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ABSTRACT

We present spectral analysis of Nuclear Spectroscopic Telescope Array and Swift observations of Cep X-4 during
its outburst in 2014. We observed the source once during the peak of the outburst and once during the decay,
finding good agreement in the spectral shape between the observations. We describe the continuum using a power
law with a Fermi–Dirac cutoff at high energies. Cep X-4 has a very strong cyclotron resonant scattering feature
(CRSF) around 30 keV. A simple absorption-like line with a Gaussian optical depth or a pseudo-Lorentzian profile
both fail to describe the shape of the CRSF accurately, leaving significant deviations at the red side of the line. We
characterize this asymmetry with a second absorption feature around 19 keV. The line energy of the CRSF, which
is not influenced by the addition of this feature, shows a small but significant positive luminosity dependence. With
luminosities between (1–6) × 1036 erg s−1, Cep X-4 is below the theoretical limit where such a correlation is
expected. This behavior is similar to Vela X-1 and we discuss parallels between the two systems.

Key words: accretion, accretion disks – radiation: dynamics – stars: neutron – X-rays: binaries –
X-rays: individual (Cep X-4)

1. INTRODUCTION

Neutron star high-mass X-ray binaries, i.e., neutron stars
accreting from an early-type stellar companion, typically show
very high levels of variability in their X-ray emission. As the
unabsorbed flux is directly related to the mass accretion rate,
we can understand these changes as originating from variations
of the latter. The physical conditions inside the accretion
column, where most of the X-rays are produced, change with
accretion rate. By sampling different luminosity levels we can
obtain constraints on the geometry and physical processes in
the accretion column. In particular, Be-star systems, where the
stellar companion has a large circumstellar disk (e.g., Okazaki
& Negueruela 2001), are ideally suited for studying the
luminosity dependence of the X-ray spectrum, as they show
weeks- to months-long outbursts that can cover more than two
orders of magnitude in luminosity.

Many accreting neutron stars show prominent cyclotron
resonant scattering features (CRSFs). CRSFs are produced by
resonant scattering of photons off electrons moving perpendi-
cular to the magnetic field. The electrons are quantized on
Landau levels that energies depend directly on the local
magnetic field, and therefore make the observed energy of the
CRSF a direct tracer of the B-field (see, e.g., Schönherr
et al. 2007 and references therein). With a variable accretion
rate the cyclotron line production region can move along the

accretion column, sampling different magnetic fields. A precise
measurement of the CRSF therefore probes the accretion
geometry of a source.
According to theoretical calculations, a strongly asymmetric

shape of the fundamental line is predicted, with significant
emission wings (e.g., Yahel 1979; Araya &Harding 1996, 1999;
Isenberg et al. 1998; Araya-Góchez & Harding 2000; Schön-
herr et al. 2007; Schwarm 2010, among others). The shape is
thereby strongly dependent on the accretion geometry and the
underlying X-ray continuum. The asymmetry originates from
photon-spawning,where electrons excited to higher harmonic
Landau levels cascading back to the ground state and emitting
photons close to the fundamental line energy (Schönherr
et al. 2007).
Observationally, however, only very few of the approxi-

mately 25 known CRSF sources show any evidence for a
deviation from very simply shaped fundamental lines. In GX
301–2, Kreykenbohm (2004) found marginal evidence for an
asymmetric profile at certain pulse phases using RXTE data, but
the statisticsdid not allow for a detailed description of the
feature. Pottschmidt et al. (2005) and Nakajima et al. (2010)
showed that the fundamental line in V0332+53 is better
described by two absorption-like lines at almost the same
energy, but with different widths. Iwakiri et al. (2012) claimed
the detection of a CRSF in emission rather than absorption at
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certain phases of 4U 1626–67, using Suzaku data. This feature
might lead to a complex line profile in the phase-averaged data,
but their data did not provide a high enough quality to
measure it.

Among the six CRSF sources studied with the Nuclear
Spectroscopic Telescope Array (NuSTAR; Harrison et al. 2013)
so far, none show significant deviations from a Gaussian or
Lorentzian optical depth profile (Fürst
et al. 2013, 2014a, 2014b; Bellm et al. 2014; Tendulkar
et al. 2014; Bhalerao et al. 2015). A detailed study of Her
X-1 revealed good agreement in the line profile between
NuSTAR and Suzaku, and put the most stringent limits on
possible emission wings to date (Fürst et al. 2013).

The Be HXMB Cep X-4 has a CRSF around 30 keV, which
is ideally suited to be studied in detail with NuSTAR, as a result
of the instruments unprecedented energy resolution as well as
increased sensitivity above 10 keV compared to previous
missions. Cep X-4 was discovered by OSO 7 in 1972 (Ulmer
et al. 1972) and again detected by Ginga in 1988 (Makino &
Ginga Team 1988). During the 1988 outburst, regular
pulsations with a pulse period around 66 s were discovered,
and evidence for a CRSF around 30 keV was found (Koyama
et al. 1991; Mihara et al. 1991). The optical counterpart
was identified by Bonnet-Bidaud & Mouchet (1998), who
measured a distance of 3.8 ± 0.6 kpc.

The most detailed spectral description to date is presented by
McBride et al. (2007), who used RXTE data taken during an
outburst in 2002. They confirm the CRSF around 30.7 keV and
describe the continuum with an absorbed power law with a
Fermi–Dirac cutoff. By monitoring the source over the outburst
they find a hardening of the broadband spectrum with
luminosity, but the data quality does not allow the investigation
of the dependence of the CRSF energy on luminosity. McBride
et al. (2007) also show that the pulse profile changes
significantly as a function of luminosity, confirming the results
by Mukerjee et al. (2000), who use RXTE and Indian X-ray
Astronomy Experiment data.

The rest of the Letter is organized as follows: in Section 2 we
detail the data reduction, and in Section 3 we present the
spectral analysis. Section 4 discusses and summarizes our
results and concludes this Letter.

2. OBSERVATIONS AND DATA REDUCTION

In 2014 June MAXI detected renewed activity from Cep
X-4 (Nakajima et al. 2014), and Swift performed pointed X-
ray Telescope (XRT) observations after an automatic
BAT trigger (Evans et al. 2014). Özbey-Arabacı et al.
(2014) performed optical observations and found evidence
for a strong Be-disk, expected to occur with the onset of the
X-ray activity. We triggered NuSTAR observations and
observed Cep X-4 twice, on 2014 June 18–19 (MJD
56826.92–56827.84, ObsID 80002016002, observation 1)
close to the maximum of the outburst and on 2014 July 1–2
(MJD 56839.43–56840.31, ObsID 80002016004, observa-
tion 2) during the decline. Both NuSTAR observations were
supported by Swift/XRT snapshots (ObsIDs 00080436003
and 00080436004, respectively). Figure 1 shows the light
curves of Swift/BAT and MAXI, and the average count-rate
of the NuSTAR observations.

2.1. NuSTAR

We extracted NuSTAR data using the standard nupipe-
line software v1.4.1 as distributed with HEASOFT 6.16. We
used CALDB v20150316, taking a time-dependent gain change
into account. Standard screening of the data resulted in good
exposure times of 40.5 ks for observation 1 and 41.2 ks for
observation 2. We extracted source spectra separately for
FPMA and FPMB from a circular region with a radius of 120″
centered at the J2000 coordinates. The background spectra
were extracted from the opposite corner of the NuSTAR field of
view from a circular region with 90″ radius.
Spectra were modeled with the Interactive Spectral Inter-

pretation System (ISIS; Houck & Denicola 2000) v1.6.2–30
and errors are given at the 90% confidence level unless
otherwise noted. The data were rebinned within ISIS to a
signal-to-noise ratio (S/N) of eight between 3.2–45 keV and an
S/N of three above that, binning at least two channels together.
While the NuSTAR calibration is nominally good down to
3 keV we choose to ignore the first few bins in order to allow
Swift/XRT to drive the model at the lowest energies. We
include data up to 60 keV, where they become background
dominated.

2.2. Swift/XRT

Data from the Swift/XRT (Burrows et al. 2005) were
extracted following the steps outlined in the Swift user’s guide
(Capalbi et al. 2005) using HEASOFT 6.16. Observation 1
(MJD 56826.94–56826.956) was performed in windowed
timing mode, and we extracted the source spectrum from a
rectangular region with 45″ length perpendicular to the read-out
direction. The background was extracted from similar regions
on both sides of the source location. After standard screening
we obtained a good exposure time of 1.0 ks.
Observation 2 (MJD 56839.462–56839.531) was performed

in photon counting mode and was heavily piled-up. Following
the procedure described in the XRT data analysis guide16 we
determined that an annulus extraction region with inner radius
12″ and outer radius 60″ removes most pile-up while still

Figure 1. Light curve of the 2014 outburst of Cep X-4 as observed with Swift/
BAT (blue diamonds), MAXI (green circles), and NuSTAR (red diamonds).
All rates were rescaled to mCrab in the respective energy band. The right hand
x-axis gives the measured count-rates for the NuSTAR data. MAXI did not take
data during the maximum of the outburst.

16 http://www.swift.ac.uk/analysis/xrt/pileup.php
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providing a good S/N spectrum. The background was estimated
from a large region south–east of the source. The observation
resulted in 1.6 ks of good exposure time. Both Swift/XRT
spectra were rebinned to an S/N of six throughout the used
energy range of 0.8–10 keV.

3. SPECTRAL ANALYSIS

As McBride et al. (2007) demonstrate, the hard X-ray
continuum of Cep X-4 is well described by an absorbed power
law with a Fermi–Dirac cutoff (Tanaka 1986) of the form
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To that continuum, McBride et al. (2007) add a CRSF
modeled by a multiplicative absorption line17 with a Gaussian
optical depth profile (gabs in XSPEC) and a narrow additive
fluorescent Fe Ka line. We apply this same model to both
observations separately, modeling Swift/XRT, NuSTAR/FPMA,
and FPMB simultaneously and allowing for a cross-calibration
constant relative to FPMA for FPMB and XRT (CFPMB and
CXRT). We use the phabs absorption model with abundances
by Wilms et al. (2000) and cross-sections by Verner
et al. (1996).

The model results in an unacceptable fit for both observa-
tions ( dof 2275 1087 2.092c = = for observation 1 and

dof 1128 675 1.672c = = for observation 2) with strong
residuals below 10 keV. We therefore add a blackbody
component with kT 1BB » keV that improves the fit signifi-
cantly. We obtain dof 1324 1085 1.222c = = for observation
1 and dof 802 673 1.192c = = for observation 2. The
residuals of observation 1 for this model are shown in Figure 2
(b).

As can be seen in Figure 2(b), the residuals still show some
structure between 10–20 keV that is not modeled by the CRSF.
We therefore add another multiplicative absorption line with a
Gaussian optical depth profile. This addition provides a
significant improvement and results in a good fit, with

dof 1215 1082 1.122c = = for observation 1 and
dof 776 670 1.162c = = for observation 2. The energy of

the CRSF does not change significantly when adding the
second absorption model, which is found to be around
E 19abs » keV in both observations. The residuals to this
best-fit model are shown in Figures 2(c) and (d) for
observation 1 and 2, respectively, and the best-fit parameters
are given Table 1.

Using two lines with Gaussian optical depth profiles
describes the shape of the CRSF in both observations very
well. Using a pseudo-Lorentzian profile instead (modeled by
the cyclabs model) results in a very similar fit and also
requires a second absorption feature. The line energies are
about 2 keV lower, consistent with the expected difference
between the models (see, e.g., Staubert et al. 2014). Our model
is therefore insensitive to the slight differences in shape
between the two profiles, similar to results obtained for
Her X-1 (Fürst et al. 2013) and V 0332 + 35 (Pottschmidt
et al. 2005; Nakajima et al. 2010).

The CRSF energy shows small but statistically significant
variations with luminosity, decreasing from

E 30.39Obs 1 0.14
0.17= -

+ keV in the first observation to
E 29.42Obs 2 0.24

0.27= -
+ keV in the second observation. This

behavior is qualitatively the same with or without the second
absorption feature. In order to rule out the possibility that small
changes in the continuum parameters influence the measured
energy of the CRSF, we performed a simultaneous fit of both
data sets. This was possible as the continuum parameters
(besides the normalization) do not change significantly
between the two observations. In the simultaneous fit, the
photon index Γ, the folding energy Efold, the cutoff energy Ecut,
the absorption column NH, and the Fe Ka line parameters are
tied between both data sets. We obtain very similar results with
respect to the two absorption features and the blackbody
component, in particular the luminosity dependence of the
CRSF energy is seen with the same significance and both
observations require a second absorption feature.
In order to further investigate the choice of the continuum on

the shape and energy of the CRSF, we also model the data with
an NPEX model (Mihara 1995), in which we fix the secondary
power-law index to 22G = - . We obtain a very similar
statistical quality of fit and consistent parameters. The energy
of the line is fitted to E 30.59Obs 1 0.15

0.13= -
+ keV and

E 29.43Obs 2 0.22
0.23= -

+ keV. The secondary absorption feature is

Figure 2. (a) Count spectra and best-fit models of both observations of
Cep X-4. Swift/XRT data are shown in magenta, NuSTAR/FPMA data in red,
and NuSTAR/FPMB data in blue. The best-fit model is shown in gray, the
model evaluated without the absorption lines in green, and the model with only
the primary CRSF in orange. The inset shows a zoom on the red edge of the
CRSF in observation 1. (b) Residuals of observation 1 to a FDcut model with
only one absorption line, (c) residuals of observation 1 to the best-fit model,
(d) residuals of observation 2 to the best-fit model. Data were rebinned for
plotting purposes.

17 We note that while a CRSF is produced by resonant scattering, not
absorption, a possible parametrization is the same as for the latter.
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also clearly visible in the residuals and its addition leads to a
similar improvement in terms of .2c

4. DISCUSSION

We have presented simultaneous Swift and NuSTAR obser-
vations at two different luminosities taken during an outburst of
Cep X-4 in 2014 June and July. We describe the broad-band
spectrum with a power law attenuated by absorption and a
Fermi–Dirac cutoff. We find that the continuum does not
change significantly between the observations but that the
CRSF shows complex behavior.

4.1. Shape of the CRSF

We have shown that to accurately describe the hard X-ray
spectrum of Cep X-4 we require a second absorption feature in
addition to the prominent CRSF around 30 keV. If this feature
were the fundamental line, it would imply a lower magnetic
field strength than previously suggested. That is, however,
unlikely as we expect the ratio of the fundamental and first
harmonic line energy to be close to 2, while we measure 1.56» .
Other sources also show deviations from the expected factor,
however, they are typically much smaller ( 10%< ; e.g.,
Pottschmidt et al. 2005; Müller et al. 2013). The deviation
we observe is too large to be explained by relativistic effects
(Mészáros 1992).

The second feature is also unlikely to result from sampling
different accretion columns or different regions. If that were the
case, the strength of the 30 keV line would be difficult to
explain as this scenario implies that the line should only be
present at some phase intervals. In order to further investigate

this we will present results of phase-resolved spectroscopy in a
separate paper (V. Bhalerao et al. 2015, in preparation). The
production of two CRSFs of such different energies in different
accretion columns would also indicate a strong deviation from
a simple dipole magnetic field, which is not expected (see
Nishimura 2005 for a discussion of the influence of multipole
fields on the CRSF).
The most likely explanation for the second absorption

feature is a deviation of the shape of the CRSF from a smooth
Gaussian or Lorentzian profile. This deviation is highlighted in
Figure 3, where we plot the data-to-model ratio using the best-
fit model with both lines removed. We superimpose the ratio
between this model and the best-fit model with the secondary
feature removed, which implicitly shows a simple symmetric
line profile. From this ratio the data clearly deviate at the red
wing. A similar deviation might be present on the blue side,
however, the data quality does not us allow to constrain this.
Adding a feature there with a similar optical depth does not
change the statistical quality of the fit significantly.
Prominent emission wings would be the most obvious

explanation for deviations from a smooth line. However, such
emission wings typically require a harder spectrum than we
observe to spawn enough photons to become significant
(Schönherr et al. 2007). On the other hand, depending on
geometry and optical depth, photon spawning can lead to
distorted shapes of the scattering trough without creating
measurable emission wings (Schwarm 2010). As can be seen
in the inset of Figures 2 and 3, the second absorption feature is
located exactly at the energy where the primary CRSF starts to
produce significant deviations from the continuum spectrum,
supporting this interpretation.

4.2. Luminosity Dependence of the CRSF

Thanks to NuSTAR’s energy resolution, we are able to
constrain the centroid of the line energy to better than
±0.3 keV. This allowed us to measure a significant change
between the two observations, which appears to be correlated
with luminosity. To highlight that correlation and put it into
context, we show the CRSF energy as a function of luminosity
in Figure 4 for different sources. The energy decreases with

Table 1
Parameters of the Best-fit Fermi–Dirac Cutoff Model for Both Observations

Parameter Observation 1 Observation 2

N (10 cm )H
22 2- 1.05 0.12

0.11
-
+ 1.41 ± 0.25

Acont
a 0.061 0.010

0.008
-
+ 0.021 0.005

0.004
-
+

Γ 0.83 0.11
0.07

-
+ 0.96 0.14

0.09
-
+

E (keV)cut 24 ± 4 25 ± 4

E (keV)fold 5.7 0.6
0.5

-
+ 5.7 0.8

0.6
-
+

E (keV)CRSF 30.39 0.14
0.17

-
+ 29.42 0.24

0.27
-
+

(keV)CRSFs 5.8 ± 0.4 4.9 ± 0.4

dCSRF
b (keV) 20 4

5
-
+ 16.6 3.0

4.0
-
+

E (keV)abs 19.0 0.4
0.5

-
+ 18.5 ± 0.7

(keV)abss 2.5 ± 0.4 2.1 ± 0.5

dabs
b (keV) 0.60 0.17

0.24
-
+ 0.37 0.15

0.21
-
+

A (Fe K )a a ( )1.39 100.14
0.16 3´-

+ - ( )2.8 100.6
0.8 4´-

+ -

(Fe K ) (keV)s a 0.42 ± 0.05 0.34 0.10
0.12

-
+

E (Fe K )(keV)a 6.474 0.032
0.030

-
+ 6.39 0.07

0.06
-
+

ABB
c ( )2.22 100.29

0.41 3´-
+ - ( )7.3 101.3

1.7 4´-
+ -

kT (keV)BB 0.899 0.031
0.030

-
+ 0.96 ± 0.06

CFPMB 1.0319 ± 0.0019 1.023 ± 0.004

CXRT 0.962 ± 0.019 0.91 ± 0.05

dof2c 1215.83/1082 776.35/670

red
2c 1.124 1.159

Notes.
a In photons keV−1 s−1 cm−2 at 1 keV.
b Line depth, optical depth=d ( 2 ).s p
c In 1039 erg s−1 for a source at 10 kpc.

Figure 3. Residuals of observation 1 in terms of data-to-model ratio. The ratio
was calculated by setting the strength of both absorption features to zero.
FPMA data are shown in red, FPMB in blue. The best-fit model is shown in
gray. The green line shows the ratio when only setting the second absorption
feature to zero, i.e., when assuming a symmetric line profile. The data were
strongly rebinned for the plot.
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declining flux, leading to a positive correlation between
luminosity and CRSF energy. The luminosity of Cep X-4 is
between (1–6)×1036 erg s−1 for a distance of 3.8 kpc, which is
below the theoretical limit for the formation of a shock in the
accretion column (Becker et al. 2012). We therefore expect a
constant CRSF energy uncorrelated with luminosity, as
observed in A 0535+26 (Caballero et al. 2007, but see Sartore
et al. 2015 for indications of a correlation). In recent
NuSTAR observations of Vela X-1, Fürst et al. (2014a) show
that this source also has a significant positive correlation
between CRSF energy and luminosity at luminosities below
1037 erg s−1.

Fürst et al. (2014a) follow the calculations of Becker et al.
(2012) but allow for wind-accretion instead of disk-accretion
and assume a massive neutron star (around 2 M in Vela X-1 ).
This results in a narrower accretion column than assumed in
Becker et al. (2012), which in turn decreases the luminosity
threshold required for shock formation significantly, moving
the measured luminosities of Vela X-1 partially above it (see
the dotted–dashed line in Figure 4). Cep X-4 also crosses this
adopted line, although the mass of the neutron star in this
system is not known. Additionally, Cep X-4 is a Be-system,
and so we expect that the accreted matter forms a temporary
accretion disk around the neutron star, which leads to a
different accretion geometry than in purely wind accreting
systems (e.g., Ghosh & Lamb 1979; Okazaki et al. 2013). If the
accretion geometry could be constrained, this correlation might
indicate that the neutron star in Cep X-4 is also massive, with
M M2> .

4.3. Summary

NuSTAR has revealed two new interesting features of the
CRSF in Cep X-4: a distorted profile and a luminosity
dependence of the line’s energy. This makes Cep X-4 the first
system where a significant deviation from a symmetric line

profile has been measured in the phase averaged spectrum and
the second system where a positive correlation between CRSF
energy and luminosity has been found at luminosities below
1037 erg s−1. The latter discovery challenges the current under-
standing of the accretion column geometry, as the line forming
region is expected to be at the neutron star surface and therefore
independent of luminosity.
The discovery of a complex line profile on the other hand is

a good qualitative confirmation of theoretically predicted line-
profiles when taking photon-spawning and magnetic field
gradients into account (e.g., Nishimura 2005; Schönherr
et al. 2007). By combining detailed calculations of the line
profile with sophisticated light bending calculations, it should
be possible to improve our understanding of the emission
geometry in Cep X-4 and other neutron star systems.
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