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ABSTRACT

ELEMENTS OF EQUILIBRIUM METHODS FOR SOCIAL ANALYSIS

Murat P. Sertel

Submitted to the Alfred P. Sloan School of Management

on January 22, 1971

in partial fulfillment of the requirements for the

Degree of Doctor of Philosophy

The study is introduced by a first chapter.

The second chapter, "Formal Elements of Social Systems", first
gives set-theoretical definitions for abstract social systems and their

elements, establishing some terminology and notation as well. It is then

discussed how a social system is a generalization of an economy and how

the latter is, in turn, a generalization of a game.

Chapter 3, "Topological Foundations of Social Systems," develops some

continuity and convexity results for behavors in static and dynamic social

systems - all of which are defined in the previous chapter - after

presenting some mathematics which is of special use in social analysis.

This mathematics includes some facts concerning hyperspaces, a treatment

of semi-linear topological spaces and their fixed point properties as

in1 vestigated by Prakash and Sertel, and some further facts relating to

the continuity and convexity properties of objective functionals and

their associated infimum and supremum functionals, dealing with feasible

regions as points in suitable hyperspaces.

Chapter 4, "Evolution and Equilibrium in Social Systems", first

discusses some notions related to social equilibria, including Nash,

Pareto, and core points, and then demonstrates existence results for

social equilibrium for static and dynamic social systems. The contractual

set i.e., set of social equilibria, is proved to be non-vacuous for a type

of static social system and four types of dynamic social system. In the

static case, Fan's fixed point theorem is applied. In the four dynamic

types of social system, a more powerful theorem is needed, as a fixed

point is sought in a semi-linear space. A fixed point theorem of Prakash

and Sertel fits the specification and is applied. In all the cases where

the contractual set is shown to be non-empty, it is shown to be compact

as well. For certain social systems the contractual set is shown also
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to be convex.

The fifth and final chapter discusses "Extensions and Applications"
of the framework and theory above. The first extension indicated is that
of probabilistic social systems. For these, a notion of a behavior as a
probability measure on a sigma-field of actions is offered, matters
pertaining to the measurable numerical representability of preferences
settled, and a notion ofprobabilistic social system formalized. Second, as an
application, a framework for the analysis of power is suggested, after a
certain causal relation of an event inducing another is formally introduced.
The resulting concept and measure of power is presented as a corrected
generalization and formalization of Dahl's concept and measure of power.
The importance of equilibrium methods for power analysis based on the above
is clarified. Third, it is indicated how social systems may be viewed
as evolutionary systems, modifying the notion of dynamical system, so that
the attraction and stability of contractual sets and cores may be
investigated. Finally, the large topic of the guidance of social systems
and organizations via incentive schemes, information systems and other
means is discussed as an area of application, suggesting also a number of
extensions which promise use in the area of legislation and the analysis
of multi-level social systems.



iv

ACKNOWLEDGMENTS

I owe very special thanks to Zenon S. Zannetos for more reasons than

I can mention here. If it were not for the free, welcoming and

supporting research climate that surrounds him, I could not have written

what I have and enjoyed it - which I did - -as much as I have. He has

spent many, many hours listening to my wildest conjectures and channelled

them into more fruitful directions than they may have been heading for.

And he was always one person I could count on for being interested in a

thought that I had and for being critical about it. I could not think of

a better supervisor than that. Also, the work environment under him has

been free of any anxiety and full of warm professional and personal

relations, leaving one to do what one wants: teaching and research.

To my friend and partner Prem Prakash, I owe the debt of many

long nights of unforgettable adventures in learning and creating which we

shared. (Not once did he complain because of my odd hours). A

fundamental portion of this work is our inseparably joint product. This

includes the semi-linear spaces, their fixed point properties and the

application of these to the existence of dynamic equilibrium. The study

could hardly owe more to any one person so directly.

My dear friend and colleague Paul R. Kleindorfer has had a much

greater contribution to this study than I could give reference to in the

text. He has been my tutor in all matters relating to measure theory

and has helped me work out a great number of points concerning

probabilistic social systems. This study has benefited in many ways

A



v

from insights gained through our joint research relating to the core

and to the controlling of social systems.

The members of my thesis committee, Frederick W. Frey, Jeremy

F. Shapiro, Robert M. Solow and, of course, the chairman, Zenon S.

Zannetos, have all offered valuable insights and advice. I should like

to thank them sincerely for the time they spent in studying my manuscript.

Considering the social value of their time, this has been a costly thesis,

indeed.

I have had many teachers, and listing them would be boasting, given

who many of them are. I should like quietly to spread a blanket of thanks

over that list. But three teachers I must make explicit; Peter G. Franck

who introduced me to Economics; Tugrul Taner, who introduced me to

Mathematics; and Michael A. H. Dempster who introduced me to their

combination. To Terence Gorman I owe the debt of an observer of his

example.

I should like to thank Margaret Cunnane for suffering through my

notation in typing the manuscript and for keeping me aware of deadlines.

My thanks to the inventor of the phrase "last but not least" are

now due, as I thank my wife, Ayse, for showing to me that my thoughts

could be understood in Turkish, if not in English, and for providing a

home where I enjoyed my work in peace of mind. To my parents I

owe all the things that are owable to no-one else.



vi

TABLE OF CONTENTS

ABSTRACT. . . . . . . . . . . . . . . . . .

ACKNOWLEDGEMENTS. . . . . . . . . . . . . ..

1. INTRODUCTION . . . . . . . . . . . . .

2. FORMAL ELEMENTS OF SOCIAL SYSTEMS . . .

2.1 Preliminaries. . . . . . . . . . . . .

2.1.1 Standing Notation. . . . . . . . . .

2.1.2 Defintitions . . . . . . . . . . . .

2.1.3 Standing Terminology and Notation. .

2.1.4 Discussion . . . . . . . . . . . . .

2.1.5 Definition . . . . . . . . . . . . .

2.1,6 Standing Topological Conventions and

2.1.7 Proposition (Existence of S) . .

ii

iv

2

3

3

5

6

9

13

14

15

Terminology

2.1.8 Note (Preference and Incentives). . . . . . .

2.2 Games, Economies and Social Systems . . . . . .

2.2.1 Definition . . . . . . . . . . . . . . . . . .

2.2.2 Definition . . . . . . . . . . . . . . . . . .

2.2.3 Note . . . . . . . . . . . . . .... ....

3. TOPOLOGICAL FOUNDATIONS OF SOCIAL SYSTEMS . .

3.1 Topological Preliminaries. . . . . . . . . ...

3.1.1 Standing Notation. . . . . o. .........

3.1.2 Hyperspaces. . . . . . . ... .........

3.1.3 Rst Spaces . . . . . . .. .......--.-.

15

17

17

18

18

23

24

26

27

34

II



vii

3.1.4 Special Facts Basic to Optimization . . . . . . 34

3.2 Topological Properties of Behavors in Static Social
Systems . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Theorem. . . . . . . . . . . . . . . . . . . ..43

3.2.2 Corollary . . . . . . . . . . . . . . . . ..44

3.2.3 Corollary . . . . . . . . . . . . . . . . . . ..44

3.2.4 Lemma . . . . . . . . . . . . . . . . . . . .. . 46

3.2.5 Corollary . . . . . . . . . . . . . . . . . ... 46

3.3 Topological Properties of Behavorsin Dynamic Social
Systems . . . . . . . . . . . . . . . . ..... 47

3.3.1 Theorem . . . . . . . . . . . . . . . ... ... 48

3.3.2 Corollary . . . . . . . . . . . . . . . . ... 49

4. EVOLUTION AND EQUILIBRIUM IN SOCIAL SYSTEMS . . . . . 50

4.1 Notions of Social Equilibrium . . . . . . . . . . . 52

4.1.1 Definition . . . . . . . . . . . . . . . . . . . . 53

4.2 Evolution and Equilibrium in Static Social Systems 58

4.2.1 Notation and Convention. . . . . . ... . . . . . . . 58

4.3 Evolution and Equilibrium in Dynamic Social Systems 64

4.3.1 Types of Dynamic Social Systems . . . . . . ... 65

4.3.2 Types of Evolution and Equilibrium for Dynamic
Social Systems. . . . . . . . . . . . . . . . .. 69

4.3.3 Existence of Dynamic Social Equilibrium 71

4.3.4 Compactness and Convexity Results for Dynamic
Contractual Sets. . . . ... . . . . . . . . . . . 76

5. EXTENSIONS AND APPLICATIONS. . . . . . . . . . . . . ... 78

5.1 Towards the Analysis of Probabilistic Social Systems 80



viii

5.1.1 Action and Behavior. . . . . . . . . . . . . . . 81

5.1.2 The Representation of Preference. . . . . . . . 85

5.1.3 Probabilistic Social Systems . . . . . . . .. 92

5.2 Toward a Framework for the Analysis of Power . . . 98

5.2.1 Definition . . . . . . . . . . . . . . . . . . . 99

5.2.2 Remark . . . . . ...... ......... 99

5.3 Towards the Analysis of Attraction and Stability 107

5.4 Towards the Planning and Control of Organizations 112

REFERENCES 123



1. INTRODUCTION

This study is motivated by the belief that notions and methods

of equilibrium can be developed and applied in social analysis. By

social analysis is meant the positive and normative study of social

systems and social phenomena.

The first thing to do was to clarify and reduce to a few the

notions needed, assembling them in a consistent framework containing

all that is needed and nothing that is not. The key notion here is

that os a social system. For clarity and purity, it is defined set-

theoretically. Next it is equipped with certain topological properties.

To do anything with the notion of equilibrium for social systems,

it has to be demonstrated that such a thing exists, and that it exists for

a wide enough class of social systems. This is done. Extensions and

applications are discussed.

Since each chapter, except the present, begins with an introduction,

the reader will be spared a lengthy introduction here.

-4
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2. FORMAL ELEMENTS OF SOCIAL SYSTEMS

The present chapter first gives definitions for social

systems and their elements, also introducing some basic terminology

and notation to be used in the sequel. The formal notion of a

'social system' as defined is then compared with the more familiar

'economy' and 'game', in both of which the existence and various

optimality and stability properties of equilibrium have been

investigated extensively and equilibrium methods of analysis

have long been used fruitfully. This comparison, from which

games emerge as restricted versions of economies and the latter

emerge as restricted versions of social systems, is intended to

provide perspective and context within which to evaluate the

framework and results presented in this study.

---
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2.1 Preliminaries

This secition is designed to introduce the basic notions and

some of the notation and terminology to be used in the sequel.

The central notion is that of a social system, defined set-

theoretically in 2.1.2 after some notation is established in 2.1.1.

Some terminology and further notation is established in 2.1.3

to refer to the elements of social systems and to some important

formal objects which are derived from these elements. The discussion

in 2.1.4 turns from matters of definition and denotation to the

intended connotation of the terminology introduced, so as to

provide some intuitive grounding for the reader's formal under-

standing. This is done by examining the typical manner in which

the elements of a social system operate. In this way it is

hoped also to communicate the motivation for the way in which

those elements are named. A motivation for the next definition,

2.1.5, distinguishing between static and dynamic social systems,

is also derived from that discussion. The consistency

of the definition of social systems is checked by 2.1.7, after

some requisite topological conventions and terminology are

established in 2.1.6. Finally, 2.1.8 adds a note to clarify

the important notion of 'incentive' in social systems.

2.1.1 Standing Notation: The empty set will be denoted by 4.

The set of real numbers will be denoted by R.

For any set X, [X] will denote the set of non-empty subsets

of X. Whenever [X] is endowed with a topology, that topology
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will at least be as fine as the upper semi-finite (usf) topology.

(For these notions, see 3.1.2 or the classic work of Michael

(1951) concerned with topologies on spaces of subsets.)

The rather usual symbols 'H' and 'f' will be used to

denote,respectively, products and projections. As regards

products, an important word of caution is due. Whenever the

product is the Cartesian product of mere sets, the product is to

be understood merely as such. Whenever it is a product of

topologized sets, the product is to be understood as equipped

with the product topology. Whenever it is the product of

sigma-fields, it is to be understood as the product sigma-field,

and similarly for measure spaces. When the index set is not

very crowded, the symbol 'x' will also be used for products.

E.g., if {Xi)i e I} is a family of sets indexed by i e I, and

if the index set I = {1,2}, then the product may be written

as X x X2 , rather than H {X } or H{X1i e 1or R Xi, all
I .. iEI

of which denote the same. As a special kind of product, Y

will denote the set of all functions f:X + Y mapping X into Y,

i.e. such that f(x) e Y(x e X). (Of.course, Y is the same as

M{Y Y = Y}.) Finally, subscripts of 7 will indicate the

X
range of the function, so that, e.g., ff denotes projection into X.
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2.1.2 Definition : A social system is an ordered seven-tuplet

S = <W, U, H, G, I, T, A>, where

(2.1.2.1) W = {X a a E -A}# f

is a non-empty family of non-empty sets Xa9

from which we define X = IX , X = I X
Aa A {x}

U = {u X x R -* Ria E A}

is an associated family of real-valued functions

u on X x R; (see also 2.1.8):a

H = {h : Xa -+ Xala c A}

is an associated family of transformations h ,
a

a
of X

G = {g X -+ RIa e Al

is an associated family of real-valued functions

g on X!

I= {i R -* RX|a x A}

is an associated family of function-valued

functions ia assigning a real-valued function on

X to each real-valued function on X:

(2.1.2.2)

(2.1.2.3)

(2.1.2.4)

(2.1.2.5)
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T = {t X x ED + D C[x I ID # p,a e A}

is an associated family of functions ta assigning

a non-empty subset of Xa to each ordered pair

whose first element is a point x e X and second

element belongs to the product iD of a certain
A a

family {D Ia e Al of non-empty collections

D C[X I;
a a

(2.1.2.7)

(2.1.2.7')

A ={a:Xax D - U [da Ia e Al.
d ED

is a self-indexea family of mappings

a(xa ,d ) = {x e d I (x xa') > Sup (y , a
a a a at a y Ed a

(xa e Xa, d e D ),a a

where i is defined as in 2.1.3.10 below.

2.1.3 Standing Terminology and Notation: Let S be as in 2.1.2.

Xa will be called the behavior space of a,

and xa will be called a behavior of a

iff xa 6 X

(2.1.2.6)

(2.1.3.1)
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Xa will be called the a-exclusive behavior

space of S (or of A), and x will be called

an a-exclusive behavior of S (or of A) iff

x a a

X will be called the (collective) behavior space

of S (or of A), and x will be called a (collective)

hehavior of S (or of A) iff x e X.

u. will be called the utility function of a.

RAThe set R will sometimes be called the

distribution space of S (or of A), generic

elements H{p } e RA being denoted by p, so
A A

thatr (p)=p , with R = R{RIR =R,a e A}.
Ra a A a c

In this case, a point p e R will be called a

distribution to A and pa the share of a in p.

A A
The function u: X x R + R , defined by u(x,p)

- J{u (x,pa)}(x e X, P e RA) will be called
A a

the utility scheme of S (or of A).

ha will be called the impression function

of a. The function h: X + aX, defined by
A

h(x) = ]{h (7 (x))} (x e X) will be called
A a

the impression scheme of S (or of A).

(2.1.3.2)

(2.1.3.3)

(2.1.3.4

(2.1.3.5)
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ga will be called the incentive function

A
for a. The function g: X + R , defined by

g(x) = Rf{g(x)} (x e X) will be called the
A

incentive scheme for (or of) S ( or for A).

c will be called the interpretation function

of a The function i: (RX) + (RXA, defined

by i(g) = T{i(g)} (g e (RX)A), will be

A
called the interpretation scheme of S (or of A).

tca will be called the feasibility transformation

for a, Da being called the feasibility space of a

and a subset dc being called a feasibility

for a iff dc c D. The function t, defined by

t(x,d) = H{ta(xd)} (x e X; d = H{da}, dx c Da
A A

a e A), will be called the collective feasibility

transformation for (or of) S (or for A).

A will be called the personnel of S, each member

a e A being called a behavor

For various abbreviations, the following

alternate notations will be used:

(2.1.3.10)

(2.1.3.6)

(2.1.3.7)

(2.1.3.8)

(2.1.3.9)
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i (g ) = ,a a a

u (x , h (ta), I (g ) (x ,h a)(xa)aa a a a a a

= uat(xathat(c), g*((xo,,ho,(xa)))

= t(xa,,ha,(x'))

= Wa (xa9X 0).

The derived function w will be called the

effective utility function of a.

2.1.4 Discussion: Although the rigorous development of formal results

may necessitate the use of uncommon terminology and symbolism,

it is difficult to -overemphasize the usefulness of being able

to express the underlying postulates and emerging results of a

theory in intuitively pleasing fashion, reasonably within common

language. The difficulties in achieving this sort of a restric-

tion to the simple and plain, of course, are the food on which

technical jargon and alienated scholarism thrive.

Realizing that there is no scarcity of jargon, especially

in the class of disciplines concerned with social phenomena,

the aim in term-coining here cannot be to expand the present

glossary, as it would be foolish to wish to irrigate the sea.

What the aim is can be expressed in two components: first,

to convey the meaning of the formal framework and theory in

... 0
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reasonably common and unartificial terminology, so that it is easily

understood, at least in its broad outline; and, second to offer

in this terminology some precision and conciseness for what are

the essential elements of the framework and theory, thus hoping

to bring attention to what is a small class of important elements,

while giving that attention a clear focus by eliminating ambiguity

and vagueness via the formalism of definition.

Now that the basic elements of a social system have been

defined and a long list of terminology and notation has been

introduced, some elucidation might be gained by turning to the

connotation of the terms above. What the formalism of a social

system S in 2.1.2-3 roughly amounts to can be expressed in plain

language by describing the personnel A and the typical feasibility

transformation t a

The personnel A can be understood in terms of its typical

member a. The typical behavor a has its individual "tastes",

which are in the form of a (complete) preference ordering

represented (in order-preserving fashion) by the utility

function u. . In general, the utility achieved by a depends on

both its own behavior x and the (a-exclusive) behavior xa of

all others in A. Furthermore, it may depend on a real number

p e R, where p is to be understood as either income or

wealth, or status, prestige, power or any composite of things such

as these which can be expressed suitably in real numbers. The
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operation of a consists of choosing a behavior, i.e., behaving,

so as to optimize subject to the constraint of its feasibility

and subject to its "perception" of the circumstances. This

"perception" is expressed summarily by the impression function

ha and the interpretation function ia. "Observing" a collective

behavior x e X, it is assumed that a "sees" the component

X W xa of x pertaining to itself as is. Although the

aacomponent pertaining to the test of A is (x) = x , however,

a' s impression ha(xa) may very well be different from xa. Just

as the equality ha(xa) = xa need not hold, neither need the

equality ia(ga) = ga be satisfied. Thus a may "interpret" the

incentive function g to be some different incentive function

g g . Now x , Ua, ha5 g , and ia all influence the choice

x amade by a. Given an a-exclusive behavior xa, a forms an

impression ha(xa) ya. Having interpreted ga as i(g.) = kag

the real number ra = ga(xaya) is understood to be forthcoming

as a function of the choice xa. Thus, u a(xa ya, ra) depends

on this choice, both directly and through ra. This partly

defines the optimization problem for which a is to compute

a solution.

The problem to be solved by a is, in general, one of

constrained optimization. That is to say, apart from the fact

that ya is now fixed, already imposing restraints on the values

that can be taken by ua in the present computations according
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to that ya, the choice of behavior x is constrained to be

within a certain set da CXa. This set, called a feasibility,

is determined by the feasibility transformation ta. The

operation of a is completely described by saying that it

identifies the set a(xa, da) of behaviors xa d which

maximize ua ( y a ) a(, ya)) on da. (If S is well-defined,

then a(x, da) -) Exactly one of these "best" behaviors

x C a(xa, da) is chosen, it being immaterial to a - and to us -

which particular one it is.

The fashion in which the feasibility transformations

operate can be seen by assuming that a feasibility da is given

for each a cA and that each a chooses a behavior xa e da in the

manner already described. The collective behavior x = {x
A

arising in this way will, in general, now alter each feasibility

in the fashion described by ta . Specifically, each da is now

transformed into ta(x, d), where d = H{d6 LE A} EsTD, represents
A A

the family of feasibilities, including that (d a) of a, which

as constraints, had governed the choice of x. In general, the

equality ta(x,d) = da does not hold, ta yielding certain

behaviors x 6 d no longer feasible for a, while bringing

some behaviors z d into the new feasibility as elements

z C ta (x,d).

The operation of all of the feasibility transformations is

summarized in that of the collective feasibility transformation t.

Given a collective feasibility H{da e D la E A d D D = HD
A a Aa
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which consists of collective behaviors zEX such that ff (z) d
-c a

(a e A), and given a collective behavior x such that

j (x) 6 d(a e A), t(x,d) = l{t (x,d)a eAl.
X a a A a

Thus, to summarize in natural language,a social system

is a collection of behavors, each seeking its self-interest

subject to an incentive function and guided by its individual

preferences, by its interpretation of its incentive function

and by its impression of the others' behavior, and subject

also to a feasibility - which feasibility, in turn is

influenced by a history of past (collective) feasibilities and

(collective) behaviors chosen within these past feasibilities.

The remarks so far in explaining the operation of

feasibility transformations should yield the motivation for the

following definition, as well as the definition itself, rather

clear.

2.1.5 Definition: Let S be a social system and t the collective

feasibility transformation of S. S will be called (a) static

(social system) iff t is a constant map, i.e., t(x,d) = d for all

x E X and d e D = HD . S will be called (a) dynamic (social
Aa

system) iff S is not static.

It is important to know that 2.1.2 is not a self-contradiction,

so that there exists an ordered seven-tuplet S satisfying the

definition of social system. Although that may be obvious, it

is also important to know a reasonably unrestrictive sufficient

-M
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condition for S to exist. Such a condition will be given immediatly

the following conventions are agreed upon.

2.1.6 Standing Topological Conventions and Terminology: Whenever

R is considered as a topological space, it will be assumed

to have the order topology of the natural order of real

numbers. (Recall that this is the same as the Euclidean

topology for R.)

Following Bourbaki [1966], a topological space will be

called quasi-compact iff the Borel-Lebesque condition is

satisfied, i.e., every open cover has a finite subcover.

A topological space will be compact if it is quasi-compact

and Hausdorff.

A real-valued function u: X -+ R on a topological space X

will be called upper semi-continuous (usc) iff u~1 ({r c RIr>b})

is closed for all b e R; it will be called lower semi-continuous

(lsc) iff u1l({r Rjr < b}) is closed for all b E R.

A point-to-set mapping F:X -+ Y of a topological space X

into a topological space Y will be called upper semi-continuous

(usc) iff F:X -+ [Y] is continuous with the upper semi-finite

topology on [Y](see 3.1.2 or [Michael, 1951]). Thus, F is

usc iff for each x c X, and for each neighborhood (nbd) V of F(x),

there exists a nbd U of x such that F(U)CV.
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2.1.7 Proposition (Existence of S): With reference to 2.1.2-3,

each a e A (hence, A: and hence, S itself) is well-defined (i.e.,

S exists as a social system), if for each a c A, d c Da anda a

ya F h (Xa), d is quasi-compact and V*a is upper semi-continuousa aa

on{ya}x da*

Proof: Assume that the hypothesis is satisfied. Clearly, all

that needs to be shown is that a(xa, da) a t (xa e Xa, d e D , a a

a E A). Denote ya = ha(xa). Since da is quasi-compact, so is

{ya}x da. By upper semi-continuity of 'a on {ya}x da , V attains

a supremum on {ya}x da. Hence, w attains a supremum on {xa}x da a

Thus, a(xa, d ) # $, as to be shown.

2.1.8 Note (Preference and Incentives): As remarked in 2.1.4,

the utility functions ua are meant to be order-preserving

representations of complete (preference) orders of the

behavors a on X x R. Meanwhile, the functions a have been

called "incentive" functions to the effect that the real

numbers r e R serve to order the incentives, indicated as the

values taken by any g . To justify this usage of "incentive"

it is assumed from here on that, for any x c X and any a c A,

if r and s are real numbers such that r < s, then u a(x,r) < u (x,s).

This is to say that, ceteris paribus, a behavor does not prefer
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less of the real-valued variable (incentive) to more, without

implying that more is actually preferred to less.
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2.2 Games, Economies and Social Systems

Having introduced the formal notion of a social system, it is

appropriate now to compare this with the more familiar notions

of an economy and a game. This will give a perspective within which

the place of the present study might better be judged.

The notion of an economy which will be used in this comparison

is that of Arrow and Debreu (1954), although it will be presented

within the present terminology and notation. This is proper

enough procedure, for it willturn out that an economy - or

an "abstract economy" as Arrow and Debreu called it - is a special

case of a social system and that a game is a special case yet

of an economy. All this will be very clear as soon as the

defintions are given.

2.2.1 Definition:

S = <W, U,

(2.2.1.1)

(2.2.1.2)

(2.2.1.3)

An economy is an ordered quadruplet

T, A >, where

W is as in 2.1.2.1; from which X and Xa are

defined as there;

U ={U :X -* Ra e A}
a

is an associated family of real-valued functions

u defined on X;

T = {t :Xa [X ]a c A}

-im
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is an associated family of mappings ta assigning

a non-empty subset a (X) of Xa to each xa c X

(2.2.1.4) A = {c:Xa x t(Xa) -+ [Xa] Ia F A}

is a self indexed family of mappings defined by

a(xa, d) = {xa e daIt i(Xaq xc) > Sup U (a xa)}
a a CL ya E: da a

2.2.2 Defintion: A game is an economy in which t(Xa) =X1 for

all xa 6 Xaand a c A.

2.2.3 Note: The actual definitions of Arrow and Debreu (1954) from

which 2.2.1-2 is generalized actually has A as a finite set,

but given more recent developments (Aumann, 1964) in which

a continuum of traders (players) is considered, it is unreasonable

to stick to such a restriction - a restriction which is

unnecessary in the first place, except possibly to yield

economics understandable with the tools of Euclidean space.

A simple comparison of 2.2.1-2 with 2.1.2 yields that, indeed, an

economy is a special sort of social system and that a game is a

special case of an economy. This notion of a game may or may not

be appropriate. It does have the authorization of Arrow and Debreu,
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however, and that should carry some weight. In any case the above

defintions 2.2.1-2 will not be used to derive any results of this

study, but are recorded merely for the comparison they allow.

Coming to that comparison, it is to be noted firstly that the

elements H, G and I of a social system have been suppressed in

2.2.1. Hence, the functions ta, as is intended to be suggested by

using the notation of umlaut ('"'), are analogous to the effective

utility functions wa of 2.1.3.10, but not necessarily such, since

they are not explicitly derived from functions u., ha, ga and i. as are

the functionsU, . Finally, the mappings t. of 2.2.1.3 are restricted

versions of the feasibility transformations t of 2.1.2.6 and 2.1.3.8.

The ta 's depend only on a-exclusive behaviors xa. The t. 's

are allowed to depend, in addition, on the behavior x of a as well

as the collective feasibility d in D = HDae
A

All this being so, the restrictions of 2.2.1 may be viewed in

different lights. Accordingly, one view might be that the

economist is not interested in the details of the full-blown social

system and it is a useful simplification to suppress the perceptive-

cognitive and information-systemic elements for which H and I stand and

that the incentive scheme - which is associated with G - does not

matter. Before turning to the simplification of the feasibility

transformations ta to the form t , it is worth challenging the above

view. For to say that economists are not concerned with incentives

wouldbe to say that they are not concerned with prices - wages included -
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or with taxes and subsidies - incentives for investment, etc.,

included. And to say that they are not interested in the effects

of imperfections in information or in its processing by the user,

e.g., in the "marketplace", would imply statements to the effects,

for instance, that a devaluation can be announced a week earlier

than it is consummated or that advertising has yet to be invented. It

is very difficult, therefore, to defend that ignorning the elements

H, G and I is a useful simplification or idealizationin the genre

of the "ideal gas" or the "billiard ball" model of gasses.

The simplification of the feasibility transformations t to the

fomitt is also a difficult one to defend. For one thing, what is

feasible for an economic agent obviously depends on the behavior

of that agent itself. It would require some rather strong metaphysics

otherwise to explain why people or firms or governments choose to save

and invest if tomorrow's vacations, factories and parks did not

depend on whether one saved a penny or built a factory or upkept a

park today. Secondly, the factories one has tomorrow depends on

what factories one has today. For instance, one allows the textile

industry to slowly depreciate its equipment and invests in the

electronics industry. The production possibilities set of tomorrow

depends on the present one and on the point now chosen in it. That

is to say, the feasibility for the agent a depencbon x and d
aa
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To include certain external effects, it is here permitted to

depend on the feasibilities d of the other agents F-A as well.

(To give a possibly odd example for where this may become relevant,

it might be considered that the precedence set by allowing one boy

to be a conscientious objector to war, whether or not the boy uses

this priviledge, will probably make it easier for the next boy to

gain this choice).

The result of the above discussion seems to be not really that

an economy is a special case of a social system, but that this would

be so if one went by the definitions which were compared. But the

result is also that this would be a very artificial exercise of

classification and that a social system, as defined by 2.1.2 is really

something dear to the interests of economics. In its formal

specification, nevertheless, it is more general than the economy

for which Arrow and Debreu proved the existence of an equilibrium.

It will be found then that the equilibria proved in 4.3. to exist

in the case of dynamic social systems generalize the result of

Debreu (1952) obtained for a certain special class of social systems.

The mentioned work of Debreu is actually the main mathematical

pillar on which the outstanding Arrow and Debreu study is based,

the social systems treated in it being correspondingly specialized.

(Typically, both works deal with a finite personnel and with behaviors

in Euclidean space, and these constitute a further restriction on their

results. Although a preference to work in such spaces is often thought
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to be"realistic" (perhaps because it is "less abstract"), as far

as realism is concerned, any result which is true with weaker

assumptions is at least as realistic as the same result with stronger

assumptions. Furthermore, it is not possible to represent, for

example, an infinite-horizon plan naturally as a point in finite

dimensional space, its natural habitat being infinite dimensional.

Hence, for this and many other reasons, neither is it the case that

all economics can be reasoned in Eucliden space.)

The most summary comparison of a social system with a game,

to end this section, would be that the latter is static (see 2.1.5)

Thus, the existence result of 4.2 can be regarded as a generalization

of Nash's [1950, 1951] result for (again a restricted variety of)

finite-personnel games to the case of a certain class (type 0) of

static social systems.

-4
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3. TOPOLOGICAL FOUNDATIONS OF SOCIAL SYSTEMS

This chapter first presents some mathematics, mostly topology,

which is especially useful in the analysis of social systems. In

one way or another, all of this material is actually used in the

present study, but much more can be expected from its use than

would fit within the constraints of this investigation. Furthermore,

most of the material is either new to the field of social analysis

or plain new. As best as an amateur historian can do, the

origins and intellectual history of the material are indicated.

Next, some fundamental topological properties of behavors -

and, thus, indirectly of social systems - are demonstrated as

deriving from various properties, if they pertain, of elements

such as utility, impression, interpretation and incentive functions

and behavior spaces. These are demonstrated first for static and

then for dynamic social systems. They are used in the corresponding

theories of existence for social equilibrium, presented in the next

chapter.
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3.1 Topological Preliminaries

This section collects some topological facts crucial to the

later sections and chapters, so that they may be used freely

without explicit reference once they are recorded. Most of these

facts relate to hyperspaces and to real semi-linear topological

spaces (rst spaces).

The idea of hyperspace, i.e., a topological space whose

points are subsets of a topological space, dates at least as

far back as the metric defined by Hausdorff [1937] on the set

of non-empty closed subsets of a bounded metric space X.

(see also [Kelley, 1942] for a study of the Hausdorff metric

hyperspace when X is compact.) Meanwhile, Vietoris [1923]

defined the finite topology (see 3.1.2,10) for the set of non-

empty closed subsets of an arbitrary topological space X.

The standard reference adopted here, however, is the complete

and unifying study of Michael [1951].

The importance of hyperspaces for optimization, economic

theory and social analysis in general derives from at least

two considerations. One of these in turn derives from the

importance of point-to-set mappings in these fields. Wor a

point-to-set mapping, such as an optimizing algorithm,a consumer

choosing bundles of goods or a behavor choosing a set of behaviors,

can be looked upon as a point-to-point mapping on the same domain

-4
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of definition into a suitable hyperset (set of subsets) of the range. If

the domain and range of the point-tb-set mappings are topological spaces,

then matters relating to the (upper or lower semi-) continuity of this

mapping are often simplified by appropriate choice of a topology for the

hyperset serving as range for the associated point-to-point mapping. This

is a primary use made of hyperspaces in this study, as 3.1.4.4-5 and the

application of these in 3.3.1, and thus in each of the results of 4.3,

constitute such a use.

These mentioned applications in the present study also illustrate

the second general use of hyperspaces for the mentioned fields of

inquiry. The consideration here is that "feasible regions" can be

regarded as points in a hyperspace, so that changes in these can be

analyzed by use of point-to-point mappings (and even, as in 4.3.3.3-5,

by use of point-to-set mappings) into that hyperspace. The power of such

methods will probably be felt less in optimization constrained to

feasible regions in Euclidean space (especially when the constraints

are finitely parametrized, as in the case of linear constraints of budget,

etc.), but in dynamic optimization where decisions taken are allowed to alter

the very feasible regions within which they are taken - as in the case of

(dis-)investment - and especially when the feasible regions lie in some

abstract space, such as a function space, and the constraints are

not finitely parametrizable, these methods may be expected to bear fruit.

Even a restriction of the results in 4.3 to the case of a singleton

personnel might testify to the validity of such an expectation.

-4
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Semi-linear topological spaces, and, more generally, semi-

linear spaces were first investigated, to the knowledge of

this author, by Prakash and Sertel [1970, a,b]. As a generalization

of linear (or vector) spaces, semi-linear (or semi-vector) spaces

have an algebra which is satisfied, notably for present purposes, by

the set of all non-empty subsets of a vector space. In the case

where L is a linear topological space, the set of non-empty quasi-

compact subsets of L form a semi-linear space. Among semi-linear

topological spaces, those which are used in this study are the

ones formed by the Hausdorff metric space of non-empty compact

and convex subsets of a normed real linear topological space.

Thus, the usual feasible regions in usual constrained optimizition

are typical points of such a (rst) space.

3.1.1 Standing Notation: For any topological space X, C(X) will

denote the set of all non-empty closed subsets of X, k(X)

will denote the set of all non-empty quasi-compact subsets

of X, and K(X) will denote the set of all non-empty compact

subsets of X. If X is a convex set, 0(X) will denote the

set of all non-empty convex subsets of X. Furthermore, CQ(X) =

C(X) )OQ(X), kO(X) = k(X)( 0(X), etc., will also be used.

If f: X -+ Y is a mapping, then r(f) = {(x,y)jx e X,

y c f(x)} c X x Y will be used as standard notation for the

graph of f.
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3.1.2 Hyperspaces: This section follows [Michael, 1951], extracting

the bare minimum of information needed for the subsequent

development.

3.1.2.1 Notation: Let U C X. Then denote

<U>+ = {Ye[X] Y C U},

<U> = {Ye[X]iY U ) 1 }.

Let {U. i I} be a collection of subsets U C X. Then
1 i

denote

<U fi C I> = {Yc[X]IYcUUi, Y U, 4 for all i e I}.

If I above is finite, so that fUli s I} = {U ,.}..,U
1 n

then also denote <U.ii e I> by <U ,..., Un

3.1.2.2 Definition: Let X be a topological space with topology T.

The upper semi-finite (usf) topology on [XI is the topology

generated by{<U+>IU C T} as a basis. The lower semi-finite

(1sf) topology on [X] is the topology generated by

{<U>IU ET} as a sub-basis. The finite (f) topology on

[X] is the topology generated by {<UV, .,I{ ... . ., Un}cT}.
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3.1.2.3 Remark: Using 'c' as a superscript to denote complements,

the following equations follow easily from the definitions:

(i) <U>+ = <U> = [U] = (<Uc>-)c,

(ii) <U> = <Uc>c

(iii) <U>c = <X, Uc>

The following spells out, for the benefit of the reader, a proof for

a proposition observed by Michael.

3.1.2.4 Proposition: Let X be a topological space. The finite

topology on [X] is the coarsest topology, in the lattice of

all topologies on [X], which is finer than both the usf and

the 1sf topology on [X]. [tichael, 1951, p. 179].

Proof: It suffices to show that the usf and the 1sf topology

on [X] are contained in any topology containing the finite

topology on [X]. From the first equation of 3.1.2.3 it

follows that the usf topology is so contained. Let I C X

be open. Then, using the last two equations of 3.1.2.3,

<U> = <Ucyc = <XU> , proving that the 1sf topology is

also so contained.

-4
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The purpose of the following is, again, elucidation.

3.1.2.5 Proposition: Let X be a topological space, and denote the

usf, 1sf and f topologies, on [X], by T ,1 , T , respectively.

Then

(i) T+ is the coarsest topology on [XI for which (a)

<U>+ is open if U is open in X and (b) <N>~ is closed

if M is closed in X:

(ii) T~ is the coarsest topology on [X1 for which

(a) <U>~ is open if U is open in X and (b) <M>+ is closed

if M is closed in X;,

(iii) T+- is the coarsest topology on [XI for which

(a) <U>is open if U is open in X and (b) <M>is closed

if M is closed in X.

Proof: It follows directly from the definitions that T + and

T are the coarsest topologies in [X] satisfying parts (a)

of (i) and (ii), respectively. In the following let U C X

be open, and w.l.g., let M = UC. It suffices to show that parts

(b) of (i) and (ii) hold for T+ and T~, respectively, for then

(iii) will follow by 3.1.2.4. To see that (i) (b) holds for

T+, just note that

<T5 -= (<U>+)c
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which is closed since <U> is open. To see that (ii) (b)

holds for T , note, similarly, that< M> = (<>~) C is closed.

The rest of this section following the present paragraph,

with the possible exception of 3.1.2.9 is merely paraphrased

from [Michael, 1951]. The first definition gives a useful

equivalent rewording of the usual definition of uppar and

lower semi-continuity for multi-valued binary relations

(point-to-set mappings). The remainder will be useful after

the next section introduces a special rst space which is a

hyperspace.

3.1.2.6 Definition: If X and Y are topological spaces, a mapping

F: X -*[Y] is called upper (lower) semi-continuous (u(l)sc)

iff F is continuous with the u(l)sf topology on [Y].

[Michael, 1951; p. 179].

The last definition can be reworded also as follows.

3.1.2.7 Proposition: If X and Y are topological spaces, then a

function F: X + [Y] is u(l) sc iff {x C XIF(x)flA } is

closed (open) whenever A is closed (open) in Y. [Michael,

151; Thm. 9.1]

-_a
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3.1.2.8 Definition: Define the ("layout...) map (...of X")

L: [[X]] + [X] by

L({Z.E[X]|i E I ) = UZ..

[Michael, 1951; Def. 5.5.1]

3.1.2.9 Proposition: If X is a topological space, then the layout

map of X is (i) usc, (ii) lsc and (iii) continuous accordingly

as [X] and [[XI] carry the (i) usf, (ii) lsf, and (iii) finite

topology (Cf. [Michael 1951 Thm. 5.7.2]).

Proof: Denote generic elements of [[X]] by E, and cIefin-

j JF_ iff Y.6 E, so as to be able to write E = {Y I J 1

The proofs of (i) (ii), (iii) are entirely set-theoretic.

ad (i): Let V = <U>+ be a basic open nbd of Y L(E) e [XI.

It suffices to show that L~1 (V) =<V>+

E E L~1 (V) iff U Y = Y - V

JE

iff YCU
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iff (j E J only if Y. CU)
E

iff (j e J only if Y. sV)
E .

iff ECV

iff E F <V>+

ad (ii): Let V = <U> be a basic open nbd of Y L(E) E [X].

It suffices to claim that L 1 (V) = <V>-, and to show it as

follows:

E L1 (V) iff Y E V

iff Y flU # #

iff G. J such that Y U # U )
j * E

iff (3, s J such that Y. V)
E

iff EOIV #

iff E E <V>

ad (iii):

Y = L(E) S

Let V = <U1 , ... , U > be a basic open nbd of

[X] and denote N = {l, ... , n }, U = UU and
N

W =<<U>+>+ ( «<<U i>~>). It suf f ices to show that
N

L~ 1(V) = W:

E E L 1 (V) iff Y C V
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iff YCU and Y('U ## for all i E N

iff (j JE and i E N only if Y.CU and YE"U U )

iff (j E:J and i e N only if Y c<U> and Yc<U.> )
E1

iff E c <<U> > and E F<<U >4 >
N

iff E E W.

3.1.2.10 Notation-Definition-Remark-Proposition: Replace [X1 in

3.1.2.1-9 by C(X) and modify 3.1.2.3 to state that <U> = C(U)

if U is closed in X.

3.1.2.11 Proposition:

1. If X is a regular space and E C k(C(X)) with the usf

topology on C(X), then L(E) F C(X)

2. If X is a topological space and E E k(k(X)) with the

usf topology on k(X), then L(E) e k(X).

[Michael, 1951; Thm. 2.5.1-2, Thm. 9.51.

3.1.2.12 Proposition: Let X be a topological space, and let C(X)

be equipped with the finite topology. Then X is quasi-compact,

locally quasi-compact, separable, compact iff C(X) has the

same property [Michael, 1951; Thm. 4.2., Thm. 4.4.1, Thm. 4.5.1,

Thm. 4.9.6].
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3.1.2.13 Proposition: Let X be a metric space. Then the finite

topology on C(X) agrees with the Hausdorff metric topology

on C(X) iff X is (quasi-)compact. [Michael, 1951, Thm. 3.3,

Prop. 3.5].

3.1.3 Rst Spaces: Rather than lengthen the present chapter by para-

phrasing or reproducing, the original work by Prakash and

Sertel on semi-vector spaces, semi-linear topological spaces,

rst spaces and their fixed point properties is appended to this

study.

3.1.4 Special Facts Basic to Optimization: This section collects some

facts relating to the continuity and convexity matters pertaining

to functionals typically playing the role of objeetive functional

in optimization problems. All of these facts are well-known in

certain restricted instances, as when the functional ig defined on

a subspace of Euclidean space. The novelty in the more general

facts presented here derives from the treatment of the usual

feasible regions as points in suitable spaces. The various

continuity and convexity properties of the objective functional

are related through this treatment to corresponding properties of

the optimal value attained on a feasible region, depending on the

abstract feasible region as a variable. Thus, e.g., the

supremum attained by an objective functional on, say, a compact

feasible region is seen to share much of the continuity and

---



35

convexity properties of the objective functional itself, although

the supremum depends on the feasible region while the objective

functional depends on a generic element of the space in which

such feasible regions lie as sets. Such facts are essential

when the feasible regions become endogenous variables of the model,

as in dynamic optimization or dynamic social systems.

First corsidered are matters of continuity. The first lemma,

3.1.4.1, plays a key role here. While 3.1.4.1-3 are concerned with

the objective functional, the two simple propositions 3.1.4.4-5

are related in an obvious way to the feasibility. Then

considered are the convexity properties, relating, again, to the

objective functional.

The main results are all concerned with how continuity,

convexity - and various weaker versions of these properties -

for the objective functional relate to corresponding properties of

the associated "supremum" or "infimum functional". The results

are presented in "disaggregated" form, that is, continuity questions

are split into questions of upper and lower semi-continuity,

and convexity or concavity matters are formulated in terms of

- strict and non-strict versions and in termscf (strict and non-strict)

quasi-convexity or quasi-concavity.

3.1.4.1 LEMMA: Let B be a closed set in a compact (Hausdorff)

space X x Y. Define
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D = {(k,y) e C(X) x Y I(k x {y}) C B}

E = {(k,y) e C(X) x Y I(k x {y}) rB # J,}1

and assume that C(X) has the finitetopology. Then

1. D is compact in C(X) x Y ; and

2. E is compact in C(X) x Y.

Proof: Denote Y* = Tr (B), B = Bfl(X x {y}), -B* = r (B );
. y y X

it is clear that all of these are compact. Furthermore,

C(X) x Y is a compact (Hausdorff) space when C(X) has the finite

topology, as C(X) is then compact (Hausdorff). (See 3.1.2.12).

Hence, it suffices to show that (1) D and (2) E are closed.

ad (1): There is nothing to prove if D = C(X) x Y, so

let A e (C(X) x Y)\D. Denote D = <B* >x {y} and generic

elements dy = (k,y) - D(y c Y*). Then A and dy are

distinct for each d s D. Fixing y c Y*, there thus exists an

open cover {W(dy)I d. e DV } of Dy with open boxes

Wy (d Y) = U (k) x VY (y), (d e DV),

and a family {N (d )dv c Dv}of nbds Ny(d )C C(X) x Y of

A, such that for each d c D V' Wv(dy)r)Ny(d ) = (where

Uy (k) C C(X) is an open nbd of k and V) (y) C Y is an open
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nbd of y). Since <B* > and {y} are compact, so is D

y y
Hence, {W (d ) d c D I affords a finite subcover

y y yV

{W (d ) =U x Vi Ii = 1, ... , m(y)}y Y y

Define V = v1 ... 0 Vm (Y)
y y y

and Ny = N (dl)(1, ... ON (dm(Y)) and

W =Ui x V (i 1, ...,m(y)).
y y y

Then {W Ii =1,..., m(y) I is an open cover of D such that
y

W y N y M(y)).

Now {V ly e Y*} is an open cover of the compact Y*,
y

affording a finite subcover { V , ... , V I . Define
yi 7n-n

N = 0 N . ThenN is a nbd of A which is disjoint from

j=l j

W =t{W Ii = 1, ... , m(y); j = 1, .. n}
y.

3

Since D C W, NO1D = . Thus, D is closed, since its

complement in C(X) x Y is open.

ad(2): To show that E b closed, note that

E = U (<(B*)c>+)c {
Y* y

and that Ey (<(B*)c>+)c x {y}= <B* > xfy} is closed, hence
y

compact, for each y e Y*. Then the proof of (1) applies, merely

by replacing<B* > by <B* > DV by E , D by E and d by ey.
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3.1.4.2 Lemma: Let X * X x Xa be a compact (Hausdorff) space,

let u: X + R be continuous, and define the real-valued

functions U, u on C(Xa ) x X by

(k 9 xa) = Sup u(-, xa)
kct

k s C(X ), xa S X

u(k , xa) = Inf u(-, xa) I
ka

Assume C(Xa) has the finite topology. Then

1.1. u is usc iff u is usc,

2 u is lsc iff u is lsc;

2.1. u is usc iff u usc,

2. u is lsc iff u is lsc.

Proof: Upon noting that X is T1 , it is obvious that continuity
a 1

properties of U or u hold also for u, since a continuity

property holding for U or u on the whole of C(X a) x X0 also

holds on the subspace {({x }, xa)} , while this subspace is

honeomorphic to X and u = u = u on this subspace. All the

implications 'if' are thus proved.

---
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To prove the rest, let p e R be arbitrary, and

denote P+ = {r e Rir > p} , P = {r Rir < p} , ul(P+)

= B+, u~(P~) = B~, 5-1(P+) = E+ jj-l(p-) = D~, u-1(P+) = D+

u~'(P~) = E-. From this notation, it is clear how to use the

last lemma, observing that B is closed (compact) if u is usc

and that B~ is closed (compact) if u is lsc. Thus, in case

of l.l.;D+ is closed, so that u is usc; in case of 1.2, D

is closedso that U is lsc; in case of 2.1, E+ is closed, so

that U is usc; in case of 2.12, E~ is closed, so that u is lsc.

This completes the proof.

3.1.4.3 Corollary: Using the definanda and notation of the last

lemma, among the following statements i.a, i.b and i.c

are equivalent (i = 1 , 2, 3):

1. a. u is usc.

b. u is usc with the finite topology on C(X a

c u is usc with the finite topology on C(Xa).

2. a. u is lsc.

b. u is lsc with the finite topology on C(Xa).

c. u us lsc with the finite topology on C(X ).

3. a. u is continuous

b. u is continuous with the finite topology on d(Xa).
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c. u is continuous with the finite topology on C(X ).

Proof: All is plain as a rearrangement of the last lemma.

The form in which 3.1.2.9 will actually be used (together

with 3.1.4.5 in proving 3.3.1) is actually the following simple

proposition, needing no proof.

3.1.4.4 Proposition: Let X be a topological space, and define the map

:-[X+ X by

k(E) ={xlx E E) (E e [X]).

Then Z is usc (lsc) with the usf(lsf) topology on [X].

3.1.4.5 Proposition: The graph r((t) = {(E,x)IE e C(X), x E E} c C(X) x X

is closed if X is regular and C(X) has the usf topology.

Proof: To see that the complement of rw() is open,.et Fe C(X)

and y s X \F. Since F is closed and X is regular, there

exist disjoint open sets U, V C X such that F C U and y e V.

Then <U> is open with F e <U> CC(X), and (<U> x V)r() =$,

showing that r((t) has open complement.
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In the rest of the section attention is directed to matters

of convexity of u, ii, and u.

3.1.4.6 LEMMA: Let L and La be real linear topological spaces

and, with reference to 3.1.4.2-3, let Xa e KQ(LL), X e KQ(L ),

and assume u to be continuous. Then u has any of the properties

under (1) below iff U has, and u has any of the properties

under (2) below iff U has:

1. a (strict) quasi-concavity,

b.(strict) concavity,

c.linearity, i.e., concavity and convexity;

2. a.(strict) quasi-convexity,

b.(strict) convexity,

c. linearity.

Proof: The 'if' parts of the proposition are all obvious

upon noting that singleton subsets of X a are closed, and that the

collection of these is convex. The 'only if' parts are all

straightforward, so only (l.a) will be treated; imitation will

yield the remaining proofs.

Let 'X= 1 - X c [0,11, let (k, xa), ('k , 'xa) E C(X ) x XL

and let x.C ek. and 'x c 'k with u(xa, xa) x u(k xa'V ) and

u('xaI x a ('k , 'xa). Finally, denote a= Xka +'X'ka
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Ro a + 'x'xa andR = Xx + 'X'x Then U (ku, ia) >
a a a

u(Xa Ra). If u is quasi-concave, then

u(xa,) > Min [u(xa, xl), u('x, IX0)],1

whereby U is quasi-concave also; similarly, if u is strictly

quasi-concave (i.e., the last inequality is strict), then

u, too, is so.

3.1.4.7 Remark: From 3.1.4.2.-3, it is clear that 3.1.4.6 can be

strengthened by assuming only that u is usc for part 1 and

lsc for part 2.

3.2 Topological Properties of Behavors in Static Social Systems

From a narrow viewpoint, the prime motivation for recording the

properties collected in this section is the existence theory for

equilibrium in static social systems, presented in 4.2. The end

of the proof for an existence theorem for social equilibirum, however,

marks just a beginning for social analysis, no matter how general

and powerful that existence theorem. The properties enjoyed (or

suffered) by behavors in a social system - static or dynamic -

deserve consideration, therefore, as main building blocks of social



43

analysis, rather than merely as stepping stones useful only

for proving an equilibrium existence theorem. For this reason,

the present section treats selected properties of behavors in

some detail, restricting attention to the case of a static

social system. Actually, the properties of a social system itself

are expressed quite well, as a rule, in terms of the properties

of its behavors. So the present section may be looked upon

also as a treatment of selected properties of social systems in

the static case.

To clarify what particular properties are gained for behavors

from what properties of the behavior spaces, utility functions,

impression functions, interpretation functions and incentive

functions, the results of the present section are displayed in

as "disaggregated" form as is feasible here.

3.2.1 THEOREM: Let X = Xa x Xa be a compact (Hausdorff) space, let

f: X -+ R be continuous, and let f:X + R be defined by ? (xa

Sup f (, xa). Define a:Xa+ X by

a (xa) x fx ,x ') > f (x %)1.

Then the graph P(a)CX of a is compact and, hence, a is upper

semi-continuous witha(xa) non-empty and compact (x' e Xa).

-7-
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Proof: From the continuity of f, it follows that Y = f(X) is

compact and, by 3.1.4.3, that f is continuous. Since R is Hausdorff,

the graph F(f) C X xY of fand the graph r(f) X x Y of 

are then both closed, hence compact. Thus, Xa x r(f) is compact

and so is (X axr(f))r3r(f). = B. Hence, the projection w (B)
a X

is compact. Obviously, 1(a) = X(B). For each xa e Xa, a(xa) is

non-empty by the compactness of X x { xa} and the continuity of

f; it is compact, since it is the projection ir ((Xa x {xa})flr(a))

of a compact set. Finally, a is upper semi-continuous by

closedness ofr(a) and compactness of Xa , using Lemma 2 of

(Fan, 1952].

3.2.2 COROLLARY: If the collective behavior space of a static social

system is compact and is continuous for (each) behavor a , then

(each) a has a compact graph and, hence is upper semi-continuous,

selecting a compact and non-empty choice set in its behavior

space in reaction to each a-exclusive behavior.

Proof: Replace f in 3.2.1 by was

3.2.3 COROLLARY: The consequence in 3.2.2 holds if the collective

behavior space is compact and ua, ha and g. are continuous

Proof: If u , h and 9 are all continuous,a a a
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a#

3.2.4 LEMMA: Let Z be convex in a real vector space and let g:Z + R

u:Z x R -* R be two real-valued functions, such that u is non-

decreasing in r E R, i.e., such that for all z c Z, if r, s R,

and r < s, then u(z,r) < u(z,s). Define f:Z + R by f(z) = u(z,g(z)).

Then f is quasi-concave if g is concave and u is Quasi-concave.

Proof: If Z is empty, then there is nothing to prove. So let

z, z? 6 Z, A = 1 - A' e [o,l], and denote i = z + A'z'. Then

f() = u(Z, g(z))

> u(i, Ag(z) + X'g(z'))

> Min [u(z,g(z)), u(z',g(z'))]

SMin [f(z), f(z')].

3.2.5 COROLLARY: If the behavior space Xa is convex in a real vector

space and Ya= ha(X a), then wa is quasi-concave on X. x {Ya} if

g is concave on X x {ya} and ua is quasi-concave on

Xa {a} Xa {Xa}) (ya =h (xa), xa E Xa).

Proof: A direct application of 3.2.4.

3.2.6 COROLLARY: If, in addition to the hypothesis of 3.2.5,

X is compact and convex in a real linear topological space,
a

and for each ya E ya, a and ua are, respectively, continuous

on x f{a}
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and upper semi-continuous on X x {yc}x g (X x{yx} ), then

a(xa) is non-empty, compact and convex for each xa e X .

Proof: Since X. is compact, so is X.x X{yo}, Since g is

continuous so is ga (X x {ya}) compact. By the same reason

and the upper semi-continuity of u. , W is upper semi-continuous

on X x xa for any xa E Xa. Thus, for each xa e Xa a attains

a supremum s*(xa) on some (x*' acx) e Xa x {xa}. Since wa is

upper semi-continuous on X x {xa} , a (xa) = {X e X I w (x ,x)

> s*(xa)} is closed, hence compact, while obviously non-empty

from the previous sentence, (xa e Xa). From 3.2.5, Wa is also

quasi-concave on X a x {xal, so that a(xa) is also convex (xa e Xa).

3.3 Topological Properties of Behavors in Dynamic Social Systems

The present section is offered to serve the analysis of

dynamic social systems in a role analogous to that of the last

section for the case of static social systems. In a narrow sense,

the section is aimed at the existence theory of equilibrium for

dynamic social systems, presented in 4.3, but the facts recorded

are actually of wider interest.

As the last section spells out - albeit for the static case -

how various properties of its behavors derive from those of other

elements of a social system, the present section avoids the

corresponding exercise in the dynamic case. This is in the belief

---
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that the last section provides an easy enough model to imitate.

The present section can, therefore, afford to be briefer.

3.3.1 THEOREM: Let X and Xa be compact (Hausdorff) spaces,

and let w : X x Xc + R be continuous. For generic k e C(X )

and xE X a, denote w = Sup Qa( , xa), and define

ka

a (k ,xa) ={x~ s kaj ~<(xci, xa) > ;L(k, xci)}

Then, taking the finite topology on C(Xa), the graph

P(a) C C(Xa) x Xa x X. is compact and, hence, a is usc,

with each a(ka ca) non-empty and compact.

Proof: By continuity of a , the set

B ={(ka) x' a~ X.r)!r <c(xiq xci)}

is closed. By continuity of U., w is continuous, so that the

set

+(r ) = {(ka' ga, r)Ir > w(k, xa)}

is closed also. Hence BG ( (N) x Xa) is closed. In fact, it is

compact as a subset of the compact C(Xa) x Xa x Xa x a( Xa x Xci),

so that its projection P into C(X,) x Xci x X. is compact.

Now P is simply the set

P ={(ko, X" xa) (x, xca) > y(ki 5 xa)}
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Deffining the map L':C(X) x Xa + X by

L'(k ,xa) , (Ia ka

its graph P(L') C C(Xa), x Xa x Xa is closed, so that

P( F(L') is compact. Observing thatr(a) = P A(L') completes

the proof.

3.3.2 COROLLARY: Let La and La be real linear T spaces, let Xa E

kQ(La) and let Xa 6 kQ(La). Let Wa: Xax Xa + R be continuous

and assume that, for each xa e X , Wa is quasi-concave on Xa x

{xa}. Definea: CQ(Xa) x Xa + Xa, for generic ka E CQ(X and

a(ka, Xa) = {Xa F kaV a(xat, xal)> a (ka, xa')},

xaa a ,b

where wa (kay xa) = Sup xa ' Xa). Then a is usc with compact
ka

graph and with each-a(k , xa) non-empty, compact and convex,

taking the finite topology on CQ(Xa).

Proof: All but the fact that each a(kaxa) is convex follows

from the last theorem, for a linear T space is certainly

T2 (Hausdorff). Given any (ka, Xa) E CQ(Xa) x Xa, the-quasi-

concavity of Wa on Xa x { a} ensures the convexity of the set

{xa e XaIa (xa, xa) > Wa(ka'xa

But a(ka, xa) is nothing but the intersection of this set with

the convex ka, so a(k a, xa) is also convex.
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4. EVOLUTION AND EQUILIBRIUM IN SOCIAL SYSTEMS

This chapter is concerned with equilibrium in social systems.

The notion of 'equilibrium' is briefly compared with those of

'Pareto point' and 'core point' as treated in economic theory and

the theory of games. Equilibrium points are then considered

as fixed points of certain mappings, called "evolutions", representing

the way in which certain adjustment processes operate for various

types of social system.

Of the five very general types of social system studied for

the existence of an equilibrium, the first (type 0) is static.

The remaining types (I-IV) are dynamic. All five types, classified

according to various topological properties which they satisfy, are

unrestricted in the cardinality of their personnel, so that the

personnel can be finite, countably infinite or uncountably infinite.

The behavior spaces are compact and convex in locally convex

real linear topological spaces in the case of type 0 social

systems; they are compact and convex in normed real linear

topological spaces in..the case of types I-IV. For all five

types of social system, the set of equilibria is shown to be

non-vacuous, compact, and, in certain cases, also convex.

The existence result for equilibrium in the case of type 0

social systems is proved by use of (effectively a fixed point)

theorem of Fan (1952). In social systems of types I-IV, the existence

of social equilibirum is established by applying a fixed point

theorem of Prakash and Sertel (1970 a) for certain (real semi-
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linear topological) spaces developed by these authors (1970 b).

These latter existence results are extensions - obtained by

encorporation of impression, incentive and iftterpretation

schemes - of results developed by Prakash and Sertel (1970 c).
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4.1 Notions of Social Equilibrium

Of the many different notions of 'equilibrium' that are

relevant to the study of social systems, those which have attracted

the most attention in the study of games and economies are three

kinds. Only one of these really goes under the name of "equilibrium",

although the other two "Pareto point" and "core point", are also

equilibria in a real sense and sometimes recognized as such. While

the present study is concerned mainly with the first of these and

it is the existence of equilibrium in this particular sense that

is established in the other sections of this chapter for certain

types of social systems, the studyimight gain perspective if the

relation between the mentioned three kinds of equilibrium is

indicated. (To adhere to the most common usage, "equilibrium"

will hereafter be used to refer to the first mentioned of these.)

To define 'equilibrium', 'Pareto point' and 'core point' in

a fashion that will allow easy comparison, a few preparatory

definitions are in order. These become simpler in the case of

a game or, in general, a static social system, since the notion

of 'admissibility' loses its importance in that case, as the

reader will notice for himself immediately the definition is

given. The notion of 'blocking' by "coalitions" is pivotal for

the comparison between the three kinds of point (equilibrium,

Pareto and core).
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4.1.1. Definition: Let A be the personnel of a social system S. Any

non-empty subset B C A will be called a coalition of S, and

the notation X B=X , X = IX, D B ID D B D , will
BB a a B B A\B ill

B A\3 B A\B B

be adopted with generic elements denoted as x B X B

d D , dB DB.B B

4.1.2. Definition: Let x be a collective behavior and d a collective

feasibility of a social system S with personnel A. The pair

(x,d) will be said to be inadmissible for a (a E A) if f

C x) = x a d = D(d); otherwise, it will be said to

be admissible for a; (x,d) will be said to be admissible for B

a coalition of S, iff (x,d) is admissible for each a c B;

otherwise, it will be said to be inadmissible for B. (x,d)

will be said to be (in)admissible iff it is (in)admissible for

A.

4.1.3 Definition: Let S be a social system, Let B be a coalition

of S, and let x = (xeB x), d =d dB) be a collective

behavior and a collective feasibility, respectively. If

the pair (x,d) is admissible for B, then it will be said

to be blocked by B iff there exists y e dB such that

w (yB xB ) (x B B

holds for all a e B and
B B

S (y , x )> V i (x , x)
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holds for some f> 6 B. If (x,d) is admissible for B, then it will

be said to be unblocked by B iff it is not blocked by B.

The notions of 'equilibrium', 'Pareto point' and 'core point'

can now be given precise meaning by the following defintion.

4.1.4 Definition: Let x be a collective behavior and d a collective

feasibility of a social system S with personnel A, such that

the pair (x,d) is admissible. The pair (x,d) will be called

an equilibrium (point) of S iff it is unblocked by each singleton

coalition {a} A; it will be called a Pareto point of S iff it

is unblocked by A; it will be called a core point of S iff it

is unblocked by all coalitions of S. The equilibrium set of

S is the set of all equilibria of S. The Pareto set of S

is the set of all Pareto points of S; the core of S is the set

of all core points of S.

The comparison between equilibrium, Pareto and core points of

a social system is now absolutely clear. Simple but important

consequences of the definitions are that all core points are

equilibria as well as Pareto points, so that the core is contained in

the intersection of the equilibrium set with the Pareto set.

Thus, the core is empty when, for instance, S does not have

an equilibrium. In the later
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sections of this chapter, sufficient conditions are given

for S to have an equilibrium. Demonstrating sufficient

conditions for the Pareto set or the core to be

non-vacuous is a research problem not tackled in this study.

Although it certainly will not be a survey of the

literature, a brief sketch of the history of the above ideas

will now be given. The idea of an eauilibrium point for a

competitive economy, in the sense of a price vector equating

supply to demand in each market, is commonly attributed

to Walras (1881). Wald (1933-4, 1934-5, 1951) proved,

under rather restricted conditions, that an eauilibrium

exists for each of a pure production and a pure exchange

economy. Arrow and Debreu (1954), based on a study of Debreu

(1952), demonstrated for the first time the existence of an

equilibrium for a competitive economy in which production,

exchange and consumption all take place, using less

stringent assumptions than those of Wald. One very good

reason why a survey of the literature up to 1954 is not

given here is that the mentioned work of Arrow and Debreu

contains an excellent such survey. The existence theorem

of Debreu (1952) for a social equilibrium (where, however,

the "social system" is actually the same as that defined to

be an "economy" in Arrow and Debreu (1954) - see also section

2.2 of the present study) is used in establishing the result
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of Arrow and Debreu (1954), and that theorem is itself based

on a corollary of the fixed point theorem of Eilenberg

and Montgomery (1946). Using Kakutani's (1941) fixed point

theorem, McKenzt (1955) obtained improvements on the Arrow

and Debreu study. All of these works used finite dimensional

methods. They succeeded in providing economics with the

equilibrium whose various optimality and stability aspects

had long been discussed and many worked out by a long and

formidable list of authors. Newman's (1968) excellent

collection is one good entry into the box of gems to which

all of the above belong.

The idea of an equilibrium for a game was first formally

introduced in some generality by Nash (1950) and proved to

exist by him (1950, 1951), first by use of Kakutani's and

then by use of Brouwer's fixed point theorem. The game dealt

with was a finite personnel non-cooperative one with behavior

spaces (compact and convex) in Euclidean spaces.

For information concerning the Pareto set, the core and

the relations between these and the equilibrium set, the

following short list might provide a reasonable means of

entry into the associated game-theoretic and economic

literature: (Edgeworth, 1881), (von Neumann and Morgenstem,

1944), (Arrow, 1950) ,(Gillies, 1953, 1959), (Bondareva,1962)

(Debreu and Scarf, 1963), (Vind, 1964), (Aumann, 1964),

(Shapley, 1965), Scarf, 1967). Of these (Aumann, 1964)
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contains a short but illuminating discussion of the development

of the area.
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4.2 Evolution and Equilibrium in Static Social Systems

In this section an equilibrium of a static social system is

defined as a fixed point of a certain transformatim called an

"evolution", and a sufficient condition is demonstrated for the

existence of such an equilibrium. The "static contractual set",

i.e., the set of equilibria of a static social system, is shown

to be compact if the mentioned sufficient condition is satisfied.

This contractual set is shown also to be convex if certain

linearity conditions hold which yield the effective utility

functions linear.

4,2.1 Notation and Convention: In the case of static.social systems

it is possible to somewhat simplify the notation adopted for

dealing with social systems in general. This simplification is

permitted by the fact that the feasibility transformations t of
a

a static social system are all constant functions, the typical

t. assigning a fixed da C X. to every point in its domain.

From this fact it is clear that no generality is lost by

assuming d = Xa , i.e., Da = {Xa}, for all the behavors

a e A. Taking advantage of this, the set T c S can be fully

specified and suppressed by representing a static social system

S in the form <W, U, H, G, I A> . For, whenever a social

system is specified in this way, it will be understood to be

static and the constant collective feasibility will be taken to be

-4



59

the collective behavior space X. In this case, since there

is always one constant feasibility da = Xa for each behavor

a e A, the behavors become simply point-to-set mappings

a: Xa -+ X defined by
a

a(xa) I x 6 X aa a) >a~x)

where

. a (xa) = Sup a (ya, xa)a yX a a'

4.2.2 Definitions: The evolution of a(static) social system

S = <W, U, H, G, I, A> is a transformation E: X + [X] defined

for each x e X, by

E(x) = H af(fXa ))
A

4.2.3 Definition: The (static) contractual set of a static social

system S is the set C = {x c Xix e E(x)}CX of fixed points

of the evolution E of S. A collective behavior x c X is called

a (static)social contract or equilibrium of S iff x e C.

4.2.4. Definition: A static social system S will be classified as

type 0 ("'type zero") iff the following conditions are satisfied

for each behavor a c A:



60

(1) X E KQ(L.) for some locally convex real linear

topological space L.

(2) w. is continuous on X and quasi-concave on Xa x {fx}for each

xa E Xa.

The main theorem, 4.2.6, of this section will be proved

by use of the following (fixed point) theorem.

4.2.5 THEOREM [Fan, 1952]: Let {L a e A} be a family of locally

convex real linear topological spaces. For each a e A, let

Xa e KQ(La) and let Xa H X Let X = TIXand let
A\{a} A

{P(ca) a e A} be a family of closed subsets of X.. If,

for any point x E X, and for any a c A, the set a(xa) C 0(X),

where xa = 7 (x) and

a (x) 7 X (F (a) (1 (X x {xa})),

then lr(IF) .
A

4.2.6 THEOREM: Every type 0 soc.ial system has an equilibrium.

Proof: By 3.2.2, the graph Fr(a) of each behavor a in

the personnel A satisfies all but the requirement that

a(xa) X is convex for each xa c Xa. This requirement

is satisfied, however, since w. is quasi-concave. Thus,
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Or(a) # # and, evidently any point x in this intersection is
A
a fixed point of the evolution, i.e., an equilibrium.

4.2.7 COROLLARY: A static social system with a collective behavior

space which is compact and convex in a locally convex real

linear topological space is of type 0, hence has an equilibrium,

if the following conditions are satisfied for each behavor

a in the personnel:

(1) ua is quasi-concave on Xa X {yalfor each ya c h (Xa),a a

and ua is continuous;

(2) h is continuous;

(3) is concave on Xa x {ya}for each ya e ha (Xa) and

g is continuous.

Proof: From the quasi-concavity and concavity of ua' a, respec-

tivelyon Xa X {ya}, it follows by 3.2.4 that w is quasi-a

concave on the same (ya e ha(Xa5' a e A). Hence a(xa)

is convex for each xa 6 Xa and a E A. From the continuity of

u , h and g , it follows that w is continuous, so that thea a a a tnos ota h

social system is of type 0. Now 4.2.6 applies.

4.2.8 THEOREM: The contractual set C of a type 0 social system is

compact.
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Proof: Clearly, C is precisely the intersection of the graphs I'(a)

of all the behavors, which is compact since each r(a) is compact

by 3.2.2.

4.2.9 THEOREM: The contractual set of a type 0 social system S is

convex if the effective utility function Wa of each behavor a in

the personnel of S is linear (both concave and convex).

Proof: It suffices to show that the graph r(a) of an arbitrary

behavor a in the personnel is convex. Let a be such a behavor,

and let x, y, E F(a), where x = (xa, x ) and

y = (ya, y). Define z = (za, Za ) = Ax +A' y for any

A = 1 -A' e[Ol]. Then w (Z) A(x) + A' 0 (y), bya a,

linearity of wa. Since x, y er(a), W a(xa) and

w (Y) = 'a (ya). But, by 3.1.4.6.1.c and the

linearity of % ' ais linear also. Hence, a ) =

A (xa) + A ' ia(ya), so that a (za) = ia(z), implying that

za F a(za), i.e.,that z srP(a). Thus, r(a) is convex, completing

the proof.

4.2.10 COROLLARY: Let S be as in 4.2.9, and let A be the personnel

of S. Denote Ya = ha(Xa) for each a e A. Assume that, for

each a e A, h (A xa + 'AVxa) = Ah (xa) + 'Ah (' xa) if xa

and 'xabelong to Xa. Assume that i is linear (concave and
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convex on X x Ya, for each a EA. If u is linear onOt a-

Xa ya X ga(X x ya) for each a cA, then the contractual

set of S k convex.

Proof: It follows from the hypothesis concerning h and ga a

that g. (xa, h (xa)) is linear on X. It is easy to see

aa
(though tedious to show) that the hypothesis concerning ua then

ensures the linearity of wa Since wa is thus linear from

each ae A, the desired result follows by 4.2.9.

#t

- M1161111 -
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4.3. Evolution and Equilibrium in Dynamic Social Systems

The primary aim of this section is to demonstrate reasonably

unrestrictive sufficient conditions for the existence of what will

be defined to be a dynamic social equilibrium. Although only

one type of evolution and social equilibrium needed consideration

in the case of static social systems, in the case of dynamic

social systems several types of evolution and several corresponding

types of equilibrium deserve attention. For, in the dynamic case,

the feasibility transformations are no longer restricted to be

constant maps, so that various forms of relaxation of the constant-

ness of these maps can be considered in conjunction with various

assumptions governing the behavors, yielding a variety of

conditions each of which affords an existence theorem for an

associated type of social equilibrium. Furthermore, none of these

sufficient conditions implies the other, so the existence

theory for social equilibrium in dynamic social systems does not

reduce to a single theorem as it did in the static case - at least,

this author is not able to assert such a reduction at this time.

To compactify the statement of the existence theorems for

dynamic social equilibrium, it is convenient earlier to have defined

types of social systems accordingly as they satisfy certain

conditions. In this way the sufficient conditions for existence of

an equilibrium are collected under each "type", and the hypotheses

of the existence theorems are shortened to become assumptions

that the social system is of one type or another. Also, collecting
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all of these types in one subsection is intended to facilitate

their comparison with each other. The following section is

thusly motivated.

4.3.1 Types of Dynamic Social System

It helps the exposition to collect at the outset all

the common features of the dynamic social systems to be

considered here. The first common feature of these is that the

behavior space X. of each behavor a is assumed to be non-empty

compact and convex in some normed real linear topological space

(4.3.1.1) X c kQ(L ) (a E A)..

Secondly, the effective utility function, a of each

behav o-a e A is assumed to be continuous (on X) and (its

restriction) quasi-concave on X x {xa} for each xa e Xa

(i) ia:X - R is continuous,

(4.3.1.2) (a E A).

(ii) *a:Xa X fxal -+ R is auasi-concave

(x E Xa)

Finally, the feasibility space D. of each behavor a e A is

assumed to be the Hausdorff metric space (see 4.3.1.5) of all
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non-empty closed (hence comDact) and convex subsets of X :

(4.3.1.3) Da = CO(X) (a e A).

This gives simplicity to the following definition.

4.3.1.4 Definition: A social system satisfying 4.3.1.1-3 is classified

as type I iff the feasibility transformation

ta: I CQ(Xa) x X-+ CQ(Xa)
A

is continuous for each behavor a c A

4.3.1.5 LEMMA: If X is compact and convex in a metric linear space

and C(X) has the Hausdorff metric [or,equivalently (see 3.1.2.13),

the finite] topology, then C(X) and its subspace CO(X) are both

compact and convex.

Proof: The compactness of C(X) follows by 3.1.2.12. The

convexity of C(X) follows by the continuity of scalar multi-

plication and vector addition in the linear topological space

where X lies. Since convex combinations of convex sets are

convex, it follows also that CQ(X) C C(X) is convex, and the

following simple convergence argument establishes what is

needed. Let {1 k} -* *k be a converging sequence of points

k CQ(X). Then *k c C(X), since C(X) is closed. Let *x,

* e *k, and denote an arbitrary convex combination
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X*x + X'*x' by *x (X = 1 - X' e [0,1]). Then there exist

sequences {*x} .+ *x,{ x'} . *x' with 1x, 'x' C ki=1 i=l

(i = 1,2, ... ). Since ik is convex, X x + Xx' c k

(i = 1, 2,...), so that {'5 w} *x. Hence,*R E *k, proving

that *k is convex and, thus, that CO(X) is closed.

In the next two definitions one is able to relax the

condition on the feasibility transformations by restricting the

effective utility functions in alternate ways.

4.3.1.6 Definition: A social system satisfying 4.3.1.1-3 is classified

as type II iff, for each behavor a e A, the effective utility

function i is "linear" (both concave and convex) and the

feasibility transformation tot is usc as a point-to-set mapping

with ta (k, x) C CQ(X ) being closed and convex,

(k E R CQ(X), x e X).
A

4.3.1.7 Remark: In this case, it is possible to'view ta as a

point-to-point mapping into CQ(CQ[X 1), (a E A).

4.3.1.8 Definition: A social system satisfying 4.3.1.1-3 is classified

as type III iff,for each behavor a e A, the effective

utility function i is strictly quasi-concave on each X, x {xa}

(x' s X1) and the feasibility transformation to is as in type II.
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Finally, these last two restrictions on the effective

utility functions can be eliminated with appeal to an interesting

restriction on the feasibility transformations.

4.3.1.9 Definition: A mapping E: X + Y of a convex set X into a

convex set Y is called a convex process iff its graph

r() CX x Y is convex.

4.3.1.10 Definition: A social system satisfying 4.3.1.1-3 is classified

as type IV iff the collective feasibility transformation is an

usc convex process.

4.3.1.11 Remark: Of course, a collective feasibility transformation

t is a convex process iff each coordinate feasibility

transformation is a convex process.

This completes the present classification of social

systems into types. It is clear that, if the feasibility

transformations are all constant maps, a social system

of type I - IV is slightly more restricted than that

dealt with in section 4.2. The restriction comes from the

fact that each X is now assumed to lie in a normed (real

linear topological) space, while before it was only

assumed to lie -in a locally convex (real linear topological)

space. Thus, by taking on this restriction, the constancy

assumption for the feasibility transformations has been
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eliminated.

Before turning in section 4.3.3 to prove the existence

of equilibrium for all four types of social system defined,

the next brief section will identify types of evolutions and

equilibria corresponding to these types of social system.

4.3.2 Types of Evolution and Equilibrium for Dynamic Social Systems

Corresponding to the types of social system defined

in 4.3.1, a set of mappings will now be defined. Corresponding

to each such mapping, called an "evolution", a type of social

equilibrium will be identified as a fixed point of that mapping.

It is such types of fixed point which will be shown in the next

section to exist.

4.3.2.1 Notation: Let k, k denote generic elements of HCO(X ) and let
A

x, y denote generic elements of X. Denote ff (k) =k

CO(Xa)

CQ(X ) a X W a Xa X= x TXa (y) y

Also denote Z = CQ(X a) x Xa , Z H Za,A (k,x) = a(k , xa).
A A

Finally, denote generic elements of Z also by z.

4.3.2.2 Definition: The evolution of a type I social systemis

a transformation E: Z -* Z defined for z e Z by

E (z) = {t(z)} x A (t (z), x),

it is classified as type I. The evolution of a type II

social system is a transformation F :Z -+ Z defined, for
II
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z e Z, by

E (z) = t(z) x A(t(z),z);
IT

it is classified as type II. The evolutions of a type

III social system are transformatiorsE :Z + Z and
III

E : Z + Z defined, for z = (k,x) e Z by

E (k,x) = (II ta(k, a(kOxa),xa)) x A(k,x),
A

E (kx) = t({k} xA(k,x)) x A(k,x),

respectively; E is classified as type III and E as
III IV

type IV The evolution of a type IV social system is a

transformation E :Z -* Z defined and classified as above.Iv

4.3.2.3 Definition: A fixed point of an evolution is called a social

equilibrium (or social contract) and classified according to the

type of evolution of which it is a fixed point.

So much preparation finally allows turning to the existence

of social equilibrium in the dynamic case.
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4.3.3 Existence of Dynamic Social Equilibrium

In this section it is shown that social systems of types

I - IV have equilibria. In particular, it is shown that the

(type i) evolution of a type i social system has a (type i)

social contract for i c {I, II, III, IV }, and that a type III

social system has, in addition, a type IV social contract.

In each of the existence results, the following fixed

point theorem is used:

4.3.3.1 THEOREM [Prakash and Sertel]: Let {Z.1a c A} be a family

of 20 convex, compact and convex spaces, and let {E :

Z + Z a e A}be a family of usc point-to-set mappings on

Z = fZ, such that Ea (Z) CO(Z a) (z c Z, a c A). Define

A
E: Z -+ Z by E(z) = HE (z) (z E Z). Then there exists a

A a
(fixed)point z E Z such that z s E(z). (1970, 3.16 Theorem VI].

In each application of this theorem, Za will be taken

to be CQ(Xa) x X., as indicated in 4.3.2.1. In this case, both

CQ(Xa) and X. are easily seen to be 30 convex, so that

their product Za is 30 convex, hence 20 convex.

It is worth noting that the fixed point theorem of Fan, used

in 4.2, cannot be applied in this case, as Z = CQ(X a) x X lies in

a semi-linear topological space while it must be assumed to lie

in a linear topological space for Fan's mentioned theorem to apply.
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Thus, an extension of Fants theorem is needed, and 4.3.3.1

provides just the desired sort of extension. Actually, other

fixed point theorems of Prakash and Sertel [1970] can safely

be conjectured to suffice for some of the above types of

social system, but 4.3.3.1 works for all of these, as will be

seen. It is because 4.3.3.1 works for all of these cases that it is

possible to economize on the number of fixed point theorems to be

used (known).

4.3.3.2 THEOREM: Every type I social system has a type I social contract.

Proof: By 3.3.2, each behavor a e A is usc in (t (k,x),xa )

with a(t a(k,x), x') e KO(X ) = CQ(X,) for each (k,x) c Z.

Since each ta and Tr (k,x) = x a is continuous

on Z, a(t (k,x),xx) is usc on Z. Hence, {t (k,x)} xa(t (k,x),xa)

is usc on Z, while {t (k,x)} x a(t (k,x), xO') s CO(Z)

[(k,x) s Z, a c A]. Also, Z = Hza is the product of 20 convex
Ac

compact and convex spaces Z , and

EI(kx) = R ({t (k,x)} x a(t (k,x),xa

A a

Thus, by 4.3.3.1, there exists a type I social contract

z F E (z) C Z.
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4.3.3.3 THEOREM: Every type II social system has a type I- social

contract.

Proof: Since each t is usc, each a (t (k,x), x),as a
cit

composition of usc mappings, is usc on Z. Thus, t (k,x) x aL(t

(k,x), xc), for each a E A, is usc on Z. Since E (k,x)
I

] E ,where
A

E (k,x) = t (k,x) x a(t (k,x),x )5
ci ci

to apply 4.3.3.1 it remains only to show that E (kx) F CQ(Z )

for each a e A. Since t,(kx) e CQ(CQ(X )) by hypothesis,

it suffices to show that a(t (k,x), xa) s CQ(X). In fact,

as the graph r (a) C: CQ(X ) x Xa x X is compact by 3.3.1,

and t (k,x) is closed in the compact CO(X a), it follows that

ta (k,x) x {xc})cCQ(X,) x Xa is compact, implying that

a(t (kx), xa) is dompact, hence closed. This leaves only

the convexity of a(t (k,x), xa) to prove. Let x , x E

a(t (k,x), xci). Then (xxia) = Q U xc) and R Wx xc)a ~ a a aa a

(', xa), for some E , t (k,x). By 3.1.4.6, linearity
aa a a a

of a implies that of w ,so that i (, xc) (2,xc) +

X'.(i' ,xa) for all I = 1 - x'e [o,l], where +X +' . But, a a a

by linearity of 14, 'Yaa xc) = a (x a) + a (x' ,xc)

w (91a, xa), for x =x a+ X'x' . Hence, x a e a(t (k,x), xc),

showing all that was required.
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4.3.3.4 THEOREM: Every type III social system has (1) a type III

and (2) a type IV social contract.

Proof:

ad(l): Since the effective utility function i4 is strictly

concave on X x {a } for each xa e Xa, a(ka xa) is singleton

for each ka e CQ(Xa), xa Xa, a c A. Then t (k, a(ka, x' ) xa)

is the image under ta of a point (k,a(ka, xa)t xa) c Z, hence it

is non-empty, compact and convex in CQ(X ), by hypothesis, for
a

each such point z e Z(a e A). Thus, for each z = (k,x) e Z,

E (z) s CQ(CQ(Xa)) X {{X lix E X} r- CQ(CQ(Xa) x a Ix x E
"Ia aa a a a a

X}), which is homeomorphic to CQ(Z ), where, for each a E A,

E (z) = t (ka(ka xa), x a) x a(ka, xa).
a

But the map E :Z -+ CO(Z ) is usc, as t is so and a and
Iiia a a

all projections are continuous (a e A), and E (z) = HE (z)
A

for any z c Z. Hence, 4.3.3.1 applies, yielding that there

exists a type III social contract z c Z such that z e E (z).

ad(2): Defining

E (k,x) = t ({k} x A (k,x)) x a(k ,xa)
IVa a -a

for each a 6 A and z = (k,x) e Z, E (z) HE (z). Since
A a

each a is usc, so is the map A. As each a(k , xa) is

singleton, so is A (z) (z c Z). Hence,{ k} x A(k,x)s Z

for each (kx) e Z. Thus, F :Z -+ CQ(CQ(X )) x Xa has been

a

__A
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defined for each a c A, and the range is a subspace of

CQ(Z ), so that E is the product of usc maps E :Z -+ CQ(Z ).
IV IV a

By 4.3.3.1, there exists a type IV social contract z e Z such

that z c E (z).

4.3.3.5 THEOREM: Every type IV social system has a type IV social

contract.

Proof: For each a e A define the map Ei (as in the last

proof) by

E (kx) = t ({k} x A(kx)) x a(kqxa).IVa a

By the upper semi-continuity of each a, A is usc, so that each

E is uscas each ta is so by hypothesis. As a(k , xa) is
IVaa

non-empty, compact and convex for each k F CQ(X ), xa e xa

a e A, it follows that A(k,x), hence, {k} x A(k,x), has the

same properties for each (k,x) e Z. Since t 'is a convex

and usc process, it follows that each ta has a convex and

compact graph r(ta) CZ x CO(X ), as both Z and CQ(X ) area a

compact(and convex). Thus, t ({k} x A (k,x))is non-empty,

compact and convex, for each (k,x) e Z, as it is the set

7TC a (r(t )( 0({k} x A(k,x) x CQ(X )).
CQ(Xa) a

Hence, E (z) is non-empty, compact and convex in Z, for
aV
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each z F Z and a -A. As E is nothing but the map defined
Iv

by EIV(z) = .E IV (z), 4.3.3.1 yields the result that there
A a

exists a type IV social contract z e Z such that z c E (z).

4.3.4 Compactness and Convexity Results for Dynamic Contractual Sets

In this section it is shown that the contractual sets,

i.e., sets of social contracts, shown to be non-empty in

the last section are all compact, and that the contracutal set

consisting of type IV social contracts is also convex for a social

system which is both type III and type IV.

4.3.4.1 THEOREM: Let C stand for the contractual set shown to be

non-vacuous in any one of the theorems 4.3.3.2-3, 4.3.3.4.1-2

and 4.3.3.5 above. Then C is compact.

Proof: Let E by any one of the evolutions E (i.e.{ I, II, III,
i

IV }). Then E is usc, as each E was shown to be so (a c A).

Then the graph

F(E) = {(z, z')Jz eZ, z' c E(z)}

is compact as a closed subset of the compact Z x Z. Denoting

the diagonal {(z,z')z=z' e Z} by A, A is compact and C

is nothing but
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C = TZ(r(E)

hence compact.

4.3.4.2 THEOREM: Let S be a social system which is both

type III and type IV, and let C be the set of type IV

social contracts of S. Then C is convex.

Proof: As Z is convex, so is the diagonal A of Z x Z. Hence

it suffices to show that the graph r (E I) is convex, as C =

vz(J(E )I A). It is obvious that r(E 1y) is convex if the

graph r(A) is convex, for the graph r1(t) is convex by

hypothesis. Furthermore, rI(A) is convex if the graph F(a) of

each behavor a e A is convex. It is tedious but

straightforward to show that r1(a) is convex, using the

hypothesis that w. is linear ( a e A).
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5. EXTENSIONS AND APPLICATIONS

This chapter will identify a selected number of directions

in which the framework and theory of the previous chapters can

fruitfully be extended, also indicating application areas.

One large extension is into probabilistic social systems,

occupying the first section. In that section a particular notion

of behavior as a probability measure on a sigma-field of actions is

developed, the numerical representability of preferences on sets

of such behaviors is discussed, and the notion of probabilistic

social system constructed.

The next section proposes a couple of axioms as necessarily

satisfied by a causal relation, and applies the resulting notion,

of an event 'inducing' an event, by building on it a notion of

power in probabilistic social systems. The result is compared

with Dahl's [1957] concept of power and the importance of

equilibrium methods forpower analysis is pointed out.

The attraction and stability properties of equilibrium sets

and cores is the topic of the next section. The required concepts

are presented, as borrowed and modified, from the theory of

dynamical systems.

Finally, the study is closed by a discussion of a number of

extensions and applications particularly relevent for the management

of organizations. Organizations are defined, optimal incentive

problems posed, the choosing of incentive schemes related to the
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act of legislation, and the relevance of equilibrium methods for

all of these clarified. Three main types of control, remunerational,

socializational and informational, are illustrated. Extending the

detail in defining impression functions, it is shown how

information-systemic elements can be incorporated into the model.

Finally, the direction of multi-level social systems is pointed

to as an area into which the model can be extended.
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5.1 Towards the Analysis of Probabilistic Social Systems

Along lines earlier suggested in [Sertel, 1969 a, b],

probabilistic social systems will now be developed as an important

extension of the social systems so far studied. The next section,

5.2., illustrates one of the motivating reasons for studying

probabilistic social systems.

In 5.1.1 the notion of a behavior is particularized to that

of a probability measure on a sigma-field of actions. 5.1.2

settles matters pertaining to the measurable numerical representa-

bility of preferences on behavior spaces when the preferences are

originally specified on a sure action ( a set of "sure prospects").

Then 5.1.3 finally assembles probabilistic social systems on the

basis of this groundwork.
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5.1.1 Action and Behavior

The notion of 'behavior' introduced in 2.1 and used up to

here is extremely general and abstract. In this section a more

particular and concrete version of that notion will be constructed,

founded on a certain notion of 'action'. This construction will,

in turn, serve as a foundation for the treatment of "probabilistic

social systems", after certain questions relating to the rep-

resentation of preferences are dealt with in the next section.

This and the next two sections will thus give an extension

of part of the framework offered in (Sertel,1969 a).

The term 'individual' and phrases such as "things which

an individual can do" will be formally undefined here; they

are to be understood in the natural language sense. This

prepares the ground for what follows.

5.1.1.1 Definition: The sure action 0 of an individual j is

the set of all mutually exclusive things which j can do.

A sigma-field 0. of subset of 0 will be called a sigma-field
J o j

of actions (or, for short, an action field) of j iff it

contains the finest partition of 06

{( = { .} .0 } O.
S J J o j J

There will always be assumed to be a unique non-trivial

action field 0. Uth which an individual is associated. A
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subset 0. - . will be called an action of j iff 0 e 0.
J o J j j

5.1.1.2 Definition: A probability measure p: Q [0,1] defined

on the action field 0* of an individual j will be called

a behavior of j. The set Pj of all behaviors of j will be

called the behavior space of j.

5.1.1.3 Definition: A collectivity is an ordered pair <W,J>,where

W = {P.Jj c J}is the family of behavior spaces P of the
J j

individuals j c J, and where J is a non-empty collection

of individuals.

5.1.1.4 Remark: Since each action field is non-trivial, each behavior

space is non-empty. Compare 5.1.1.3 and 5.1.1.5 with 2.1.2-3.

5.1.1.5 Definition: The sure joint action of a collectivity

<W, J> is the product 0 = H 0 of the sure actions
J

0 (j E J). The sigma-field of joint actions (or, for

short, joint action field) of <W, J> is the product

Q = HO. of the action fields 0.(j e J). A subset
J I J

SCo 0 is called a joint aetion of <W, J> iff 0 E 0 .
J oJ J

5.1.1.6 Definition: A (joint) probability measure p : 0 + [0,1]

defined on the joint action field 0 of a collectivity

<W, J >will be called a joint behavior or state of <W, J>.
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The set P of all such measures will be called the joint

behavior space of state space of <W,J>.

5.1.1.7 Definition: The collective behavior space of a collectivity

<W, J> is the product P = HP. of the behavior spaces
J

P.(j e J). A function p: J -+ UP. in P is called a collective
J JiJ

behavior of <W,J> iffp(j) e P (j e J), i.e., iff p E P. In

this case, p(j) is also denoted by p. = p(j) E P.. (Cf.2.1.2-3).
J J

5.1.1.8 Remark: The distinction between joint behaviors (or states)

and collective behaviors of a collectivity is crucial. To

the probabilist it will already have been clear that a behavior

is simply a certain marginal of a joint behavior and a collective

behavior is simply a specification of all such marginals for

a joint behavior. Thus, there is a unique collective behavior

specifying these marginals of a joint behavior, whatever

joint behavior is given. Specifying a collective behavior,

however, determines either not more than one joint behavior

or not less than the cardinality of-the-continuum joint

behaviors. (This is so, for, if two joint hehaviors have the

same specified marginals, then a continuum of convex

combinations also satisfy this condition, i.e., the set

of joint behaviors consistent with a collective behavior

is convex). That there exist a joint behavior given a

Miwwffiob --- - .- , -
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collective behavior is governed, of course, by the

satisfaction of the Kolmogoroff consistency conditions.

(Kolmogoroff, 1933). (See also (Kingman and Taylor, 1966)

and (Parthasarathy, 1967).)
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5.1.2 The Representation of Preference

In the social systems dealt with up to the present chapter,

no mention was mde of how it was that the utility functions

used were guaranteed to exist as numerical representations of

(complete) preference orderings on the sets in question. This

is because all of the properties which were assumed, at one stage

or another, to hold for these functions were properties which

have been proved in the literature to be assumable without any

loss of generality when certain conditions are met, and these

sufficient conditions happened always to be satisfied whenever

needed.

Main reference in the literature is to the representation

theory of Debreu (1954) and of Herstein and Milnor (1953). For

all of the results developed so far, the utility functions were

assumed to have certain continuity and convexity properties. The

domains of definitions for these functions were always compact

and convex. Assuming the necessary and sufficient conditions

demonstrated by Herstein and Milnor and presented below,

convexity of the domain guarantees the existence of a real-valued

linear function preserving the .order of the given preferences.

If the domain is topologized by the order of the preference

relation, this function is easily seen also to be continuous.

Thus, all that was ever assumed so far can be seen to be

assumable, using the convexity of the set ordered by preference
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and the results of Herstein and Milnor. In certain cases,

Debreu's theory could have been used as an alternative,

e.g., when the domain was compact in a metric space, hence

satisfying the second axiom of eountability (see Debreu's

Theorem 2).

In building toward probabilistic social systems, studied

in the next section, where the behavior spaces are of the special

kind introduced in the last section, matters of representation

of preferences are less straightforward; hence, the present

section. The exact questions which are addressed here will be

stated shortly, after some minimal prenaration.

Let a collectivity <W, J> be given. Fix attention to a

specific individual j E J, and let x R be completely

ordered by a preference relation < j summarizing j's preferences

between elements of this set.

The first question addressed now is the following:

Under what conditions does there exist a function

v : 1 x R +R

such that

u.(p, r) = v.(w,r)dpj(w)
i o 0J
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exists for all (p ,r) e P x R, and, such that, identifying each

z
z o 0 with the degenerate pz C P asoigning i to the set

{z} E 0 and 0 to the rest of 0j, the eauivalence

u (pz, r) > u (pz , r ) iff (z,r) > (z',r')

holds for all (z,r),(z',r') E 0  xR?

This question will be answered by use of a result due to

Herstein and Milnor.

Herstein and Milnor [1953] have demonstrated a necessary

and sufficient triplet of conditions for the existence of a

real-valued, linear function on a set M ordered completely

by a relation <. , such that the function preserves this order.
~j

These conditions are:

(1) M is a "mixture set"

(2) for all a, b, c, e M, the following sets are closed:

_e [0,1]IXa + (1- X)b > c}

{ [0,1]1c >. Xa + (1 -X)b}

(3) if a, b, c e M with a = b (where, for all d, e c M,

'd = :e' denotes 'd <. e and e < d'), then

1 1 1 1
a +-c =. _>

2 2 2 2
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A"mixture set" here is a generalization of a convex set in a real

vector space.

Now this result will be used to obtain some reasonable con-

ditions under which the desired sort of function v. will

exist. First, it is assumed that the set eO is convex in a

real vector space. It follows that o0O x R is convex, hence a

"mixture set". Next, assume that the conditions (2) and (3)

are met by M = 6 x R. Then there exists a linear real-valuedo J

function v: 06 x R -+ R preserving < . It will now be seen

that this function v. has all the desired properties, after a
J.

few more assumptions are made.

Topologize 0 0X R with the order topology < . That is,

topologize 00i x R with the coarse sttopology for which

{{b e 0 x Rjb > . a}, {b F_ x Ria < b}la 0 x R}
0 0 -1

is a family of closed sets. (Note: This is not the order

topology defined by Eilenberg (1941). The definition of Eilenberg

would correspond to the quotient space where elements of an

equivalence class according to the order are not distinguished,

even though they may be distinct in 0 x R. Although the quotient

space of the space defined here is always T (in fact, T2  i.e.,

Hausdorff), this is not true of the space itself, as can be seen

from the fact that if b # a but b > a and a > b, then there

is no neighborhood of b(a) of which a (b) is not an element.

The course of definition chosen here is motivated by the need,
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in the present context, to keep distinctness of points distinct

from non-equivalence of points).It is obvious that v is

then continuous. Hence, v is continuous whenever 0 x R has

a topology finer than the order topology of <.

The final assumption to be made concerning 0 x R is that

0 is a quasi-compact T1 (topological) subspace of a linear

topological space. The first consequence of this comes from

the fact that 001 x R is T, i.e., that the singleton subsets

{a} 001 x R are closed. The mentioned consequence of this is

that v is continuous. This is so, for a T1 topology on 00 x R

= M is finer than the order topology. To see that a Ti topology

is finer than the order topology, take a, c s M such that c

{b c Mib > ja} and note that the complement of {b e M~b > ia}

is open in the T1 topology by the fact that c > a implies c

to be distinct from a, whereby there is a nbd of c (in the T1

topology) which does not meet {b e Nib - a}

Since 0 x R fails- to be quasi-compact, however, it does

not follow from the continuity of v. that v. is bounded. This

is a serious deficiency, as boundedness coupled with continuity

of vj would guarantee its integrability with respect to each

p e Pj, as desired. It is this deficiency to which a remedy will

now be sought.

Let y.: 0 + R represent a typical element of the set of

linear real-valued functions on 0 0 for which Yj(onj) C B,

where B is a fixed (bounded) closed interval [rl, r2]'
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(The functions y are analogous to the (interpreted) incentive

functions X + R of the previous chapters; the symbol

;., however, is reserved here for a different but closely related

functio4.) By the fact that i.'s are restricted to have their

ranges contained in the bounded set B, it is being assumed that

no infinitely large rewards or punishments are distributed in

the social systems about to be considered.

From this assumption an important consequence will now be

obtained. First to be noted is that each Yj is obviously bounded.

Actually, this follows from the fact that oOJ is quasi-compact

and that, by its linearity, Yj is continuous, as Y ( o6j ) is

therefore quasi-compact, hence bounded as a subset of R. But,

also, vj may now be taken to be a function v : x B -+ R, since,

its restriction to ,OO x B is all that matters in the social system

which the present development is obviously heading toward.

The result of this is that the function

u (pjr) = v (Wr) dpj(t)

oeJ

is now well-defined, having imposed the constraint r E B, as

v is continuous and bounded on oej x B, hence integrable with

respect to each p E P. The property desired for v with

respect to degenerate elements of Pi is satisfied by its linearity.

Thus, u. now serves as a "utility function" for the individual j,

the domain of definition being Pi x B, where P is the joint

behavior space of the collectivity <W, J>

----
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Before turning to the next section, a natural continuation

of the above development to be settled here is deriving incentive

functions for the individuals in J. Again, attention will be

fixed to the individual j c J.

Define the function g P + R by

9 (P )=(-w) dp (w).

Since V. is continuous and bounded, g. is well defined. Now it

is clear that this function, A, will play the role of , (in

the previous chapters ) for the behavor j of the coming section.
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5.1.3 Probabilistic Social Systems

Building on the groundwork provided in the last two

sections, it is now possible to define probabilistic social

systems as a variety of the general social system introduced at

the outset of the study. This will provide an extension of a formal

entity earlier introduced in (Sertel, 1969 a). The mentioned

formal entity (although called a "collectivity" therein) was

a finite-personnel version of what is about to be defined here

as a probabilistic social system, the behavior spaces being

closed geometric simplexes in Euclidean space, with incentive

and interpretation schemes missing from the specification while

an impression scheme was present. The social system specified

was shown in that and an accompanying study (Sertel, 1969 b)

to have a non-empty compact and convex set of equilibria.

The distinguishing characteristics of such equilibria in

comparison to the equilibrium shown by Nash (1950, 1951) to

exist for games of a similar specification consisted of two

components. Firstly, impression functions were not explicit

- or they were implicitly assumed to be identity maps -

in Nash's specification. Secondly, the equilibria of Nash were

collective behaviors, while those of Sertel were joint behaviors,

referring to the terminology and very important distinction

(see 5.1.1.8) introduced in 5.1.1.
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The importance of being able to deal with joint behaviors

is most clear when an extension of the present study to an

investigation, e.g., of the core is considered, For

the joint randomization of the actions of members has to.

be considered as in the very nature of a coalition when the

notion of behavior is probabilistic. This point must therefore

be emphasized as crucial also to any political analysis, if

any, which is to benefit from the methods suggested by the

present study, since it may be expected to be essential especially

in political analysis to be realistic about the workings of

coalitions. The theory of power suggested later in this

study is anticipated in the last remark.

A motivation for defining and studying probabilistic

social systems should be easily extractible from the components

above. With minor effort, relying on the previous sections,

a definition will soon be formalized. The major portion of this

effort has to be directed toward constructing a number of

functions. This is now taken up.

5.1.3.1 Definition-Notation: Let P be the joint behavior space ofJ

a collectivity <W, J>

Denote 0 = I 0 , denote the product sigma-field
0 Q}i

H E. by OJ, and denote the set of probability measures

pJ: & +i [0,1] by P . Define the function 1i :P + P as follows:
J J J
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p =I>(p) has the property that, for any e e 0.

p ( i = Pi(i x 01

(pj) will be called the j-marginal of pj. Define the

function 1i: P + Pj as follows:

= (v) has the property that, for any 0 E ,

p J .JjT3Oj x

(p will be called the j-exclusive marginal of .

Definition: A function uj: Pi x R + R will be called a

utility function of j. A function h1 : P3 P will be

called an impression function of j. A function g,: P + R

will be called an incentive function for j. A function i

assigning to each incentive function g, for j an incentive

function . = i (g.) for j will be called an interpretation

function for j. A non-empty collection D. C [P ] of non-empty

subsets d. c P. will be called a feasibility space for j,
J J

and each element dj E D will be called a feasibility for J.

Let {d Ij e J} be a family of feasibilities d., one for each
J J

j c J. The set d CP of all joint behaviors p such that,

5.1.3.2
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for each j c J, y (pj) c d will be called a collective

feasibility for J. The set of all collective feasibilities

for J will be called the collective feasibility space of J

and denoted by D. A mapping t: P x D - D will be called

a feasibility transformation of j. The mapping t: P x D + D

defined by

t(pJ ,d) = {qj c Pj Ip .(a ) E tj(p , d) for all j E J}

will be called the collective feasibility transformation

of J.

5.1.3.3 Definition: Let <W, A> be a collectivity, let

U = {u ala E

H = {h aja

G = {goaa

I - {icxl c

T = {t a

and let A

E

C

F_

E:

be

A} be a family of utility functions,

A} a family of impression functions,

A} a family of incentive functions,

A} a family of interpretation functions,

A} a family of feasibility transformations,

a family of self-indexed mappings

a:PA x D -* [po] defined bv

A(p ', dcx = e dcx! Wa(Pc *pa) > sup (a *cx)
(A a d wr h ra - d a c A

(qa c dcx) where the operator-* and the function w aare
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defined below. Then the ordered seven-tuplet S =

<W, U, H, G, I, T, A> will be called a probabilistic social

system.

5.1.3.4 Definition: Let P. and PI be as in 5.1.3.1. The binary
I J

operation * is defined by

p*p (O* x 60) = p( 6 ) pE 0(), ( 1 ' )

5.1.3.5 Definition: Denote i (g = and

u (pa* h (p), ia(ga) (Pa * ha (PA

a a A a (p A

= (pa * h(P) g ,(p* h (P"t )

= (p~ * ha(~)

(p * p ).

The derived function w. will be called the effective utility

function of a.



-1

97

5.1.3.6 Research Problems: The investigation of the non-emptiness

and other properties of equilibrium and Pareto sets and the

core of probabilistic social systems in general is a research

problem. not undertaken here. A start toward this is the

already mentioned study (Sertel, 1969 a, b) of a finite and

static case - not reproduced here - but the results of that

study can probably be generalized to quite a degree. The

relation between the equilibrium set, Pareto set and core may

be especially interesting in the case of probabilistic

social systems. The reason for making this conjecture is

the point made earlier in this section (preceding 5.1.3.1).

concerning the coordinated randomization of members' actions

for coalitions in the case of probabilistic social systems.
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5.2 Toward a Framework for the Analysis of Power

With the probabilistic social systems of the previous section

in mind, the present section now turns to a topic which is central

to political analysis, namely, power. A notion of one event (action)

'inducing' another will be introduced. Being related to the concept

of causality between events, it will be used to examine the formal

constituents of power relations between agents. The main data

governing such power relations will be derived from the joint

behaviors of the social system supposed. The non-transiency of

these relations will be seen to depend on whether the social system

is at equilibrium.

The present discussion will get further by, rather than starting

from scratch, agreeing in principle with the intuitive idea of power

that guided Dahl: "a has power over to the extent that he can get

6 to do something that 6 would otherwise not do" [Dahl, 1957, pp.

202-3] (Dahl's notation is different than the one used here.)

And, taking this as a point of departure, there is no visible route

which both promises to lead toward a fruitful destination and

succeeds in completely by-passing the subject of causality. Wor

that reason,it will enhance the exposition to agree from the outset

on a minimal but workable committment as to when a given event will

be considered to be a cause of another given event. The question of

what are fruitfully to be considered as necessary and sufficient

conditions for such a causal relation to be said to exist between
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a given pair of events is too deep to be addressed here. For

what is ahead, however, it will be important to agree on some

necessary conditions. The choice of such conditions will be guided

by the objective of economizing on commitment subject to the con-

straint of obtaining something that is reasonably workable and non-

vague. In doing so, the reader will be left free to add any

further axioms which appear to be desirable. A whole host of

questions concerning time-precedence, contiguity, etc., will thus

be left to the reader to exercise his personal metaphysics with

regard to. Differing from Suppes [1967], the weakest necessary

condition is chosen as expressed in the following definition.

5.2.1 Definition: Let .$ be a sigma-field of events and p: $ + [0,1]

a probability measure defined on $, A relation K c$ x $

will be said to satisfy the first axiom of causality with respect

to p iff the following condition is satisfied:

(E,F) E K only if there exists (an event)

E' e $ such that p[E'] > 0 and

p[FIE'] < p[FE].

5.2.2 Remark: What is required by the above axiom is quite minimal.

If (E,F) 6 K is ever to be read as "the event E is a cause of

event F when the probability judgement p is made," it is

being demanded that there be some event '. such that F is less

-4
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likely, according to that judgement, when it is known that

E' is the case than when E is known to be the case. If this is

not taken as an axiom, then it would have to be considered as

reasonable to say "E causes F although F is at least as likely to

occur under any circumstances which are at all likely (judged

to have non-zero probability measure) as under the circumstance of

E".

It is obvious that the event E' which is demanded must be

distinct from E, i.e., a different subset of the sure event on

which $ is a sigma-field. This is so, for otherwise p[F E'] would

be equal to p[FIE]. What is very important to recognize, however,

is that E' is not required to be the complement of Ec of E. In

fact, E' can be an event in $ which is a (proper) subset of E and

still satisfy the requirement imposed, while neither Ec nor,

indeed, any event in $ which is a subset of Ec, need satisfy the

requirement.

It is precisely this which constitutes the fundamental

disagreement of the axiom chosen in 5.2.1 with what Suppes

[1967] takes to be minimal as a necessary condition. (Reference

is to his Definition 1 of "prima facie cause", page 11 of

Suppes' Chapter 5.) By concentrating on the complement of E,

Dahl appears in his framework to have anticipated Suppes' point

of departure, although this appearance may be due to the vagueness

of Dahl's notation in this regard, which in turn may be due to
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the fact that he did not work with the clear notion of a sigma-

field of events and may have been unaware of the distinction

between two events being complements and two events being distinct.

Now an additional and final axiom will be introduced to

capture the notion of "directionality" in a "causal relation".

5.2.3 Definition: Let $ and p be as in 5.2.1. A relation K c$ x $

will be said to satisfy the second axiom of causality with respect

to p iff the following condition is satisfied:

(E,F) E K only if p[FjE] > P[EIF].

To summarize 5.2.1 and 5.2.3, the following will be useful.

5.2.4 Definition: Let p be a probability measure defined on a sigma-

field $ of events, and let E, F c $ be two events. F will be

said to p-induce F (denoted as E + F) iff there exists a

p
relation K C $ x $ such that K satisfies the first and second

axioms of causality and (EF) 6 K.

It may be conjectured, as it was by the present author, that

E + F and F + G implies E -+ G (where F, F, G e $, for some sigma-

p p p
field $ and where p: $ -* [0,1] is a probability measure). The

conjecture is false, as the counterexample kindly provided by



102

P. R. Kleindorfer (personal communication), presented below,

demonstrates.

5.2.5 Proposition: (The relation) + need not be transitive.

p

Proof:Let $ be the power set of {a, b, c, d} ,and let p: $ -40,1]

be a probability measure such that p({a}) = p({b}) = p(fc}) = p({dl)

= 1/4. Then

1/2 = p({a, b}l{b,c}) >p({a,b} {b,c,d} ) =1/3,

and

p ({a, b} {b,c}) = p({b,c}I{a,b}) = 1/2,

so that

{b,c} {a, b}

Also,

1/2 = p({b, c}I{c, d})> p({b, c}{a, b, dj) = 1/3

and

p({b,c}I{c,d} ) = p({c, d}j{b,c} ) = 1/2,

so that

{b, c} + {a, b} and{c, d} + {b, c}
p p

However, it is not the case that {c, d} fa, } , since
p

p ( {a, b}I{c, d}) = 0 contradicts that the first axiom of

causality holds for any K C $ x $ such that ( {c, d}, {a, b}) E K.
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5.2.6. Remark: It has long been recognized that "the causal arrow"

cannot be regarded as the 'copula' of logical implication,

notably fcr the reason that the latter contraposes while the

former does not. Another difference between "the causal arrow"

and"the implication arrow" is revealed by 5.2.5, if is accepted

as a "causal arrow". (This is so, for containment 'c' is transitive.)

Note also that a sure event can never be p-induced, for

there cannot exist a non-null subset conditional upon which its

probability is less than unity. Thus, e.g., with reference

to 5.2.5, for any E E $, E + {a, b, c, d} implies that p(E) = 0,
p

which is a contradiction: the first axiom of causality effectively

prevents one from saying, for an event, which happens anyway,

that it is "caused" by some event.

Completely sacrificing the formal development of any interesting

mathematical consequences from the axioms or definitions introduced,

the promised application of the above to the topic of power will now

be pursued. The context of what follows is a proababilistic social

system with a personnel A of typical behavors a c A. For any

coalition B C A, 0 = H1O is the joint action field of B, and
B

0 is shorthand for 0 ; P is the behavor space of B, consisting
8 {S} B

of all joint behaviors pB = 0B -+ [0, 1] of B.

The following definition formalizes two key concepts.
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5.2.7 Definition: Let A be the personnel of a probabilistic social

system S, and let B, B' c A be coalitions. For any joint

behavior pA of A, the power relation M(B, B'; pA) is the set

M(BB'; pA ) (6BoB,)jeB , 
oB' B B, OB + oB

A

The power relation M(B', B; pA) is defined by replacing B with

B' and B' with B in the last expression. The power structure

of S subject to p is the set M(S; p ) = {M(B, B'; p )JB, B' E [A]}
A A A

of all power relations M(B, B'; PA) between coalitions B, B' C A.

The power relations defined above particularize to "interpersonal"

relations when only singleton coalitions are considered (Cf.(Frey,

n.d; p. 17).) They, as well as M(S; p A), can be "quantified" in

the fashion now to be indicated.

5.2.8 Definition: Let M(B, B'; A be a power relation in a power

structure M(S; pA) Define the function m for each ordered pair

(B,B,) with B B d by
B B B B

pA[o B 1 Bi if 6 B + B

m(O ,O )=
B B'

0, otherwise.

The function m will be called the numerical representation of M(B,

B'; PA). The set of numerical representations of all elements

of M(S: pA) will be called the numerical representation of M(S;pA).
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5.2.9 Remark: The definanda of 5.2.7-8 are all determined by one datum

alone, namely, the joint behavior pA of S.

5.2.10 Remark: A brief comparison of the function m with Dahl's "amount

of power" [1957, p. 205] is in order. Although the probability

measure he uses is not a joint behavior and his notion of action

is not clear, with some harmless change in notation, Dahl's

definition of the amount of power of B over B', with respect to

the response , by means of 0 sets this amount equal to

A(OBaB,) = Prob [6B' B] - Prob [8B, C ]

If the probability p is used, then A becomes more easily
A

comparable with m. In that case, m becomes the counterpart

here of A in Dahl's framewdrk. The two are very different functions

of course, since the formalization of the underlying notion of

power here fundamentally differs from that of Dahl. In the

present framework PA[B ,Jo ] has no particular significance
BB

in the obtaining of the number m (8B, eB, ), as it has no special

role in determining whether or not 0B A B'. It is important

to note that m will detect some cases where 0 * 0 by
B PA B'

assigning m(OB, B0B, >0 while A will fail to do so. In fact

A may assign A(OB9 0B < 0 while 0B pA -B', so that m(OBleB,) >0.

Hence from the standpoint of the development here, Dahl's

measure has to be classified as misleading.It is remarkable that

two formalizations of the same intuitive notion (recorded at the

-1
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outset), should give such disagreeing results. The fact is,

however, that the notion formalized here is actually the following:

B has power over B' with respect to induceeaction 0B', by means

of inducing acting 0B, and subject to PA' iff e -+0 the
B B pA B'

amount of this power is the probability pA [0B, OB] of the

inducee action conditional upon the inducing action.

In the above definitions and remarks concerning power, an

arbitrary joint behavior p of the social system was used in

computing all the necessary probabilities. The importance of that

joint behavior being an equilibrium point is clear, if the power

relations and power structure are to be considered as non-transient.

For if the very fact that a certain power structure (or p A) holds

leads to its being altered, as is the case for any non-equilibrium

pA, then the power structure (or pA) in question is transient and

not a regularity. It is important, therefore, whether there exists

anequilibrium pA, for, if there does, then the associated power

structure is an equilibrium power structure. That there does

exist an equilibrium pA for certain probabilistic social systems

was shown in [Sertel, 1969 a]. Generalizations of that result and

the investigation of the attraction and stability properties of

equilibrium sets and cores appear clearly to promise an important

bearing on political analysis.
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5.3 Towards the Analysis of Attraction and Stability

Given that the equilibrium set or Pareto set or core of

a social system is non-empty, two important and related types

of question arise concerning these sets: attraction and stability.

The tools for investigating these topics are to be found in the

theory of dynamical systems. Naturally, this is also where the

notions themselves of attraction and stability are developed,

so it is there that one has to turn in order to see precisely

what these are. A few preliminary definitions of this theory

will be presented here to crystallize the required concepts. Then

it will be showa how a social system may be looked upon as a

dynamical system, so that the theory of the latter may be applied

to the former. Finally, some discussion will follow.

Possibly the most prominent author on attraction, as well

as the originator of the notion of weak attraction, is Bhatia (1966).

The definitions to follow, however, are borrowed from another

prominent author, Szegb(1968). They are slightly modified in

harmless fashion to relate most directly to social systems as an

area of application. Because -of this, some of the terms have

been changed, in order to avoid confusion. Notably, the notion of

a dynamical system has been modified and the term "evolutionary

system" attached to the result.
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For the following definitions, let X be a locally compact

Hausdorff space, and denote the set of non-negative integers by

Z, taking the order topology on Z. A bar across the top will

indicate topological closure.

5.3.1 Definition: A evolutionary system is an ordered triplet

<X, Z, E> , where

(5.3.1.1)

(5.3.1.2)

E:X X Z -X is an usc point-to-set mapping;

- E(x, 0) = x (x E X);

E(E(x,m),n) = E(x, mAn) (x e X; m, n c Z).

5.3.2 Definition: The future of a point x e X is the set F(x) =

E({x} x Z).

5.3.3 Definition: The limit set of a point x e X is the set

L(x) = O F(y).
yE F(x)

5.3.4 Definition: Let M C X be compact.

(5.3.1.3)
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A (M) = {xIL(x)lM / 0 }

is called the region of weak attraction of M. M is called

a weak attractor iff A~(M) is a nbd of M.

A (M) = {x10 # L(x) C M }

is called the region of attractimn of M. M is called an

attractor iff A+(M) is a nbd of M.

5.3.5 Definition: Let M C X be compact.

M is stable .iff, for every nbd V of M, there exists a nbd

U of M such that F(U) C V.

M is asymptotically stable iff it is a weak attractor and

stable.

The above definitions will now be interpreted from the viewpoint

of their application to social systems. The space X is to be

interpreted as the domain of an evolution, so that, depending

on the social system in mind, X will be either simply the collective

(or joint) behavior space, or it will be the product of the

collective (or joint) behavior space with the collective feasibility

space. In each of the cases where the contractual set was proved

(5.3.4.1)

(5.3.4.2)

(5.3.5.1)

(5.3.5.2)

----
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to be non-empty in this study, X was compact, hence satisfying

the requirement that it be a locally compact Hausdorff space.

Now the mapping E can be related to the evolution of a social

system. Denoting the latter by E1 , equate E (x) E (xl). Then

El is the one-time-application of E. The condition 5.3.1.2

states that if E is applied zero times, then nothing changes.

If it is applied two times,then E(x, 2) = E(E(x,l), 1) = E1 (E1

(x)), and so on. This is clearly consistent with the idea of

an evolution. As to E being usc, it has to be remarked that

El was usc in every case where it was shown to have a fixed point.

From the fact that E is usc,it follows that, defining

0
E (x) = E (x, 0),

En =E (En-1) (n = 1, 2.

En is usc for any n c Z.

Now let V be a nbd of E(x, m). To show that E is usc, one

needs to show the existence of nbd U of (x,m) such that E(U) C V.

Note that E(x, m) = Em(x) and that {m} is a nbd of m. Since

E is usc, there exists a nbd N of x such that Em(N) C V. Then

U = N x {m} is a nbd of (x, m) such that E(N x {m}) = Em(N) C V.

Hence, E is usc, from the assumption that E1 is so. Thus, as

long as usc evolutions are used, as done in this study, to

---- A
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establish the non-emptiness of a contractual set, it is harmless

to assume 5.3.1.1. This concludes the justification for

5.3.1 as a whole.

Regarding the set M used in the definitions 5.3.4-5, notice

that it can be interpreted as a contractual set (or core, etc.)

as long as compactness is guaranteed for the latter. In the case

of the sets proved to be non-empty in this study, the requirement

is met*.

The idea intended to be communicated by the present section

is that the theory of dynamical systems may offer the tools reauired

for the attraction and stability analysis of the equilibrium set

and core of a social system. The modifications with which the

definitions above were presented amount to incorporating the case

where E is a point-to-set mapping, as corresponding to the fact

that an evolution E1 is, in general, of this nature.

Without some rather stringent assumptions (in the nature

of strict quasi-concavity for certain restrictions of effective

utility functions) the evolution of a social system will usually

not be a point-to-point mapping. In this case, the usual Liapunov

or simpler methods of stability analysis are inapplicable, so that

some remedy has to be sought. The discussion above is the result

of some groping in that direction.
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5.4 Towards the Planning and Control of Organizations

The purpose of this section is to indicate selected extensions

and applications of the above framework and theory which bear

especialLy on the management of social systems. The section has to

be selective for the same sort of reasons that would force one to be

so if one were listing the uses of addition and multiplication. It

has to be selective also for the reason that, after a pointit

is more fruitful to do than to talk about the doing, to extend

and to apply rather than to endlessly converse on where and how to

extend and to apply.

"Management", at least for the present discussion, is the

guessing of what is an achievable "best" and the seeing to it

that such a best is achieved. So, with no great loss in paraphrasing,

it is planning and control. The guessing of what is achievable and

best, i.e., planning, is a matter of knowing what are reachable

points of the universe, having criteria of goodness fcr those

points, and, last but not at all least, having a framework and

accompanying methods, tools of analysis, to actually select a

point. And by the framework and method of analysis is not meant

as much an optimizing algorithm as is meant a way of thinking,

modelling, faithfully abstracting essentials and simply

representing, in a fashion that is perhaps communicable to some

optimizing algorithm.

Supposing that a best achievable point is known, the actual
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seeing to it that the point is approximated in reality is a matter

of controlling the system whose performance is in question and which

performance is one of the reachable "points" In this abstract

discourse. The ability to control this system in turn depends on

what variables - "knobs, buttons, and levers", as it were - can

be set, and on knowing how the system responds to the various

values at which these can be set.

When the system in question is a social system, as it

always is in any non-trivial management problem, and when it

is a large system, there is really no way to manage but to work

with a highly abstract model of it. This is not to say that

one cannot manage or improve the performance of a given hospital,

school, business organization, football team or economy without

such abstraction. It is to say, however, that - as Polya is

known to have remarked - a trick will work once, and it is a method

that works the next time.

It is the obtaining of such methods of management which is

addressed as an application here. It will be taken as granted that

the system to be managed is a social system, its performance

depending on the behavior of the system and that behavior being

a concise way of expressing the behaviors of the members, or ,

in general, the coalitionS.

It will be assumed that there is some criterion or objective

functional which numerically represents the performance of the

system as a function of its behavior. If there is no such guide
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for comparing one behavior of the system with another behavior,

then it is not possible to guess what is a "best" behavior; so, to

talk of managing the system, such a guide has to be assumed to

exist. In reality, much of the difficulty of management may be

due to the absence of such a guide in clearcut form. But there

is nothing that can be done about that here. If the objective

is too vague, it will not be possible to discriminate good

management from bad anyway.

The nature of this objective functional can be expressed with

the example of an economy. Think of a gross sort of "production

function" which shows national income as a function of levels of

various activities. Supposing that national income is the better

the larger, i.e., that it is a true measure of performance, and

looking at the mentioned "activities" as behaviors of one sort of

another - or as aggregations of and decomposable into such - what

one has is an objective functional of the kind that will be

supposed.

It is an opportune moment to define an organization

Q= <S, q> as a social system S together with an objective

functional q:X -+ R, where X is either, as usual, the collective,

or the joint behavior space of S. For the sake of simplicity,

assume that the personnel N = <1,....., n> of S is finite.

Often, when an organization 0 = <S, q> is specified,' is a

"gross" and not a "net" objective functional, in a sense that

will now be seen. Consider the case of a business organization
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and let q represent revenue net of all expenses but wages and

salaries. The incentive functions g1 (j E N) express amounts,

in money units for the example being considered, given to the

various members of the personnel. Summing up, one obtains the

payroll function p = E g., so that
N

p(x) = Z g.(x) (xE X)
N

represents the additional payroll expense which has to be

deducted from q(x) to compute the profit f(x) = q(x)-p(x) as

a function of the behavior x of the organization Q.

Suppose now that one seeks the "optimal" incentive scheme

g = (g, . . . . , g) For a profit-maximizing concern, the function
1 n

sought is g* such that, among all incentive schemes, g* maximizes

profit. But this is not such a clear statement yet, for the

behavior x of Q depends on the incentive scheme imposed, and there

may be more than one possible way in which the system S behaves for

a given g. Furthermore, the set of these behaviors corresponding

to g maybe a large set. Worse, there may be no equilibrium behavior

when g is imposed, the behavior of S cycling around in that set of

behaviors associated with g. It is not possible in general then

to write x as a function $(g) of g and then write f = f($(g)) to search

for an optimal, i.e., f-maximizing,incentive scheme g*.
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If there exists an equilibrium behavior x E (g), however,

then things are different. Suppose it is known then that there is

a fairly wide class r of incentive schemes such that for every

g E r, the system S has an equilibrium. Such a class F is

identified by the equilibrium existence theorems of this study for

a variety of social systems S. Suppose that a fAirly wide subset

of F were identified to be a set of incentive schemes for which

the equilibrium set has further nice properties, such as being an

attractor and being stable. We already know that the equilibrium

set is compact for each of the cases where it was proved in this

study to be non-empty. Suppose that further studies, extensions

of the present one, teach us how to find a subset p of r for

which the equilibrium sets are all very small, and stable

attractors. Then p(g) for each g Ft' can be represented, for all

practical purposes, by a single point x C $()

Now, returning to the original problem of optimizing the

incentive scheme, write

(Max) f ($(g) )

s.t g-e F'

as a well-defined optimization problem. Problems of this sort have

been considered by Kriebel and Lave [1969]. A particularly

interesting case is that of the "constant-share finite organization",

where g = X q, X=(, 1,--Xn ) being a non-negative vector

in En+l with = 1, determining f = x q as the profit

j=0 3
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function. Assuming negative definite quadratic effective utility

functions w and similar q, preliminary results have been obtained

by P. R. Kleindorfer and this author.

The above constitutes one illustration of how one would

usefully proceed from the present study in obtaining results

central to the management of organizations. The basic ideas behind

what was just illustrated arose during the writing of a paper on

organizational structures ( Zannetos and Sertel, 1971).

This should be taken as an indication that they will be followed up.

While on the topic of incentive schemes, it is opportune

to mention how this relates to the topics of regulation and

legislation as specific instances of the general topic of controlling

social systems.

No great imagination is required to see that the idea of

an incentive scheme is an idealization of the notion of a

rule, regulation or law in a social context. The sanctions behind

laws are not always real-valued, but usually real vector-valued.

For example, a sentence of 18 months imprisonment and a $35,000

fine can be pronounced together. Suspensions of licences, etc.,

are also sanctions. So, in general, incentives are not real-

valued. But this is not a tremendous blow to the model of a social

system presented here, for vector-valued incentives can be

incorporated with no serious trouble, except for some tedium in

some of the proofs. In order not to complicate the model any

further, so that its main features stand out more clearly,
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incentives were represented as real numbers. Recognizing all this,

however, the business of legislation is easily seen to be truly

a managerial activity. The choice of incentive scheme for the

profit-maximizing organization considered above and the making

of laws are essentially the same sort of thing.

How do the existence and various properties of equilibrium

or core points relate to the topic of legislation? Perhaps the

easiest way to communicate how is by means of an example. Take

the case of a typical unsuccessful "rural reform", in a backward

and strongly feudal region, which redistributes land and illegalizes

all taxes paid by peasants to landlord. The mere passing of the

law makes little differences to reality, for the system tends

right back to its original equilibrium, if ever it is disturbed

in the first place. To prevent that is intended to be prevented,

an incentive scheme has to be found under which the undesired

status-quo is left outside the equilibrium set. To make sure it

really works, the equilibrium set induced by the legislation has

to be an attractor and stable, so that the behavior of the

system is attracted toward this set and, once attracted, stays

in that vicinity.

Successful legislation requires, therefore, an equilibrium

analysis of the social system, whether this is based on strong

social intuition or mathematics. Often it is not possible to

alter the status-quo without a re-socialization of the personnel.
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Consider the case where one is illegalizing head-hunting in the

Phillipines, polygamy in a traditional Islamic community, racial

discrimination in South Africa, or slavery in earlier America.

To the people whose behavior has to be altered, there is nothing

wrong with their present behavior, in fact, what is asked of them

seems ridiculous or even immoral to them. There is little

that can be done by legislation, except for that legislation which

affects the socialization process, giving new values to new vintages

of entrants into the personnel, while the older vintage dies.

Black-marketeering and smuggling are typically behaviors

which cannot be prevented except by readjustment of the relative

price vector, for it is the fact that they belong to the equilibrium

set of the present price vector that accounts for their presence.

Adjusting the price vector, of course, often defeats the purpose

of making certain goods and services unavailable in the first place,

so this constitutes no way out. The idea of illegalizing certain

production and trade activities and imposing sanctions tries to

add new "price tags" of possible imprisonment, etc., to the usual

one of pence and piastres, and seeks thus to make the dealing

in the markets in question unattractive. It succeeds to the

extent that the elongated new "price vector" moves the equilibrium

set away from those collective behaviors in which the undesired

behaviors are components.

Another example of a case where some equilibrium analysis

is needed is the prevention of fraud in an accounting system. The usual
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rule is well-advised: make it necessary to form as large coalitions

as possible for fraud to become undetectable. Requiring that at

least two people coalesce for any fraud to succeed is the usual

extent to which this rule is carried. The extreme application would

be to expel all fraud from the core. That, of course, may require

a bit more than intuition to successfully do.

The example of the accounting system, however, is interesting

in a different sense than the earlier examples. For the method

of fraud-prevention here is also information-systemic rather than

purely incentive-sanction based. For it is already illegal

and severely punishable to cheat. The key is to yield the undesirable

behavior detectable or observable whenever it becomes possible,

ie., unblocked.

All the above hints at three main means of social control:

remunerational (via incentive schemes), socializational (via

alterations in utility schemes) and informational. The last mentioned

can be explored a bit further. The impression functions of the

framework used in this study can be decomposed into two functions.

Take a typical impression function h. : Xa+ Xa. Let 6 a:X-

be a function called the data function; reporting to at . Look at

the function 6: X -+ Xa defined by 6(x) = H6 (x ). This function
A A

is appropriately considered as an information system. The data

flowing through it, the filters and aggregation imposed, are all part

of the information system design. Now respecify the old impression

function h as follows:

-1
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h a(xa) = a (Xx a (xa1)) (Xa E: Xa)

In the new form, a sees. two things, xa and 6a(xa). Of these

6a(xa) is what he is told about xa. From all this, ha obtains

an impression ha (xa). This impression is the a-exclusive behavior

which a then bases his choice of behavior on.

Now if h is given as a parameter of a, h can be influenceda Ia

by altering 6a. That is to say, h, the impression scheme, can

be altered by altering 6, the information system. This alters

the choice of behavior, the eauilibria, and so on.

The above indicates a further direction in which the model

used in this study can be extended, and identifies a further

form of informational control, that is, control via the

information system. It is easy to see how the specification of

the interpretation scheme could be modifed also in similar

fashion.

Finally, the above discussion can now be used to indicate

a further extension of the model, towards multi-level social systems.

For consider now the fact that there are many people who already

realize that a social system can be controlled in the ways

described above, each imposing an incentive scheme, socialization

process or information system. It is possible to view the behaviors

of these controlling agents as points in suitable function spaces,

and the agents themselves as behavors in a "second-level" social

--A
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system, affecting the behavior of the underlying social system.

It is possible, therefore, to carry out an analysis of this second

level as one did of the first, and to investigate how the two

levels relate. For example, how do the respective equilibria

relate? "Hierarchical" social systems thus become an extension of

the ones considered here.

This concludes the present discourse on how to fruitfully

extend the present model. Now is the time to begin the

investigations indicated.



123

REFERENCES

1. Arrow, K. J. "A Difficulty in the Cpncept of Social Welfare",

Journal of Political Economy,. vol. 58, pp. 328-346, 1950.

2. Arrow, K. J. and Gerard Debreu. "Existence of an Equilibrium for

a Competitive Economy", Econometrica, vol. 22, No. 3 pp. 265-290, 1954.

3. Aumann, R. J. "Markets with a Continuum of Traders," Econometrica ,

vol. 32, pp. 39-50, 1964.

4. Auslander, Joseph and Walter H. Gottschalk (ed.) Topological Dynamics,

W. A. Benjamin Inc., 1968.

5. Bhatia, N. P. "Weak Atractors in Dynamical Systems", Bol. Socl. Mat.

Mex.ll, pp. 56-64, 1966.

6. Bhatia, N. P. and G. P. Szego, Dynamical Systems: Stability Theory,

Lecture Notes in Mathematics, vol 35, Springer-Verlag, 1967.

7. Bondareva, 0. "The Core of an N Person Game", Vestnik Leningrad

University, vol. 17, no. 13, pp. 141-142.

8. Bourbaki, Nicolas, General Toplogy, Addison Wesley, Publishing Corp.

1966.

9. Dahl, Robert A " The Concept of Power" in Behavioral Science,

vol. 2, pp. 201-218.

10. Debreu, Gerard "A social Equilibrium Existence Theorem", in

Proceedings of the National Academy of Sciences, vol. 38, pp. 886-893

1952

11. Debreu Gerard "Representation of a Preference Ordering by a Numerical



124

Function" in R. M. Thrall, C. H. Coombs and R. L Davis (eds),

Decision Processes, New York, pp. 159-166, 1954.

Debreu, G and H. Scarf "A Limit Theorem on the Core of an Economy",

International Economic Review, 1963.

13. Edgeworth F. Y., Mathematical Psychics, London, 1881.

14. Eilenberg, Samuel, "Ordered Topological Spaces", American Institute of

Mathematics, vol. 63, pp. 39-45, 1941

15. Eilenberg, Samuel and D. Montgomery "Fixed Point Theorems for Multi-

Valued Transformations", American Journal of Mathematics, vol. 68,

pp. 214-222, 1946.

16. Fan, Ky "Fixed-point and Minimax Theorems in Locally Convex

Topological Linear Spaces," Proceedings of the National Academy

of Sciences , vol 38, pp. 121-126, 1952.

17. Frey, Frederick W. Concepts of Developmental Administration and

and Strategy Implications for Behavioral Change (mimeo).

18. Gillies, D. B. "Some Theorems on n-Person Games", Ph. D. Thesis

Department of Mathematics, Princeton University, 1953.

19. Gillies, D. B. "Solutions to General non-zero Sum Games,"

in Contributions to the Theory of GAmes, IV(12) pp. 47-85, 1959.

20 -Hausdorff, Mengenlehre, 3rd Ed., translated by J. R. Aumann, et.

all as Set Theory, Chelsea, N. Y. N. Y., 1957.

21. Herstein, I. N. and J. Miiknor, "An Axiomatic Approach to Measurable

Utility", Econometrica, vol. 21, pp. 291-297, 1953.

22. Kakutoni, S. "A generalization of Browwer's Fixed Point Theorem",



125

Duke Math. Journal, vol. 8, No. 3, pp. 457-459, 1941.

23. Kelley, J. L. "Hyperspaces of a Continuum", Trans. American

Mathematical Society, vol 52, pp. 22-36 1942.

24. Kingman, J. F. C and S. J. Taylor, Introduction to Measure -ind

Probability, Cambridge University Press, 1966.

25. Kolmogoroff, A. N. Grundbegriffe der Wahrscheinlichkeitstheorie,

translated as Foundations of the Theory of Probability, Chelsea,

N. Y. N. Y, 1950.

26. Kriebel, C. H. and L. B. Lave, "Conflict Resolutions in Economic

Organizations", Behavioral Science, 1969.

27. Michael, Ernest, "Topologies in Spaces of Subsets", Transactions of

the American Mathematical Society, vol. 71, pp. 152-182, 1951.

28. McKenzie, L. W. "Competitive Equilibrium with Dependent Consumer

Preferences", in H. A. Antosiewicz (ed) Proceedings of the Second

Symposium in Linear Programming, Vol. 1 National Bureau of Standards,

and Directorate of Management Analysis, DCS/Comptroller, USAF

pp. 277-294, 1955.

29. Nash, John F. "Eauilibrium Points in N-Person Games", Proceedings

of the National Academy of Sciences, vol. 36, pp. 48-49, 1950.

30. Nash, John F. "Non-Cooperative Games", Annals of Mathematics,

Vol. 54, No. 2 pp. 286-295, 1951.

31. Newman, Peter, Readings in Mathematical Economics, The Johns Hopkins

Press, 1968.

-A



126

32. Neumann, J. von and 0. Morgenstern Theory of Games and Economic

Behavior, Princeton University Press, 1947.

33. Parthasarathy, K. R. Probability Measures on Metric Spaces,

Academic Press, 1967.

34. Prakash, Prem and Murat R. Sertel, Semi-Vector and Semi-Linear

Topological Spaces, Working paper (483-70), Sloan School of

Management, Massachusetts Institute of Technology, 1970a.

35. Prakash, Prem and Murat R. Sertel, Generalized Existence Theorems

for Dynamic Equilibria with Uncountably Many Decision-Makers,

Working paper, (485-70) Sloan School of Management, Massachusetts,

Institute of Technology, 1970b.

36. Prakash, Prem and Murat R. Sertel, Fixed Point and Minmax Theorems

in Semi-Linear Spaces, Working paper, (484-70) Sloan School of

Management, Massachusetts Institute of Technology, (1970c).

37. Scarf, Herbert E. "The Core of an n-Person Game", Econometrica,

vol. 35, No. 1. pp. 50-69, 1967.

38. Sertel, Murat R. A Formal Framework and Fundamental Results for

Social Analysis Working Paper, (429-69) Sloan School of Management,

Massachusetts Institute of Technology, 1969a.

39. Sertel, Murat R. Compactness and Convexity of Static Contractual

Sets , Working Paper (433-69) Sloan School of Management,

Massachusetts Institute of Technology, 1969b.



127

40. Shapley, L. S. On Balanced Sets and Cores, Rand Corp Memorandum,

R. M-4601-PR,1965.

41. Suppes, Patrick, Set-Theoretical Structures in Science

Stanford University, 1967.

42. Szeg6, G.P. "Topological Properties of Weak Attractors", in

Auslander and Gottschalk (ed.) pp. 455-469, 1968.

43. Vietoris,

44. Vind, Karl "A Theorem on the Core of an Economy", in Review of

Economic .Studies, pp. 47-48, 1964.

45. Wald, A. "Uber die eindeutige positive Losbaekeit der Neuen

Produktionsqleichun gen" Ergebnisse eines mathematischen Kallogniums,

no. 6, pp.1 2-2 0 . 1933-34.

46. Wald A. "Uber einige Produktionsqleichungen der 5konomishen

werthlehre", Ergebnisse eines mathematischen Kolloguiums, no. 7

pp. 1-6 1934-35.

47. Wald, A. "On Some Systems of Equations of Mathematical Economics",

Econometrica, vol. 19, pp. 368-403. (1951).

48. Walras, L. Mathematische Theorie der Preisbestimmung der Wirtschaf-

tlichen Guter, Stuttgart, Ferdinand Enke, 1881.

49. Zannetos, Z. S and Murat R. Sertel "Towards Optimal Organizational

Structures" a paper presented at TIMS llth American Meeting,

Los Angeles, October, 1970; forthcoming as an SSM Working Paper.



128

BIOGRAPHY

Murat Sertel received his B.A. (Economics), from Robert College,

Istanbul ("High Honors", 1963). Worked for the State Planning Organization,

Ankara, in the Summers of 1962, 1963. Joined the Department of Economics

and Statistics, Middle East Technical University, Ankara,1963 as 'asistan'.

He declined a Fullbright Scholarship in favor of the 1964 five-year

Rockefeller Fellowship awarded by the American Colleges of Istanbul for

doctoral studies in Decision Theory. He enrolled for postgraduate studies

at Oxford University, 1964, spending 1964-1965 at Balliol College. He

was awarded a two-year Nuffield Studentship, 1965; spent 1965 - 1966 at

Nuffield College, receiving B. Phil. (Economics), 1966. Began doctoral

program at the Sloan School of Management, Massachusetts Institute of

Technology, 1967, after a summer as special technical assistant there,

also holding a research assistantship in the Summer of 1968. He

completed general examinations in June, 1969, to join the Managerial

Information, Planning and Control Group, Sloan School of Management,

as an instructor.

For publications, consult list of Sloan School of Management

Working Papers.




