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ABSTRACT

The purpose of this thesis is to give a very general
treatment of the basic machinery of relative homological
algebra. This is done by combining the ideas of Eilenberg
and Moore (closed classes of sequences) with the technique
of Verdier (derived categories).

Part I is an exposition of the needed results of
Eilenberg and Moore. Part II is an exposition of Verdier's
results.

In part III these ideas are combined to define relative
derived categories and relative derived functors. Two
theorems giving conditions for the existence of relative
derived functors are proved. The relation of this approach
to that of Buchsbaum, MacLane and Yoneda is discussed and
their results are recovered in a new fashion.
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INTRODUCTION

The notion of a derived functor was introduced by Cartan

and Eilenberg in 1956 C52. In the succeeding decade it

has become a vital notion in a variety of contexts. During

the same period it has been generalized in a multitude of

ways.

These generalizations have taken three basic forms:

(1.) The notion has been extended to relative homological

algebra. The original impetus in this direction was due to

Hochschild C15] who studied extension classes of short exact

sequences of modules over a ring R which were split when

considered over a subring R*.

Relative homological algebra has since been codified

in a variety of ways by Heller C14], Buchsbaum C23, Butler

and Horrocks C4j, MacLane C161 and most recently by Eilenberg

and Moore L8.

(2.) Another generalization has been in the direction of

defining derived functors - and proving their existence -

without the use of projectives or injectives. The first

step was Yoneda's definition of Ext in terms of equivalence

classes of exact sequences f19, 202. Although variations

of Yoneda's technique have been used to define derived functors

other than Ext, there is not a general theory.

A different direction was suggested by Godement's 123

use of flasque resolutions in studying the cohomology of

sheaves. Also suggestive were his remarks about the possible

role of "standard constructions" in homological algebra.

OPP-
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His ideas show up quite clearly in the work of Eilenberg and

Moore [9. and, less visibly, in the work of Verdier and others

mentioned below.

The most extensive work in the direction of eliminating

the use of projectives and injectives is Verdier's C181 theory

of derived categories of abelian categories.

(3.) The third direction in which generalization has

gone is in eliminating the additivity requirement on the functor

or category. This was begun by Dold and Puppe [7.3 who defined

derived functors for non-additive functors between categories

of modules.

Very recently a number of mathematicians have begun to

study derived functors of very general functors from small

categories to the traditional nice categories. The basic

idea here is to use semi-simplicial complexes rather than

chain complexes. These ideas are still unpublished.

The primary purpose of this work is to obtain a resolution

free treatment of relative derived functors. This is done

by combining both the Eilenberg-Moore relative theory and

Verdier's theory of derived categories.

There are three parts. The first part is a sketch of

the needed definitions and results from Eilenberg and Moore C8J

The second part is a summary of the required definitions

and results from Verdier C181.

The third part presents a study of relative derived

functors via relative derived categories. There are various

existence results. In addition this theory is applied to
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recover many of the old results in relative homological algebra

in a new way.
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I. CLOSED AND INJECTIVE CLASSES

Everything in part I can be found in Eilenberg and

Moore 181, though usually in dual form.

Let .- be a category. If A and B are objects of .4/,

4(AB) will denote the set of morphisms from A to B.

All categories considered will have a zero object which

will be denoted by 0. All zero maps will also be denoted

by 0. All functors will be assumed to carry 0 to 0. Thus

in particular 44 . , . ) is a bifunctor with values in the

category of pointed sets.

A category 4Vis called a pre-additive category if for

every pair of objects A and B in #/, -4(A,B) is an abelian

group in a functorial manner. If in addition 4A has finite

products and finite coproducts, then AWis an additive category.

(Note that in a pre-additive category finite products and

coproducts of the same family are canonically isomorphic.

i npn
We write A - -- > n A ---- >A for the biproduct of the

n n n n

finite family A .)

FROM NOW ON ALL CATEGORIES ARE ADDITIVEI

a bJ
A--?B--C, a and b in..', is called a sequence iff

ba = 0. The notion of a sequence extends in the usual way

to longer diagrams. In particular a sequence which is infinite

in both directions is called a complex.

Let I be an object of 14 and E' a sequence of 4<

Then A(E',I) is a sequence of abelian groups.

Given a class 6of sequences of define _ _) to
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be the class of all objects I of .4such that E*,I) is

an exact sequence for every E' in .

Similiarly if 0/ is any class of objects of 'I( let

.($) be the class of all sequences E' in such that

(E',I) is an exact sequence for all I in.$ .

Now write for e ( ()) and/ for (()

Clearly Z = and 4  = . A class of objects

is (injedtively) closed iff = . Similiarly a claes

of sequences is (injectively) closed iff 6"'= Z. In particular

if = 6(), any class of objects in4", then is closed.

Also if '= /(/), zany class of sequences in , then

is a closed class.

The objects in = () are called /-injectives,

while the sequences in ! = S (9) are called i-exact sequences.

The motivation for this notation comes from the situation

where -iis an abelian category, /is the class of all exact

sequences and is the class of all injective objects.

Let 6'be a closed class and let i= ). us

called an injective class iff the following condition holds

("1 has enough Z-injectives"): For every morphism A-->B

in 4/ there exists a morphism B--->I with I in and

A-+ B--> I in .

If 2 is an injective class, right (or co-) derived

functors with respect to 6/ can be defined by mimicing the

original definition of derived functors.

Let A be an object of-4. A right complex under A,

0 1
A->A, is a complex A: . . . --- +A -> ..
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together with an augmentation E:A->A, i. e. a morphism

0 0
g :A-+ A such that d C = 0. The right complex A--*A'

under A is called acyclic iff 0->A--->A -- A - .

is in '. A complex I is called (-injective iff each I

is -injective. If I' is -injective and A--*1 is acyclic,

then AL I* is called an -injective resolution of A.

The two basic results needed to define right derived

functors are:

Proposition 1: If ( is an injective class in .4< then every

object of s'has an -injective resolution.

Proposition 2: Let AL- }A' be an 'injective right complex

under A and let B--->B' be an acyclic right complex under B.

Then for any morphism f:A-->B there is a morphism of complexes

F:A-->B' such that If = Fr . Furthermore any two such

morphisms F are chain homotopic.

Now let T:4->? be an additive functor with range

an abelian category. Let be an injective class in A

For A an object of , let A-->I be an $-injective resolution.

Then T(I) is a complex of 46, and its cohomology depends

only on A. The nth right derived functor of T relative to e

is defined by 1nT(A) = Hn(T(I')). This is indeed a functor.

The usual properties of resolutions of short exact sequences

(i. e. sequences O-*A'--+A--A --?0 in ) hold, so the

connecting morphism S:RnT(A")-Rn+1T(A') exists and has the

usual properties.

By dualization we get the notion of the class of



-7-

15- projectives associated to a class eof sequences. Also

we have the notion of the class of P-exact sequences associated

to a class 1F of potential projectives. Following the dual

of the above procedure we get (projectively) closed classes

of objects and of sequences, projective classes and eventually

left derived functors with respect to a projective class

These notions should of course relate in the study of Ext.

For this we define an injectively closed class /'and a

projectively closed class /to be complementary if the complexes

in the two are the same. As usual we define

Ext (A, ) to be RP(A, . ) and ExtV'( . ,B) to be .,B).

Considering both of these as bifunctors, they are naturally

isomorphic when 7 and $'are complementary.
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II. DERIVED CATEGORIES

0. Introduction

Everything in part II can be found, in slightly different

form, in Verdier 1181. Much of it can also be found in

Hartshorne [131.

Since the constructions in this part are long and obscure,

some historical background seems worthwhile.

The story begins with Cartier's E61 account of Yoneda's

191 construction of Ext in an abelian category. In outline

the account goes as follows: Let-4 1 be an abelian category

and let C(4) be the category of complexes of Ae with homotopy

classes of chain maps as morphisms. Let S: -A be the

suspension functor (see sect. 4). Define Cn(.4)(A',B) =

C(.4)(A',Sn(B')). The main proposition says that if A* and

B' are injective resolutions of A and B respectively, then

Cn(A/)(A.,B') = Extn(A,B).

Cartier extended this viewpoint to a theory of "derived

categories" which enabled him to give a similiar description

of other derived functors. A "morsel" of his theory is

described in Gabriel's thesis [10. It goes roughly as follows:

Let .and A be abelian categories and T:--->e an

additive functor. Let 1 be the full subcategory of

injectives in 4. Consider the morphism category of .

If d:A->B, d :A'->B' and (a,b):d-->d', say (a,b) ' 0 iff

there exists h:e -->A'(in.4) such that a = hd. This gives

a two-sided ideal in the morphism category; denote the

quotient category by K(4). Similiarly define K( ) and

- -_A
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K(IV ). Kernels are homotopy invariants, so we have

Ker:K(g )->f. If 4 has enough injectives, Ker has a left

adjoint I:,-+ K(6 ) (the beginning of an injective resolution),

and Ker, I give an equivalence of categories: _ V K(V ).

Further the 0th right derived functor of T, R T, is just

-- K( g) K(T ->K ( 4 ) __e r ,.

By working with complexes rather than just morphisms

this extends rather naturally to define the higher right

derived functors. Unfortunately it does not eliminate the

need for injectives. This was done by Verdier.

In order to eliminate injectives Verdier introduced an

additional element of structure into the category of complexes,

namely the triangles arising from the mapping cone (see sect. 4).

Using this and quotient categories the desired results were

obtained in a very elegant form.

1. Graded Categories

Let .'4be an additive category and S: -+ an additive

automorphism. For any two objects A and B in '1-, define

,4n(AB) = AA,sn(B)) (n an integer). If C is a third

object of P , aXAn(A,B) and badm(B,C), define b.a in

A n+m(AC) to be Sn(b)a a.(ASn+m(B)).

Clearly we can define a new category z with the same

objects as , and where 4*(A,B) is the Y-graded abelian

group 14(A,B) :nef. .... 9 is called the graded category

over 4 with suspension functor S.

Note that -# is the subcategory of .A consisting of
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all morphisms of degree zero. A morphism of 4 will always

be assumed of degree zero unless otherwise specified. Also

note that S extends naturally to an automorphism of .4.

2. Triangulated Categories

Let .4 be a graded category. A triangle in .4 is a

diagram of the form: A ( C C where deg(c) = 1.

a b

B

A morphism of triangles is a diagram of the form:

f -
a at

b 

Bdeg(c) = 1

h b 
deg(c') = 1

such that the three squares commute.

A triangulated category is a graded category 4 together

with a family of distinguished triangles in.-.4' satisfying:

(T.1) Every triangle isomorphic to a distinguished triangle

is distinguished. For every A in 4, A 0 0

1 0
AZ

is distinguished. For every A->B there exists a distinguished

triangle A4 C C deg(c) = 1.

a b

B

(T.2) A ( c deg(c) = 1

a b

B

is distinguished if and only if
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B -S(a) S(A)

b 
C

deg(-S(a)) = 1

is distinguished.

(T.3) Every diagram

A fA'

C b B- -- >B. co

h 
'b,0------------------------ '

deg(c) = 1

deg(c') = 1

where the two ends are distinguished triangles and the square

commutes can be completed by h to a morphism of triangles.

(T.4) Let

(deg = 1) ,

ab

B

deg(a') = 1

Ba' 
A'

C

A < (deg = 1) B,

C

be three distinguished triangles such c = ba. Then there

exist morphisms f:C'---B' and g:B'->A' such that:

(i) A A

(deg =1) ' > (deg 1)

C

is a morphism of triangles.

(ii) A a B

(deg = 1) C (deg =1)

Bt-'

is a morphism-of triangles.

(iii) C' S(b')a' A'

f Zg

B'

deg (S(b')a') = 1

is a distinguished triangle.
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3. Exact and Cohomological Functors

A graded functor F between two graded categories .*

and g* is an additive functor F:.A--> 43 such that

F:,n (AB)---Sn(F(A),F(B)) for all A, B inf** and all n<l'.

An exact functor between two triangulated categories

is a graded functor which carries distinguished triangles

into distinguished triangles.

A cohomological functor H from a triangulated category

to an abelian category is an additive functor such that if

A , c C deg(c) = 1

B

is distinguished, then H(A) H(a) >H(B) H(b) >H(C) is

exact. Denoting by the functor H-Sn, (T.2) gives the

long exact sequence:

* . . - >H n(A)- Hn (B)- H n(C)-----Hn+ (A)- .

4. Basic Examples

Let 4 be an additive category and let CCAV) be the category

of complexes in , morphisms being homotopy classes of chain

maps. Define the suspension functor S:C(A)--- C(M) by:

S(A')n = A n+1, dn = -d and S(f')n = fn+l. S is anSWA) A

additive automorphism. We write ' rather than C( )',

for the graded category over C(.-) with suspension functor S.

Note thatX 'is a full subcategory of C(s) under

A -> A * where A n 0 Thus=n is also a

subcategory ofA4' and WA,B) = 0 (A,B) for all A, B in2$I
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Define a special triangle in., to be one of the form

A. c C(a) deg(c) 1

a
B'

where C(a') is the mapping cone of a*, b' is the canonical

inclusion and c':C(a')-+S(A') is the canonical quotient map.

A distinguished triangle in .4 is any triangle isomorphic

to a special triangle.

The category 4* together with this family of distinguished

triangles is a triangulated category.

If ** is a triangulated category and A is an object

of .ta', then P(A, . ): 4 --. 4 is a cohomological functor.

Also )n( .A)4 is a cohomological functor.

Let, , be three additive categories and

a bilinear functor. Fiinduces a functor

F': %,4xRj'--*=by: If A* is ina * and B is in6', then

F(A',B') is a bicomplex of . Define F'(A',B') to be the

simple complex associated to the bicomplex FtA',B'). F'

is an exact bifunctor. In particular consider the case

. . *):4oPxA----->-*A. This induces an exact bifunctor

(This 4' is not the same

as 4( . , . ) in sect. 1, but no confusion should result.)

Now suppose Jvis an abelian category and let

,W .- W be the 0-th cohomology functor. HO is a

cohomological functor. Also note that HSn = HSn is the

n-th cohomology functor.
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Combining these last two paragraphs note that

Hn *

5. Thick Subcategories and Multiplicative Systems

Let ,4 be a triangulated category. A subcategory *

of .#* is a triangulated subcategory iff it is a triangulated

category and the inclusion functor is exact. Another way

of saying this is that if a distinguished triangle in A
has one of its morphisms in then it is isomorphic to

a distinguished triangle of

A. subcategory ' of 4 is called thick iff

is a full triangulated subcategory of Ar satisfying:

If a:A--B factors through an object of ' and

A( (deg 1) C is a distinguished triangle with C in

B b then A and B are in 4'.

The class of thick subcategories of is ordered by

inclusion and closed under arbitrary intersections.

A family 1 of morphisms of ..**- is called a multiplicative

system iff it has the following properties:

(MS.1) Every identity map is in M. M is closed under

composition.

(MS.2) Every diagram B can be completed to a

A ins M

2 2

commutative square A 1 ->B with m also in M.

ml n

A ->4
2 2

The dual statement also holds.
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(MS.3) Let a and b be morphisms in .W. There exists m

in M such that ma = mb iff there exists n in M such that

an = bn.

(MS.4) S(m) is in M for all m in M. (S is the suspension

functor of d'A.)

b
(MS-5) If A < 3 A 3 and B 1 3 B

S A a2  
1b B b2

2 2
deg(a ) = 1 deg(b 3 = 1

are distinguished triangles and (m 1 ,m2 ):a 1 ->b1 with m

and m2 in M, then there exists m 3 :A 3 ->B , also in M, so

that (m 1 m2,m 3 ) is a morphism of triangles.

A multiplicative system is saturated iff m is in M when

and only when there are two morphisms a and b so that am and

mb are both in M.

The class of saturated multiplicative systems of .*

is ordered by inclusion and closed under arbitrary intersections.

If S' is a thick subcategory of .f, put z&( C'_) equal

to the family of all morphisms a:A->B such that there is

a distinguished triangle A", (deg =1) C with C in

a

B

*( ) is a saturated multiplicative system.

Similiarly let M be a saturated multiplicative system

and put 6(M) equal to the full subcategory of4-' generated

by all objects C which are contained in a distinguished

triangle A< (deg = 1)C where a is in M.

B
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6(M) is a thick subcategory.

is an order isomorphism of the class of thick sub-

categories of .+ onto the class of saturated multiplicative

systems of 4. 1 preserves intersections. The inverse

of is 0 .

Let 14 and ' be two triangulated categories and

F:.,4 .-- * an exact functor. Let N(F) be the family of

all morphisms of 4-' which are transformed into isomorphisms

by F. Let C'(F) be the full subcategory of.4' generated

by the objects annihilated by F. M(F) is a saturated multi-

plicative systen, S'(F) is a thick subcategory and &(,'(F))

= M(F).

Now let be an abelian category and H: -- >

cohomological functor. Let K'(H) be the full subcategory

of * generated by all A in 4* such that H n(A) = 0 for

all n. Also let M(H) be the family of all morphisms a such

that Hn(a) is an isomorphism for all n. Then '(H) is a

thick subcategory, M(H) is a saturated multiplicative system

and M(H) =,A( l'(H)).

6. Quotient Categories

Let .A- be a triangulated category, g' a thick subcategory

and M =,4(') the corresponding saturated multiplicative

system. The following universal problems are equivalent.

Problem I: Find a triangulated category .**/,e' and an exact

functor Q:'--) .4'/g * such that if F:--> 4' is an

exact functor which annihilates e*, there is a unique exact

functor G:,'/C'--> 03 so that
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F

Z G is commutative.

Problem II: Find a triangulated category f' and an exact

functor :such that for every exact functor

F: 4---->,6 which carries every element of M into an isomorphism

there is a unique exact functor G: '- 8 so that

F

Q Jis commutative.

Next we show that Problem II (and hence Problem I)

always has a solution. The solution is obtained as follows:

For each object A in ' define the category M of morphisms

in M with range A, i* e. an object of MA is m:B->A where

m is in M. Now for each B in4 define a functor

MA -- > by HB(m) =. 0 (domain(m),B). Define

LM J(A , B) = Lim HB

oop

(Note: Since M is a multiplicative system, MA is a pseudo-

filtering category and so Lim:Funct(M A )-> has good

properties which are used below. For details see Artin

Ll; Chapter 1, sect. 13.)

If A, B and C are three objects of .4 ', a is in

A 0 -M'J (AB) and b is in 4 0fEM 1 J (B,C), define ba in

, (40[M1] (A,C) as follows. Let m be an object of MA and

a an element of 4 0 (domain(m),B) whose image inA 0 [M~1 (AB)
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is a. Let n be an object of MB and b an element of

4 (domain(n),C) whose image in 4 LM (B,C) is b.

Schematically

mJa bM n

A B C

Now by (MS.2) we can complete this to:

nl

m a n b

A C

with n' in M. Denote by ba the image of ba' in [4OM'1J(A,C).

Using (MS.1), (MS.2) and (MS.3) it is easy to check that ba

is well-defined and gives us a new category with the same

objects as '. We denote by 0 _:1OCM 1J the

obvious quotient functor.

Since ' is an additive category, so is 4 0 EM'lj and

Q is an additive functor.

(MS.4) allows us to define, in a unique manner, a

*uspension functor S on 4 0 [M'1. satisfying SQ = QS. Using

S we define the graded category over A1PEM 1 and denote

it by .'4[M . Q extends uniquely to G.:4>g'__
a graded functor.

Finally, using (MS-5), we find that there is a unique

triangulation of 4'M 11 so that Q is exact. In fact the

distinguished triangles are precisely those triangles isomorphic
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to the image under q of some distinguished triangle of d'.

We write for the categoryW'Mb4J with this

triangulation. Then ( , Q) is the desired solution to

Problem II.

We will write (4*/g , Q) for the solution of Problem I

(which we now know exists) and call 4'/g the quotient

of .' by .

7. Derived Categories

Let 1 be an abelian category. As remarked earlier

(sect. 4) H . the 0-th cohomology functor, is a

cohomological functor. Thus we have &'(H ), a thick sub-

category of 4* (see sect. 5). E (H 0 ) is the full sub-

category generated by the acyclic complexes in '.4

The quotient category Ai//l *(H0 ) is called the derived

category of. Wand is denoted by D'(4). The canonical functor

'----)D'(4) will be denoted by D

D restricted to the subcategory /in 4' will also

be denoted by D. For all A, B in , A(A,B)- DO(A')(D(A),D(B)).

Thus 'is a subcategory of D'(4).

There are several important subcategories of D'( )

coming from various subcategories of A'. Let + be the

full triangulated subcategory of At& generated by all complexes

A* such that An = 0 for n4 0. Similiarly W is generated

by all A* such that An = 0 for n>>0. Finally let

=,4



NOTATIONAL CONVENTION: If 3' is a full triangulated sub-

category of d', we write (resp. * , ) for

# 1,4 * (resp. e'/> ' *7Y ). 9 is a full

triangulated subcategory of . Similiarly for the other

two cases. Finally we will commonly write 6 and will

mean that * can be either +, -, 0 or nothing in the given

context.

(HO) is a thick subcategory of 4!, so we define

D,(4) = (HO) . The functors in the following diagram:

D'()

D ) 'D(G4)
+ I

are all fully faithful and injective on objects, thereby

exhibiting D;4), D:(Y) and D'(.4 ) as full subcategories

of D' 4).

Denote by I'*() the full triangulated subcategory of

generated by the injective complexes.

Theorem: If -4has enough injectives, then

D= D . ---- >D ( ) has a right adjoint I Furthermore

and D , I define an equivalence of categories.

Finally if4 has finite homological dimension (i. e.

there is an integer N >O such that for all n >N and all

A, B in , Dn( )(A,B) = 0), then the subscript + may be

surpressed.

Note: The dual of this theorem is also true. This is obtained

by replacing "injective" by "projective", "I" by "Pt and
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"+" by "-".

8. Derived Functors

Let ' and B' be two graded categories (with the

suspension functor of each denoted by S.) Suppose

F, G: * are graded functors. A morphism of graded

functors is a morphism of functors AF->G such that for

every A in We FS(A) >GS(A)

11Z )12
SF(A) >SG(A) commutes.

A morphism of exact functors is simply a morphism of graded

functors.

Now let .- and 4 be two abelian categories and

F':4-0 :0 $6 & an exact functor. The total right derived

functor of F' is an exact functor RF' :DC(,)--}D( )

together with a morphism of exact functors D,F----RF D,

(see Helpful Diagram below) which is universal in the sense

that if G':D()-->D;() is another exact functor and

DQF'-->G D, a morphism of exact functors, then there is

a unique morphism of exact functors RF'----->G' so that

D* F' ;0 RF'o D,

G' D, commutes.

Helpful Diagram: F

D*, D

RF'
D; ( ) ~ - D;(6
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If F* --.-- >Se is induced by an additive functor

then RF' will be denoted by RF

Dually we can define the total left derived functor

LF of F%. The convention analogous to the last paragraph

will be observed.

Similiarly let H:4 ->46 be a cohomological functor

and define the right derived functor of H as a cohomological

functor RH :D, )--+$ together with a morphism of functors

H---+RHeD, (see diagram below) such that if G:D:(#)--48

is another cohomological functor and H--G&D* a morphism

of functors, then there is a unique morphism of functors

RH---,#G so that H >RHoD,

G*D, commutes.

Diagram: 4H

D* RH

DZ.k)

Now if F: -- >1 is an additive functor, there is an

induced functor F:--4'-> and when 3 is abelian this

gives a cohomological functor H.F':( -- +8 . The right

derived functor of H OF' will be denoted by R.F . Whenever

no confusion is possible both R+ FSn and RF.Sn will be denoted

by RnF

By dualization we define the left derived functor LH

of the cohomological functor H. We also define LF and

L F = L FoS-n or LF*S~n when F is an additive functor.n -
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9. Existence of Derived Functors

The elements of M =.,( g'(H )) (see sects. 5 & 7) are

called quasi-isomorphisms. Recall that m is in M iff it has

the following equivalent properties:

(a.) D(m) is an isomorphism in D'( ).

(b.) Hn(m) is an isomorphism for all n.

(c.) C(m), the mapping cone of m, is in S '(H0

Theorem 1: Let F;:7 ' be an exact functor. Suppose

there is a triangulated subcategory . of W.' such that:

(1.) Every object A* of admits a quasi-isomorphism A* - I

with I* in4', and

(2.) If A* is in 4 and also in f;(Ho), then F'(A') is

acyclic, i. e. in (H 0  .

then

(a.) RF':D(s4 )---D;( 8) exists, and

(b.) if A'->I is a quasi-isomorphism with I* in

then RF D*(W) ~ DF'(I'). Also

00
(c.) RHOF' exists and in fact equals HO RF.

Corollary 1: Let F: be as above. Let 46-' =

I(,4) (see page 20). Then RF' and RHo F' both exist. In

particular if F* comes from an additive functor F:W--Pb

then RnF existrand RnF(A) = HnF(I'(A)) for all A in 1.

(Here I'(A) is the injective resolution of A.)

Corollary 2: Let F:A---> be an additive functor. Let

4. be a full subcategory of, satisfying:

(1.) Every object of 5 is a subobject of some object in .
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(2.) If A* is in AC and is acyclic, then F(A) is acyclic.

Then R F and R F both exist. In this situation is a

subcategory of F-acyclic objects, i. e. if A is in -44, then

RnF(A) = 0 for all n>l.

Remarks: (1.) Corollary 2 is summarized by saying that

"the derived functors of F exist whenever 4has enough

F-acyclic objects."

(2.) Theorem 1 and its corollaries have obvious duals which

also have dual proofs.

Theorem 2: Let B be an abelian category in which direct

limits from pseudo-filtering categories exist and are exact.

Let F4- R be an additive functor. Then RF:D'( )->8

exists.

Remarks: (1.) The proof proceeds by exhibiting RF(A') as

the direct limit of a canonically associated pseudo-filtering

system.

(2.) This is the immediate analogue of a result of Buchsbaum

(31 on satellites.

(3.) The dual of Theorem 2 holds and has a dual proof.

However Theorem 2 does introduce a certain asymmetry in appli-

cations. This is because satisfies the conditions on

to, but not the conditions in the dual theorem. Thus for

F: --- >A RF will exist, while LF generally does not.

This can be repaired at the expense of considering

LF:D'(4) -Pro-4 , the category of pro-abelian groups.

(4.) Foundational difficulties make the full applicability

of this theorem unclear. For example does RF:D'(W)--
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exist for all F----> ?

10. Technicalities on quotient Categories

The following rather technical results will be needed

in Part III. Indeed they are actually needed for the proof

of the results stated in sections 7-9.

Throughout this section '4. will be a triangulated category,

SO a thick subcategory and M =A(C) the corresponding

saturated multiplicative system.

Proposition 1: Let 2 be a triangulated subcategory of

'. Then

(1.) ' ' is a thick subcategory of 40 and the corres-

ponding saturated multiplicative system is Mi4 '.

(2.) The following are equivalent:

(a.) For each object B in SO and every morphism m:A->B

in M, there is a morphism m':A'->A so that A' is in e'

and mm is in MAS .

(b.) Every morphism of an object of j3 into an object

of e' factors through an object in g'/e'.

(3.) The dual of (2.) also holds. The statements dual to

(a.) and (b.) will be denoted by (a.') and (b.').

(4.) If (a.) and (b.) hold, or if (a.') and (b.') hold,

then the canonical functor '/ V * - '//le is

faithful. Since this functor is injective on objects it

realizes 8/1e * 4 as a subcategory of AV/7'. Further

if X ' is a full subcategory of ', then is

a full subcategory of 4'/ 'e.
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Proposition 2: Let A be an object of 4. The following

are equivalent:

(1.) For every object B of ', a'(A,B) .4"'g '(q(A),Q(B))

is an isomorphism.

(2.) Every morphism of A into an object of is zero.

Dually the following are equivalent:

(11) For every object B of ', 4'B,A)-i- >)t/"'((B),Q(A))

is an isomorphism.

(21) Every morphism of an object of E" into A is zero.

Now we associate to [" two other subcategories off*
..L. -

Namely define ' (resp. d' ) to be the full subcategory

of A' generated by the objects A such that .A*(B,A) = 0

(repp. '(A,B) = 0) for all B in E'. These are both thick

subcategories of - . They are called the right and left

orthogonal complement of e' respectively. Write M =

, 1'* L) and -LM - )

Proposition 3: For an object A of..i consider the statements:

(1.) A is the range of a morphism in M with domain an object

of J.

(2.) A is the domain of a morphism in M with range an

object of E.*

(3.) The category -MA (cf. page 17) of morphisms of M

with domain A has a final object.

(4.) The category MA of morphisms in M with range A has an

initial object.

(5.) The category g'/A of objects of over A has

an initial object.
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(6.) The category &'\A of objects of under A has a

final object.

Then we have: (1.) <=> (2.) <=> (3.) (6.)

If also (4-f *)1 = 6', then all of the statements are

equivalent.

Proposition 4: Let i: E'->.4* and Li: L-+ be

the inclusion functors. The following are equivalent:

(1.) The functor i has a left adjoint.

(2.) The functor Q has a left adjoint.

(3.) The functor k has a right adjoint and ( C ) = C'.

(This proposition also holds with right and left interchanged.)
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III. RELATIVE DERIVED FUNCTORS

1. Relative Derived Categories

Let.A- be an additive category. A' is the triangulated

category associated to, in 11.4. Let Vbe an (injectively)

closed class of sequences in . Denote by C1 the full

subcategory of W generated by the complexes in

Proposition 1: * is a thick subcategory of '4.

Proof: Let&*/ = (). For each I' in,

4( .I--> is a cohomological functor (II.4).

But then (11.5) S4'( ( . I')) =-f &(I') is a thick sub-

category . Thus since { = , (I'), it is a

thick subcategory of '. g

Definition: D() = ' is called the derived category

of4 relative to

We denote the quotient functor by D_>D

Recall that D:W(A,B) >D (9 (AB) for all A and B in .

Denote by the full subcategory of j& generated

by the complexes 1 with In in7= ($) for all n. I. e.

' is the full subcategory of /-injective complexes. Note

that * =( (11.10).

A morphism a:A-->BO in4 is called a quasi-isomorphism

iff D(a'):D(A)--+D(B') is an isomorphism in D'(,*/). Recall

(11.6) that this is equivalent to the requirement that the

mapping cone of a' be in

Lemma 1. Let46 be a full additive subcategory of -4 1 satisfying:

For every A 1-- A2 in -.4, there exists A2->B inwwith
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B in 6 and A 1 ->A 2--- B in $. Then for every A* in 'e

there is a quasi-isomorphism A'--+ B' in + with B' in 48 .

Proof: Let A' be ins. We may assume that An = 0

for n--0. We define a':A'-*B' inductively. First choose

a 0:Ao--+ BO so that BO is in 4 and 0--- +B is in.

Now assuming that a:nAn--) Bn and a)n-1:Bn-1+--- Bn have been

properly defined, choose Bn+l in 0 and B n A n+-+ Bn+1

so that An (aB,dn) Bn An+1---. Bn+1 is in 4.

B n An+1- Bn+l defines an+l and C-) n by being +

Now (B', -) is a chain complex and a':A'--- B' is a chain

map.

To show that a*:A'--> B' is a quasi-isomorphism we show

that the mapping cone of a*, C(a'), is in

C(a) = . . . - (n+l dn+l) Bn+l n+2

Let I be in& 7 . Then 4(C(a'),I) is:

. . . 3 n+1 An+2 I)- n+ n- n

and we must show it is exact.

By construction we know that

(Bn+ lI)---+ (BnV An+l ,I)---4 (An,I) is exact. Now the

kernel of 94(Bno An+lI)--->.(An

fan - gdn = J d f K2 , and the image of

(B+, JI )---> (Bn AnJ) is

n -B n+1_ d~q

?a n+1 2

By comparison the kernel of

( BnSAn+1 )-L( Bn- An
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ff /f n-1 def

(fal n gdn = f& = K, while the image of

(Bn+1V An+2, I )->(B n9A n+, I) is

f/ ? n / Bn+l n+2 def
?a n+l d )~l :B ltOA"~ e
L n+a - gdn+1 Ig-Il

Thus 12 S -1 K 15 K. But I2 = K21 Therefore I =K and

the sequence is exact. I

The first application of Lemma 1 is to the situation

where -#'has enough /-injectives and S is the full sub-

category of 'generated by 0. This subcategory will also

be denoted byQO . Lemma 1 shows that for every A* in '

there is an I' in and a quasi-isomorphism A--+ 10.

Now either by mimicing the standard arguments about injective

resolutions or by applying Proposition 11.10.3, we see that

A* - >I* defines a functor I: -- >+' . Furthermore the

unique quasi-isomorphism A--+ I(A) guaranteed by the above

argument exhibits I as the left adjoint of the inclusion

functor -> '

Now note that if A' is in then I(A) = 0 ("every

acyclic injective complex is null-homotopic"), so I factors

through D'(.W) to give a functor DA :D'*()---- 7 which

is easily seen to be the right adjoint of D : - +'

(cf. Proposition II.10.4) Invoking Proposition 11.10.2 we

see that D+ and D" define an equivalence of categories:

D (Thus:

Theorem 1: If is an injective class in 'v, then D*'( 4 ) = .

Remark: If ixis a projective class in AVwith = ( ,

then D ( ) . Further if (and .6"are complementary



-1-

classes in #, then D*( -) =D'() and in particular

* D'( ) Y . ("0" refers to bounded complexes)

2. Relative Derived Functors

The definitions of the various (right, left; total,

cohomological) derived functors relative to are the obvious

modifications of those in 11.8 and will not be given. The

notation will be the same as in 11.8 except that an may be added

for emphasis.

As in part II there are two main results on the existence

of derived functors.

In the following /will always be an abelian category

and D'(/ ) will mean the derived category of /as discussed

in II.

Theorem 1: Let F': - (where * is either +, -, 0

or nothing) be an exact functor. Suppose there is a

triangulated subcategory 3 of f such that:

(1.) Every A* inp. admits a quasi-isomorphism A'--+ B'

with B' in

(2.) If B' is in , then F*(B*) is acyclic.

Then

(a.) RF':D 4() D;(/) exists.

(b.) If A'--4 B' is a quasi-isomorphism with B' in ,

then RF'*D,(A') 02 DoeF'(B').

0.(c.) H0 @F':r ---- / has a right derived functor RH .F'

which is just Hqp RF

Proof: By Proposition II.10.1 -g/) is a thick

subcategory of S ' and the natural inclusion
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j: 6/4 , ' -JJ4>D? (.4) is fully faithful. In fact

from (1.) it is an equivalence of categories. Now since

F'(6 ;, 1;) 5 e.(H 0 ), F* induces a unique functor

8/ie; 0 -4-->D (-). RF' is defined to be this functor

composed with j-1.

Conclusion (b.) is satisfied by the construction of

RF. The universality of RF' comes as follows: For any

A' in.*,* , choose a quasi-isomorphism A ---0 B', B' in .

Then the morphisms D*F'(A')----* D*OF'(B') define a morphism

of functors Y:D*OF---RF'*D, (since FeD,(A) I DeF(B')).

Now given an exact functor G':Dr ( )--->- Dn(), and

:De F-- Ge D, , define :RF'- G' by

. :RF'(A)- G(A') is

RF'(A') =- D*OF'(B') fB G'eD,(B*) G'(A').

This is clearly the desired morphism of functors.

(c.) follows by the same sort of argument. I

Application 1: Suppose e is an injective class in

Then Theorem 1 holds for arbitrary F' with * = + and

Note: This also follows from Theorem 1 of sect. 1.

Application 2: Let F:--- be an additive functor.

Suppose there is a full additive subcategory4 of4 such

that:

(1.) If A' is in j i , then F'(A') is acyclic; and

(2.) For all A --- A 2 in .4there exists A2- B in

so that B is in. 4 and A 1-- + A 2--> B is in .
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Then Theorem 1 applies with * = +, 4l = and F' the

prolongation of F to,4 .

Also note that if A is in 4-, then RnF(A) = 0 for n>0.

Once Lemma 1 of sect. 1 is recalled all that remains

to be checked is the last remark. But in that case

RnF(A) = RF.Sn(A) = Hn RF(D (A)) = H n 9D oF(A) which is clearly

O for n O.

Theorem 2: Let $, , be as above. Let / be an abelian

category for which direct limits from pseudo-filtering categories

exist and are exact. Then every cohomological functor

H: '----> has a right derived functor RH:D'c)

Proof: If A* is an object of 4, let MA* be the category

of quasi-isomorphisms with domain A* (cf. pages 17 & 26).

I. e. an object in MA* is a quasi-isomorphism m:A'-- B'.

M is pseudo-filtering (cf. 11.6). Now H defines a functor,

also denoted by H, from MA' to -W by H(m) = H(range(m)).

Define RH(D(A')) = Lim H( . ) . That RH is a functor

MA

RH:D'(.#)----/ follows once we notice that

D'( )(D(A')4,D(B')) = Lim,4'(A', . ), and this is an easy

M B

consequence of (MS.2) of 11-5. It is a cohomological functor

because H is a cohomological functor and Lim is exact in the

present context.

Now to show that RH is actually the right derived functor

of H define H- RH*D as the morphism H(A)-- Lim H( )

MA
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resulting from 1A. being in MA. Now if H--) GeD is another

morphism of cohomological functors, define RH-+ G by

RH(D(A')) = Lim H( . )-- G(D(A')) has components

H(m) = H(B)---+G(D(B')) G(D(m))-l ) G(D(A')).

(here m:A--+ B'6 MA') This is clearly the unique morphism

having the desired property.

Remark: The remarks made after Theorem 11.9.2 apply here

equally well.

3. Applications

The usual approach to relative homological algebra has

as data an abelian category.'together with a "proper class"

of short exact sequences (MacLane [16J) or equivalently an

"h. f. class" of epimorphisms (Buchsbaum C21, Mitchell 171).

In the present approach we may consider an exact closed

class, i. e. a closed class in which every sequence is exact.

The relation between such exact closed classes and h. f. classes

is discussed by Eilenberg and Moore [8 , sect. 43 and by

Mitchell (17, V.7]. It is as follows: If C is a class

of exact sequences, associate to it a class 3 of epimorphisms

by: A-+ B is in / iff A-+ B--+ 0 is in . Also associate

to 0? a class of exact sequences c by: A-+ B--. C is in

( iff it factors as A-+ B---+-C where &-- B is the

B

kernel of B--> C and A-- is in E. is closed, and if

was already closed, e= .

MENNEN
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Now if e is a closed class of exact sequences, then

is an h. f. class of epimorphisms. Conversely if /T is

an h. f. class of epimorphisms, then 4 , the class of sequences

associated to /, is a (projectively) closed class. Further

o is the class of proper exact sequences associated to 1

in MacLane's approach. Thus our approach applies to this

situation and of course gives the same results when 1'has

enough proper, i. e. S-projectives. Also note that this

shows that Theorem 2 of sect. 2 is a strict generalization

of Buchsbaum's result [3J

Now both Buchsbaum and MacLane show that Yoneda's

nconstruction of Ext as equivalence classes of n-fold ext-

ensions works also with proper extensions. Below we recover

and partially generalize this result.

Anticipating our next result, we define

Ext (A,B) = Dy(G/)(D(A),D(B)) for all A and B in 1 . More

precisely define Ext ( ., .= Dn )p

Proposition 1: Ext (D(A'), .) = 9 (A', .) and

Ex (. ,D(B)) = (. , B').

Proof: Clearly we need consider only one of the two

cases and that only when n = 0. We show that Exty(D(A'), .) =

(', .(). The morphism

4 0 (A', .)--- Exto(D(A), D( . ))) = (G4)(D(A'), D( .

is just D. That this is universal follows immediately from

Yoneda's lemma on representable functors.

Corollary: If is a projectively closed class in
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complementary to the injectively closed class V, then,

considered as bifunctors, Rf4 (A', .) and R (. ,B-)

are isomorphic.

Note that by application 1 of Theorem 2.1 Ext(. ,

when considered on 4 x4 is just the "usual" Ex(. ,

whenever #has either enough injectives or enough projectives.

Nextlet I(AC) be the set of congruence classes of

n-fold extensions of C by A. Recall that an n-fold extension

of C by A is an exact sequence, i. e. an element of -, of

the form 0-4 C-+ B 1-+ . . . -+ Bn-4 A-+ 0. If

0-4 C- 'B -+ . . . -4 'Bn-4 A-+ 0 is another extension,

the two are congruent iff there is a third extension

0-+ C-+ "B1-+ . . . -4 "Bn-+ A-+ 0 and maps as below:

0-4 C- B -- . . . -+ B n-+ A- 01 TnI J*1 A

0-4- C--. "B-- . . -- ' "Bn -- A-+ 0

14 1n PA

0- C-+ 'B -- . . . --. 'B -- A- 0

For details, see MacLane [16; III-51-

We define a map E(A,C)--+ Ext-(A,C) as follows:

Associate to an extension (as above) a complex in 4, namely

the complex: . .. 1 -+ C-- B1--> . . .n

Call this complex B'. Note that the morphism Bn--- A gives

a morphism B'--+ S-n (A) which is actually a quasi-isomorphism.

Also the identity map of C gives a morphism B'--+ C. But

the datum Sn(A) * B- 0-C (: means quasi-isomorphism)

is exactly an element of the pseudo-filtering system with

direct limit Dj( )(D(A),D(C)) = Ext (A,C).
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Now consider the above diagram and the three complexes

B', "B', and 'B' arising from it. The morphisms of extensions

involved in the diagram give rise to morphisms of complexes

B' "B' 'B' which are actually quasi-isomorphisms.

Thus we get the diagram B

S n(A '-40

'B

which is precisely what is needed to guarantee that

; n(A) B-+ C and Sn(A) B' - C define the

same element in Extn(AC).

Thus we have a well-defined function E (A,C)--4 Ext (AC).

Indeed the above argument shows that it is actually a monomorphism.

Now E , just as Extn , is actually an additive bifunctor

to the category of abelian groups. Simple checking of the

definitions shows that --- Ext as defined above is

actually a morphism of bifunctors.

Now suppose is an abelian category and (is an exact

closed class. Then we can define a map Ext (AC)-- E (AC)

as follows: If s is in Ext (AIC) it is represented by

S-n(A) B-- C. Since B- 4Sn(A) is a quasi-isomorphism,

the sequence 0-+ Ker d0-+ B1-4 B2-4 . . . -4Bn-4 A-+ 0

is in i. Further B'--- C gives a morphism Ker d -- + C.

Now the above sequence gives an element of E n(Ker d ,C) while

Ker do--+ C is in E (Ker d ,C). Composition of the two gives

an element of EV(A,C). This is well-defined and gives the

desired map. Again checking multitudinous details shows
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that this gives a morphism of bifunctors ExtY(. , .)-- E (. ,

which is the inverse of the morphism of bifunctors in the

last paragraph.

This is summarized in

Theorem 1: Let 4, 1 be as usual. Let E (A,C) be the group

of congruence classes of n-fold extensions of C by A. There

is an inclusion of bifunctors E , .)--+EXtn(. ,).

Furthermore if 4 is abelian and is an exact closed class

of sequences, then it is actually an isomorphism.

Another topic which has been treated but will be here

mentioned only briefly is the Yoneda pairing. If F---4

is an additive functor and RF:D'(*)-*-+ ' exists, then

there is a natural bilinear map

Ext (A',B) x R F(A')-- RZ'(B')

which is gotten from the identification Ext (A',B')

D2(,4)(D(A'),D(B')). This is precisely the pairing defined

by Yoneda L201, whenever his definition of Ext coincides

with ours. In particular this gives the Yoneda product in

Exti(A',A') and makes it into a graded ring.

The properties of this pairing are very easily derived

from this definition.

4. Problems and Prospects

There are several interesting problems which are now

open. First, can the isomorphism of the last theorem be

proved in a more general setting? Probably the proof sketched

above works whenever..$ has kernels and l is an exact closed
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class. Too, Yoneda's definition of the Yoneda pairing,

particularly Ext 0(A,B) x Extn(BC)---+ Extn(A,C), clearly

doesn't work in the most general case considered here, so

the situation is unclear.

Second, can RF] be characterized by something analogous

to the "classical" characterization of right derived functors?

There is some hope for this since short exact sequences

still give rise to long exact sequences. This happens as

follows: If 0-4 A-+ B-+ C-4 0 is in t, then A : C(A-+ B)

is a distinguished triangle and C(A-4i B) is quasi-isomorphic

to C. Thus there is a map (in 4 *) C-+ A of degree one so

that A -C is a distinguished triangle. But as remarked

B

much earlier distinguished triangles give long exact sequences.

In the case Verdier considered (the absolute case) all distin-

guished triangles arise in this way. Is this true in general?

Finally we mention that the stable homotopy category

is a triangulated category. A cohomological functor is then

exactly a generalized homology theory.

Now Freyd has devised a construction which embeds the

stable homotopy category fully and faithfully into a very

special type of abelian category. (This is as yet unpublished,

but should appear in the Proceedings of the Conference on

Categorical Algebra to be published by Springer.) This

construction turns out to use precisely the fact that the
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stable homotopy category is a triangulated category. With

this observation the same construction imbeds any triangulated

category into an abelian category. In this context the problem

of finding derived functors is the problem of "approximating"

the given functor by an exact functor on the new abelian

category.

Several questions arise here. For what is this construction

useful? What relation does this have with Freyd's "relative

homological algebra made absolute"? How does it happen that

both stable homotopy theory and derived categories are

triangulated categories? Are they related? Are there any

other naturally occuring triangulated categories?
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