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ABSTRACT

X-ray cavities are key tracers of mechanical (or radio mode) heating arising from the active galactic nuclei (AGNs)
in brightest cluster galaxies (BCGs). We report on a survey for X-ray cavities in 83 massive, high-redshift
( < <z0.4 1.2) clusters of galaxies selected by their Sunyaev-Zel’dovich signature in the South Pole Telescope
data. Based on Chandra X-ray images, we find a total of six clusters having symmetric pairs of surface brightness
depressions consistent with the picture of radio jets inflating X-ray cavities in the intracluster medium (ICM). The
majority of these detections are of relatively low significance and require deeper follow-up data in order to be
confirmed. Further, this search will miss small (<10 kpc) X-ray cavities that are unresolved by Chandra at high
( z 0.5) redshift. Despite these limitations, our results suggest that the power generated by AGN feedback in
BCGs has remained unchanged for over half of the age of the universe (>7 Gyr at ~z 0.8). On average, the
detected X-ray cavities have powers of - ´ -(0.8 5) 10 erg s45 1, enthalpies of - ´(3 6) 10 erg59 , and radii of
∼17 kpc. Integrating over 7 Gyr, we find that the supermassive black holes in BCGs may have accreted 108 to
several M109 of material to power these outflows. This level of accretion indicates that significant supermassive
black hole growth may occur not only at early times, in the quasar era, but at late times as well. We also find that
X-ray cavities at high redshift may inject an excess heat of 0.1–1.0 keV per particle into the hot ICM above and
beyond the energy needed to offset cooling. Although this result needs to be confirmed, we note that the magnitude
of excess heating is similar to the energy needed to preheat clusters, break self-similarity, and explain the excess
entropy in hot atmospheres.

Key words: black hole physics – galaxies: clusters: general – galaxies: jets – X-rays: galaxies: clusters

1. INTRODUCTION

The observed correlations between supermassive black hole
mass and galaxy bulge properties such as stellar velocity
dispersion (e.g., Ferrarese & Merritt 2000; Gebhardt
et al. 2000), spheroid mass (e.g., Kormendy & Rich-
stone 1995), and spheroid luminosity (e.g., Magorrian
et al. 1998) strongly suggest that supermassive black holes
and their host galaxies grew in concert with one another (see
Alexander & Hickox 2012). The majority of the growth of
these black holes occurs at high redshifts ( z 1) when they are
accreting at rates near the Eddington limit, leading to powerful
radiative or “quasar-mode” feedback (e.g., Fabian 2012). It is

thought that this mode of feedback from active galactic nuclei
(AGNs) in the early universe has led to the aforementioned
correlations (e.g., Di Matteo et al. 2005; Springel et al. 2005;
Croton et al. 2006).
In direct contrast, local supermassive black holes are

generally accreting at rates well below 1% of the Eddington
limit. A large fraction of these black holes appear to be driving
powerful jetted outflows that often extend beyond the galactic
hosts (e.g., Körding et al. 2006). The low accretion rates of
these black holes imply that they are most likely powered by
advection-dominated accretion flows (Narayan & Yi 1994, and
references therein). In contrast to radiation-dominated, “quasar-
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mode” feedback, these systems are providing mechanically
dominated “radio-mode” feedback (e.g., McNamara & Nul-
sen 2012). It remains unclear how and why supermassive black
holes switch from one mode to the other over cosmic time.

Hlavacek-Larrondo et al. (2012, 2013, hereafter HL12 and
HL13, respectively) recently attempted to answer this question
by targeting high-redshift ( >z 0.3) brightest cluster galaxies
(BCGs). The AGNs in these massive galaxies provide some of
the most compelling cases for radio-mode feedback. Jetted
outflows are often seen to emerge from the AGNs in BCGs,
and as they propagate through the hot X-ray-emitting
intracluster medium (ICM), they push aside the ICM-creating
regions of depleted X-ray emission known as X-ray cavities (or
bubbles). These X-ray cavities provide a unique opportunity to
directly measure the work done by “radio-mode” AGN
feedback on the surrounding medium (e.g., Bîrzan
et al. 2004, 2008; Dunn et al. 2005, 2010; Dunn & Fabian 2006,
2008; Rafferty et al. 2006; Nulsen et al. 2007; Cavagnolo
et al. 2010; Dong et al. 2010; O’Sullivan et al. 2011). In
particular, HL12 and HL13 showed that the AGNs in BCGs
were becoming increasingly more X-ray luminous with redshift
while the mechanical properties of their outflows—as char-
acterized by the properties of their X-ray cavities—remain
unchanged. In other words, HL12 and HL13 were directly
witnessing the transition between quasar-mode feedback and
radio-mode feedback (see also Ma et al. 2011, 2013; Ueda
et al. 2013).

HL12 and HL13 based their study on the MAssive Cluster
Survey (MACS), a survey consisting of highly X-ray-luminous
clusters at < <z0.3 0.7 (Ebeling et al. 2001, 2007, 2010), but
the MACS sample contains only four clusters with Chandra X-
ray observations beyond z = 0.55; to constrain the evolution of
AGN feedback in BCGs beyond z = 0.55, a larger sample of
high-redshift clusters is required. Such measurements are
possible since Chandra, with a point-spread function of ∼1″,
has the potential to resolve and identify X-ray cavities out to
~z 1.0. 23 Indeed, X-ray cavities in massive clusters have

typical radii of 15–20 kpc (see Figure 4 in McNamara &
Nulsen 2007 and Figure 8 in HL12), corresponding to 2″–2″.5
at z = 1.0.

Recently, the number of known high-redshift galaxy clusters
has increased dramatically, largely due to the success of large
mm-wave surveys utilizing the Sunyaev-Zel’dovich (SZ) effect
to select massive clusters at all redshifts. These SZ surveys
include the South Pole Telescope (SPT) (Staniszewski
et al. 2009; Vanderlinde et al. 2010; Reichardt et al. 2013;
Bleem et al. 2015), the Planck satellite (Planck Collabora-
tion 2011, Planck-29 2013), and the Atacama Cosmology
Telescope (Marriage et al. 2011; Sifon et al. 2013; Hasselfield
et al. 2013). Since the surface brightness of the SZ effect is
redshift independent, SZ surveys have the potential to select
nearly mass-limited cluster samples out to the earliest epochs of
cluster formation. This is in contrast to previous surveys, such
as those based on X-ray selection methods (e.g., Gioia &
Luppino 1994; Burenin et al. 2007), which have strong
redshift-dependent selection functions from cosmological
dimming (Figure 1). The 2500 deg2 SPT–SZ cluster survey
(Bleem et al. 2015) in particular contains 83 massive clusters at

< <z0.3 1.2 that have now been observed with Chandra
(e.g., McDonald et al. 2013a, hereafter M13). By examining
the Chandra X-ray images of these 83 SPT–SZ clusters, we
aim to extend the sample of known clusters of galaxies with X-
ray cavities out to ~z 1. This will allow us to determine if
AGN feedback is indeed operating differently at high redshift
as suggested by HL12 and HL13.
In this paper we focus on the X-ray cavity properties—the

AGN radiative properties will be explored in a future paper. In
Section 2, we present the Chandra X-ray data, then in Section 3
we describe the method for identifying X-ray cavities. In
Section 4, we explain how we calculate cooling luminosities.
Finally, in Section 5 we present the results, and we discuss
them in Section 6. We state the conclusions in Section 7.
Throughout this paper, we adopt = - -H 70 km s Mpc0

1 1 with
=Ω 0.3m and =LΩ 0.7. All errors are s1 unless otherwise

noted.

2. X-RAY OBSERVATIONS AND DATA REDUCTION

The majority of the SPT–SZ clusters with Chandra X-ray
data were observed through a Chandra X-ray Visionary Project
(XVP, PI Benson) targeting the most significant (x > 6.5) SZ
detections in the first 2000 deg2 of the 2500 deg2 SPT–SZ
survey at >z 0.4 (Benson et al. 2013). The XVP exposure
times were chosen to obtain ∼2000 X-ray counts per cluster,
predicted using an SPT significance to X-ray luminosity
relation from a subset of clusters with earlier Chandra
observations. While a total of 80 clusters were observed
through this XVP, we only consider the 74 that were observed
with Chandra and not the 6 that were observed with XMM-
Newton, since Chandra is the only telescope that can resolve
X-ray cavities at high redshifts. In addition to these 74 clusters,
we include nine SPT-selected clusters at >z 0.3 that were
previously observed through other Chandra programs.
The final sample therefore consists of 83 massive clusters,

spanning a redshift range of ⩽ ⩽z0.3 1.2. These clusters all
have highly significant SPT detections (x > 6.5), and we
expect the SZ selection to be nearly mass independent with no
significant detection bias toward clusters with highly peaked
surface brightness distributions (Motl et al. 2005).
The majority of the X-ray data reduction and analysis is

described in M13, to which we refer the reader for a more
detailed description. Briefly, surface brightness profiles are
measured in a series of 20 annuli out to 1.5 ´ R500. These are
then expressed as projected emission measure integrals of the
gas density, and the latter are modeled using modified beta
models (Vikhlinin et al. 2006). With only ∼2000 X-ray counts
per cluster, one cannot apply the standard deprojection
techniques (e.g., Vikhlinin et al. 2006; Sun et al. 2009).
Instead, M13 models the underlying dark matter distributions
as generalized Navarro–Frenk–White profiles (Zhao 1996;
Wyithe et al. 2001). Under the assumption of hydrostatic
equilibrium, the authors then produce best-fit deprojected gas
density and temperature profiles, along with a model for the
underlying gravitational potential for each cluster. While we
use these best-fit deprojected profiles throughout the paper, we
note that the uncertainties derived in M13 do not reflect the
underlying assumptions: typical uncertainties are significantly
larger, on the order of 25% in pressure and 50% in the depth of
the gravitational potential at the radii of cavities (see Appendix
A of M13). Since the local pressure and gravitational potential
are two quantities needed to compute X-ray cavity energetics,

23 We note that Chandra actually holds the potential to resolve X-ray cavities
of ∼20 kpc size out to any redshift, due to the flattening of the angular diameter
distance at high redshift in LCDM. However, beyond ~z 1, observations
become prohibitively expensive due to X-ray surface brightness dimming.

2
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the reported cavity energetics in the SPT–SZ sample are, at
best, within a factor of a few of their true value. We therefore
proceed with the search of cavities in the sample while using
the values derived in M13, but bear in mind throughout the
paper that the uncertainties are significantly larger than reported
in M13.

3. IDENTIFYING SYSTEMS WITH X-RAY CAVITIES

3.1. Method

To identify systems with X-ray cavities, we visually search
the central 100 kpc of each cluster for circular or ellipsoidal
surface brightness depressions in the Chandra X-ray images.
Past studies on local clusters have found that the majority of X-
ray cavities are located within this region (e.g., McNamara &
Nulsen 2007, HL12).

As a first indicator, we create unsharp-masked images for
each cluster to enhance deviations in the original Chandra X-
ray image. This method consists of subtracting a strongly
smoothed image from a lightly smoothed image and has been
used extensively in the literature for X-ray cavity studies (e.g.,
Blanton et al. 2009; Sanders et al. 2009; Machacek et al. 2011).
For the strongly smoothed image, we use Gaussian smoothing
scales on the order of 40–80 kpc to match the underlying large-
scale cluster emission, and for the lightly smoothed image, we
use Gaussian smoothing scales on the order of 5–10 kpc to
match the typical length scale of a cavity. Next, we build a
best-fitting King model, centered on the X-ray peak, for the
surface brightness distribution of all clusters showing hints of
depressions. We use the lightly smoothed Chandra X-ray
image to build the King model and subtracted the resulting
King model image from the original Chandra X-ray image. We
refer to these as the “King-subtracted” images. The King model
is defined as
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where I0 is the normalization, r0 is the core radius, and C0 is a
constant. We allow all three of these parameters to vary while
building the King model.
We try several binning and smoothing factors for all clusters

and also test the robustness of the King-subtracted method by
shifting the position of the central peak by  -2 3 pixels. We
examine three energy bands: -0.5 7 keV, -0.3 2 keV, and

-0.6 3 keV. We only consider cavities to be real if they are
visually identifiable in all X-ray images, including the original
X-ray images (excessive binning and smoothing eventually
removes any indication of a depression).
Out of the 83 SPT–SZ clusters with Chandra X-ray

observations, we find that 10 clusters have surface brightness
depressions in their Chandra X-ray images. However, to
minimize false identification, three co-authors (Hlavacek-
Larrondo, McDonald, and Allen) independently classified each
cluster based on the visual significance of its X-ray cavities,
clusters were classified as having either convincing X-ray
cavities, somewhat convincing X-ray cavities, or unconvincing
X-ray cavities. We then tabulated the classifications and only
kept those that were classified as having convincing or
somewhat convincing X-ray cavities by at least two co-authors.
This resulted in the rejection of 2 of the original 10 clusters:
SPT-CLJ0334–4659 (z = 0.45) and SPT-CLJ2043–5035
(z = 0.7234).
The final list of clusters with X-ray cavities is shown in

Table 1. We note that six of these clusters were unanimously
classified as having convincing or somewhat convincing X-ray
cavities by all three co-authors. From now on, we refer to these
as the clusters with “convincing” X-ray cavities. These are
shown in the top portion of Table 1. The remaining two
clusters, SPT-CLJ0156–5541 (z = 1.2) and SPT-
CLJ2342–5411 (z = 1.075), were classified as having
unconvincing X-ray cavities by one co-author. To emphasize
the uncertainty related to these two particular systems, we
highlight them differently in all tables (see bottom portion) and
figures (square symbols instead of triangles).
The raw, unsharp-masked, and King-subtracted images of

the final list of clusters with X-ray cavities are shown in
Figure 2. The smoothing and binning factors are indicated in
the lower-left corner of each image. “BX” refers to the image
binning factor: “B1” means that the image was not binned,
whereas “B2” means that each pixel corresponds to 4 pixels in
the original image. The smoothing factor is denoted as “SX,”
where “X” corresponds to the sigma of a Gaussian in units of
pixels once the image was binned. For each unsharp-masked
image, we show the two smoothing scales used to create the
image, and for each King-subtracted image we show the
smoothing scale adopted for the original image before creating
and subtracting a King model. Those with brackets were
additionally smoothed for illustrative purposes. The optical or
near-infrared images obtained as part of the SPT 2500 deg2

follow-up campaign for photometric redshifts are also shown
(High et al. 2010; Song et al. 2012; Bleem et al. 2015). These
were taken with the Spitzer Space Telescope, the Swope 1 m
telescope, the CTIO Blanco 4 m telescope, or the Baade
Magellan 6.5 m telescope (see Bleem et al. 2015, for details).
The depth of each cavity was estimated in the X-ray data

using an azimuthal averaged surface brightness (see Figure 3).
We measure azimuthal surface brightness profiles from the X-
ray data (left panels of Figure 2), using an annulus that
encompassed the cavities, centered on the X-ray peak (middle-

Figure 1. Estimated cluster masses versus redshift for different cluster samples.
The mass is defined as M500c, the mass enclosed within a radius at which the
average density is 500 times the critical density at the cluster redshift. We
highlight in yellow the 83 SPT–SZ clusters with Chandra X-ray observations
that were analyzed in this study. In green, we further highlight the eight SPT–
SZ clusters with candidate X-ray cavities. The right-pointing arrows symbolize
the three high-redshift clusters at z 1.5 where the Spitzer redshift model is
poorly constrained.
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Table 1
SPT–SZ Clusters with Candidate X-ray Cavities

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
Name z Lcool 7.7Gyrs =Lcool r 50 kpc =Lcool z 2 N Rl Rw R PA PV Pcav Radio K

( -10 erg s44 1) ( -10 erg s44 1) ( -10 erg s44 1) (kpc) (kpc) (kpc) (o) (1059 erg) ( -10 erg s44 1)

SPT-CLJ0000–5748 0.7019 7.9 5.2 5.0 #1P 18.6 10.7 37 140 1.9 ± 0.8 9.9 ± 5.0 ✓
#2P 15.7 15.7 32 322 3.5 ± 1.6 19.2 ± 9.7 K

SPT-CLJ0033–6326 0.59712 0.7 0.7 0.3 #1P 33.3 20.0 62 100 3.3 ± 1.5 7.7 ± 3.9 ✓a

#2P 30.7 23.3 73 280 3.2 ± 1.4 5.6 ± 2.8
SPT-CLJ0509–5342 0.4607 1.3 1.5 0.9 #1C 16.9 16.9 32 42 1.9 ± 0.8 6.8 ± 3.4 ×b

#2C 24.9 13.4 35 223 1.8 ± 0.8 7.1 ± 3.6 K
SPT-CLJ0616–5227 0.6838 1.9 1.6 0.2 #1C 24.0 17.0 62 82 1.7 ± 0.8 2.4 ± 1.2 ✓

#2P 24.0 17.0 37 234 2.2 ± 1.0 5.2 ± 2.6 K
SPT-CLJ2331–5051 0.576 5.5 3.6 3.8 #1P 13.7 10.5 27 59 1.1 ± 0.5 6.4 ± 3.2 ✓

#2P 12.4 9.2 20 222 1.6 ± 0.7 21.3 ± 10.7 K
SPT-CLJ2344–4243c 0.596 157.0 117.7 144.1 #1P 9.3 9.3 20 115 6.3 ± 2.9 84 ± 42 ✓

#2P 10.0 10.0 20 356 7.8 ± 3.6 107 ± 54 K

SPT-CLJ0156–5541 1.2 <0.02 1.2 <0.02 #1P 20.9 20.9 40 139 2.5 ± 1.1 3.8 ± 1.9 ✓a

#2P 21.2 39.0 40 335 4.6 ± 2.1 9.8 ± 4.9 K
SPT-CLJ2342–5411 1.075 3.1 1.8 0.7 #1P 13.9 13.9 26 196 0.9 ± 0.4 2.8 ± 1.4 ×

Note. The first division contains the six systems with visually convincing cavities, while the second contains the two systems with marginally visually convincing cavities; see paragraph 4 in Section 3.2 for details. (1)
Name; (2) redshift; (3) bolometric cooling luminosity within which tcool is equal to 7.7 Gyr; (4) same but defined within r = 50 kpc; (5) same but defined within which tcool is equal to the look-back time since z = 2; (6)
cavity number (N) with the depth of the cavity compared to the surrounding X-ray emission: C for “clear” and P for “Potential”; see Section 3.1; (7) cavity radius along the jet (errors are ±20%); (8) cavity radius
perpendicular to the jet (errors are ±20%); (9) distance from the central AGN to the center of the cavity; (10) position angle of the cavity for north to east; (11) cavity enthalpy; (12) cavity power; (13) radio emission
associated with AGNs in the BCG.
a Radio source not centered on the BCG.
b Dynamic range limited by the presence of a nearby, un-associated, bright radio source.
c Phoenix cluster (e.g., McDonald et al. 2012).
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right panels of Figure 2). Each annulus was divided into eight
azimuthal sectors, containing roughly 50 counts per sector. On
average, the depressions lie ∼1σ–3σ below the surrounding X-
ray emission and contain 10%–40% less counts, roughly
consistent with X-ray cavities seen in local clusters. Based on
these results, we refer to the cavities lying 1σ–2σ below the
surrounding X-ray emission as “potential” cavities (see “P” in
Column 5 of Table 1), requiring deeper Chandra data to
confirm them, while we refer to those lying 2σ–3σ (or more)
below the surrounding X-ray emission as “clear” cavities (see
“C” in Column 5 of Table 1). We note that the latter are only
found among the six SPT–SZ clusters with visually “convin-
cing” X-ray cavities, as explained earlier in this section.

In Table 1, we also highlight the SPT–SZ clusters with X-ray
cavities that have a radio source associated with the central
regions. Since all of the low-redshift clusters with X-ray
cavities have a radio-active BCG, we expect this to be similarly
the case for the SPT–SZ clusters with X-ray cavities. We use
the 843MHz Sydney University Molonglo Sky Survey
(SUMSS, synthesized beam width of ∼40; Bock

et al. 1999; Mauch et al. 2003), but owing to the large beam
size, we cannot resolve any extended jet-like emission. We
therefore use the radio data simply to verify that the clusters in
our sample with X-ray cavities have radio-loud BCGs. We note
that the radio sources in SPT-CLJ0033–6326 and SPT-
CLJ0156–5541 are not centered on the BCG, but that the
BCG lies well within the beam size of SUMSS. While the
position uncertainty of sources detected in SUMSS is only
~ 10 , these BCGs may still contain a radio source that is
contributing to the overall emission in the beam, since they lie
well within the beam size. We therefore consider that these
sources have a radio counterpart for the purposes of this paper.
SPT-CLJ0509–5342 lies within two beam sizes of a nearby 120
mJy radio source, making its detection by SUMSS uncertain
since SUMSS is dynamic range limited by 1:100 on average
(Bock et al. 1999). This bright radio source is most likely not
associated with the BCG since, at its redshift, it would be
located some 700 kpc from the galaxy. Finally, we find no
evidence from the SUMSS maps of a radio source in SPT-
CLJ2342–5411. Considering that this source is the second most

Figure 2. Images of the SPT–SZ clusters with candidate X-ray cavities. For each row, we show the candidate cluster’s 0.5–7 keV X-ray image, the 0.5–7 keV
unsharp-masked image, the 0.5–7 keV King-subtracted image, and the optical or infrared image. The position of the central AGN, taken to be the position of the BCG,
is shown with the black cross. The smoothing and binning factors are shown in the lower-left corners. We also highlight the cavities in green, as well as their depth:
“C” (“P”) for clear (potential), see Section 3.1. In light blue, we illustrate the annuli used to compute the azimuthal surface brightness profiles (Figure 3). Images of
the SPT–SZ clusters with candidate X-ray cavities. See caption on page 4. Images of the SPT–SZ clusters with candidate X-ray cavities. See caption on page 4.
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distant cluster among our candidates (z = 1.075), the non-
detection may simply be due to the limited sensitivity of the
survey. In summary, and as expected, the majority of clusters
with clear X-ray cavities (Table 1) have a detected radio
counterpart.

3.2. Cavity Energetics

To study the evolution of AGN feedback in BCGs, the
energetics of the X-ray cavities in the SPT–SZ sample must be
computed. These are estimated using the standard techniques,
which we describe below (see Bîrzan et al. 2004, and
references therein). Assuming that the cavity is filled with a
relativistic fluid, the total enthalpy is

=E pV4 , (2)bubble

where p is the thermal pressure of the ICM at the radius of the
bubble (estimated from X-ray data, assuming =p n kTe ) and V
is the volume of the cavity. We assume that the cavities are of
prolate shape. The volume is then given by p=V R R4 3w

2
l ,

where Rl is the projected semimajor axis along the direction of
the jet and Rw is the projected semimajor axis perpendicular to
the direction of the jet. Errors on the radii are assumed to

be±20%, and the jet is defined as the line that connects the
central AGN to the middle of the cavity. The position of the
central AGN is chosen to coincide with the position of the BCG
as seen from the optical or infrared images (Figure 2). If two
central dominant galaxies were present in the optical images,
we chose the brightest one as the BCG. There is only one
cluster where this applies: SPT-CLJ0616–5227. Modifying the
location of the BCG to coincide with the second dominant
galaxies modifies the cavity energetics by a factor of ⩽2, which
is not significant for the purposes of this study.
In Table 1, we give the constraints on the X-ray cavity radii

(Rl and Rw), enthalpy (pV), and cavity power (Pcav). Cavity
powers are determined by dividing the total enthalpy of the X-
ray cavity ( pV4 ) by its age. The latter is given by the buoyancy
rise time (Churazov et al. 2001):

=t R
SC

gV2
. (3)buoyancy

D

Here, R is the projected distance from the central AGN to the
middle of the cavity, S is the cross-sectional area of the bubble
( p=S Rw

2), CD is the drag coefficient (assumed to be 0.75;

Figure 2. (Continued.)
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Churazov et al. 2001), and g is the local gravitational potential.
We use the values of g derived by M13 (see resulting values in
Table 1) but stress that the typical uncertainties are larger than
those reported in M13: they are on the order of±50%, as
mentioned in Section 2. The enthalpy and powers of the X-ray
cavities in the SPT–SZ sample are therefore known, at best, to
within a factor of a few.

4. COOLING LUMINOSITIES

Ultimately, we wish to determine if AGN feedback is
operating differently in high-redshift clusters and, in particular,
if AGN feedback is able to suppress cooling of the hot ICM at
early times. We can address this question by comparing the
mechanical energy injection (measured from X-ray cavities) to
the energy lost by cooling. The latter is often quoted in terms of
the cooling luminosity (Lcool), defined as the bolometric X-ray
luminosity ( -0.01 100 keV) interior to the radius where the
cooling time is equal to some threshold value. We adopt several
definitions of this value throughout this paper.

The first definition is motivated by earlier studies on X-ray
cavities, including those by Nulsen et al. (2009), Rafferty et al.
(2006), and HL12. These studies defined the cooling
luminosity to be the bolometric X-ray luminosity within which
the cooling time is equal to 7.7 Gyr (Column 3 in Table 1). For
the clusters in this sample, this definition effectively measures
the total cooling occurring within a radius of 100 kpc (see
Table 1). As in HL12, we define the cooling time to be

=t
n kT V

L

5

2
. (4)cool

X

Here, n is the total number of gas particles per unit volume, kT
is the gas temperature, LX is the gas bolometric X-ray
luminosity, and V is the gas volume contained within each
annulus. In addition to the internal energy of the gas
( ´ nkT3 2 ), the enthalpy includes the work done on the gas
as it cools at constant pressure in Equation (4) ( ´ nkT5 2 ).
Nulsen et al. (2009) calculate their cooling luminosities within
a radius where the cooling time is 7.7 Gyr, but they do not
specify whether these luminosities are bolometric luminosities.
Since their sample contains only lower-mass systems, we only
compare our study to theirs qualitatively. Rafferty et al. (2006)
calculate their bolometric cooling luminosities at 7.7 Gyr, but
they do not specify the equation they use for the cooling time.
In HL13, we recalculated the cooling luminosities using
Equation (4) for all the massive clusters in Rafferty
et al. (2006; 14 in total). We found our values to be consistent
with theirs within 1σ of the scatter in the population, although
ours were systematically smaller. Overall, there is no
significant difference, at least for the purposes of this study,
and we proceed to directly compare our results with Rafferty
et al. (2006).
The second definition, chosen to be the bolometric X-ray

luminosity within r = 50 kpc (Column 4 of Table 1), is more
physically motivated. This definition allows us to directly
compare the heating and cooling within (roughly) the same
volume. The values we obtain with this second definition are
20%–40% smaller compared to those obtained at 7.7 Gyr.
Finally, we adopt a third definition, motivated by the results

of M13 (Column 5 of Table 1). M13 estimated that cool cores

Figure 2. (Continued.)
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began to assemble in massive systems at = -
+z 1 0.2

1.0, implying
that only a small fraction of the ICM in high-redshift clusters
would have had the time to cool completely, form cold
molecular gas, and feed the black hole that is generating the X-
ray cavities. As such, we define a third cooling luminosity to be
the bolometric X-ray luminosity within which the cooling time
is equal to the look-back time since z = 2. The new values with
this third definition are 10%–95% smaller compared to those
obtained at 7.7 Gyrs. For the 13 MACS clusters with X-ray
cavities (HL12), we also computed cooling luminosities using
this third definition and find that the new values are only ∼10%
smaller. It therefore remains appropriate to use the definition of
the cooling luminosity at 7.7 Gyrs for MACS clusters
( ~z 0.4average ). The difference only becomes significant for
higher-redshift clusters, such as those presented in this work
( ~z 0.7average ).

5. RESULTS

5.1. Distribution of X-ray Cavities

In Figure 4, we plot the cooling luminosity of the 83 SPT–
SZ clusters with Chandra observations using the standard
7.7 Gyrs cooling time definition. This plot shows that the
majority of the SPT–SZ clusters with X-ray cavities lie in the
strongest cool-core clusters. This is expected in part since the
majority of the counts in the Chandra X-ray images will be
concentrated toward the central regions for cool-core clusters,
due to highly peaked X-ray surface brightness distributions.
This higher concentration of counts in the central regions
makes it easier to identify depressions.

Figure 3. We show the -0.5 7 keV azimuthal surface brightness profile of the annuli containing the candidate cavities (Figure 2). The vertical lines illustrate the
locations of each cavity. These plots show that the majority of the X-ray cavities lie s s~ -1 3 below the surrounding X-ray emission. We also indicate the depth of the
X-ray cavities: “C” (“P”) for clear (potential); see Section 3.1.

Figure 4. Cooling luminosities (Lcool) at 7.7 Gyr as a function of redshift for
the 83 SPT–SZ clusters with Chandra X-ray observations. The cool cores,
where the cooling time drops below 7.7 Gyr, are shown in blue and the non-
cool cores in red. For the latter, we assign an arbitrary low Lcool value below
the dotted line for illustrative purposes. Highlighted in green are the systems in
which we identified candidate X-ray cavities. The different shades of green
highlight the depth of the cavities compared to the surrounding X-ray emission
with light (dark) green for the “clear” (“potential”) cavities. The clusters with
convincing cavities are shown with the triangles, while SPT-CLJ0156–5541
and SPT-CLJ2342–5411are shown with the squares, as discussed in
Section 3.1.

Figure 5. Comparison between the mechanical power being injected by the
AGN in the BCG (Pcav) and the cooling luminosity (Lcool) of the cluster at
7.7 Gyrs. The SPT–SZ clusters with candidate X-ray cavities are shown in
green. We use triangles to highlight the six SPT–SZ clusters with convincing
X-ray cavities, while squares are used for SPT-CLJ0156–5541 and SPT-
CLJ2342–5411 as discussed in Section 3.1. Furthermore, the different shades
of green highlight the depth of the cavity compared to the surrounding X-ray
emission with light (dark) green for the “clear” (“potential”) cavities. We note
that the Pcav values are uncertain by a factor of a few for the SPT–SZ clusters as
discussed in Section 2.
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5.2. Energetics of X-ray Cavities

AGN feedback in clusters of galaxies is known to be finely
tuned to the energy needed to offset cooling of the hot ICM out
to ~z 0.6 (HL12). We illustrate this in Figure 5, where we
plot data points from Nulsen et al. (2009, black circles), Nulsen
et al. (2009, black stars) and HL12 (blue circles). In green, we
show the SPT–SZ clusters with X-ray cavities. Here, we adopt
the first definition of the cooling luminosity, defined as the
bolometric X-ray luminosity within which the cooling time is
equal to 7.7 Gyrs. Figure 5 shows that, on average, X-ray
cavities can offset cooling of the hot ICM even in the highest-
redshift sources. We note that this result remains true if we use
the other two definitions of the cooling luminosity (see
Section 4). We discuss these results in Section 6.4.1.

5.3. Redshift Distribution of X-ray Cavities

In Figure 6, we address whether AGN feedback in clusters of
galaxies, as probed by the presence and properties of X-ray
cavities, is evolving significantly with redshift. In this figure,
we plot the mechanical power of the X-ray cavities (Pcav), the
enthalpy of the X-ray cavities (PVtotal), and the cooling
luminosity defined with the 7.7 Gyrs threshold (Lcool) for each
cluster, as a function of redshift. In the bottom right panel, we
also plot the average X-ray cavity radius Raverage defined as

´R R( )l w
1 2 for each X-ray cavity. Since we plot the radius for

each cavity, there are more data points in this panel. We only
include the objects in Rafferty et al. (2006, black circles) and
HL12 (blue circles) since Nulsen et al. (2009) do not provide
any redshift information. In these plots and for the remainder of
the paper, we focus only on the systems with convincing

cavities (i.e., we exclude SPT-CLJ0156–5541 and SPT-
CLJ2342–5411). Figure 6 shows that there is no significant
evolution in any of the cavity properties for the largest and
most powerful outflows. To provide a first-order correction for
the dependency of mass on the cavity powers, we also plot in
Figure 6 the ratio between the mechanical power and the
cooling luminosity as a function of redshift. As we will discuss
in Section 6.1, we are strongly biased against finding small
cavities ( r 10 kpc) in the XVP Chandra data. Removing
these small cavities from Figure 7 for the lower-redshift
samples does not affect the results. We further discuss Figures 5
and 6 in Section 6.4.1.

6. DISCUSSION

We have visually inspected the Chandra X-ray images of a
sample of 83 SPT–SZ clusters located at < <z0.3 1.2 and
found that six clusters contain visually convincing surface
brightness depressions that we interpret to be X-ray cavities.
By comparing the X-ray emission within the cavities to the
surrounding X-ray emission, we determined the depth of the
cavities in each system and classified them into two distinct
categories: those with “potential” cavities (4/6 clusters) when
the cavity emission was only s s-1 2 below the surrounding X-
ray emission and those with “clear” cavities (2/6) when the
cavity emission was at least s s-2 3 below the surrounding X-
ray emission. While deeper Chandra observations are needed
to confirm the “potential” cavities, we proceed with the
discussion of these results. We first discuss the various
selection effects that may be present in this study, and then
we discuss the implications of this study.

Figure 6. Plots of the mechanical power of X-ray cavities (Pcav, top left), the enthalpy of the X-ray cavities (PVtotal, top right), and the cooling luminosity as defined
with the 7.7 Gyrs threshold (Lcool, bottom left) for each cluster, as a function of redshift. Note that the Pcav and PVtotal values are usually uncertain by at least a factor of
a few, especially for SPT–SZ clusters as discussed in Section 2. We also show the average radius of each cavity (Raverage, bottom right) as a function of redshift. Same
symbols as Figure 5. Here, we focus only on the SPT–SZ clusters with visually convincing cavities and therefore exclude SPT-CLJ0156–5541 and SPT-
CLJ2342–5411 from these plots.

9

The Astrophysical Journal, 805:35 (13pp), 2015 May 20 Hlavacek-Larrondo et al.



6.1. Selection Effects

While the results presented in Section 5 are interesting, there
may be several biases present in the cavity selection method
and the analysis. Below we address these potential biases.

First, we will clearly miss cavities below the resolution limit
( R 10average kpc; see Table 1), as well as those that lie on a
jet axis parallel to our line of sight. Furthermore, we limited the
search to the central regions of each cluster, where most of the
X-ray counts are located, and disregarded any X-ray depression
identified at >r 100 kpc. Future, deeper X-ray observations
would be necessary to detect these more extended cavities. We
are likely therefore to miss any extremely large cavities like
those in MS 0735.6+7421. Although these are expected to be
energetically very important, they are expected to be rare with
only two such systems currently known (McNamara &
Nulsen 2007).

In Figure 8, we show the Chandra X-ray images of the
massive galaxy cluster 4C+55.16 (z = 0.2412, Iwasawa et al.
2001; Hlavacek-Larrondo et al. 2011). The left panels show the
deep Chandra images (74 ks), which reveal a large southern X-
ray cavity. The right panels show the same image but for a

reduced exposure time of only 4 ks and binned by a factor of
1.7 (pixel size of  ´ 0. 836 0. 836) to mimic the appearance of
the cluster as if it were located at the average redshift of the
SPT–SZ clusters with X-ray cavities ( ~z 0.7). We reduce the
exposure time to 4 ks since this reduces the total number of
cluster counts to ∼2000, similar to the counts in the Chandra
X-ray images of the SPT–SZ clusters. Figure 8 shows that the
cavity in 4C+55.16 remains visible in all panels. According to
our criteria described in Section 3.1, we would identify this X-
ray cavity as a “potential” cavity since the cavity emission lies
only 1σ–2σ below the surrounding X-ray emission. We note
that adding an additional 75 ks blank field exposure to the
images, mimicking the increase in background from the long
exposure needed to get 2000 counts for high-redshift clusters,
does not change our results.
Even though Figure 8 demonstrates that we can identify

cavities with as few as 2000 counts, we are likely missing
several cavities due to limited data quality of the 83 SPT–SZ
clusters with Chandra observations. To test the probability of
identifying cavities in the SPT–SZ cluster survey, we applied
the same imaging processes as in Figure 8 to the 13 MACS
clusters with X-ray cavities: we reduced the exposure times
such that each cluster contained only ∼2000 counts and binned
the images to mimic the appearance of each cluster as if it were
located at ~z 0.7. Interestingly, we found that only ∼60% of
these X-ray cavities would then have been detected using the
same criteria as those in Section 3.1, and that an even smaller
fraction (∼20%) would have had “clear” cavities with a cavity
emission 2σ–3σ (or more) below the surrounding X-ray
emission, as defined in Section 3.1. This demonstrates that

Figure 7. Plot showing the ratio between the mechanical power of X-ray
cavities (Pcav) and the cooling luminosity (Lcool) at 7.7. Gyrs for different
samples of clusters, as a function of redshift. We also exclude SPT-
CLJ0156–5541 and SPT-CLJ2342–5411 from these plots, as in Figure 5.

Figure 8. Chandra X-ray images of 4C+55.16 (z = 0.2412). Left: un-binned
image (74 ks, ∼40,000 counts, top) and corresponding unsharp-masked image
(bottom). Right: limited exposure image (4 ks, ∼2000 counts, top) binned by a
factor of 1.7 to mimic its appearance as if it were at the average redshift of the
SPT–SZ clusters with X-ray cavities ( ~z 0.7), and corresponding unsharp-
masked image (bottom). This figure shows that the southern X-ray cavity
remains visible in all X-ray images.

Figure 9. Plots highlighting the distribution of cavity enthalpy (top) and the
average cavity radius (bottom). As in Figures 5 and 6, we exclude SPT-
CLJ0156–5541 and SPT-CLJ2342–5411 from these plots.

10

The Astrophysical Journal, 805:35 (13pp), 2015 May 20 Hlavacek-Larrondo et al.



we are likely missing cavities in the SPT–SZ sample due to the
limited X-ray depth of the survey (see also Enßlin &
Heinz 2002; Diehl et al. 2008; Bîrzan et al. 2012). Moreover,
the strongly peaked X-ray surface brightness distributions of
strong cool-core clusters also imply that the X-ray counts will
be highly concentrated toward the central regions in these
clusters. We may therefore be preferentially selecting X-ray
cavities in strong cool-core clusters.

Simulations have shown that the increased SZ signal due to
the presence of a cool core is not significant (Motl et al. 2005;
Pipino & Pierpaoli 2010), and that, similarly, star formation
does not fill in the SZ decrement significantly (e.g., McDonald
et al. 2012). In particular, Lin et al. (2009) showed that at
z = 0.6, less than 2% of clusters with a mass exceeding M1014

will host a radio AGN that contributes to more than 20% of the
SZ signal, even when accounting for the fraction of systems
with flat or inverted spectra. This fraction is even smaller at
higher redshift due to the decreasing flux. These biases should
therefore not be significant.

Finally, we recall that the majority of the cavities presented
here lie only s s-1 2 below the surrounding X-ray emission.
These depressions could therefore be caused by other activity
in the cluster such as merger-induced asymmetries in the X-ray
gas distribution. This is especially true for SPT–SZ clusters,
since cluster merger rates are expected to increase with redshift
(e.g., Cohn & White 2005; Ettori & Brighenti 2008). It is also
important to note that cluster mergers can provide an additional
source of heating to the X-ray gas. At high redshift, AGN
feedback may therefore no longer be the only heating source of
the ICM.

6.2. X-ray Cavity Detection

Out of the 83 SPT–SZ clusters with Chandra observations,
we find that six clusters have visually convincing X-ray
cavities. For these six systems, all of the cavities are found in
pairs, most of which are similar in size and symmetrically
located on either side of the AGN in the BCG. In Section 3.1,
we also showed that these cavities lie s s-1 3 below the
surrounding X-ray emission. While the probability of having
one s s-1 3 random fluctuation in the Chandra X-ray images is
high, due to the Poisson nature of the observations, the
probability of having two such fluctuations in an eight-element
azimuthal array, as in Figure 3, is substantially lower: ∼37%
for two ∼1σ fluctuations within r = 100 kpc. Moreover, the
probability of having the two fluctuations at 180° ± 30° from
one another in PA is only ∼10%. If we also require them to
have matching radii to within ±50 kpc in radius from one
another, as observed in Table 1, then the number drops to
∼7.5% and even further for two ∼2σ (0.2%) and two ∼3σ
(0.001%) fluctuations. Overall, the probability that the
cavities presented here are caused by random fluctuations,
given the PA and radii properties observed in Table 1, is very
small. Instead, the depressions may well be cavities being
carved out by twin radio lobes.

We note that all of these calculations were computed using a
Monte Carlo approach, assuming a random normal distribution
for the cavity flux and a random uniform distribution for the
PAs and radii of the cavities. The statistics are also based on the
annuli shown in Figure 3, which do not cover the full radial
extent ( <r 100 kpc) considered in the cavity selection. By
adding additional spatial elements, we would increase the
chance of a false detection (by adding more draws) but would

also increase the significance of the individual detections (by
improving the measurement of the “background”). Thus, we
expect that these probabilities are within a factor of ∼2 of what
one would get by doing a more rigorous analysis. In principle,
it should also be possible to derive an approach, similar to the
one used here, but focusing on the probability of finding
s s-1 3 fluctuations by eye within the entire region of <r 100
kpc. However, it is very difficult to quantify this selection
function, as visual identification can vary significantly from
one person to another. We therefore choose to focus only on
reporting approximate probabilities in this paper, based on the
annuli statistics shown in Figure 3.

6.3. X-ray Cavity Properties

In this section, we discuss various properties of the detected
X-ray cavities in the SPT–SZ sample (e.g., Figure 9). First, we
note that the average power, enthalpy, and radius of the cavities
in the six SPT–SZ clusters with convincing X-ray cavities are
~ ´ -5 10 erg s45 1,~ ´6 10 erg59 , and ∼16 kpc, respectively,
whereas the average cooling luminosity for these same clusters
is ~ - ´ -(2 3) 10 erg s45 1 (depending on which definition we
adopt; see Section 4). The X-ray cavities in these six SPT–SZ
clusters therefore provide, on average, enough energy to offset
cooling of the hot ICM. This statement remains true even if (1)
we include SPT-CLJ0156–5541 and SPT-CLJ2342–5411 in
the calculations and (2) we only consider the two SPT–SZ
clusters with “clear” cavities (SPT-CLJ0509–5342 and SPT-
CLJ0616–5227) where the cavity emission lies s s-2 3 below
the surrounding emission. For the latter, the average cavity
power, enthalpy, and radius would be ~ ´ -0.8 10 erg s45 1,
~ ´3 10 erg59 , and ∼18 kpc, respectively, whereas the
average cooling luminosity would be ~ ´ -0.1 10 erg s45 1.
We also note that the detection fraction in the sample is 7%

since 6 of the 83 SPT–SZ clusters with Chandra observations
have visually convincing X-ray cavities. If we only consider
the two clusters with “clear” cavities, then the fraction drops to
2%. This is a factor of several less than the fraction observed in
local clusters, where the fraction with X-ray cavities is
20%–30% (Dunn & Fabian 2006; Rafferty et al. 2006; Bîrzan
et al. 2012; Fabian 2012; HL12). However, our result is more
likely a lower limit, due to selection effects (see Section 6.1),
which will need to be quantified with deeper observations and
studies of other cluster samples at high redshifts.

6.4. Evolution of X-ray Cavity Properties

6.4.1. Implications for AGN Feedback

Interestingly, M13 analyzed the cooling properties of the
same 83 SPT–SZ clusters with Chandra observations as those
studied here and found that stable long-standing feedback is
required to halt cooling of the hot ICM to low temperatures. In
agreement with M13, Figures 5 and 7 show that the enthalpy of
X-ray cavities (pVtot) does not vary significantly with redshift
out to ~z 0.8. These results imply that powerful mechanical
feedback may have been operating in massive clusters of
galaxies for over half of the age of the universe (>7 Gyrs,
corresponding to the look-back time since ~z 0.8). Newly
discovered high-redshift clusters such as WARPJ1415.1+3612
(Santos et al. 2012) also find that radio-mode feedback must
have already been established at ~z 1.
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In Section 6.3, we found that the average cavity power of the
six SPT–SZ clusters with convincing cavities was higher than
their average cooling luminosity. In fact, they appear to be
injecting an excess of ∼2´ -10 erg s45 1 in heat. According to
Figure 7, this excess is most significant for the clusters in the
SPT–SZ sample, in particular, at z 0.5. Assuming that
AGN duty cycles remain high and that heating is roughly
constant out to ~z 1, as suggested by Santos et al. (2012), the
excess heat amounts to ∼1.0 keV per particle for a total gas
mass of ´ M5 1013 . Although this result is based only on six
objects, the excess heat is similar to the energy needed to
explain the excess entropy in clusters (Kaiser 1991; Voit 2005)
and would be ~30% larger assuming that the excess heat was
being injected out to the onset of cool cores at ~z 2 (M13). X-
ray cavity powers are also likely only lower limits to the total
energy injected by the central AGN, as weak shocks
(McNamara et al. 2005; Fabian et al. 2006; Forman
et al. 2007) and sound waves (Fabian et al. 2003; Sanders &
Fabian 2008; Blanton et al. 2011) contribute to the total energy
(see also Nusser et al. 2006; Mathews & Brighenti 2008). If
confirmed, the excess heat could therefore be even larger.

Although intriguing, we stress that these calculations assume
that all of the cavities in the six SPT–SZ clusters are real. If we
only consider the two SPT–SZ clusters with “clear” cavities
(SPT-CLJ0509–5342 and SPT-CLJ0616–5227), the excess
heat would be ∼0.7 ´ -10 erg s45 1 (or 0.4 keV per particle).
The estimated excess heat injected per particle also depends on
the duty cycle of the energy injection. For local BCGs, this
duty cycle has been observed to be high (e.g., >60%–90%;
Bîrzan et al. 2012; Fabian 2012). However, the lower limit in
the SPT–SZ sample is ∼11%, since 6 of the 52 clusters with
signs of cooling have cavities (Figure 4). Applying this lower
limit, we find that the excess in heat is reduced to 0.05–0.1 keV
per particle for cool core clusters. We note that if duty cycles
are decreasing with increasing redshift, AGN feedback may no
longer be able to suppress all of the ICM cooling. In this case,
we would expect to see an average increase in star formation
rates for BCGs with increasing redshift. This may explain the
unusually high star formation rate in the Phoenix cluster
(McDonald et al. 2012, 2013b).

In summary, our results suggest that the AGNs in BCGs may
be depositing as little as 0.1 keV per particle or as much as
1.0 keV per particle in excess heat, depending on whether the
AGN duty cycles evolve or not between z = 0 and ~z 1.

6.4.2. Implications for Supermassive Black Hole Growth

Our results show that powerful radio mode feedback may be
operating in massive clusters of galaxies for over half of the age
of the universe (>7 Gyrs, corresponding to the look-back time
since ~z 0.8). If we assume once more that the duty cycles of
the AGNs in BCGs remain high, as they do for local BCGs,
then this implies that the supermassive black holes in BCGs
may have accreted a substantial amount of mass to power the
X-ray cavities. To determine this, we use the following
equation relating the jet (or cavity) power (Pcav) to the black
hole accretion rate (Ṁ):

h=P Mc˙ , (5)cav
2

where η is the efficiency and c is the speed of light. We assume
that the conversion efficiency between accreted mass and jet
power is h = 0.1 (Churazov et al. 2005; Merloni & Heinz 2008;

Gaspari et al. 2012) but stress that if it were lower, then the
black holes would need to accrete even more mass. Assuming
that the average jet power of SPT–SZ clusters with X-ray
cavities is a representative value for massive cool core clusters
( - ´ -(0.8 5) 10 erg s45 1), and integrating Equation (5) over
7 Gyrs while assuming nearly constant duty cycles, we find that
the supermassive black holes in these BCGs must have
accreted - ´ M(1 6) 109 in mass to power the radio jets
responsible for carving out the observed X-ray cavities. If
correct, this would imply that supermassive black hole growth
in BCGs may be important not only at earlier times during
quasar mode feedback, when the black holes are accreting at
rates near the Eddington limit (see Alexander & Hickox 2012,
for a review), but also at later times when the black holes are
accreting at low rates and driving powerful jetted outflows (see
also HL12; Ma et al. 2013). We note that if we only consider
the lower limit to the duty cycle (11% for cool core clusters),
then the accreted mass is - ´ M(0.1 1) 109 and remains
substantial.

7. CONCLUDING REMARKS

We have performed a visual inspection of Chandra X-ray
images for 83 SPT–SZ galaxy clusters, finding that six contain
visually convincing X-ray cavities. These cavities are likely the
result of mechanical, or “radio-mode,” feedback from the
central supermassive black hole. This works extends the
previous samples of known X-ray cavities to higher redshift
(from ~z 0.5 to ~z 0.8). Interestingly, we find that the
Phoenix cluster (z = 0.596) is one of these six systems with X-
ray cavities (see also M. McDonald et al. 2015, in preparation),
and that its extreme cavity power of ~ ´ -P 2 10 erg scav

46 1

rivals those in MS 0735.6+7421 (McNamara et al. 2005). On
average, the SPT–SZ clusters with detected X-ray cavities have
cavity powers of - ´ -(0.8 5) 10 erg s45 1, enthalpies of
- ´(3 6) 10 erg59 , and radii of ∼17 kpc. We identify two

additional systems at ~z 1 that contain marginally detected
cavities. Overall, this work suggests that powerful mechanical
feedback may have been operating in massive clusters of
galaxies for over half of the age of the universe (>7 Gyrs). We
stress, however, the importance of deep Chandra follow-up to
confirm and further analyze these structures, and that these
results are only based on a few objects.
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