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By means of a varitional method the TDHB equations have
been derived. The Wigner representation of TDHB equations has
been used for a hydrodynamic description of a nuclear system.
Restricted dynamical parametrization of the TDHB theory has been
considered. Various fluid models are developed and their small
density oscillations have been discussed. For a comparison between
hydrodynamic approach and microscopic consideration, a model for
neutron matter is introduced. The numerical calculation of QPRPA

and the hydrodynamical approach for phonon energies are compared.
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Chapter I
INTRODUCTION

Usually, a physicist's job is to explain naturally occurring
or man-made physical phenomena by as simple means as possible. In
nuclear physics, however, we are dealing with a system of a few
hundred particles interacting via a strong interaction potential.
Solving this system is quite complex in general. Many branches of
physics help us to understand some behaviour of this system. Due
to the short range of the interaction potential, many classical
jdeas can be applied to describe the gross property of the nuclei.
Among successful models the liquid drop model should be mentioned.
In the static Timit, the weizsackerlBethe formula gives the overall
trend of the binding energy of a nucleus with mass and charge numbers.
The 1iquid model also served to explain the dynamics of the nuclei.
Here one introduces collective deformation coordinates and uses
classical equations of motion to treat the dynamics of the system.
The choice of the collective coordinates is more or less arbitrary
and is only guided by physical intuition and by the anticipation
that the effect of intrinsic motion become small compared to the

collective effects. Specific examples of collective coordinates



are, a) Bohr's surface parameters used in the collective model of
vibration statesB, b) elongation, necking-in, and asymmetry of a
strongly deformed nucleus in the hydrodynamical model of ﬁssionl,l_5
c) the displacements of neutrons and protons in the hydrodynamic
model ofgient resonanceG;Zd, d) the relative distance and angle
between two nuclei in the classical description of heavy ion
reactions.8

Behind the introduction of collective coordinates, there is
an assumption that many nucleons participate in the motion, and
the collective coordinate is an idealization of a general displacement.
With this point of view in mind we may conclude that intrinsic
motions are negligible. The dynamics of such a nuclear system follow
then from the classical equations of motion, where the collective
«coordinates are empolyed as generalized coordinates. The potential
energy consists in general of volume, coulomb, and surface energy
contribution, now depending on generalized coordinates. The kinetic
energy is derived from similar arguments. For a small change from
equilibrium, it is assumed to be a quadratic expression in the
generalized velocities, where the masses or intertia with respect

to the coordinates have a generalized meaning and may themselves

be functions of the coordinates.



Although many classical ideas are successful in describing
the gross behaviour of nuclei, certainly our system for most of
the considerations of nuclear physics is a non-relativistic quantal
system. Many successful phenomenological models were developed
over the last thirty years, the shell modelsgand the collective
mode]s]obeing among them. The shell model is based on the assumption
of a large mean free nucleon path, and it describes nuclei as a
collection of nucleons moving independently in well defind orbits.
There are actually so many phenomenological theories of collective
motion that a complete Tist of them would be difficult. It would
be safe to describe them as quantal versions of classical collective
motion

In fact the quantal system under consideration is truly a
many body system, and eventually one must find a microscopic
foundation for each of the successful phenomenological and hydro-
dynamical models. The motivation for this work is an attempt
in that direction. It has been known for decades,llhat the time
dependent schrodinger equation for a single particle can be cast

into fluid dynamical form with the phase and the square of the

modulus taking the roles of velocity potential and density, respectively.



Recently, with the advent of heavy ion accelerators, evidence of
hydrodynamical behaviour in nuclei has been enhanced, generating
renewed interest in the advancement and developement of the
hydrodynamic method. Recent formulations and applications of
fluid-dynamical methods are derived by different approaches.
One approach is based upon the direct use of the Schrodinger
equation,]zanother method utilizes the Wigner tr‘ansformation,]3
and a third approach is based on a classical interpretation of
the “Lagrangian".]4_]5A11 three approaches are based on assumption
that the time-dependent Hartree-Fock (TDHF ) equation is a
valid description of nuclear motion. The present work is a
continuation of the second and third approaches, and here we
assume that the time dependent Hartree—Bogo]yubov]6(TDHB )
equations as a reasonable description of nuclear motion.

As mentioned above, the aim of this work is the exploration
of the hydrodynamic approximation in a many body system. In
the second chapter, a dynamical theory of pair correlations is
developed. Utilizing various methods, we derive the time dependent
Hartree-Bogolyubov equations in an arbitrary representation for a
general two body interaction. Different 1imits of TDHB equations,
notably the time depen?gnt Bardeen-Cooper-Schrieffer]7and the time

dependent Hartree-Fock are discussed. A brief derivation of the

Tinearized TDHB equations is also included, in anticipation of the
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Quasi-Particle Random-Phase-Approximation (QPRPA).

Chapter three contains the Koonin approach to the hydrodynamic
interpretation in which we use the Wigner representation of the TDHB
equations. We have a semiclassical interpretation for one of the TDHB
equations of motion for the phase distribution function. It is easily
recognizable as a quantal version of a modified Vlasov equation],9
which approaches the expected classical result in the lTimit h— ©
and where the number of particles is fixed. Also due to abandonment
of a definite number of particles, we have an equation of motion for
the deviation distribution function which identically vanishes for a
system with a fixed number of particles.

In the fourth chapter, we discuss hydrodynamics of the system
following the line of reasoning of Kerman-Koonin in the Lagrangian
approach. The parametrization of the trial wave function enabled us to
develop various fluid models. As a specific example, derivation of the
Landau's theory of two fluid model from TDHB theory is one of our goals
in this chapter. In the first method, we empoly a diagonalized form of
TDHB density matrix, then include dynamics of the system through time
dependence of the single particle wave function. We have a two fluid
model Lagrangian, and from Hamilton's procedure the equations of motion
has been derived. With approprite definition of the velocities for
Irrotational and normal fluids, we derive a set of equations which

has some similarity with equations of motion in Landau's theory. We



11
have an Irrotational superfluid and a normal fluid which contains the
vortex motion. The second and third models are also two fluid models:
in the second model we used a general TDHB trial wave function, and in
the third model our attention is focussed on coherent excitation of
two particles and two holes in the trial wave function. The resemblance
between these two model with Landau's theory is poor. The second
approach gives a simple set of equations of motion and in the third
approach, the equations of motion describing this model are a set of
integro-differential equations with no resemblance with Landau's equations
of motion. For each of these three models, density oscillation of fluids
near their equilibrium are described, various limits of the dispersion
relations are discussed, and dispersion relations for each of the models
relative to the others are compared. Finally, as an application, an
Irrotational fluid model similar to the Kerman-Koonin is developed.

A study of neutron matter is the subject of our discussion in the
fifth chapter of this work. We assume that neutrons are interacting via
soft-core ptentia]s.zo The static part of the equations of motion are
solved. The energy gaps are evalauated for various densities and as a
function of wave number. For evaluation of the velocity of sound in
the system, we utilize the Irrotational fluid model of chapter four.

The energy density as a functional of the density is approximated by
jts static solutions. Our numerical results for the velocity of sound
in the neutron matter are reasonable, considering the results of other
studies of nuclear matter.211n the last section of chapter five, we

22
derived the QPRPA utilizing the Generalized Hartree-Fock method, and
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applied it to our model of neutron matter. The numerical calculation
of the QPRPA and the hydrodynamical approach for phonon energies are
compared. The agreement between two approaches is poor, for exmple
the hydrodynamic dispersion relation was linear in terms of wave
number while its corresponding in QPRPA is a hyperbola. Also, there
is disagreement for the phonon energy in terms of density between

two approach. These disagreements between QPRPA and the corresponding
hydrodynamics results enhanced the uncertainty in applicability of

hydrodynamic approximations for the nuclear systems.
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Chapter Il
THE DYNAMICAL THEQRY OF PAIR CORRELATIONS

In this chapter, we derive the time dependent Hartree-Bogolyubov
(TDHB) equation for an arbitary two body interaction. It is also
shown that the TDHB, in two different 1imits, is identical with the
time dependent Hartree-Fock (TDHF), and time dependent Bardeen-
Cooper-Schrieffer (TDBCS). The TDHB approximation furnishes a comput-
ationaly possible scheme for treating a system of interacting fermions,
reducing the many-body problem to a set of coupled one body problems.
The TDHB equations may be derived from at least two different
methods. The first method is the time evolution of the expectation
value of the operators é{ap . d;az and L P using the Schrodinger
equation for the evolution of the Hartree-Bogolyubov (HB) trial
wave function. In the second approach, one could have a classical
interpretation for the description of the system. Then the equation
of motion are determined by a least action principle. Alternatively,
the real and imaginary part of Bogolyubov matrix elements can be
viewed as momentums and coordinates of a constrained system of

23
particles and their motions are derived by Hamilton's procedure
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In section (2-1) we summarize beriefly the results and
discussion of the static theory of pair corr‘e1ation.24 Section
(2-2) deals with the denvation of the TDHB equations. In
section (2-3) we discuss some properties of the TDHB theory.

A brief denvation of the Tinearized TDHB equations is the

subject of the last section in this chapter.

2.1 The static theory of pair correlations.

24
The procedure of this section follows from Baranger's

treatment of the theory of pair correlations. To treat the quantum
mechanics of a many-body system, it is convenient to use the
techniques of second quantizatﬁon.25 For fermions, one introduces
a creation operator d;which creates a particle in the single
particle state denoted by g ( p constitues a complete Tabel

for a state). The hermitian adjoint of the creation operator

is written as a*(annihi1ation operator),which when acting to

the right, destroys a particle in the state d. The é[and

Qp satisfy the following anticommutation relation:

“1’;"2;}={4*'4o§ =, (2-1)

ZQI asi = 5dp . {a-2)
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The particle vacuum state, {o) , is defined by the property, that

it is annihilated by all the a, :
a)07 =0 (2-3)

i.e. it contains no particles. The state of the many-body system is
defined with respect to the vacuum state; for example a system with
a definite number of particles may be represented as a linear
combination of Slater determinant kets of the form:

Gl a1, (a- )
The second example is the BCS wave function:

1BCF ) = n U +Y, 4, )(>
The product is over ha]f the total number of states, the index
represent the state which is paired with 4 .The third example

26
is the Blatt's wave function:

N
18y = L (T g, b)) 10y (ad)

8
where i(is an ant1symmetr1c second order state tensor.
b

To elucidate some points in the future discussion of HB
and TDHB theory, it is necessary to repeat Baranger's observation

about the equivalance of Blatt's and BCS trial wave functions.
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We start with the Bloch and Messiah  theorem, which states that
for any antisymmetric second order tensor, such as g:p , there
exists . a unitary transformation, U, such that the transformed
3 1in canonical representation has the simple form shown in figure
[1]. In the new representation, 9

4
are paired. Therefore, Blatt's wave function in the new representation

is non zero only if «and #

can be written as T N
' T
4y = & (T ad) o (e
Utilizing the Pauli principle,the above equation reduces to the
following form:
PN RPN (1-4)
N ‘* ' ‘4( ’
which is a single Slater determinate ket of N pairs. With a
change of normalization, one may rewrite the BCS wave function
in the following form:
T (2-9)
BCS Y = LI )Io 2-9
|BCS Y ll(wma*aa v
The projection of the BCS wave function, equation (2-9), on the

subspace of 2N (N pairs) is exactly

4

I

4

¢ T
o

At~

]o> . (2- o)
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the
Therefore fromvStart one sees the equivalence of the two wave functions

in the following sense. For a very large number of particles (N 1)
the projected BCS wave function on the subspace of N pairs is equivlent
to the corresponding canonical Blatt's wave function, provided one sets
‘? = l‘ =
R (- 1)
Let us consider a general Hamiltonian with one body and two
body terms
T A Talaa (2- 1)
M= T Ty 4+ T % s %A%

where, the coefficients T, V have the following symmetry properties:

T= 1"
ay LES (Z;‘3\
v - | 3
Apis bi; T (e 1]
L - 2-
LR ngu - lf\p 5 = vfid S ( I5)

The antisymmetric choice of the coefficients V means that the
exchange term is already included together with the direct term in
the interaction. In the usual denvation of HB equations, the ground
state of HB wave function %7is defined by the property that it is
annihilated by all quasi-particle annihlation operators.Where the

quasi-particle operators are defined in the most general case as
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Tinear combination of particle and hole operators. In this case from
the start one no longer has a definite number of particles for the
ground state, and the following expectation values are all nonzero:
(ﬁ’lala’\‘ll)) s <4Pla4a5\’t}’7 , and <I\NJ.IQ];; (4y. But in Baranger's
reformulation of HB theory the number of particles is kept fixed

as long as possible and it is the result of mathematical approxi-
mations that things Took at the end as though one had mixed the
number of particles.

For a derivation of the HB equations from a variational point
of view, one has to calculate the expectation value of Hamiltonian.
Therefore it is necessary to calculate the expectation value of
the matrix elements. Since the Blatt's trial wave function is not
normalized, one has to calculate the norm, the one body and the

two body matrix elements, given by
N

<4’NI 4:,7 = (-L;\ <ol ( ?: » Pd) k 13 9.4 ol )|o7 (- 1¢)
‘H Ta 145 = +=2<0 || L ; a}NT 1 ¢ aTATBNIc? (2-17)
¢ N 464 = 10Tk ( 5 ‘?M A 2 a.*aeﬁ o v

<+N\*F5x‘+> J_ <l(z,ﬁv?:v 4'“/\)"

S
<R
=
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Baranger calculated the matrix element with a diagrammatic method, de
fin'ing a closed chain (figure [2] ) and open chains (figure [3]and
figure [4) ). Each chain has even number of lines, which are repre-
sentative of the contraction, and their label represents the state
involved. The wave function 9 represented by white vertices, g’
stand for the black vertices. For example, the contribution of the

closed hexagonal chain in figure [2] is

- 9.9 ¢ g (2-19)

34 455)

He defined R, asian independent closed chain C, n. as its order,

and n. as the number of times which C occurs in the set. Then

SAL RSN [(RJ;AJ = F(an) (2-20)

This being the definition of function F, the sum is over all possible

set of the closed chain such that

L \\thz anN (Q'Q\)
C )

W

RP* is defined as the contribution of an open chain i withwas its
order. For example, the contribution of the chain in figure [3] would
be M
R - W & x
= -
s A % %4 fis 5. . (- 22)

Then, the one body matrix element is

wl
<hlaaldy= L Ry Flon-m) (2-23)
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where the sum is over all possible open chains starting in g with a

9 and ending in & with a ?u. For the two body matrix element, there
are two open chains, with three possible ways of forming them. there
are two possibilities of even chains 1ike that of figure [3] » the
third possibility is that it may also be two odd chains as in figure [4] .
He defined Kﬂas the contribution of an odd chain i starting and ending
with a ¢ , the complex conjuate of k would be the contribution of
odd chain starting and ending with a 1’. Thus, the two body matrix

element is

T,T Lo i od g
<4,N,"4 4,, ai aa“tr/) = %3 ( Rn RE; - RJLRKF Bl er\ K:zs) F(%”-h"-nj)-

(a- 24)

The main point in Baranger's argument is that the normalization
of ¢ can be chosen in such a way that Ffn)is approximately
independent of N for large N. With this approximation in mind
one may conclude that the F's in equations (2-20,2-23,2-24) can
be considered equal. Defining,

Po- Z: Rd\

B : B4 , (?—25)

Ba (2-2¢)
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assuming the convergence of these series, one may derive the expectation

values of one and two body operators, the result being

SAEREHYZE LRI ’ (- 27)

!

G a4y /HIR) = L - g kT e

:\83
This is identical to what one gets from other methods of HB theory.
Finally to complelthe equivalence of digrammatic method with other
methods, one should derive supplementary condition diagrammatically,
and one obtains:

2

fM = - ): ( 1‘;{ —\\R;& (a-29)
ka ‘P\ = - 1\ f‘{l R;‘ ) (3—30)
(f K)p* 5o ?; T(w-) k:« ) (a- 31)

‘
(Kr"\ a = % Alne) Kea . (2-33)

The above equations (2-29)-(2-32) are identical with the supplementary

conditions.
X
= - K a4- 33
1B J:n fx; k'W ¥p s ( )
Pk = » (2-34
(Kklg kixftp J )

where we used the convention that repeated indices should be summed.
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To prove the main point he rewrote the expression (2-20)

for FAn) in the following form:

() f L ey L e
¢ M(’-

The integral is on a contour enclosing the origin. Now one may
withraw the restriction of equation (2-21), that is to say the
sum includes all possible sets of closed chains. F(2N) may also
be written as
F @n) = - ~2A-)
(U S (2 2™ )

- "‘ e ne

= (an) } = 42 »»P(};z RC._:‘NJ"%) - (8- 3¢)
For a slightly differnt number of particle we shall write the integral

as .
Flanv-w = (gni) § T & hf( 7; %n‘&c - swinz)

. o . . . .
Since t 1is a slow varing function of z relative to the exponential,

(2~ 37)

one may calculate F(2N-n) by the steepest descent method. The
saddle point % can be found by setting the derivative of the exponent

equal to zero

N
Lt Rc._AN/i. =0 {a-38)

We may assume the normalization of 4 is such that the saddle point
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does occur at £=1. Then, one obtains
L "Re = aN (2 33)
which is the supplementary condition equation (2-21).
For HB theory he improved theggivation along the Tine of

Bayman's argument in reference 28. Define

$@) = g Y40
g Ezl+ﬁ), (2-40)

one can then write

Galdey= T e™iby - T 2"rw

- Ez"kc = F(z) ( 2-4)

Similarly,
7 2 ‘
o)l 4,4} day) Yé CMES ATWHE & =E 2 Ry, TN

= L 2“F(h\ R 2"
fa

\'\‘v\‘-

i

RP“(\E\ F #) (,g_q_ﬂ

where

" ‘l'
R‘}S\ = z 2 RL (a-43)

W Bd -
Similar expression holds for the two body matrix element,

77 w T
@) aja aa|de)y = ] = 4y 2,85 %a, |4y

N
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w A T S WV SN
2 -Fs =N -
73; F('w " )'1) [Rnp\ss 9‘6.\ Rw 1K p&kxx]

i

Fel ( R @ Re — R »
( ' R}:) RX:J R\%Q + k;f)k%fq)

P (a- 4

where
k('.“-\ = I 'Zhi ' -4 5
s . ’%a ‘ (2-45)

By introducing ?&) in equation (2-40), we abandon the require-
ment of equation (2-20) for evaluating the norm and the matrix elements.
In other words the total number of different chains (closed or open )
is infinite. One may assume the convergence of the above series for
small |2 ,and the analytic continuation to the saddle point without

difficutly. Define
= -4 9 (a-4¢)
then for the equation (2-46) one obtains
R@) = 2% -2’ 48 . (2-41)

Because, the sum involves all possible even chains built up of all
possible intermediate states, equation (2-47) can also be written

in matrix form:

&)y = 2 (H?—"‘ﬂ—" (2-48)
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And for the saddle point z=z.=1, we get
-)
S = rx(H—r)() (2-49)

From the definition of ® and £ as sums of odd and even chains, respectively,

one finds that k is related to p and 4 by

K= [£-V9 = tf(f"-l) (2- s0a)

= - (H‘X)“f = ’f('*‘?(“)-’_ (2-50)

Where equation (2-50-b) derived by inserting the equivalent of §p
from equation (2-49).
Let us take HB trial wave function as
EIRN \$e)y | (2-s1)
(<481 \4@)0) "% [ 2ea -
Then, one could easily see that, for HB theory, Qﬁ R K;; and Ku are

the expectation values of the density operator, the two particle creation

operator, and the two particle annihilation operator, respectively,

S = el 44l (253
)

kd’; = <+H5l‘fp < 7 ) (a-s3)

Rig = ‘ % l i ) (2-5¢)
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with their properties

ap = I, (2-55)

= -k [ 2~ 5¢)

Utilizing the expectation value of one body, and two body matrix elements,

we may evaluate the expectation value of the Hamiltonian:

K= &gl uld) = 7 x Ko X
nn\ HB> a\z;yzu*. F \{\psb rh\ };b+J‘;V‘Wu LS (:\“57)

For derivation of HB equations one may set up a variational procedure.
Then one introduces a Lagrange multiplier ) to make sure that

the physical requirement \equation (2-39) } is satisfied and tries

to minimize

HI

1

M, -1 T F (2-58)
It is more convenient and elegant to utilize the Bogolyubov
matrices in which each index takes twice as many values as there
are states in the oringinal formulation. In particular, define
5 -k
R = ( - 2- §9)
K \

which can also be written as

R" . ; Q 13 ) Rn . 1
13 = - N
AT w o, {¢ *u6 ' R«p = SQP‘ ,//;.l .

(2- 60)
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This martix has the properties

R=R (2- &)
$RE = 1-R*I (1- <)
where
R ety st B

The supplementary conditions can be easily expressed in terms of R ;

they reduce to

R =R . (R‘é q_)
In similar notation, define a matrix Qf'by
i) 1212 Jeyy
{\{P"& = V ﬂ}— = __V ) /u_ s = V

< p3s 1) ¢ 5 ¥B ages  A5PE

2222 V 212) (\)"2”2 y ( \

- n)* _ = - - £8
9B ¥hap ) apd = VYP % ) N piad .

Submatrices corresponding to the ten other possible contributions of

the superscripts are all set to zero. Also, define

T = _T' = ( a- ¢¢)
where )



28

Then,one can find the Hamiltonian in a simple form:

e LAT R+ T A R Ry X T (o) o4 T
° ac abed < <46 LA

k- 8)

where Roman subscripts assume twice as many values as Greek
subscripts. The problem reduces to minimization of the Hamiltonian

H: , the variable R being restricted by supplementary condition (2-64)
and the properties of matrix R (2-61), (2-62). The final result is

that R must be constructed in such a way as to commute with W

‘,R, w} =0 (a- 63)

where ay 1is defined by:

w = T + L
At ac 2 Z\ﬂ abey RJL. (2-70)
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2.2 Time-Dependent Hartree-Bogolyubov (TDHB).

Imagine now that the coefficient of Blatt's trial wave function
is time dependent, and consequently the wave function is time dependent.
However the diagrammatical method still holds as wellas the supplementary
conditions (2-33), (2-34). The equations of motion for # and Kk can
be derived as follows. Consider the matrix elements of the operator
024‘ and a;(ap for a non-stationary wave function 1¥). By virtue of the

Schrodinger equation

L%;@) = M%) l2-71)

)

and its hermitian conjugate, we have

55, . <HIIAA, MY (a-72)
i k= <¥ilae,, M) ' (2 73]

The right hand side of equations (2-72), (2-73) can be easily calculated

using Wick's theorem, and the result is

P3P o (7o « X
"oep ( +V’LBJ'; - J:‘ (T-)"'V)w Bk, K dve [2-74)
]
12 - - - \T =) k-
\2 Ki@ = (T A *’\'7)'m kBB k *P) BY V4 Bup +'£1s A\'B t 8, };; (3-75)

Where Hartree potential Y and pairing potential & are given by

a ‘fmxs Fig (2-7¢)
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and

B K (a-77)
Aip = * Yum i.

The equations (2-74) and (2-75) are compatible with supplementary
conditions (2-33) and (2-34).

Kerman and Koonin showed that the time dependent Hartree-Fock
can be derived from a variational procedure. Then, it is natural to
ask whether the TDHB equations can be derived from a variational
method. To answer this question, we would follow the diagrammatic

method of the Tast section, and define the " Lagrangian "
L= (<Hlik-n140)/<hid> (-7¢)

A more appropriate choice of the wave function would be a normalized

one such as

s - )

[t 4-79

and a corresponding Lagrangian can be written as

{ = <‘Mi,%-ﬁl’¢7, (2-22)

The difference between two definition of the Lagrangian equations
(2-78) and (2-80) is a total time derivitive term. Since, we accept
the classical interpretation of the Lagrangian due to Kerman-
Koonin, a total time derivitive term in the Lagrangian will not

cause any change in the equation of motion, and it may be disregarded.
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For the derivation of the time dependent part of Lagrangian:

'
Ay ‘%ﬁ‘*@;’/14%?‘4k> ) (2- &1)
we utilize the diagrammatic method of the section 2.1. One may write
« N
-) _ .a _
<4¢,).ﬁr4;,>_<o‘(d‘zsq#a@44§ i3 (T g, )1> (2-2)

We assume that only the coeficient, 4 , are time dependent, and it

is easily seen that this term can be written as

GGl < T, f W) (-23)

using equation (2-20), we get

‘ . R
<¢"I"%H"> = dz@ '%fu Z&f ( znc r"'*c!) (2-84)

or @ )

<Higlhy - L i, [ (ool Ky o) (e

Where W, is the order of open chain Ka‘, and the number of ways

in which one could break the closed chain Rc1s

e M1l
Y 2 -

Similar to the static formulation, one may improve the
derivation of the time dependent part of Lagrangian. Using the
Hartree-Bogolyubov tri wave function in equation (2-51). We obtain

$lilldSe T s ) vi
< ”B, I+ H}/s? 33:,“ ':'?;5 [(h. ))/,\] kﬁd\ (3-6)
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Utilizing the complex conjugate of equation (2-32),the equation (2-88)
reduces to the following form

4‘;,,3( l;% HHB? = 0 37_# “(]~f) (a- 89)

14

where we used the convention that repeated indices should be summed.
As we observed in section 2.1, the expectation value of the Hamil-
tonian has no explicit dependence on 4 . Then, one may expect
similar behaviour for the time dependent part of the Lagrangian.
Therefore, one may try to eliminate 4 in favour of X and £ in the
expression (2-89). This is done by using equations (2-50 a,b).
With some algebra, one obtains

ol i3 (%) =1 3 (' Pl = :3.*1;’“4' i Ky

(a-94)

Finally, the most appropriate form for the time dependent part of
Lagrangian can be given in terms of Bogolyubov matrices.

(‘)’nc]'f}f'{ 0) = Ras ,”R + § ;%ff«w . (2-91)
One may utilize the classical Hamiltonian with HB trial wave function
(2-68) for the Lagrangian:

L= <ty "753} -4 ﬁ,). \2- 22)
Although, the dynamicsof TDHB equations are independent of chemical
potential A , and the inclusion of A in the classical Hamiltonian

is not necessary; we include Ain order to be consistent in the static
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Timit of the theory. Then in section 2.3 we will prove ) independence
of the TDHB equations by introducing a new phase for k . The final

result in terms of Bogolyubov matrices is
= LeT i
Lo SeligR -4 e -4 RaRevy, -1 I (1)

{—& jg‘vae,ou + 1 ); %E\.( X (2-53)

The problem reduces to finding the equation for the above Lagrangian
subject to the constraint equation (2-64). Introducing,Q;as Lagrange
muitiplier for the supplementary condition, one obtains a constraint

Lagrangian:

{I = -“-R‘\:,—Rbg - 5 bcR(,a }' LRJC Q Ra] a4 \’—R:;Rd)/‘h

where, we omitted the unnecessary terms. The equat1ons of motion \2-34)

can be found by requiring the restricted $
b,
S = S{ i At (Q‘9S’)
[}

to be stationary with respect to variation of the path of motion
between fixed end points'ﬁand'g. The results for the equations

of motion are:

l) i _ ‘
"ﬁ Rm - V.; Rba = Rgb /Mbq (2-3,{)
J
and
S ab 1Y /ﬂi} b . 37

Multiplying equation (2-96) from the right by Gk%and summing over a
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and then multiplying equation (2-97) from the left by R;,and summing

over a , we obtain the following equations

BRIR -
(?'r al Tap = wi,,Rq_f - R /LCARQII (2- 97)
and
1 Ry (k) = RiaVyy — R;, AR, N (2- 9]

where we used the definition of % in equation (2-70),and supplementary
condition (2-64). Subtracting equation (2-99) from (2-98), and using

the supplementary condition (2-64), one obtains

L)
AR, = W
H '} MR(; - R\'( Wa{ (.'t—lu)
)
or, in matrix form
P - -
LR = [ve] [2-10)

Comparing equation (2-100) and (2-96), the evolution of the Lagrange
muitiplier /Qpis equal tO'%’. Since, the Hermition matrices form

a complete set, the inclusion of equation (2-61) as a constraint

in the Lagrangian was not necessary. The similar argument holds

for the matrices satisfying (2-62). One may prove the compatiblity

of the above Tine of reasoning. From the equation (2-100) one obtains

LR . T
E-LUEER Y (2- )
}

using
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V=W {a= 102}

/
then, one obtains

i%(a-a‘] = 1w, R-R] ' (2~ 183)

Similar argument goes through for the second restriction (2-62).
Utilizing

[ 4

Fwi = - (2-104)

?

one obtains

L (RE-1eRt) = [ w, Aegops) (20e)

one may insert R-Ras ,and $RE_14R=¢ as initial conditions
into (2-103) and (2-105) respectively. Then, g-® , ahd -f-R-;-lfR‘
will be zero at all succeeding times. Finally it is intersting to

rewrite the equations of motion (2-100) with Greek indces.

) (Q, Xig ‘T’)*“x‘ Bas Sp %
i 'S: Sd'_ y:' B ] A;; ,lT_MV)‘: Ku“ (l_ fN\;p
N L
— K:zs s ")-lzs 'A:@ - (T-)d-f‘\:P .

(2-104)
\As one may expect the matrix equation (2-106) reduces to the

equations (2-74) and (2-75).
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2.3 Properties of the TDHB theory

With a glance at the TDHB equations, a number of ideas come to
our mind for the discussion of the properties of TDHB theory. These
are a) conservation laws in this theory, b) various limits of the
TDHBequations, ¢) time evolution for the chemical potential, d)
possibility of a new derivation method for the TDHB equations, e)
utilization of the TDHB theory for the derivation of a collective
Lagrangian, f) utilization of the TDHB equations for a hydrodynamic
description of a nuclear system similar to the one -Koonin has for TDHF
equations.

a) Conservation laws: There are three quantities conserved
by equation (2-100), and hence three corresponding constants of
motion. These are:

1- Energy conservation: One definesthe total energy ,E, as

the expectatation value of the Hamiltonian (2-57)

<
E=t = gl tyg) = T, + 4 Vo Bl £V, KK

(2-57)
The time derivative of the energy is

i’{é‘ < (%‘hw)I H wm? + <+n3 \& %lﬁe) ( 2-t7)

and by virtue of the Schrodinger Equation (2-18)

£ BNy == = £ @w
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Thus, the total engery , E, is a constant of motion. Also, one
could prove the conservation of energy (2-108) directly by using
the equations of motion (2-74),(2-75)and equation (2-57), but this
method involoves a little more algebra with the same result.

2) Particle number: The average number of particles is
conserved. Using the equation of motion (2-74), taking 4 equal

to @ , and summing over « , we get
b p = T [ mrrea)p - (T 4] 4 8Kk a]
Using the definition of pairing energy (2-77), one obtains

! %Ti‘r =0 (2»109)

Thus, the average number of particles is also a constant of motion
Therefore, one should not expect any time evolution for the chemical
potential

3) Conservation of the "form":
In section 2.2 we proved that if at time %=0 the Bogolyubov
matrix R has the properties R=R and #R}=1-R then it will keep
these properties at all succeeding times. Now we will prove with
similar method the same result for the supplementary condition (2-64).

Let us evaluate the time derivitive of R‘1

;%Ri = (RR + RR\ (2-m)
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Using the equation of motion (2-100), one obtains

3%,;7— = IwgIR+ ® [ w,R) (2-nt1a)
or
;%Rz = W R ) (2- 111 3)
Hence
i%kR"— R} = \\rl, Q’\z-R\} (a-n2)

Thus, if R%R=O is inserted as an intial condition into equation (2-112)
RR will be zero at all succeeding times. Indeed this supplementary
condition was included as a constraint in the variational derivation
of the TDHB equation.

b) Various limits of the TDHB equations: First, as one may
expect, the static 1imit of the TDHB equation coincides with Baranger's
static theory of pairing. Secondly, imagine one wants to utilize the
equivalnce of TDHB and TDBCS. The Bloch-Messiah theorm requires

Sie = P S (2-13)

and

Kag = Xz $ea . (2-114)

Where, & corresponds to the pair state of 4. The simplified version



39
of the equations of motion reduces to

<y ) ] "
Lo j:u = A kg T R (2-115)
)
and
y 2 - - k - -
R (26~ + (2 4,-0) A4q | (2-11¢)
where

(2~ 1)

and, it can be understood as single particle energy. Here, in the
equations (2-105), (2-116) and (2-117) the repeated indeces do not
constitue the summation. These equation (2-115) and (2-116) are similar
to the TDBCS equations of motion according to the reference 29.

Also in the static 1imit equation (2-116) gives the BCS gap equation.
Finally, as we already mentioned many times the TDHB theory is not
based on a definite number of particles. Now, let us 1imit TDHB
equations to those terms which conserve the number of particles.

In other words, taking k =¢ for any state of dand B, one obtains

$
) -
L% j:m - (T * ﬂ“ f;@ - sz(fv P)BB. (2- 1)
With proper choice of filled and unfilled states, one could write

1)
b
where € and ¢ are the single particle energy of the diagonalized

V2

I = y = €, -6¢- ¥

m (\m 6‘) .‘1\.‘ + i“' \/h“\'d ..Q\J*- E .V.‘i‘f‘ .‘.2-»3)
1) Ny
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Hamiltonian, (m,n stand for unfilled states and i,j stand for filled
ones). Equation (2-119) is exactly the TDHF equations according to the
reference {257 .

c) Time evolution of the chemical potential: Let us recall

the TDHB equations (2-74) and (2-75)

Y ‘) f

’— = - — —

* 4 Y ,\1-[’)“ f*& f-us(‘r MLF)‘&} T Bay k:s - Ky, A:s;
(>-74)

)

&R = T - K _ -

#hy = | )\H‘).hs " v HV)MKN- A

L

(a-15)
With a glance at the equation (2-74) one realizes that the ) dependent

terms cancel each other, and thus equation (2-74) reduces to
) o
I 2 f = |T *

e | +r)"‘l;F’ j')“(‘hL r)“‘ LSV TR W (2-120)
which is independent of A explicitly. For the second equation (2-75),
one may choose a specific time dependent phase for K4pas

(b
A § e
]

GwE e J‘qs | (a-121)

, the equations of motion reduce to

R

With this chioce for E,

3 B ~ ~
e = N, -g (T Wy T k- %, 8

s %yp (2-122)
and
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. o
A= (T F)As 'Am’ (T”‘)m&{&x - §, * J; Xxp+ Eafw

(a-123)

e = % Vipns Ay (2~ 124)

Equations (2-122) and (2-123) show the independence of TDHB theory
in the chemical potential. Considering the equations of motion (2-74)
and (2-75). In fact, any arbitrary function of time can be added to
the chemical potential , A, it would cause only a change in the phase
of X . It means that at any given time one has the choice of the
chemical potential for the system, as one expect physically. Similar
result has been indicated by Blocki and Flocard for the TDBCS
equations. Therefore one does not expect any time evolution for
the Lagrange multiplier ) ,and may take A as a time independent
chemical potential.

d) Possibility of a new derivation method for the TDHB equations:

Let us consider the time derivitive part of the Lagrangian (2-91)
2 Rha L RAL '3,: “ﬁR‘L‘ (A— 125)
Define each Bogolyubov matrix element RLhas

Ra = R “515 (2- 126

then, the expression (2-125) can be written as

T__ P,: if (4—!17)
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P and 4; can be considered as canonical variables for a classical
system with 4.as a coordinate and g.the momentum cohjugate to the

4 coordinate. The equations (2-61) and (2-62) can be viewed as
holonomic constraints. They will cause a reduction in the number of
Generalized coordinates. The supplementary conditions (2-64) are
nonholonomic constraints. Therefore one should introduce the Lagrange
multipilers to include these constraints. Then the equation of motion
can be derived by utilizing the Hamilton's principle. The final

result is equal to one obtained by variational method.

e) Utilization of TDHB theory for derivation of a collective
Lagrangian: One major reason for the derivation of TDHB equations
from a variational point of view was the derivation of a Lagrangian
which describes the system and can be utilized for a reduction in
number of coordinates. In this way, we hope the reduced coordinates
are good approximations tothe collective coordinates in the system.

In chapter % we will discuss this property in more detail.

f) Utilization of TDHB equations for a hydrodynamic description
of a nuclear system : Koonin developed a hydrodynamic approximation
for a nuclear system from TDHF equations and by utilizing the Wigner

transformation. Similar procedure can be employed for the derivation
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of the hydrodynamic approximation from TDHB equations. In chapter 3
we will discuss this approach to the hydrodynamic approximation in

more detail.

2.4 The linearized solution to the TDHB equation.

The TDHB equations (2-100) with their constraints (2-64),(2-61)
and (2-62) are formally similar to the TDHF ones. The difference lies
on the much bigger dimension of the Bogolyubov matrices, and the lack
of a fixed number of particles. In statistical sense, the TDHB equations,
Tike TDHF equations, can be viewed as a deterministic theory in the
sense that a given intial condition gives rise to a specific final state.
The TDHB theory in comparison to the TDHF theory has some advantages,
notably, its relaxation of a single determinate, and the inclusion
of superconducting solutions. But the larger dimension of its matrices
certainly will cause technical difficulty for a comprehensive solution
to the TDHB equations.

Although there are several attempts to solve TDHF equations in
the ]1terature?0 there is not a precise behaviour of solutions to
the TDHF equations for a given single determinate. Therefore it would

be reasonable to assume that a general attack for solution of the TDHB

equations will be for future. In the following pages we will try to
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find an analogue to RPA solution in the TDHF theory.

Static solution: As we already mentioned in section 2.1, in order
to find the ground state energy and the static solution to the system,
one should find W and R in such a way that they commute with each
other. This can be achieved bydiajonalizing W and R simultaneously,
and satisfying selfconsistency requirement and the supplementary con-
ditions. Condition (2-64) says that all eigenvalues of R are zero or
one, and the condition Equation (2-62) tells us that the number of
eigenvectors with eigenvalue one is equal to the number of eigenvectors

with zero eigenvalue. Let us recall the equation (2-104)
AVE e (2-104)

this equation says that, if W has an eigenvector a4 for eigenvalue g,
it also has an eigenvector 44:for eigenvalue -E,. In this procedure

the eigenvalue E: has no physical significance, but with a choice of

R with eigenvalue zero for eachaq;eigenvector, and eigenvalue one for
eigenvector %&, the E; is seen to be the energy of an elementary
excitation or quasi-particle excitation energy, according to reference
\32]. Supperficially, in analogy with Hartree-Fock theory one could

interpret ground state of the HB theory as a state in which all negative
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energy of the quasi-particle states are filled. The eigenvalue equations

for W are the HB equations, and they can be written as

]

E; A,
di Y{ (Tu —/\&xﬂ]‘) A“- + EP A,,B’BM , (a- 128)

-‘E‘- B_“

it

K x
Z‘ ( Te-{b ’/\‘se(a +r-la) Bx; t 2; A:‘; AP." (.Q— \19)

where, we used Fhe notation .

(0—;3* = A, e, - B, . (3-150)
Now let us seek a solution to the TDHB equations by linearizing in
small deviation of R about the equilibrium point R°. Then, one
could write ‘

R =R +4R =R°+5R+e| + 5R p a-13)
with a (complex) frequéhcy and small transition density in quasi-
particle densities Sftm be determinedas an eigenvalue problem.
Hermitian condition restrictsexcursions to the two independent ones.

(;RT)T = SR {2-132)
The expansion of the condition (2-64) to the first order in small
deviation requires that
u) Q)

‘ﬂ
SRR R R = IR, {a- 133)

Due to the choice of R’ as a diagonal matrix, equation (2-133) requires
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S
that 4R should have only quasi-particle quasi-hole matrix elements i. e.

sR(‘) )
AN b-14)
4 4
¥ 2~ I35

Where i1, j are refered to occupied quasi-particle states and m, n as
unoccupied ones. Inserting equation (2-131) into equation (2-100) keeping

only first order term in excursions, one obtains

LR o= [w, sR) +[%ﬂ& 5 k] . (2-13¢)

Writing the linearized equation for each of two independent components

i

—w SR [¥) sa"]+[ 14 R] (2-157)

WTER = (W) sK) 4 (&35 RT, (2- 138)
Using equation (2-70) for evaluation ofb‘ , taking the (i,n) and
(n,i) matrix element of these equations, and using the fact that R®

is diagonal and vanishes for any subscript of an unoccupied state,

one could obtain

W 8 y = Lo : *

( R ),‘“ (EL Eﬂ) SR;., - L ’\);}, . SR‘“ {2- 139a)
-— S N - - N "

N} LR ),“‘_ = (E\\ E;) XR“.\ -_LQ q{\\iJ SRJ\D (1- }35b)
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W (Sp‘.)fn = (& ) SR:‘n - Ji ‘V—l\bJ SRJ; (2-14 74)

W (8'{\“(‘ = (En"E‘.) SR\‘i - J’: q};\b;J SP:“‘ . (2-140b)

Using equation (2-135), then one could rewrite the linearized equation

of motion in the more familiar form:

-w X = (€. - L .
i ( ‘ E\n) X,‘,‘ + K "hjnxa‘m _li (U-“Ml:l )\{jh (a- @)
!
W - [z »
y:n - ( ' fE.\)Y;“ +—1£ q)‘—h Y -,k Yoy [a-142)
where in ™ "y i
. - + +
an\ = SR(’" ) V,‘" = 8 RM ’ (4" “’.3)

The equations (2-141) and (2-142) can be viewed as generalized
form of RPA or quasi-particle RPA. In analogy to RPA,one can introduce

two matrices

. P E— . AR} _L -
A'“;ﬂ\m ( " E‘) S'o dum * 2 mf.mjw ) (3-144)
M = __L a-""
Blogm = 3 % (2 143)

In matrix notation, equations (2-141) and (2-142) can be written as

[y = [-B‘ _i«}[;} (2-144)

Equation (2-146) can be considered as an eigenvalue problem for

the normal modes & , and normal frequency " w ". If we used the
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equation (2-140 a,b) instead of the equation (2-139 a, b) we would

have

M

K o

_w,i)"} I ! (2-1u)

) < x
3 -AJLX 2,

That suggests wand —w" are both solutions of the eigenvalue equations.

The expansion of R would be stable only if w is real, otherwise the

excurisons will grow exponentially, suggesting that the stationary state

is not a ground state. Diagonalization of the Tinearized TDHB equations

(2-146), (2-147) can be viewed as equivalent to solving the problem

of coupled oscillators, and was normal mode of the frequency in

the space of quasi particle, quasi hole excitations. In analogy to

the Hartree-Fock theory one could quantize these modes. Thus E +4w,

E+3%w .--. etc. can be viewed as collective vibrational states of the

system.
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Chapter 111

Time dependent Hartree-Bogolyubov in the Wigner representation,

In this chapter we explore the Wigner representation of the TDHB
equations. We show that, in this representation, TDHB equations reduce
to a form easily recognizable as a quantal version of a modified
Vliasov equation, which approaches the expected classical result in
the 1imit k—>o and a definite number of particles. Also, due to the
abandonment of a definite number of particles, we have an equation
of motion for the deviation distribution function, which identically
vanishes for a system of fixed number of particles. In section 3.1,
we will discuss the properties of the distribution function, and the
study of TDHB equations in Wigner reoresentation is our goal in section
3.2.

31 Properties of the distribution functions.

Density matrices in the coordinate representation can be written

Py = <%HBI ﬂx‘) o\(x)\ckm}) (3 -1

K(xx)

1]

SARFTSRE M } (3-1)
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K x) = <4’/13 ‘ a@)ﬂT(X) ,4/’73> ) (3 -3

where, as usual, X constitutes spatial v, spin 7, and isospin ¢

coordinates, and af:oand alX¥are the field operators. For a semi-
33

classical interpretation of TDHB equations, we use Winger's

suggestion. Let us define "phase space distribution functions”

18,4 57) and gk jhs

Fwe ) j S

/ = J’S e - - 7 '

‘ L&A, % 40) (3.4
) i3 }

%(3/‘ n = Jﬁ e R'(R’i'gél E:}; li) ) (3__5-)

where the "center of mass" and "relative" coordinates are defind by
=2 »
R"“i (r-H-‘) ’ {(3-¢)
s =(r-7) /3-1)

respecttively, and jconstitutes spin and isospin coordinates.
Equations {3-4) and (3-5) simply define } and 7(4’,4.;;') as

the 4th component of the fourier transform of Plxy) and kfxxrespectively.

For a saturated system such as nuclear matter or an even-even nuclei

with equal number of proton and neutron, one could take fixK)as digonal
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in spin and isospin coordinates, and has many of the properties one
would expectof a classical phase distribution. Therefore, from a
semiclassical point of view, f is the probability density for finding
a nucleon at postion'ﬁ with momentum £ and spin-isospin label §.

The existance of KWdand in turn % is due to the inclusion of
the pair correlation in interaction, describing the many body system.
Therefore, we do not expect a semiclassical interpretation for 3hﬁfjﬂ
as we had for fk&ﬁL Although there is not a semiclassical interpretation
for 3&*;”, we may consider the fourier transform of the deviation function

which is defind by
DOK) = —2 Kixy) Xt X) (3-2)

Again, we use the convention that repeating variables are summed
(integrated over continuous variables). Then, one may define "deviation

distribution function" dlkkgi)as

doagi) = [ 2 0(@,, 1% ) (-3

Similar to the phase distribution function :ﬁ , the deviation distri-
bution function 4 is real and digonal in spin-isospin coordinates.

From a semiclassical point of view, d is the probability of deviation
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density, which is the square of fluctuation density at postion R with

momentunfiand spin-isospin label {.

The properties of distribution functions are: a) The distribution
function 4 and d are real. This property of f can be seen by taking
the conjugate of equation (3-4), utilizing the hermiticity of the density

matrix, and defining a new variable S—-3. Then

SR 1.2
Fogg) - fa e s (&, 73 )

‘f (RJ\ f{,) (3-10)

where we have used the assumption that §° is diagonal in spin and isospin
coordinates. This property for d can also be seen by subtituting in the
equation (3-9) from equation (3-8), taking the conjugate of the result,

utilizing antisymmetric property of % and defining a new variable ¥—-3

die b

i
L‘\
ot
m -—,
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e
£
+
;V‘l.
~
D4
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. Ve
"S:’ e ) K(ﬁﬁ,‘f\j\ K"(‘j ﬁ+3;» 3}
= _:.SE& eMH.g 3 Y y
R@y, Vy) K1y B3, 5)
= d (&,k, )
e ,jf) (3-10)

Where the last line follows from the fact thatDlyx) s a diagonal matrix
with respect to “ spin and isospin coordinates, which itself can be
realized from assumption that the density matrix § 1is diagonal with

respect to ‘}and § , using the supplementary condition (:3-12)
P lax) = ey slgx) - Ky kGw) (312

b) The function ﬂ has the property

Fauf) = - gR-45f) (33

Using the definition of 3(R,Iqﬂ from equation (3-5), utilizing the anti-

symmetric property of K, and defining a new variable S—-3 , one may write

, i
fei5) = (B e kians, &% 41

-t

N
Je < K-y, R+3, 41)

SR PRALLS
K (R+S/L RS ;})

= -glR-4y), [ 3-19



55

c) Various expectation values of one body operator are given in terms
of #£by their expected classical from. For a one body operator ¢ , we

may write

Chl Oldg) = 0xK) B(x x)
= Jaea 077 45) PR T4Y)

I

Sade O(&:3, R340\ B(R-3, 843,53

\* -
1.3

= Yna O, &5 ) pleagy <

= & owayil AReyy)

arp { 3-18)

Where in the second line, we used g(xy as the inverse fourier transform
of ﬂk»kﬁ)and in the fifth line the operator expressed in the Wigner

representation is
: i3 ,
Okl = fu ™ i, 73, 1) (3-14

From the last line in equation (:3-15) we see that ppprovides the
approprite weighting factor for the distribution function in phase
space needed to compute the required expectation value. For example,
the corresponding operator to the total nuclear density at the point

Q is
ol&3) = §&-8)s6s) (3-v1)
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In the Wigner representation, it takes the form:
OlRe) = W) (3.-18)
Thus from equation (3-15), we get

Pl = J‘c"ﬁ (%)3 %-r) A t) = 5%3 7a¢iy) (3-19)

which is the classical result. Similarly, one would get the expected

classical result for the quantum mechanical current

Tay) = B 046 40)) (3-20)

d) The distribution function § and deviation distribution function d
also have the expected form for simple system. For example, taking the

BCS theory with plane wave as the single particle wave function, we obtain

AU (Y7
FRAG) = B, (E(ﬂ-x,);;f‘)

[ 3-21)
and utilizing equation ( -19), we get
3 I 3ff 3 -
£ ”)--—\—/—-(%f’f). (3 -22)

The total number of particles with spin-isospin ] is given by the integral
of P over space. One would get the total number of particle as sum of
the occupation probablities, as expected

AN = % fup . (3-23)

For the deviation distribution function d , we have



(3-24)

K -
P v #8 K
One may get for the total deviation
<‘t'6|(2; - <2/v) >= fd‘n JL JR{;S)/
- - _ 2
- (s TR T gﬂ("p'ﬂ.

Where we have used the BCS analog of k dv and x_.-u%

Before ending this section, it wou]d be interesting to
supplementary conditions in the Wigner representation. The e

(3-12) 1in the Wigner representation can be written as (we ma

the spin and isospin coordinates for convenience).

#(ﬁl"-)

g

‘v.
— {43

SJE e [ f(R‘*:;,L ,f’ )f(f."/?‘s/,,\ - §+5, ,7'\

it

i

By - z' -
2 ded) 4 51’5 &r e Sj(&'-ﬁ;" ,?0) f(,';‘;‘n'-s,‘)
q

( 3-25)

derive the
quation

y suppress

2R 4 (g & L(Ra7 3
J ’ @m’umz e PR3, 391, 9] »
67(74?A~R) T
¢ ¥ [(Reris)n o)) &7
= dk ¢) AL s , sal MW
+ SI’SZ‘V CZJRP ;:P -|1..s L(g_ £ "5/11.)' A Ct«‘ “‘)(
l(" %) "('3’ - - . .
& e k) s (P -?) )
e ) few #Te0.

(3-2¢



Where in the third 1ine we used P as the inverse fourier transform of
$, and in the fourth Tine we have introduced the spatial and momentum

shift operators

2 o (3 -27)
DR = - LVI\
by = - 'Y, (3-20)

In the last line the superscripts (1) and (2) indicate which distribution
function the shift operators apply to. A1l the integrals in the equation

(3-26) are simple, so may easily done to yield:

Vo020 ag 2
";‘.(D;"DI( - D(l” De ) 12

o
o) = Lage) ¢ Fed ARD 5

The second supplementary condition in coordinate space is

Poox) K = Kxx) £lx" x). (3 -39

In Wigner representation, this has the form:

v Sl =) 4 D3 ) W) (2)
(90D u;m) U i(y.% : ‘D*)

D - DN @l
e* VR % i”z

Pragiat = ¢ < F XN R0

For the derivation of equation (8-31) one could use the same method as
the first supplementary condition. It is also interesting to work out
dRt) in terms of grd/and the manipulations are almost equivlent to those

in equation (3-29). Therefore, without repeating the manipulations, we
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give the result as

L (31 Dy B3 ) 13
dR4) = -2 e’ 7(@,{) mc-l). (3-32)

Thus, equation (:329) can also be written in the form:

F &)

_(

(-ou) "L!) -;

,é' &h 1)

=W 30 8 a0 w

_ .:.(])R ‘+11)") qlat) ﬂ*‘U [3-33)

For BCS with plane wave for the single particle wave function equation

(3-33) is equivalent to the simple relation

2 4 1
V = v <+ Vl
= Y TR (3-34)

= L .
Where we used the analogy of #®al =4, = V, , g(v-(n),._k;:. 4 v and
9(r-£ ﬁx\—_ku: - 4% . The second supplementary condition (.332) reduces
to another identity

2 1
v =
A" UeYe vﬂl (335)

for the simple Bcs system.

3.2 TDHB equations in the Wigner representation,

The TDHB equations (2-74) and (2-75) in the coordinate representation

assume the form

"%«'P‘[”') = A x) POCK) — SRR+ Al x) kxy) - kixey Aex)
(3 —36)



and

P9 1o w "B
b RIxD =4 o) kix) + K Ow) Rixn) — Bixx) + 3 [xx) (X% + A &x) P,
(3-37)
Again, we used the convention that repeating variables are summed. We

define one body thermodynamic potential density % and pairing density

potential A as

Wrx) = o (FX )4+ Vixy Y)Y (3-380)
Bx) = X vy 1) Ky {3 -39)
where

LN K. Ls 4 , . .

Vi) = 2 (gw Y Y@ 90\ Vixg,xg) () gog) - g Aod)
| VAT p L g « £ ¥
3-4)

As we discussed in section 2.3, the inclusion of the chemical potential

in equations (3-36) and (3-37) is not necessary. These equations can be
replaced by equations (2-122) and (2-123). We keep the TDHB equations
(336) and (3-38a) in this form in order to have appropriate limit of the
static solutions. But in the following equations in this chapter the
thermodynamic potential % and pairing potential & can be replaced by

4 and § respectively, without any change in the physical content of the
equations. | , & and § are defined by equations (3-38a), (3-39) and

(2-124) respectively, and 4 can be written as

Nex] = Y X))+ vy ) Sty (3-- 336)
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Before recasting TDHB equations in the Wigner representation, let us derive
the equation of motion for the deviation distribution function in the

coordinate space. Utili zing equation (3-37) and its conjugate, we obtain
3 (Rawkon)) - VKl - Kby g g0 — 4l KB
3 (IR = pleg) kb y JkTyn) - kb Klyy) yyn) - Alxp

+ K{p) 8px) +7xg) 213y) Kx) + Alxa)f?m‘) k'i\a'x') — Kixg ﬂw) Aly')

- Kixy) AT'a y) Plyx) {3 -4

or

V2,06 = v by D) - Dy ylya) +2 Ay Klan) -a wlxy) A1yR)
=% plg) Al Klyx) -2 Ay ffﬂ) Kgn) + o2 My phaw) ALy
+2 kg Ak% ) Phix) |3 -42)

Comparing equations (-3-36) and (.3-42), there are some similarities between
them, which we will discuss in their Wigner representation from at end
of this section. We now recast the TDHB equations in coordinate space and
Winger representation. Let us take the Fourier transform of equation

(3¥36)

vy o2
__"5 ~4&F

BTN, 0] = Be  [lRg ) p s,

< X - - v -
- PR3, ) bR %)+ (R, 70 k72 —K(u},‘_,v")A“(‘}; 3)
[3-43)
We may write $in terms of its fourier transform £ , and define y\g4)
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and A 1in analogy with equation ( 3-16)

le,U - 533 e:l 3

p(Re3, R3) [3r44)
)
-3
Ah‘ = -
J‘T‘ e BR+3, R-3,). [ 3- 435)

With analogous manipulation as we had in recasting supplementary conditions,

we obtain

(-JL\) "(l! 20} (l.)\

'y . S ) _,up Q! 1} Q)
EE LN P T (-5 0] feuien
L RW LY LeLe
. 1 ( if])a'* qt Ds \ u) @
e i (Rt} 2 (Rk) — ng,U A (e L)l

LY

(3 -48)

Similar analysis can be applied for the second equations of motion (3-37),

the result is

3 u
V3, HRA) = - A(RA) ;e [Mmmm,&) +¥~(:,4)AM)]

', \2)
1 (o

ﬁ?+ (ﬂ«u\
+ e [

”A) ‘z(ﬁla} + 8k 2 ('W] (5-61)

where the shift operator are defined by equations (3-27) and (.3-28),
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Recasting the deviation equation /3-42) in coordinate space in

the Wigner representation and utilizing equation (:3-41), we may write
k3

3’ N - -t '\ a 2 —‘I--. - - -
ji < t,%_[K(ﬂ#?,t,v \k{V,RJ,t)J = Jse' 5[7(_)(;,‘,?)&;.);‘6. R-S/,_)
% ® -r -y - " _
- k(Red yr) T #) 47 JR-5%Y - A('Ur;,_:f‘) kff/ R-5) + k(ﬁ'{%ﬂ) AKG', %)

-+ .- 2 2a ‘.o,, - - P X
SR, ) 86TV K, £3) + 8y, r) plerd ks

- 2 4 x - o - -+
- K(RM,L ) PGEe) o @,&-%) - k (R{;,t ,7) A&,?") P, R'?,)’l

(3-48)
The Teft hand side of the above equation is just half of the partial
time derivative of the deviation distribution function d(&&) . In the
right hand side of the equation, the first four terms are similar to
the ones in the equations of motion. Thus they are easy to be recasted
in the Wigner representation. For example, let us recast one of the
remaining terms, say,

g 163 ,

Ja e plan, ) ol )kl 33,) (5 o9
writting f , Ao and K" in terms of their fourier transform #rd) ,
AlRA)  and 31@4}, and using the shift operators (3-27) and (3-28),
we obtain

V=, 3 - o e oy oW )
58‘4 &3 W I dv |?~(R+5/L’Y) '%(‘*%’R)‘De :(4—7)"){
@r b ayr € e U
e f@4)x
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N ' oy =2@)
P2 per) L (P Dy (E®D, 1 ICE EA
e e e DIRA e

X
zQ NE -4,
. -R) 'DR :Q-P) D_,‘ ol

The integration are easy to carry out and the result is

-) —o’ - -
t[( 52 B s BRF 5 4604500, )

) @
flen  Akp) kA
(3 =51)

with some manipulations similar to the sample term (3-50), the remaining

terms can be derived. The.resualt are

1 "('JI ..l) _., =2) T p—y -‘
LG i) B 4552 B+ B 57

o e} b?
BRY) FR4) T (&4
]

. =02) "“l -Ul -'0) +(3) —qu) v A (3 -5
SUET 45 By + @143 B + B30y ) .
3en) +<R—4 A (R-4),
2Q) 2By = »w Gy 2@ 3 ‘3ﬁ”)
l[("’),-; +6z -5 ) D + (8- D

) sz @3

4R Ala-t) F A
\3-5%)
Collecting the various terms, the equation of motion for the deviation

distribution function d 1in the Wigner representation is

' quxqm 4m4m\

12 aja) = Le DDz -3

—_i_.( =\) L12) ...l!)_a(:z;
2

—e X D - Da }cﬂ’ﬁt}[lu)

= Dyt D
- £ R VL TR ‘”
e [ 7 kp) A (a £) - & R,I.)‘}(QJ-JJ
A 43} 2y - - 4 At} o
a ot [ Bemm) B+ By D L 3] 389
0)
ALy )Aue,l.)gm y
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; =23} @ - 4/ 1) _.(3’ —®) =) #(2) 20
‘;[(01-3;)-,{4(1); ) (DZ -2y )D R )

(&
At £ w9 ke
N = ) -—¢ -'Q’
’i‘[ (D? G)\ -M UI { )D (-QU) DE),,) ..c
Y2e ) ©) ?
4 Rka) £ R-4) A 12-4)

! @ - - (2) —1U) L =23}
% [G)(. -DE’)'D ( ﬂ) m)D( +( B;"\-D]g ] U{ A s)
d0t) Ay tiew),

{3 -s5)
Some observations about the equations of motion: First of all, as already

mentioned in the begining, we may disregard the Lagrange multiplier ) in
the dynamics. Secondly, for the one-body thermodynamic potential density

in the Wigner representation ( 344), we obtain

RA) - L L5 ) A wlrA) , (35 4)
where

My
Wkit) - & e sv(m.;/;)? i3, ) Py, s

As mentioned above, we may disregard the Lagrange multiplier A, and

hence }frk) can be replaced by

hing) = 445 +wisk) (3 -54)

Substituting equation f3-56) or (3-58) in equation ( 346) and carring out
some algebra, the equation of motion for the distribution function § reduces
to

24 - ol . 20 L2) L vl @
IR I 1 & A A M Vi) 4V et
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. Dy Dp+ D
+ e iR ¥4 Dy W @), u) @ x
1 AlRik) ¢ (%) -4 R4 B (R4 ]“’.
5-3)

Note the similarity between the first three terms of equation \3-59) and
the collisionless Boltzman equation for a system in an external potential

3‘# 3 = — —

S0+ kYo ke - Ju T, HRA) =0, (3 - 60)
The last two terms are certainly a modification due to the abondonment of
a fixed number of particles, and can be considered as the collison term
in Boltzman equation. Similarly, the equation of motion for the deviation

distribution function reduces to

% dri) + 4. \'?; JRY + g 3.,\,\. (-’6‘,," _ v.,’ ~’\2)) d(‘/ O WRA
‘ {( ;—\ g0, Y 2@ 0
+a; p R } l 3'%.4) Atz)(;_‘) _ A (R Y 3(1{(2!-4 }

I D —QOJ)BU) + (B-o‘\“ﬁuj . ﬁ_‘}) W +(3)
+1L e['( P TR i Z) R (D"'f‘;: ) DR] "

P b A%W 3le—4)
ll —=a) ~ () - U) =) +(3) =12} .JLI) - -
T[(Z+Q{')Di -l'tDLf-D ) Dg +l p7 U’]

NN, 2% 4 gufg 4J

N - -4 —_ - ¢ - - -8
. "5.' [( t_z uj) W + @E, D_.z)) n . u; _ tz;) ) o "
-2 e Gira) £R-) A’k -4)

! d (2) -+(3) [~ ﬂ‘, — U} g (3) :"\l, t‘) (1) —0(3) ]
. T [ D, )‘b" "'h)l—% )Di +t61 3 W el
al e AL %0 £0 =s

[3- 41)
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This equation (3-61) is also similar to the Boltzman equation; and hence
the distribution name for 4 can be justified. Thirdly, equation (3-59)
and (:-61) together with equation (3-47) are a complete set of equations
which describe the system. From this set of equations, it is apparent
that a solution to the dynamical problem expressed in terms of the Wigner
representation involves as much complexity, and therefore as much infor-
mation, as does a solution in more abstract representation (2-74) and
(2-75). Finally one may utilize these equations for a derivation of the
semiclassical hydrodynamic equations by taking various moments of the

distribution functions, similar to Koonin method for the TDHF approxmation.
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Chapter IV

4 Restricted dynamical parametrization.

In section 2.2, we derived the TDHB equations from a varitional
point of view. It offered a classical interpretation for the equations
of motion as a system of equations for an infinite number of classical
particles. Although the TDHB equations give a complete description of
the system, the complexity of solving these equations is a problem.
Also, the interest of many physicists is more restricted to the time
evolution of a few macroscopic variables describing the system ( such
as its quadruple or rms radius) than the fine details of motion of
each microscopic variables. Therefore a reduction in number of variables
is desirable and various methods are devised to do so. We briefly
review these methods (a) intuitive parmetrization: One assumas, the

time dependence of RéPiS through a few number of variables W, Y i.e.

RE) — R*éum)' (&1

Then the Lagrangian reduces to

J

3 {#-2)

£ . w

= 7; U R (W)
2 ¢

One may obtain the equations of motion by using the Lagrange bracket.

The result is

3“; “a’] ‘13' = 1‘%\, _ (-3

«)
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23
Where the Lagrange bracket is defined by

L "S; = [ i ’f,,. i Rie - ;;2@,,,7‘ ..3]. (4-4)

The number of parameters is restricted only by the number of variables,
and one may think of a complete description of the system by introducing
as many parmeters as the number of degrees of freedom. (b) The parameters
in the above procedure may not be canonical in general. The choice of

a canonical parametrization for wu, , uj--- would result in a classical
Hamiltonian Hm,g and the equations of motion reduce to Hamilton's equations.
For a quantal description of these collective degrees of freedom, one
may utilize this classical Hamiltonian in a " second quantization " to
evaluatethe spectrum of the collective energy. Although the justification
of this procedure is an open question, one may obtain some useful
information by comparison of this method's result with other methods
describing the collective motion of the system. (c)In cases (a) and

(b) the dependence on the parameters should be known a priori. One

may modify these methods by introducing parameters through a constrained
static calculation for the system. This method has been used in ,

an adiabatic approach to the TDHF from a variational point of viewt3

In the following, after a brief review of the two fluid model, we
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discuss the derivation of the two fluid model from a variational
point of view, Various trial wave function has been used in the
derivation of the Lagrangians describing the systems. The parame-
terization of the Lagrangian density is canonical for two of the
models and for the third it is adiabaticaly canonical. Finally

in the last section of this chapter, as an application an Irrot-
ational fluid model similar to the Kerman-Koonin model is

developed.

4.1 A two fluid model: First approach.

One of the successful theories for describing the peculiar

behaviour of liquid helium is the two fluid model. This model,
34
originally proposed and developed by Tisza , is an analogy to
]

25 |
the structure of a degenerate ideal Bose gas. Landau, with quant-
ization of the hydrodynamic equations advanced the theory. In his

paper, with a classical analogy, he reached the conclusion that

there is not a continuous transition between the Irrotational
portion of the gquantum liquid state ya #=p , and the vortex

$A&}*o part. Thus the energy spectrum of Tiquid can be divided into
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two spectra, with a certain gap between the states of the Irrotational
(phonons) and the vortex motion (roton). Feynman36with his interpretation
of 1iquid helium as a system which exhibits quantum mechanical behaviour
on a large scale, and with his approach of finding some explanation for
phonon and roton excitation from first principles, put some 1ight on the
theory. BCS theory also helped us to understand some aspect of super-
fluidty. On the microscopic level, there is a derivation of the hydro-
dynamic equation starting with a time dependent BCS trial wave function.37

In nuclear physics, as we already know, pair correlations are impor-
tant. Thus, in analogy to liquid helium, one might expect some aspect of
microscopic phenomena in nuclear phyics experimently. In astrophysics
this phenomena may be important in the dynamics of neutron stars.In

section 2.2 we derived the Lagrangian for a many body system with HB

trial wave function, it can be written as

i .4
¥sq A d ﬁ“fm{f;p—i’{. %}ﬂ k*g K“.
(4-5)

As we discussed in section 2.3 the total number of particles is conserved
in TDHB theory, and the TDHB equations are independent of chemical
potential. Therefore the Lagrange multiplier A need not be included in

the equations (4-5). Also in section 2.1, we discussed Baranger's argument
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about the equivalence between Blatt's wave function and the BCS wave
function. Now let us take %9 in its canonical representation, i. e.

taking 4 as a real, paired and antisymmertic second order tensor:

( 4-6)

where 7 represents the state which is paired with 4 . Thus £ and

will have simpler forms. Utilizing equations (2-46), (2-49) and (2-50),

we obtain
_ (4-7)
'(:\f" J;a 8451
Kq,‘ k(Z SFI | (4“'")
where
2
A (o
+
and W
_ ey {4-n)
kﬂ - 2
L+ fﬁ

Now, Tet us assume the single particle wave function be time dependent,

then the simplified version of the Lagrangian reduces to

x t —
i = jd’i"’ ﬂg(rﬂ %"ﬁ’(rﬂ f T fH -+ \Qn#j:dj;p“}f\/(;gﬁ"-
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Let us write the single particle wave function as

1{:(?11 i ez'X,,(ru " (=12}
where % and hﬁ] are real functions. One could decompose the single
particle wave function in the following manner: ]ﬁ!is the real wave
function which corresponds to the single particle state 4 with respect
to the rest frame of the many body system. In the classical interpre-
tation, X, can be viewed as a momentum density of a classical field
and k{)?:as a density field corresponding to the state . One can
easily see that the momentum density ')L‘\ and the density field [’f]}’“
are canonically conjugate to each other.

The corresponding Lagrangian 1is

{- jdr?; [*‘J”f"’ _ J’:(v%.:r,)zﬂ‘-s - € (g1, ’X*}- (4~ 13)

Which may be obtained by adding the total time derivative
WA ) P -
T o e g 4=

to equation {4-11), and defiﬁing functions

.f;\ﬁ) = \n{(r.})\zf‘\* L 4-15)

!

€ (hes,) . } far W(rﬂ\('%—z)\"ﬁ('*)\ LTk T Y

134

416
*E‘ﬁ\{an Kia K, - (4= 1¢
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In this Lagrangian ( 413), we have a large number of degrees-of

freedom. Thus, as we mentioned in the introduction of this chapter,

a reduction in the number of canonical variables is desriable.
Kerman-Koonin derived the continuty and the Euler's equation for

an Irrotational fluid, by taking a coherent phase for the single Particle
wave function in TDHF theory. Encouraged by this derivation, let us

keep two phase in the Lagrangian. We may use the time independent
chemical potential A for distingushing the two phasees. We define

$@# and jU7H such that
tf[vf} €, >)

X = (¢-17)
jirt £, $ A

where € is the single particle energy. Utilizing equation (:417)

in the Lagrangian (4-16) one obtains
.\ p . 2
l- 53’7 [ P L + 560 S - % (v9) fon - L f)i{m}} -E ({0 17,91)

¢-12)
where (

($-19)

and

M, [4-20)
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In the derivation of the Lagrangian, we used an arbitrary
lTocal two body interaction potential. Physically the choice of taking
coherent phases corresponds to freezing out a large number of degrees
of freedom. Thus E(jtjmse-fcan be viewed as the minimized energy as
functionals of £ and an explicit function of 4-3. In other
words, that means all other degrees of freedom are chosen to minimize
E under the constraints of fixed {ﬁb, L9 and 4-J . One could derive
the equations of motion for the Lagrangian (4-18), but it is more

interesting to define new variables

v o= 4(5-9) (+-2)

1= 4 (5] (#- 24
and

b= hrs - 1

IS (4 24)

Utilizing equations (4-21)-(.424) in the Lagrangian ('4-18), we obtain

L=Jo [Vavs -3 (mvewn)y -mow)s] -E(g0, 7]

¢ - 25)
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Thus, one can derive the equations of motion for the Lagrangian (4-25)

$d

T 5o V(s 4p o) =0, (4-26)
e 2 s dontew] + 2o (447

S G W) o, (4-)
%’5' = Y+ Ty +§§ - L4 -13)
Define

vz
3 v¥ |4-30)
!
s [4 - 5))
}: f - —
CRT - 2Ty (4-2)

Taking the gradint of the equations (4-27), (4-29), and utilizing
equations (4-30), (4-31) and (4-32) we obtain the equations of motion

for the two fluid model as



2 - . -
1.+ V(fnvn*’; ;) =0
]
(¢ -33)
24,
st V(e Bhg ) e,
d g (4 -34)
W
=+ V&R, B2
Ll v[! (‘V’"‘)“J);] =e [ 4-55)
2

éag =3 14"3‘)

»

We observe that, i‘nﬁ,:o (superfluid is Irrotational), 3,\'13.., "Gﬁ)"a‘?,
(normal fluid contains the vortex motion). Due to the canonical
behaviour of the varibles, the total energy would be conserved and
thus one should not expect any vicosity term in the equations of
motion. We will discuss small oscillations of the densities near
thier equilibria in section (4-5).

4.2 A two fluid model: Second approach.

In section 4.1 we derived and discussed the two fluid model
for a special case of the HB trial wave function. Therefore it would
be interesting to derive the two fluid model with a more general HB
trial wave function, which is our aim in this section. Let us introduce

a new wave function:

. T
tHx) A ) alx)

\¢7 = . V4.7 [ 4-37)
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33
r
Where ax)( af)) is the creation (destruction) field operator, X

represents the spatial 7, spin ¢; and isospin g coordinates; and
is the usual HB trial wave function in the coordinate representation.

The time dependent part of the Lagrangian can be written as

PlidiEy = _ pre <<*¢,5ya&aml‘fm7 + <y (2 g >

(#-33)
From equation (2-90) one may write

lidlhg) = M) ‘fVJ)*'kVM\“ﬂ-%W) (& - 39)
We assume that the two body density matrix elements have the properties
0 - £y)
1 (4-40)
. /
wy - o)
K, (%) (&-1)
and '
J’Y(X«a) = ,f'(ﬂ))‘) (4""'1-)
/
k(%) = - X,9%) . ft-43)

This form of the two body density matrix elements satisfies the
supplementary conditions equations (2-33) and (2-34). Employing
equations (4-40) and {4-41) for deriving the right hand side of

of equation {4-39), the final result reduces to
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443,',9”‘72; ‘,h‘, ) = = [deom kir) (4-u4)
where
2

R = , 3 j&r'(K,(X,a)/ (u-45)
%0

And for the time dependent part of the Lagrangian (4-38), we have
l) . -
<<Pl',ﬁl§> = - S;r[“’(r\j(r)-t?(yik.(r)] 4 - e6)
where
oy - L plxx) (4-47)
5%

The kinetic part of the classical Hamiltonian can be written as

s T : I
AE N L -1} Ax) Ay’ Wwy') aylay)
<4’IT\‘}">-’T‘X,3)<‘&3‘ e T ) 4Ky) A3 N
alxyay e [ %
(4-48)
We may expand the expoential coeficient of the trial wave function

(4-37), then evaluate the right hand side of equation (4-48); and
next expand the expectation value of the density operator (4-40).
The final result for the kinetic energy (4-48) up to second order

in terms 4 and & is

SOATVED = Wy [t - L 900-gt0r+wm -wn)z] Plry)

(4-49)
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Now,let us use the explicit form of the kinetic energy operator
Thx) = =L g §fy-r
A Vy 8<Y & S%“&v S’(!' ol (45 °)
$°S

in evaluating kinetic energy. We obtain

(4 T | ¢ > = _ S;ng' S&-"1 V: f(X,x')/;\ +—,‘: dr (1'7'60)-1- -ﬁwr/}z'f(f)‘
Y 14-51)

Although we expand the kinetic energy to second order in terms of
4 and ¢, the final result is correct to all order of them. Finally,
the potential energy term of the Hamiltonian can be obtained with

a similar expansion as we had in the kinetic energy term. The result

(to second oreder in terms of @ and # )is
GVI47 = L Vigxy)[ 4200 £a) + % (0 Ky ] {1-

1] (P ae) - (0xle Wy) 4+ (909 «90) —(ﬁx’nﬂy’)]zz

{4-59)
In case of a Tocal potential, the potential energy (4-52) is independent

of £ and . Now putting together three terms of the Lagrangian, utilizing

equations (4-51), (4-52) and (4-46); the Lagrangian reduces to the form

L= fa [soke) v py * 4 (vgrve) poi] — E ey, i)

(¢-53)
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Where we assume a local potential for ¥ , and as usual E (ft}g)s the
minimized energy under constraints of fixed f and k. The equations

of motion may be derived by Hamilton's principle.

%i ? ~ - —-

%ao = ’b‘f + V(f‘]‘l"—tfv_‘f) =0 ('5'5‘”
L&‘ = l\;- + ,L( Vf q’-)jv_‘. é—é =0 (lf- 55)
S5 =2 Y TV TR,
3 _, ; e (-7
T £ + Sk = °,

The equations (4-54) through (%57) are a simple set of equations
describing the motion of the two fluid model. One of the special
properties of this model is having zero roots for dispersion relation
relation, and we will discuss that propertyin more detial in section

4.5

4.3 A two fluid model: Third approach.

The motivation of this section is to derive a two fluid model from



82

direct use of the TDBCS wave function. Let us consider the trial

wave function:
LA i
192 = e ¢ 1BCs Y [4--54)

where
T ®
A ¥ T T T
A= Ja’rE A (¥ }k[/ﬁir) A(rt) a“+'ff(ﬂ a,. a{rt) + ’%v) a“aln)

+41 amg,] )

(4-53)
A 7‘ T
¢ = er Fleh [am avt) + aby) a(ru], (4~ ¢0)
and BCS s the usual TDBCS wave function:
T 7
|gcyy = Z (U,‘-HQ 4(,440)}@) (+- 61)

with 4, and ¥ assumed to be real and time dependent.

In the adiabatic approximation to the Lagrangian, the potential
velocities 4 and  are assumed to be small enough to permit an expansion
of these phase operators, retaining only terms up to second order in the

phases. The time dependent part of the Lagrangian can be written as
$1id)d) - - f}‘r[ ) P + %0 k)] (4- 42)
where pgland K¢ are defined by
z 2 l - 63)
¥ = . V [+
£ L (19 %ol v

and
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k0= T alfe gyl ad,. fr-e
ke

% and Kk are adiabaticly canonical variables as one may notice
from equation (4-62), by retaining terms higher than second order

in the phases. For a simple potential such as

—

A B 7 ,‘.
v = 7»2\( Y % Qe A4y 10 l9-¢5)

the Hamiltonian operator can be written as

T T 1
Ho= T alvr) 4ir) s 4 ) v L Vo % tuer
kx [4’_ 66)

Again, we expand the phase operator in the trial wave function for
evaluation of the classical Hamiltonian; the result to the second

order in terms of $ and 4 can be written as
CEIA1E) = TGr) pev) -4 <ees|[ A [4,A))18cs>

-1 <Bes| [fl; [{ AY]18¢#) -<scsl[$ ’[A ,:ﬂ} |Bey
l4-67)
where
S‘(V'f) = ZK ("t'u') 4’:'0) +\£“(’.) t}f)) “Ll, (‘F-él)

The Lagrangian can be obtained, by evaluating the classical Hamiltonian

(4-67) and subtracting it from equation (4-62). The final result is
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L = - [F [ g p exedelr) + Llvg)’r o) +Jz-‘9(')z/4(§ff,f"‘7) *%(71)23 (#ix1)

+4 (vpvn) kW) + 3 (xew) 2 C ?fi,ixs) + 4 5mfx«m((;5)gk;) ] - j;r,:rr' [

aoe) L 1) + 90960 HUs1 ) +900 20y Glish, )] - Elirip)

| 4- ¢9)

Where # and Kk are defined by equations (4-63) and (4-64) respectively.
Other coeficient are defined by equation (4-70) through equation (4-76)

A ()ﬂ,‘;k}) = -4 Ek' e Un¥ u,,.vk.mnp  4=10)

)

Blg, M) - 2 L AW HY \4-7)

A R L VR L5 I T 9 0 T

k

4}'\\')4’{'\ + 2# e % Gl W(”/ _] (4 -72)

l

Olef, 1) = 5 5 | ¢ un 4
: I ﬁ Wi 't Vl'ﬁ(’) + §ﬁ gk "fjb" 'f,'(') "f(:)‘?z")

- q.f Vk“. y: Jl“‘(‘l"vl'”l ]

’ (4-73)

Flstga) = 2): [*1* Ve m«h,; Tle, u) "h«l"fw +4hf U %} ﬂf)rw ® #o

_‘D

_zH, vk qlrw'(') -Tu,,l'\}'m «f(r) V. -2 fﬁ W(’)/W\’)/
ke & A

TN A TR

W (¢ - ’t‘l)
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. E . #tz 42(,, ,4,(,!,) ( Vie' Ve U, 4£(r) \Z(w} + ‘é&' '}ﬁtf)«{(v'/ Ve Ve Y
V |‘}'6’ ') - “ ‘ 2
WA - o Ty fotagon]

G ( b’f, it ) = %: 8 [i'kﬂi(f) 4l’.}r” *g:c) ’lf’g‘r') T(ru) + e 'ﬁ(r‘)%l«) ’f(';/ 4‘{0')”.‘"{,' Tyl

+24 o) H;“” e el =4 4 Mol 4/’(1// o Y e w?iéﬂﬂr‘l -

4
‘4’(/) *(V ' Vk k' +£“ '\f."(r) /\i(r', 1;0) 16(’/') Vﬂ“ V: V“‘Vb. - ¥k 4:(" 4'0"/ ?(f’ X

A
) Vo ¥ A Ue Vo (4-75)

/

] éﬂ,fﬂ) = 7 [ 8 Ve AR dk&"t.(‘l/ifv))l(,lt:(,')lz_@ Vo Vel %k y (y)ﬂl;(r'} X
p)

4
Kie'

o #) ] ey

where the spin coordinates label is suppressed for convenience.In
deriving the classical Lagrangian we would freeze all the degrees
of freedom except the two collective ones, namely ¢ and = . That
mean that all the dynamical variables in the trial wave function are
chosen to minimize the classical Hamiltonian under the constriant of
fixed ¢ s o P and K . The equations of motion can be derived

by Hamilton's procedure from the Lagrangian {4-49), and we obtain

5 -

é:a 5 Y i i) -84 +f Tl ovx) -Lx D
iR
A

2

jsﬁv'[& g H +qr 6] =
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5 & _ .
BT g e e Lg) A 4 e, | &2
- L L (4) T +4 (vfx) R ffw)'xwf
+—l~kx\v\)L§'§ +_LS‘;,- yxw) SF Y6
2V g TR Leke) € 4 quwe) g5
+ gu) ) 8 e _, ~
qgéf]+53_ ) (+-78)
53
— e O :ﬁ ‘2-& + —.. heved -
&x ?t V{BIx) + 3 Yk ve/ -1 %D -xwe
-1 dy’ ’
L S [aen g o ey e =, [ 4=75)
—éi‘ J
dp, T = Xl 4+ A (q)? £8
)" SL 18
2 S t 3 @%”J;R *iV9Y%
§¢
)" 5—; + 3 90 «TD 3 ()
* 38 g sF
+ 4 y &
3) x(r') 5.t Fge) —H] 3_5 =o
R
{ 4- g9)

The equations of motion (4-77) through (¢¥80) describing the fluid
model are complex and we will consider only small oscillations of the

variables in an extended system near its equilibrium in the next section.
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4.4 Dispersion relations for the two fluid models.

For each of the three two fluid models described in section .1,
4.2, and 43, we may consider small oscillations of the densities near
their equilibria. In the first model, the equations (4-33) through (4 -36)
can be applied to the propagation of sound in the system. We assume
the velocities are small and the densities are almost equal to the
their constant equilbrium values. Thus terms which are quadratic in
excursion can be neglected. By differentiating equations (.4-33) and
fA -34) with respect to time, using equation (4 -35) and "4 -36) and

eliminating ﬁ;and Q_in fovour of p and & » one gets

_ ?*f . .
ot f7v1I+§vw g =0 (4—8#
/
2
Z.L -+ 1 r
—or YPVY 42 VI 3F L -]
/
where
oE {4-383)
1=z 4 '
57
_ sE (4- 24)
3:‘- g_& )

and
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2
F = 0‘*

ﬂ\‘-ﬂ
<Im

( 4-285)

One could write fand 5 as functions of T and g , then equation

(4-81) and (4-82) can be written as

’)P) 2T 1{) 2

nl 2t 24/ 111=J’V’“J +J§Vlﬂ (q-u)
/
2
) 21 2, 9
fTrz)a ot 1_%-‘{"'2 =5 v +fv2_,:2 [ 4-97)
For small oscillations, one may write
P17 owb
I=1 +31 ¢
(4-4¢)
)
TH2 ot
1- ba e
/ (4-4)
and obtain (in matrix form)

1 2§

o) s off), e | [#
) I S
£

Wt ls)a -3, 4t W) et

i1 3 6)1 5 F ll‘._Jn)

then, the dispersion relation can be written as
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LA -3 ) -l Feer e

O]+ re(ar) gur-s -

With some algebric manipluation, the dispersion relation (4-91) can

be written in a more simple form:

wt Lt ey 42 23 2 oI %
ARECTERPIIINE )

J; S"J_g

+ ‘3&‘(F+ﬂé) - (J}/J’)Z} };) A4 ‘) =

) s £ : (4-22)

This dispersion relation {4-92) has the appropriate limits. First:

For normal fluid —‘;=0 and %?)=O one gets
3

W= (4-23)
wta gt M (4~ >4)

This equation(4 -94) is eqivalent to the ordinary sound dispersion

relation in the normal fluid. Second, for small _{i and %‘?#-one could
3

make the approximation
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oAy 11)

X4 X3 \#-25)

which is similar to the
gy 2] [4-36)
57 oy
approximation in the Landau theory of the two fluid model. Then the
dispersion relation can be factorized to

21 * t| 2 ~
R A S LT ARG

3

or
W t 2}) (4-2¢)
sS4 27 5 Y
and
2 (4-93)

wre (Frpad) ”J'})J-

The dispersion relation (4-98) corresponds to normal sound in the fluids;
and for the other relation (4-99)§ it is similar to the electron plasma

3
oscillation dispersion relation. For a general solution to the equation

(4-92), we would have

W = (-lf;s{lil/(-t»prL)L—«r Sl 54Y)) )y o+

where
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= ,?_d. °
¥ 72)} ) {4 1)
= |p-p) 23 al 7]
p ( “;) ? ,)J’ t3 3;)& t+5 5}); , (4-102)
¥ = aT) 23
PF q;)z ‘E)f ) | 4- Vos3)
- 2y 21
b= (55 ,;jl,)a ’%{); ‘ [4- 104)

Equations (4-100) describe the general form of the dispersion relation
for the two fluid model. For small £ the square-root can be expanded
and one of the branches contains the effective mass, while the other
would be similar to the normal sound dispersion relation.

The propagation of sound in the second fluid model can be
considered similar to the first model. To avoid repetition of similar
arguments, we may derive the dispersion relation by direct use of
equations of motion (4;54) through (4-57). For small oscillations

of the varjables near their equlibria, one may write

S =5+ e (4 - 1os)

K= k. +5k e (l}-—lu)
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{4-107)

£=59 e (4~ 108)

Substituting equations (4-105)-(4-108) in equations (4-54)-(4-57),

then the equations of motion reduce to (in matrix form)

/ -1 ® __‘&} *tf of
\ 1 2 SK
] ~1u AT —4f =0
3 45 28 \ 4
~¢ 4 s -iw 0
\ %ﬁf 1.4 0 -tv o¢

The dispersion relation has two branches
w =p (‘f —“a)
and
) t¢ > e ) 5F
2 t £ e = _ 4 eE 12
W's g [o)’ § tox dw * S ,?;,?-'-J [3-m)

The simple form of the dispersion relation is due to our choice of
local potential interaction. If we use a general form of potential,

the dispersion relation will be modified to



4 2 2 2 E

L4 L2, 55
w ] () (4 E + ) - (e 10)( % £ "'Yi%u
d & 3 SE
4 'LL 9 2 3 SE 13
44y ( I Ty >y fu - 2% i} 4%—ZR ) =9 [ #-142)
-1
where a
_ ) sy
L= W g

(#n3)

The dispersion relation equation (4-112) has the approprate 1imit.

for %5“ we obtain

(4 -14)

N

and

. 5 |
W lidy) 2 Tl ' [ g-115)

For % =0 the equation (4-112) reduces to the equation (4-110) and
(4-111).

For the third model, let us consider the linearized form of
equations of motion

! ] )]
~ Ak €t ok TIA - L x

. W )
-2 W Tagw) Hge + Ko 6 () ) =0, (44-116)

?)_tg-\-_é}_E W

5&
5 owsr f % G

LT}
K =9 \ e “-n
T t

[U)
TR ) u) J;
VIR T A A % kv - L Dien) T _c (p,¢) X"

“X iy M, .
'g_SJ( {2. X'} F@#e) + 5’““'[ G(I,n)) =2 \4-ng)

J
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2% 2 s U 285 Yy g W

f._ — — — — -
1 Taply P otne T 5 K=o, {4-n3)

For small oscillations, we may write

fu\ ; 2(2-? -wt)
= e ’ { 4-124)
o) (AP wH)
=3¢ e l
U VR? Wt +-12))
W \'(j“-“: —oi 4 - 1as)
A= 5% e (- 1u))

Substituting equations (4-120) through (4-123) in the equations of
motion (4-116)-(4-119), writting the results in the matrix form, then
the dispersion relation can be obtained by evaluating the determinate

of the matrix. The final result is
Lt w] 225(3 Ny I L
sk \ Bl )£+ Ag k) + FF(5k 4 +9}-7f( 185 Aly v

+4L F K DO VEE L V4 ) s
FFH ) s (2828 L 2 28 [ (00 a) e dpnn g

(Ble)4 + ¢(sx) + FE(s ¢ -4 %+ Dige) + rc,(;;K,4))L} =0

!‘I--lzq.)
where

( 4-1a5)
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6 (flkli) = Ja’r' e { r) ¢ (r) k) (Q'u‘)

Fralktl < (u o'F09) |
H{ k) (&-127)

Let us consider the limits of the dispersion relation (4-124). For

SF?;k‘ we would get the usual

2
W=

]

) \‘r—»zg)

and

?
o B[ AY tE Rw (g, ] (4

lul

u

for the dispersion relation equations. The equation ¢4-129) is the mod- -
ified version of normal fluid dispersion relation, the extra term A and
1/2FH are due to nonlocality in the two body potential (4-65). In the
region in which the term

i 5% LsL 1 atw ’fz‘FH(r.x,z))\ Bire) A° + e + FF(5xA))

2 RN :
Lk + 2l +Es (0] ) - % 7 aan (X4 +DbK) +Folskg)

(4-130)
is small, one may factorize the dispersion relation (4 -124), the results

being
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w = %f ,sf (;4_ + Alp,x) +J FH (P ,U) {4-19))
)
and
Wz gkésé (Blee) £+ Cln) 4 FRUK, L), (-132)

For small 4 one may expand FH and FF in equations (4.-131) and (4 -132),
respectively. Then the result reduces to a familar form, except in
this case both branches of the dispersion relation have a finte mass.
In general we could slove the quadratic expression of the dispersion

relation, the result is

2
A N T (3 133)

where

= 85
4 Ai): f?'k(ék)( Blsik) ¢+ Clpyx) +F.F(flk{)) + 255(]’{_&

t A(II*’)'*%:F H bo} Wkl

and

D e 2 SE ) E ) SE
P= [05 % hic tar %‘m?l?}ji(f‘z‘f At +4 FU (k) (

Ble) &+ clrx) + FF(s, K,.c)) j-(iuL t8(5e) + F6(pk, 4))]

14-135)
Let us summarize the discussion of the dispersion relations for

these three different approaches. For each model we had a quadratic
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expression in terms of w®which has been solved. For the first model,
we have two branches with approprite limits. For a reasonable approxi-
mation, one branch is similar to the normal sound dispersion relation
and the other contains an extra zero effective mass. For the second
approach one branch is w=¢ and the second branch contains an extra
effective mass in the normall sound dispersion relation. In the case
of the third model, the dispersion relation are more complicated,

and usually both of the branch have the effective mass. Also their
dependence on the wave number is more complicated than in the normal

sound dispersion relation.

4 .5 An Irrotational fluid model,

In sectionsg .1, .4.2 and 4.3 we developed the two fluid models
first from a special HB, and secondly from a general HB, and a TDBCS
trial wave function respectively. But the development and carring
out of the calculations for those models was complex and time consuming.
It would be more attractive to develop a simple model with a restricted
trial wave function. Therefore in this section we begin with time
dependent BCS trial wave function and construct a simple Irrotational

fluid model. This model will be used in chapter five for the calculation
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of sound in neutron stars.
Let us consider the trial wave function:
1 80) [ality act) + Ay ady]
e IBes [¢- 13¢)

-—

1¢5 =

]
where as usual &fMand 4i¥Vare creation and destruction field operators
respectively and BCS correspond to the time dependent BCS wave function

(:4-61). The time dependent part of the Lagrangian reduces to

4}"‘3'{,\%) = - Sl'r {0 PE) , (#-137)
where Pf)is defined by equation (4-63). Corresponding to the Hamiltonian:
[P T o coy T T
ho= TG ( adnadt) + afy aa‘n) + Vi(xx 57-) a W ax) ay) aly

(+13¢)
we obtain the classical Hamiltonian,

Ity - (o lon)e@ 4 E(4n) _ li-435

Where, as usual, EWi) is the minimized energy as a functional of pG)
and in the case of a local two body potential E(s3) is independent
of g.

The Lagrangian can be written as

L= - 7 (9004400 ro) - E (1) (4 -144)
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This Lagrangian is similar to the Irrotational fluid model of Kerman-
Koonin, the only difference being the inclusion of the pair approximation
in deriving the classical Hamiltonian. Using Lagrangian f4-140) one

may obtain equations of motion:

i >

> T V(edg) =0, -1 4)
731 ¢ E
TERIE AL A (- 14)

Where (4141) can be considered as the continuty equation and @ -142)
as Euler's equation. For small oscillations near equilibrium we may

write
V4 -1y3)

EIEL RS (4— 14ty

Substituing equations (4-143) and (4-144) in equations (4-141) and
(4-142) ,writting equations of motion in the matrix form, and evaluating

the determinate of the matrix, we obtain the dispersion relation as:

= A(IE z
3 ;,}Zr> 4 (% -ta5)
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and the velocity of sound in the system will be

55 v E@1) | (£-46)

s
"
\-oIV
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Chapter V

A study of neutron matter.

In this chapter, we study the effect of pairing on the dynamical
properties of neutron matter. Neutron matter is a hypothetical system
of neutrons in equal spin populations. It is assumed to fill all space
with uniform density of neutron £ . Although this system will not be
bound by itselef, the interior of a neutron star would be a very good
approximation of the system in nature. Usually, parallel to the study
of nuclear matter, the neutron matter is also discussed. Specifically,
the superfluidty of neutrons in the neutron star has been reviewed by
Baym and Pethick.40

In section 5.1, first a static study of pairing in the neutron
matter has been considered. We assume that neutrons are interacting via
soft core potentials. The energy gap equation has been solved. Then we
treat the description of sound waves (small amplitude oscillations) in
the system, utilizing the Irrotational fluid model of section 3.5. In
section 5.2 we derive the QPRPA utilizing the Generalized Hartree-Fock
method, and apply it to our model of neutron matter. The numerical

calculations of the QPRPA and the hydrodynamical approach for phonon

energies are compared.
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5.1 Sound in neutron matter.

As mentioned above the study of sound wavesin neutron matter is
our aim in this section. One of our assumptionsis that neutrons are
interacting via soft core potentials. The potentials adopted in this
section and the next are taken from reference EUE The potential

consists of three parts of gaussian shape

3
MR TS AR Y (s-

=

The values of ¥, and 4, are given in table [4] . The term (4=1) is
adjusted to the OPEP and the term (4=2) to the strong attractive part
in the intermediate region in the singlet even state. The third term
( 4=3) represents the repulsive soft-core and is confined to the region
rg m7£ . %and 4 are determined by the singlet scattering length and
effective range.

Now, we solve the static part of the equation of motion. Utiliz-
ing equation (2-75) in its static form, we may write

MecN kg ta (af,51) =o, (52

In solving equation (5-2) we use the effective mass approximation for

the single particle excitation energy f(which is relative to the chemical
CY

potential )



103

= (& o ~ *L R 2
}& Q.‘ )\ = :{h"(%‘m“#)' (5-3)
Using equations (5-2),(5-3) and the supplementary condition (2-33), we
obtain BCS gap equation which is a non linear integral equation for the

gap equation

b= —p L <pplol aw IA’ b (5-4)
t\"2 ¢
¢ (?r *8)
Integration of equation (5-4) over the angles is performed and the final

result is

H

E O S“x' i R RN AS *r—ﬂf(mx')z}*

by !
/[L‘Eﬁ)z (s Af(]/: (s -s)
where

A (gfram) "{“ﬁ(ﬁ) ) K= Ak

The iteration method is used in solving equation (5-5); the input of

(s-¢)
‘ ‘ Lo * e
A /[(";‘;.)QUZ'\V* 8% 7" is #p -[x-)" , and the convergence condition is

A R~}
May l 8y =2 < 0.9 |s-7)

AN
X

where n is the number of times the iteration is carried out. The region

and the mesh size of the integration are [0.0, 7.5) and 0.15 respectively.
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The ordinary iteration method is modified by relaxation method, which
makes convergence more rapid. Nymerical results are given graphically.
A is positive and decreasing uniformly for~i54,but becomes negative
for-{hz& due to the repulsive core as shown in figures [s,s] . Figures
[T,SJ show the dependence of the gap energy at the fermi momentum on
the density of neutron matter for various effective masses..As we see
from figures [s-3] , the calculated energy gap are reasonable when
compared with the experimental values in heavy nuclei.

In the second part of this section, we use the formalism of the
Irrotational fluid model of chapter three to evaluate the sound velocity
in neutron matter. Besides the effective mass approximation we used in
the above calculation, we assume that the introduction of the phase ¢
in the trial wave function (3-136) does not change Efffrom its ground

state values. Equation (5-8) show Elgi) asa function of density

E sl = z 4 v + ¥ (4-(]1»!'1'-1') Ule Vi %
k'

= A0, 1 I
o 2(jla ™ (s-8)

where we have used the definition of gap energy (5-9) and the static value
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A - 3 R 1} )
K )k’ CEet]u]d &) Uygv (5-9)
and

A | [ s-10)
a(§iter)k

Equation (&-146) gives the velocity of sound in neutron matter

= p AL EWY, (4-144)

Utilizing equation (5-8) one may obtain%,%ﬁ(ffﬂ

2%

2‘ —S'E{f] z 2 2 2 (%
)s‘/,_ [ T 4 (3,00 ) +3(2) f,. 2

°p b = 5@@_, i

+ 5o M

w3 eiid) o 2 (g o) 20015 100

+ ‘

y 2 t2
ey | a7 02 ()« GRY (agla -o8) n 2 QTN

w!(;

_Akﬁ) ’b Ak. ijbk fAu) + (3 ) zf_/_\:j:)] K . {51

In our nummerical calculation, the region and the mesh size of differen-
tiation are \o.sn§4 '&5&;J and 0.05 fqrespectively (for the corresponding
fermi momenta). The region and mesh size of the integration are [a,, 15]
and 0.15 respectively. Figures{s,®]show the dependence of velocity of
sound in neutron matter on the density for various effective masses.

The dependence of the velocity on the effective mass is shown in figure
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LW\ for various densities. As we can see from figures [9-\q, the
numerical results for the velocity of sound in neutron matter are
reasonable, considering the result of other studies of nuclear matter.

5.2 Quasi Particle Random Phase Approximation.

The aim of this section is the derivation of QPRPA and its appli-
cation to our model of neutron matter. Besides the variational deri-
vation of Baranger, there are other methods for the derivation of
Hartree-Bogolyubov equations. One among them is the Generalized Hartree
Fock method developed by Kerman and Klein. This method has been devised
to describe the excited states of system in equal footing with the
ground state. It is based upon the assumption that off-diagonal matrix
elements of certain one particle operators are of the same order of
magnitude as the diagonal elements, and the two body matrix element
can be factorized similar to the RPA, with a simple generalization
to include the collective states. Although this method is used mainly
for the description of excited states in Hartree-Fock approximation,
it is equally capable to describe systtem in the Hartree-Bogolyubov
approximation by retaining the expctation values of the pairing
matrix elements. In the following we utilize this method for the

derivation of HB equations. As usual, we consider the Hamiltonian:
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= T %) a&)“(}]) +{; Vixy, "'7') ‘JX}ATW ay') oK) (s-12)

We begin with the operator equations of motion which follow from the

Hamilatonian equation (5-12)

Law, 1} = Ty ay) to Vixgey) ay ap aw) (5-13)
) - .

T X T ] iy T T
Ldw, #] = - Tly,p aty - + Vi, xq) awag ag)
(5-14)
We study the matrix element (i[euwlgcg> connecting the 1B¢s) state of

the system with one of the eigenstates \i.} of the system:
%o = <clay)Beyy, (5-55)

Then, the equation of motion can be derivied utilizing equation (5-13)

o .
‘mclanisesy < gy o EI[ aw ,n))pes

= Voo 4 L Vi) < alpagy an 13ep) (s- 1
We may follow the same procedure for the matrix element <£|4&),3cg>.

Then we obtain:

12 4% 1) 3 V<] Al
570 = - T d) - L vy xy) <i ao @i aggfses)

(s-17)
where

$0 =<ilaw)scs S, (518]

L
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To arrive at the HB approximation, we set

Vixg 5y <LlaTm('1a(x') Iscs'y = Yixy, ¥ ‘)[a(ccxlaTca) ay'l [geg )«
) & ay H Ay

< lae) [BCFY + <1 lfm) IBeey ¢BCs | agrawy 18y
(s-19

Substituting HB approximation (5-19) in the equation of motion (5-16)

and (5-17), the TDHB equations can be written as

12 = T L)+ Vixg, k)] 2 fl) %) + kxR ]

" 520
') ¥ _ [ ~ . ¥ y
"W 80 = T 9 -4 Vi, x) [ardpde + k) 98] o

where piyq) and ¥(¥X)can be written as

g ‘h ﬂ ;2 Aﬁ‘“w /‘tw) {5-22)

and ,

kx) - ? o) 1) | |s-23)

For zero order solution to the equations of motion, we may write single

i

particle wave function as

4#&3 - A
: = e v -
and ‘ ¢ ) (s 1)
x) gt + 1407
by = e \ (s-19)

Using equation (5-20),(5-21),(5-24) and (5-25) we obtain for zero order

approximation to the equations of motion
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N {s-2¢)
Ecg = J.w+at (s-27)

Where u., v. , and {. are the usual BCS values as defined in chapter
¢ )

three, and E: is the single quasi-particle energy as defined by equation

(5-28).

- ke
Eo= {gpe el [ 5-22

One may easily derive the gap equation from equations (5-26) and (5-27),
the result is
A0V = A ful v
il L At(“{ v.,). (5-23)
For the linearized equations of motion, let us consider the

equations of motion and their conjugates

i%'t)lu) = Th %) + 1 Vig,xy) [ & ploy 4x)+ k(yx) 43.7»/])( )
5-30
2 4% = Tae” YL vea ) [3 sy 950 + Kl vo )
G W = TRy 7.0 2 nry 'y ¢ G L‘D)/(s—gl)
r’ X x | ) [
- 'ﬂftﬂ) - T\X/ﬂ /q)b%) _*,1\: V(xthx‘.a‘J [lfv?)"}:ﬂ'] + ‘(Q]')O ‘t»(ﬂ)] ([ 5232)
1240 = - Toa) 403 VXD 12 5 20+ gty ] (say

The linearized equations of motion follow directy from equations (5-30),

(5-31), (5-32) and (5-33) upon neglect of the third and fourth order
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terms:

')
12§ - ’
7 f4w Ty §%p -r—,{ Vix ;},x}‘)[.&f ki) s4) + kiyx) 59:.“(3)

+ z%ﬁ)&f@j)* ﬁ&)%k(gﬁ ] [ 5-34)
“7%, #.&) = Ta K 89" B /
A _ by el " L
A S = Ving, ) L fl) s g 4 ki s 4
t 24K S 25y) + %) sefyyy) (5-35)
'”%s%® = Ty 59 4) A /
AV v xy) La flay sq + Ky £49)
X X
+ 2% 8 fify) + A 5ely'x) }/ (5-3%)
-3

3 W = TTha) S -2Vl xy) [ relgsdn) +k h‘x‘)éf.{'a)
+ada) Srlgy + wip Skl (s-37)

Let us define new varib]esJﬂ&Jandfgﬁin terms of old varibles Ptu)

and 54pk

(‘E-"' z;‘ re
e &1+ ")3

V
[(]
=

(5 -38)

" {
(S{.U(} - e S{R) . \9—33)
We may use the effective mass approximation as it has been used in

section 5.1 for the single particle energy. Utilizing equation (5-38),

(5-39) and zero order approximation to the wave function, equations

(5-24) and(5-25) in the equations of motion; the final results are:

~ ~ -
~E 0 12 g - 1 v L~
o 43 g = s 4309 o s Yoate,
J



M

~ 7
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W e - 4T 'f‘-*)“-w_r) i *kvuz &”u(bi;)(;»(’:_ﬁujw?z'}
Ty SJ" vl el s Tl o .3 o iy e ey )
MHy-r') KVS*Q)-J~TS* c*“’““%aq)u ;EW (5~40)

with three similar equatmns for Mm, s ‘\'Wand S&I‘:l Solution to the

equations of motion can be derived by introducing

ST L 9, RERSTY (5-41)
and similar equat1on for 84u1 Then we may rewrite the equations of
motion as

T $107) ,(4 (r-r)
(E; - ’*7( +:£i—1; + q/l.h") ‘S{f” + ?JJY' 'V’('"'}{ [RC V('? - 5) Vevy
it 4 (r) | w7
1l e { ,~‘*'+1)(V"’) A £ +3) -7
- ) ¥

1 ey - L, ] 54_4,1 4+ e % uy vy 5!’7

Y .(4 L+7)G-7) ‘7
N v V) L)

l € v‘&} V"'a] 54@1 + [I’ . i ,ﬂ)(" 34.
v -’)(—- 4) ‘1
(4 ) (-

£

- e u"v‘ 5 4‘ -

) ] 1 =° (5 -42)

~
with three similar equations for ¢y, § 1.and Jﬁﬁ.
For solution to the equations of motion, we may expand the

variables in the Legendre polynomial, such as

AR 0
1 9 t P'(é"e-'y) 8%"""‘ 5-43)
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where 9\“1'5 the angle between 4, and 7 . Substituting the expanded
varibles in the equation of motion, and keeping only the first term in
those expansions, and taking average over angle 9a1 ; the final result

can be written as

i ¢, \
-% x
4 'Ag -Diy *(uj 544;' S/q)l;
R 6 4 - '%,
N ] ") Hy \ 1 ‘1
R ~E, - . v v
where | ] “r, -6.'5 k ¥ 4“ l H;‘ J
(5-9%)
Ay = (
) Y5t e) S5+ 2l :
5+ 10—t g 24 (4 g
- YU, 4 '
i) wy ls-4s)
S-45
B“ = vie) -
Y ["’\ 1) Vu(.-.(’, /7)] vy
) (5~ 4¢)
Co =\
iy [ Hf}’ .“,)]UU (S )
=~ 7
E.

3 =(1m)_va%MUW
v J lJ' +-‘*L [ V(“v-(, /_
¥ 7 V(","{J/:lu‘-uj.l {s-t,,}

'DI\ = \
J [)? v“t"“l }7} UQV( ] Sly/ (
. S~ ¢s)
1 2V - Y4,
e - vt (7 Ve, ) &
0 vt 4, ) 5-v0)
lj = E + 9 N
Q *i /ZN‘) by + ‘\5\ (\/(“ 4] -V, 4, }) 7 V\ [5-5))
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7 =0 [s-52)
and

W -
1qr

vgy = Jd” e o &) (s-53)

VL)
V) = Joe, fuoe T
L] s-54%)

As one may expect, the equation (5-44) reduces to the ordinary RPA
when one sets 4 ngﬂ As in the RPA the solution to the equation (5-44)
has the property that if ( & ,8% s4%59,5¢') is a solution, (=" sg”
oY, ‘f'/ 44 ) is also a solution.

For the derivation of the excited state energy for the neutron
matter, we use the potential (5-1) introduced in section 5.1.The

three dimension sum over j is simplified by the usual interchange to

the integral form:
T4
L2 s

3

then integral over radial dimension j#y is interchanged by sum over-ﬁ‘
The final result is similar to equation (5-44) with sum over radial
dimension in the momentum space (£). In numerical calculations the
region and the mesh size are {o.0, 3] and 0.15 respectively. The
corresponding matrices of 80X80 dimension are diagonalized, using

the EIPAC subroutines (Eigen system subroutine package). Figures [12-1ﬂ
show the dispersion relation of the system for a given density and

effective mass. For modes with large energy gap the excitiation energy
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is a function of square of wave number as shown in figure[lZ]. Figures
[13-15] show some modes in which interaction traces are appreant in the
Tong wave length region. The upper and lower modes of a band of dispersion
are shown in figure[]G]. The modes in this band are also hyperbolas in
terms of wave number. Finally the unstable mode of dispersion relation
is shown in figure [171. These figures show similar dependence on wave
number between QPRPA and RPA in short wave length region, as one may
expect physically. The numerical calculation supports the hyperbola shape -
for some of these modes in the long wave length region.

Now, consider the comparison between fluid model and the corresp-
onding QPRPA results. Figure (18] shows the dependence of phonon energy
in fluid model for a given effective mass and propagation wave number,
and dashed lines are the corresponding QPRPA values. This figure shows
the QPRPA excitation energy is an increasing function on density, and
the corresponding fluid model is smaller in the region [0.5, 0.7 QJ R
higher in the region {o0.7, 0.9 fJ]and difference in the excitation energies
is sharply widening for high densities. The dependence in the phonon
energy on effective mass is shown in figure [19] for a given density
and propagation wave number, and dashed 1ines are the corresponding
QPRPA values. As we see from this figure, the QPRPA excitation energy is a
slow decreasing function on effective mass, and the corresponding fluid

model also is a decreasing function on it with a much higher slope.
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Finally figure [20] compares the dispersion relation between the fluid
model and the QPRPA for a given density and effective mass.

Actually, the fact that for a contact interaction in the long wave
length region the RPA coincides with its corresponding hydrodynamic
model porvided the impetus for a similar comparison between QPRPA and
the fluid model 1in the TDHB theory. But as figures [18—20] show there
are some disagreements for the solution of the linearized TDHB equations
and the corresponding hydrodynamic approach. Figure [20] shows that the
hydrodynamic dispersion relation is a linear function of wave number
while the QPRPA dispersion relation is a hyperbola in terms of wave
number. Similarly, there is disagreement for the phonon energy in
terms of density between the two approaches. These disagreements between
QPRPA and the corresponding hydrodynamic results enhance the uncertainty

in applicablity of hydrodynamic approximations for a nuclear system.
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Chapter VI
Conclusion.

This work has explored the hydrodynamic approximation to the
Hartree-Bogolyubov theory. From a varitional point of view TDHB equations
were derived, and varijous limits and properties of these equations
have been discussed. The TDHB equations were utilized for a hydrodynamic
description of a nuclear system. For this purpose, the Koonin approach
to the hydrodynamic interpretation has been employed in which the Wigner
representation of the TDHB equations is used. Similar to the Koonin
result, we also had a semiclassical interpretation for one of the TDHB
equations as the equation of motion for the phase distribution function.
It was shown that the distribution function satisfies a quantal version of
a modified Valasov equation, which approaches the classical result in
the Timit h — ¢ and where the number of particles is fixed. Although,
the fourier transform of the expectation value of two particles (holes)
field did not have a semiclassical interpretation, we did find the
deviation distribution function with interesting semiclassical interpre-
tation. It was shown that the deviation function satisfies Valasov's
equation similar to the phase distribution function, and classicaly
it is the square of fluctuation density. It was nossible to utilize the
Wigner representation of the equations of motion for a derivation of the
semiclassical hydrodynamics by taking various moments of the distribution

functions, but we did not expect any physical gain to follow in this path.
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Actually, derivation of TDHB equations from a variational point
of view enabled us to have a Lagrangin which not only describes the
system in its microscopic level, it can also be utilized for description
of collective motion of the system. For this purpose, we assumed all
variables in the system are changing through a few variables, and hoped
these variables are good approximation to the collective coordinates in
the system. For a specific example in this line of reasoning, we consid-
red the two fluid model as our goal. With various form of parametrization
for the trial wave function, equation of motion for the two fluid model
were derived. In the first method, we empolyed a diagonalized form of
TDHB density matrix, then included dynamics of the system through time
dependence of the single particle wave function. The phases of single
particle wave functions are divided by two coherent groupes, and the
chemical potential was used for the division of each category. We had a
two fluid model Lagrangian, and from Hamilton's procedure the equations
of motion were derived with appropriate definition of velocities for Irr-
otational and normal fluids, we derived a set of equations which had some
resemblance to the equations of motion in Landau's theory of the two fluid
model. Small oscillations of the densities near their equilibria for this
model were considered. The dispersion relation were derived and its vari-
ous limits have been discussed. Similar approximation as one had in the
Landau theory was employed for factorization of the dispersion relation.
One branch of the dispersion relation corresponds to the normal sound,

and the second one was similar to the electron plasma oscillation disper-
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sion relation. In the second approach, we utilized a general HB trial + -
wave function for the derivation of Lagrangian density. Of the two veloc-
ity potentials, one was derived from the expectation values of density
and two particle field operators and the other one was introduced through
a general phase factor in the trial wave function; the corresponding
conjugate variables to the these phase velocities were the deviation
density and density, respectively. Due to the fact that kinetic energy
is a one body operator, the result of the kinetic part of the classical
Lagrangian was independent of the deviation density. This independence
is the reason for the simplicity of the second approach, and subsequently
it was responsible for poor resemblance of the model with the Landau
theory. In the third approach our attention was focussed on coherent
excitation of the two particles and two holes in the trial wave function.
One of the phase velocities and its corresponding density were only adia-
batically canonical conjugates. The equations of motion describing this
model were a set of integro-differential equations which did not have
any similarty with Landau's equations. In both the second and third
model density oscillation was considered to derive the dispersion rela-
tions. The dispersion relation for the second approach was simple; one
of its branches had zero roots and the second branch had a simple normal
fluid dispersion relation. For the third approach the dispersion relation
was more complicated. And for small wave numbers, both branches of the

dispersion relation had a finite effective mass.
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In derivation of the restricted Lagrangian, the assumption
that the trial wave function changing through only a few variables at
best is questionable, the difficulty will not end at this point. One
must find the energy density as functional of densities and an nonest
calculation of this energy density will be as cumbersome as solving the
whole microscopic equations of motion. However an intelligent gquess for
the energy density as functional of densities may help to understand the
dynamics of the system. For this purpose, an Irrotational fluid model
was developed from a TDBCS trial wave function. For a contact interaction
with the TDHF equations as microscopic solution to a many body system
it can easily be seen that the microscopic energy for the phonon in the
small wave number region coincides with the corresponding hydrodynamic
approximation, where static solution of HF theory is approximated for
the energy density as a functional of density. This fact was an impetus
for studying similar comparison for TDHB theory results and their hydro-
dynamic counterpart. For this purpose, a study of sound in neutron matter
was considered, and a model has been developed. It was assumed that
neutrons are interacting via soft-core potentials. The velocity of sound
was calculated, and the numerical results for the velocity of sound
were reasonable considering the result of other studies of nuclear matter.
Finally in the last section, the time dependent BCS equations of motion
were derived, utilizing the Generlized Hartree-Fock method of Kerman-

Klein. These equations of motion were linearized in the anticipation of
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QPRPA solutions. Due to the nonseparability of the Tinearized equations
of motion, a reduction in number of excurison amplitudes could not be
achieved. For example, it was not possible to find a schematic potential
in which deviation of density could be the only arbitrary parameter.
Therefore, the Tinearized Hartree-Bogolyubov equations were solved
microscopically, and the closest mode in QPRPA to the hydrodynamic
approximation has been chosen for comparsion with the fluid model
dispersion relation. The numerical calculation for the neutron matter
was carried out, and the phonon energies were compared with the corres-
ponding hydrodynamical approach. The agreement between the two approaches
was rather a poor one, for example the hydrodynamic dispersion relation
was linear in terms of wave number, but in QPRPA it was a hyperbola. Also
there was disagreement for the phonon energy in terms of density in the
two approaches. These disagreements between QPRPA and the corresponding
hydrodynamics results enhanced the uncertainty in the apolicability of
hydrodynamic approximations for the nuclear systems. In the other words,
the nuclear system can not be told to choose only a few parameters for
its time evolution, and a microscopic solution, often a complicated one,

gives a better understanding for this system.
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FIGURE CAPTIONS

Figure 1

Canonical form of a two fermion wave function according to reference 24
Figure 2

A particular set of closed chains arising on the right-hand side of
equation (2-16), according to reference 24

Figure 3

An open chain, which arises together with a set of closed chain in each
term of the right-hand side of equation (2-17), according to reference 24
Fiqure 4

Two odd open chains together with a set of closed chains, form one of
three possibilties for a term in the expansion of a two body matrix
element according to reference 24.

Figures 5-6

These figures show the dependence of gap energy on wave number for the
neutron matter model.

Figure 7-8

These figures show the dependence of the gap energy at the fermi momentum
on the density of neutron matter for various effective masses.

Figures 9-10

These figures show the dependence of velocity of sound in neutron matter

on the density for various effective masses
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Figure 11
This figure showes the dependence of the velocity on the effective mass
for various densities.
Figures 12-17
These figures show various modes of dispersion relation of the system
for a given density and effective mass.
Figure 18
This figure showes the dependence of phonon energy in fluid model for a
given effective mass and propagation wave number, and dashed 1ines are
the corresponding QPRPA values.
Figure 19
The dependence in the phonon energy on effective massis shown in this
figure for a given density and propagation wave number, and dashed lines
are the corresponding QPRPA values.
Figure 20
This figure compares the dispersion relation between fluid model and the

QPRPA for a given density and effective mass.
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Table (1)
V in Mev a, in fm
V=-7.2 a=1.876
V=-279 a=0,9427
1 2
V;]OOO a=0.533
3
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