMO activity in the context
of the model previously developed. These links can be divided into supply shifters (related to
increased number of HMO ob/gyns and their low incentives in performing c-sections), and demand
shifters such as increased use of pre-natal diagnostic services and adverse selection in non-HMOs.
Some understanding of the leading causes of c-sections, the typical risk set, and variations in c-
sections by diagnosis is useful in establishing the links between managed care activity and the
incidence of cesareans. Prior to discussing the links, I briefly discuss the trends in cesareans, and

the main diagnoses which favour a c-section over a natural childbirth.

Trends

Figure 2 maps the total and the primary c-section rates from 1970 to 1994. Of interest in this study
are the rates between 1989 and 1994, a period over which cesarean usage gradually dropped for
the first time since its widespread introduction in the early 1960s. The data reveal that between
1989 and 1992 the national c-section rate fell 5 percentage points from 22.8% to 21.9% (MVSR,
1994). The graphs do not mask a lot of variation over age groups or states. In 1991-1992, which
is the time-frame considered in this study, c-section rates fell almost universally across all counties
and states in the data set. The mean increase in those counties where the rate rose was 0.015.
Regarding variation by age, in 1992, c-section rates were higher for mothers in the 40-45 age group
(31.5%) than for teenaged mothers (15.0%), but both were lower than their respective rates in
1989,

It is widely believed that the diffusion in c-sections has been spurred by contemporaneous
advances in medical technology. The two most prevalent obstetric procedures are electronic fetal
monitoring (EFM) and ultrasound, which promote better deliveries by detecting abnormalities and
other pre-existing conditions, but might thereby also increase the incidence of cesareans. In 1992,
the use of EFM increased for the fifth year in a row, and was used by 80% of pregnant mothers,
while ultrasound usage increased to 61% (Vital Statistics Report, 1994). There is some debate,
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and no consensus, regarding the associated benefits of the rapid rise in c-sections from 1965 - 1988
(Finkler and Wirtschafter 1993, Mariskind 1979). Certainly, birth outcomes improved in terms of
neo-natal mortality rates, birth injury rates and birthweight in tandem with the increased use of
super. r technology ( William and Hawes 1979), but over this same time period, other technological
advances such as EFM, ultrasound and intensive care decreased the probability of poor outcomes

(Vital Statistics Report, 1994).7

The other trend which appears to have tracked rising c-section rates very closely is that of
malpractice premiums (HIAA, 1991). In 1991 the average malpractice premium for ob/gyns was
approximately 9 times as high as that for any other group in the medical profession (AMA, 1991).
This rise parallels the rapid rise in EFM and other obstetric procedures, suggesting that some of the
increase in c-sections may have been to avoid malpractice suits. Some evidence of such ‘defensive’

medicine is offered in Tussing and Wojtowycz (1991).

Symptoms

Four symptoms account for over 80% of cesareans performed in the U.S.8. A leading cause of c-
sections is repeat provider behaviour, i.e., the observed phenomenon that if a previous birth was a
cesarean, the likelihood of every subsequent birth being delivered by cesareau-section is extremely
high. In 1994, 82.5% of women with previous cesareans had their next birth by cesarean delivery
(NCHS, 1994). The n ost commonly cited medical explanation for this behaviour is that women
with previous cesareans are at high risk of rupturing the original incision if the subsequent birth is

natural (Guide to Pregnancy and Childbirth, 1996).

The second most frequent diagnosis is a breech or abnormal presentation, where the fetus is
positioned in a way that largely precludes natural delivery; for example, transversally across the
womb. A third cause is related to fetal health (respiratorial, congenital, low birthweight) and
goes under the rubric of fetal distress and, a fourth is dystocia or, non-progressive labor, which is
closely related to maternal health and age. Both fetal distress and dystocia are decidedly subjective

diagnoses relative to the first two and may thus depend on non-medical factors such as time-involved

"In fact, while cesareans are known to save lives when they are deemed necessary, they increase risks to both mother
and child when induced. Since increased HMO activity is associated with decreased inducement (as developed in the
theoretical model), an extension of this study examines how the recent decrease in c-section rates has affected birth
outcomes, There appears to be no relation between the two variables for three different measures of birth outcomes.

®This rate has varied very slightly; in my data sets they account for approximately 856% which compare with those
found by others (Tussing and Wojtowycz 1991, McCloskey et al 1994)

76



and remuneration. I argue next that each of these is a dimension along which a particular birth

is less likely to be delivered through a cesarean rather than a natural, if the birth is covered by

managed care.

Links of C-sections to HMO Activity

First, increases in managed care activity might decrease the potential candidates for cesarean de-
iiveries. Conditional on age and reproductive history, cesareans are much less likely to be necessary
when fetal status and health are frequently monitored using electronic fetal monitoring (EFM),
ultrasound, and sonographies. In particular, EFM enables the detection of breech babies, whose
positioning can be corrected if detected in a timely manner, removing the need to deliver the baby
by a c-section. Given this fact, increased managed care activity may affect the risk set for cesareans

in two ways:

One, there is empirical evidence that pre-natal interventions result in better peri-natal outcomes
and reduced expenditure on neo-natal intensive care (Joyce et al, 1994). Thus, in keeping with their
general principle of encouraging preventive services to avoid potentially costly surgery, HMOs might
encourage the use of pre-natal services with high frequency. In fact, in 1991 100% of HMOs offered
diagnostic procedures, compared to only 67% of traditional insurance program; and, 98% offered
well-baby care compared to 39% of conventional insurance.® (Source Book of Health Insurance,
1991). Second, women with unobserved preferences for preventive health care may self-select into
HMOs and themselves increase the demand for EFMs and other pre-natal services, partly because
the marginal cost of every additional service is very low for HMO enrollees.!® Thus, increased
managed care activity might alter the pattern of deliveries by reducing the number of potential

candidates for a cesarean.

A second mechanism by which managed care may affect the market-wide cesarean rate is linked
to HMOs’ selection criteria for physicians and providers, and further reinforced by their capitated
payments, If managed care organizations choose practitioners whose practice styles match their

preferences, then physicians affiliated with managed care are more likely on average to practice a

°I am unable to determine if a 100% offered pre-natal diagnostic services; however, preventive and diagnostic
facilities such as mammographies are the hallmark of HMOs, so I assume that coverage of pre-natal services in HMOs
is almost universal,

19There is some evidence that while HMOs attract a disproportionate number of healthy individuals, their enrollees
also demand services at higher rates than enrollees of traditional insurance (Hellinger 1987)
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relatively conservative brand of medicine, to prefer less invasive procedures, and recommend more
outpatient than inpatient treatments (conditional on expecting the same outcome under both).
Thus, insofar as cesareans require lengthier post-delivery hospital stays resulting in higher costs,
HMO cesarean-rates are likely to be lower than non-HMO cesarean rates ( ¢(i™) < ¢(i*), as
predicted by the inodel).!! These preferences will be further reinforced by introducing a capitated
reimbursement scheme that does not reward HMO physicians for performing cesareans. Thus,
an increase in HMO penetration may translate into fewer c-sections due to HMQ unobserved

preferences for naturals, as well as a weakened link between mode of delivery and income,

The diagnoses along which the above reduction in c-section rates is likely to take place are repeat
cesareans, dystocia, and fetal distress. First, with advances in medical technology, the medical
literature notes that the logic underlying repeat cesareans is apparently outdated or non-existent
(Weiss, 1997; ACOG, 1996). Professional associations such as the American College of Obstetricians
and Gynecologists have released official statements recommending . .. that the concept of routine
repeat cesarean be replaced by a specific indication for surgery, and that most women can be
counseled and encouraged to labor and have a vaginal birth after a cesarean (VBAC)."'? Thus,
repeat cesareans appear to be a margin for HMO physicians to exercise their preference for less
invasive procedures, as they appear to be neither necessary nor more remunerative than vaginal
births. Likewise, with more careful diagnosis, an HMO ob/gyn may be less likely to classify a
specific symptom as dystocia or fetal-distress. (Tussing and Wojtowycz, 1994). Further, conditional
on such a diagnosis, an HMO ob/gyn may be less likely to recommend a c-section delivery. Thus,
unobserved HMO preferences for conservative practices may result in lower c-section rates where

HMO activity is highest,!3

For various reasons, each of the above mechanisms which result in lower c-section rates may be
reinforced by changes in the practice patterns of non-managed care physicians. First, non-managed
care physicians may begin to mimic HMO ob/gyn behaviour in order to attract HMO contracts

and thereby expand their customer base. ACOG (1996) reports indicate that among ob/gyns,

"This may be true even if managed care reimbursement for cesareans is higher than that for naturals, as it is with
traditional insurance. However, without a capitated financial scheme, HMO preferences alone are unlikely to result
in lower market-wide c-section rates since increased managed care penetration essentially sorts ob/gyns into two sets,
leaving the average c-section rate unchanged.

*?The success rate of VBACs is 86% where “unsuccessful” is the set of planned VBACs that were subsequently
reverted to c-sections,

3 An ICEA report notes that increased diagnosis, along with active discouragement of repeat-cesaraeans can halve
c-section rate. In other parts of the world these efforts have reduced c-section rates to less than 12%.
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there was a dramatic rise between 1989 and 1992 in the number of ob/gyns that gave up full-time
fee-for-service practices in exchange for salaried contracts with HMOs. Second, the diffusion of a
dominant practice is an observed phenomenon across various medical categories, as suggested by
physician learning models. This diffusion may be especially rapid for deliveries, since ob/gyns face
the highest malpractice premiums in the medical profession making it particularly attractive to
conform with the ‘norm’. Such learning may also spread amongst patients, perhaps by increasing

wariness against the less-commonly used practice (Dranove, 1988).

3.2.3 Related Literature

This paper relates to the literature on two dimensions. Methodologically, this research is most
closely related to the work by Chernew (1995), Baker (1995b), Baker and Corts (1996) and Baker
and Brown (1997), who pioneered the use of detailed measures of HMO activity in examining narrow
measures of health care (e.g, mammography pricing and usage, insurance premiums, and medicare
fees) to avoid problems of inference that might arise in using aggregate measures of medical care
(such as regional hospital costs), since these measures cannot capture unobservable local effects,

and aggregate over areas that are unlikely to approximate health care markets.

Two other strands of the literature are relevant for this study. One is the body of work that
explores the extent of induced demand, many of which focus on cesareans (Shiono et al (1988),
Grytten et al (1990), Dranove and Wehner (1994), Yip (1994), Gruber and Owings (1996)), but
do not consider the HMO v/s FFS issue. Further, many of these studies face a basic identification
problem as they use variations in fees to examine quantity responses. A second body of related work
is the medical and economics literature on the determinants of cesarean-sections at the individual
level, which establishes that coverage by an HMO is less likely to result in delivery by c-section
(Dale and Tussing (1994), McCloskey et al (1991), Kizer (1988), Stafford (1987)). Such studies
limit the type of inference that the current paper seeks to establish. First, each of these suffers
from a drawback by not taking into account the obvious endogeneous determination of insurance
choice.! Second, the focus of this paper is in determining how managed care activity alters the c-

section rate, separating its effect from that of induced demand. None of the above works addresses

4Since HMOs promote preventive health care and limit coverage of expensive therapy they may be more appealing
to healthier individuals for whom the risk of needing costly medical treatment is low. Existing doctor-patient
relationships are also much less likely to be relevant for healthy individuals who may therefore switch readily to
HMOs from traditional insurance. Because health is a strong predictor of the probability of a cesarean-section for a
woman, insurance choice is therefore an endogenous determinant of a c-section.
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this issue.

More generally, this paper contributes to the health economics literature in two ways. First,
it linke the literature on induced-demand models with that of the growing work on the effects
of HMO activity by identifying a medical service that is simultaneously an obvious choice for
induced demand on the part of physicians, as well as a natural candidate for a medical service
in which HMO v/s non-HMO phsycians will behave differently, in part because of the different
practice environments facing each. Second, it adds to the vast body of research that examines how
managed care might influence the pricing, provision and quality of health care services { Newhouse
(1984), Luft et al (1986), Feldman et al (1986), Noether (1988), McLaughlin (1988), Welch (1994),
Baker and Corts (1996), Kessler and McClellan (1996), Baker and Brown (1997)), and analyzes the

policy implications of the findings.

To reiterate, the results found in this paper suggest that increased HMO activity skews deliveries
away from the highly-reimbursed cesareans towards natural childbirths, implying first-order (net)
cost savings, and come with no tandem decline in the ‘quality’ of deliveries. Therefore, policies
that are structured to encourage the growth of managed care activity are likely to lower spiralling
health care costs from this medical service. In the following section, I present a detailed analysis

of the econometric modelling and estimation tools used in deriving these results.

3.3 Data and Econometric Specification

The analysis is done in two parts. The first part is the focus of this paper and analyzes the
effects of HMO activity on cesarean section rates. In this part, I estimate regressions of county
c-section rates on HMO market shares, demographic controls and health care facilities. Below
I discuss the data and the regression modelling for this part. The second part is an extension
that determines the effects of growing HMO activity on various quality-measures of birth, The
dependent variable in these regressions are alternatively neo-natal infant morality rates (by county),
documented complications at birth, and Apgar scores (which are summary measures of a newborn’s

health at 1 and 5 minutes after the birth).
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3.3.i Data

This study is facilitated by the enactment of a 1989 federal law which required every birthing
centre to record the mode of delivery on the birth-certificate. The data come from the NCHS
which documents the town or city of birth, detailed parental and hospital characteristics, and
detailed birth information (type, complications, birth-weight) of each of the 4 million-plus babies
born in a hospital setting in 1991 and 1992.!5 The data from the NCHS were merged with firm
data from County Business Patterns (1991,1992), data on state health regulatory laws from the
Health Care Financing Administration (HCFA) and data on health care facilities and demographic

characteristics from the Area Resource Files (ARF).

HMO Market share data

The biggest drawback of the available data is that payor-source cannot be identified by birth. In-
stead, I have data on county HMO market shares, measured roughly as the fraction of a county’s
population that are HMO enrollees. This study uses two alternate measures of HMO penetra-
tion/market shares: one is computed directly from the ARF (1991) and is the fraction of a county’s
insured population covered by HMOs. These data were collected only for 1991 and 1994, limiting
their applicability and accuracy for the study.' An alternative measure is that used in Baker
and Corts (1996). Counties are used to approximate a market for the relevant health care service,
although Health Care Service Areas (HCSAs) (which are larger areas, usually groups of counties)
may better approximate the relevant market (Makuc, Hoglund et al (1991)). However, HCSAs
are not very well-defined and further, I assume that while HCSAs may be superior measures for
those services that are less commonly available, such as M.R.I scans, they may be less relevant for

deliveries.

Only those organizations officially listed as Health Maintenance Organizations are used in the
HMO market share variable. Over time, a variety of organizational structures that combine features
of both traditional insurance and traditional HMOs have emerged, blurring the original distinction

between managed care and traditional insurance; these include Independent Practice Associations

180f the babies born in 1991-1992, 99% were born in either a hospital or an accredited birthing cente,

16The 1994 data were used to approximate the market shares for 1992; this sort of approximation is unproblematic
for the early 1980s when market shares did not vary much over years; however, there was reasonable growth between
1992 and 1994, rendering estimates based on this variable potentially biased and inconsistent.
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(IPAs), Point-Of-Service (POS) Plans, and Preferred Provider organizations (PPOs). Where c-
sections are concerned, IPAs differ from traditional insurance only in degree. POS Plans and PPOs
allow greater flexibility in choosing physicians; it is entirely possible that the physicians affiliated
with PPOs and POS face reimbursement schedules much like traditional insurance. Thus, to avoid
difficulty in interpretation, only those firms that are organized like traditional HMOs are used in

constructing the HMO variable.

In the two years studied in this paper, there is significant variation in managed care activity.
In 1992, HMO penetration rates ranged from O per cent in Calcasieu, Louisiana to a high of
60.8% in Monroe, New York, with a mean national penetration rate of 15 7%. The mean c-
section rate in counties with HMO market shares over 15.7% was 19.5%, and the mean c-section
rate in the complementary set was 22.2%. Some striking patterns of HMO activity and c-section
rates emerge from studying the data: nationwide, southern states (Alabama, Arkanasas, Florida,
Georgia, Louisiana and Kentucky) have the lowest penetration rates and the highest c-section rates
(e.g, Lousiana is 28.5%, Kentucky is 23.3% and Georgia is 22.49%, which are all above the 1991
mean national c-section rate of 21.9%.) Of course, causality cannot be inferred immediately from
these sample statistics since the southern states also have disproportionately higher numbers of

women with a larger risk for cesareans (higher poverty levels, larger percent of black women),

Other Co-variates

The strategy here is to use the HMO penetration rate in a county as indicative of the likelihood
that an individual mother is covered by an HMO. In keeping with the aggregation level of the HMO
market share variable, individual level data from the NCHS are aggregated up to the county level
and merged with other data from the ARF (1991) and CBP (1991, 1992); these include aggregate
demographic characteristics (e.g, the dependent variables: total cesarean section rate, primary c-
section rates, the neo-natal infant mortality rate and mean Apgar scores; and other covariates: e.g,
percent of women in the 40-45 age group, 35-40 age group, 30-35 age group, percent educated,
percent of women covered by AFDC, percent married), aggregate health care features (e.g, number
of hospital beds per 1000, number of obstretician/gynecologists per 1000 population) and business
characteristics such as the average number of workers in a firm. Counties with fewer than 100,000
population cannot be identified in the NCHS data, and were thus dropped from the analysis. This

reduced the number of counties from 3,080 to 508 for each year. Detailed summary statistics are

82



presented in Table 1.

3.3.2 Econometric Modelling and Issues

Tests of equations (17)-(18) are carried out under a variety of specifications in order to ensure
that the results are robust to varying assumptions about the functional form and the stochastic
distribution. Two main methodological issues arise in the empirical analysis. One is the issue of
endogeneity, a feature pervasive in such studies, but scarcely addressed in the related literature,
The other is specification error due to incorrectly imposed linearity and invalid assumptions about
the stochastic distribution. A distinguishing feature of this work is in relaxing these restrictions to

consider non-parametric or semi-parametric estimation to minimize specification error.

Functional Form and Non-parametric estimation

The prototypical analysis of equation (18) would begin with least squares estimation of the following

model:

K L
c = a9 +PBhmo +Zd}¢'yk +thf,’(5,+e
k=1 I=1
ag +fBhmo +d'y +hef'é+e (2.6.1)

where the unit of observation is a county, c is the c-section rate, d denotes a vector of demographic
characteristics such as age break-down of the female population and wealth, hef is a vector of health
care facilities and ¢ denotes unobservable disturbance terms such as tastes for preventive care, or
community health consciousness that shifts observed c-section rates; e could contain a county or
state fixed effect. Motivated by the comparative statics derived for the theoretical model, I avoid
testing a specification such as (19) that is linear in market-share, instead allowing for a general,
flexible method that permits non-linearity of an unspecified form. The added generality should
better capture the inherent non-linearities; least squares estimation with (1) quadratic, (2) cubic
and (3) fourth order terms yielded respectively (1) a significant coefficient on the second-order
term, (2) significant coefficients on the linear and third order terms and (3) significant coefficients
on all but the linear term, suggesting that the appropriate regression design had to be carefully
modelled.

It is well-known that small mis-specifications of functional forms can lead to large biases in
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estimated parameters, and thus result in flawed inference [Bickel and Doksum (1976), Han (1985)].
With specification errors, confidence intervals are centred away from the truth, and are invalid even
asymptotically. If we have a priori knowledge about linearity, ordinary least squares provides a
straightforward method to estimate an economic relation, and is best; in the current application,
however, it is apparent that linearity is invalid in the sense that (ﬁ, 91, 5) p,L) (B,7,6). Instead, non-
parametric (series) estimation provides a way to uncover the underlying relation we are interested
in with no functional form restrictions or distributional assumptions, thus minimizing specification
error. Furthermore, in terms of inference, non-parametric methods and linear models have equal

power, since non-parametric analogues of (8, v, 4) are simple to compute and interpret.

I begin by reformulating the model in (19) with no parametric assumptions, and one weak
restriction that involves additivity of the error term. For unknown f(-) and an unspecified c.d.f of

€, let
cie = f( hmoy, di, hefy ) + € (2.6.2)

where i denotes county and t denotes the year. The goal is to recover the local effect of hmo
on ¢, a numeric corresponding to § in equation (19). In the empirical analysis that follows, I
report estimates from linear models, non-linear (parametric) specifications and non-parametric
specifications to demonstrate the inconsistencies and flawed inference that results from using tightly

constrained models unless the constraints are valid.

The paper focuses on series estimation of the function f(-), which is shown to be useful for
the additive structure that is estimated (an exhaustive review of series estimators, correspond-
ing convergence rates and asymptotics can be found in Hausman and Newey (1995) and Newey
(1996, 1997a, 1997b)). Series estimation begins with the assumption that for some L > 0, an
(L x 1) sequence of functions can approximate the underlying function f(-) by a linear combination
of the functions, with the property that the approximation to f is arbitrarily close for large L.
This underlying principle of series estimation is a simple restatement of the well-known Weier-

strass theorem. For example, power series estimation of (20) with a (K x 1) vector of functions,

pK(h"no! d, th) = (le(')l sor JPKK('))’ yields:

f(hmoi, dit, hefy) ~ pH(hmoy, dy, hefy) 'n
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L, L2 L3
= Z (hmo,-g)"ah + Z (du)"a;z + Z (hcf,-g)"al, (2.6.3)
LH=0 la=1 l3=1

7 = (o}, af, o)
giving us the non-parametric estimate of interest:

E(cit|lhmoir, dig, hefie) = f(hmoiy, dis, hefy) = p® (hmoy, dig, hefy) (2.6.4)

NT -l N T

it = {Z > P ()P (-)’} : {Z Zp"(-)'cu} (2.6.5)
i=1t=1 i=1t=1

i.e, , 7 is the vector of least squares coefficients from regressing c;; on pX(-), treating the ap-

proximating sequence as the regression function. That series estimatation is so closely related to

(ordinary) least squares, facilitates the asymptotics, which are shown to be simple extensions of

the OLS case (Andrews (1991), Newey (1996)).

Often the regression estimate f is of little intrinsic interest to the modeler, and the purpose of
estimation lies in some numerical characteristic of f. For example, we might be interested in the
(local) concavity of convexity of the estimated conditional mean, such as 3 from equation (19). Such
functionals are simple to compute, facilitating the comparison of estimates from parametrized and
non-parametrics models (a detailed discussion of linear functionals of series estimators is presented
in Newey (1996)). This paper is specifically concerned with the functional that measures the local
effect of HMO market shares on c-section rates; estimates of this functional are presented and

discussed in Section 5.

To summarize, equation (20) represents the type of general formulation that will be estimated
in this paper. A practical drawback of series estimators is the accompanying multi-collinearity
induced by using several functions of the vector of covariates, a problem known as the curse of
dimensionality. Semi-parametric models in which some components are parametrically specified

provide one way of circumventing this problem: For example:

K L
c=f(hmo)+ Y dpBr +) hcfim + ¢ (2.6.6)
k=1 =1
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The empirical section will report estimates from semi-parametric models. As written, however,
the model is incorrectly specified due to endogenously determined HMO locational choices. The
next step is to extend the linear instrumental variables estimator to equation (20). This exercise
is non-trivial, since valid instruments for hmo cannot be used in a “plug-in” sense for unknown

f(:),'" and the theory for a non-parametric analog to the standard IV estimator is undeveloped,

The solution to this problem comes from Vella (1991), who analyzed the problem for the para-
metric case, Newey, Powell and Vella (1996) for the non-parametric and semi-parametric case, and
Das (1997) for an extension of Newey et al to the panel model; it is discussed briefly in the following

section.

Endogeneous HMO Locational Choices

Endogeneity is endemic in this study. To illustrate this problem clearly, note that we have the

following simultaneous equation system. First, rewrite equation (20) as

cii = f(hmoy,di,hefi) + o + €
f(hmol'hdih hcfit) + Vit (2.6.7)

where « is the (time-invariant) part of the error term that may be correlated with the covariates,
and ¢ is white noise. Next, taking d and hcf as exogenously determined, assume that HMO

market shares are determined as follows:

hmoy = g(di, hefi,Zy) + agi + €e2:
= g(dit, hefi, Zig) + v (2.6.8)

where g is unknown, Z is a vector of local market-conditions that includes regulatory factors,
the number of incumbent insurers, inefficiency or slack in the existing health care system, and
incumbent market power. (ag,€2) are vectors of unobservables, uncorrelated with demographics,

health care features or the set of instrumental variables.

The source of endogeneity lies in the fact that the same unobservables that affect ¢ also affect

"This regression is “forbidden”: using a non-linear function of the predicted value of an endogenous variable (see
Hausman 1984),
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hmo, such that E(v|u2) # 0; this is plausible and at least three scenarios underlying the endogene-
ity can be described. First, unobservable tastes for preventive health care or health consciousness
might encourage HMOs to the county while simultaneously (negatively) affecting the cesarean rate.
Second, a casual survey of my data reveals that HMOs are more likely to locate in up-county, urban,
wealthy areas where they may be better ensured of potential enrollees (some empirical evidence is
also given in Porell and Wallack, 1990). Simultaneously, c-sections are least likely to be needed for

healthier women, who in turn are more likely to live in up-county, wealthy residences.

Another explanation is that insofar as HMOs are the efficient and low-cost competitors to
traditional insurers, they may view slack incumbent behaviour (which may be correlated with high
c-section rates) as a signal that there is potential to correct inefficient behaviour. The first two
scenarios imply a negative bias from simultaneity, while the last induces a positive bias; the net

bias cannot be signed.

As described, the source of endogeneity appears to lie in the time-invariant component «;.
Unobservable tastes for health, underlying health-status or community health-consciousness are
unlikely to change except over long periods of time, so that for the short panel in this study

(1991 — 1992), I assume that

E(alaz) #0, Eleiles) =0, implying E(v|u) # 0 (2.6.9)

This is an important assumption to make since « is time-invariant; then, just as in the linear case,
differencing the model between ¢ and ¢ — 1 in equation (24) would remove the source of bias and f

could be consistently estimated using non-parametric methods for the panel model:!8

cit — Cig—1 = ( f(hmoiy,dig, hefy) — f(hmog ey, die—1,hefie 1)) + (erie — €1ig-1)  (2.6.10)

Alternatively, we could proceed by exploiting the triangular nature of the system.

To proceed without differencing, assume that E(v;|v2,d, hef,Z) = E(1)|7), a condition weaker

'8Numerous issues arise in differencing the model with unknown f().  First, f(hmoi,di, hefi) -
f(hmoic-1,di -1, hefie—1) # f(hmoie — hmoi -1, ...) but rather, is equal to k(hmoj¢, hmoj¢-1,...) for unknown k;
second, a less recognized problem is that even though f is potentially non-linear, differencing the model differences out
all time-invariant variables, so that an estimate of f cannot be reccvered without some additional work, Techniques
to recover f are known (see Porter (1996) and Das (1997) for details).
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than assuming the independence of (d, hef, Z) from v, Then,

E(cit|hmoj, dig, hefye, Zy) = f(hmoj, dig, hefy) + E(vii|di, hefig, Zig, vaid)
= f(hmoji,dy, hefy) + E(vyit|vair)
= f(hmoi,dit, hefie) + AMvai) (2.6.11)

where A(-) is an unknown function of 5. Although v is unavailable, a consistent estimate of v,
can be obtained from non-parametrically estimating equation (24): hmo — §(d, hef,Z) = v, The
additive regression in (27) as well as the differenced panel model in (26) are the focus of estimation
in the empirical section. Both correct for endogeneity and permit a consistent estimate of f(-) from

which a functional (such as ) can be extracted.

The triangular simultaneous equation system described in equations (19)-(20), and in particular
the additive error terms in each stage, is an integral part of the analysis. If Z included c-section
rates (c), the reduced form for c-sections could not have an additive-in-errors specification, making
it impossible to estimate the model for unknown f(-) and g(-). Fortunately, it is plausible that c is
not amongst the many local-market conditions that affects HMO locational choice: deliveries are
but one of several medical services that HMOs cover, so that c-section rates alone may neither be
indicative of slack behaviour by incumbent insurers, nor important enough to affect HMO locational
decisions except at the margin. Nothing in the literature appears to suggest an alternative view

(e.g, Goldberg and Greenberg (1981), Welch (1984), Robinson (1991)).

Instrumental Variables

Potentially two sets of instruments are available for the analysis. One set, Z,, is that used previously
in studies of HMO activity (e.g, Baker and Corts 1996, Baker and Brown 1997) and is related to
firm size and type in the market, By a 1978 federal law, all firms with 25 or more employees must
offer an HMO if it wants to be offered on their health plans. Thus, the number of establishments
that employ more than 25 workers in a county provides a rough guide to the size of the pool of
potential enrollees. Note that smaller employers are also more likely to self-insure (Gruber and
Poterba, 1995) so that the average employer size is indicative of the potential pool of enrollees on
a second dimension as well. Likewise, the number of white-collar workers is assumed to be a valid

instrument, since on average white-collar workers are more likely than blue-collar counterparts to
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purchase insurance (American Medical Statistics, 1996).

The second set of instruments, Z, is the set of state laws regulating the entry, expansion and
operation of managed care. This source of exogenous variation is surprisingly under-utilized in the
existing literature. State regulatory laws range from 1equiring certificates of authority for locating
and capital requirements, to dual choice options (discussed above) advertisement restrictions, and
enabling laws that favour HMO formation in varying degrees (HCFA, 1996). There is tremendous
variation across states, with the drawback that the unit of observation for the dependent variable

is the county, leaving much within-state variation unexplained.

In the empirical section, I report results with varying sets of instruments. One set uses only
state laws, and the other combines the state laws with the establishment variables. For the es-
tablishment variables to be valid instruments, they must be uncorrelated with the unobservable
component a;. It is entirely possible that large firms are concentrated in larger and wealthier coun-
ties, where the population is healthier and have stronger preferences for preventive care; likewise,
larger concentrations of white-collared workers may be found in counties with favourable health
characteristics. If true, these possibilities 1.nder the establishment variables invalid as instrumental

variables.

The state laws, on the other hand, are arguably purely exogenous, strongly correlated with
HMO locational choices (and thus, county HMO market-shares) and uncorrelated with health care
preferences or other unobservable population health characteristics. A remote possibility is that
incumbent non-managed care insurers may be firmly entrenched, have the ivverage to influence
state laws in their favour and against the formation of HMOs. Then, if incumbents are most likely
to influence state regulatory behaviour where they are most slack, we might pick up a spurious
negative correlation between HMO market-shares and c-section rates, I rule this possibility out
by observing that there is no obvious within-law pattern across states: states that favour HMO
activity on some dimensions discourage it on others, and no state falls in either extreme, uniformly

discouraging or uniformly supporting the creation of HMOs.
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3.4 Results

3.4.1 Effects on cesarean rates

I identify important non-linearities in the effect of HMO market-shares on c-section rates. First,
as predicted by the theoretical model, cesarean rates are not uniformly decling in HMO market
shares (see Figure 3). There appears to be two “pivotal” points between which HMO activity
results in decreased c-section rates, corresponding to market shares of 20.6% and 55% (the mean
penetration rate in my data set is 15%.) Second, (1) the non-linearities are under-emphasized by
non-parametric estimation that does not take into account the endogeneous determination of HMO
activity; and (2) the (average) effect of HMO activity is substantially understated by any linear

modelling technique and overstated by unadjusted (for endogeneity) non-parametric estimation.

Table 2a reports least squares, instrumental variables (two-stage least squares), semi-parametric

(SP) and semi-parametric instrumental variables (SPIV) estimation of the following model:

K L
c=f(hmo) + Y dpfi + hcfivi + A1) (2.6.1)
k=1 =1

where f(-) = 1 for the parametric models, and remain unspecified for the semi-parametric models.
Likewise, A(-) is unspecified for the semi-parametric models and equal to 9 v, in the parametric
models, where 7 is an additional parameter to be estimated. Table 3a and 3b repeat the analysis
in tables 2a and 2b with a larger set of instruments. There is little substantive difference in the
semi-parametric estimates across the two sets; as a conservative measure, the results discussed
below focus on the smaller set of instruments (only the 6 state laws) presented in Tables 2(a, b, c)
since the establishment variables may not be valid as instruments for the reasons presented in the

previous section.

As discussed earlier, at low levels of activity HMO ob/gyns behave in a manner consistent with
the induced demand hypothesis, substituting natural childbirths with the leisure-intensive c-sections
(recall, there is no financial discrimination between the two procedures for HMOs). Moreover,
simply because non-managed care ob/gyns are managing a larger number of total hirths, their
effect on c-section rates will dominate a possibly opposite effect due to HMO ob/gyns. The net
effect is that c-section rates are increasing in HMO activity in this range. In Figure 3, this is

represented as the positive slope of the curve in market shares. This effect diminishes as market
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shares approach 20%.

When HMO penetration levels approach 20%, we see the expected negative effect of increasing
HMO market shares on c-section rates. The graph may be capturing several effects. First, we know
from the theoretical model that the optimal inducement rate is declining in market shares; the
negative sloped portion of the curve represents the cumulative effect of the declining inducement
rates due to managed care ob/gyns and the increaseing inducement rates of non-managed care
ob/gyns; that it weighs out in favour of the HMO ob/gyns is simply a result of the higher weighting
due to the larger fraction of births now managed by HMOs. Between the two pivotal points it
suggests that a ten percent increase in HMO market shares results in 1.8 percent decrease on

average in c-section rates within the pivotal bounds.

Table 2c reports average changes in c-section rates over many smaller bands of HMO penetration
rates. For a 10% change in HMO penetration, these vary from —1.4% between 25% and 30%, to
—3.5% when HMO activity is between 35% and 40%, and appear to taper as HMO activity exceeds
50%. In between, the effects vary substantially, and a simple average is uninformative about the
real effects of HMO penetration, since there are ranges over which HMQ effects on c-section rates
are trivial and close to zero (such as in the range close to the peak, between 20% and 25%).
Inference based on any linear modelling technique that yields only a simple average effect would be
seriously biased. These results clearly go to show that, as the theoretical model predicts, there are
differential effects of HMO activity depending on where along the unit interval penetration falls.
For illustrative purposes an average effect is sometimes useful to consider; this corresponds to a

1.8% decline in c-section rates for every 10% increase in HMO penetration.

By contrast, inference from least squares suggests a constant effect of HMO activity on c-section
rates at any penetration rate. The corresponding effect is about four times as small as that from
the SPIV results (a 0.4 percent decrease in c-section rates), while two-stage least squares would
suggest an effect slightly closer to the semi-parametric IV estimate, i.e, a 1 percent fall in c-section
rates for a ten per cent increase in HMOmarket shares. Thus, non-linearities matter and result in
a substantial difference in inferrence. Accounting for the non-linearities is not sufficient, however.
A semi-parametric estimate that does not also correct for endogeneity suggests that a 10% increase
in HMO market shares will result in a 1.2% decline in the range over which c-section rates are

falling in the penetration rate.
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Table 2a reports estimates on the variable of interest (“hmo”) from a variety of specifications.
Coefficients on the remaining co-variates are presented in Table 2d. The first panel of Table 2a
shows that OLS estimates are very small, although significantly different from zero. A simple
correction for the endogeneity using 2-stage least squares magnifies this effect. Note that the
coefficient on the residual-adjusted term res is significant, suggesting that endogeneity is certainly
an issue. The semi-parametric IV results arise from minimal restrictions on the model and are
presumably most accurate. Choosing the optimal number of functions for f(-) and for A(-) comes
from cross validation of the data. This criterion is conceptually similar to that of the Adjusted
R-squared, trading off higher explanatory power with higher standard errors (a clear discussion of
the CV criterion with an application is presented in Hausman and Newey (1995)). It is computed
by summing the squared residuals for each the ith observation using the parameter estimates from
each of the not-i observations. Choosing the number of functions to minimize the CV criterion
minimizes the asymptotic bias in series estimation. By the CV criterion, I choose four power series
in hmo and two in v, (Table 2b).!* A chi-squared test of the over-identifying restrictions rejects

the null at the 5% level.

In Tables 3a-3b, the analysis is repeated with a larger set of instruments that includes the
establishment variables. There is some, but no substentive change in the average effects of HMO
activity on c-section rates. Specifically, the estimates reported in Table 3a suggest that for a 10%
change in HMO penetration rates, there is an average effect of reducing c-section rates by 1.48%.
The non-linearities are smoothed out somewhat and there is less variation across different bands
of HMO penetration. The chi-squared test for over-identifying restrictions rejects at the 5% level.
The results here essentially rely on the validity of the instruments, which must be assumed; for the
reasons discussed earlier, the establishment variables may be invalid and the results based on the

full set of instruments may therefore be biased. Thus, I focus on estimates reported in Table 2.

As a specification check, I estimate a more general model by using power series in per capita

income, county fertility rates, per cent married, number of hospital beds per 1000 pop., ob/gyn

19The standard errors are computed to reflect the two-stage nature of estimation. This class of estimators is that
in which consistency of the first step affects consistency of the second, a criterion which requires a correction for
the appropriate standard errors in the second stage, and results in inflating them. The case above is a special case
of two-step estimators for which Whitney Newey (1984) has established an explicit expression for the asymptotic
variance. The class of estimators Newey studies is defined by the property that the first step first-order conditions
are uncorrelated with the second step first-order conditions, a criterion satisfied here.
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density and per cent covered by AFDC, and interactions of these.?’ Figure 5 plots this curve along
with the semi-parametric IV curve. There is some difference in the average effect of HMO pene-
tration rates on c-section rates over the range that c-sections are falling, but nothing substantive.
The difference in the two curves appear to be non-trivial, but the fully non-parametric curve is
estimated imprecisely with larger standard errors, so such inference may be unwarranted. The
curve peaks earlier (corresponding to a penetration rate of 18% ), but the estimation appears to
succumb to the curse of dimensionality, so that the (White heteroskedasticity-corrected) standard
errors are large and the confidence intervals are correspondingly large, limiting precise inference.
In particular, for a 10% increase in HMO market shares, the average decline in c-section rates (over
the portion of the curve where the estimated c-section rate is falling) is 1.6%. In summary, the
gain in moving from the semi-parametric IV (SPIV) to the non-parametric IV (NPIV) model yields

little in terms of precision, so focussing on the SPIV may be of more interest.

3.4.2 Panel Estimation

The next set of results report results from linear and semi-parametric panel estimation of the model.
This exercise is undertaken for two reasons. First, the panel structure allows us to difference the
model and remove the unobserved time-unvarying heterogeneity factor a that may be correlated
with the HMO market share variable. As discussed earlier, much of the unobserved components
that are correlated with HMO market shares are likely to be time-invariant such as tastes for
preventive care, cultural changes (such as the acceptance of cesareans as a common substitute for
naturals) and underlying health demographics. If this is a valid assumption, differencing the model

permits estimation without the use of instrumental variables.

A more interesting reason is that differencing the model provides a method to disentangle
the short-run mechanisms by which HMO activity affects cesareans from those of the long-run.,
Specifically, we might expect that physicians respond immediately to changes in their financial
environment or to practice guidelines and reward mechanisms (such as those adopted by HMOs),
so that analyzing a cross-section is informative about the short-run responses of the c-section rate
to HMO penetration rates. By contrast, physician or patient learning, the evolution of the “norm”

in deliveries, and the gradual adaptation of malpractice standards are more likely to be captured

20The dummy variables can simply be pulled out of the unknown function and evaluated at their two values, and
are therefore treated as parametric.
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over time. Therefore, variation in the difference of cross-sections over time will be more informative

about changes in c-section rates that respond gradually to changes in practice environment.

The ideal data set would have a long time-series for such an analysis. I am constrained to

having only two years’ data. I estimate models of the form:

K L
cit = Cig-1 = f(hmoy) — f(hmoie1) + D de B + Y hefiy + (i — €1ie—1)  (2.6.1)
k=1 =1

For the linear model, f(hmoi) — f(hmo;¢—1) = 8(hmoi — hmo;,_;). For the semi-parametric
model, differences of the power series at time ¢ and ¢ — 1 are used to approximate f, — f,_,. Table

4 presents the results.

Panel estimation reveals some new information about changes in c-section rates. The first two
columns of Table 4 are carried out under the assumption that the endogeneity stems from the
time-invariant component «; thus instrumental variables is not an issue once the model has been
differenced. The coefficient on HMO market share (“hmo”) is still fairly small, but about twice as
large as the OLS estimate on a non-differenced model (Table 2d). Inference on this parameter is
valid only if the assumption about the source of endogeneity is valid. As a check, the second two
columns report estimates from 2-stage least squares estimation using Average Number of workers,
and County establishment size as instruments. The coefficient on the HMO market share variable
is substantially magnified relative to OLS, and highly significant. It suggests that learning by
physicians and patients, the diffusion of medical practices and the evolution of cultural norms,

while gradual, have important roles in explaining the trend of cesarean section rates.

Semi-parametric panel estimation preserves some of the non-linearities uncovered earlier, but
distinctly smoothes out most of it: Figure 6 plots both the semi-parametric IV curve as well as
the curve derived from panel estimation.?! Because no constant is estimated in panel estimation,
the SPIV is differenced from its mean to compare the two. Two main facts emerge: (1) the hump-
shaped effect disappears and (2) while the non-linearities are less important, c-section rates are

now uniformly falling in HMO activity.

For slow-moving changes, these are unsurprising findings. If trends, technological changes and

A gpecifically, taking the parameters obtained from the panel estimation in Table 4, I reconstruct the estimated
c-section rate at levels of HMO penetration rate.
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cultural norms have made cesareans widely acceptable, then c-section rates will have an upward drift
over time that will dampen any reverse effect due to short-run changes in financial incentives and
ob/gyn practice environment. Gruber and Owings (1996) discuss asymmetric responses to growth
and decline in fertility rates as one manifestation of such a trend in c-section rates (although they

find no evidence for it).

3.4.3 Quality Effects

The second set of results examines the effects of HMO penetration rates on the three quality
measures. Unlike the section above, I disregard non-parametric estimation in examining the birth-
quality effects of growing HMO activity. First, there is no theoretical reason to believe that infant
mortality or complications at birth might be affected differentially at lower versus higher levels of
HMO market activity. One possibility is that both measures may be positively correlated with
c-section rates, so that if the c-section rate is non-linearly changing with HMO market shares, so
might these quality measures. I expect this is a small second-order effect. Second, as a check and
in keeping with the general estimation of the preceding section, non-parametric estimation revealed
no discernible non-linear pattern for either of the three measures. As a conservative measure, the

reported IV results only use the state laws as instruments for HMO market share.

1. Neo-neo natal infant mortality rate

I begin with the neo-neo-natal (within 6 hours of birth) infant mortality rate. This measure of
infant mortality, as opposed to the standard 7 or 28 day rate is preferrable in linking the infant’s
death to the mode of delivery rather than some extraneous non-hospital factor. I exclude those
deaths that are less likely to be a result of the birthing process (such as death from congenital heart
problems). A simple correlation of the neo-neo infant mortality rate and HMO market shares is

—0.4899, suggesting that a real link might exist.

The first panel of Table 5, which reports least squares estimates, suggests that HMOs may have
some salubrious consequences on the neo-neo natal infant mortality rate. Before dismissing this
result due to the endogeneity involved, it is worth noting thai the result is not entirely implausible.
First, if the decrease in c-section rates due fo increased HMO activity is because those births which
would otherwise have been c-sectioned (and medically unnecessary) are now delivered naturally, this

is exactly the result we would expect — C-sections save lives when they are medically necessary, but
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pose risks to mother and fetus when induced (Guide t» Pregnancy and Childbirth, 1996). A second
reason this result may hold is that by increasing pre-natal interventions and diagnostic procedures,

HMOs could be decreasing the number of babies that are born with harmful pre-existing conditions.

On the other hand, endogenous determination of HMO market shares might induce this nega-
tive result if HMOs are locating in wealthy areas where unobservables negatively affect the infant
mortality rate. In fact, a two stage-least squares correction for the inherent endogeneity does re-
move the obtained result. The coefficient on HMO Marketshare drops from a significant —0.03 to

0.009 which is not distinguishable from zero.

2. Complications at Birth/Abnormalities of the Newborn

A second metric of the ‘quality’ of birth is a reported complication at birth, or a documented ab-
normality of the newborn. I divide the listed complications into those that are likely to be affected
by the mode of delivery (such as anesthetic complications, fetal injury, excessive bleeding and respi-
ratorial distress) from those that are unlikely to be (fetal alcohol syndrome, feverish babies (febrile
conditions), anemic babies, and precipitious labor). In the regressions, the former set is used as

the measure of the rate of complications.

Controlling for the c-section rate is particularly important for this regression. First, c-sections
result in about twice the blood loss as vaginal deliveries (Risks of Cesarean Sections, 1997). Second,
anesthesia is almost always administered for cesareans, and less so for natural childbirths. Thus,
the complications arising from anesthesia are much more likely to be reported for cesarean births.
Third, fetal injury from surgical procedures is more likely with cesareans simply by virtue of c-
sections being a surgery (Risks of Cesarean Sections, 1997). Thus, if HMOs are reducing the number
of cesareans performed, we might observe a smaller number of such reported complications simply
because of the effect of HMOs on the c-section rate. However, we are interested in determining
whether or not HMOs have tangible effects on quality independently of their effects on the c-section

rate. This is achieved by using the c-section rate as a control variable.

The second panel of Table 5 reports least squares and two-stage least squares estimates for
this regression. The OLS numbers pick up a positive impact of HMO activity on the birth-injury

rate. If HMOs are prescribing naturals when cesareans are appropriate (perhaps because financial
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rewards are tied to naturals), this is the pattern we would expect. Again, this may be spurious
because of endogenous HMO market shares. Also, there may not exist sufficient variation in the
number of reported complications across counties. In the data, an average of 2 births per 1000
has some documented complications as I measure it, with a standard deviation of 0.004. Only two
variables are statistically significant (even though we reject the hypothesis that all coefficients are
0 by an F-test). Correcting for the endogeneity removes the positive effect, reducing the coefficient

to 0.0008 which is not statistically different from zero.

3. Apgar Scores

The Apgar Score was developed as a summary measure of a newborn’s health measured at 1 minute
and 5 minutes after birth. The scores measure the heart rate, respiratory conditions, muscle tone,
reflex irritability and color, and are used to predict a newborn’s probability of survival. (Monthly
Vital Statistics Report, 1994). If any effects of HMO activity on the Apgar scores are noted, they
are more likely to reflect the pre-natal care that HMOs emphasize, rather than the method of
delivery. Thus, this quality-measure may be less relevant for the current study, but interesting in

its own right.

The scores range from 0 to 10, with 7 indicative of good health (MVSR, 1994). I recode the
data as a dummy that indicates whether or not the score is larger than 7, and then measure the
percentage of births in a county that are of high scores. In my data set, twenty-nine states did not
collect information on Apgar scores for both 1991 and 1992. The other twenty-one account for just

over 50% of the births,

I find no discernible effect of HMO activity on either the 5 minute or the 1 minute score. Table
5 reports the 5 minute score results. This is true for both the least squares and IV results. Some
reading of the literature suggests that this is not a surprising finding. First, in 1994 only 1.4% of
all babies had low 5-minute scores (MVSR, 1994). Further, after declining sharply from 1984 to
1990 (a period consistent with growing HMO activity), there has apparently been little change in
average Apgar scores (MVSR, 1994).

In summary, the empirical analysis has found two results:

First, the growth in HMO aciivity has real effects on the cesarean section rate. This finding is
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robust, but over-emphasized if (1) the endogeneity of HMO market shares is not addressed and
(2) if linear modelling techniques are used. Endogeneity matters. Much of the medical literature
that examines the effect of HMO-affiliation on various outcomes completely ignores the endogenous
determination of insurance choice. Non-linearities are also important. The empirical results are
consistent with the theoretical model developed, which clearly suggest that the inducement effects
are much likely to be relevant when HMO market activity is small, and become less important as
HMOs capture a larger number of total births. Linear modelling techniques are unable to capture

the inherent non-linearities.

Second, there appear to be no obvious adverse effects of HMOs on the quality of births. Again,
endogeneity matters, while non-linearities are probably inconsequential for this set of results. In
particular, going by neo-neo natal infant mortality rates, documented complications at birth and
Apgar scores, increased HMO activity has no discernible effects on quality. While this is an inter-
esting result in and of itself, it is particularly important when viewed jointly with the first set of
results. Together they imply that, from the point of view of spiralling health care costs, increased

HMO activity is a good.

3.5 Conclusion

The growth rate of health care costs over the late 1980s and early 1990s has been staggering
(Newhouse 1992; Cutler, 1994). Much research has emerged to address the sources of these costs
and thereby appropriately design policies that can re-structure the provision, usage and financial
environment of health care services. By altering the financial incentives associated with inducing
demand and over-diagnosing (also known as the “DRG creep”), and by encouraging a preventive
and more conservative approach to health care, managed care has begun to receive some attention

in the national debate on health care reform.

This paper explores the effects of managed care on the composition of deliveries between the
highly reimbursed cesarean-sections and natural deliveries, arguing that real mechanisms exist by
which increased HMO activity will result in decreased c-section rates. In particular, that this effect
will swamp out any reverse effects on c-section rates due to contemporaneous decreases in fertility

rates which might encourage obstetricians/gynecologists to induce demand for cesareans.

I develop a model that combines features of demand-inducement by ob/gyns, and changing
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market shares of HMOs v/s traditional indemnity insurance. An important prediction of {i is model
is that after a critical HMO penetration rate, increasing HMO penetration will result in decreasing
the c-section rate. This relation will be non-linear of an unspecified form. Taking the model to
the data and analyzing it with very general non-parametric and semi-parametric estimation tools,
I find both that c-section rates are declining in HMO market shares between two pivotal points,
and that this relation is highly non-linear: for a 1% increase in HMO penetration rates, it ranges
from a 0.04% decrease in c-section rates when HMO penetration is between 20 and 25%, to 0.32%
for penetration in 35 — 40%. An average estimate is that every 10% increase in HMO penetration
results in a 1.8% decline in c-section rates. The corresponding net savings at 1992 c-section rates

and reimbursement schedules is $11 million.

For completeness, I also address whether such beneficial effects on health care costs due to
increased HMO activity come with tandem declines in “quality” of birth. Three measures of
the quality of birth are used: the neo-neo natal infant mortality rate (within 6 hours of birth),
reported birth-complications, and Apgar scores. I find no effect of HMO activity on any of these
measures. I take the two strands of empirical evidence found in this paper to suggest that increased
HMO activity is, from the perspective of health-care reformers, Pareto-improving. This paper
therefore provides the evidence needed in the design and evaluation of policies to re-structure the
reimbursement of deliveries and the organization and practice environment for obstetricians. It
suggests that policies which favour the growth of managed care will have first-order cost savings

from this medical service.
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Fig.1 C-Section rates, fertility rates, and HMO enroliment (1980-1994)
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Table 1: Sunmy Statistics of Variables in Analysis

Variable Mean Std Dev Min Max
Year 1991 1992 | 1991 | 1992 1991 | 1992 1991 | 1992
Total C-section rate 0220 0.217 0.048 0.054 0 0 0415 05
Primary C-section Rate 0.140 0.133 | 0.030 0.035 0 0 0256 0.333
HMO Market Share 0.136 0.164 | 0.102 0.116 0 0 0.539 0.607
Breech Presentation (%) 0.039 0.040 | 0.014 0.021 0 0 0234 0.333
Diagnosed Fetal Distress (%) 0.040 0.040 0.025 0.030 0 0 0299 0.443
Lowbirthweight (%) 0.065 0065 |0.024 0.023 |0 0.021 0.157 0.166
Hosp.beds per 1000 pop 4934 4767 |2701 2577 |0 0 17.85 17.17
Ob/gyns per 1000 pop. 4328 4,363 1429 1424 |O 0 127.05 124.0
Fentility rate (Births/1000 pop) | 0.016 0016 | 0.006 0.006 | 0.0008 0.0005 | 0.043 0.042
Per capita Income (1000s) 19.01 2008 |4.01 424 923 9.80 4049 49.19
% White collar 083 0.83 0.138 0.136 | 0.264 0.265 0998 0.998
Average number of workers 1256 1622 |723 3.06 291 403 88,05 90.03
% (Mothers ) Age <20 0.13 0.13 005 0.05 0.031 0.028 0.337 0.316
% (Mothers ) Age > 35 0.05 0.06 0.019 0.021 | 0.005 0.016 c16 0222
High School graduates (%) 0383 0382 | 0088 0067 |O.l 0.19 0.6 0.568
College graduates (%) 0210 0219 |0.058 0042 |O 0.08 0.404 0412

Notes:

Number of observations = 438 in 1991, 448 in 1992

Data sources

NCHS: Total c-section rate, primary c-section rate, Breech presentation, Diagnosed fetal distress,

Low birthweight

ARE : Per capita income, high school graduates, college graduates, age break down, fertility rate

CBP : Percent white collar, average establishment size
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Table 2a : Least Squares, Two-stage least squares, Semi-parametric and Semi-parametric IV (NPIV) effects of HMO
Market-shares on Total C-section Rates (Instrument Set 1)

OLS T-stat | 2-stage T-stat Semi- T-stat SPIV T-stat
least sqs parametric (Res-
adjusted)

Instrument | hmo -0.0404 -2.077 -0.1020  -1.946 -0.2412 -1.536 0.1378 1.7
Setl hmo*"2 2.6393 1.3612 1.0110 1.739
hmo”"3 -9.1971 -2314 -6.1618 1,567

hmo*4 9.2989 3.858 6.5721 2.204
res -0.1206  -1.754 -0.0992 -2.345
res™2 0.7126 2.280

Dependent Variable: Total C-section Rate, n = 805

hmo: HMO marketshare, res = residual from reduced form for hmo

Instrument Set 1: 6 State Legislation Laws

Other co-variates: Fertility rates, % White, % Women 40-45, 35-40, < 15 years, % high school, % College, 3 regional dummies,
hospital beds per 1000 pop, Ob/gyns per 1000 , % married, per capita income, % AFDC, % urban

Note; Standard Errors are White-consistent and take into account the two-step nature of estimation.

Table 2b: Cross-Validation statistics:

Powers of | Powers | Cross validation
hmo of Res value

2 2 91.879

3 2 91.821

3 3 91.796

4 2 91.734

4 3 91.773

Res is the residual obtained from a non-parametric regression
of Hmo marketshare on all exogenous variables.

Table 2c: Average Derivative Estimates of 1 % change in HMO Penetration on % change in C-section Rates.

HMO Penetration | Semi- Semi-
Band parametric [V | parametric
Corresponding Corresponding
206%-25% -0.0472 -0,145 estimate from linear esﬁrn:("; from
IvV=-01 OLS = -0.04
30% -35% - 02495 -0.139 at all penetration at all penetration levels
35% -40% | -03139 20,1281 levels
45 - 50% -0.2549 -0.1208
>50% -0.06 -0.1314




Table 2d: Least squares, 2sls and Semi-parametric IV effects on C-section rates
(Co-variates aside from hmo and res)

Least 2-stage least SPIV(res-
squares squares adjusted)
per cap income | 0.0011 0.0015 0.001
(2.023) (2.562) (2.136)
fertility rate -0.155 -0.1405 -0.1460
(-0.392) (-0.356) (-0.367)
% breech babies | 0.6774 0.6819 0.6671
(7.453) (7.506) (7.251)
% low -0.2002 -0.1765 -0.205
birthweight (-1.809) (-1.585) (-1.852)
% college -0.218 -0.0172 -0.0085
educated (-0.567) (-0.448) (-0.222)
No. of hospital | 0.0025 0.0024 0.0026
beds/1000 pop. | (2.921) (2.835) (3.099)
No. of ob/gyns | -0.0002 -0.0000 -0.0000
per 1000 pop. (-0.443) (-0.453) (-0.252)
% AFDC 0.2234 0.2111 0.204
(4.615) (2.224) (2.088)

n=886
F(19,866) = 6.40
Adjusted R-squared = 0,1039

Notes:

T-statistics in parentheses,

Controls also include three regional dummies, year dummies, % white,
Four age groups for women ( > 45, 4045, 35-40, 25-35), % urban

The test of over-identifying restrictions is an asymptotic chi-squared test on the regression of the residual from the
above regression on the set of instruments, The chi-squared statistic for this regression was 3.09, which was rejected
at the 95% confidence level,
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Table 3a ; Least Squares, Two-stage least squares, Semi-parametric
and Semi-parametric 1V effects of HMO Market-shares
on Total C-section Rates (Instrument Set 2)

Instrument
Set 2

OLsS T-stat 2-stage T-stat Semi- T-stat SPIV T-stat
least sqs parametric (Res-
adjusted)

hmo -0.040 -2,077 -0.1440 -1.464 -0.2412 -1.536 0.0911 0.4064
hmo#2 2,639 1.316 L7113 1.222
hmo*3 -9.1971 -2.314 -8.1695 4.012
hmo*4 9.2989 3.858 8.2919 3.889
res 0.1068 2,025 -0.1242 -1.708
res*2 0.7043 2,200

Dependent Variable: Total C-section rate n = 805
Instrument Set 2: 6 State Legislation Laws, % White collared workers, Average establishment size.
Other co-variates: Fentility rates, % White, % Women 40-45, 35-40, < 15 years, % high school,

% College, 3 regional dummies, hospital beds per 1000 pop, Ob/gyns per 1000 pop

% married, per capita income, % AFDC
hmo: HMO marketshare, res = residual from reduced form for hmo

Table 3b: Cross-Validation:

Powers of Powers Cross

hmo of Res validation
value

2 2 91.981

3 2 9].855

3 3 91.756

4 2 91.7498

4 3 91,753

Res is the residual obtained from a non-parametric regression
of Hmo marketshare on all exogenous variables.
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Table 4:

Panel OLS, IV and SPIV results Examining Effects of Change in HMO Marketshare on
Change in Total C-section

rate

Least Squares 2-slage least squares agmhgg{gaﬁg:gd
Variable Coefficient S Ermror | Coefficient S.Error | Coeff S.Error
A HMO Market Share -0.075** | 0.0309 -0.2576* 0.1430 -0.419%* | 0.2087
A (HMO Market Share)’ 2318+ 1.201
A (HMO Market Share)? -5.309 5.509
A (HMO Market Share)* 3.789 5.286
A% Breech Presentation | 0.547** 0.1023 0.535** 0.102 0.560** 5.390
A% Lowbirthweight -0.2456 0.1519 -0.3209* 0.1615 -0.212 0.1508
AHosp.beds per 1000 pop | 0.0024** | 0.0012 0.0010 0.0016 0.0020** | 0.0011
APer capita Income 0.008 0.009 0.0023 0.0016 0.0021** | 0.0008
A% women on AFDC -0.0593 0.175 -0.0046 0.1798 0.1640 0.1711
A% White (Mothers) 0.0161 0.0363 0.029 0.037 0.099 ** | 0.0349
A% Married (Mothers) -0.0613 0.0499 -0.1078* 0.0613 -0.0597 0.0533
(Al\?!% {illigr;l)School Educ 0.0780** | 0.037 0.0395 0.0470 0.047 0.0383
A% Fertility rate -0.235 0.465 -0.347 0.423 -0.0657 0.1617
(A&g«:}_l:)ge Educated -0.055 0.0612 0.0235 0.0847 -0.0209 0.064
Prob > Critical F 0.0029 0.0020 0.0019
Adjusted R-squared: 0.0382 0.0402 0.0402
N =411 N=410 N =400

Notes:

The Omitted Regional Dummy is West,

* : significant at the 10% level

**: significant at 5% confidence level




Estimated C-section Rate

. SPIV (deviations from means) e Panel estimation

O

1 2 3 Y
HMO Marketshare
Fig 6: Panel estimation

U—

o



Table 5 : Quality Effects of Increased HMO Marketshares. Effects on

Neo-neo natal Infant mortality rates, Complications at birth,

and Apgar Scores

Dep Var: Neo- neo-natal infant Documented complications/ Apgar Scores
mortality rate Birth injury Rate
least sqs 2 stage s least sqs 2-stage Is least sq 2stage ls
hmo marketshare | -0.0317 -0.0108 0.0059 0.0008 0.0376 -0.2884
(-5.849) (-0.500) (2.231) (0.089) (0.434) (-0.795)
fertility rate 0.0507 0.0435 -0.063 -0.0614 -1.728 -1.616
(0.447) (0.383) (-1.164) (-1.120) (-0.920) (-0.858)
c-section rate -0.0094 -0.011 -0.0165 -0.0163 -0.1378 -0.1123
(-0.904) (-1.088) (-3.599) (-3.557) (-0.947) (-0.765)
residual adjusted | ----- 00434 | ----- 0.0051 | --—-- 0.3260
correction (-2.019) (0.0519) (0.925)
% Breech babies | 0.1130 0.1178 0.0303 0.0298 -0.4035 -0.429
(3.120) (3.253) (2412) (2.362) (-0.693) (-0.736)
% low 0.191 0.186 0.0358 0.035 0.679 0.6084
birthweight (5.17) (5512) (2.382) (2.326) (1.207) (1.094)
per capita income | -0.0027 -0.0002 -0.0001 -0.0001 0.0036 0.0037
(-1.830) (-1.729) (-1.588) (-1.600) (1.336) (1.363)
N= 633 814 399
Adjusted R*=  0.6648 0.6626 0.058 0.0358 0.0100 0.0104
F(19,613)=6399 F(18,614)=66.97 F(19,794)=2.54  F(18.795)=2.72 F(18,380)=1.23  F(19,379)=1.21

T-statistics in parentheses.
Other covariates : No. Of hospital beds per 1000, regional dummies, no. of ob/gyns per 1000, % married, % white,

% urban, % college educated, % low birthweight, , % distress, year dummy, % women on AFDC



