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ABSTRACT

Hydraulic pistons are often used with low force level

actuators to control high pressure fluid flow. The lateral forces arising

from the leakage flow between the bore and piston lands may cause large

friction forces which in turn lead to erratic control. This paper is

written in an endeavor to analyze the lateral forces resulting from various

shapes and configurations of the land and bore as well as to evaluate the

assumptions made in the mathematical analysis commonly employed.

The assumption that is least valid is that of one-dimensional

flow. It is assumed that for short axial land lengths and for the boundary

conditions of the flow the peripheral flow or pressure gradients are

negligible, and that the flow is axial (parallel to the axis of the bore and

piston land). Paradoxically then, the peripheral pressure gradient arising

in the analysis is integrated around the surface of the land to obtain the

lateral force acting on the piston. However, we have shown that although

the lateral force on the land can become very large, the peripheral pres-

sure gradients are small compared to the axial pressure gradients. The

experimental results substantiate the assumptions made, and any discre-

pancies are explained qualitatively by a complete consideration of the

flow phenomenon.

Tapers, high spots, steps and dirt on the land or bore sur-

face of ordinary dimensions can cause an axial force on one land which

attains a value of fifteen pounds. A lateral force of that magnitude and

in a direction tending to force the land against the bore wall can result

in a friction force that is large when an axial stroking force of only a few

pounds is available. It is expected that the results obtained can permit

land designs that utilize the lateral forces to maintain the piston land

centered in the bore. In the centered position fluid will completely

separate the surfaces, replacing dry friction with complete viscous

friction.
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INTRODUCTION

Friction is ever present in all physical systems

whether in static equilibrium or dynamic motion. Although

in many applications its action is necessary, in an equally

important number of applications its action is undesirable.

The undesirable nature of friction is characterized by retar-

ding force, unpredictable action, and wear.

To eliminate or as far as possible to alleviate

these undesirable features of friction, use is made of the

fact that fluid friction is much more desirable than dry or

solid friction with respect to all three characteristics

above. The entire science of lubrication arises from an

attempt to replace dry friction by fluid friction. Fluid

friction has several important advantages. Retarding force

offered by fluid friction is much less than that offered by

dry friction. Although the action of dry friction may be

statistically predicted in time, the action of fluid friction

is a far more simple function of the important variables.

Further, if the viscosity of the fluid can be considered con-

stant, fluid friction lends itself well to analytical inves-

tigation. Dry friction is a strong function of pressure normal

to its direction of action, whereas fluid friction is not.

Therefore, it would in many cases be desirable to replace dry

friction by fluid friction under the same pressure.

In general to eliminate dry friction between two

solid surfaces it must be possible to maintain fluid between
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them at sufficient pressure to counteract any fforce tending

to push them together. In this paper we will consider the

fluid pressure distribution and resulting normal force on two

surfaces whose separation is very small compared to the length

and width of the surfaces. This type of fluid flow we shall

designate as capillary flow.
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CHAPTER I

PRELIMINARY ANALYSIS

In this paper we will consider lateral fluid force

on a piston such as is employed in flow control. One or more

pistons, operated with a low energy level supply, usually con-

trol high energy fluid flow, distributing it where and when

necessary. Often the pistons are operated by a feed back

signal from the controlled quantity, and when a condition of

dry friction exists between piston land and cylinder wall,

erratic and oscillatory operation often results.

In an attempt to replace dry friction by fluid fric-

tion we will analyze and measure experimentally the lateral

force exerted by the fluid pressure on the piston land. As

a first step we must analyze the pressure distribution in the

flow region between the land and cylinder or bore wall for

various piston land shapes and configurations of the piston

and cylinder.

In many flow valves, where leakage must be held to

a minimum, clearances between the piston lands and cylinder

wall are of the order of a few ten-thousandthsof an inch.

Measurement of any lateral force with ordinary techniques and

equipment is virtually impossible for such small clearances.

Two further obstacles to accurate measurement are: the inac-

curacies in grinding which are of the same order of magnitude

as the clearances, and the presence of small dirt particles

in the hydraulic oil which accumulate between the piston lands
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and cylinder wall (a phenomenon referred to as silting).

Although the oil may be well filtered and the particles of

only a few microns in size, silting is observed when leakage

clearances are of the order of a few ten-thousandths of an

inch.

These considerations lead us to the use of a large

scale model, maintaining dynamic similarity. In this way

we can relate the physical properties of the model to those

of the prototype.

From physical reasoning we can say that the lateral

force depends upon the pressure drop, a characteristic length,

the lateral displacement of the piston, and the viscosity of

the fluid. If we assume that capillary flow obtains, i.e.,

the surface area of flow is large compared to the volume,

inertia effects can be neglected. The lateral force is, there-

fore, not a function of the fluid density. Further, since there

are no free surfaces in the region of flow under consideration,

the lateral force is independent of gravity. Alternatively,

since the flow rate is a function of the pressure drop, we can

say that the lateral force depends upon the flow rate, a char-

acteristic length, the lateral displacement of the piston, and

the viscosity of the fluid. The two alternative equations are:

F = f (a, D, p, A )

F = f2 (a, D, Q, A )

1. J. C. Hunsaker and B. G. Rightmire, Engineering Applications
of Fluid Mechanics, New York, McGraw-Hill,1947, pp-113-116.
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By dimensional analysis2 we form the dimensionless

quantities as follows:

F (, D , p , )

The remaining three dimensional variables cannot be combined

to give another dimensionless quantity. Therefore, since a

dimensionless quantity cannot be a function of dimensional

quantities, we find

P iD2 f5 D~ 1

FD
f6 (

To maintain dynamic similarity, i.e., to relate data

from the model to the prototype the dimensionless variables in

Equation (1) must be maintained the same for the model as for

the prototype. This is so because we know only the variables

and their number and not the function.

A large scale model will greatly reduce the limita-

tions imposed by machining inaccuracies and completely remove

the effect of silting. The lateral force caused by leakage

flow between the piston lands and cylinder can then be measured

2. Ibid, pp. 98-121.
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for different land shapes and configurations as a function of

piston displacement from the axial centerline of the cylinder.

If the model is made to a 10:1 scale and the same

oil is used, then for dynamic similarity,

F F

PD )MD2)P
(F) ( F)

m pr

/= \(/)pr

am = lOapr

Dm = 10 Dpr

pr

1
Pm = 100 pr

Qm =10 Qpr

Fm F

The two quantities we are primarily interested in

are lateral force and displacement or specifically we can

investigate the relationship between them. With the aid of

dimensional analysis as presented here we can experimentally

determine the functional relationship given in Equation (1).

First we will attempt to derive some helpful analytical facts

about the flow region and resulting lateral force.
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CHAPTER II

GENERAL CAPILLARY FLOW EQUATIONS

The general equations of fluid flow which take into

consideration fluid inertia, viscous, and body forces are

extremely complex,and exact mathematical solutions are at

present impossible to obtain for any but the simplest cases.

To permit analytical treatment these equations must be simpli-

fied.

In the flow of a viscous fluid between two neigh-

boring surfaces where the volume of the flow region is small

compared to the surface area inertia effects can be neglected.

The only body force acting is gravity which is neglected

because there are essentially no changes in elevation and

no free surfaces in the flow region. Further it is assumed

that in the thin flow region the flow is parallel to the sur-

faces, implying that there are no pressure gradients in the

direction perpendicular to the bounding surfaces.

By the above assumptions the general flow equation

of Navier-Stokes3 reduces to:

;L C) 2 u + +32u ) (2)

3. L. Prandtl and 0. G. Tietjens, Fundamentals of Hydto and
Aeromechanics, New York, McGraw-Hill, 193W, p.2 .
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- .M + + )

(2)
ap 0

Cz

where the z coordinate is perpendicular to the surfaces

(Figure 1). This equation can be simplified to obtain prac-

tical results without great effort. First we can make Equa-

tion (2) dimensionless.

LoUIP u x fSLet p' 2 ; u' V m ..; X' =1 ; 't= ;Z'=-

where V is some average of the u and v velocity components

and 1 is some average of the x and y dimensions of the flow

region.

And Equations (2) can be written:

p # V(6u + 6u+ )~u

dx 2  a,,2 az

Ps JP I -- ,62t--a~, +--,g) (3)
C bX' by' 2 Z'

-z, 0

We can next investigate the orders of magnitude

of the various terms in the dimensionless Equations (3).
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By a suitable choice of the non-dimensionalizing quantities,

V and 1, we can write the following variables and their orders

of magnitude

X'1 0 [1u' = 0()

y' 0 V1 M' 0 IlZ' OU]

z' =Or h) w' =O

where h' = =0

From these we can determine the following variables and their

orders of magnitude

U', 62u', cu, a2 u', v,, c 2 v', cV', V) -oi

= 0 = O[10001, 79 vf l[0

Consequently, in the right hand members of Equations (3), the

velocity derivatives with respect to x' and y' are negligible

in comparison to the z' derivatives.

Equations (2) can now be written in the form

(4)

)32v
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Since the pressure is uniform in the z- direction, 4and

are independent of z. Integration of Equations (4) twice with

respect to z and the application of the boundary condition

that the velocity is zero at both surfaces (z = h/2) gives

2) - z2]

The average velocity can be found over the cross-section, and

the product of it and the gap clearance, h, gives flow per

unit width. Finally we arrive at the equations of capillary

flow expressing flow per unit width as a function of the sur-

face separation and the component of the pressure gradient in

the flow direction.

Vr. h3
x Ti X

Q'y = -(5)

or

h' - grad p

where Q' is in the direction of the gradient of p. Note that

if the flow is one dimensional, Equation (5) can be integrated

immediately for the pressure distribution. However, for two

dimensional flow Equation (5) can be put into more convenient

form.
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If the fluid is incompressible, the flow rate into

a unit volume must be the same as that out, or mathematically

h3
div Q'- div( 0grad p) = 0 (6)

The viscosity is assumed constant, and Equation (6) reduces to

div ( h3 grad p) = 0 (7)

Equation (7) is the basic differential equation of capillary

viscous fluid flow, solutions of which give the pressure

distribution in a two dimensional coordinate system. In the

cases we shall consider the coordinates are cylindrical, z

and w.

In general the flow between a land and cylinder

bore is two dimensional in the peripheral and axial direc-

tions. Figure (1) illustrates the general region of flow.

The pressure distribution and its gradients will vary, of

course, with the three dimensional space configuration of

bore and piston land. All configurations for a given land

and bore can be reduced to a combination of radial displace-

ment and z- axis rotation of the land relative to the bore,

but alterations of the peripheral and axial shape of the land

and bore add to the possible configurations.

Many piston land shapes can:4be considered, but by

a judicious choice of a few the important physical character-



13

istics of the fluid flow can be deduced for any configuration

and shape of land and bore. For all these possible configura-

tions and shapes certain conditions will always hold for the

flow region. They are as follows:

1. The entire flow occurs between surfaces sepa-

rated by a distance which is very small compared to the extent

of the surfaces.

2. The boundaries of the flow region at fluid entry

and exit are subjected to constant but different pressures.

These boundaries lie in planes perpendicular to the axial

centerline or z- axis.

3. The pressure distribution is periodic of period

2w in the peripheral direction.

4. The fluid is incompressible.

5. The pressure distribution satisfies Equation (7).

div (h3 grad p) = 0 (7)

We will consider three principal types of lands.

First is the case of a cylindrical land (round or out-of round),

generated by lines parallel to the axis of the piston land,

displaced radially and rotated axially, Figures (la and 2b).

Second is the case of a cylindrical land with a radial step

displaced radially and rotated axially, Figure (4). Third

is the case of the first land type in the position of a pres-

surized fluid bearing, Figure (6). Superposition of cases one
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and two give information regarding the case of high spots on

the surface of the land. All analytical results are checked

experimentally wherever possible. In general from these

three basic cases we can interpret how the pressure varies

for changes and rates of change in the separation of the flow

surfaces.
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CHAPTER III

TWO DIMENSIONAL PRESSURE DISTRIBJTION

AROUND A RIGHT CIRCULAR, CYLINDRICAL IAND

Generally to permit easy analytical treatment the

flow across the surface of a piston land is assumed axial,

and it is assumed that peripheral flow or pressure gradients

are negligible, i.e. for all types of lands considered fluid

flows parallel to the axial centerline of the bore from the

high constant pressure at one end of the land to the low

constant pressure at the other end. This assumption is

based on the premise that the axial land length is of the

same order of magnitude as the peripheral length, and becomes

more valid as the axial land length decreases. Analytical

results give much greater average axial pressure gradients

than the average peripheral pressure gradients which arise

from such an assumption. These gradients will be compared

later for orders of magnitude.

We can analytically investigate the true two-

dimensional pressure distribution for the case of a right

circular, cylindrical land with a pure lateral displacement

from the axial centerline. For this case the gap height

between the flow surfaces is a function of the peripheral

coordinate, w, only and is constant in the axial direction,

Figure (2). By physical symmetry when the lateral displace-
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ment is zero (the piston is perfectly centered in the bore)

the flow is purely axial since the gap height is the same

everywhere and an axial pressure drop is imposed on the

boundaries. When the piston is laterally displaced, the

gap height changes around the periphery and physically we

might imagine that this change in gap height will produce

peripheral flow or pressure gradients. We can now proceed

to show that this is not true, that the flow will remain

purely axial, and that no lateral force on the piston land

obtains.

Consideration of the geometry of the piston when

displaced laterally downward gives for the gap height,

h = t + a cos w

For convenience we can substitute the dimensionless displace-

ment parameter
T.a

and express the gap height as

h = t(l + T cos W) (8)

Substituting this expression for h in Equation (7) and expan-

ding we obtain the basic differential equation which must be

satisfied by the pressure as

(1 + T Cos w)3 4)( + T cosw) wo (9)
R~f I
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The solution of this equation combined with the boundary con-

ditions of the flow region results in the pressure distribution

on the surface of the land, and the component of lateral force

in any direction can be found by an integration of the pressure

component over the area of the land.

Boundary conditions which must be satisfied by the

pressure at each end of the land are

p( z, W)Z * ps
(10)

p(z,)Z
0c Pa

Two further boundary conditions can be derived by

noting from physical symmetry that the pressure must be an

even function of w, i.e., p(z,w) = p(z,-w), and must be

periodic in w of period 2 Tr. This means that the rate of

change of pressure in the direction of w must be zero at

both, w= 0 and Ir or

(~ 0 (11)

The pressure gradient at those values of w must be

axial and consequently the flow must be axial at V= 0, 1r.

Then because the fluid is incompressible the flow rate per

unit peripheral width, Q', at those points of o is constant

for all z. Since h is a function of w only, it is also con-

stant with z. These considerations hold true regardless of
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the lateral displacement and therefore the pressure gradient

at w = 0, w is axial and constant. Rewriting Equations (5)

in cylindrical coordinates yields

3
'=(5a)

h' = - (5b)

= - hgrad p (5c)

Noting that (grad p)
W=oV T~

(dp)1 Q dz (12)

Integrating this equation and eliminating O' by using the

condition that at z = 0 and C, p = ps and pa respectively,

yields for the pressure

P = P (1- -) + pa (13)

Equations (10 and 13) give four boundary conditions that the

solution to Equation (9) must satisfy.

We assume that the pressure can be expanded in a

power series as follows

p(z, W) = Po(z, W) + T pl(z, W) + T2 P2(z, w) + ''+ T p(Z, w)
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From Equation (8) and the definition of T note that 0<r<

= 1 when the land contacts the wall of the bore). If the

pn's are bounded, this series will converge for all T less

than one. Substitution of series (14) into Equation (9) and

rearrangement of terms yields

a2p PO 1 2 2 P ia
+ = 2 +T + (3 Cos w ) +roP 1Z

1 P 2 P2 1 2 2
(3 cos U )j + T + +

C)09 2 a 1 0
(3 Cosw-al + 3 cos w ) + (3 Cos w +

3 cos2  ) + 'e)= 0 (15)

The pn's are independent of -r and if Equation (15) is to be

valid for all values of r, the coefficients of the r 's must

be independently equal to zero.

2 2 0 (16a)

2 2

2P l~ 1 W

2 2 + (3 C os uj )(3 cos w )- 0

(16b)

A
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2pP2  16 2 p2 aa 2
+ ---- + 6243 co 0 + 3 a o s2w-22 o 1 w2C

1 -(3 cos u ) 3 Cos2  ) = 0 (16c)

Similarly for every coefficient of T.

Series (14) shows that po represents the pressure

when - is zero or when the piston is centered in the bore.

For this position the gap height is everywhere constant and

complete radial symmetry obtains. This implies that the flow

must be purely axial for T = 0. Equation (5c) again gives

the gradient of p as axial and constant or the pressure is

= po = pg(l - Pa (17)

which is the solution for Equation (16a).

We must now find the solution p1 for Equation (16b).

Substituting po from Equation (17) into (16b) yields

1 = + (18)

Before proceeding to a solution we will determine the boundary

conditions that must be satisfied- by p1 . Writing that the

pressure at z = 0 is p5 obtains from Series (14)

p(0,W) = ps = p(0,OW) +- p(O,W) + T2p4 Ow) + *
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Substituting po from Equation (17) and subtracting ps from

each side of the equation yields

0 =-r p,(0,w) +r 2P 2 (0,w) t '' (19)

If this equation is to be true for all , all the pn(O.w)s8

must be each equal to zero. A similar application of the

boundary condition stating that the pressure at z = C is pa

yields another exactly similar boundary condition. Two boun-

dary conditions for p1 then result as

p1 (O,w) = 0

(20)

P ( C., W)= 0

Application of the boundary condition Equation (13) in the

same way to Series (14) yields

p1(z ,0) = 0 -(21)

p ( z,') =0

p= 0

and in general it is found that

Pn(Cw) = 0

Pn(Cvw) 0 (22
(22)

pn(Z,0) = 0

p,(ZW) = 0
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Equation (18) which p1 must satisfy is Laplace's equation in

cylindrical coordinates. The maximum modulus theorem4, 5

states that if a function satisfied Laplace's equation in a

region, then the greatest absolute value of that function

occurs on the boundary of the region. Since in this case

the value of p1 is zero at all points of the boundary, it

follows from the maximum modulus theorem that p1 must be zero

everywhere inside the boundary. We would have arrived at the

same conclusion had we attempted the solution of Equation (18)

with the application of boundary conditions (20) and (21).

If p0 and p1 are now substituted into Equation (16c),

Laplace's equation is again obtained for p2 . Application of

Equation (22) and the maximum modulus theorem results in p2

equal to zero for all z and w. A progressive application of

this procedure results in

p (z,w) = 0

and Series (14) becomes

P p (-) + Pa (23)

This result shows that the pressure distribution is independent

of O and the lateral displacement 'r, and is linear in z at all

4. R. V. Churchill, Introduction to Qomplex Variables and
Applications, New York, McGraw Hill 1946, p. 95.

5. H. Bateman, Partial Differential Equations of Mathematical
Physics, New York, Dover 1944, p. 135.
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peripheral points. The pressure at opposite ends of land

diameters is the same and results in no net lateral force

on the land regardless of the lateral displacement with the

restriction that the piston does not contact the wall. This

restriction is necessary because the pressure cannot be

expressed as an infinite Series (14) which may not converge

for T = 1.

Experimentally we find that no lateral fluid force

on the land results when the piston is laterally displaced

as shown in Figure (2a). The experimental procedure is des-

cribed on Page (56) of Chapter VI. This result indicates

that the pressure distribution is independent of w and is

given by Equation (23). The pressure gradient is constant

and axial in direction in the entire flow region and is

equal to - pg/C. Equation (5a) then states that Q' is

directly proportional to the cube of the distance between

the flow surfaces or h3 . At peripheral points, , where

the surfaces are widely separated more fluid flows axially

into the flow region than flows in where the surfaces are

less widely separated in amounts proportional to h3 , so

that the pressure gradient remains the same at all points.

Physically then, we can state that if the piston land is

out-of-round so that h is a function of w only (i.e., h

is constant in the z direction) the same flow phenomenon

occurs and the pressure gradient remains constant and axial
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everywhere in the flow region. No lateral force again

results for the out-of-round land. However, such a land

can contact the bore along a portion of the land and bore

surfaces so that the fluid flow is cut off at those points.

The pressure distribution existing along the opposite sur-

face of the land holds the land against the bore wall, and

for such a case a lateral force results. In considering

land and bore configurations it is evident that only the

relative configuration is important and that either the

land or the bore can give rise to certain geometrical con-

figurations.

We shall now consider the case in which the same

piston with circular cylindrical lands is cocked and dis-

placed (i.e., the axial centerline is rotated through an

angle y and displaced laterally a distance of a). This

case is shown in Figure (2b). For this piston configuration

h is a function of both z and w and the pressure gradient

varies throughout the region of flow. To permit easy mathe-

matical analysis we assume tlat the flow is predominantly

axial, i.e., the axial pressure gradients are much greater

than the peripheral pressure gradients. This assumption is

good if the axial land length is not great compared to the

peripheral length and becomes more valid as the axial length

decreases. The errors introduced by such an assumption are

discussed in relation to experimental results at the end of
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this chapter.

Furthermore, we assume that the axial rotation

and lateral displacement occur in the same plane. This

assumption is warranted, since we wish to compare analyti-

cally and experimentally the magnitude of the lateral force

which results from cocking the piston. With such a comparison

we can determine the validity of the one-dimensional flow

assumption. In Appendix D it is shown that a lateral dis-

placement superimposed on an axial rotation serves only to

decrease the lateral force or peripheral pressure gradients.

Therefore, the greatest error in assuming the peripheral pres-

sure gradients negligible will occur when the piston is only

rotated axially; and from this condition the comparison will

yield the most useful results.

Assuming pure axial flow, Equation (6D) of Appendix

D yields for the pressure distribution in the flow region,

Z [1 +( T+Y +)cos, 2 2+2(T+Y - ) Cos (

C [l + (T+Y )cs][2 +2(T+Y 4f) cos W (

From physical symmetry the component of lateral force in the

direction perpendicular to the plane of rotation is zero.

The lateral force on one land in the direction of rotation

or in the direction of displacement is given as
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F f (pdz)r. cos w dw

The derivation of lateral force for this case is given in

Appendix D, and Equation (16D) gives the dimensionless lateral

force as

F M C 1
n o g (2T+ 2 V +Y V) t - (2T + 2Y5 +y

(16D)

If the piston is of the two land type illustrated in Figure

(2b), Equation (16D) is valid for the other land with the

difference that T is the negative of T for the first land.

Note that Fn is negative when V is positive; therefore, the

fluid force tends to restore the piston to a position parallel

to the bore. If the supply and exhaust pressures are reversed

so that the fluid flows toward the center of the piston, the

lands will be forced against the wall.

The dimensionless force, - Fn, is plotted versus

Y( t C' ) for the case of T = 0 in Figure (3). The quan-

tity _Xj+ C ') is the dimensionless displacement of the end
t

of the piston land. Also plotted in Figure (3) are the experi-

mental results. The procedure used to obtain this data is

discussed in Chapter VI. From an inspection of the experi-

mental results we note that the assumption of one-dimensional
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flow is well warranted, because the mathematical simplifi-

cation is so great. A more detailed evaluation of the one-

dimensional flow assumption is given in Chapter VII after

more data is obtained from other piston land shapes.

From the argument of radial symmetry presented on

Page (18) of this Chapter the flow at W 0 and 'W must be

purely axial; and the pressure distribution found for the

assumption of one-dimensional flow must be the true pressure

distribution at w = 0 and 'W. Therefore, the pressure dis-

tribution in the flow region lies within the shaded area of

Figure (2b). It is noted that the one-dimensional solution

gives the exact pressure distribution along the four boun-

daries of the flow region and deviates from the true pressure

distribution inside the flow region.

-4



One method of obtaining a lateral force on a piston

land that is displaced from the axial centerline of the bore

is to taper or radially step the land (Figure 4). If the

taper or step is such that the large radial clearance opens

on the high pressure supply, then the lateral force will be

in a direction opposite to the displacement or a centering

force. For the reverse case the force will be in the direc-

tion of displacement.

With an axially imposed pressure drop on the land

(Figure 4) and an axial length which is not great compared

to the peripheral length we can neglect the peripheral com-

ponents of the pressure gradient and assume that the flow is

purely axial. We will investigate later (Page 36) the aver-

age magnitude of the peripheral pressure gradients arising

from this assumption.

We can physically see how the centering force

obtains when the land is laterally displaced by noting from

Equation (A), Appendix A, that the pressure gradient is

inversly proportional to the cube of the gap width (Q' being

constant at all axial points for a given w). For a stepped

land, then, the pressure gradients have constant values in

the two regions of flow and are related by the inverse ratio

of the gap widths cubed or

30

CHAPTER IV

RADIALLY STEPPED AND TALERED IANDS
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(dp/d:z) h2 3 (24)

(dp/dz)2 h

This ratio becomes larger on the side of the piston land which

approaches the bore wall and results in a pressure distribu-

tion shown in Figure (4).

For convenience we measure the axial coordinate by

z in the region of small radial clearance and by z2 in the

region of large radial clearance as shown in Figure (4).

Assuming pure axial flow, Equation (3A) of Appendix A gives

the pressure distribution in the flow region as

p h 3 z2
P = p -. g1

2 s Ch23 + C2hi3

(3A)

p 02 z1
PZ Pa S 1 31C h2 3+ C2hl

The lateral force on the land is obtained by integrating the

pressure component in the desired direction from z2 = 0 to

C2 and z, = - Cl to 0 and then from w= 0 to 2W. The rela-

tionship between Cl, C2, hl and h2 is obtained in Appendix A

by maximizing the rate of change of centering force at zero

displacement. The theoretical results were modified as des-

cribed. Making (h2/h1)o = 2, Cl and C2 were determined as
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C= 0.111 C

02 = 0.889 C

The lateral force was then obtained as

F [0297 0.102
Fn 2T _r~p T2 W o29

1.7Cg -778(12A)

-1 2 3-tan 2
0.510 sin2- 3

2 4 2
1\.778 - 1.333 r t 2

This curve is plotted in Figure (5). The dotted curve shows

a similar result for the pame overall land dimensions with the

step replaced by a uniform axial taper. This latter case was

analyzed by J. F. Blackburn.6 Note that the lateral force for

the stepped piston increases much more rapidly than for the

conical piston and reaches a maximum value twelve percent

greater at the wall.

Note that the pressure distributions shown in

Figure (4) are at the peripheral points, W- 0 and T. At

these points the pressure distributions are the same as

exist in the actual case of two dimensional flow. They form

two boundary conditions imposed on the flow region between

6. Blackburn, J. F. "Lateral Forces on Hydraulic Pistons"
Memorandum: DIC 6387, October 5, 1949.
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w = 0 and W or -T. That such is the case follows from the

argument of radial symmetry presented on Page (18), which

shows that at w = 0 and IT the flow and the pressure gradients

are purely axial and Equation (1A) is the true flow equation

at those two peripheral points. Therefore, because we know

the true boundary conditions that the pressure must satisfy

on both the axial and peripheral boundaries, we can compare

the average peripheral and axial pressure gradients to deter-

mine the order of magnitude of the errors introduced by the

assumption of pure axial flow everywhere.

The supply pressure, atmospheric pressure, and

Equation (3A) of Appendix A give the exact pressure distri-

butions along the following boundaries of the flow region:

p(0, O)

p(C, o)

p(z, 0)

p( z, T)

The differential Equation (9) that the true pressure distri-

bution must satisfy is elliptic and therefore the pressure at

any point in the flow region must be bounded by p5 and pa' 7

Further, since the pressure must be an even function of w

7. Bateman, H., Partial Differential Euations, New York,
Dover, 1944, pp. 135-136.
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and of period 2W (a consequence of the type of argument

given on Page 18) it can be expressed as a series of cosine

terms. Therefore, at least at w 0 and If the pressure

must go through a maximum or minimum for any given z. Evi-

dently when T increases from zero to one (the piston approa-

ches the wall) the pressure at w = 0 for a given z is a mini-

mum and at w1= is a maximum. Therefore, the pressure

distribution in the flow region lies within the shaded area

of Figure (4). We note then that the pressure distribution

is a well behaved function in the region of flow varying

from a maximum at W = W to a minimum at w = 0. Therefore,

assuming that a linear peripheral pressure distribution is

a close approximation of the actual pressure distribution,

we can use the boundary pressures to obtain average values

of the peripheral and axial pressure gradients. This pro-

cedure should give a good qualitative measure of their rela-

tive magnitudes.

The average axial pressure gradient is then - p /C

and since the pressures at w = 0 and V are linear in z, the

average peripheral pressure drop is just one-half the sum

of the maximum and minimum peripheral pressure drops. From

an inspection of the shaded area of Figure (4) the average

peripheral pressure gradient yields

P2(02, 0) - p2(02 9 1 (25)
2Tr(2
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This gradient is a function of the lateral displacement and

is maximum when T = 1. For T = 1 and the land dimensions

given on Page (70) of Appendix A this average peripheral

pressure gradient can be obtained from Equation (3A) by

setting either z= 2 or zi = Cl since at those values of

z the pressures must be equal (Figure 4). This procedure

yields for the average peripheral pressure gradient - pg/9ro.

The ratio of this quantity to the average axial pressure gra-

dient then becomes C/9re For most commonly designed lands

C and ro are nearly equal (in the experimental piston C = 1

inch and ro = 1.25 inches) and the average peripheral pres-

sure gradients are only one-tenth of the average axial pres-

sure gradients.

From an inspection of Figure (4) it is noted that

in the flow region of the larger radial clearance the peri-

pheral pressure gradients are more nearly equal to the axial

gradients,and only in the region of smaller radial clearknce

are the axial pressure gradients actually predominant. There-

fore, the overall average ratio of peripheral to axial gra-

dients obtained as one-tenth will be somewhat in error when

used to evaluate the validity of the axial flow assumption.

However, it is also to be noted that the above found value

of one-tenth is computed from the greatest values of peri-

pheral pressure gradients which occur when the land contacts

the wall. The average axial pressure gradient on the other
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hand remains constant. Therefore, in the curve of lateral

force versus displacement shown in Figure (5) we expect the

actual curve to fall along the curve shown for small values

of displacement and gradually deviate from this curve. At

T - 1 the error should attain an order of magnitude of about

one-tenth.

The experimental curve shown in Figure (5) increases

more rapidly than expected and gradually falls off with

increasing displacement. At a value of 7' equal to 0.6 it

crosses the theoretical curve, reaching maximum deviation

at the bore wall. Percentage-wise the maximum error in

lateral force occurs at small values of displacement where

at some points the theoretical curve falls as much as twenty-

five percent below the experimental curve. This discrepancy

is explained on Page (61) of Chapter VII in a consideration

of the laminar flow transition region. Such a region exists

in all cases where the fluid flows from a large reservoir

with negligible velocity into a small region where the velo-

city is suddenly increased.

The analytical evaluation of the relative magnitu-

des of the average axial and peripheral pressure gradients

discussed above applies exactly to the axially tapered land.

The initial and final clearances of this land are the same

as the stepped land, and the step shown in Figure (4) is

replaced by a uniform axial taper. The true lateral force
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for small displacements follows the theoretical curve more

closely than does the force for the stepped land. For larger

values of displacement the experimental force gradually falls

away from the theoretical force reaching maximum deviation at

the wall as expected from the above discussion. Better cor-

respondence with theory for the tapered land is due to the

smaller effect of the transition to full laminar flow dis-

cussed in Chapter VII. In this chapter it is shown that the

effects of the transition flow are directly proportional to

the flow rate. The flow rate in turn varies as the cube of

the clearance between flow surfaces; the average clearance

of the tapered land is much less than that of the stepped land

where the large clearance extends along -89% of the land (C2

0.889, Cl = 0.111). Therefore, the flow rate and the effect

of the transition region are much smaller for the tapered land

than for the stepped land.
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CHAPTER V

PRESSURIZED CYLINDRICAL 1AND

Another method of obtaining a lateral force on a

piston land that is displaced from the axial centerline of

the bore involves the pressurized fluid bearing principle;

this is shown schematically in Figure (6). Fluid under a

constant high pressure is supplied so that the fluid flows

through two orifices in series, designated as the upstream

and downstream orifices. The upstream orifice (Figure 6)

is fixed, and the downstream orifice is formed by the land

and bore surfaces. Qualitatively we can see the effect of

changing the downstream orifice by imagining the piston land

to be displaced downward, decreasing the resistance to flow

along the top of the land. As the flow increases the pres-

sure drop in the upstream orifice increases (note Equation

3B) and results in lower pressures at the top of the land.

Similarly the downward displacement of the land increases

the resistance to flow along the bottom of the land, resul-

ting in higher pressures at the bottom of the land. Thus

the downward displacement results in a lateral pressure

force. The pressure distribution along the top and bottom

of the land is shown in Figure (6).

The upstream orifice extends around the periphery

and offers a constant resistance to flow at every w. (The

orifice is of the capillary type and depends upon the gap

__ j -1-
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width between surfaces for its resistance to flow). When

the piston is laterally displaced, the resistance to flow

offered by the downstream orifice varies with w. For a

downward displacement then every point of the top surface

of the land moves down decreasing the resistance to flow,

and the reverse occurs for the bottom surface. Therefore,

the pressure decreases all over the top surface and increases

over the bottom surface so that a centering force obtains.

The radial and axial flow paths are short compared

to the peripheral paths and the changes in the downstream

gap height produced by a lateral piston displacement are

gradual around the periphery for circular, cylindrical lands

and bores. Therefore, as in the previous caseswe assume that

the flow is purely radial in the upstream orifice and purely

axial in the downstream orifice. Appendix B shows that the

pressure distribution in the downstream orifice is given as

2z
(1 - a-)

Pz = Pg ++ Pa (6B)

1 +
Ch1

To obtain the lateral force on the land pz is inte-

grated with respect to z from z = 0 to C/2, multiplied by the
cos w to obtain the component of force in the direction of

displacement, and then the result is integrated again from
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w 0 to 21. By physical symmetry about the radial center-

line along which the displacement occurs the force in the

direction perpendicular -to the displacement is zero. Appen-

dix B gives the derivation of the lateral force for the case

of the pressurized fluid land; and Equation (13B) gives for

the force in the direction of displacement

-1 4tan l

cos
T 1 2

Fn= 2 /---(13B)

This dimensionless force is plotted in Figure (7).

Note that the slope of the curve of Figure (7) is

greatest at r= 0. We maximized - F/T at 7= 0 with values

given by Equation (9B); and from Equation (7A) the maximum

value of - aFAr occurs when - 6F'/dh is a maximum at every w

The quantity - )F'/)h is a function of h and is a maximum

for only one value of h; and therefore h must be independent

of w for Equation (7A), Appendix B, to yield a maximum for

- 4F/6 . Only at T= 0 is h independent of w (piston land

centered). Since we have maximized - 0 F/& 7 at 7 = 0, the

greatest slope of Figure (7) occurs at the origin.7

7. Note that - IF/c)r can be maximized at different values
of T which would give a slope that is maximum for a
particular 7 but which is less than the absolute maximum
at T = 0.
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From the argument of radial symmetry about the center-

line w= 0 (Page 18) the actual pressure distribution must be

an even and periodic function of w and can be expressed as a

series of cosine terms. This implies that the pressure for

a given z must be maximum or minimum at least at w= 0 and T

and that the peripheral pressure gradient is then zero at

those two values of w. Therefore, the flow at w = 0 and IT

must be purely axial and the pressure distributions there

are the same as those that obtain at w = 0 and W from the

assumption of one dimensional flow everywhere. Evidently

from an inspection of Figure (6) the pressure distribution at

w= 0 must be a minimum and at W = T a maximum along the land

surface, and the pressure distribution at any other w in the

region of flow must lie within these values or in the shaded

area of Figure (6) determined by the amount of lateral dis-

placement. We see then that the one-dimensional solution

satisfies the boundary conditions of the exact solution and

deviates in the interior of the flow region.

It is of interest to check the error in the lateral

force introduced by the assumption of pure axial flow (i.e.,

neglecting pressure gradients in the peripheral direction).

The exact two-dimensional solution for lateral force for

small displacements was solved at the Instrumentation Labora-

tory, M.I.T. The solution was obtained by a series type

8. Instrumentation Laboratory, "The Pressurized Fluid Bearing
for High Precisiop Instrument Suspension, " Cambridge,
Massachusetts, 1948, pp. 93-94.
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expansion as Equation (14) in this paper in which all terms

of higher degree than T were neglected. This solution,

however, will give the exact initial slope of the curve

of lateral force versus displacement or (- dFn/dr)o. For

the optimum length dimensions determined in Appendix B by

Equation (9B) the exact two dimensional solution gives

(- ) = 0.564

Equations (7A and 8B) can easily be evaluated at T = 0 and

give for the assumption of pure axial flow for the same land

and bore geometry the result

- =0.588

This last result is less than five percent greater than the

actual rate of increase of lateral force. Since the error

between the actual force and the force obtained with the

assumption of negligible peripheral pressure gradients is

so small, the assumption of predominantly axial flow must

be good to the extent of the error introduced in the lateral

force, or five percent error. This error holds at least for

small displacements. For larger values of lateral piston

displacement the rates of change of peripheral pressure gra-

dients must become smaller, because the rate of change of



lateral force depends directly upon them; 9 and from Figure

(7) we note that this rate of change becomes smaller with

increasing displacement. We expect that the true curve of

Figure (7) will follow closely the one-dimensional curve

shown for small displacements and gradually deviate, reach-

ing maximum deviation at the wall.

9. An inspection of Equations (MB, 7A and 8B) of Appendix
B illustrates the relationship.

47



48

CHAPTER VI

TEST NMUIPMENT AND EXPERIMENTAL METHODS

The test equipment consisted in the main of a large

ten to one scale piston model. The piston was of the simple

two land type with oil under pressure supplied between the

lands as shown in Figures (2a, 2b, 4, and 6). The piston

dimensions shown were as follows:

C = 1.00 inches

2C' = 0.75 inches

Cl = 0.111 inches

C2 = 0.889 inches

ro= 1.25 inches

t = 0.003 inches

The main body with the piston bore was of three piece construc-

tion and pinned. This construction was employed to enable

tests to be made using the pressurized fluid land, shim stock

separating the three pieces as shown in Figure (6).

The oil used was the same as that used with the pro-

totype piston. To maintain dynamic similarity as discussed in

Chapter I the pressure was reduced by a factor of one hundred

and supplied at twenty or twenty-five pounds per square inch

from a hydraulic test stand. The entire test equipmentil is

11. Shop drawings of the parts are obtainable at the Dynamic
Analysis and Control Laboratory, M.I.T. Drawing Nos.
D-11094-AY, C-llo94-1, A-11094-2 through A-11094-7,
C-ll094-8, 0-1109 -9, and B-11094-10.
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shown in Figures (8 and 9), and the following description

of the experimental procedure can be easily followed by

reference to those figures.

To measure the lateral force exerted by the fluid

on a piston land stiff springs (thin-walled rings) between

the piston and the main body were calibrated for lateral

force and displacement. The springs were designed for a

theoretical spring constant of about 7000 pounds per inch.

Linear differential transformers (Linearsyns) were used to

measure the displacement and calibrate the springs.

First, the Linearsyns were calibrated for displace-

ment versus voltage output using a ten-thousandth's dial indi-

cator and an Instrument Electronics Voltmeter. An ordinary

oscillator furnished the excitation voltage of five volts

at five thousand cycles per second. A typical curve resulting

is shown in Figure (10), giving a sensitivity of twenty milli-

volts per one-thousandth of an inch displacement.

The Linearsyns were then installed with the equip-

ment as shown in Figure (9) with the iron slugs mounted to

the piston and the transformer coils mounted on the base or

stationary part of the equipment. To center the piston

laterally the large spring support ring to which the springs

were mounted was moved vertically at one end of the piston

by the differential screws while the extremes of travel were

measured by the output voltage of the Linearsyns. When the
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piston land reached the wall, the voltage output remained

constant while any further movement of the large ring served

only to compress the springs. Since the curve of voltage

output versus displacement, Figure (9), was linear, the

center position of the piston was the arithmetic mean of the

extreme voltages. This procedure was repeated in the hori-

zontal direction and then again repeated for the vertical

and horizontal directions at the other end of the piston.

With a few trials the piston was perfectly centered.

The Linearsyns and spring combinations were next

calibrated for force and voltage output by hanging known

weights on the levers shown in Figure (9). This procedure

resulted in a curve of force versus output voltage, or by

virtue of the calibration curve of displacement versus

voltage, the curve was transformed to a curve of force

versus displacement. For the case of the stepped land oil

under a pressure of twenty pounds per square inch was then

supplied between the lands as shown in Figure (4), and

another curve of force versus displacement was obtained in

the way described. Two typical curves are shown in Figure

(11). The force due to the fluid pressure distribution is

the difference between the two curves at each value of dis-

placement, because at a given displacement the net force is

always represented on the calibration curve. The force

exerted by the fluid on the stepped landswhen laterally
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displaced, is of the same magnitude and direction for either

land and is given directly for one land by a line such as ab

of Figure (11).

This difference in the force curves represents a

force at the point of application of the weights; therefore,

for the case of the Figure (2b) where the piston has only

an axial rotation y (a = 0), this force becomes a moment

balanced by the moment due to the fluid pressure on the

land. After an inspection of the pressure distribution

resulting from a cocked piston (Equation 6D), it was assumed

that the center of pressure was located approximately at the

center of the axial land length. (Actually it starts from

that point at Y = 0 and moves slowly in the direction of

increasing z as Y increases). Then from the dimensions of

the piston the forces on the lands acted at points 1.75

inches apart. The weights were applied to the piston six

inches apart,and the fluid force was obtained by equating

moments. Force rather than moment was obtained for compari-

son to Equation (16D) or Figure (3), which gives force as a

function of the axial rotation Y and the displacement 7

(r is zero in Figure 3).

After calibration of the springs and Linearsyns

for fo'rce and displacement, an alternative method of

measuring lateral force was employed. Using the differen-

tial screws, the piston was laterally displaced a known
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amount (given by voltage output of Linearsyns). Then the

oil was supplied under pressure, and if the leakage fluid

exerted a lateral force, the piston was further displaced

due to a compression or expansion of the springs. Since the

springs were calibrated, the displacement gave the lateral

force exerted by the fluid. The additional displacement

caused by this force was used to correct the original lateral

displacement.

The method just discussed was employed to verify

the conclusions of Chapter III, which stated that if a cir-

cular cylindrical land (Figure 2a) is displaced laterally,

no force results. However, this method of measuring lateral

force does not yield accurate results when a lateral force

obtains, because the springs in general exert both a force

and a bending moment on the piston. The moment is dependent

on the way the large spring supporting ring is clamped by

the differential screws; moving the ring to a new displace-

ment my alter this moment and change the spring calibration

for force. The first method described circumvents this

difficulty since the ring remains clamped during the experi-

mental runs. The two force-displacement curves of Figure

(11) are obtained by hanging weights on the ends of the

piston once without oil supplied and then with the oil

supplied. In this case the bending moment exerted by the

springs, although indeterminate, remains the same at a given

j
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displacement, and the difference in force between the two

curves is due only to the fluid.

Experimental results for the land types shown in

Figures (2b and 4) are plotted in Figures (3 and 5) respec-

tively.
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CHAPTER VII

EVALUATION OF RESULTS AND VALIDITY OF

ONE-DIMENSIONAL FLOW ASSUMPTION

To evaluate the validity of the theoretical results

we shall employ experimental data obtained for lateral force

and displacement for the straight cylindrical land shown in

Figures (2a and 2b), the stepped land shown in Figure (4), and

the tapered land. The experimental results for these lands

are plotted in Figures (3 and 5). All the theoretical results

are obtained from the assumption of pure axial, laminar flow

(i.e., peripheral pressure gradients are neglected). Analyti-

cally the average peripheral pressure gradients are about one-

tenth of the axial pressure gradients, and we expect good

results from the analysis based on pure axial flow. The experi-

mental points in Figure (3) for the cocked circular cylindrical

land fall very near the theoretical curve substantiating the

results expected.

Figure (5) shows the experimental points for the

radially stepped land. These points indicate that the lateral

force increases more rapidly than the theoretical force for

small values of displacement. It gradually drops off, crossing

the theoretical curve at7 equal to 0.6, reaching maximum

deviation at the wall.

The greater initial rate of increase of lateral

force may find explanation in a consideration of the transi-

tion region of laminar flow. When fluid flows from the large

supply reservoir into the small region of flow, a certain

length of theflow region is necessary to fully develop the
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laminar velocity profile. See Figure (12). As the fluid

enters the region of flow, its velocity is uniform across

the clearance separating the surfaces. At the surfaces the

fluid becomes stationary, and the viscous action of the fluid

begins to decrease the velocity of adjoining fluid layers;

gradually more and more of the fluid is affected in a region

beginning at the surfaces and extending inward toward the

center of the clearance space. The same amount of fluid

flows into the transition regjon as flows out; therefore,

since the velocity near the surfaces decreases from the ini-

tial uniform velocity, the layers of fluid near the center

of the flow region must be accelerated to a higher velocity.

This acceleration of the inner fluid layers occurs at the

expense of a pressure drop which is in addition to the laminar

flow pressure drop. For flow in pipes the transition region

is found to vary from twenty to fifty diameters, depending

upon the flow rate and entrance section. The length of the

transition region is greater if the entrance region has a

sharp corner, which causes eddies in the flow.

In the case of the stepped land the radial clearance

is 0.006 inches in the entrance region which begins in a sharp

corner. If flow in a pipe is used as an indication, the

transition region could extend a length of 0.300 inches

along the axial land length, whose total length is only one

inch. When the land is displaced downward, more fluid flows
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into the region along the top of the land and less along the

bottom. A greater initial pressure drop occurs along the

top of the land, because more fluid must be accelerated in

developing the laminar flow profile. The pressures along

the top surface of the land become smaller and a still

larger lateral force results than is indicated by the assump-

tion of complete laminar flow everywhere.

The phenomenon just described was not measurable

for the straight, cylindrical land of Figure (2a), because

the radial clearance was only half as great. Since flow

varies as the cube of the gap width, the flow for the

straight land was only one-eighth of the flow for the

stepped land. The additional pressure drop in the transi-

tion region,and, therefore, the lateral force is propor-

tional to the flow rate. The experimental results for the

straight land with smaller radial clearance plotted in

Figure (3), therefore, fall nearer the theoretical curve.

Although the theoreticallateral force deviates

as much as twenty-five percent at some points from the

actual force, the assumption of one-dimensional laminar

flow is well warranted in consideration of the great mathe-

matical simplification resulting. Neglecting the laminar

flow transition region, Figure (7) illustrates for the pres-

surized fluid land the small error between the exact two-

dimensional solution and the one-dimensional solution for
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small values of displacement.

Note that for all three land types considered the

orders of magnitude of the lateral forces resulting are same.

From the dimensional analysis presented in Chapter I the force

on the prototype piston is the same as that on the large scale

model. For conventional land dimensions and a pressure drop

of 2000 psi for the prototype piston (20 psi for the model)

this force attains a value of about fifteen pounds. The dry

friction force resulting from such a lateral force on an

improperly designed land can become very large.

All dimensions of the model piston are ten times as

large as those of the prototype, and the step on the land of

Figure (4) becomes 0.0003 inches on the prototype land. In

grinding a theoretically straight land a taper of this magni-

tude could result; and as shown in Appendix A, a tapered or

stepped land with the small radial clearance opening toward

a high pressure region will cause a decentering force. In

view of such a possibility it may be desirable to design

stepped lands which would always result in a centering force.

A step is much easier to machine or grind and gives rise to

a greater centering force than the tapered land. See Figure

(5).

High spots on a land can be qualitatively analyzed

through the stepped land. A high spot is essentially a step,

changing the pressure gradient as shown in Figure (5). From
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an inspection of the pressure distribution shown in this

figure it is noted that a centering or decentering force due

to the pressure distribution can result depending upon the

location of the high spot. If a high spot on one side of a

land is nearer the high pressure region, the land will be

forced against the bore wall by the linear pressure distri-

bution existing on the opposite side of the land. However,

if the high spot is nearer the low pressure region, the land

will locate itself so that the pressure distribution resulting

will be balanced by the linear pressure distribution on the

opposite side of the land.

A consideration of high spots on the land leads to

the possibility that dirt particles in the fluid may cause a

lateral force which will force the piston land against the

wall. Dirt particles that are carried into the flow region

may cause silting near the entrance region. Although not

completely cutting off the flow of oil, they may cause a

large pressure drop near the entrance region, lowering the

pressure downstream on one side of the land. The pressure

distribution on the opposite side of the land forces the

land and dirt particles against the wall. The lateral force

resulting from the silting of dirt particles may attain a

value as large as that resulting on a stepped or tapered

land.

In Chapter III it was shown that no lateral force

results on a straight circular, cylindrical land that is

- 4
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only laterally displaced. This result was extended to show

that no lateral force results on a displaced out-of-round

land if the out-of-round condition is uniform in the axial

direction. However, an out-of-round land can contact the

bore wall along a portion of the land and bore surfaces,

cutting off the flow (no fluid pressure distribution). The

pressure distribution existing on the opposite side of the

piston land will hold it against the wall; and for this one

condition a lateral force will result on a straight landed

piston.

From the preceding discussion on land taper, land

high spots and out-of-round lands it is seen that the proto-

type piston land with radial clearances of 0.0002 inches and

less is a very delicate object, and great care must be taken

in manufacture. This is especially true if the piston is to

be used with a low axial force level stroking mechanism as

in many control applications. In this paper we have endea-

vored to analyze the lateral forces resulting from certain

land and bore configurations in order to permit more effi-

cient land designs by eliminating as much as possible dry

friction resulting from lateral fluid leakage forces.
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APPENDIX A

DERIVATION OF EQUATION FOR LATERAL FORCE

ON A STEPPED DIAMETER IAND

One piston land shape that will give rise to a

lateral force when displaced from the axial centerline is

that of a stepped land subjected to two different but uniform

pressures over each axial end as in Figure 3. As the product

of the land length, C, and the radial clearance becomes very

small compared to the diameter or peripheral length, then the

flow becomes predominantly axial. Therefore, if we assume

pure axial capillary flow between two surfaces with a small

separation the flow Equation (5) becomes

- l2I ' (LA)
dz

Solutions of this equation give the pressure distri-

bution over the surface of the land as a function of z, and h,

or as a function of z an1 w because h is some other function

of z and w. The resulting pressure distribution can be

integrated over the surface of the land to obtain the lateral

fluid force.

Integration of Equation (lA) gives

12 A z2
ps P h2

2 h~23
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121 zI 1 (2A)

1 1

where z1 and z2 are measured as shown in Figure (4).

Inserting the boundary condition that at z2 C C2

and z = -C1, p2 = p.1 and eliminating Q' the pressure distri-

bution in the two regions of flow becomes

p p ~pg h 13 z 2

z2 C h23 + C2h 3

(3A)

Pz Pa PRh2 3 z,

1 h2 3+ C2h

The force per unit peripheral width exerted by the

fluid pressure on the land is obtained by integrating pz

from 0 to 02 and pz from -C1 to 0.

,_ ( C 2 + 2C2 1 ) h23 + C2 2hi3 (4p)

2 Clh2 + C2h1 3

The total fluid force exerted on the land (positive

in the direction of piston displacement, a, from the axial

centerline) is obtained by integrating the component of pres-

sure force in the direction of the displacement. By symmetry

the fluid force perpendicular to this direction is zero, and
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the total force on the land in the direction of the displace-

ment is

F F' cos o ro dw (5A)

Also from symmetry, or realizing that the integral

of the cos w from 0 to 2w is 0, the force on the land is zero

when the piston is centered with respect to the bore. When

the piston is laterally displaced, h and h2 are functions of

w; and for small values of the ratio of radial clearance to

the land radius are given as an excellent approximation by

h 1 = t(l + T cos W)
(6A)

h2 = e + t(l + T cos w)

where t = radial clearance at large land diameter and

Before evaluating the lateral force, it is desir-

able that some optimum condition be satisfied by the force,

since it is a function of C2/Cl and h2/hl. The purpose of

obtaining a centering force on the piston is to keep the land

from contacting the wall, resulting in static friction rather

than fluid friction. Two obvious possibilities are to maxi-

mize the centering force when the piston is in contact with



the wall, or to maximize the rate of change of centering

force with displacement at zero displacement. The first

involves the evaluation of an integral and much more alge-

braic manipulation than the latter. Consequently the method

of maximizing the rate of change of lateral force with displace-

ment at zero displacement will be employed. Note that to

obtain a centering force (i.e., opposite to the lateral dis-

placement) the rate of change of centering force with displace-

ment must be the negative of the rate of change of lateral

force which through our choice of coordinates acts in the

direction of displacement. Hence, for a centering force ( - )

must be positive.

The derivative of Equation (5A) with respect to dis-

placement is:

alF- T -
J0

Fco rcos w r dw

)F' .4)F' dh

From the geometry of Figure (3) or Equation (6A),

d cos w; and dh = dh1 dh2

Therefore
2-

F_
6 Tc30 - tr cos2w d o

a 1 0
( 7A)

68
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At the centerline hl, h2 and 0 re -indepwadent of W.

and (- ) can be maximized by maximizing (- -v)* Writing

first that h2 = h +e and 02 = C-C 1 , we obtain from the derivative

of Equation (4) the result

3p C c (- 1 )( 1 + - 1)(8A)

- 3 2 (A- 2 [cl(l+i~
(1+ +| C-C 1

Note that the right hand member of Equation (8A) is negative

when e = h2 -hl is positive, and is positive when e is negative.

Therefore, the fluid will exert a centering force on the land

if the boundary pressures are such that fluid flows from the

region of large to small clearance and will exert a decentering

force if the boundary pressures are reversed.

To maximize the rate of change of centering force the

derivatives of -. are taken with respect to e and Cl

and equated to zero. This procedure obtains the results:

C C and e h2o

1 + ho

That these values give a maximum rather than a minimum can

be seen by noting that all length dimensions must be positive,

and then that - a.- 0. Since the above obtained values

result in a value of -A which is greater than zero, they
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must give a maximum. This can also be 'checked by trying

various values of C1 and (h2/hl) as C1 approaches zero and

(h2/h1 )o approaches oO .

Evidently h10 cannot be set at zero; but for a given

hlo, making (h2 /h1 )o as large as possible within the limita-

tions of capillary axial flow, C1 for the optimum condition

can be determined from Equation (8A). The entire flow analy-

sis presented here assumes capillary and axial flow. As the

clearances between piston land and cylinder increase, both

assumptions become less valid; and therefore h2 0 cannot be

increased indefinitely to obtain large values of (h2A)o'

Furthermore, the minimum radial clearance necessary for free

piston movement commensurate with grinding accuracies obtain-

able is about 0.0002 inches for the prototype piston land,

giving a value of 0.002 inches for the ten to one scale model.

For such a value of h setting h at 0.004 inches or

(h2/hl)= 2 is about as large a value as would be warranted

under the flow assumptions made.

From Equations (8 and 5a) and (h2 0h) = 2,

C1 = 0.111 C

02 = 0.889 C

h1 t(l t cos w)

h2 = t(2 + r cos w)

MMMMMNW - - - __ --- __ MMEMM I



71

Substituting these values into Equations (4A and 5A),

the force exerted by the fluid on the land is

F- PrOC f 0.210(24rcosW 3+ 0.790(1+rcosw) 3 cosW dL +
2 c 0.111(2+-Cosw) 3+ 0.889(l+-rcos)3

(10A)
2W

+ ParoC cosw dw

The second integral is zero and the first is most

easily integrated by Cauchy's integral or residue integra-

tion. 1 2 Appendix C gives the derivation for evaluating inte-

grals of the form

rd w
dw _ (10)

re a+ k cos w

with the restriction that the integrand remain finite for all

real values of w. Integrals arising from axial capillary flow

in an eccentric annulus for any piston shape or configuration

can be reduced by division and partial fraction expansion to

the form above.

12. R. V. Churchill, Complex Variables and Applications,
pp. 90-92, 125-134.
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By division to reduce the degree of the numerator

in Equation (10A) to one less than the degree of the denomi-

nator we obtain

27

p rC
F C f o IC3 + T.29

0.100 T2cos2 w + 0.494 T cos WI 0.520 dw

(rcos w+1.333)(T cos w- 2e15 )(T cos w2 e-A5T/ 6 )J

The first term integrates to zero, and a partial fraction

expansion gives

Sroc 0.102
:A 0. 2 9 7 - 1333 cos

0

+ i 0.255 w0255
2-iT/6 + r cos w - eIW/6 + , co W

T is a dimensionless displacement parameter given by 5a where

0 < r 1. The restriction placed on Equation(lC) is satis-

fied (i.e., all integrands remain finite for all real values

of w), and Equation (lA) now is integrable by ordinary
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methods and the use of Equation (30) of Appendix C. Each

separate term of Equation (lA) may yield a complex number,

but the force must be real and the sum of the integrated

terms must yield a real number. This fact serves as a check

on the evaluation of real integrals by the method of complex

residue integration. Application of Equation (30) Appendix

C yields

F i T 0.102
2roCpg 2 T 0.297 - +(

;1.778 - T (12A)

0.510 sin t- 223T2
16 4 2 4 2

The dimensionless force coefficient F/2roCpg is formed for

convenience in comparison with other land shapes and confi-

gurations and is plotted versus dimensionless displacement,

T, in Figure (5).

An infinite number of curves of force versus dis-

placement can be found for the infinite number of combina-

tions of Cl and(h2 /h4. However, since

2W

-) -0h t r cos w dw
d O h

1
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-)F/-r can have its absolute maximum13 only when - cFl/bhl

is an absolute maximum for every w. This must occur at zero

displacement, because only at that point are the values of

C , h2 /hl, and - aF'/dh1 which obtain a maximum, the same at

every w or peripheral point. Alternatively, since - aF'/ah1

must be a maximum for every w, it cannot be a function of w-

and the point of zero displacement from the axial centerline

is the only point which satisfied that condition. In Figure

(5) the slope at the origin is not the greatest value obtain-

able, because the optimizing dimensions given on Page (69)

were modified due to the physical limitations on the dimen-

sions.

23.. Absolute maximum refers to a maximum with respect to both
Cl and h2 /hl. For any particular value of h2 / 1  Cl can
be found to obtain a maximum value of 4F'/4h! whch may
not be the value of h2 /h for an absolute maximum.
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APPENDIX B

DERIVATION OF IATERAL FORCE ON A CIRCUIAR,

CYLINDRICAL LAND AS A PRESSURIZED FLUID BEARING

The geometry of the pressurized fluid land is shown

in Figure (4). If the flow in the upstream capillary orifice

is assumed radial and the flow along the surface of the land

is assumed axial, we can write for the pressure gradients

in the upstream and downstream orifices from Equations (5)

that

d p , - 121A dQ

h13 h1 rdw (1B)

d6 Q (2B)
dz - 32 17r dw

The factor of one-half occurs in Equation (2B) since the flow

divides at the center of the land surface and flows out in

opposite axial directions. The flow per unit width, Q', in

Equation (1B) is a function of r and must be taken into

account when integrating to obtain the pressure distribution.

Upon integration of Equation (1B) from ps to Pr and Equation

(2B) from pz to Pa we obtain

p,- r 124 d Q r sB- a- (3 B)

s T v lhi y dto r

14. The validity of these assumptions is discussed on Page (45).



(4B)P 6 d Z)
h rod

The pressure pr at r = ro is equal to the pressure pz at

z = 0. By inserting this condition into Equations (3B) and

(OB) we can solve for dQ/dw.

dQ pgh 3h3ro

3A (Ch 1
3 + 4r h3 ln r5 /ro)

(5B)

Substituting this expression back into Equation (4B) yields

(6B)p =P paz = 1 + 4r h3 ln rs/ro + Pa

Chi3

The lateral force per unit peripheral width of land

(taking into account both halves of the land) is given as

C/2

F' = 2 pzdz
p C/2

+ 4h3ro in rs/r
1 3

(7B)

and the total lateral force on the land is

21W

F' cosWradw

76

+ PaC

( 5A)



Again as discussed on Page 7) we shall maximize the negative

rate of change of F with displacement at zero displacement.

The negative is taken, because -F corresponds to a centering

force. The derivative of Equation (5A) is given on Page(68)

as
27r

212
() F F't 2

( - g ) = (- g)t ro cos w do (7A)

This equation can be maximized at zero displacement by maxi-

mizing (- aF'/8h) because at the centerline h and (- cF'/ah)

are independent of w. The derivative of Equation (7B) is

6pgr0 C 2 h1
3 h2 ln r5/r0

(Ch 3 + 4r h31n r5 /r0 )
(8B)

For zero displacement h is equal to the radial clearance and

the variables in Equation (8B) are hl (the gap width of the

upstream orifice) and r. (the radius to the supply pressure

groove). See Figure (4).

To maximize (- cF/ah) with respect to both h1 and

r. we take their respective partial derivatives and equate

them to zero. This procedure yields for both resulting

equations

4r h 3

03  ln rs/o = 1
Chl

(9B)

I
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Note that h is determined only as a function of rs. This

result could have been anticipated upon consideration of the

fact that the pressure drop in the orifice depends both upon

r. and hl; and the same pressure drop can be obtained for

different combinations of r. and hl. At zero displacement

or the centered position (h - t) the condition that will

result in the greatest slope of the curve of centering force

versus displacement becomes from Equation (9B)

4rot3

Ch 3 o
(10B)

and F' from Equation (7B) becomes

C/2
Ft -Pg9 1 t h3/t3 PAC (11B)

Inserting F' and h from Equations (11B) and (6A) into (5A)

yields

2W

F = Cropg2 2 f
cos w dw

1+ (1 + T CO W)3
(12B)

This equation is again of the form given in Appendix C by

Equation (1C). Following the procedure outlined there we

can expand the integrand by a partial fraction expansion

which yields

F 78
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2Wr

Tcos w+ 2 T cosw+ e

+ Tdw
TCOSuj+ e

Using Equation (30) we can evaluate the separate terms in

this integral and obtain

F = CrOPg 2M
2

2 +
L379 TiI- T2

1 (eia/2 + e-a/2)]

3-ri r 
2tT4

where

a = tan 1  v )
- 1 - 2T

This can be further simplified to give the following form

oCpg It ~--
(tanl

cos
- 1 - 2T

2 (13B)

The left hand member of Equation (13B) is plotted versus-r

in Figure ( 7 ).

1+ T2 + T4
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APPENDIX C

EVALUATION OF INTEGRALS BY RESIDUE INTEGRATION

Capillary fluid flow in an eccentric annulus in

which the flow is predominantly perpendicular to the plane

of the annulus, i.e. pressure gradients in the axial direc-

tion are much greater than those in the peripheral direc-

tion, give rise to integrals of the form

27r
f(sin o, cos w) dw

Residue integration1 5 in the complex plane can be employed

for evaluation of such integrals if f is a rational function

of sin w and cos w and if f remains finite for all real values

of w.

In particular by virtue of the capillary flow equa-

tion

dp_ 121L
dz

where h is the radial width of the annulus and Q' is the axial

flow rate per unit peripheral length, we arrive at integrals

15. Churchill, R. V., Complex Variable and Applications,
pp. 90-92, 125-134.
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which can be expressed by partial fraction expansion as a sum

of terms of the type

12W

dw

reia + k cos W
(10)

If we consider w as the argument of the complex

number z on the unit circle z = eiW , we can write

cos Z 2 + 1 dw = dz
2z ri

Equation (IA) becomes by Cauchy's residue theorem

I =f f(z)dz =
c

2dz

ik(z2 2Z ei z + 1)

2Wi (Residues inside c)

where c is the unit circle Izi = 1. The poles of f(z) occur

at values of z for which

Z2 r e a z + 1 - 0,

or at

z, 2 -re i + (r - 2r2k2 cos 2u + k ) e at 2nT)j

(20)

4
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a = tan~ (
sin 2r 2/2 n = 0, 1

cos 2a - k2/r

Of the two poles only one lies inside the unit circle because

their product (zi - z2) must equal one by Equation (20). By

inspection the pole inside the unit circle is

1 1 - reia + (r4- 2r2k2cos 2c + k ) j

The residue at z, for the case of simple poles is

Res 1 = z) f (z

1

i(r . 2r~k 0 2cr t k e e7

Hence from Equation (2C),

2W

I=f d O = 271 (Residues inside c)
re +k cosw

2W
i a

( rA -2r2k2cos 2 +k )* e

(3C)

where a = tan 1 sin 2a

cos 2a - k/r2
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APPENDIX D

DERIVATION OF IATERAL FORCE ON A COCKED

AND DISPIACED CIRCUIAR CYLINDRICAL LAND

If a right circular, cylindricalland becomes cocked

and displaced (i.e., axial centerlines of piston land and

bore are rotated and displaced with respect to each other,

Figure 2b) a moment exerted by the fluid results tending to

restore the piston land to a position parallel to the bore.

To enable easy mathematical treatment we will assume that

the flow is predominantly axial, i.e., the peripheral pres-

sure gradients are negligible compared to the axial pressure

gradients. This assumption is good if the axial land length

is not great compared to the peripheral length. The errors

introduced by such an assumption are discussed analytically

later with respect to other types of land geometry. Further

it is assumed that the axial rotation and lateral displace-

ment occur in the same plane. At the end of this Appendix

it is shown that displacement in any direction serves only

to reduce the lateral force on a land.

With the assumption of pure axial flow we can use

Equation (5) to obtain the pressure distribution in the flow

region. Inspection of Figure (2b) yields for the radial gap

height

h +('T+ Y C + Y ) Cos of(1D)
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where T and y are positive for downward displacement and

clock-wise rotation respectively. The limits on y can be

found by noting that the displacement of the end of the

piston land is limited by the radial clearance, or an inspec-

tion of Figure (2b) yields

0( jal + 1y (C' + C)I( t

Kor oITI + ly(C4 C)
or 0 S t I

(2D)

Equation (5) becomes for pure axial flow at any given

dp- 12L Q'
t3

z
dz

[1 t (T+ C ,-7 + y z) Cos w]

To make writing more compact we can make the following tem-

porary substitutions;

m= + (-t Y+) cos W

e = cos o

Equation (3D) becomes:

P z

dp = - 2pQ' TI
p5

dz

(m P 

ez)

( 3D)

(4D)
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The integration of this equation yields

p - PS = 6A Q'M2 -_-(m + e z)2 (
t 3 e m2(m + ez) 5D)

By using the boundary condition that at z = C, p = pa we can

solve for Q' and substitute back into Equation (5D) which

gives the pressure distribution in the region of flow as

pg(m - eC)2 [m2 - (M + ez) 2 6
p =ps - (6D)

(m + ez) 2 [m2 - (m + eC) 2 ]

Integrating for the moment exerted by the fluid on the entire

piston becomes cumbersome, and therefore we will find the

lateral force on a single land and assume that the center

of pressure acts at the center of the axial land length.

Inspection of the resulting pressure distribution (Equation

6D) will show that this point is a satisfactory approximation.

The force per unit peripheral width is given as

C
F' p dz (7D)

Substitution of Equation (6D) yields an equation which is

again easily integrable, and we obtain

F' = psC + pg (m + eC) C2e (8D)
m 2- (m + eC)



86

This equation can be simplified by substituting for ps its

equivalent Pg t pa; then resubstituting the values f or g

and e yields

1 + ( tY-) cos w
F' PaC + pgC 2t(2T 2Y i y (9D)

t C

The component of lateral force in the direction

perpendicular to the displacement is zero by symmetry and

the component of this force in the direction of displacement

is given as

F fo F' cos w rodw

and by substituting Equation (9D)

cos + ( TtY-C')cos2W
F = Cr0  pa cosw dw t p g 2 do(2t 2 +i-R) COSw

t

(10D)

The first term of this equation integrates to zero. Again we

can write this equation more compactly with the following

substitutions:

at' 2T + 2y C +Y C

(l1D)

b'= T +
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And Equation (10D) becomes

F = pgCro
cos w dw + b' cos2 w dw

2 + a' cos w 2 +a' cosW

Now if we divide the numerators by the denominators in Equa-

tion (12D), we can reduce the integrand to the type of terms

given by Equation (10) in Appendix C and integrate using

Equation (30). Long division in Equation (12D) yields

2FW

F = pSCro fc
dw 2dw b sd
aT a 1(2 +a'cosw) +a os w w+

2b'dW +
a'2

4b'dw

a'2 (2 + a' cos W)

The third term of the right hand member again integrates to

zero, and combining the remaining terms obtains

2Ff

F = p 9Cro a' - 2b' dw + leb' - 2a' dw
a'2 a' (2 + a' cos o)

The first term of this equation is easily integrable, and

the second term can be integrated by Equation (30) of

Appendix C. The restriction on Equation (30) that the

integrand remain finite for all real w is satisfied and

(12D)

(13D)

(14D)
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the integrated equation becomes

F = pgCro a' - 2b' 2 + (4b' -2a) 2 1  (15)

a' at 2 4 - a' 2 (

Finally after substituting the values for a' and b' from

Equation (11D), we obtain for the lateral force on one land

of a cocked and displaced piston the equation

F 1 C 27 C
ne= (2T + 2Y LL ) C'F t=C - (2- + 2 - +Y )2

(16D)

If the piston is of the two land type illustrated in Figure

(2b), Equation (16D) is valid for the other land with the

difference that T is the negative of r for the first land.

This dimensionless force is plotted versus Y (C + C') for

the case when T = 0 in Figure (3).

Inspection of Equation (16D) shows that T > 0 serves

to diminish the lateral force on a land. This is true because

the rate of change of the pressure gradient depends upon the

rate of change of clearance in the flow region. To develop

a large lateral force this gradient must vary rapidly. There-

fore, the greatest rate of change of clearance and consequently

pressure gradient and lateral force occur when the piston is
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only rotated and not displaced. Displacement in any direc-

tion, then, serves only to reduce the lateral force.

I
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