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Abstract

For Parkinson's patients to function at their best, their medications need to be optimally
adjusted to the diurnal variation of symptoms. For this to occur, it is important for the
managing clinician to have an accurate picture of how the patient's bradykinesia /
hypokinesia and dyskinesia fluctuate throughout the normal daily activities. This thesis
proposes the use of wearable accelerometers coupled with machine learning and statistical
techniques in order to classify the movement states of Parkinson's patients and to provide a
timeline of how the patients fluctuate throughout the day. A pilot study was performed using
2 patients with the goal of assessing the ability to classify dyskinesia and bradykinesia /
hypokinesia based on accelerometric data. The patients were observed and videotaped.
Clinical observations of bradykinesia / hypokinesia and dyskinesia were noted every minute.
Neural networks were able to classify better than classification trees with an average c-index
(equivalent to the area under the ROC curve) of 0.905 for bradykinesia / hypokinesia and
0.926 for dyskinesia. A separate group of 5 patients were observed with the additional goal
of building models that can classify the movement of a patient without requiring clinically
annotated training data for the same patient. An enhanced protocol was used in the final
study. Dichotomized linear regression was found to classify well with an average c-index of
0.8219 for body bradykinesia / hypokinesia and 0.8799 using as the gold-standard the
patient's diary. Dyskinesia was classified at a c-index of 0.7522. Neural networks did not
perform as well, possibly because of restrictions placed on adjusting parameters. The two
most clinically important problems: predicting when the patient feels he/she is "off' or when
he/she has "troublesome dyskinesia" were discriminated with c-indices of 0.96 and 1.0
respectively. The good result of the models despite the small number of patients is promising.
Further studies with larger number of patients are therefore justified.
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Executive Summary

Background
Clinicians who care for Parkinson's patients must be able to manage and offset the hour-by-
hour fluctuations in movement that these patients often experience. Symptoms of
Parkinsonism such as bradykinesia, hypokinesia and akinesia, and medication-related side
effects such as dyskinesia need to be reported to the clinician in a manner that accurately
conveys the timing and severity of the symptoms. The clinician can then tightly adjust and
titrate the timing and dosing of medication, allowing the patient to function at his or her best.
Patient history and patient self-reporting diaries are currently used for this purpose, but they
have problems related with patients' compliance, completeness and reliability. A monitor
that could be worn by the patient while he or she is at home and could issue to the clinician a
report of how the patient has been moving over the course of the day would be of great help.

Wearable devices have been studied for the measurement of movement in Parkinson's patients,
but none have been designed in a manner that would be useful for the titration of medications.
The data used to create the classification algorithms for these devices generally did not have
the continual clinical annotation that would be needed to create a device that could produce a
timeline of the patient's movement. Their classification algorithms were generally trained
with data derived from structured tasks, and were therefore inappropriate for at-home
ambulatory monitoring, which must be able to work in an unstructured environment. Their
classification schemes generally address dyskinesia or tremor, but not bradykinesia /
hypokinesia, which is clinically important. The few devices that attempt to detect
bradykinesia / hypokinesia do not address them in a way that would be useful for adjusting
medications. Furthermore, previous classification schemes generally used simplistic
algorithms that could not address the complexity of this problem.

Previous Work
A pilot study was performed to demonstrate the feasibility of an accelerometer-based
movement monitor for patients with Parkinson's disease. The device that was studied
consisted of five 3-axis accelerometers attached to all 4 limbs, as well as to the hip. Two
Parkinson's patients were observed by a neurologist for a cumulative total of 640 minutes.
Each patient's state was recorded by a neurologist using a 5-point scale for bradykinesia /
hypokinesia and a 5-point scale for dyskinesia. In addition, videotapes of the sessions were
reviewed by the neurologist, allowing for the neurologist to resolve the state of bradykinesia /
hypokinesia and dyskinesia down to a minute by minute basis. Features were derived from
the raw accelerometric data based on the absolute of the derivative of magnitude of
acceleration as well as position and magnitude correlation between sensors. The data were
randomly divided into training and test sets and each of the two scales of the neurologist's
annotations were dichotomized. Neural networks and classification trees were used to predict
dykinetic vs. not-dyskinetic states, as well as bradykinetic / hypokinetic versus not
bradykinetic / hypokinetic states.

Neural networks were able to detect bradykinesia / hypokinesia on the test set with c-indices
(area under the ROC curve) of 0.880 and 0.921 for patients number I and 2, respectively.
Dyskinesia was detected with c-indices of 0.911 and 0.941. Classification trees detected
bradykinesia / hypokinesia with accuracies (percentage of correct classifications) of 0.748 and
0.853 and dyskinesia with accuracies of 0.806 and 0.916. Other information that was found
to be useful:

* Detecting bradykinesia / hypokinesia required data from more sensors (four) than did
detecting dyskinesia (two).

* The hip sensor (sensing trunk motion) appeared to be the most important sensor.
* The left upper extremity was not important in the models
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Main Study
These preliminary results strongly supported the idea that our device could be used to classify
movement states in Parkinson's disease. Still, there were not yet data from enough patients in
order to build a truly useful classifier. In the pilot study, the classification models were built
from data obtained from the same patients that the classification models were tested on. In
the real clinical "world", the device would have to classify the movement states of a patient
without any previous data on that patient. This would require sampling a larger group of
patients. The main study described here sought to demonstrate that a useful movement state
classifier could be constructed without using training data from the patient in which it was
going to be employed. For this purpose, 5 additional patients were recruited. An improved
clinical scoring protocol was used, which included more accepted measures of scoring
dyskinesia, bradykinesia and hypokinesia, as well as a diary used by the patient to report
his/her symptoms. Additionally, the two pilot study patients were re-scored and included in
some of the analysis. Linear regression and neural network regression models were built and
tested. A true test set could not be used because of the small number of patients. This
problem was remedied by using a "leave-I-out" method. All choices for variables and other
parameters were fixed as guided by the pilot study before the analyses were performed.

Despite the relatively small sample of patients, the results were encouraging. The neural
network models did not perform well, likely because I did not permit parameters of the neural
networks to be adjusted in order to optimize performance (so as to prevent over-fitting).
Linear regression, which does not have a need to adjust parameters, did perform well. The
linear regression models had an average c-index of 0.8219 for predicting the level of body-
bradykinesia / hypokinesia and an average c-index of 0.8799 for predicting the patient's state
as manifest in his/her diary entry. Dyskinesia was not modeled as well, with an average c-
index of 0.7552.

Remarkably, the main study models performed best at the tasks that were the most important.
The general clinical consensus is that the patient's report (i.e. diary) is more important than
what the clinician observes and that detecting "off' states and "troublesome dyskinesia" helps
most with adjusting mediations. Fitting with that, the linear regression models were able to
differentiate "off' states (from "on" states) with an average c-index of 0.96 and to
differentiate "troublesome dyskinesia" (from all other states) with an average c-index of 1.0.

Conclusion
This project has shown that it is possible to classify movement states in Parkinsonian patients
solely based on data obtained from a set of wearable accelerometers. The methods used in
this project were able to classify the movement state of patients even if no clinical
information were available on those patients. The methods performed reasonably well in
discriminating different movement states from each other despite the fact that there were only
a handful of patients used in constructing the classification models. It is entirely possible that
the discriminative power of the models would grow if the models were based on a larger set
of patients.
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1. Introduction

This project seeks to investigate the potential usefulness of a device to
monitor Parkinson's patients. This monitoring system is developed to
record the effect of Parkinson's medication on the patients' movement,
enabling Parkinson's medications to be optimally adjusted by clinicians
who utilize this information.

1.1 The problem

Parkinson's disease is a common disorder affecting at least 750,000 one
million Americans48. Parkinson's disease causes progressive difficulty in
moving. This includes slowness of movement, decreased amount of
movement and difficulty initiating movement. Oftentimes there is an
associated tremor as well as balance and posture problems. These
difficulties with movement can be quite debilitating for patients. They
seriously affect Parkinson's patients' quality of life as well as their ability
to perform necessary activities of daily living.

Parkinson's disease is, however, a treatable condition. Medications can
improve the debilitating decrease of movement. Unfortunately,
medications often cause serious side effects such as abnormal movements
(e.g. chorea) and abnormal posturing (i.e. dystonia) that are in and of
themselves debilitating. The effectiveness of the medication as well as
the side effects of the medication is related to the concentration of the
medication in the patient's brain. For instance, too low a concentration
may not relieve the Parkinson's symptoms and too high a level may lead
to the abnormal movements. As a patient's disease gets worse over time,
medications become less effective and the effect of each dose lasts less.
In addition, abnormal movements, that are side effects of medication,
tend to increase. For these reasons, patients who have had Parkinson's
disease for several years are often in a delicate balance between the
benefit of medication and the side effects of medication. Even a slight
change of dosing or timing of a patient's Parkinson's medication may
have profound effects on how that patient is able to function.

In order to maintain this delicate balance of medication, the managing
clinician needs to have accurate and reliable information about how the
patient's movement changes throughout the day. Slow and decreased
movements at a particular time of day may lead the clinician to increase
medication at that time. Abnormal movements such as chorea and
dystonia may require different types of medication adjustments
depending on the timing and type of abnormal movement. Other
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abnormalities such as freezing or rapid fluctuations (i.e. "on-off") require
their own interventions. Unfortunately, a clinician who sees a
Parkinson's patient in the office is only able to witness the patient at a
single point in time and has no observational information about the
patient's daily fluctuations at home. Clearly, the history given by the
patient is very useful, but it is prone to recollection errors as well as many

patients' difficulty in judging precisely what sort of abnormal or impaired
movements they where having during the course of the day. Impaired
cognitive function is common in Parkinson's patients and may make
getting an accurate and reliable history even harder. Having a patient
take a diary can be helpful. However, patient self-reporting diaries are
difficult to comply with (often not completely filled out) and also suffer
from the same problems that can cause inaccurate histories.

1.2 The goal

This project seeks to address the problem of collecting accurate and
reliable information about how Parkinson's patients' movements fluctuate
throughout their day. The specific goal of this project is demonstrate that
a wearable device can properly classify movement states in Parkinson's
disease. To accomplish this, I used a set of wearable sensors
(accelerometers) that can measure patient's movements while they are
performing their normal activities. The data collected by these sensors
were analyzed by classification algorithms. A clinically useful classifier
would require more data collection than might be possible over the course
of a masters program. This is therefore just a "demonstration of
concept." Ultimately, the output of a fully developed device will be a
timeline indicating when the patient had decreased movements, when the
patient had fluid movements and when the patient had particular types of
abnormal movements. This timeline would be used by the managing
clinician to adjust the medications of the patient.

2. Background on Parkinson's disease

Parkinson's disease affects at least 750,000 Americans with the highest
48prevalence in older age groups . Parkinsonism is defined as two of the

following: tremor at rest, rigidity, slow and decreased movements, flexed
posture, loss of proper postural stabilizing reflexes and episodes of
sudden inability to move with at least one being tremor or slow
movement 31. To be accurate, not all Parkinsonism is Parkinson's disease
per se. To have Parkinson's disease, a patient should have a response to
medication and not have Parkinsonism due to a known cause or as part of
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a more complicated syndrome. Still, Parkinson's disease is the most
common cause of Parkinsonism.

2.1 Role of medication

Most medications for Parkinson's disease work by compensating for the
progressive loss of dopamine secreting neurons that is the cause for this
disease. These include levodopa a precursor of dopamine, dopamine
agonists, medications that inhibit the breakdown of dopamine and
anticholinergics. Anticholinergics are thought to work by rebalancing the
dopamine/acetylcholine balance in the brain that was offset by the loss of
dopamine neurons. They are not a first line medication, but are used
mostly in treating tremor. Levodopa is the standard medication and
typically the most effective. However, many abnormal movements have
been attributed to levodopa therapy and there is some thought that it may
be toxic to the dopamine secreting neurons and may therefore make the
disease worse. For this reason, some patients are started on other
Parkinson's medications first. Still, in the end, patients typically end up
on levodopa, usually in addition to other medications.

In addition to medication, there are neurosurgical procedures that can be
used to treat Parkinson's disease. These include selectively ablative
procedures (e.g. pallidotomy, thaladotomy), electrical stimulator
implantation and cell transplants. These procedures have their specific
indications, but are generally performed in more advanced disease and
typically do not eliminate the need for medication.

2.2 Terminology

When a patient has decreased movement, he/she is said to be in the "off"
state. Normal or increased movement is said to be "on". Oftentimes
patients gradually turn "off" as the effect of medication wears off
("wearing off phenomenon"); sometimes the switch from "on" to "off"
may be more abrupt ("on-off phenomenon" sometimes called "yo-yoing")
and may rapidly switch back and forth from "on" to "off". This is usually
a sign of advanced disease. Collectively, wearing off and yo-yoing are
termed "response fluctuations".

Decreased movement in the "off" state can be in the form of slow
movement ("bradykinesia"), paucity of movement ("hypokinesia") or
difficulty initiating movement ("akinesia"). "Freezing", a sudden
inability to move, may occur in the "off" state or the "on" state, with
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different clinical ramifications ("off' state freezing may improve with
more medication, but "on" state freezing is more problematic).

"Dyskinesia" is a general term for abnormal movements (other than
tremor). There are many subtypes of dyskinesia. The two most relevant
ones for our purposes are chorea (abnormal arrhythmic jerky movements)
and dystonia (abnormal posturing). These are typically felt to be side
effects of medication.

2.3 The prevalence and incidence of the main symptoms I wish to
measure (dyskinesia and response fluctuations)

Both dyskinesia and response fluctuation are quite frequent in Parkinson's
patients. Schrag and Quinn3 3, in a community based study found that of
the 70% of Parkinson's disease patients treated with levodopa, 40% had
response fluctuations and 28% had dyskinesias. According to the
DATATOP study, after only 18 months of treatment with levodopa
(relatively early in disease course) 51% developed wearing off, 5% the
more severe "on-off" fluctuations and 26% developed dyskinesias .
These problems become more severe with the duration of disease.

24Marsden et al. found response fluctuations to have an incidence of about
10% per year, whereas the more recent CR FIRST study5 found only
about 20% after 5 years. In any event, symptoms tend to progress with
increasing duration of disease and therefore the trend to increasing
longevity will likely increase the prevalence of dyskinesias and response
fluctuations even beyond where they stand today.

2.4 Rating scores and diaries

Parkinson's research relies on the ability investigators to compare the
Parkinsonism (or dyskinesia) of one patient with that of another (or to
compare the same patient at two different time points). For this reason,
there is much literature on ways to quantify (i.e. score) patients' degree of
Parkinsonism (or dyskinesia). The methods that are most commonly used
to quantify a Parkinson's patient's state are rating scales and self report
diaries. Device-based monitoring, both in laboratory and ambulatory, has
also been used. I will review the literature on device-based monitoring
later when I discuss previous work related to this project. Here, I will
review rating scales and patient diaries.

The discussion of rating score and diaries is relevant to this project for
several reasons. Firstly, rating scales and diaries are methodologies that
compete with the type of device discussed here. A researcher (or
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clinician) may decide to either use one of these older techniques or to use
this device depending on the merits of the different methodologies. More
importantly, rating scales and diaries are also the standards (albeit not
"gold standards") against which this project's device would need to be
validated. Lastly, rating scales and diaries are necessary in order to create
the classifier for the wearable Parkinson's device. They need to be used
to quantify the state of Parkinsonism, dyskinesia etc. so that the
classification model can be properly trained and tested.

The most important reason for reviewing rating scales and patient self-
reporting diaries is their use in creating the classifier. To build the
classifier, I needed to obtain accelerometric recordings of Parkinson's
patients and corresponding clinical annotations as to their state of
movement (e.g. degree of dyskinesia, bradykinesia / hypokinesia). This
was used to train the classification algorithm. How precisely this
annotation is best is the question. Rating scales and patient self-reporting
diaries could be used for this annotation. A good understanding of the
various methods of annotation is necessary before deciding which ones
should be used in collecting data.

2.4.1 Rating scales

As opposed to patient self reporting diaries, rating scales are typically
used by professionals who are observing the patient and not by the patient
himself/herself. They are intended to provide an "objective"
measurement in contrast to self-reporting diaries.

There are rating scales for the staging of Parkinson's as well as for the
momentary level of Parkinsonism or dyskinesia. Since the staging of
Parkinson's is only relevant to this project as a means to stratify patients,
I will focus on the momentary scales.

2.4.1.1 Scales for dyskinesia

"Continuum" scales

The simplest rating scale is a "continuum" scale. These scales typically
treat tremor and bradykinesia (which occur in the "off' state) as the polar
opposite of dyskinesia (which tends to occur in the "on" state). Such a
scale may give a negative integer for an "off' state, zero for "on" with no
dyskinesia and a positive value for "on" with dyskinesia. This is
appealing since the whole rating of the patient is encapsulated in a single
number. In addition, the rating is simple to do and can be repeated as
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often as one needs (since it is an instantaneous measure). There are
however several drawbacks. Firstly, dyskinesia and "off' are not truly
opposites. Some dyskinesia can occur in the "off' state. Furthermore,
different parts of the body may be in different states at the same time.
For these reasons, such rating scales not commonly used in clinical
investigations. Still, it should be noted that patient self-reporting diaries
(which are commonly used) typically do rate "off" - "on"/dyskinetic as a
single dimension, similar to these continuum scales.

It would probably not be advisable to use a continuum scale as the basis
of how the clinician/observer scores how the subjects in the project are
doing. Since such scales are not validated and are not commonly used, a
device that can only produce output in terms of a continuum scale would
likely have difficulty being approved and being accepted by clinicians.
This stands in contrast to diaries that are completed by the patient (not the
clinician). These are typically done on a continuum scale, but are
generally accepted.

AIMS scale2

The AIMS (Abnormal Involuntary Movements Scale) scale for assessing
dyskinesia is often used in clinical studies. It was developed originally
for assessment of tardive dyskinesia (not Parkinsonism). Therefore it has
a strong emphasis on oral and facial dyskinesias which are common in
tardive dyskinesia, but are not common in Parkinsonism. For this reason,
Parkinson's investigators will often modify the AIMS by leaving out the
oral/facial parts of the scale. The scale uses 0-4 ratings which are simple
and can be repeated every 15 minutes or so. However, there are no clear
descriptions (anchors) that would tell an observer what each number on
the 0-4 scale signifies. AIMS includes assessment of the trunk the arms
and the legs and includes both observer and patient ratings of severity. It
has not been psychometrically tested for Parkinson's patients.

The modified AIMS scale would be a useful method to clinically annotate
for this project. It is commonly used and accepted and using it would
likely make the device easier to be approved and more likely to be
accepted. The modified AIMS scale does have somewhat more detail
than is currently used for clinical purposes (e.g. separate subscales for
upper extremities, lower extremities and trunk). Still, this added
information may potentially be useful to clinicians.

Obeso scale2
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Obeso scale is a scale for the assessment of patients prior to surgery for
Parkinson's disease. It ranks intensity of dyskinesia on a 0-5 scale based
on how much it impairs the patient. It also ranks duration of dyskinesia
(i.e. present for what percentage of waking hours). It is not designed for
continual tracking of symptoms and therefore is not useful for this project.

Rush (Goetz) scale2

Goetz modified the Obeso scale to create the Rush Dyskinesia Scale (also
known as the Goetz Scale). This scale requires the clinician to ask the
patient to do certain structured tasks. This would make this scale not very
useful for the purposes of this project because I am attempting to monitor
patients at home in their natural environment where they would not be
asked to perform such tasks. Therefore, the scale could not be used
unmodified to train or validate an ambulatory monitor. To the scale's
benefit, it does differentiate the type of dyskinesia (chorea versus
dystonia versus other), but does not isolate the anatomic distribution of
the dyskinesia (e.g. arms, legs, trunk).

UPDRS27 Part IV

UPDRS (Unified Parkinson's Disease Rating Sale) dyskinesia sub-score
is another scale for dyskinesia. UPDRS is a general and commonly used
assessment scale for Parkinson's. Part IV deals specifically with
"complications of therapy" including questions specifically about
dyskinesia. These are historical questions posed to the patient about how
bad their dyskinesias are, when they have them, and what percent of time
they have them. This subscale is not suitable for continual tracking of
symptoms and therefore not useful for this project.

Dyskinesia Subjective Rating Scale

The Lang and Fahn scale (The Dyskinesia Subjective Rating Scale)29 is
another scale used in measuring dyskinesia. It is not suitable as an
instantaneous measure however because it is based on history taken from
the patient about how the dyskinesia affects various activities.

2.4.1.2 Scales for tremor

Measurement of tremor is not a major goal of this project since it is not
very relevant clinically. It is not often that tremor needs treatment
independent of how "off' a patient is. Tremor measurement, however, is
useful as an outcome measurement especially for neuro-surgical
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procedures (especially thaladotomy, but also deep brain stimulation and
pallidotomy). It can also be an outcome measurement for drug trials.
Such outcome measures are concerned with the general condition of the
patient over long periods of time. Instantaneous measurements of tremor
in contrast do not have as much utility and have not been used much.
Scales that have been used include parts of UPDRS (which rates 0-4 for
different parts of body and resting versus action/postural), the Webster
tremor scale (which ranks tremor by amplitude)4 or the Fahn scale (0-4
based on severity, not on localization). For our project, a rating scale that
specifies location of tremor, like the UPDRS part 3 would be the most
useful. It also appears to be commonly used in research.

2.4.1.3 Scaling hypokinesia / bradykinesia

The UPDRS motor score (based on a subsection of UPDRS) has been
used as a means to score bradykinesia / hypokinsia. However, van Hilten
et a139 found poor correlation between the UPDRS motor score and
activity counts (suprathreshold accelerations) implying that hypokinesia
is poorly represented by the UPDRS scoring scheme. A single question
from the UPDRS examination entitled "body bradykinesia / hypokinesia"
has also been used39. It does not require an active examination (as does
much of the rest of the UPDRS motor exam). Therefore, it would be
suitable for the continual, unobtrusive scoring that is necessary for this
project.

2.4.1.4 Scales for Parkinsonism

These more general assessments of Parkinsonism could be of value to this
project simply as a means to demonstrate how severely the patients were
affected and whether the experience with them generalizes to other
patient populations. These include:

* The UPDRS scale. This is a general assessment of
Parkinsonism, having sections covering not only dyskinesia,
but also bradykinesia, akinesia and tremor among others.
Many studies use subsections of the UPDRS when trying to
assess a particular one of the symptoms of Parkinsonism,
however this does raise questions of validity of the subparts.
The main problem with the UPDRS is that some aspects of
it are momentary and some are historical. The same patient
can have different UPDRS scores at different times. This
limits how useful it would be as a staging of Parkinson's
disease.
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* Hoehn and Yahr staging. This is a 1-5 staging of the
severity of Parkinsonism based on level of disability. The
expanded UPDRS score (with all 6 sections) actually
includes the Hoehn and Yahr staging scale. The Hoehn and
Yahr scale is easy to do and does not mix up momentary and
historical aspects. The drawback is that it does a very crude
staging.

2.5 Previous work on device-based monitoring

Devices used to aid in the assessment of Parkinsonism may be "in
laboratory only" devices or ambulatory/wearable devices. By far devices
that are used are predominately "in laboratory" devices that monitor the
patient for brief periods of time. However, it is the ambulatory/wearable
devices are most relevant to this project.

2.5.1 Methods of collecting sensor data

Since the goal of this project is to investigate a wearable monitor for
detecting movement in Parkinson's disease, it is relevant to review the
literature to find what types of sensors to use and where to place them on
the body in order to produce the best results.

2.5.1.1 Different types of sensors, their pros and cons

Many different types of sensors have been used to obtain movement data
from patients. These include electromyography 37,32 , ultrasound, radar,
laser displacement detectors 28 ,2 6 ,15 ,30, mechanical coupling devices25 ,
video-based systems, in addition to accelerometers and rotation sensors7.
For the purposes of ambulatory/wearable monitoring, only accelerometric
and gyroscopic modalities and perhaps electromyography appear to be
feasible. Video monitoring also may be feasible 38 so long as the involved
limbs can be maintained in line of sight (which may be an issue).

a) Displacement and velocity measurements

The standard method for measuring movement in an ambulatory (outside
of clinic) setting is accelerometry. There were some questions raised as
to whether measuring velocity or displacement directly may have some

28
benefit over measuring acceleration . Velocity and displacement sensors
could be more sensitive to lower frequencies whereas acceleration
measurements would be more sensitive to higher frequencies. Other than
mention of this as a theoretical consideration, there has been no
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demonstration that measuring acceleration alone misses types of
movements that would be relevant to our study. In any case, a system
used to measure velocity and displacement might not be suitable to be
used as an ambulatory device. Video monitoring, though, does measure
displacement and has been used as a wearable ambulatory device38

b) Electromyography 36

Electromyography (EMG) measures the electrical activity of muscle
contraction. Certain information can be obtained using EMG that could
not be obtained using accelerometry. For example, normally, when one
muscle contracts, the opposing muscle relaxes. In dystonia, however,
opposing muscles can contract simultaneously. This could, in theory, aid
in detecting dystonia. Furthermore, since particular muscles are isolated,
it is easier to detect actual activity of the muscle as opposed to
accelerometry where the acceleration detected may be due to movement
of another body part, movement of the whole body or gravitational pull.
The main drawback of EMG as opposed to accelerometry is that it is
harder to apply and wear on an ambulatory basis. Muscles need to be
found and electrodes placed, requiring some expertise. In addition,
maintaining good electrical contact over the course of a day is not as
simple as maintaining placement of an accelerometer (e.g. the skin
actually needs to be abraded). These problems limit the use of EMG on a
large scale. Additionally, EMG only records activity of the muscles it is
applied to, limiting the information obtained. This may or may not
impair the ability of an EMG based monitor to determine the status of a
Parkinson's patient. If the problem with easily applying EMG can be
overcome, it is possible that EMG may yield data useful in classifying the
state of movement of Parkinson's patients (either alone or in conjunction
with accelerometry).

c) Video monitoring

Video monitoring coupled with machine vision has been used in detecting
a variety of different movements38,51. Georgia Tech has a group 38 that is
investigating the use of a wearable pendant that detects hand motions by
using computer vision algorithms and they have discussed its potential
use in detecting Parkinsonian or essential tremors. They, however, have
not published work where this was actually done. In any case, the patient
appeared to need to bring his/her hands up towards the pendant in order
for the pendant to capture the hand movements. Clearly, this would not
work for our goals, since we are attempting to capture data without active
participation of the patient. The line of sight issues may be resolved if
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several video capture sensors were used, though it is unclear what
specific advantages such a system would have over accelerometers.

d) Rotation-sensitive devices

Burkhard et al7 described a rotation-sensitive device for measurement of
dyskinesia. This device seems to detect some useful characteristics of
movement, since empirically dyskinesias appear to be more rotational
than voluntary movements. However, not much can be said about how
useful such a device would be for our purposes. The device was only
used for brief periods of time in the laboratory (not ambulatory) and there
was no attempt to try and differentiate dyskinesia from normal voluntary
activities.

e) Simplified acceleration-based devices

The device used for this project uses a full 3-axis accelerometer. Various
simplified versions of accelerometers have been studied. For example,
activity counts have been used extensively both in Parkinson's studies as
well as in addressing other medical problems45. An activity monitor is
essentially an accelerometer, but most of the information is discarded.
All that is measured is the number of times acceleration rose above a
fixed threshold. It typically registers movements only along a single axis.
Still, activity monitors have found some usefulness. For example, Van
Hilten et a143 used a wrist worn activity monitor diurnal activity in
Parkinson's patients and appeared to find patterns consistent with
medication cycles. Nonetheless, it could not differentiate between
voluntary activity, tremor and dyskinesia. It is also uncertain what
precisely this device was detecting. A high level of activity counts may
have been due to the voluntary activity of a well-medicated Parkinson's
patient or due to the abnormal dyskinetic movements more typical of an
overmedicated patient. This is because this study, like most studies of
ambulatory monitors in Parkinson's, did not record continual clinical
observations to correspond with the device recordings. Single axis and 2-
axis accelerometers have also been used. Dunnewald, Jacobi and van
Hilten assertedl0 that 3 axis accelerometers "provided no relevant
additional information" over 2 axis accelerometers. However, this likely
does not apply to our project for many reasons. For instance, much of the
information in their data was discarded (e.g. they dichotomized using an
arbitrary cutoff threshold). If all the data were used, 3-axis
accelerometers may have an advantage. In addition, the data they present
do not necessarily support their contention that there is no advantage.
Three axes outperformed 2 axes 3 out of 6 times which is more than
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expected by chance though not with statistical significance (Since there
are three 2-axis pairs and only one 3-axis pair, the expected probability of
the 3-axis accelerometer performing better simply as a matter of chance
would be 0.25. The expected number of occurrences would therefore be
0.25 * 6 = 1.5. The probability of 3 or more occurrences, using the
binomial distribution would be 0.169, which would not be significant if
the standard cut-off of 0.05 is used.

f) Other modalities

I have not found much literature relevant to this project using other
modalities such as ultrasound or RADAR. Both use Doppler shift to
detect movement, though ultrasound uses mechanical vibration and
RADAR uses radio frequency electromagnetic waves. Generally these
are used to count movements in much the same way as accelerometers
have been used to count movements (i.e. by counting all events above a
certain fixed threshold). It appears that ultrasound was primarily use for
detecting facial dyskinesia, for example, a detector to measure oro-facial

dyskinesia , an apparatus to measure facial movement and a technique
to measure tardive dyskinesia 30 . Facial dyskinesias are not common in
Parkinson's rather they are seen frequently in tardive dyskinesia (a side
effect of antipsychotic medication). Therefore, ultrasound as it was used
is less relevant to this project. RADAR my have some utility. Of course,
one must consider that a device with electromagnetic emission might
have more hurdles to overcome before being approved for clinical use.
Mechanical coupling devices need the subject to physically move one
part of the device relative the another part of the device in order to
generate a signal. Generally, these devices are cumbersome are therefore
not useful for ambulatory purposes.

2.5.1.2 Sensor placement

Since the primary goal of this project is to use accelerometer readings to
detect dyskinesias as well as level of "on" or "off', it is important to
consider where sensors will need to be placed to detect these two

parameters.

2.5.1.2.1 Placement to detect dyskinesias

In order to consider where to place sensors to detect dyskinesia, it is
important to consider where dyskinesias occur. Dyskinetic episodes are
felt to commonly involve the legs first (and sometimes only the legs). In
fact, Fahn discusses how diphasic dyskinesias, which have a different
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clinical implication than standard peak dose dyskinesias, tend to occur
most often in the legs. Truncal dyskinesia also may occur in the absence
of appendicular dyskinesia. Therefore it may be prudent to place sensors
on legs as well as on the trunk. Other sensors may be needed to be able
to differentiate dyskinesia from voluntary activity. Beyond this, it is
difficult to guess where to place sensors to detect dyskinesia in the
absence of experimental data. In the pilot study (discussed in the section
"Previous work"), I found that detecting dyskinesia actually required
fewer sensors than detecting "on" and "off'. A good model could be
built using 2 sensors (right upper extremity and right hip for pilot study
patient #1 and right upper extremity and right lower extremity for pilot
study patient #2). The hip accelerometer appeared to be important in
both the neural network and classification tree models despite the fact
that the hip accelerometer malfunctioned on patient #2 and yielded no
data for a large part of the recording. Since the hip readings were so
important, it suggests that having a truncal sensor would be useful (e.g.
hip or other part of trunk).

The work in the literature regarding sensor placement cannot be well
generalized to this project. It is difficult to state that a certain sensor site
is not useful for detecting dyskinesia or "on"-"off' if the study did not try
to detect these states the way this project attempts. Still, there is some
relevant literature.

Van Hilten et al" attempted to address the problem of where to place
accelerometers. They found "no difference" between placing an
accelerometer on the dominant wrist, the non-dominant wrist or the hip.
However, the limitation of their processing brings into question the
generalizability of this statement. There was no attempt to combine
information from several sensors (e.g. correlation). Therefore, they could
not address which sites should be used if more than one site is to be used.
Additionally, much of the information in the data was processed out.
They distilled all the rich accelerometric data down to a simple
determination of whether a movement "occurred" or not. For this they
used a fixed threshold of 0.1g using only the 0.25-3Hz band (g is the
acceleration of gravity at sea level). They then counted the number of
movements (a measure of bradykinesia) as well as the number of 15-
second epochs not containing a movement (a measure of hypokinesia).
The conclusion that they reached using the "stripped down" version of the
data likely does not say much about what would be if all the information
in the data was used.
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Manson et a1 2 3 used a single 3-axis accelerometer attached to the shoulder
of the most affected side as an ambulatory dyskinesia monitor. Their
rationale was that at that site, the sensor could detect both limb and
truncal dyskinesia in a single sensor. They used the correlation between
mean acceleration (in the 1-3Hz band) and clinical dyskinesia scores as a
measure of how well the device could detect dyskinesia. They found that
the device detected dyskinesia well when tasks such as eating, drinking
were done but found poor correlation when the patient was walking. This
was sensible since walking involves significant movement of the shoulder
which would make differentiating voluntary activity from dyskinesia hard.
In fact, when the patients did tasks that would be expected to use their
shoulders more (e.g. "putting on coat") the device did less well in sorting
out presence of dyskinesia from its absence.

It is unclear from that study whether using only a single shoulder site
would be adequate for our purposes. Still, it seems sensible to detect both
arm and trunk movement. The shoulder would seem to be a difficult site
to place a sensor at. Detecting arm and trunk movement may require two
separate sensors.

2.5.2 Detecting posture

Several authors have used wearable devices to detect a patient's posture.
By posture, I am referring to lying versus sitting versus standing. There
does not appear to be much work on wearable devices detecting more
subtle aspects of posture, for example, if the patient has a stooped posture
as Parkinsonian patients often do. Simple mercury switches have been
used to determine posture. For example, Walker et a145 used mercury
switches on the thigh and chest to determine posture. Other articles have
used accelerometers on the thigh and chest similarly. By using the "DC"
(e.g. 0-1Hz) component of the accelerometer signal, the accelerometer
can produce a result similar to the mercury switches 9'18 . These simple
posture detection algorithms seem to work quite well. Dunnewold et a19

found a sensitivity of 99.6% and a specificity of 99.8% while performing
a predetermined sequence of activities meant to reflect normal daily
activities. Occasionally, though rarely, this technique was fooled. For
instance, stair climbing occasionally appeared as sitting (because of the
raised thigh) and a transfer from lying to sitting appeared as standing
(because the thigh sometimes was perpendicular to floor).

Posture detection algorithms can yield useful information for this device.
Having information as to whether a patient is lying sitting or standing
while specific accelerometric recordings are made may help build a better
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classifier. Still, it is not likely to help that much because since the vast
majority of the time is spent in the seated position. Posture monitoring
may also be useful for clinicians independent of its use in building a
classifier. It can yield information as to the patients' activity and hence,
their need for medication.

2.5.3 Detecting tremor

Parkinsonian tremor may affect all four extremities as well as the trunk
and head. However, clinically, distal arm tremor is the most stereotypical
of Parkinson's disease (e.g. "pill rolling tremor"). Devices to measure
tremor in Parkinson's disease have focused on the distal upper extremities.
Hoff Wagemans and van Hilten 19 found that in structured tasks, a 3-axis
accelerometer attached to the most affected wrist appeared to detect
tremor reasonably well. The digits have also been used to measure
tremor. As an example, Beuter and Edwards 4 measured tremor on the
index finger. A major reason that they chose the index finger is that the
wrist has a resonant frequency of 8-12 Hz, which may be confused with
physiological tremor whereas the resonant frequency of the index finger
is about 17Hz. Since this project does not concern itself with
physiological tremor, this is not likely to be important here.

2.5.4 Data assessment

2.5.4.1 The frequency domain

Different types of movements in Parkinson's patients tend to have
different frequency characteristics. A review of the literature finds the
following approximate frequency ranges for different types of movement.
Dyskinesia has been found to be predominately in the lower frequency
range (approximately 0.25Hz-3.5Hz with some variability between
articles) 2 3,7,9,44 and Parkinson's rest tremor at a higher frequency (4-6Hz)

2. Other types of tremor tend to be in a higher range (essential tremor
7-12Hz and physiological tremor 8-12Hz). Different types of dyskinesia
were found to have different frequencies. For example, Burkhard et al.7

found dystonia to be in the 0.25-1.25Hz range and chorea in the 1.5-
3.25Hz. One article6 found voluntary activity to be in the below 3.3Hz
range with the majority less than 1Hz (except walking, which was about
2Hz). Unfortunately, none of these frequency ranges are "hard and fast".
There is overlap in frequency range between different types of motion.
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2.5.4.1.1 Characteristics of frequency spectrum

Rather than a single frequency, an accelerometer actually picks up a
spectrum of frequencies. A device might be able to use the predominant
frequency in order to better classify what type of movement is occurring.
(e.g. voluntary activity versus dyskinesia versus tremor). However, there
is more information in the frequency spectrum than simply the peak
frequency or mean frequency. The distribution of the frequencies may
also help to better classify the type of movement. There are examples in
the literature of different ways of extracting features from the frequency
spectrum that could help in classifying different types of movement:

Beuter and Edwards4 investigated the use of several frequency domain
characteristics to differentiate Parkinsonian tremor from (normal)
physiological tremor. They found that they were better able to
discriminate the two types of tremor if they took into account the
dispersion of frequencies and not just the overall amplitude of
acceleration for a particular band. Factors that they used that take into
account dispersion included the following:

1) dispersion about median frequency (width of band containing 68%
of the power spectrum),

2) a measure of how close the spectrum is to a single peak (harmonic
index, normalized to the highest peak),

3) proportion in 4-6 Hz (typical of Parkinson's tremor) and 7-12Hz
(typical of physiology tremor),

4) the un-normalized harmonic index (a measure of how close the
spectrum is to a single peak).

In addition, the article used a center of mass of the frequency, a factor
that in theory could have advantages over other methods of detecting the
most important frequency (e.g. peak frequency or median frequency).
All these factors appeared helpful in discriminating Parkinson's patients
from controls for the structured tests they performed.

32 37
Scholz et al. and Spieker et al. made use of the signal to noise ratio
(SNR) to analyze to frequency distribution of EMG recordings in order to
detect tremor. Scholtz et al. used a fixed SNR cutoff of 4 as a threshold to
determine the predominant frequency of the tremor. The SNR was also
used as a measure of intensity of the tremor. Spieker et al also used a
fixed cutoff for SNR to detect tremor. A period of time was labeled as
tremor time if a frequency in the 3.7 - 10Hz had a SNR of 4 or larger.
They found that by counting the amount of "tremor time," this technique
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discriminated between tremor patients and controls with a specificity of
94% and a sensitivity of 96%. This result was somewhat misleading
because there were no direct determinations that the patients indeed had
tremor at those times. Therefore, no statement could be made as to how
well this system discriminated periods of tremor from periods of non-
tremor.

Standard Fourier transform (power or frequency spectrum) analysis could
be thrown off by spurious frequencies that occur transiently. Van
Someren et al.35 attempted to remedy this problem by checking for a
consistent waveform that exists over several periods. They labeled "half
periods" as parts of the recording between zero crossings and if those
"half periods" were within a certain range of period (i.e., a period that
could be tremor) and if there were at least 12 consecutive "half periods",
then that would be labeled as tremor. This system seemed to work well
on the population it was tested on (pre and post-thaladotomy Parkinson's
patients and normal controls). Only 4% of control time was labeled as
tremor and tremor was found to decrease post surgically. It is unclear if
this somewhat ad hoc technique would perform better than comparing
frequencies of successive (finite) Fourier transforms. It does suggest that
perhaps the frequency spectrum of a particular time window should be
considered relative to the frequencies obtained during adjacent time
windows or be compared to average frequencies obtained for the whole
recording.

2.5.4.2 Methods used to process the data

The most common technique that has been used to analyze data obtained
from wearable sensors has been some form of correlation
37,13,4,23,7,35,10,25,18,11,19,39 This may involve either comparison of the
features derived from the device readings with some clinical score that
was observed. It may also involve comparison between different
readings without comparison to a clinical score, such as might be done to
test reliability and validity. Other statistical methods used include
analysis of variance 9,42,40,44, the kappa statistic4' and linear regression .
Hidden Markov models have been used to detect gesture sequences3 8, but
not for purposes of detecting free form pathological movements. Neural
networks appear to be the only major "machine learning" technique that
has been explored'' 1 .

Of the related articles using neural networks, only the work of Keijsers et
al. was related to Parkinson's disease. They used neural network
models to predict dyskinesia based on accelerometry. The subjects
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performed specific tasks which leads to questions of how representative
this would be of real world activity. Still there were a variety of tasks and
so it would be closer to what actually would happen in an unstructured
environment. They used 38 features derived from the accelerometry
recordings as input to the networks. To measure success, they checked a
Spearman correlation between the observed value for dyskinesia and the
value predicted by the network. In general, they found good correlation,
though some values were quite low. It did confuse voluntary activity
with dyskinesia as noted by the poor correlation of predicted to measured
values of dyskinesia when the patient was walking. They used a "leave-
1-out" technique of cross-validation (no true validation set) and, since
they adjusted parameters based on the entire set of data (including the
validation sample), it may be possible that their results were overly
optimistic.

2.5.5 This project's pilot study

In order to assess the feasibility of using such a device to classify on-off
range (i.e., hypokinesia and bradykinesia) and dyskinesia in Parkinson's
patients, I conducted a pilot study. In the pilot study I tested the device
on two Parkinson's patients in an observed setting and trained and tested
two different models of movement classification based on the collected
data.

2.5.5.1 Methods and materials

Two Parkinson's patients (1 male and 1 female) were recruited from the
Parkinson's clinic at University Hospital of Brown University (Pawtucket,
RI). Both patients were determined by their referring neurologist to have
motor fluctuations. Patient #1 (male) was on Sinemet CR 3 times a day.
Patient #2 was on levodopa/carbidopa 5 times a day in addition to
entacapone and ropinirole. The patients were observed in the Parkinson's
Day Program room during the course of the study. For the length of the
study, they were observed by a neurologist (the author) and were
videotaped for later review by the same neurologist. During the study
they wore the device for detecting motion. After the observation, the data
was downloaded for offline analysis.

2.5.5.1.1 The device

I used a series of five 3-axis accelerometers (as developed at the M.I.T.
Media Laboratory). The range of the accelerometers was from -1 g to +3g
with a resolution of 1/64g. Samples were taken by the accelerometers at
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approximately 40 Hz. The five accelerometers were attached to the
patient using Velcro straps at the following locations: One on the dorsum
of each arm just proximal to the wrist and one on each leg just proximal
to the lateral aspect of the ankle. One additional accelerometer was
contained in the main unit which was attached to the patient's belt.

2.5.5.1.2 Scoring scheme

The observing neurologist queried the patient as to his state and later

Table 1. Scoring scheme used for pilot study

Dyskinesia (chorea only)
0 none
I mild (does not appear to impair patient at all)
2 moderate (appears to cause mild impairment of activity)
3 significant (appear to cause moderate impairment of activity)
4 severe ( appears to cause severe impairment of activity)

On-Off (a measure of bradykinesia and hypokinesia)
0 Significantly off
1 Mildly off
2 Ambiguous or intermediate
3 Mildly on
4 Definitely on

reviewed the video recording to obtain a synthesis assessment of the state
of the patient. A 0-4 scoring was used for "on-off' (i.e. level of
bradykinesia and hypokinesia) and a 0-4 scoring for dyskinesia (more
specifically chorea). Table 1 shows the scoring scheme that was used.

Notation was made once per minute for the duration of the time the
device was recording. If the patient was temporarily off the video or
temporarily not observed (e.g. trip to bathroom), the neurologist would
extrapolate the intermediate time points based on data known about the
surrounding observed time points.

2.5.5.2 Results

A total of 306 minutes of data were obtained for patient #1 and 323
minutes of data obtained for patient #2. The belt accelerometer of patient
#2 malfunctioned midway through the study and therefore it was not used
in analysis. In addition, the left lower extremity accelerometer for patient
#2 was switched midway through the study to the right proximal upper
extremity (for testing purposes), so that data too are discarded from this
study. Each patient experienced approximately 2 % on-off cycles.
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2.5.5.3 Analyses

2.5.5.3.1 Dichotomization of scores

Although a scale of 0-4 was used for dyskinesia and (separately) for on-
off, these scorings were then dichotomized based on a subjective analysis

Table 2. How the on-off and dyskinesia scales were dichotomized in the pilot
study

Patient #1
Low range High range

On off <1.5 >=1.5

Dyskinesia <2.0 >=2.0

Patient #2
Low range High range

On off <3.5 >=3.5

Dyskinesia <2.0 >=2.0

Note: The text refers to "high level" for on-off as "on", low level on-off' as "off'. "High
level" dyskinesia is referred to as "dyskinetic" and "low level" dyskinesia as "not
dyskinetic"

of what would be a clinically relevant cut off. This was determined based
on the range of variation of the patient. Table 2 shows the cutoffs were
used for dichotomizing (using the original 0-4 scale):

2.5.5.3.2 Pre-processing

Data were processed using Java, Matlab, as well as Netlab (for neural
network functions). The data were divided into training and test sets for
use in a neural network (see Table 3). Data for each patient were handled

Table 3. Size of test sets and training sets for the pilot study
Patient Size of Test Set Size of Training Set Total
Patient#1 124 one minute samples 186 one minute samples 310
Patient#2 132 one minute samples 198 one minute samples 330
Total 256 one minute samples 384 one minute samples 640

separately. Data were divided into one-minute windows and each window
was assigned to the training set or test set randomly in a roughly 60:40
ratio. Therefore the test and training sets did not consist of contiguous
time periods.
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2.5.5.3.3 Feature extraction

From the accelerometric data, features were derived and used as the basis
for neural network and classification tree classification models. Table 4
lists features that were used.

2.5.5.3.4 Time window

As mentioned previously, accelerometric recordings were obtained at a

Table 4. Features that were extracted from the accelerometry data and then used
as inputs into machine learning algorithms (pilot study).

RUE = right upper extremity
LUE = left upper extremity
RLE = right lower extremity
LLE = left lower extremity
For description of "magnitude", "positional correlation", "magnitude correlation" and
"positional mutual information" please see text.

* This feature was found not help much in classification and because it was very
computationally intensive, it was not used in building any of the models

rate of about 40 readings per second. To enter this data into a machine
learning program, there are two possibilities: One way would be to use to
data from each individual reading (representing 1/40 of a second) as the
input for the machine learning algorithms and the label (e.g. "on-off' and
dyskinesia state) for the output. Another approach would be to window
the processing in a way that features derived from a whole period of time
(e.g. 1 minute) would be used instead of data from only a single reading
cycle. I have chosen the windowing approach for several reasons. Firstly,
if only a single reading were used as the basis for the model, then the
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Name Description
R1 Hip "magnitude"
R2 RUE "magnitude"
R3 LUE "magnitude"
R4 RLE "magnitude"
R5 LLE "magnitude"
R6 RUE and LUE "positional correlation"
R7 RUE and LUE "magnitude correlation"
R8* RUE and LUE "positional mutual information"
R9 Not used
RIO RUE and RLE "positional correlation"
Ri1 hip and RUE "magnitude correlation"
R12 hip and LUE "magnitude correlation"



classification power of the system would have been very weak. The
accelerations at a particular point in time are not likely to be nearly as
good a predictor of movement state as those of an entire period of time.
This problem could be partially remedied by letting the machine learning
program make a prediction based on only a single reading cycle, but then
combine these predictions to create a prediction for a whole time window.
In that way the prediction for the whole time window would be more
powerful because it combines the power of the many individual
predictions that were made for each reading cycle. However, how best to
combine these predictions into one larger prediction is not clear. For
instance, they could be averaged or multiplied depending on different
assumptions. The windowing technique used here of making the
predictions based on the whole window, simplifies this problem. Another
reason why using the whole window may be better than using only a
single reading cycle is that it enables correlations or mutual information
between different accelerometers to be generated. While it is true that the
machine learning algorithm may "learn" how different features vary
together even if only one time point at a time is taken, that would not take
into account the range of values in the time window immediately
preceding and following that time point. Time window correlation and
mutual information measures adjust for near term variability.

2.5.5.3.5 Description of features

The features that were used as inputs for the machine learning algorithms
are listed in table 4. Below is a description of some of the terms that
were used.

Gross acceleration
The gross (measured) acceleration (used for all later processing discussed

below) is obtained by simple vector addition (i.e. gross acceleration = V
(x2 +y2+z 2))

"Magnitude"
The term "magnitude" does not refer to the magnitude of acceleration
measured, rather to the mean of the absolute value of the derivative of
acceleration with respect to time (i.e. Ida/dt where a is the magnitude of
acceleration and t is time). The reason this measure was chosen is
because it was felt to more relevant and less susceptible to drift. The
derivative of measured acceleration was used because the accelerometer
readings tend to drift some over the course of the study. The derivative
negates this drift because derivatives would be little changed by slow
drifts over the course of hours. The absolute value was used because,
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clearly averaging the derivative over anything but the shortest period of
time would yield zero. Accelerations and decelerations are both
measures of movement and here I count them equally.

"Positional correlation"

This was intended as a measure of common orientation of the limbs
involved. Certain activities may be expected to entail different limb
orientations. If two limbs have their positional orientations correlated,
then it might be expected that they are working together. They way this
measure was calculated was as follows: Six factors (the X, Y, and Z axis
accelerations of both sensor sites) were correlated with each other in all
possible permutations (except that a factor was not correlated with itself).
The mean of these 15 correlations was called the "positional correlation".

"Magnitude correlation "

This is actually the correlation of the derivative of measured acceleration
over the time window involved (1 minute).

"Positional mutual information"

As discussed in the section about "positional correlation", certain
repeated positions might signify certain activities (e.g. walking).
However, it might be expected that some position of the two sensors are
common in a particular activity, but may not be detectable by simple
correlation. For this reason, positional mutual information was used.
Positional mutual information was calculated in a manner similar to
"positional correlation" (described previously), however, instead of
correlations, mutual information was used as it in theory might be more
appropriate than simple correlation. The process to calculate the mutual
information of 2 sensors (for a particular time window) is described in
Table 5.



Table 5. Method for calculating mutual information using accelerometry data
from two separate accelerometers (pilot study)

1. Take the accelerometry data of the 2 sensors in question for the time window in
question. Call those 2 strings of data vector X and vector Y.

2. Discretize the vectors X and Y as follows: replace the values for acceleration with
a number indicating what quartile (or decile) that value belongs to relative to the
other values for acceleration in that same vector (in this project both quartiles and
deciles were tested). Call these new discretized vectors Xd and Yd. (Quartiles and
deciles are labeled starting from zero)

3. Create a vector W by combining Xd and Yd as follows: W(t), the element of the
vector W that corresponds to a particular timepoint t, is set to Xd (t) * (# of
possible values of Yd) + Yd (t).

4. Mutual information is calculated using Shannon's entropy: MI = entropy(Xs ) +
entropy(Yd) - entropy(W)

10-minute moving average of dyskinesia

Rather than minute-by-minute dyskinesia as a target output, a 10-minute
moving average was used. This produced better results on the training set,
presumably because dyskinesia varies a lot over the very short term and
may be missed using smaller windows.

2.5.5.3.6 Neural networks

To implement the neural network part of the experiment, I used Netlab
(an extension of Matlab). Coding was done in Matlab, R and Java. The
implemented neural network used a single hidden layer of neurons.
Hidden nodes used a tanh activation function and the (single) output
neuron used a logistic function.

The feature space (and neural network parameters) was explored using 5-
fold cross-validation on the training set. Features for the test set were
chosen based on results of the cross-validation on the training set. Table
6 shows the features that were selected.
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Table 6. Features used for neural network models in the pilot study

Patient #1 "on-off" (Model #1)
Inputs:
Hip absolute of derivative of magnitude for the window (RI)*
RUE absolute of derivative of magnitude for the window (R2)
RLE absolute of derivative of magnitude for the window (R4)
LLE absolute of derivative of magnitude for the window (R5)
RUE/RLE positional correlation for the window (R10)
Output:
The average on-off rating for the 1 minute window
Neural net:
6 hidden nodes and 100 iterations

Patient #2 "on-off" (model #2)
Inputs (same as patient #1):
Hip absolute of derivative of magnitude for the window (RI)+
RUE absolute of derivative of magnitude for the window (R2)
RLE absolute of derivative of magnitude for the window (R4)
LLE absolute of derivative of magnitude for the window (R5)
RUE/RLE positional correlation for the window (R10)
Output (same as patient #1):
The average on-off rating for the 1 minute window
Neural net (same as patient #1):
6 hidden nodes and 100 iterations

Patient #1 dyskinesia (model #3)
Inputs:
Hip absolute of derivative of magnitude for the window (RI)
RUE absolute of derivative of magnitude for the window (R2)
Hip and RUE magnitude correlation for window (R 11)
Output:
A ten minute moving average of dyskinesia
Neural net:
Hidden nodes 6 iterations 100

Patient #2 dyskinesia (model #4)
Inputs:
RUE absolute of derivative of magnitude for the window (R2)
RLE absolute of derivative of magnitude for the window (R4)
Output:
A ten minute moving average of dyskinesia
Neural net:
Hidden nodes 4, iterations 200

* Note: names of features in parentheses refer to the features listed in Table 4
+ Hip accelerometer yielded missing data for section of recording. For this part, this
feature was assigned a value of zero
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In order to assess the calibration of the neural network classification
model, the Hosmer-Lemeshow c-hat and h-hat goodness-of-fit statistics
were obtained. For the Hosmer-Lemeshow c-hat, the samples were
divided into quartiles as in table 7:

Table 7. Ranges used by Hosmer-Lemeshow c-hat (pilot study)
Range # Expected value
1 <25 percentile
2 >=25 and <50 percentile
3 >= 50 and <75 percentile
4 >= 75 percentile

For the Hosmer-Lemeshow h-hat, the samples were divided into 4 ranges
as in table 8:

Table 8. Ranges used by Hosmer-Lemeshow h-hat (pilot study)
Range # Expected value
1 <0.25
2 >=0.25 and <0.5
3 >=0.5 and <0.75
4 >0.75

The results of the Hosmer-Lemeshow tests for each of the
models are shown in Table 9.

neural network
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Table 9. Results (pilot study) of Hosmer-Lemeshow test for neural network
models (using the test set only)

Hosmer-Lemeshow c-hat
Model p-value Degrees of freedom
Patient#I on-off 0.8154 7
Patient #2 on-off 0.07559 7
Patient #1 dyskinesia 0.2438 7
Patient #2 dyskinesia 0.593 7

Hosmer-Lemeshow h-hat
Model p-value Degrees of freedom
Patient #1 on-off Not calculable N/A
Patient #2 on-off 0.9864 3
Patient #1 dyskinesia 0.468 5
Patient #2 dyskinesia 0.7504 7



2.5.5.3.7 Classification trees

The classification tree section of this experiment was implemented using
CART (Classification and Regression Trees) 4.0 from Salford Systems
(San Diego, California). The same data (i.e. the same training and test
sets and same dichotomization) that were used for the neural network part
of the experiment were also used for the classification tree part of the
experiment. All the features that were used during feature exploration for
the neural networks were also used for constructing the classification tree
models with the exception of positional mutual information, because it
was computationally expensive and was not found useful in the neural
network models. All defaults of CART were used for the building of the
model (e.g. gini statistic used, 10-fold cross-validation for model building
using training set). Figures la, lb, 1c, ld show the classification trees
that were obtained. Tables 10a, 10b, 10c, 10d show the success of the
trees in classifying the test set.

Node 1
Class = 0

R2<= 0.027
Class Cases %

0 39 22.0
1 138 78.0

N= 177

Node 2 Nkde 3
Glass = 0 Class = 1

R1 <= 0.203 R10 <= -0.002
Class Cases % Class Cases %

0 29 43.3 0 10 9.1
1 38 56.7 1 100 90.9

N =67 N=110

Terminal Ter-minal Node 4 Terinal
Node 1 Node 2 Class = 0 Node 5
Class = 1 Class = 0 R1 <= 0.237 Class = 1

Glass Cases % Class Cases % Class Cases % Class Cases %
0 1 4.8 0 28 60.9 0 7 38.9 0 3 3.3
1 20 95.2 1 18 39.1 1 11 61.1 1 89 96.7

N=21 N=46 N=18 N=92

Terninal Terrrminal
Node 3 Node 4
Class = 1 Class = 0

Class Cases % Glass Cases %
0 0 0.0 0 7 70.0
1 8 100.0 1 3 30.0

N=8 N=10

Figure La. Tree for model #1 of pilot study (patient #1 on-off)
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Node C
Caass = 0

R4R<= 0.053
Class Cases %
0 84 44.0
1 107 56.0

N= 191

Terminal Nadl e 2
Node I Class = I
Class = 0 R13 <= 0.215

C aass Cases % Class Cases %
0 64 83.1 0 20 17.5
1 13 16.9 1 94 82.5

N=77 N= 114

Node 3 Nod e 4
Class = I Class = 0

R2 <= 0.021 R5<=- 0.093
Class Cases % Class Cases %

0 10 10.2 0 10 62.5
1 88 89.84 1 6 37.5

N=98 N= 16

Terminal Term inal Terminal Terminal
Node 2 Node 3 Node 4 Nodce 5
Class = 0 Class = I Class = I Class = 0

Class Cases % Class Cases % Class Cases % Class Cases %
0 3 100.0 0 7 7.4 0 0 0.0 0 10 76.9
1 0 0.0 1 88 92.6 1 3 100.0 1 3 23.1

N=3 N=95 N=3 N=13

Figure 1b. Tree for Model #2 of pilot study (patient #2 on-off)
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Node 1
Class = 0

R3 <= 0.228
Class Cases %

0 158 89.3
1 19 10.7

N =177

Terminal Node 2
Node 1 Class = 1
Class = 0 R2 <= 0.027

Class Cases % Glass Cases %
0 109 98.2 0 49 74.2
1 2 1.8 1 17 25.8

N=111 N=66

Terminal Node 3
Node 2 Class = 1
Class = 0 R7 <= 0.007

Glass Cases % Class Cases %
0 18 100.0 0 31 64.6
1 0 0.0 1 17 35.4

N=18 N=48

Terrminal Terminal
Node 3 Node 4
Class =1 Class =0

Class Cases % Class Cases %
0 20 54.1 0 11 100.0
1 17 45.9 1 0 0.0

N=37 N=11

Figure Ic. Tree for Model #3 of pilot study (patient #1 and moving
average dvskinesia)



NNde 1
aass ==0

R4 <= 00053
Class Cases %
0 106 55.5
1 85 44.5

N 191

Tersinal de 2
Ode C mass = 1
Class = 0 R3 <=- 0. 160

Class Cases % Class Cases %
0 73 94.8 0 33 28.9
1 4 5.2 1 81 71.1

N=77 N=114

Node 3 Node 4
uass = " oass = 0

R1 1 <= 0.008 R5 <= 0.050
Tass Cases % Class Cases %

0 15 17.0 0 18 69. 2
1 73 83.0 1 8 30.8

N=88 N=26

Terinal Teraina] Temninal Terninal
lde 2 Node 3 Node 4 de 5
sass = I Class = 0 auass = I ass = 0

Class Cases % Class Cases % Class Cases % Class Cases %
0 11 13.1 0 4 100.0 0 0 0.0 0 18 90.0
1 73 86.9 1 0 0.0 1 6 100.0 1 2 10.0

N=84 11 N=4 N=6 11 N=20

Figure 1d. Tree for Model #4 of pilot study (patient #2 moving average
dyskinesia)

Table 10a. Confusion matrix and accuracy for results of CART using model #1 of
pilot study (patient #1 on-off)

Training set:
predicted "off" predicted "on"

actual "off" 35 4
actual "on" 21 117

Test set:
predicted "off" predicted "on"

actual "off" 19 7
Actual "on" 23 70
Test set accuracy = 0.748
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Table 10b. Confusion matrix and accuracy for results of CART using

model #2 of pilot study (patient #2 on-off)

Training set:
predicted "off' predicted "on"

actual "off 77 7
actual "on" 16 91

Test set:
predicted "off' predicted "on"

actual "off' 42 4
actual "on" 15 68
Test set accuracy = 0.853

Table 10c. Confusion matrix and accuracy for results of CART using Model #3

of pilot study (patient #1 moving average dyskinesia)

Training set:
predicted "not predicted "dyskinetic"
dyskinetic"

actual "not dyskinetic" 138 20
actual "dyskinetic" 2 17

Test set:
predicted "not predicted "dyskinetic"
dyskinetic"

actual "not dyskinetic" 94 7
actual "dyskinetic" 3 15
Test set accuracy = 0.916

Table 10d. Confusion matrix and accuracy for results of CART using Model #4

of pilot study (patient #2 moving average dyskinesia)

Training set:
predicted "not predicted "dyskinetic"
dyskinetic"

actual "not dyskinetic" 95 11
actual "dyskinetic" 6 79

Test set:
Predicted "not Predicted "dyskinetic"
dyskinetic"

Actual "not dyskinetic" 54 15
Actual "dyskinetic" 10 50
Test set accuracy = 0.806
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2.5.5.4 Discussion of Dilot data

Machine learning

The results obtained demonstrate the feasibility of using accelerometric
readings to classify hypokinesia / bradykinesia ("on-off') and dyskinesia.
Neural networks appeared to perform better than the classification tree
algorithm (table 11). This is to be expected because neural networks are
more flexible in creating decision boundaries between classes (neural nets
can use an arbitrary hyperplane to separate classes, whereas classification
trees can only divide the feature space using one dimension at a time).
The advantage of classification trees is that the tree that is generated is far
easier for a human to interpret and hence easier for a human to trust. This
may become relevant when the result

Table 11. C-index results for neural
network models (pilot study)

Model Training Set Test Set c-
c-index index
(average for
5 fold cross-
validation)

#1 (Patientl, 0.87965 0.88084
on-off)
#2 (Patient2, 0.85376 0.92142
on off)
#3 (Patientl, 0.84994 0.91144
dyskinesia)
#4 (Patient2, 0.88299 0.94106
dyskinesia)

movements (e.g. just
detect it. In contrast,

one arm or

s are used to influence the decisions
of physicians.

Sensors

It is relevant to note that, in
general, detecting hypokinesia /
bradykinesia ("on-off') required
the input of more sensor sites
than detecting dyskinesia. The
level of "on-off' represents the
level of voluntary activities.
Voluntary activities may be more
focal and have a broader range of
magnitudes than dyskinetic
activities. More focal

sg) would require more sensors to
movements that involve several limbs may require

sampling from just one of those limbs. If a particular state (e.g. "off',
"on", dyskinetic, not-dyskinetic) has broad range of possible acceleration
values, then it may require more sensors to arrive at a classification. That
is because the magnitude reading in one sensor is not specific enough to
that state and comparisons with different sensors would be needed.

Surprisingly, despite the fact that it was not well secured to the patient,
the hip sensor seemed to yield very important information. It was found
to be an important factor in 3 of the 4 neural network models, despite the
technical problems with the sensor in patient #2. Perhaps the hip was
important because it is a measure of truncal movement. In the future, it
would be reasonable to have better measurements of truncal movement.
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We must note that tremor was not found to any clinical relevance in these
two patients. That will not be true of future subjects and this must be
accounted for in future models.

3. Final study

The pilot study showed that it is possible to classify the movement states
of a Parkinsonian patient using a model based on other recordings made
on the same patient. A truly useful classifier would be able to classify the
movement states of a patient without any prior access to any
accelerometric data for that patient. This could not be attempted using
only the two patients of the pilot study.

3.1 Major Changes to Data Collection for the Final Study

Certain items of information that had not been collected in the pilot study
and were collected in this final study include:

1. Use of both physician-based scoring and patient diaries.
They were used to create separate classification models.
Since the patient diary is the commonly used scheme
against which this device would be compared, this project
also attempted to classify movements based on patient
diaries.

2. Use of more standardized metrics.
3. Baseline Hoehn & Yahr and MMSE scores (in order to

gauge generalizability).

3.2 Major Changes to Data Processing for the Final Study

One of the major goals of the final study was to demonstrate that
classification could be done on a patient even without the use of training
data from that same patient. This could be a difficult problem because
patients vary so much from each other. For instance, the cutoff above
which I felt patient #1 was "on" was a score of 1.5, whereas the cutoff I
used for patient #2 was 3.5 (see table 2). These cutoffs were based on my
clinical observations, which is information that the classifying algorithms
will not have access to. Therefore, it would be difficult for the algorithms
to classify, if the cutoffs for dichotomization are not known. There are
other problems too. For instance, the value of features may vary widely
across patients. An algorithm such as CART which relies on fixed values
of individual features to differentiate classes is likely to make errors.
Conceptually, it seems more likely that algorithms such as logistic or
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linear regression or neural networks which use combinations of features
would be more robust. The following is a list of major changes in data
processing as well as their rationales:

1. Arbitrary cutoffs were not used to dichotomize data. Instead a
regression was performed and then a series of cutoffs were applied.
The effectiveness of the algorithms was judged by how well they
classified using all the dichotomization cutoffs. In this way, no
clinical knowledge would be needed in order to choose the "right"
cutoff for the patient and a general assessment could be obtained of
how well the algorithms performed at all the possible classification
tasks.

2. Cutoffs were based on percentile for the particular patient. Using
cutoffs based on fixed numbers does not take into account what is
considered a high score or a low score for that particular patient.
Using given percentiles as cutoffs for the patient in question helps
remedy this problem. This, however, was not applied to cutoffs
used for dichotomizing diary scores. Diary scores are different
because they inherently take into account what is high or low
("good" or "bad") for that particular patient. That is because in
diary scoring, the patient is asked to subjectively assess how
"good" or "bad" they are doing and that would be based on the
patient's specific thresholds.

3. CART was not used. CART cutoffs are based on the value of only
one feature and therefore were felt to be too susceptible to
variations between patients. For instance, if a patient was 50%
greater acceleration in all accelerometers than most other patients,
then CART may well misclassify that patient. An algorithm that
uses several features may be able to use a ratio between features in
order to compensate for variation between patients.

4. Since regression algorithms were to be used, it seemed most
appropriate to assess goodness of fit using error measures based on
deviation of the predicted value from the actual value. These
include mean squared error, mean absolute error and the R2
statistic. It is true that Hosmer Lemeshow could be applied to each
of the many dichotomizations that will be used, but then those
values would then have to be combined into a single value. This
would seem to be unnecessarily complicated and arbitrary. The
standard error functions were therefore used.
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5. Basic analysis was done on very short segments of accelerometry
data and then the results of these basic analyses were aggregated
over the entire 10-minute period of analysis. In the pilot study,
features were derived from processing the entire 1-minute period as
a whole. Observing the patients, I noticed that many actions
occurred more in fits and starts than as continuous activity. This
could lead to small burst of perhaps irrelevant activity "drowning
out" more important subtler actions that are present for a large
fraction of the time, but are not as dramatic. Using small segments
to do basic analyses on and then aggregating these analyses (e.g. by
taking covariance) makes short bursts of activity less relevant.

6. Frequency analyses are to be used. This is because of the
importance of frequency as noted in the literature.

3.3 Method and Materials

Patients were recruited for the study from the movement disorders clinic
at Memorial Hospital in Pawtucket, Rhode Island. The collaborating
investigator at that hospital was Dr. Hubert Fernandez, who is a board-
certified neurologist with a subspecialty in movement disorders. All
participating patients were determined by Dr. Fernandez to have the
diagnosis of Parkinson's disease and to have significant fluctuations in
their movements, either fluctuations between bradykinesia and eukinesia

("on" vs. "off") and/or fluctuations in their degree of dyskinesia. All
participating patients signed consent forms to participate in the study as
well as consent forms to allow themselves to be videotaped. The study
was approved by the internal review board of the hospital.

Five new patients participated in the final study. Additionally, the two
patients from the pilot study were also included in the analysis. Since
some types of data were only collected in the final study, some aspects of
the analysis could only be performed on the 5 patients from the final part
of the study.

All patients were tested using a Folstein mini-mental status examination
(a common screening test for dementia) and required to have at least a
score of 24/30. Additionally, a Hoehn and Yahr staging was performed
on each patient to gauge the level of their Parkinsonism.

All patients in the final study were observed in the Parkinson's day room
at the hospital. There they were observed by a neurologist (myself) and
videotaped for later review by the same neurologist. Clinical observations
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and scorings were recorded every 10 minutes. Additionally, patients
were asked to complete a diary every 30 minutes noting the state of their
movements. Simultaneous to the observations and scorings, the patients
wore 5 accelerometers identical to those described in the pilot study. As
in the pilot study, they were placed distally on each extremity as well as
on the right hip (attached to belt or trousers). At a later time, all patients
had their video recordings reviewed and a final determination of the
scorings was determined.

The two patients in the pilot study did not have this systematic diary
information recorded. Additionally, since the scoring scheme done in the
room at the time differed for the two parts of the study, the videotapes of
the two pilot study patients needed to be reviewed and re-scored.

Tables 12,13 and 14 contain list of the clinical scores that were obtained
on the study patients.
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Table 12. Final study clinical scores based on observations (recorded every 10

minutes). L THis was obtained on the j pauiens 01 the final sLuUyj
Number Label's name Description
1 AIMSoverall Level of dyskinesia overall for the whole body, based on

AIMS2 (0=none, 1 =minimal, 2=mild, 3=mild, 4=severe)
2 AIMS_UE Level of dyskinesia for the upper extremities, based on

AIMS 2 (0=none, 1=minimal, 2=mild, 3=mild, 4=severe)
3 AIMS_LE Level of dyskinesia for the lower extremities, based on

AIMS 2 (0=none, 1=minimal, 2=mild, 3=niild, 4=severe)
4 AIMStrunk Level of dyskinesia for the trunk, based on AIMS 2 (0=none,

1=minimal, 2=mild, 3=mild, 4=severe)
5 Dyskinesia-old Dyskinesia scoring scheme used in the pilot study (O=none,

1=mild, does not appear to impair patient at all, 2=moderate,
appears to cause mild impairment of activity, 3= significant,
appears to cause moderate impairment of activity, 4=severe,
appears to cause severe impairment of activity)

6 BBH Body bradykinesia and hypokinesia (item #31 of the Unified
Parkinson's Disease Rating Scale ). Combining slowness,
hesitancy, decreased arm swing, small amplitude and poverty
of movement in general score as follows: (0=none, 1=minimal
slowness giving movement a deliberate character; could be
normal for some persons. Possibly reduced amplitude,
2=Mild degree of slowness and poverty of movement which
is definitely abnormal. Alternatively, some reduced
amplitude, 3=Moderate slowness, poverty or small amplitude
of movement, 4=Marked slowness, poverty or small
amplitude of movement)

7 Onoff Scoring scheme used in the pilot study to gauge "on" vs."off"
state (0=significantly off, 1=mildly off, 2=ambiguous or
intermediate, 3=mildly on, 4=definitely on)

8 TremorRUE Rest tremor score for right upper extremity (based on item
#20 of the UPDRS ). (0=absent, 1=slight and infrequently
present, 2=mild in amplitude and persistent or moderate in
amplitude but only intermittently present, 3=moderate in
amplitude and present most of the time, 4=Marked in
amplitude and present most of the time.

9 Tremor LUE Rest tremor score for left upper extremity (scored as above).
10 Tremor RLE Rest tremor score for right lower extremity (scored as above).
I1 Tremor LLE Rest tremor score for left lower extremity (scored as above).

Table 13. Final study patient diary scores (recorded every 30 minutes). [This was
obtained on the 5 patients of the final study]
Number Label's name Description
I Diary Patient notes how the patient believes he or she has been over

the past 30 minutes (0=asleep, 1=off, 2=on without
dyskinesia, 3=on with non-troublesome dyskinesia, 4=on with
troublesome dyskinesia)
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Table 14. Pilot study clinical scores based on observations (recorded every 10
minutes). [These were obtained also on the 2 pilot patients]
Number Label's name Description
I On off Same as #7 above
2 BBH Same as #6 above
3 Dyskinesia old Same as #5 above
4 AIMS overall Same as #1 above

3.3.1 Analyses

All accelerometry accelerometer data was off-loaded from the device's
flash card and processed off-line. C language code was used to convert
the recordings into ASCII format. Subsequent data processing and
analyses were performed with the help of custom-written code in Java
(Sun Microsystems), Matlab (Matlabl2, by Mathworks), SAS(SAS
institute) and Neurosolutions (by Neurodimension). SAS was used for
linear regression and Neurosolutions was used for neural networks.

Because of the limited number of patients in the study, it was felt that
there would not be enough patients for a true validation set. Without a
true validation set, it would not be possible to adjust the features and
parameters used in the linear regression and neural network models after
the analysis has begun. Adjusting the features and parameters for the
models in order to optimize the results, in the absence of a true validation
set would likely lead to results that are unreliable and likely better than
they would be in reality.

In order to avoid this problem, all the features that would be used were
determined before analysis. When constructing the models, only default
settings were used (no adjustment of parameters). The (3) features that
were used in all the models were chosen based on experience from the
pilot study, as well as from information obtained from the literature
(results on the pilot study patients were later compared with those of the
final study patients to determine whether using information from the pilot
study to design the analysis led to inappropriately better results for the
pilot study patients).

Each of the five 3-axis accelerometers consisted of two 2-axis
accelerometers aligned perpendicularly to each other. Two of the four
readings were for the same axis and were therefore averaged together
(mean) to form a single reading .The readings from the three axes were
combined to form a single reading corresponding to magnitude of the

overall vector (using the Pythagorean equation: magnitude = V
(x 2+y2+Z2))
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The magnitude thus obtained was subject to a fast Fourier transform
(FFT). The FFTs were obtained over 800 samples at a time. Since the
device sampled at slightly less than 40Hz, this corresponded to slightly
more than 20 seconds of recordings. The FFT values were then converted
to real (non-imaginary) values by obtaining the absolute value. The sum
of all values (area under the curve) corresponding to the following
frequency ranges were obtained:

1. Sum of values 0.25Hz - 3Hz
2. Sum of values 4Hz - 6Hz

A ratio of the two sums was obtained. Since the unit of analysis was the
10-minute time period (corresponding to a single set of clinical scores),
these ratios were combined to obtain a single value for the whole 10
minute time period. This was done by obtaining the covariance of this
ratio in one accelerometer versus that of another accelerometer. There
were 10 possible pairs of accelerometers for which covariance could be
obtained, but based on the results of the 2 pilot study patients, only 3
were chosen:

1. Covariance of frequency ratio between hip and right upper
extremity

2. Covariance of frequency ratio between hip and right lower
extremity

3. Covariance of frequency ratio between hip and left lower
extremity

Linear regression was performed by SAS version 8 (using the "analyst"
program). Neural network models were constructed using
Neurosolutions. All default parameters were used, including the
following:

1. Model: multilayered perceptron
2. 1 hidden layer
3. regression
4. tanh transfer function
5. 1000 epochs
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3.4 Results

The five final study patients had accelerometry recordings for a total of
13 hours, 38 minutes and 43 seconds. The break down is shown in table
15.

Table 15. Final study accelerometry recordings
Patient Accelerometry recordings
#1 One sequence of 2:39:09 in length
#2 Two sequences. One 1:54:35 in length another 1:10:34 in length
#3 Two sequences. One 30:11 in length another 1:50:00 in length
#4 One sequence 2:30:22 in length
#5 One sequence 3:03:52 in length

All data were divided into 10-minute time blocks corresponding to the
periods of time for clinical observations. If any part of that time period
corresponding to a set of clinical scores had accelerometry data, then that
period was analyzed. Since time blocks do not necessarily have data
recorded for the entire 10-minute time period, it is possible for a patient
to have more 10-minute time blocks than it might seem possible at first
glance. For instance, if a patient had accelerometry recordings from
12:05 to 12:15 then that would be counted as two 10 minute time blocks
(i.e. 12:00-12:10 and 12:10-12:20). In the end a total of 121 labeled ten-
minute blocks were analyzed. This break down is shown in table 16.

Table 16. Time blocks by patient
Patient Number of 10-minute blocks
Patient #1 17
Patient #2 20
Patient #3 12
Patient #4 16
Patient #5 19
Pilot Patient #1 32
Pilot Patient #2 15

The labels had the attributes as shown in table 17. General information
about the final study patients is shown in table 18.
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Table 17. Mean and Standard deviation of clinical labels for each patient
Patient BBH BBH AIMS.overall(mean) AIMSoverall Diary Diary

(mean) (std) (std) (mean) (std)
#1 0.94 0.6587 0.47 0.7174 1.35 0.7859
#2 1.30 1.4179 1.55 0.9987 2.25 0.9105
#3 0.67 0.4924 1.25 1.4848 2.50 0.9045
#4 1.06 0.9287 0.19 0.5439 2.00 0.8165
#5 0.89 1.1496 1.37 1.1648 2.21 0.7133
Pilot 1 1.50 1.3912 0.91 0.9625 N/A N/A
Pilot 2 1.47 1.3558 1.33 1.4960 N/A N/A
(std: standard deviation from mean)

Table 18. General features of the final study patients
Patient Age Gender Hoehn & Yahr Handedness
#1 62 Male Stage 3 Right
#2 62 Female Stage 4 Right
#3 77 Female Stage 4 Right
#4 52 Male Stage 3 Right
#5 62 Male Stage 3 Right

3.5 Analyses

Because of the small amount of observed tremor and because most
dyskinesia appeared to be generalized, the analysis was focused on only 3
target variables as shown in table 19.

Table 19. Clinical labels used in analysis
1. body bradykinesia and hypokinesia (BBH)
2. ALMS overall (AIMS overall)
3. diary (Diary)

Since the diary was only recorded every 3 time blocks, the patient's
scoring was applied to all 3 previous time blocks (i.e. the past 30
minutes). This was appropriate because, when completing the diary, the
patients were instructed to assess how they were "over the last 30

minutes."

The two scores initially used in the pilot study (on-off and
dyskinesia old) attempted to measure the same characteristics as target
variables #1 and #2 above and were therefore felt to be redundant.

For both linear regression and neural network (regression), a leave- 1-out
method was used to compile a series of training and test sets. For
instance, a model would be constructed using 6 patients and would then
be tested on the patient not used in constructing the model. In the case of
the diary, the model would be constructed based on only 4 patients and
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then tested on the remaining patient. Since different patients had
different numbers of time blocks, the training set for each model was
obtained by randomly resampling the time blocks of each patient so that
each patient would end up with 50 time blocks to be used to construct the
model. This way, patients with more data would not be over-represented
in the models.

As discussed earlier in the thesis, the time relation of target values should
be taken into account. This could have been done using a hidden Markov
model, but a very simple technique was used instead. The predicted
value for each (10 minute) time block was substituted by the median
value of the current time block, the previous time block and the time
block that follows. The intention of this was to screen out predictions
that were outliers and were not in line with the surrounding predictions.

The overall results were obtained as shown in tables 20 and 21. A
discussion of the meanings of the various statistics is given below.

Table 20. Linear regression results overview
Target Average Average c-index Mean absolute R2

correlation error
BBH 0.6441 0.8219 0.7905 0.1220
AIMS (overall) 0.5289 0.7552 0.8301 0.2730
Diary 0.6143 0.8799 (0.8815) 0.6853 0.2262

Table 21. Neural network results overview
Target Average Average c-index Mean absolute R2

correlation error
BBH 0.6356 0.8043 0.8203 0.1885
AIMS (overall) 0.4495 0.6398 0.7717 0.3133
Diary 0.4125 0.7374 (0.7243) 0.6851 0.1563

Description of statistics:

Average correlation:
This was obtained by obtaining the correlation of the measured target
value with the predicted target value for each of the patients. These
correlations were then averaged (mean) to obtain a single value for

"'average correlation"

Average C-index:
C-index (equivalent to the area under the receiver operator characteristics
curve) requires a dichotomous variable in order to be calculated. Clearly,
the c-indices would be different if different cut-points would be used to
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dichotomize the variables. Here, several different cut-points were used
and c-index results for the different cut-points were averaged for each
patient. Then the average of all the patients was calculated (i.e. the
average c-index).

Since it was felt that the absolute value of the AIMS score or BBH score
for a particular patient would not be as relevant as whether it is low or
high for that particular patient, cutoffs were obtained based on percentiles
for that patient. Nine cut-off were obtained (10 percentile, 20 percentile,
30 percentile, 40 percentile, 50 percentile, 60 percentile, 70 percentile, 80
percentile, 90 percentile). In contrast to the AIMS and BBH scores, the
actual value of the diary score should be relevant clinically because it is a
direct measure of how the hypokinesia, bradykinesia and dyskinesia
affects the individual. Therefore, cut-offs were not obtained using
percentiles for that particular patient, but rather were obtained by fixed
cutoffs (0.5, 1.5, 2.5, 3.5). The average c-index obtained using the
percentile method is included in parentheses for comparison.

Mean Absolute Error:
This was obtained by obtaining the mean absolute error for each patient
and averaging it over all patients.

R2:
This is a statistic used to assess goodness-of-fit. A value of 1 corresponds
to perfect prediction of the target value. A value of zero corresponds to a
fit that is no better than simply guessing that the value is the same as the
mean (of the data that were used to build the model).

More detailed statistics on all models are shown in tables 22-33.

Table 22. Linear regression BBH model: c-indices using different percentile cutoffs
Percentile Pat#1 Pat#2 Pat#3 Pat#4 Pat#5 Pilot Pilot2
as cutoff I
10 N/A N/A N/A N/A N/A N/A N/A
20 N/A N/A N/A N/A N/A N/A N/A
30 0.8750 N/A N/A N/A N/A N/A N/A
40 0.8750 0.8132 1.0000 0.5818 N/A 0.4909 0.8796
50 0.8750 0.8132 1.0000 0.5818 N/A 0.4909 0.9018
60 0.8750 0.8132 1.0000 0.5818 0.8056 0.6412 0.9018
70 0.8750 0.8690 1.0000 0.8909 0.8056 0.6412 0.7000
80 0.8750 0.9531 1.0000 0.8909 0.9214 0.6412 0.7000
90 0.8571 0.9412 1.0000 0.8909 0.9375 0.7704 0.7000
Mean 0.8724 0.8672 1.0000 0.7364 0.8675 0.6126 0.7972
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Table 23. Linear
percentile cutoffs

regression AIMSoverall model: c-indices using different

Percentile Pat#1 Pat#2 Pat#3 Pat#4 Pat#5 Piloti Pilot2
as cutoff
10 N/A N/A N/A N/A N/A N/A N/A
20 N/A 0.8672 N/A N/A N/A N/A N/A
30 N/A 0.8672 N/A N/A N/A N/A N/A
40 N/A 0.8229 N/A N/A 0.7679 N/A N/A
50 N/A 0.8229 0.9000 N/A 0.6818 0.5992 N/A
60 N/A 0.8229 0.9000 N/A 0.6818 0.5992 0.9722
70 0.6136 0.8229 1.0000 N/A 0.6818 0.5992 0.9722
80 0.6136 0.8229 1.0000 N/A 0.6818 0.6594 0.9722
90 1.0000 0.6569 1.0000 0.4643 0.7708 0.6594 0.9722
Mean 0.7424 0.8132 0.9600 0.4643 0.7110 0.6233 0.9722

Table 24. Linear regression Diary model: c-indices (using fixed cutoffs)
Patient 0.5 cutoff 1.5 cutoff 2.5 cutoff 3.5 cutoff Mean
Pat #1 N/A 0.9672 0.9672 N/A 0.9672
Pat #2 N/A 1.0000 0.8788 N/A 0.9394
Pat #3 N/A N/A 1.0000 1.0000 1.0000
Pat #4 N/A 0.9273 0.4364 N/A 0.6818
Pat #5 N/A 0.9375 0.6667 N/A 0.8021
Mean N/A 0.9602 0.7916 1.0000 1
(note: there is no diary information for the 2 pilot patients)

Table 25. Neural Network regression BBH model c-indices using different
percentile cutoffs
Percentile Pat#1 Pat#2 Pat#3 Pat#4 Pat#5 PilotI Pilot2
as cutoff
10 N/A N/A N/A N/A N/A N/A N/A
20 N/A N/A N/A N/A N/A N/A N/A
30 0.8269 N/A N/A N/A N/A 0.6208 N/A
40 0.8269 0.7363 1.0000 0.5455 N/A 0.6208 0.8796
50 0.8269 0.7363 1.0000 0.5455 N/A 0.7285 0.9018
60 0.8269 0.7363 1.0000 0.5455 0.8111 0.7285 0.9018
70 0.8269 0.8214 1.0000 0.7636 0.8111 0.7285 0.7000
80 0.8269 0.9063 1.0000 0.7636 0.9214 0.7971 0.7000
90 0.6667 0.8529 1.0000 0.7636 0.8750 0.8269 0.7000
Mean 0.8040 0.7982 1.0000 0.6545 0.8547 0.7216 0.7972
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Table 26. Neural Network
different percentile cutoffs

regression AIMSoverall model: c-indices using

Percentile Pat#1 Pat#2 Pat#3 Pat#4 Pat#5 Piloti Pilot2
as cutoff
10 N/A N/A N/A N/A N/A N/A N/A
20 N/A 0.7578 N/A N/A N/A N/A N/A
30 N/A 0.7578 N/A N/A N/A N/A N/A
40 N/A 0.7031 N/A N/A 0.8333 N/A N/A
50 N/A 0.7031 0.4143 N/A 0.7670 0.6619 N/A
60 N/A 0.7031 0.4143 N/A 0.7670 0.6619 0.9722
70 0.4394 0.7031 0.7500 N/A 0.7670 0.7386 0.9722
80 0.4394 0.7031 0.7500 N/A 0.7670 0.7386 0.9722
90 1.0000 0.5490 0.7000 0.0714 0.8854 0.7386 0.9722
Mean 0.6263 0.6975 0.6057 0.0714 0.7978 0.7080 0.9722

Table 27. Neural Network regression Diary model: c-indices (using fixed cutoffs)
Patient 0.5 cutoff 1.5 cutoff 2.5 cutoff 3.5 cutoff Mean
Pat #1 N/A 0.9808 0.9808 N/A 0.9808
Pat #2 N/A 0.9400 0.8385 N/A 0.8893
Pat #3 N/A N/A 1.0000 1.0000 1.0000
Pat #4 N/A 0.1250 0.3750 N/A 0.2500
Pat #5 N/A 0.5208 0.6131 N/A 0.5670
Mean N/A 0.6417 0.7615 1.0000
(note: there is no diary information for the 2 pilot patients)

Table 28. Linear Regression: BBH model
Patient Mean squared error Mean absolute error
Pat #1 0.2774 0.4107
Pat #2 1.2878 0.8110
Pat #3 0.2639 0.4412
Pat #4 0.7444 0.6874
Pat #5 0.9631 0.8474
Piloti 2.4257 1.2618
Pilot2 1.4208 1.0737

Table 29. Linear Regression AIMS overall model
Patient Mean squared error Mean absolute error
Pat #1 0.4576 0.6457
Pat #2 0.7960 0.7346
Pat #3 1.4052 0.8851
Pat #4 0.4138 0.5921
Pat#5 1.4147 1.0292
PilotI 0.8526 0.7733
Pilot2 1.8036 1.1510
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Table 30. Linear Regression Diary model
Patient Mean squared error Mean absolute error
Pat #1 1.0761 1.0289
Pat #2 0.4006 0.5505
Pat #3 0.7095 0.6059
Pat #4 0.6863 0.6972
Pat #5 0.4477 0.5439

Table 31. Neural Network BBH model
Patient Mean squared error Mean absolute error
Pat #1 0.3768 0.5291
Pat #2 1.2784 0.8767
Pat #3 0.3592 0.5889
Pat #4 1.1745 0.8822
Pat #5 0.7146 0.7284
Pilotl 2.1900 1.1556
Pilot2 1.2043 0.9811

Table 32. Neural Network AIMS-overall model
Patient Mean squared error Mean absolute error
Pat #1 0.2743 0.5202
Pat #2 1.1487 0.7806
Pat #3 1.9626 1.1259
Pat #4 0.3299 0.4908
Pat #5 0.8402 0.7094
Pilotl 0.6586 0.6954
Pilot2 1.8442 1.0794

Table 33. Neural Network Diary model
Patient Mean squared error Mean absolute error
Pat #1 1.0977 1.0338
Pat #2 0.3993 0.5208
Pat #3 0.4238 0.4628
Pat #4 0.8618 0.8178
Pat #5 0.5453 0.5904

3.6 Discussion

Linear regression performed better than neural network models. This
may have happened because I was unable to adjust the parameters of the
neural network in order to optimize results, which was a necessary
restriction to avoid overfitting. Linear regression appeared to perform
reasonably well for both the BBH (body bradykinesia / hypokinesia)
model and the Diary model (average c-indices of 0.8219 and 0.8719,
respectively). Evaluation data shows a quite remarkable performance of
linear regression in classifying the diary score. Clinically, the most
important (i.e. relevant) information for management of Parkinsonism is:
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1. Whether the patient feels on or off
2. Whether the patient has troublesome dyskinesia or not

The clinician's observations are generally felt to be less relevant. In
addition, non-troublesome dyskinesias are not nearly as relevant as
troublesome dyskinesias. These two most relevant pieces of information
are discerned nearly perfectly by the linear regression model (for diary).
The model is able to discern off (diary scores 0,1) from on (diary scores
2,3,4) with a c-index of 0.9602 and to discriminate troublesome
dyskinesias (diary score 4) from all others with a c-index of 1.

The AIMS model does perform less well than all the rest (average c-index
0.7552). In the pilot study, dyskinesia had actually been easier to predict
than onoff. The reason why the models performed less well across
patients is not clear.

I have chosen to use c-indices for dichotomized data rather than mean
absolute error, mean squared error or the R2 statistic as the main
determinant of success or failure of a model because such
dichotomization will likely be necessary in order to produce a report that
the managing clinician could readily understand. As can be seen in tables
20 and 21, there is generally an inverse relationship between average c-
indices and mean absolute error (with the exception of the neural network
model for BBH). The R2 statistic, which uses the squared errors in its
calculation, does not increase with the better models as might have been
expected. This is likely because using the square of errors makes it
particularly susceptible to a few predicted values that are far off from
their target values. This would also be true of the mean absolute error,
but to a lesser degree. When the data are going to be dichotomized
anyway, these error measures would not be that relevant.

Since no true validation set could be constructed, a cross validation
approach was used, but all the features and parameters used in model
construction were fixed before analysis was performed. Since the pilot
patients were included in most of the analysis and the lessons learned
from the pilot study were used in constructing models, it could be argued
that the pilot study patients may receive and unfair advantage by having
the model specifically tailored to them. While this can not be entirely
dismissed, it is possible to demonstrate that the models did not perform
grossly better on these patients. Table 34 below does not show a
dramatic difference between the pilot study patients and all the patients as
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a whole. In some models they performed slightly better and in some
models slightly worse.

Table 34. Performance of pilot study patients as compared with all patients in the
study
Model Pilot patient Pilot Patient Mean Mean Mean

#1 average #2 average average c- average c- average c-
c-index c-index index of index of all 7 index of all

pilot patients patients patients
excluding
pilot study
patients

BBH (linear 0.6126 0.7972 0.7094 0.8219 0.8687
regression)
AIMSoverall 0.6233 0.9722 0.7977 0.7552 0.7382
(linear
regression)
BBH (neural 0.7216 0.7972 0.7594 0.8043 0.8223
network)
AIMSoverall 0.7080 0.9722 0.8401 0.6398 0.5597
(neural network)
Mean 0.6664 0.8847 0.7766 0.7553 0.7472

4. Conclusion

The results that were obtained in this study appear to be quite promising.
A clinically useful classifier would need to be constructed using far more
patients than were used here. This likely would yield even more accurate
models. If higher sensitivity and specificity would be desired, readily
available data about the patient might be integrated into the models to
yield even better results. For instance, age, gender, handedness, and
Parkinson's stage are easily available and may help fine-tune the models
for specific patients.

This research was designed to demonstrate that a device that uses
accelerometers and its respective classifier is feasible. A study designed
to actually develop such a device would need to be run differently.
Recordings used to build the models should be done in the patients'
natural environment at home. In that way, it would correspond better to
the environment patients will be in when they are using the device
clinically. Likely, the initial work should use only patient diaries and not
clinical observations, for two reasons: Firstly, observations would limit
the patient's natural movement (and therefore limit the usefulness of the
models constructed from that data); additionally, diaries have the most
clinically relevant information.
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