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ABSTRACT

By means of a varitional method the TDHB equations have

been derived. The Wigner representation of TDHB equations has

been used for a hydrodynamic description of a nuclear system.

Restricted dynamical parametrization of the TDHB theory has been

considered. Various fluid models are developed and their small

density oscillations have been discussed. For a comparison between

hydrodynamic approach and microscopic consideration, a model for

neutron matter is introduced. The numerical calculation of QPRPA

and the hydrodynamical approach for phonon energies are compared.
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Chapter I

INTRODUCTION

Usually, a physicist's job is to explain naturally occurring

or man-made physical phenomena by as simple means as possible. In

nuclear physics, however, we are dealing with a system of a few

hundred particles interacting via a strong interaction potential.

Solving this system is quite complex in general. Many branches of

physics help us to understand some behaviour of this system. Due

to the short range of the interaction potential, many classical

ideas can be applied to describe the gross property of the nuclei.

Among successful models the liquid drop model should be mentioned.
1 2

In the static limit, the Weizsacker-Bethe formula gives the overall

trend of the binding energy of a nucleus with mass and charge numbers.

The liquid model also served to explain the dynamics of the nuclei.

Here one introduces collective deformation coordinates and uses

classical equations of motion to treat the dynamics of the system.

The choice of the collective coordinates is more or less arbitrary

and is only guided by physical intuition and by the anticipation

that the effect of intrinsic motion become small compared to the

collective effects. Specific examples of collective coordinates
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are, a) Bohr's surface parameters used in the collective model of
3

vibration states , b) elongation, necking-in, and asymmetry of a
4-5

strongly deformed nucleus in the hydrodynamical model of fission,

c) the displacements of neutrons and protons in the hydrodynamic
6-7

model ofgient resonance and, d) the relative distance and angle

between two nuclei in the classical description of heavy ion
8

reactions.

Behind the introduction of collective coordinates, there is

an assumption that many nucleons participate in the motion, and

the collective coordinate is an idealization of a general displacement.

With this point of view in mind we may conclude that intrinsic

motions are negligible. The dynamics of such a nuclear system follow

then from the classical equations of motion, where the collective

coordinates are empolyed as generalized coordinates. The potential

energy consists in general of volume, coulomb, and surface energy

contribution, now depending on generalized coordinates. The kinetic

energy is derived from similar arguments. For a small change from

equilibrium, it is assumed to be a quadratic expression in the

generalized velocities, where the masses or intertia with respect

to the coordinates have a generalized meaning and may themselves

be functions of the coordinates.
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Although many classical ideas are successful in describing

the gross behaviour of nuclei, certainly our system for most of

the considerations of nuclear physics is a non-relativistic quantal

system. Many successful phenomenological models were developed
9

over the last thirty years, the shell models and the collective
10

models being among them. The shell model is based on the assumption

of a large mean free nucleon path, and it describes nuclei as a

collection of nucleons moving independently in well defind orbits.

There are actually so many phenomenological theories of collective

motion that a complete list of them would be difficult. It would

be safe to describe them as quantal versions of classical collective

motion

In fact the quantal system under consideration is truly a

many body system, and eventually one must find a microscopic

foundation for each of the successful phenomenological and hydro-

dynamical models. The motivation for this work is an attempt
11

in that direction. It has been known for decades, that the time

dependent schrodinger equation for a single particle can be cast

into fluid dynamical form with the phase and the square of the

modulus taking the roles of velocity potential and density, respectively.
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Recently, with the advent of heavy ion accelerators, evidence of

hydrodynamical behaviour in nuclei has been enhanced, generating

renewed interest in the advancement and developement of the

hydrodynamic method. Recent formulations and applications of

fluid-dynamical methods are derived by different approaches.

One approach is based upon the direct use of the Schrodinger
12 13

equation, another method utilizes the Wigner transformation,

and a third approach is based on a classical interpretation of
14-15

the "Lagrangian". All three approaches are based on assumption

that the time-dependent Hartree-Fock (TDHF ) equation is a

valid description of nuclear motion. The present work is a

continuation of the second and third approaches, and here we
16

assume that the time dependent Hartree-Bogolyubov (TDHB )

equations as a reasonable description of nuclear motion.

As mentioned above, the aim of this work is the exploration

of the hydrodynamic approximation in a many body system. In

the second chapter, a dynamical theory of pair correlations is

developed. Utilizing various methods, we derive the time dependent

Hartree-Bogolyubov equations in an arbitrary representation for a

general two body interaction. Different limits of TDHB equations,
17

notably the time dependent Bardeen-Cooper-Schrieffer and the time
18

dependent Hartree-Fock are discussed. A brief derivation of the

linearized TDHB equations is also included, in anticipation of the
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Quasi-Particle Random-Phase-Approximation (QPRPA).

Chapter three contains the Koonin approach to the hydrodynamic

interpretation in which we use the Wigner representation of the TDHB

equations. We have a semiclassical interpretation for one of the TDHB

equations of motion for the phase distribution function. It is easily
19

recognizable as a quantal version of a modified Vlasov equation,

which approaches the expected classical result in the limit -h -? 0

and where the number of particles is fixed. Also due to abandonment

of a definite number of particles, we have an equation of motion for

the deviation distribution function which identically vanishes for a

system with a fixed number of particles.

In the fourth chapter, we discuss hydrodynamics of the system

following the line of reasoning of Kerman-Koonin in the Lagrangian

approach. The parametrization of the trial wave function enabled us to

develop various fluid models. As a specific example, derivation of the

Landau's theory of two fluid model from TDHB theory is one of our goals

in this chapter. In the first method, we empoly a diagonalized form of

TDHB density matrix, then include dynamics of the system through time

dependence of the single particle wave function. We have a two fluid

model Lagrangian, and from Hamilton's procedure the equations of motion

has been derived. With approprite definition of the velocities for

Irrotational and normal fluids, we derive a set of equations which

has some similarity with equations of motion in Landau's theory. We
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have an Irrotational superfluid and a normal fluid which contains the

vortex motion. The second and third models are also two fluid models:

in the second model we used a general TDHB trial wave function, and in

the third model our attention is focussed on coherent excitation of

two particles and two holes in the trial wave function. The resemblance

between these two model with Landau's theory is poor. The second

approach gives a simple set of equations of motion and in the third

approach, the equations of motion describing this model are a set of

integro-differential equations with no resemblance with Landau's equations

of motion. For each of these three models, density oscillation of fluids

near their equilibrium are described, various limits of the dispersion

relations are discussed, and dispersion relations for each of the models

relative to the others are compared. Finally, as an application, an

Irrotational fluid model similar to the Kerman-Koonin is developed.

A study of neutron matter is the subject of our discussion in the

fifth chapter of this work. We assume that neutrons are interacting via
20

soft-core ptentials. The static part of the equations of motion are

solved. The energy gaps are evalauated for various densities and as a

function of wave number. For evaluation of the velocity of sound in

the system, we utilize the Irrotational fluid model of chapter four.

The energy density as a functional of the density is approximated by

its static solutions. Our numerical results for the velocity of sound

in the neutron matter are reasonable, considering the results of other
21

studies of nuclear matter. In the last section of chapter five, we
22

derived the QPRPA utilizing the Generalized Hartree-Fock method, and
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applied it to our model of neutron matter. The numerical calculation

of the QPRPA and the hydrodynamical approach for phonon energies are

compared. The agreement between two approaches is poor, for exmple

the hydrodynamic dispersion relation was linear in terms of wave

number while its corresponding in QPRPA is a hyperbola. Also, there

is disagreement for the phonon energy in terms of density between

two approach. These disagreements between QPRPA and the corresponding

hydrodynamics results enhanced the uncertainty in applicability of

hydrodynamic approximations for the nuclear systems.
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Chapter II

THE DYNAMICAL THEORY OF PAIR CORRELATIONS

In this chapter, we derive the time dependent Hartree-Bogolyubov

(TDHB) equation for an arbitary two body interaction. It is also

shown that the TDHB, in two different limits, is identical with the

time dependent Hartree-Fock (TDHF), and time dependent Bardeen-

Cooper-Schrieffer (TDBCS). The TDHB approximation furnishes a comput-

ationaly possible scheme for treating a system of interacting fermions,

reducing the many-body problem to a set of coupled one body problems.

The TDHB equations may be derived from at least two different

methods. The first method is the time evolution of the expectation

T T Tvalue of the operators a. a, , aa. and awq, , using the Schrodinger

equation for the evolution of the Hartree-Bogolyubov (HB) trial

wave function. In the second approach, one could have a classical

interpretation for the description of the system. Then the equation

of motion are determined by a least action principle. Alternatively,

the real and imaginary part of Bogolyubov matrix elements can be

viewed as momentums and coordinates of a constrained system of
23

particles and their motions are derived by Hamilton's procedure
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In section (2-1) we summarize beriefly the results and
24

discussion of the static theory of pair correlation. Section

(2-2) deals with the derivation of the TDHB equations. In

section (2-3) we discuss some properties of the TDHB theory.

A brief derivation of the linearized TDHB equations is the

subject of the last section in this chapter.

2.1 The static theory of pair correlations.

24
The procedure of this section follows from Baranger's

treatment of the theory of pair correlations. To treat the quantum

mechanics of a many-body system, it is convenient to use the
25

techniques of second quantizati-on. For fermions, one introduces

a creation operator apwhich creates a particle in the single

particle state denoted by p ( p constitues a complete label

for a state). The hermitian adjoint of the creation operator

is written as a, (annihilation operator),which when acting to

1Tthe right, destroys a particle in the state cL. The a, and

% satisfy the following anticommutation relation:

T~ T% -j

7c~



15

The particle vacuum state, 10 , is defined by the property, that

it is annihilated by all the

i.e. it contains no particles. The state of the many-body system is

defined with respect to the vacuum state; for example a system with

a definite number of particles may be represented as a linear

combination of Slater determinant kets of the form:

' ( p T-

The second example is the BCS wave function:

The product is over half the total number of states, the index i

represent the state which is paired with 4. The third example
26

is the Blatt's wave function:

where ' is an antisymmetric second order state tensor.

To elucidate some points in the future discussion of HB

and TDHB theory, it is necessary to repeat Baranger's observation

about the equivalance of Blatt's and BCS trial wave functions.
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27
We start with the Bloch and Messiah theorem, which states that

for any antisymmetric second order tensor, such as ' , there

exists a unitary transformation, U, such that the transformed

3 in canonical representation has the simple form shown in figure

1]. In the new representation, , is non zero only if . and P

are paired. Therefore, Blatt's wave function in the new representation

can be written as N

Utilizing the Pauli principle,the above equation reduces to the

following form: I

which is a single Slater determinate ket of N pairs. With a

change of normalization, one may rewrite the BCS wave function

in the following form:

The projection of the BCS wave function, equation (2-9), on the

subspace of 2N (N pairs) is exactly

CtT T
4 4 lO> 0
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Therefore from start one sees the equivalence of the two wave functions

in the following sense. For a very large number of particles (N >)l)

the projected BCS wave function on the subspace of N pairs is equivlent

to the corresponding canonical Blatt's wave function, provided one sets

Let us consider a general Hamiltonian with one body and two

body terms

T T T4  1*-z)

where, the coefficients T, V have the following symmetry properties:

V V J

V~ ~ F4~.5

The antisymmetric choice of the coefficients V means that the

exchange term is already included together with the direct term in

the interaction. In the usual dervation of HB equations, the ground

state of HB wave function I 'lis defined by the property that it is

annihilated by all quasi-particle annihlation operators.Where the

quasi-particle operators are defined in the most general case as



18

linear combination of particle and hole operators. In this case from

the start one no longer has a definite number of particles for the

ground state, and the following expectation values are all nonzero:

< Ta 1) , laa q , and <91 &4 i I 4P,. But in Baranger's

reformulation of HB theory the number of particles is kept fixed

as long as possible and it is the result of mathematical approxi-

mations that things look at the end as though one had mixed the

number of particles.

For a derivation of the HB equations from a variational point

of view, one has to calculate the expectation value of Hamiltonian.

Therefore it is necessary to calculate the expectation value of

the matrix elements. Since the Blatt's trial wave function is not

normalized, one has to calculate the norm, the one body and the

two body matrix elements, given by

A N (NJN

TTNl)
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Baranger calculated the matrix element with a diagrammatic method, de

fin ing a closed chain (figure [2] ) and open chains (figure [3)and

figure [43 ). Each chain has even number of lines, which are repre-

sentative of the contraction, and their label represents the state

involved. The wave function 9' represented by white vertices, T'

stand for the black vertices. For example, the contribution of the

closed hexagonal chain in figure [2) is

He defined R. as' an independent closed chain C, n, as its order,

and i as the number of times which C occurs in the set. Then

This being the definition of function F, the sum is over all possible

set of the closed chain such that

R is defined as the contribution of an open chain i with h(as its

order. For example, the contribution of the chain in figure [3J would

be

Then, the one body matrix element is

< NjaT 
(i I

+N R
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where the sum is over all possible open chains starting in F with a

I and ending in 4 with a 1 . For the two body matrix element, there

are two open chains, with three possible ways of forming them. there

are two possibilities of even chains like that of figure [3] , the

third possibility is that it may also be two odd chains as in figure L4.
ti;

He defined K5 as the contribution of an odd chain i starting and ending

with a 9 , the complex conjuate of k. would be the contribution of

odd chain starting and ending with a ' . Thus, the two body matrix

element is

NI %T ( 'I R' -R9 -t-K K t

R~ 4)

The main point in Baranger's argument is that the normalization

of f can be chosen in such a way that FAN)is approximately

independent of N for large N. With this approximation in mind

one may conclude that the F's in equations (2-20,2-23,2-24) can

be considered equal. Defining,

k (a, k'
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assuming the convergence of these series, one may derive the expectation

values of one and two body operators, the result being

4 PA I

j~ ~ 4 -f f - *

This is identical to what one gets from other methods of HB theory.

Finally to completethe equivalence of digrammatic method with other

methods, one should derive supplementary condition diagrammatically,

and one obtains:

I,,

The above equations (2-29)-(2-32) are identical with the supplementary

conditions.

T = T - k k' (A- 3-3)

e t

where we used the convention that repeated indices should be summed.
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To prove the main point he rewrote the expression (2-20)

for rA) in the following form:

f C

The integral is on a contour enclosing the origin. Now one may

withraw the restriction of equation (2-21), that is to say the

sum includes all possible sets of closed chains. F(2N) may also

be written as

F (1)

C-

For a slightly differnt number of particle we shall write the integral

as

"31)

Since 1 is a slow varing function of z relative to the exponential,

one may calculate F(2N-n) by the steepest descent method. The

saddle point i.can be found by setting the derivative of the exponent

equal to zero

We may assume the normalization of i is such that the saddle point
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does occur at -,=. Then, one obtains

which is the supplementary condition equation (2-21).

For HB theory he improved thedeivation along the line of

Bayman's argument in reference 28. Define

ii

N
one can then write

I #M)) ( :- o )

<4 +241 4w =

Similarly,

7N~~~

N

ey R? 7F( -8

- ZIn F (,N)

- R 'i ~)
where

R =
L11

Similar expression holdsfor the two body matrix element,

N

N

VA N

.1'
N

Pc~.

< )I tF w L

SA- 4:

z Aff <+M I +N

It -T 4 7 4
4 P N
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F (v ~ R R XL

where

By introducing +4) in equation (2-40), we abandon the require-

ment of equation (2-20) for evaluating the norm and the matrix elements.

In other words the total number of different chains (closed or open )

is infinite. One may assume the convergence of the above series for

small \\ ,and the analytic continuation to the saddle point without

difficutly. Define

then for the equation (2-46) one obtains

Because, the sum involves all possible even chains built up of all

possible intermediate states, equation (2-47) can also be written

in matrix form:
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And for the saddle point z=z.=l, we get

S x(I+ %) -

From the definition of K and i as sums of odd and even chains, respectively,

one finds that K is related to y and ' by

K =-I)(1-S 4

Where equation (2-50-b) derived by inserting the equivalent of f

from equation (2-49).

Let us take HB trial wave function as

Then, one could easily see that, for HB theory, A , and k,, are

the expectation values of the density operator, the two particle creation

operator, and the two particle annihilation operator, respectively,

r <~, 4T414,(-)
< I d ' t fj

"p7
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with their properties

4  
-k~

Utilizing the expectation value of one body, and two body matrix elements,

we may evaluate the expectation value of the Hamiltonian:

Hbz +4 11H{B Ija V. -r rt f+ -i k~ 1*

For derivation of HB equations one may set up a variational procedure.

Then one introduces a Lagrange multiplier \ to make sure that

the physical requirement \equation (2-39) ) is satisfied and tries

to minimize

It is more convenient and elegant to utilize the Bogolyubov

matrices in which each index takes twice as many values as there

are states in the oringinal formulation. In particular, define

which can also be written as

(A- 60)
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This martix has the properties

9 = RI

I R - I -R'

where

=
cif ~

The supplementary conditions can be easily expressed in terms of R ;

they reduce to

Na, . P ,

In similar notation, define a matrix Y by

a7la

212)

Ar
.(4 1 V

ir7

atF Agpi )

21)Z

Submatrices corresponding to the ten other possible contributions of

the superscripts are all set to zero. Also, define

T~T

0=0 =RI W4

T ( -T -) +.I U
'lb

D3

V
O~Pb~1&

(%- g1)

11. 21
*if 1.10

4-'e3)

~I I

u1~&

X.14

-(V b 8

where

v
IS AP

( L- i S)

( :t- 4 ')
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Then,one can find the Hamiltonian in a simple form:

I 4~cJ -.4 )

where Roman subscripts assume twice as many values as Greek

subscripts. The problem reduces to minimization of the Hamiltonian

H, , the variable R being restricted by supplementary condition (2-64)

and the properties of matrix R (2-61), (2-62). The final result is

that R must be constructed in such a way as to commute with 'V

where 'ir is defined by:

T +f
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2.2 Time-Dependent Hartree-Bogolyubov (TDHB).

Imagine now that the coefficient of Blatt's trial wave function

is time dependent, and consequently the wave function is time dependent.

However the diagrammatical method still holds as wellas the supplementary

conditions (2-33), (2-34). The equations of motion for f and K can

be derived as follows. Consider the matrix elements of the operator

'T
and a.4 for a non-stationary wave function 11V. By virtue of the

Schrodinger equation

and its hermitian conjugate, we have

The right hand side of equations (2-72), (2-73) can be easily calculated

using Wick's theorem, and the result is

(T-AV) -' dpt g
~A +--~) + -

Where Hartree potential jand pairing potential are given by

\i V7 6)
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and

~ ('~77)

The equations (2-74) and (2-75) are compatible with supplementary

conditions (2-33) and (2-34).

Kerman and Koonin showed that the time dependent Hartree-Fock

can be derived from a variational procedure. Then, it is natural to

ask whether the TDHB equations can be derived from a variational

method. To answer this question, we would follow the diagrammatic

method of the last section, and define the Lagrangian "

C <r4K ( ' -H N>) /( (Ai-i7

A more appropriate choice of the wave function would be a normalized

one such as

and a corresponding Lagrangian can be written as

The difference between two definition of the Lagrangian equations

(2-78) and (2-80) is a total time derivitive term. Since, we accept

the classical interpretation of the Lagrangian due to Kerman-

Koonin, a total time derivitive term in the Lagrangian will not

cause any change in the equation of motion, and it may be disregarded.
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For the derivation of the time dependent part of Lagrangian:

we utilize the diagrammatic method of the section 2.1. One may write

<+IV 40 f 0C e11 4T47) o

We assume that only the coeficient, 3 , are time dependent, and it

is easily seen that this term can be written as

using equation (2-20), we get

or ' (

< (VI

Where V is the order of open chain K , and the number of ways

in which one could break the closed chain A is

Similar to the static formulation, one may improve the

derivation of the time dependent part of Lagrangian. Using the

Hartree-Bogolyubov tri wave function in equation (2-51). We obtain

H L
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Utilizing the complex conjugate of equation (2-32),the equation (2-88)

reduces to the following form

where we used the convention that repeated indices should be summed.

As we observed in section 2.1, the expectation value of the Hamil-

tonian has no explicit dependence on I . Then, one may expect

similar behaviour for the time dependent part of the Lagrangian.

Therefore, one may try to eliminate I in favour of K and I in the

expression (2-89). This is done by using equations (2-50 a,b).

With some algebra, one obtains

< I 1 A0 K AF(-)O ~ ? - i-K

Finally, the most appropriate form for the time dependent part of

Lagrangian can be given in terms of Bogolyubov matrices.

One may utilize the classical Hamiltonian with HB trial wave function

(2-68) for the Lagrangian:

Although, the dynamicsof TDHB equations are independent of chemical

potential A , and the inclusion of ) in the classical Hamiltonian

is not necessary; we include Ain order to be consistent in the static
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limit of the theory. Then in section 2.3 we will proveA independence

of the TDHB equations by'introducing a new phase for k . The final

result in terms of Bogolyubov matrices is

g R4 b-gc.qb (T.93

The problem reduces to finding the equation for the above Lagrangian

subject to the constraint equation (2-64). Introducing/* as Lagrange
46

multiplier for the supplementary condition, one obtains a constraint

Lagrangian:

where, we omitted the unnecessary terms. The equations of motion

can be found by requiring the restricted I

to be stationary with respect to variation of the path of motion

between fixed end points C,and t . The results for the equations

of motion are:

and

Multiplying equation (2-96) from the right by and summing over a
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and then multiplying equation (2-97) from the left by iA and summing

over a , we obtain the following equations

t 'c; /M-c4 R 41

and

where we used the definition of 19 in equation (2-70),and supplementary

condition (2-64). Subtracting equation (2-99) from (2-98), and using

the supplementary condition (2-64), one obtains

21 -=~

or, in matrix form

Comparing equation (2-100) and (2-96), the evolution of the Lagrange

multiplier /A is equal to V . Since, the Hermition matrices form

a complete set, the inclusion of equation (2-61) as a constraint

in the Lagrangian was not necessary. The similar argument holds

for the matrices satisfying (2-62). One may prove the compatiblity

of the above line of reasoning. From the equation (2-100) one obtains

A7t9=- [ T R:z) 141)

using
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(A- loll

then, one obtains

(;t- 163)

Similar argument goes through for the second restriction (2-62).

Utilizing

Wf = '4
K

( A- it 4-)

one obtains

I P4' -R'>)3 ( A- 1057

one may insert R-.. .I ,and Mf-1+ot.' as initial conditions

into (2-103) and (2-105) respectively. Then, -ji , ahd *ft4-+R'

will be zero at all succeeding times. Finally it is intersting to

rewrite the equations of motion (2-100) with Greek indces.

Ki (j0(
-NO (

(T-)h ~
C"

9'

-. IT- A1~TL)

/ I'

CI~

-1~
K

C:> \)
(YA A+r-) I

( 

'os

\As one may expect the matrix equation (2-106) reduces to the

equations (2-74) and (2-75).

I

i 1 (9- W) = I W)?t



36

2.3 Properties of the TDHB theory

With a glance at the TDHB equations, a number of ideas come to

our mind for the discussion of the properties of TDHB theory. These

are a) conservation laws in this theory, b) various limits of the

TDHBequations, c) time evolution for the chemical potential, d)

possibility of a new derivation method for the TDHB equations, e)

utilization of the TDHB theory for the derivation of a collective

Lagrangian, f) utilization of the TDHB equations for a hydrodynamic

description of a nuclear system similar to the one Koonin has for TDHF

equations.

a) Conservation laws: There are three quantities conserved

by equation (2-100), and hence three corresponding constantsof

motion. These are:

1- Energy conservation: One definesthe total energy ,E, as

the expectatation value of the Hamiltonian (2-57)

ET j .J r, i K( K

The time derivative of the energy is

and byi t  + <+at (2-8)

and by virtue of the Schrodinger Equation (2-18)
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Thus, the total engery , E, is a constant of motion. Also, one

could prove the conservation of energy (2-108) directly by using

the equations of motion (2-74),(2-75)and equation (2-57), but this

method involoves a little more algebra with the same result.

2) Particle number: The average number of particles is

conserved. Using the equation of motion (2-74), taking A equal

to (3 , and summing over 4 , we get

frP = Tr [ (Trf,)r -f (T -+t) +.Lk- k &

Using the definition of pairing energy (2-77), one obtains

I j t - 0(A 
1o,)

Thus, the average number of particles is also a constant of motion

Therefore, one should not expect any time evolution for the chemical

potential

3) Conservation of the "form":

In section 2.2 we proved that if at time V.=o the Bogolyubov

matrix R has the properties R=R and i =I-R then it will keep

these properties at all succeeding times. Now we will prove with

similar method the same result for the supplementary condition (2-64).

Let us evaluate the time derivitive of R

~R2 + ~ VR~I~I,
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Using the equation of motion (2-100), one obtains

R3, P + R [ W, R1(-t4

or

Hence

Thus, if R-R=0 is inserted as an intial condition into equation (2-112)

R-R will be zero at all succeeding times. Indeed this supplementary

condition was included as a constraint in the variational derivation

of the TDHB equation.

b) Various limits of the TDHB equations: First, as one may

expect, the static limit of the TDHB equation coincides with Baranger's

static theory of pairing. Secondly, imagine one wants to utilize the

equivalnce of TDHB and TDBCS. The Bloch-Messiah theorm requires

and f a, (2-113)

Where,;.corresponds to the pair state of .. The simplified version
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of the equations of motion reduces to

k k

and

where

T" 1 + (A~-07)

and, it can be understood as single particle energy. Here, in the

equations (2-105), (2-116) and (2-117) the repeated indeces do not

constitue the summation. These equation (2-115) and (2-116) are similar

to the TDBCS equations of motion according to the reference 29.

Also in the static limit equation (2-116) gives the BCS gap equation.

Finally, as we already mentioned many times the TDHB theory is not

based on a definite number of particles. Now, let us limit TDHB

equations to those terms which conserve the number of particles.

In other words, taking K = for any state of c( and a, one obtains

I-P = ( T +v) Y~~ ri

With proper choice of filled and unfilled states, one could write

where (4,and i are the single particle energy of the diagonalized
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Hamiltonian, (m,n stand for unfilled states and ij stand for filled

ones). Equation (2-119) is exactly the TDHF equations according to the

reference t251 .

c) Time evolution of the chemical potential: Let us recall

the TDHB equations (2-74) and (2-75)

;~IX 7, +)

(T--~) k -(-*) k

With a glance at the equation (2-74) one realizes that the ) dependent

terms cancel each other, and thus equation (2-74) reduces to

i , =(-r+ V) a

which is independent of A explicitly. For the second equation (2-75),

one may choose a specific time dependent phase for k as

With this chioce for ,, the equations of motion reduce to

and
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(- + (-r) 4  - rE4

where

Equations (2-122) and (2-123) show the independence of TDHB theory

in the chemical potential. Considering the equations of motion (2-74)

and (2-75). In fact, any arbitrary function of time can be added to

the chemical potential , A , it would cause only a change in the phase

of K . It means that at any given time one has the choice of the

chemical potential for the system, as one expect physically. Similar

result has been indicated by Blocki and Flocard for the TDBCS

equations. Therefore one does not expect any time evolution for

the Lagrange multiplier A ,and may take A as a time independent

chemical potential.

d) Possibility of a new derivation method for the TDHB equations:

Let us consider the time derivitive part of the Lagrangian (2-91)

PLR iR M..L

bR ' 4 bt 'tR 6 ii. (.a- L~S-)

Define each Bogolyubov matrix element R as

then, the expression (2-125) can be written as

( 12I7)
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F; and I. can be considered as canonical variables for a classical

system with '1as a coordinate and ,.the momentum conjugate to the

coordinate. The equations (2-61) and (2-62) can be viewed as

holonomic constraints. They will cause a reduction in the number of

Generalized coordinates. The supplementary conditions (2-64) are

nonholonomic constraints. Therefore one should introduce the Lagrange

multipilers to include these constraints. Then the equation of motion

can be derived by utilizing the Hamilton's principle. The final

result is equal to one obtained by variational method.

e) Utilization of TDHB theory for derivation of a collective

Lagrangian: One major reason for the derivation of TDHB equations

from a variational point of view was the derivation of a Lagrangian

which describes the system and can be utilized for a reduction in

number of coordinates. In this way, we hope the reduced coordinates

are good approximations tothe collective coordinates in the system.

In chapter q- we will discuss this property in more detail.

f) Utilization of TDHB equations for a hydrodynamic description

of a nuclear system : Koonin developed a hydrodynamic approximation

for a nuclear system from TDHF equations and by utilizing the Wigner

transformation. Similar procedure can be employed for the derivation
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of the hydrodynamic approximation from TDHB equations. In chapter 3

we will discuss this approach to the hydrodynamic approximation in

more detail.

2.4 The linearized solution to the TDHB equation.

The TDHB equations (2-100) with their constraints (2-64),(2-61)

and (2-62) are formally similar to the TDHF ones. The difference lies

on the much bigger dimension of the Bogolyubov matrices, and the lack

of a fixed number of particles. In statistical sense, the TDHB equations,

like TDHF equations, can be viewed as a deterministic theory in the

sense that a given intial condition gives rise to a specific final state.

The TDHB theory in comparison to the TDHF theory has some advantages,

notably, its relaxation of a single determinate, and the inclusion

of superconducting solutions. But the larger dimension of its matrices

certainly will cause technical difficulty for a comprehensive solution

to the TDHB equations.

Although there are several attempts to solve TDHF equations in
30

the literature, there is not a precise behaviour of solutions to

the TDHF equations for a given single determinate. Therefore it would

be reasonable to assume that a general attack for solution of the TDHB

equations will be for future. In the following pages we will try to
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find an analogue to RPA solution in the TDHF theory.

Static solution: As we already mentioned in section 2.1, in order

to find the ground state energy and the static solution to the system,

one should find W and R in such a way that they commute with each

other. This can be achieved bydiajonalizing W and R simultaneously,

and satisfying selfconsistency requirement and the supplementary con-

ditions. Condition (2-64) says that all eigenvalues of R are zero or

one, and the condition Equation (2-62) tells us that the number of

eigenvectors with eigenvalue one is equal to the number of eigenvectors

with zero eigenvalue. Let us recall the equation (2-104)

this equation says that, if W has an eigenvector &. for eigenvalue C

it also has an eigenvector 14"for eigenvalue -E;. In this procedure

the eigenvalue E; has no physical significance, but with a choice of

R with eigenvalue zero for eachazeigenvector, and eigenvalue one for

eigenvector fr, the E is seen to be the energy of an elementary

excitation or quasi-particle excitation energy, according to reference

\321. Supperficially, in analogy with Hartree-Fock theory one could

interpret ground state of the HB theory as a state in which all negative
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energy of the quasi-particle states are filled. The eigenvalue equations

for W are the HB equations, and they can be written as

~A(T. +1-~u~

T, + +

46 w& P

A~B

tb:, ~ (A1- 129)

where, we used the notation

Now let us seek a solution

small deviation of R about

could write

0)

to the TDHB equations by linearizing in

the equilibrium point R'. Then, one

lo~t -1,4 4  A11
=P'+ +R +

with a (complex) frequency and small transition density in quasi-

particle densities 4to be determinedas an eigenvalue problem.

Hermitian condition restrictsexcursions to the two independent ones.

The expansion of the condition (2-64) to the first order in small

deviation requires that

* (I)
SR R La- 133)

Due to the choice of R* as a diagonal matrix, equation (2-133) requires

(A- 133)
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that A should have only quasi-particle quasi-hole matrix elements i. e.

Where i, j are refered to occupied quasi-particle states and m, n as

unoccupied ones. Inserting equation (2-131) into equation (2-100) keeping

only first order term in excursions, one obtains

Writing the linearized equation for each of two independent components

Using equation (2-70) for evaluation of , taking the (i,n) and

(n,i) matrix element of these equations, and using the fact that R'

is diagonal and vanishes for any subscript of an unoccupied state,

one could obtain

4 (g\+)~ +'( J_ a- 3b
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JL R,

Using equation (2-135), then one could rewrite the

of motion in the more familiar form:

where

O), =( -)X + _L 0.7- X%

I (E Yi% 2 Jhp- #I

14-" rt)

(-I 4ob)

linearized equation

Iv-

1f41)

I- I't21

( V1 R11; .(A- 143)

The equations (2-141) and (2-142) can be viewed as generalized

form of RPA or quasi-particle RPA. In analogy to RPA,one can introduce

two matrices

A = Li ~ Iim
'I (.%-)I 4L4).4 _t ,

In matrix notation, equations (2-141) and (2-142) can be written as

LIX A of ei )

Equation (2-146) can be considered as an eigenvalue problem for

the normal modes k, and normal frequency " W ". If we used the

PC (80 = (E"-6.J SR hi'n t

I
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equation (2-140 a,b) instead of the equation (2-139 a, b) we would

have

-w l;j = j
That suggests w and -w are both solutions of the eigenvalue equations.

The expansion of R would be stable only if w is real, otherwise the

excurisons will grow exponentially, suggesting that the stationary state

is not a ground state. Diagonalization of the linearized TDHB equations

(2-146), (2-147) can be viewed as equivalent to solving the problem

of coupled oscillators, and w as normal mode of the frequency in

the space of quasi particle, quasi hole excitations. In analogy to

the Hartree-Fock theory one could quantize these modes. Thus Eit w,

etc. can be viewed as collective vibrational states of the

system.
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Chapter III

Time dependent Hartree-Bogolyubov in the Wigner representation.

In this chapter we explore the Wigner representation of the TDHB

equations. We show that, in this representation, TDHB equations reduce

to a form easily recognizable as a quantal version of a modified

Vlasov equation, which approaches the expected classical result in

the limit t-,a and a definite number of particles. Also, due to the

abandonment of a definite number of particles, we have an equation

of motion for the deviation distribution function, which identically

vanishes for a system of fixed number of particles. In section 3.1,

we will discuss the properties of the distribution function, and the

study of TDHB equations in Wigner reoresentation is our goal in section

3.2.

3.1 Properties of the distribution functions.

Density matrices in the coordinate representation can be written

as

(3 -1
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I KA~X (3-3)

where, as usual, X constitutes spatial r , spin q and isospin aj

coordinates, and O>land A(Vare the field operators. For a semi-
3 3

classical interpretation of TDHB equations, we use Winger's

suggestion. Let us define "phase space distribution functions"

-R1 If) anda(otkjs

(3 -.)

e)

where the "center of mass" and "relative" coordinates are defind by

-1 _ ( - 0 ) 1 3 - 4)
- (3 -7)

respecttively, and constitutes spin and isospin coordinates.

Equations (3-4) and (3-5) simply define I and as

the (th component of the fourier transform of f()'x) and kfri9espectively.

For a saturated system such as nuclear matter or an even-even nuclei

with equal number of proton and neutron, one could take fpyX)as digonal
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in spin and isospin coordinates, and has many of the properties one

would expectof a classical phase distribution. Therefore, from a

semiclassical point of view, f is the probability density for finding

a nucleon at postion R with momentum Land spin-isospin label

The existance of 031and in turn is due to the inclusion of

the pair correlation in interaction, describing the many body system.

Therefore, we do not expect a semiclassical interpretation for g(A41p)

as we had for (j j. Although there is not a semiclassical interpretation

for 8R,&p) , we may consider the fourier transform of the deviation function

which is defind by

Again, we use the convention that repeating variables are summed

(integrated over continuous variables). Then, one may define "deviation

distribution function" AR,O)as

Similar to the phase distribution function j , the deviation distri-

bution function d is real and digonal in spin-isospin coordinates.

From a semiclassical point of view, d is the probability of deviation
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density, which is the square of fluctuation density at postion R with

momentum-tand spin-isospin label

The properties of distribution functions are: a) The distribution

function S and J are real. This property of f can be seen by taking

the conjugate of equation (3-4), utilizing the hermiticity of the density

matrix, and defining a new variable -,S. Then

VL i f-I O
(Alt A .

J

f 
-

-

(~*4, ~

I I 1 1J

where we have used the assumption that S is dia

coordinates. This property for d can also be SE

equation (3-9) from equation (3-8), taking the c

utilizing antisymmetric property of X and defir

Ot

(IR, e 94

gonal in spin and isospin

een by subtituting in the

onjugate of the result,

ning a new variable -

e k4

k 4-
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Where the last line follows from the fact thatD(') is a diagonal matrix

with respect to spin and isospin coordinates, which itself can be

realized from assumption that the density matrix F is diagonal with

respect to I and , using the supplementary condition (<3-12)

.? O i) -F~q rly)- KI'd) k~~)

b) The function has the property

Using the definition of O(IRkJ') from equation (-5), utilizing the anti-

symmetric property of , and defining a new variable --3' , one may write

k( (R-

(- + s~ -I/,

I 3-Iq;- g( R--k j j) .
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c) Various expectation values of one body operator are given in terms

of S by their expected classical from. For a one body operator a , we

may write

Where in the second

of Akt.j)and in the

representation is

0 _#~ ) IAe

line, we used as the inverse fourier transform

fifth line the operator expressed in the Wigner

-I'~ *~

O(1, R4 (3-14)

From the last line in equation (3-15) we see that O(elpprovides the

approprite weighting factor for the distribution function in phase

space needed to compute the required expectation value. For example,

the corresponding operator to the total nuclear density at the point

t is

O 5) = C-)s,(3 -ii)

< 4881 0 1 tf 8 ) 0 AYII
A

2rcy' 0 (r
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In the Wigner representation, it takes the form:

Thus from equation (3-15), we get

13-I,)
which is the classical result. Similarly, one would get the expected

classical result for the quantum mechanical current

1 - (6 ii) (3-1o)
d) The distribution function 4 and deviation distribution function S

also have the expected form for simple system. For example, taking the

BCS theory with plane wave as the single particle wave function, we obtain

and utilizing equation ( -19), we get

The total number of particles with spin-isospin ) is given by the integral

of f over space. One would get the total number of particle as sum of

the occupation probablities, as expected

T= fr (3-z3)

For the deviation distribution function J , we have
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V I

One may get for the total deviation

- 214>) > saa 5

Where we hav

- TKOO k0

e used the BCS analog of k d and
4 44

Before ending this section, it would be interesting to derive the

supplementary conditions in the Wigner representation. The equation

(3-12) in the Wigner representation can be written as (we may suppress

the spin and isospin coordinates for convenience).

=~~~ ~~ S4.5 fj ~)fr~S~ (+ ,

a(9 4) + Is -r es

e(24)3 #r~4L+-~IL, ill ~
4";.

*r - -- 3 r

e

~I&.\ ~v.")
e

(4(Slit
-, tI~
DA

% C r )
r o ae 34) a%)( J

57

ykU

it.'

< I( I A

K -k(V1 [3-24)

*2.

( 3-as)

J~=94~t:4.

= -j d(R,~j

::7 x

C4 - 4.

If4- I D (

(3 -Z6)

f~g ,r7' i~'t -:5,)

"of 'P R-t J/1. 't)]
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Where in the third line we used!P as the inverse fourier transform of

f , and in the fourth line we have introduced the spatial and momentum

shift operators

-i 1 -1 (.3 -t-)

In the last line the superscripts (1) and (2) indicate which distribution

function the shift operators apply to. All the integrals in the equation

(3-26) are simple, so may easily done to yield:

+ e -i'

The second supplementary condition in coordinate space is

fbx 0" f ' K(Xx'')f~ (3 -,3#)

In Wigner representation, this has the form:

For the derivation of equation (t-31) one could use the same method as

the first supplementary condition. It is also interesting to work out

d010 in terms of jxJand the manipulations are almost equivlent to those

in equation ( -29). Therefore, without repeating the manipulations, we
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give the result as

(1-4(1) _~A4 D .W D
-A e (ii I)

(3- 31.)

Thus, equation (3-29) can also be written in the form:

~~ l 1L2) ) (1)
-: 144,)

1 -4 kil .J-J #$ 12

( ) IR-A)
13-33)

For BCS with plane wave for the single particle wave function equation

(3-33) is equivalent to the simple relation

S=(3-34)

Where we used the analogy of

d(R-k j )=-k - . The

V t and

second supplementary condition (3-32) reduces

to another identity

vI LV 1JfrV1
(3-3si

for the simple Bcs system.

3.2 TDHB equations in the Wigner representation.

The TDHB equations (2-74) and (2-75) in the coordinate representation

assume the form

- k6o'i

(3, -2'J

, 0- 1g'g .) (, ;- Vt

% I ) P I X,

T4:_j .,x ) = I X X4) f(ji X') (X kA" y')I A
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and

(3-37)

Again, we used the convention that repeating variables are summed. We

define one body thermodynamic potential density ' and pairing density

potential A as

~(3- 33)

where

As we discussed in section 2.3, the inclusion of the chemical potential

in equations (3-36) and (-3-37) is not necessary. These equations can be

replaced by equations (2-122) and (2-123). We keep the TDHB equations

( 3-36) and ( 3-38a) in this form in order to have appropriate limit of the

static solutions. But in the following equations in this chapter the

thermodynamic potential I and pairing potential A can be replaced by

-k and S respectively, without any change in the physical content of the

equations. t , A and S are defined by equations (3-38a), (3-39) and

(2-124) respectively, and + can be written as
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Before recasting TDHB equations in the Wigner representation, let us derive

the equation of motion for the deviation distribution function in the

coordinate space. Utili zing equation (3-37) and its conjugate, we obtain

- ') ) + r+Xj) +(I 'J)

or

Comparing equations (3-36) and (3-42), there are some similarities between

them, which we will discuss in their Wigner representation from at end

of this section. We now recast the TDHB equations in coordinate space and

Winger representation. Let us take the Fourier transform of equation

(3-36)

A- -aA

We may write i in terms of its fourier transform . , and define 1O1e?,A)
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and & in analogy with equation ( 3-16)

Jas ~
&~4L ,~4:() ('3 - '4-)

-IR
(3 - q-5)

With analogous manipulation as we had in recasting supplementary conditions,

we obtain

L
(.JL

e

to 2)-

A (~, &

-'~~o If~x2-
Ye D.

(1,)j ( e)

(2 ) - ( ,) ( )
1 (k.Q - I R )A ( 4

Similar analysis can be applied for the second equations of motion (3-37),

the result is

= - A(RA) .~ (~~)
(1 (2401) 1d. 4.)

0) (2)
-~- #('Ab

-& R1 1

& L ) A (n~) + ~ %?,,~) ~tI~4)]

where the shift operator are defined by equations (3-27) and (3-28).

A j)

+
-,

-OILLI -bU ) -4 ( %-)

-D .0 - ii. -Obit 4C

I

D-k% 114+ t

D . +. it

(3-47)

AV j xS 0
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Recasting the deviation equation f3-42) in coordinate space in

the Wigner representation and utilizing equation ($-41), we may write

- k~+ ,i) ~) ~ -~Aw4r) k'~s Y ~ ) AV)

The left hand side of the above equation is just half of the partial

time derivative of the deviation distribution function ARA) . In the

right hand side of the equation, the first four terms are similar to

the ones in the equations of motion. Thus they are easy to be recasted

in the Wigner representation. For example, let us recast one of the

remaining terms, say,

IJ eS
- - AL '4/ I I 'i (39)

writting , a and k in terms of their fourier transform f(e) ,

A('A) and , and using the shift operators (3-27) and (3-28),

we obtain

I, R
X

P( 94-- ri
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T~ ( " ~ L

e.
-~

e

(.2.1

~(~L) e.

(3.-50)7 R4

The integration are easy to carry out and the result is

C+

j3 -:r1)

with some manipulations similar to the sample term (3-50), the remaining

terms can be derived. Thewresult are

4 A#U . d, ) -Q

46 (R)I(Ok (it4.)

-4 ki -0 M .(2)3

-4(2)

(Kit) (3)V

a) W p

Collecting the various terms, the equation of motion for the deviation

distribution function J in the Wigner representation is

L )t~~~~ U

+l )D
-~ 6

UI) (2) A

(Rt (' A (A-A:)
RJ-J

U1~~ -9I3 -'U -

(.2) (ig

e

4L

&li.

d)
e

-eI 0)

(3 .. YtJ

3 -53)

2.i ('", ) (1
-d3) -~ (2) '3

L

U2)

; a -, 5) .D-44 1

I #U)
(Ir ' " -A) , D- 5A. P

[ ( -4 (3) -0 (1)
T

b.

-4 t2i

D,- Dk A
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W (4U --f-2) -40)

e- f4l x (z) -1 (Z) ,,ZJ W.)

2. i D-N + -D D D - )

e( -R (4 k)

73 --S)

Some observations about the equations of motion: First of all , as already

mentioned in the begining, we may disregard the Lagrange multiplier ) in

the dynamics. Secondly, for the one-body thermodynamic potential density

in the Wigner representation (3-44), we obtain

where

As mentioned above, we may disregard the Lagrange multiplier ) , and

hence can be replaced by

-(3

Substituting equation (3-56) or (3-58) in equation ( 3-46) and carring out

some algebra, the equation of motion for the distribution function freduces

to

-401 -Z)- -4
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-4 ~t I.J4

(3-9)

Note the similarity between the first three terms of equation kL.-59) and

the collisionless Boltzman equation for a system in an external potential

-4 fie 4
- RL -f,4 A)

V4.

The last two terms are certainly a modification due to the abondonment of

a fixed number of particles, and can be considered as the collison term

in Boltzman equation. Similarly, the equation of motion for the deviation

distribution function reduces to

+ -

I (f - (-I.)_ J -.#() '4aj2D2 + U.t
+ + Dz R

(1 ) k (1)

S(RIO) A (A-0) - A (ikA)

- 0) -tW~3)DL(~~

4 L11 LW~ +V - 3)

Lit' -0)
03) (4)

t~~-~) )

(9) (2) (3)

13 - 41)

24
(3-,60)

4' e

-Lki! (s) D-
L It D4 &

+-A ;

.' (2) 1.1

(R ) IRA Ic-A)

L 2 -
7- D4IC

-('/ -1(2.) U)

VX V ) d(R14) WA)j-

D.Z+ +

(3) -- 4 6)
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This equation (3-61) is also similar to the Boltzman equation; and hence

the distribution name for d can be justified. Thirdly, equation (3-59)

and (3-61) together with equation ( 3-47) are a complete set of equations

which describe the system. From this set of equations, it is apparent

that a solution to the dynamical problem expressed in terms of the Wigner

representation involves as much complexity, and therefore as much infor-

mation, as does a solution in more abstract representation (2-74) and

(2-75). Finally one may utilize these equations for a derivation of the

semiclassical hydrodynamic equations by taking various moments of the

distribution functions, similar to Koonin method for the TDHF approxmation.



68
Chapter IV

4 Restricted dynamical parametrization.

In section 2.2, we derived the TDHB equations from a varitional

point of view. It offered a classical interpretation for the equations

of motion as a system of equations for an infinite number of classical

particles. Although the TDHB equations give a complete description of

the system, the complexity of solving these equations is a problem.

Also, the interest of many physicists is more restricted to the time

evolution of a few macroscopic variables describing the system ( such

as its quadruple or rms radius) than the fine details of motion of

each microscopic variables. Therefore a reduction in number of variables

is desirable and various methods are devised to do so. We briefly

review these methods (a) intuitive parmetrization: One assumesthe

time dependence of R is through a few number of variables 41 , v. i.e.

Then the Lagrangian reduces to

One may obtain the equations of motion by using the Lagrange bracket.

The result is
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23
Where the Lagrange bracket is defined by

The number of parameters is restricted only by the number of variables,

and one may think of a complete description of the system by introducing

as many parmeters as the number of degrees of freedom. (b) The parameters

in the above procedure may not be canonical in general. The choice of

a canonical parametrization for k , aj- - - would result in a classical

Hamiltonian H(P4,f and the equations of motion reduce to Hamilton's equations.

For a quantal description of these collective degrees of freedom, one

may utilize this classical Hamiltonian in a " second quantization " to

evaluatethe spectrum of the collective energy. Although the justification

of this procedure is an open question, one may obtain some useful

information by comparison of this method's result with other methods

describing the collective motion of the system. (c)In cases (a) and

(b) the dependence on the parameters should be known a priori. One

may modify these methods by introducing parameters through a constrained

static calculation for the system. This method has been used in
3

an adiabatic approach to the TDHF from a variational point of view.

In the following, after a brief review of the two fluid model, we
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discuss the derivation of the two fluid model from a variational

point of view. Various trial wave function has been used in the

derivation of the Lagrangians describing the systems. The parame-

terization of the Lagrangian density is canonical for two of the

models and for the third it is adiabaticaly canonical. Finally

in the last section of this chapter, as an application an Irrot-

ational fluid model similar to the Kerman-Koonin model is

developed.

4.1 A two fluid model: First approach.

One of the successful theories for describing the peculiar

behaviour of liquid helium is the two fluid model. This model,
34

originally proposed and developed by Tisza , is an analogy to
35

the structure of a degenerate ideal Bose gas. Landau, with quant-

ization of the hydrodynamic equations advanced the theory. In his

paper, with a classical analogy, he reached the conclusion that

there is not a continuous transition be-tween the Irrotational

portion of the qu antum liquid state v-A qfo , and the vortex

VAO-fo part. Thus the energy spectrum of liquid can be divided into
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two spectra, with a certain gap between the states of the Irrotational
36

(phonons) and the vortex motion (roton). Feynman with his interpretation

of liquid helium as a system which exhibits quantum mechanical behaviour

on a large scale, and with his approach of finding some explanation for

phonon and roton excitation from first principles, put some light on the

theory. BCS theory also helped us to understand some aspect of super-

fluidty. On the microscopic level, there is a derivation of the hydro-
37

dynamic equation starting with a time dependent BCS trial wave function.

In nuclear physics, as we already know, pair correlations are impor-

tant. Thus, in analogy to liquid helium, one might expect some aspect of

microscopic phenomena in nuclear phyics experimently. In astrophysics

this phenomena may be important in the dynamics of neutron stars.In

section 2.2 we derived the Lagrangian for a many body system with HB

trial wave function, it can be written as

(4--Y)

As we discussed in section 2.3 the total number of particles is conserved

in TDHB theory, and the TDHB equations are independent of chemical

potential. Therefore the Lagrange multiplier A need not be included in

the equations (4-5). Also in section 2.1, we discussed Baranger's argument
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about the equivalence between

function. Now let us take if

taking I as a real, paired

Blatt's wave function and the BCS wave

in its canonical representation, i. e.

and antisymmertic second order tensor:

where '., represents the state which is paired with 4 . Thus f and k

will have simpler forms. Utilizing equations (2-46), (2-49) and (2-50),

we obtain

T f (4--7)

where

Z.

f~~4 w I+ (4i-- 91

and

(4-'1))

Now, let us assume the single particle wave function be time dependent,

then the simplified version of the Lagrangian reduces to

.( t

(4-11)

4 f' - -L V f f. - -L V' k-11.1 'OL 4F (A I-( Ff 4- qq, -f C, As
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Let us write the single particle wave function as

4 JA/W ( ( l ( k p a

where ' and I are real functions. One could decompose the single

particle wave function in the following manner: Iflis the real wave

function which corresponds to the single particle state 4 with respect

to the rest frame of the many body system. In the classical interpre-

tation, L can be viewed as a momentum density of a classical field

and t as a density field corresponding to the state . One can

easily see that the momentum density '. and the density field

are canonically conjugate to each other.

The corresponding Lagrangian is

Jc~)I 'y~~~r - t.([~4 K (4, 13)

Which may be obtained by adding the total time derivative

to equation (4-11), and defining functions

and

e t I .. 1. r \4 + +) I f'(rf)~ + _t4 f,

T I V (4- 16)
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In this Lagrangian ( 4-13), we have a large number of degrees-of

freedom. Thus, as we mentioned in the introduction of this chapter,

a reduction in the number of canonical variables is desriable.

Kerman-Koonin derived the continuty and the Euler's equation for

an Irrotational fluid, by taking a coherent phase for the single particle

wave function in TDHF theory. Encouraged by this derivation, let us

keep two phase in the Lagrangian. We may use the time independent

chemical potential A for distingushing the two phasees. We define

T) and (OH such that

( rt) 64~

where E4 is the single particle energy. Utilizing equation (A4-17)

in the Lagrangian (4-16) one obtains

where

An

and
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In the derivation of the Lagrangian, we used an arbitrary

local two body interaction potential. Physically the choice of taking

coherent phases corresponds to freezing out a large number of degrees

of freedom. ThusE(jfojgcan be viewed as the minimized energy as

functionals of f , T and an explicit function of q-1 . In other

words, that means all other degrees of freedom are chosen to minimize

E under the constraints of fixed f(A) , f(r andf- . One could derive

the equations of motion for the Lagrangian (4-18), but it is more

interesting to define new variables

444 f -t;II -f e -

and

-s =f, -h,. &a+

Utilizing equations ('4-21)-(.4-24) in the Lagrangian (4-18), we obtain

- ~ 1.v÷(v'#'J)p -vt ~)sj -EI~t

(- AS-
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Thus, one can derive the equations of motion for the Lagrangian (4-25)

"V

4

S

Define

fh 1 ( 4- )
/

.L ( t +O

+ j9r~

~VEo

(1+ -&L7)

(44 -if)

14 33

14-30)

-4

Taking the gradint of the equations (4-27), (4-29), and utilizing

equations (4-30), (4-31) and (4-32) we obtain the equations of motion

for the two fluid model as
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-447

4

IV

~t] t~ie
~~V 7 ij

We observe that, 9x5=O (superfluid is Irrotational), ),V

(normal fluid contains the vortex motion). Due to the canonical

behaviour of the varibles, the total energy would be conserved and

thus one should not expect any vicosity term in the equations of

motion. We will discuss small oscillations of the densities near

thier equilibria in section (4-5).

4.2 A two fluid model: Second approach.

In section 4.1 we derived and discussed the two fluid model

for a special case of the HB trial wave function. Therefore it would

be interesting to derive the two fluid model with a more general HB

trial wave function, which is our aim in this section. Let us introduce

a new wave function:
T X

e -7

(4-'33)

(4 -3s)
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r 33
Where act)( afx)) is the creation (destruction) field operator, X

represents the spatial 7, spin r and isospin cicoordinates; and

is the usual HB trial wave function in the coordinate representation.

The time dependent part of the Lagrangian can be written as

- fyt) T~ jf

From equation (2-90) one may write

r7, (4-- 3-0

We assume that the two body density matrix elements have the properties

and

This form of the two body density matrix elements satisfies the

supplementary conditions equations (2-33) and (2-34). Employing

equations (4-40) and (4-41) for deriving the right hand side of

of equation (4-39), the final result reduces to
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KO1f I 6 -r r) kc) (- -

where

And for the time dependent part of the Lagrangian (4-38), we have

- -$v( Ot~(r ) I (y)kI

where

The kinetic part of the classical Hamiltonian can be written as

T
T -jOj) qoog 6(x')

>~ ij X, )<+ e)

We may expand the expoential coeficient of the trial wave function

(4-37), then evaluate the right hand side of equation (4-48); and

next expand the expectation value of the density operator (4-40).

The final result for the kinetic energy (4-48) up to second order

in terms ' and i is

lk Yft\(Y2
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Nowlet us use the explicit form of the kinetic energy operator

J- ,

in evaluating kinetic energy. We obtain

Although we expand the kinetic energy to second order in terms of

S and v, the final result is correct to all order of them. Finally,

the potential energy term of the Hamiltonian can be obtained with

a similar expansion as we had in the kinetic energy term. The result

(to second oreder in terms of g and 0- )is

('V A4' IVxx7) f 0(X) I)+ K(OX) K$4)'x')] ~

In case of a local potential, the potential energy (4-52) is independent

of I andi . Now putting together three terms of the Lagrangian, utilizing

equations (4-51), (,4-52) and (4-46); the Lagrangian reduces to the form

_ J(r)k V) + 04r)fy) IV +v-) f7J - E({tb,&ey)
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Where we assume a local potential for V , and as usual E(rj, Is the

minimized energy under constraints of fixed _ and K. The equations

of motion may be derived by Hamilton's principle.

- ( pf 0d9.a.Pr

-~V.f(fr')~L

4i- SC)

-S7)

The equations (4-54) through (44-57) are a simple set of equations

describing the motion of the two fluid model. One of the special

properties of this model is having zero roots for dispersion relation

relation, and we will discuss that propertyin more detial in section

4.5

4.3 A two fluid model: Third approach.

The motivation of this section is to derive a two fluid model from
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direct use of the TDBCS wave function. Let us consider the trial

wave function:

where

T T TT
A f{ I)(t) r) c(rt)e4 +)r() 4Al4) + )

a +

A

t = qr(af Ar)+ 'IY~aYd { .. to)

and BCS is the usual TDBCS wave function:

with a and vk assumed to be real and time dependent.

In the adiabatic approximation to the Lagrangian, the potential

velocities I and X are assumed to be small enough to permit an expansion

of these phase operators, retaining only terms up to second order in the

phases. The time dependent part of the Lagrangian can be written as

(f | i 1+ -) -- fr [ Ir) jP(r) t %iY) )

where pfr)and 1,(r) are defined by

t) = L (p)f 2|'fa) VkL ~ 63)

and
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' and i, are adiabaticly canonical variables as one may notice

from equation (4-62), by retaining terms higher than second order

in the phases. For a simple potential such as

A

the Hamiltonian operator can be written as

T 7

Again, we expand the phase operator in the trial wave function for

eval ation of the classical Hamiltonian; the result to the second

order in terms of I and can be written as

(~ l~~ TVrr') v-') -~ Bc 33~

.-I<BcI[+ 181+1 3]C>- <BClE

14'-67)

where

The Lagrangian can be obtained, by evaluating the classical Hamiltonian

(4-67) and subtracting it from equation (4-62). The final result is
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= - Jr [ j (r) f(t1 +'f(r (r ) + .4L)tf(() -dA(r ( {rJ,)k ) f kvj) (jk) )

(g (Y) k (r) 1 C('xr') C(frIJi +4 1~"~) Y~(trJ)~ki)] - S14r' II.
'(r') H ( JrjIftj,) + T (r) 9jyr'j 6IfJ k 1)3 - E frI)k

14--- 9)

Where f and k are defined by equations (4-63) and (4-64)

Other coeficient are defined by equation (4-70)

respectively.

through equation (4-76)

A (Yr?Ijv1)

t w IW

- - ~L
kVj

k

f, kI V )v - I I, ek I "I (ks 41

.~ ~e A ~ k.

7PA-/ 4)x

(4-12)

I&, kr) ,) t* "it L f(r) 

- tf~k. AeI 6 J
1 ~~ ~ k J4wrkr + , I '- I(V '?) -)' IV,~ 4~~ ~r

it 4 ;k T)VjrL 4 14 f

tl . 4 ' x'
- ~ #,V,

+ Ifv-ft kv~ - 4'k -)),

2.

)

1 4 -7v)

f k,-I e, ()II

I L - 17 07 1

Yk i Y4Lt

v(r d (01 )kj +~ ft i 4 (r )
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St 4 . 4() 'r} ( i1l. VkV 85 4(r) (0') + V W)4'(r) LlV L) Vt

G( ~Lf~ )~ 38 L0 4()4Idr'I *kq VI.r) T (r,%) _t~ 4 4p(Jr)t Qd IVbtOW) k4u'Vk.TP~IY

kv) 4 
'(''

." .n . , T-7x (4

where the spin coordinates label is suppressed for convenience.In

deriving the classical Lagrangian we would freeze all the degrees

of freedom except the two collective ones, namely I and n, . That

mean that all the dynamical variables in the trial wave function are

chosen to minimize the classical Hamiltonian under the constriant of

fixed i , ex , -P and )t . The equations of motion can be derived

by Hamilton's procedure from the Lagrangian (4-09), and we obtain

- (f f ) A - D

4 - 77)
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-t -( 7-S ~A- 4 13) A
(w&)2 -

+jc A r-[ ) r)

St
S O ,- 4=!

+ LOr' ~!

6*

451 -(kiVf, -i
Xz 5(r) D -'X (r) C

-: L A'XVr F'): +

A 4
N4 =

+ (r)9r)

S6-~

+ r qV'

+ j (~r)~/.~

+ Ir

E I + S

The equations of motion (4-77) through (4-80) describing the fluid

model are complex and we will consider only small oscillations of the

variables in an extended system near its equilibrium in the next section.

S4 :,-o
4jj 4~

SF
iVt

(+-79)

Tkr') 6. 3 -= a .._-9s)

dg y),Xr) LD
Sr

LS

+ j_ (
iT

L&

+
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4.4 Dispersion relations for the two fluid models.

For each of the three two fluid models described in section 4.1,

4.2, and 43, we may consider small oscillations of the densities near

their equilibria. In the first model, the equations (4-33) through (4-36)

can be applied to the propagation of sound in the system. We assume

the velocities are small and the densities are almost equal to the

their constant equilbrium values. Thus terms which are quadratic in

excursion can be neglected. By differentiating equations ('4-33) and

(4 -34) with respect to time, using equation (4 -35) and '4-36) and

eliminating rand i3in fovour of y and j, , one gets

we(r-I)

where

hr3

(4,-.14~)

and
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( 4-?'S)"1' f~~'

One could write t and as functions of I and ; , then equation

(4-81) and (4-82) can be written as

'3tL

z'31

*1-

4- =; VT +. V - F;

For small oscillations, one may write

1- i, + S e
V -aA)

(4I-41)

I -'6
/

and obtain (in matrix form)

LJ~

Wt

-1 A

I -f-F ) 48~)
I * --10)

then, the dispersion relation can be written as

(4- ,')

I 417

(
( e -1)

i-V
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j) ( F) t

.i.

With some algebric manipluation, the dispersion relation (4-91) can

be written in a more simple form:

F ~ ~4~2(

4,e F (Jr, ) jJ
4(12)

This dispersion relation (14-92) has the appropriate limits. First:

For normal fluid - =0 and 21=0 one gets

WO % . (1ff~3)

=

This equation( 4 -94) Is-eqivalent to the ordinary sound dispersion

relation in the normal fluid. Second, for small and ,#one could

make the approximation

L.P9 91

bT
j7j;j

.S
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'-.o 5)

which is similar to the

,w p T" I
approximation in the Landau theory of

dispersion relation can be factorized

the two fluid model. Then the

to

F ev

or

4) SA Wr
S

and

The dispersion relation (4-98) corresponds to normal sound in the fluids;

and for the other relation (4-99), it is similar to the electron plasma
39

oscillation dispersion relation. For a general solution to the equation

(J-92), we would have

63 (- ~ .+L~ V
(i-- it 0)

where
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~$s14- 1 I.)

Equations (4-100) describe the general form of the dispersion relation

for the two fluid model. For small ( the square-root can be expanded

and one of the branches contains the effective mass, while the other

would be similar to the normal sound dispersion relation.

The propagation of sound in the second fluid model can be

considered similar to the first model. To avoid repetition of similar

arguments, we may derive the dispersion relation by direct use of

equations of motion (4-54) through (4-57). For small oscillations

of the variables near their equlibria, one may write

S+ r-(i-o-

(qL. 114)ke +Sk e
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4.8~ - tt)

r J.

(4*-107)

( 1. 101)

Substituting equations (4-105)-(4-108) in equations (4-54)-(4-57),

then the equations of motion reduce to (in matrix form)

1.- -.

The dispersion relation has two branches

1 O

and

The simple form of the dispersion relation is due to our choice of

local potential interaction. If we use a general form of potential,

the dispersion relation will be modified to

(* ..Ila)
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+~S

D SE ~S
,FT7- Ij A, Tx,,

where

5 v
1 - 3 +

(Y-.Ii3)

The dispersion relation equation (4-112)

for r=. we obtain

.

and

ta =oj t41

has the approprate limit.

Is
AS.

For t=0 the equation (4-112) reduces to the equation (4-110) and

(4-111) .

For the third model, let us consider the linearized form of

equations of motion

(l-

__ 5 t I21.1
- A(r,K) --

- -~ ~ y~q t4)

(I'
2'~ *~-
~

C')

JI-flkj+ ) '~) 6r/k7

f1 ;

=_6

41
K.

+3 f'_'+)

%' (j'')s F -(

4 Lf A
f (41

2

(it 6)

kit-III)

I-J4 _ W I- I

e T
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ra i
f Jk 'iiqJjfA Pk(C

For small oscillations, we may write

f = $f e

(l = 9

i&~, -&J+)

:~ ."'+)

-~ 4)
~.y -L~J',i 1

~J
(-Ar ~LSt)

1'L-- I)

(Lg -. Z.)

-- &+- e u)
Substituting equations (4-120) through (4-123) in the equations of

motion (4-116)-(4-119), writting the results in the matrix form, then

the dispersion relation can be obtained by evaluating the determinate

of the matrix. The final result is

Li -14' K (Kp

( e __ 56+- F
C(f1&) +- F F (fPk,14

)(s 2 Ls\ , j
TY- -k. fsT ) [ - +or i^

- C(j A) + F ]:f

I e+- 12 9.)

where

JY C F(;
( 4+-In )

(4-- oil)

Nt546k

F T

- I hL2-F -P, JKj

( B (P),) -14 I t + F k,
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& (Fk) J;C~~.(~k

Fj k) (y kL =

Let us consider the limits of the dispersion relation (.4-124). For

6/4K we would get the usual

LJzo 0j-~g

and

W= 2. (1$+A k) 4 { 9 j~)](\

for the dispersion relation equations. The equation (4-129) is the mod-

ified version of normal fluid dispersion relation, the extra term A and

l/2FH are due to nonlocality in the two body potential (4-65). In the

region in which the term

1W 66 2.f

_k~ DrJ)-- A4 F4. FD k t~(.FiA))

is small, one may factorize the dispersion relation (4-124), the results

being
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)

and

t~)$+ C k-) F F:(fk.) (kjn

For small 1  one may expand FH and FF in equations (4.-131) and ('.-132),

respectively. Then the result reduces to a familar form, except in

this case both branches of the dispersion relation have a finte mass.

In general we could slove the quadratic expression of the dispersion

relation, the result is

where

and

Let us summarize the discussion of the dispersion relations for

these three different approaches. For each model we had a quadratic
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expression in terms of wl which has been solved. For the first model,

we have two branches with approprite limits. For a reasonable approxi-

mation, one branch is similar to the normal sound dispersion relation

and the other contains an extra zero effective mass. For the second

approach one branch is = and the second branch contains an extra

effective mass in the normall sound dispersion relation. In the case

of the third model, the dispersion relation are more complicated,

and usually both of the branch have the effective mass. Also their

dependence on the wave number is more complicated than in the normal

sound dispersion relation.

4 .5 An Irrotational fluid model.

In sections4 .1, 4.2 and 4.3 we developed the two fluid models

first from a special HB, and secondly from a general HB, and a TDBCS

trial wave function respectively. But the development and carring

out of the calculations for those models was complex and time consuming.

It would be more attractive to develop a simple model with a restricted

trial wave function. Therefore in this section we begin with time

dependent BCS trial wave function and construct a simple Irrotational

fluid model. This model will be used in chapter five for the calculation
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of sound in neutron stars.

Let us consider the trial wave function:

cqr)( [4(t) 4(ti) + (I~J 4.(1n)J

T
where as usual 4(f)and drtare creation and destruction field operators

respectively and BCS correspond to the time dependent BCS wave function

(4-61). The time dependent part of the Lagrangian reduces to

where yiis defined by equation (4-63). Corresponding to the Hamiltonian:

-T(r) ( 4V 1)&t1t) + a4) AIN)) + V(x,') A x)4 ) a ' 4(gJ

we obtain the classical Hamiltonian,

Where, as usual, E4j1) is the minimized energy as a functional of j')

and in the case of a local two body potential C-(JI3) is independent

of I .

The Lagrangian can be written as

Jtr('~ +~(fZ E fI
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This Lagrangian is similar to the Irrotational fluid model of Kerman-

Koonin, the only difference being the inclusion of the pair approximation

in deriving the classical Hamiltonian. Using Lagrangian (4-140) one

may obtain equations of motion:

Where (A4-141) can be considered as the continuty equation and (4 -142)

as Euler's equation. For small oscillations near equilibrium we may

write

.r~i: tr e 4- -1 (g3)

Substituing equations (4-143) and (4-144) in equations (4-141) and

(4-142) ,writting equations of motion in the matrix form, and evaluating

the determinate of the matrix, we obtain the dispersion relation as:

1. 5
Li.)SS
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and the velocity of sound in the system will be

1
IL)

L4. =
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Chapter V

A study of neutron matter.

In this chapter, we study the effect of pairing on the dynamical

properties of neutron matter. Neutron matter is a hypothetical system

of neutrons in equal spin populations. It is assumed to fill all space

with uniform density of neutron Y. . Although this system will not be

bound by itselef, the interior of a neutron star would be a very good

approximation of the system in nature. Usually, parallel to the study

of nuclear matter, the neutron matter is also discussed. Specifically,

the superfluidty of neutrons in the neutron star has been reviewed by
40

Baym and Pethick.

In section 5.1, first a static study of pairing in the neutron

matter has been considered. We assume that neutrons are interacting via

soft core potentials. The energy gap equation has been solved. Then we

treat the description of sound waves (small amplitude oscillations) in

the system, utilizing the Irrotational fluid model of section 3.5. In

section 5.2 we derive the QPRPA utilizing the Generalized Hartree-Fock

method, and apply it to our model of neutron matter. The numerical

calculations of the QPRPA and the hydrodynamical approach for phonon

energies are compared.
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5.1 Sound in neutron matter.

As mentioned above the study of sound wavesin neutron matter is

our aim in this section. One of our assumptions is that neutrons are

interacting via soft core potentials. The potentials adopted in this

section and the next are taken from reference L1o. The potential

consists of three parts of gaussian shape

.3
A I"'

The values of V and A are given in table jiq . The term ( J=1) is

adjusted to the OPEP and the term ( o=2) to the strong attractive part

in the intermediate region in the singlet even state. The third term

( 4=3) represents the repulsive soft-core and is confined to the region

Y 0.74 . sand 43 are determined by the singlet scattering length and

effective range.

Now, we solve the static part of the equation of motion. Utiliz-

ing equation (2-75) in its static form, we may write

In solving equation (5-2) we use the effective mass approximation for

the single particle excitation energy (which is relative to the chemical

potential A )
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Using equations (5-2),(5-3) and the supplementary condition (2-33), we

obtain BCS gap equation which is a non linear integral equation for the

gap equation

Integration of equation (5-4) over the angles is performed and the final

result is

where

The iteration method is used in solving equation (5-5); the input of

L 
P is *ji -I'- '-\ L As , and the convergence condition is

M ALI!) cz ~j (S-7)

where n is the number of times the iteration is carried out. The region

and the mesh size of the integration are [0.0, 7.5] and 0.15 respectively.
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The ordinary iteration method is modified by relaxation method, which

makes convergence more rapid. Nyumerical results are given graphically.

Ak is positive and decreasing uniformly for 1,&I but becomes negative

for -,7_ due to the repulsive core as shown in figures [s, 1 . Figures

S7,S] show the dependence of the gap energy at the fermi momentum on

the density of neutron matter for various effective masses..As we see

from figures {s--g , the calculated energy gap are reasonable when

compared with the experimental values in heavy nuclei.

In the second part of this section, we use the formalism of the

Irrotational fluid model of chapter three to evaluate the sound velocity

in neutron matter. Besides the effective mass approximation we used in

the above calculation, we assume that the introduction of the phase q

in the trial wave function (3-136) does not change OqJ)From its ground

state values. Equation (5-8) show 5 fi) as a function of density

we we 4 s the d

1Z-
k k

k k

where we have used the definition of gap energy (5-9) and the static value
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of UkV( (5-10)

and

( s-jo)

Equation (It-146) gives the velocity of sound in neutron matter

Eif (4-4-)

Utilizing equation (5-8) one may obtain-! E(11()

In our numerical alculatio, theOre ifadtems ieo ifrn

It - M

If 5f + (Akk~.

Jb~(1 k)~ktlk

1k -1'+A t-'

tiation are { .aO s, 3.4J and 0.05 f respectively (for the corresponding

fermi momenta). The region and mesh size of the integration are [8en, 7.5)

and 0.15 respectively. Figures[5,yIojshow the dependence of velocity of

sound in neutron matter on the density for various effective masses.

The dependence of the velocity on the effective mass is shown in figure
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13 for various densities. As we can see from figures {,-%0, the

numerical results for the velocity of sound in neutron matter are

reasonable, considering the result of other studies of nuclear matter.

5.2 Quasi Particle Random Phase Approximation.

The aim of this section is the derivation of QPRPA and its appli-

cation to our model of neutron matter. Besides the variational deri-

vation of Baranger, there are other methods for the derivation of

Hartree-Bogolyubov equations. One among them is the Generalized Hartree

Fock method developed by Kerman and Klein. This method has been devised

to describe the excited states of system in equal footing with the

ground state. It is based upon the assumption that off-diagonal matrix

elements of certain one particle operators are of the same order of

magnitude as the diagonal elements, and the two body matrix element

can be factorized similar to the RPA, with a simple generalization

to include the collective states. Although this method is used mainly

for the description of excited states in Hartree-Fock approximation,

it is equally capable to describe systtem in the Hartree-Bogolyubov

approximation by retaining the expctation values of the pairing

matrix elements. In the following we utilize this method for the

derivation of HB equations. As usual, we consider the Hamiltonian:
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V(xj x ) a (N')a(X).

We begin with the operator equations of motion which follow from the

Hamilatonian equation (5-12)

ltO(X' H] T(xO) a) +1J
A

Z(V7 4 (X)
) (s-13)

We study the matrix element <j 1euy48c)> connecting the

the system with one of the eigenstates I ..

IVC$> state of

of the system:

C,

Then, the equation of motion can be derivied utilizing equation (5-13)

-T 3') 4Lb) +- V(XK ) (L/ 40)4)4x') lc' (5-1d

We may follow the same procedure for the matrix element (i1 zf) ICjg .

Then we obtain:

where

AC

- T~,)cI'A)i ~ gg'' l)4)4' ()B
(s-l7)

~~xJ~~ (X~OQJ~

+ A-

T
4 (N

U x'T' -7 1) A

(X)L I a

' Ag e'i 4 (X) S C (X)
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To arrive at the HB approximation, we set

<Substi')uting <i roi) mati) (g-1

Substituting HB approximation (5-1

I &( a(I') I Bc>

in the equation of motion (5-16)

and (5-17), the TDHB equations can be written as

i~ ~J~(x)

~

At y1) 1 () 4{- VI1, 1X{. f(Ija) fiKQ~) + k ( ,'yoN)

-1l~)
h.

- VLx ,~) )*J' LA

where rt') and

f~~:: )I
I.and

k('X)can be written as

'~~ '1~V

'O) V.').
For zero order solution to the equations of motion, we may write single

particle wave function as

(c"

ixt)

=-e
+

V

e'a S- --ts)

Using equation (5-20),(5-21),(5-24) and (5-25) we obtain for zero order

approximation to the equations of motion

15".1')

(s-v)

t 5- 2.2.)

and

V ~ ~ T 9 '' sr| g t)j p

+

-
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I -

I

- 'j L~ ~ h1 V

Where u. , v.

three, and

and are the usual BCS values as defined in chapter

E- is the single quasi-particle energy as defined by equation

(5-28).

One may easily derive the gap equation from equations (5-26) and (5-27),

the result is

(5-239)

For the linearized equations of motion, let us consider the

equations of motion and their conjugates

; lv) = -T f(1'7) IN') -f k (y ) . ( -

2. Itt ~-i

=T XJ) 4t ) VIA 4~ k~'){IJ 5-~

k4So) +eVt) 1.

The linearized equations of motion follow directy from equations (5-30),

(5-31), (5-32) and (5-33) upon neglect of the third and fourth order

(5-1-7)

A

~~H:) ~(y)

+

V(x V) x'-I) I A

P,
ISO11

+
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terms:

N )
? ~ ~~~ ) [A i ( , f 1 ) 8 1,(X') +t~ ' .

+ 2.A.x') Ef($) -4 (,) k (p)] ( S-Vt)

el) f ) (A

Sfx0 + s-3

+ A Kf(' 2) ) t') , ( )

Let us define new varibles J4W and 41Xgin terms of old varibles Jox)

and 64(j:

We may use the effective mass approximation as it has been used in

section 5.1 for the single particle energy. Utilizing equation (5-38),

(5-39) and zero order approximation to the wave function, equations

(5-24) and(5-25) in the equations of motion; the final results are:

CIO .4



L 3 * - -r) e -Jv' e rr')iA

i AL SAY' e *)(r -r) () + ) J i

VM (y-4.

with three similar equations for S , iand Solution to the

equations of motion can be derived by introducing
1~' 

V

and similar equation for S w . Then we may rewrite the equations of

motion as

-t ~ *-t 4 4 j I21 J41' y-r--r~ ) ; (Y v- -

-Ld, -)
J'V e. 51

-r aji -'')

VS, j +

with three similar equations for f.~ and 4t,.
For solution to the equations of motion, we may expand the

variables in the Legendre polynomial, such as

P I
el.---43
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-4
where 0. is the angle between J- and j Substituting the

varibles in the equation of motion, and keeping only the

those expansions, and taking average over angle ; the

can be written as

'3

- A.5

di

ij~ ~

I')

61,J.

-6 1% 4 1

-w

1l -Y(1.4) ) J1
-y~: (~

expanded

first term in

final result

11

vki,-

[A V (4 4 ,j (1)

C~V ki (1.1) = *'' /j

(VO) - V K-i~~uw +~ J - ,7  (~

Ar 'j- 1 -Y 1 4) lq l ( . t

V V$441) .3 I

~ /~ j+ V~ kt iv

'3

'3

E~.

where

I)

1)

(5-.7

(s-- )

(S--70o)
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and

Jt e

As one may expect, the equation (5-44) reduces to the ordinary RPA

when one sets S( = As in the RPA the solution to the equation (5-44)

has the property that if ( N ,6, 6,US,) is a solution, (-i ,

8 61Vl ) is also a solution.

For the derivation of the excited state energy for the neutron

matter, we use the potential (5-1) introduced in section 5.l.The

three dimension sum over j is simplified by the usual interchange to

the integral form:

then integral over radial dimension Ai is interchanged by sum over

The final result is similar to equation (5-44) with sum over radial

dimension in the momentum space (j). In numerical calculations the

region and the mesh size are [0.0, 31 and 0.15 respectively. The

corresponding matrices of 80X80 dimension are diagonalized, using

the EIPAC subroutines (Eigen system subroutine package). Figures 112-173

show the dispersion relation of the system for a given density and

effective mass. For modes with large energy gap the excitiation energy
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is a function of square of wave number as shown in figure[121. Figures

113-151 show some modes in which interaction traces are appreant in the

long wave length region. The upper and lower modes of a band of dispersion

are shown in figurejl6). The modes in this band are also hyperbolas in

terms of wave number. Finally the unstable mode of dispersion relation

is shown in figure [171. These figures show similar dependence on wave

number between QPRPA and RPA in short wave length region, as one may

expect physically. The numerical calculation supports the hyperbola shape

for some of these modes in the long wave length region.

Now, consider the comparison between fluid model and the corresp-

onding QPRPA results. Figure(183 shows the dependence of phonon energy

in fluid model for a given effective mass and propagation wave number,

and dashed lines are the corresponding QPRPA values. This figure shows

the QPRPA excitation energy is an increasing function on density, and

the corresponding fluid model is smaller in the region [0.5, 0.7 fi,

higher in the region 10.7, 0.9 f land difference in the excitation energies

is sharply widening for high densities. The dependence in the phonon

energy on effective mass is shown in figure [19] for a given density

and propagation wave number, and dashed lines are the corresponding

QPRPA values. As we see from this figure, the QPRPA excitation energy is a

slow decreasing function on effective mass, and the corresponding fluid

model also is a decreasing function on it with a much higher slope.
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Finally figure [20) compares the dispersion relation between the fluid

model and the QPRPA for a given density and effective mass.

Actually, the fact that for a contact interaction in the long wave

length region the RPA coincides with its corresponding hydrodynamic

model porvided the impetus for a similar comparison between QPRPA and

the fluid model in the TDHB theory. But as figures [18-203 show there

are some disagreements for the solution of the linearized TDHB equations

and the corresponding hydrodynamic approach. Figure L203 shows that the

hydrodynamic dispersion relation is a linear function of wave number

while the QPRPA dispersion relation is a hyperbola in terms of wave

number. Similarly, there is disagreement for the phonon energy in

terms of density between the two approaches. These disagreements between

QPRPA and the corresponding hydrodynamic results enhance the uncertainty

in applicablity of hydrodynamic approximations for a nuclear system.
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Chapter VI

Conclusion.

This work has explored the hydrodynamic approximation to the

Hartree-Bogolyubov theory. From a varitional point of view TDHB equations

were derived, and various limits and properties of these equations

have been discussed. The TDHB equations were utilized for a hydrodynamic

description of a nuclear system. For this purpose, the Koonin approach

to the hydrodynamic interpretation has been employed in which the Wigner

representation of the TDHB equations is used. Similar to the Koonin

result, we also had a semiclassical interpretation for one of the TDHB

equations as the equation of motion for the phase distribution function.

It was shown that the distribution function satisfies a quantal version of

a modified Valasov equation, which approaches the classical result in

the limit T1 -+ u and where the number of particles is fixed. Although,

the fourier transform of the expectation value of two particles (holes)

field did not have a semiclassical interpretation, we did find the

deviation distribution function with interesting semiclassical interpre-

tation. It was shown that the deviation function satisfies Valasov's

equation similar to the phase distribution function, and classicaly

it is the square of fluctuation density. It was possible to utilize the

Wigner representation of the equations of motion for a derivation of the

semiclassical hydrodynamics by taking various moments of the distribution

functions, but we did not expect any physical gain to follow in this path.
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Actually, derivation of TDHB equations from a variational point

of view enabled us to have a Lagrangin which not only describes the

system in its microscopic level, it can also be utilized for description

of collective motion of the system. For this purpose, we assumed all

variables in the system are changing through a few variables, and hoped

these variables are good approximation to the collective coordinates in

the system. For a specific example in this line of reasoning, we consid-

red the two fluid model as our goal. With various form of parametrization

for the trial wave function, equation of motion for the two fluid model

were derived. In the first method, we empolyed a diagonalized form of

TDHB density matrix, then included dynamics of the system through time

dependence of the single particle wave function. The phases of single

particle wave functions are divided by two coherent groupes, and the

chemical potential was used for the division of each category. We had a

two fluid model Lagrangian, and from Hamilton's procedure the equations

of motion were derived with appropriate definition of velocities for Irr-

otational and normal fluids, we derived a set of equations which had some

resemblance to the equations of motion in Landau's theory of the two fluid

model. Small oscillations of the densities near their equilibria for this

model were considered. The dispersion relation were derived and its vari-

ous limits have been discussed. Similar approximation as one had in the

Landau theory was employed for factorization of the dispersion relation.

One branch of the dispersion relation corresponds to the normal sound,

and the second one was similar to the electron plasma oscillation disper-
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sion relation. In the second approach, we utilized a general HB trial

wave function for the derivation of Lagrangian density. Of the two veloc-

ity potentials, one was derived from the expectation values of density

and two particle field operators and the other one was introduced through

a general phase factor in the trial wave function; the corresponding

conjugate variables to the these phase velocities were the deviation

density and density, respectively. Due to the fact that kinetic energy

is a one body operator, the result of the kinetic part of the classical

Lagrangian was independent of the deviation density. This independence

is the reason for the simplicity of the second approach, and subsequently

it was responsible for poor resemblance of the model with the Landau

theory. In the third approach our attention was focussed on coherent

excitation of the two particles and two holes in the trial wave function.

One of the phase velocities and its corresponding density were only adia-

batically canonical conjugates. The equations of motion describing this

model were a set of integro-differential equations which did not have

any similarty with Landau's equations. In both the second and third

model density oscillation was considered to derive the dispersion rela-

tions. The dispersion relation for the second approach was simple; one

of its branches had zero roots and the second branch had a simple normal

fluid dispersion relation. For the third approach the dispersion relation

was more complicated. And for small wave numbers, both branches of the

dispersion relation had a finite effective mass.
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In derivation of the restricted Lagrangian, the assumption

that the trial wave function changing through only a few variables at

best is questionable, the difficulty will not end at this point. One

must find the energy density as functional of densities and an honest

calculation of this energy density will be as cumbersome as solving the

whole microscopic equations of motion. However an intelligent guess for

the energy density as functional of densities may help to understand the

dynamics of the system. For this purpose, an Irrotational fluid model

was developed from a TDBCS trial wave function. For a contact interaction

with the TDHF equations as microscopic solution to a many body system

it can easily be seen that the microscopic energy for the phonon in the

small wave number region coincides with the corresponding hydrodynamic

approximation, where static solution of HF theory is approximated for

the energy density as a functional of density. This fact was an impetus

for studying similar comparison for TDHB theory results and their hydro-

dynamic counterpart. For this purpose, a study of sound in neutron matter

was considered, and a model has been developed. It was assumed that

neutrons are interacting via soft-core potentials. The velocity of sound

was calculated, and the numerical results for the velocity of sound

were reasonable considering the result of other studies of nuclear matter.

Finally in the last section, the time dependent BCS equations of motion

were derived, utilizing the Generlized Hartree-Fock method of Kerman-

Klein. These equations of motion were linearized in the anticipation of
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QPRPA solutions. Due to the nonseparability of the linearized equations

of motion, a reduction in number of excurison amplitudes could not be

achieved. For example, it was not possible to find a schematic potential

in which deviation of density could be the only arbitrary parameter.

Therefore, the linearized Hartree-Bogolyubov equations were solved

microscopically, and the closest mode in QPRPA to the hydrodynamic

approximation has been chosen for comparsion with the fluid model

dispersion relation. The numerical calculation for the neutron matter

was carried out, and the phonon energies were compared with the corres-

ponding hydrodynamical approach. The agreement between the two approaches

was rather a poor one, for example the hydrodynamic dispersion relation

was linear in terms of wave number, but in QPRPA it was a hyperbola. Also

there was disagreement for the phonon energy in terms of density in the

two approaches. These disagreements between QPRPA and the corresponding

hydrodynamics results enhanced the uncertainty in the applicability of

hydrodynamic approximations for the nuclear systems. In the other words,

the nuclear system can not be told to choose only a few parameters for

its time evolution, and a microscopic solution, often a complicated one,

gives a better understanding for this system.
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FIGURE CAPTIONS

Figure 1

Canonical form of a two fermion wave function according to reference 24

Figure 2

A particular set of closed chains arising on the right-hand side of

equation (2-16), according to reference 24

Figure 3

An open chain, which arises together with a set of closed chain in each

term of the right-hand side of equation (2-17), according to reference 24

Figure 4

Two odd open chains together with a set of closed chains, form one of

three possibilties for a term in the expansion of a two body matrix

element according to reference 24.

Figures 5-6

These figures show the dependence of gap energy on wave number for the

neutron matter model.

Figure 7-8

These figures show the dependence of the gap energy at the fermi momentum

on the density of neutron matter for various effective masses.

Figures 9-10

These figures show the dependence of velocity of sound in neutron matter

on the density for various effective masses
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Fiqure 11

This figure showes the dependence of the velocity on the effective mass

for various densities.

Figures 12-17

These figures show various modes of dispersion relation of the system

for a given density and effective mass.

Figure 18

This figure showes the dependence of phonon energy in fluid model for a

given effective mass and propagation wave number, and dashed lines are

the corresponding QPRPA values.

Figure 19

The dependence in the phonon energy on effective massis shown in this

figure for a given density and propagation wave number, and dashed lines

are the corresponding QPRPA values.

Figure 20

This figure compares the dispersion relation between fluid model and the

QPRPA for a given density and effective mass.
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Table (1)

V in Mev a in fm

V-7.2 a,=1.876

V=-279 a=0.9427==

V=1000 a=0.533
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