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Abstract

Intermittent renewable energy sources do not always provide power at times of great-
est electricity demand or highest prices. To do so reliably, energy storage is likely
required. However, no single energy storage technology is dominant when comparing
cost intensities of the energy capacity and power capacity of storage. Past research on
energy storage technologies has debated the value of storage technologies for different
applications, and has compared the cost structures of different storage technologies
without finding generalizable results across both locations and technologies. Here, a
single performance metric, the benefit / cost ratio (y) of storage value added is ana-
lyzed across six locations globally to show that the relative value of storage technolo-
gies is largely location invariant. Electricity price dynamics, specifically the frequency
and height of price spikes determine the value of storage, while the duration of price
spikes determines the relative value of one technology versus another. We find that
cost targets can be set for different technologies with ranging energy and power costs
of storage.
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Chapter 1

Introduction

Energy storage technologies vary widely in their performance, function, and design.
One metric of performance that is of great importance to those investing in power
plants, and especially in renewables, is the cost. For renewables in particular, the cost
of the storage that is likely required to transform intermittent renewables into power
plants providing energy on demand is an additional concern. This thesis examines
how storage can increase the value of renewables despite also increasing the cost [1, 2.
In this chapter, the motivation for increasing the value of renewables is explained, and
a variety storage technologies are described according to their method of converting
and storing energy. The different functions that storage can provide to support the
electric grid are defined next, followed by the many different metrics that can be used
for comparing the technologies. Lastly, the literature on techno-economic modeling
of storage to determine its benefit is discussed in order to show how this research

contributes to the literature.

1.1 Motivation

In order to meet the climate change mitigation goal of limiting global temperature
rise to 2 °C, global electricity generation portfolios will have to shift substantially
to carbon-free energy sources [3]. Renewable energy sources, such as wind and solar

power, do not follow the electrical load, instead they produce electricity when the
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resource is available, regardless of whether there is demand [4]. Other carbon-free
energy sources, such as nuclear fusion, provide base-load energy demand but are
unable to provide peaking power due to ramp rate or other thermal limitations [5].
For these reasons, increasing the proportion of the electricity generation portfolio
provided by carbon-free sources creates a number of challenges for the stability of the
electric grid.

One possible solution to these challenges is the addition of grid-scale energy storage
systems (ESS) to the energy portfolio. Improved energy storage technologies will
be a requirement for the transportation sector, if it is to move away from fossil fuel
dependence in internal combustion engines [6], but also bring important benefits to the
electricity transmission and distribution system. Intermittent renewables generation
combined with energy storage is capable of providing energy on demand. As increased
renewable penetration in the energy grid likely requires that renewables be able to
provide energy on demand, ESS’s will support by storing electricity when demand is

low and providing it when demand is high.

1.2 Energy storage technologies

Energy storage technologies can be classified in four broad categories: mechanical,
electrical, chemical, and thermal [7, 8]. In this review, only technologies which use
electricity as part of the charging process and produce electricity during discharge
operations are considered. Thermal energy storage systems are discussed for com-
pleteness, as they may be used for electrical-to-electrical energy storage. However, it
is more likely that they will be used for storage of waste heat for later reuse by other
systems, for example in industrial processes [9)].

This thesis focuses primarily on a comparison of mechanical storage technologies,
such as pumped hydro storage and compressed air energy storage, and chemical stor-
age technologies, including many kinds of sealed batteries and flow batteries. This
restriction is due to the nature of these technologies as being primarily beneficial in

performing arbitrage as bulk energy storage devices. Flywheels and electrical storage,
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such as supercapacitors, may one day develop to a point where they can effectively
perform bulk services, so they are described here as well. However, their current costs
are not included in the analysis of chapter 3. The remainder of this section describes
in detail the variety of energy storage technologies that may be employed to enable

increased renewables penetration.

1.2.1 Mechanical

Mechanical ESS’s either use the potential energy difference of fluids at a pressure
gradient or the kinetic energy of a rotating mass to store energy. All three mechanical
ESS’s are relatively mature technologies that have been in commercial operation for

decades.

Pumped hydro storage

Pumped hydro storage (PHS) stores energy in the gravitational potential energy
difference between two reservoirs at different elevations [10]. Energy is stored when
water is pumped from the lower reservoir to the higher reservoir. When the water
is released, the driving head of the elevation difference causes the water flow to spin
turbines, thereby generating electricity. Total storage capacity for PHS is a function
of both the height difference between reservoirs and the volume of the upper reservoir.
Schoenung and Hassenzahl (2003), provide a rule of thumb which equates the volume
of the upper reservoir to the height differential between the two reservoirs and the
energy stored in the system, equation (1.1) [11]. The volume of the upper reservoir
and the height differential are also the two largest constraints on siting PHS stations
as there are a limited number of adequate locations. Additionally, deregulation of
the electricity markets and mounting environmental concerns with the loss of animal
habitats due to dam construction and reservoir flooding have led to a decline in

popularity for PHS [7].



Power capacity is a function of the flow rate and the head, or elevation difference
between the reservoir and the turbine. The charging and discharging power capacities
can be completely separate if using separate pumps and turbines or combined if
using reversible pumping turbines. When charging and discharging are combined in a
single pump-turbine, the design is known as a single-penstock system. Separate units
for charging and discharging are referred to as a double penstock design. In either
situation, the choice of turbine is dependent upon the expected head and flow rate
for the location and desired power [12].

PHS has been used as large scale energy storage in the United States since 1929,
when the first station was built in Connecticut [11]. The development of PHS in the
United States accelerated in the 1960s with the advent of nuclear fission generation
facilities, which when coupled with PHS provided both base and peaking power [13].
Since the 1980s construction of PHS has stalled, mostly due to environmental con-
cerns. Despite this, it is the most widely used technology for bulk energy storage [14].
Alternative designs for PHS include using the sea for the lower reservoir in coastal
locations or using underground reservoirs, such as an abandoned mine, for the lower
reservoir [15]. Using the sea as a lower reservoir is beneficial due to the decreased
construction costs of building only one dam rather than two [12|. However, it should
be noted that this is not always a possibility, especially for small islands, due to the

Ghyben-Herzberg lens effect on the freshwater table.

Compressed air energy storage

Compressed air energy storage (CAES) is considered a mature technology despite
only being used in three power plants worldwide. In a CAES ESS electricity is stored
in pressurized air and generated by the subsequent expansion of that air [7]. The
first two CAES plants in the world, in Huntorf, Germany and McIntosh, Alabama
are diabatic CAES facilities. Diabatic CAES is not a pure energy storage technology,
but rather a combined cycle natural gas turbine in which the compression of air is
temporally separated from the production of electricity [16]. A small plant in Gaines,

TX is the first advanced adiabatic CAES (AA-CAES) plant, in which no external fuel
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source is required during the expansion phase.

In CAES systems, compressed air can be stored in caverns in the ground, known
as geological CAES, or in aboveground tanks, referred to as aboveground CAES [17].
There are three primary types of storage cavern proposed for geological CAES: solu-
tion mined salt caverns, aquifers, and conventionally mined hard rock caverns [18§].
It is estimated that 75% of the United States has geologies favorable to CAES with
one of these three features [18, 19]. All three CAES plants currently in operation use
solution mined salt domes [20, 21, 19]. CAES in either a salt dome or conventionally
mined cavern operates at a single pressure throughout the cavern. In porous media,
such as underground aquifers, the air displaces water along a pressure gradient which
may respond dynamically to repeated cycling [22]. This raises concerns about the
feasibility of CAES using aquifers, limiting the area in which this is a viable storage

technology.

The two diabatic CAES plants in operation both use natural gas as a fuel source,
though significant advancements in design have been made between the Huntorf plant
in 1978 and the McIntosh plant in 1992 [21, 20|. In the 290 MW Huntorf plant,
compressed air is stored in two underground caverns and then this air is used to
combust natural gas increasing the energy released by the combustion of natural gas
three-fold [21]. The 110 MW Mclntosh plant uses the natural gas to heat the air

released from the cavern as it powers the turbine through expansion [20].

Advanced adiabatic CAES removes the need for natural gas combustion during the
expansion phase by combining CAES with a thermal energy storage (TES) medium.
Heat generated by the compression of air is removed and stored in the TES to later
reheat the air for expansion [23]. In AA-CAES intercoolers are used between each
stage of compression and recuperators between each expansion turbine. Higher effi-
ciencies are achieved through varying the operation of a group of compressors from
series to parallel in multiple configurations depending on the final pressure required.

A similar manipulation of expanders is used during the expansion phase [23].
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Flywheels

Flywheels store energy in the kinetic energy of a rotating mass. In the charging state,
electricity powers a motor which speeds up the rotating mass. The process is reversed
for discharging, where the rotating mass is used to power the motor, now operating
as a generator to provide electricity back to the grid [24]|. This highly reversible and
scalable system finds many applications beyond grid-scale energy storage, including

use in vehicles and satellites [25].

The two main categories of flywheels in use today are distinguished by their rotor
material, which in turn specifies their limitations and uses. Low-speed flywheels use
massive steel rotors, while newer high-speed flywheels use light weight composites or
carbon fiber materials for the rotor [7]. The kinetic energy stored in a flywheel is
a function of the mass, rotor design, and angular velocity; equation (1.2) accounts
for the mass and rotor design in the term I, the moment of inertia. For a solid disk
of radius v, I = 1/2mr?. As can be seen in equation (1.2), high-speed flywheels
are capable of higher energy densities as the energy increases as a function of the
square of angular velocity, but only linearly in mass [26]. The moment of inertia for
composite materials is more difficult to calculate, as carbon fibers are anisotropic, and
therefore, design, loading, and details of the fabrication process must be accounted
for in calculating the moment of inertia [27|. Equation (1.2) also demonstrates one
of the major advantages of flywheels for energy storage, that it is relatively simple to
accurately determine the state of charge simply by accurately measuring the angular

velocity [25].

Ekinetic = 1/2[W2 (12)

Composite materials are also more desirable than large steel rotors because they
tend not to catastrophically explode when design speeds are exceeded [27]. Heavy
projectiles resulting from flywheel failure are one of the major safety design consid-
erations, and one of the engineering design limits on the energy that can be stored in

the flywheel. These safety considerations generally require large containment vessels
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to house the flywheel [28]|. These containment vessels serve a dual purpose. They also
maintain vacuum in order to reduce air drag losses; however, the reduction of drag
losses through magnetic bearings and vacuum systems does increase the number of

parasitic loads on the flywheel, thereby reducing overall system efficiency [26].

1.2.2 Electrical

Electrical ESS’s store energy in either the electric field created between two charged
plates or in the magnetic field induced by a current in a coil of wire. No transformation
of energy is required for these ESS’s, resulting in systems primarily designed for high
power operations. The two technologies described below are commonly considered
useful for provision of ancillary services which require a high power capacity but lower
energy capacity. For this reason, their costs are not included in the analysis of chapter

3.

Superconducting magnetic energy storage

In a superconducting magnetic energy storage (SMES) system, energy is stored in the
magnetic field created by a current in a toroid [29]. SMES systems use direct current
in a material that has been supercooled to the point of superconductivity. The energy
stored in the magnetic field and is proportional to the square of the current. There is
a critical current, beyond which the current cannot be increased, at which point the
material no longer behaves as a superconductor [29].

Because of the high capital costs for energy storage in SMES, the technology is
used mainly as a source of power quality management, frequency regulation, and
voltage support [30]. The system is usually sized to only provide a few seconds at
rated power [31]. Because the current is not dissipated through ohmic resistance
due to the superconductivity of the storage medium, SMES systems only suffer the
efficiency loss of the power conversion system for converting AC to DC power but
don’t suffer from efficiency losses in the superconducting material itself [31]. Instead,

SMES systems suffer from high parasitic losses and expenses in maintaining the low
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temperatures needed for superconductivity.

Capacitors and supercapacitors

Capacitors and supercapacitors, also referred to as ultracapacitors, operate on the
same principle. Electrical energy is stored in the electric field between two charged
plates. Supercapacitors store significantly more energy than capacitors due to their
use of a liquid dielectric and their geometry [29]. As opposed to the metal plates of a
traditional capacitor, a supercapicitor uses a porous carbon structure which enables
a greater surface area in contact with the dielectric [7]. As with SMES and batteries,
supercapacitors operate on direct current, and therefore require a power conversion

system for operation in the AC electric grid.

Supercapacitors do not suffer from charge rate limitations but are expensive means
of storing large amounts of energy. For these reasons they are most often promoted
for power factor correction and voltage support rather than energy storage [31]. The
primary advantage of supercapacitors over capacitors, such as the original Leyden
jars, is the increased energy density. Finally, supercapacitors last for more than

100,000 cycles, making replacement costs low [10].

1.2.3 Chemical

Chemical, or electrochemical, energy storage comprises both batteries and fuel cells.
Fuel cell technology is a technology capable of both generation and energy storage.

It is outside the scope of this paper.

Batteries consist of multiple electrochemical cells in which a potential exists be-
tween the materials comprising the two electrodes. The anode is the positive elec-
trode, while the negative electrode is known as the cathode, and positive ions are
conducted between them via the electrolyte. Electrons are conducted via the con-
nected circuitry to provide power. For bulk energy storage purposes, only secondary

batteries are of concern, as their ability to be recharged is a required feature [8|.
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Lead-acid batteries

First developed by Gaston Plante in 1860, lead-acid batteries are the oldest and most
mature chemical bulk energy storage technology, having been used for over a century
for electricity storage [32|. Lead-acid batteries comprise over 90% of the market
for electrochemical storage devices [33] by virtue of being the preferred technology
for automotive batteries before the recent development of advanced batteries for use
in hybrid and battery electric vehicles [34]. Despite the maturity of the technology,
lead-acid batteries continue to be the subject of much research and improvement, with
the most recent change being the development of valve regulated lead-acid batteries,
which reduce the operations and maintenance requirement of frequently adding water

to the cells [35].

In a lead-acid battery the anode is made of a spongy lead substrate while the cath-
ode is lead dioxide. The acid is diluted sulfuric acid, which is generally a 25% solution
when the battery is fully charged [34]. Lead-acid batteries are highly recyclable, but
only the spongy lead anode can be made easily made of recycled lead as the cathode
has high purity requirements for the lead dioxide [36]. As the battery discharges, the
sulfate ions bond with the lead from the anode reducing the concentration of acid
and raising the pH of the electrolyte. The efficiency of the battery is dependent on
the state of charge, with the battery being less efficient at higher states of charge [37].
However, the relationship between state of charge and efficiency is non-linear and
dependent on whether the battery is being charged or discharged and at what rate.
Additional challenges with lead-acid batteries are their loss of capacity at both high
and low temperatures, and the nonlinearity in their amp-hours capacity as a function
of discharge [33, 38|. Due to this nonlinearity, as the discharge rate increases, the

total capacity of the battery decreases.

Sodium-sulfur batteries

Sodium-sulfur (NaS) batteries are high temperature batteries which use molten sulfur

as the anode and molten sodium as the cathode [39]. The temperature must be
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maintained between 280 °C and 390 °C during use in order to keep the electrodes
in their molten state for the transfer of the Na ion during charging and discharging
operations [40, 41]. The electrolyte is a solid ceramic substrate of 4”7 alumina which
conducts the Na ion between electrodes. Cell voltage for NaS batteries is 2.08 volts,
and a typical 25kW module requires 320 cells connected in a combination of series
and parallel units. An electric heating unit provides for temperature control, mostly
during the endothermic charging process, while special high-temperature dissipating

casing is needed to ensure the battery does not overheat during discharge.

The electric heating unit accounts for most of the inefficiency during operation,
especially during diurnal peak-shaving operation during weekdays, and no operation
on weekends. A commercially deployed system at Meisei University in Japan has
demonstrably operated in this mode with 77.9% efficiency over a two and half year
period, during which the battery provided 1 MW of the 3 MW peak demand [41].
Current focus on NaS batteries focuses on establishing appropriate operating condi-
tions to enable the battery to provide for peak-shaving, power quality management,
and uninterrupted power supply (UPS) services. This focus is especially important
to understand the impact of pulse operations, when the battery is operated at up to
5 times rated power for 30 seconds to several minutes, on battery temperature and

lifetime.

NaS batteries began commercial development in 1984 through a partnership of
NGK Insulators, Ltd. and the Tokyo Electric Power Company [42]. Over 100 MW
of NaS battery have been deployed in Japan as of 2006 for distributed and grid-scale
operations. NaS batteries are well suited to a multi-function deployment as they can
respond to both short and long demand signals, and they suffer no self-discharge.
While the technology is considered technically mature, research into better packaging
materials for temperature control have the highest potential for improving battery

efficiency.
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Li-ion batteries

Lithium ion batteries use lithium as the main reactive species at both the graphite
anode and Li metal oxide cathode [8]. Originally developed by Sony in 1991 [43],
Li-ion batteries have gained widespread usage in high-end distributed home energy
storage, consumer electronics, and electric vehicles and are being proposed for use
in grid-scale energy storage systems [44]. Research and advancements in Li-ion tech-
nologies focus on three major components of the technology. The carbon anode into
which Li ions intercalate during charging can be made of graphite, hard carbon, or
nanospheres, and the electrolyte can be an organic based compound, lithium salts in
ionic liquids, or a polymer compound for the transport of Li ions during both charge

and discharge. Multiple Li metal oxide anodes are under development [45, 46].

Major advances in Li-ion batteries require significant changes in battery design
and chemistry. Cobalt, manganese, and nickel have been explored as metal oxide
transition metals for the cathode, and new advances also focus on blending different
intercalating metal oxides in fabricating the cathode [47]. However, each of these
metals has issues with either scalability or toxicity and environmental concerns [48].
Current designs, in which Li ions are transferred between a graphite matrix and a Li
metal oxide have approached theoretical limits of efficiency and energy density [49].
New chemistries, such as using tin or silicon alloys for the anode rather than car-
bon structures may provide the answer for continuing to improve Li-ion performance
factors. Other advances involve shifting to LiS conversion chemistry, as opposed to
the current intercalation chemistry, and the use of organic proteins and polymers for

faster ion transport [43, 49].

Concerns with Li-ion batteries include the scalability of the technology for use in
applications as diverse as grid-scale storage, electric vehicles, and portable consumer
electronics [46]. If all the vehicles in the world were replaced with battery electric
vehicles powered by Li Ton cells as produced today, this would consume 30% of the
known reserves of mineable Li [43]. This does not include Li that can be extracted

from sea water. Similarly, the use of Co as the primary metal oxide in the cathode
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raises both environmental concerns and scalability concerns due to the scarcity of

cobalt [43].

Nickel-cadmium and nickel-metal hydride batteries

Nickel-cadmium (Ni-Cd) and its successor nickel-metal hydride (Ni-MH) are mature
battery technologies first developed in the 1970s [43]. A nickel oxyhydroxide cathode
and potassium hydroxide electrolyte are common components between Ni-Cd and
Ni-MH with the difference being the anode material [7]. Ni-MH provide performance
improvements over Ni-Cd batteries and also do not have the human toxicity concerns
that arise from the use of cadmium as the anode material [9].

Despite their improved performance over lead-acid batteries, nickel based batteries
have not enjoyed the same levels of commercial success. Partially this is due to
their higher costs and the toxicity of the cadmium before invention of the metal
hydride alternatives. In Europe, recycling requirements for Ni-Cd batteries have
contributed to higher lifecycle costs as well [9]. There are concerns however, that
recycling cadmium is not a solution to the problem of disposal if large Ni-Cd batteries
are recycled to produce smaller batteries for consumer electronics, which are difficult
to recollect [50]. In response, Europe has banned the use of Ni-Cd in consumer
appliances [15]. Lastly, the memory effect of Ni-Cd raises distinct challenges, in
which improper cycling of the battery leads rapidly to reductions in performance and

battery life [7].

Flow batteries

In a flow battery, the anode and cathode are stationary units with a separating
membrane comprising a reactor area. Two electrolytes are pumped into the reactor
area for the generation of electric current [51]. As a result of this system, the power
capacity and energy capacity of flow batteries are completely modular; changing one
has no effect on the size of the other [52|. This is not the case for any of the sealed
batteries, in which the design and spacing of the electrodes determines both the power

capacity of the cell as well as the energy capacity. In general, the design specifications
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for sealed batteries are such that either battery life or energy constraints limit the
minimum size of the electrode reaction area [53]. Thus, energy capacity is the more

binding constraint for sealed batteries.

Flow batteries can be designed to meet grid-scale energy storage requirements,
but need large tanks to store enough electrolyte to meet hours of demand. They
also require additional balance of plant components, such as pumps for each elec-
trolyte [51]. Multiple chemistries have been proposed for flow batteries, with the two
most extensively researched and installed being zinc bromine (Zn/Br) and vanadium
redox (VRB) [15, 8]. Although VRB and Zn/Br are the two flow cell chemistries
available on the market, other promising chemistries include polysulphide bromine,
vanadium bromine, iron chromium, zinc cerium, and potentially a soluble lead acid

flow battery [52].

Flow batteries are often described as a cross between stationary batteries and
fuel cells, in that they operate as a small chemical plant with a reactor area [53].
Each chemistry requires separate electrolytic solutions for the anode and cathode
with separation of reactive species by an ion exchange membrane, such as Nafion,
that allows for transport of water and non-reactive species to maintain electrical
balance [52|. The use of Nafion as the ion exchange membrane is a further similarity

between flow batteries and fuel cells |54, 55]|.

1.2.4 Thermal

Thermal energy storage technologies are not explored deeply in this thesis. Most TES
are not used primarily for electrical to electrical energy storage, instead being used in
combined heat and power applications. TES can be either high temperature or low
temperature with 200 °C serving as the conventional boundary [9]. Within each of
these temperature regimes, TES can be further subdivided into sensible or latent heat
storage systems. As this distinction cross-cuts the temperature regimes, the features

of each will be discussed below.
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Sensible heat storage

Sensible heat ESS’s store energy in a medium which does not change phase during
the heating process. The charging process involves either heating or cooling the
medium, with most systems storing energy through a heating process. The system
is reversed during discharge with the medium using the temperature differential to
drive a heat pump to generate electricity [15]. More commonly, TES are used in
conjunction with other ESS’s, such as AA-CAES, to store waste heat during system
charging, which can then be reused during discharge to vastly improve overall system
efficiency. The storage medium need not be a fluid, although water is often used
as it is has a high specific heat capacity and is readily available. When the storage
medium is a fluid stored in either separate hot or cold tanks or in a single tank system
with a thermocline, the sensible heat TES is known as an active system [56]. Passive
sensible heat TES use a fluid as the heat transfer mechanism, but use gravel beds as
the storage medium or they store the heat in rocks below the surface of the Earth
mimicking renewable geothermal electricity generation systems [5]. High temperature
sensible heat TES commercially available use molten salts for the storage medium,

and are often used in combination with concentrating solar power generation |9, 56].

Latent heat storage

Latent heat TES store energy in the phase change, either latent heat of fusion or va-
porization, or crystalline restructuring of a medium undergoing a temperature change.
One example, though not necessarily one that provides electricity-to-electricity stor-
age, is the freezing of water to make ice when electricity demand is low, and the
subsequent using of that ice for cooling purposes during day time peak electricity
hours in order to avoid running an air conditioning system.

Latent heat TES have several advantages and challenges in relation to sensible
heat TES. Significantly more energy can be stored per volume in a latent heat system
due to the energy required for phase change. This means that for equivalent capacity

systems, sensible heat TES must be larger [9]. However, the phase change process
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usually results in property changes such as expansions and density variations as well
as non-uniformities that may impact the cycle life of the latent heat TES. Expan-
sions and contractions during phase change provide unique challenges for latent heat
containment systems, as does destabilization of the phase change material, especially
when byproducts can lead to corrosion of the containment system [57|. Additionally,
finding materials with high heat transfer coefficients and high specific heats that are
also inexpensive and readily available is a challenge for both sensible and latent heat

TES.

Current phase change materials for use in latent heat TES, are categorized as
organics, inorganics, or eutectics, which are mixtures of two phase change materials
that melt at one well-defined temperature [9]. Common organic materials for latent
heat TES are paraffin waxes, which are non-corrosive but suffer from low thermal con-
ductivity. Inorganic materials,primarily hydrated salts, correct for the low thermal
conductivity, but are more corrosive, making containment difficult [57|. Lastly, eutec-
tic materials can be either inorganic-inorganic, organic-organic, or inorganic-organic

combinations of phase change materials, but are expensive to manufacture.

1.3 Energy storage functions

The technologies described above provide a number of benefits for the electrical grid
beyond merely enabling renewables to provide energy on demand. EPRI lists fifteen
functions of energy storage which it classifies in five broad categories: bulk energy, an-
cillary, transmission infrastructure, distribution infrastructure, and customer energy
management services [58|. Each of these functions will be described below, particu-
larly focusing on how specific technologies can perform these functions. While all of
these features are benefits that can be provided by an ESS, the remainder of this the-
sis will explore the ways in which energy storage can provide value when performing

arbitrage.
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1.3.1 Bulk energy services

Bulk energy services comprise three different functions of energy storage [58]. The
first two, price arbitrage and electric energy time-shifting, are essentially the same
function used to meet different goals. In price arbitrage the goal is defined by the
price signal and the function of the ESS is to take advantage of lower electricity prices
during one time of day for the purchase of electricity to charge the storage device and
then resell that electricity during another time of day when the prices are higher.
Electric energy time-shifting is the same process but based on the goal of meeting
demand. For this function, the energy storage device charges when demand is low

and discharges to meet periods of higher demand.

Energy storage can also be used to help meet capacity requirements or to defer
investment in new generation capacity. Total generation capacity is only used on a
few days a year, but is expensive to install. Seasonal energy storage can be used to
meet electricity demand when it is at its highest in the year by saving electricity from
earlier in the year when demand is lower [31]. Storage allows for flexibility in system
design by deferring investment in new generation units until demand has grown so
that decisions can be made on actual demand rather than forecasted demand. This
minimizes the risk associated with capacity planning; this flexibility will be discussed
further in section 1.3.3 where storage serves a similar role in deferring transmission

upgrades to minimize investment risk.

Bulk energy storage, and in particular energy arbitrage and time-shifting, is the
primary role of energy storage at the level of grid operations. This thesis focuses
on this role of storage to time-shift energy generated by a renewable resource in one
period to a different period so as to maximize revenue. Other models may use a
similar function of energy storage to shift production to meet demand. Figures 2-3,
2-4, A-1, A-2, and A-3 discussed in section 1.4 demonstrate a model in which elec-
tricity generated by solar power is time-shifted to meet demand. The more positively
correlated electricity prices and demand, the more that arbitrage and demand based

time-shifting produce the same outcome.
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1.3.2 Ancillary services

Energy storage is also highly suited to provide ancillary services to the grid because
of the fast ramping and cycling of many storage technologies [58|. These services are
important for the incorporation of variable renewable generation int the electricity
generation supply mix 31, 59]. Ancillary services affect the quality of power provided
by generators, an aspect of electricity generation that is highly important for sensitive
machinery, for example rotating equipment dependent on a steady 60 Hz power source

and electronics.

Frequency regulation corrects for short duration mismatch of demand and gener-
ation. Over-generation manifests itself as a higher frequency, while demand higher
than generation depresses the frequency [60]. Without storage, this service is pro-
vided by generation units operating at partial loading so that they have capacity
to either increase or decrease generation to match demand. This is problematic for
thermal generation units which have very specific loading requirements for operation
at maximum efficiency and equipment life. Fast-ramping energy storage can provide
this service without the damage to equipment or the high losses associated with the
current techniques. Additionally, use with variable renewables generation helps to
smooth power fluctuations which may occur when clouds pass over photovoltaic ar-
rays or when the wind exceeds cut-in or furl-out speeds [59]. This service is primarily

suited to high-power and low-energy capacity systems, with long cycle-lifetimes.

One of the primary benefits of energy storage is its capability to provide reserve
power. This can be power in the case of a system blackout, or power to restart
generators, known as black start capability. Electricity systems maintain three differ-
ent levels of reserve capability, dependent on the time required to bring the reserve
generator online in case of the failure of a different generation unit. Spinning re-
serves are those generators that are operating unloaded and ready for immediate
loading to meet demand in case of a failure in the system. Non-spinning reserves
and supplemental reserves can be brought on in longer time periods but provide sim-

ilar services [58]. Storage can provide reserve capability without the wasted fuel and
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emissions generated through the unit commitment of unloaded spinning reserves [31].
Charged storage systems with a low self-discharge can meet reserve requirements until
additional generation can be brought online to replace the failed unit.

Just as the frequency of alternating current must be maintained within specified
limits, the voltage provided must also meet certain criteria. Rotating and other
equipment which exhibit inductance and capacitance effects on the grid introduce
reactive power which must be controlled through other equipment which readjusts
the system power factor, or phase angle between voltage and current. The power
conversion equipment of most ESS’s can meet this criteria without drawing upon the
real power in the storage system [58]. Similarly, the generators employed in PHS or
CAES may also be used to adjust system power factor to help restore voltage and

reduce the effects of reactive power [12].

1.3.3 Transmission infrastructure services

Storage can also be used to reduce stresses on the transmission system by relieving
congestion during periods of high usage, sometimes referred to as peak shaving [59].
It can also be used to defer upgrades in the transmission system to reduce the risk
associated with predicted demand expansion. Transmission lines are limited in the
amount of power they can carry. As demand grows, more transmission capacity may
be required to meet new demand. However, as with generation capacity described in
section 1.3.1, the maximum transmission capability is only needed briefly throughout
the year. Congestion relief can help meet demand at this time without overloading
the transmission network but requires appropriate placement of an ESS at the ends of
transmission lines that would have exceeded capacity without the aid of storage [58].
A containerized ESS that can be moved to other locations as needed may be the most
appropriate way to match functional need with ESS life.

Transmission upgrade deferral allows for flexibility in the planning of the trans-
mission network by deferring upgrade costs that might be incurred by upgrading
congested transmission lines to meet periods of peak demand. Deferring the upgrade

increases its net present value since the future cost is discounted to the present. An-
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other benefit of deferring transmission infrastructure upgrades is to minimize the risk
of upgrading transmission to meet projected demand which never materializes. In this
situation, the additional cost of storage now provides flexibility to the system which
increases the average net present value of the transmission system under a variety of
scenarios [61]. It reduces the losses in the worst case scenarios while only minimally

increasing the costs for all other scenarios.

1.3.4 Distribution infrastructure services

Storage can also provide benefits on a smaller, distributed scale relative to the full grid.
These services, and those discussed in section 1.3.5, are not the primary focus for this
study and cannot be practically accomplished by many of the technologies described
in section 1.2. For example, PHS and CAES are primarily grid-level bulk energy
storage technologies, and their geographical constraints prevent them from providing
localized, distributed services. Distribution infrastructure services are similar to the
grid-level services described above, but are more precisely tuned to the needs of a few
customers rather than to all customers.

The two distribution infrastructure services that can be provided by ESS’s are
distribution upgrade deferral and voltage support. Distribution upgrade deferral is
analogous to transmission upgrade deferral but focused on the smaller distribution
lines which may be similarly capacity limited. In the same way, distribution voltage
support focuses on voltage excursions that may occur at the neighborhood level,
perhaps due to single large loads or household photovoltaic arrays [58|, rather than
voltage spikes at the grid level. For both these functions, smaller local ESS’s can help

defer costs and provide reliable service.

1.3.5 Customer energy management services

Customer energy management services use ESS’s at the household or industry level
to provide services that are analogous to those that ESS’s can provide at the grid

level. Services in this functional category are even more limited in the technologies
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that can be considered, since they must be of a small enough system size to be used
by individual customers. Specific functions of an ESS for use by individual customers,
with their grid level analogue in parentheses are: power quality (frequency regulation
and voltage support), retail time-shift (arbitrage), power reliability (spinning reserves
and black start), and demand charge management (arbitrage).

Demand charge management and retail time-shift are both analogous two differ-
ent forms of arbitrage that customers can perform to reduce their electricity bill by
minimizing either the price of electricity purchased from the grid or the additional
charges that are applied when power is drawn from the grid. These two functions fo-
cus on the retail price of electricity as opposed to the wholesale or locational marginal
price which is the focus of the arbitrage function of storage. Power reliability refers to
storage used to provide continuous power in the place of a household gas generator,
and power quality is using storage to minimize frequency and voltage excursions that

may be caused by large loads in a home or more likely a factory or industrial setting.

1.4 Energy storage technology performance criteria

The storage technologies described in section 1.2 can be evaluated in terms of many
different criteria, all contributing to how well they perform the functions listed in
section 1.3. This section details many of these metrics: some related to the technol-
ogy performance and some related to the scalability of the technology. One pair of
performance factors, the cost intensity of energy capacity and the cost intensity of
power capacity, will be examined closely in this thesis as the primary performance

intensity metrics of interest.

1.4.1 Performance metrics

Energy storage technologies may be constrained in their ability to perform the func-
tions of section 1.3 by physical limits of the technology or by their design. Design
variables of consideration for storage include the power capacity and energy capac-

ity, or the size of the system. Physical limits of the technology are often measured
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as intensive variables, a ratio of one variable to another. A specific subset of inten-
sive variables that are used to measure a technology’s performance are performance
intensity metrics [62]. Design variables, performance intensity metrics, and other
intensive factors which influence the performance intensity metrics all limit the abil-
ity of storage to perform a function. Performance intensity metrics and the other
factors which enable them both serve as ways of comparing technologies and might
be improved through research and development (R&D) or increased production and
experience [63, 3.

Specific energy and energy density are two metrics that are intensive measures of
the energy potential of a technology |7, 10, 63]. Specific energy is the energy capacity
per unit of mass, while energy density is the energy capacity per unit of volume.
Similarly specific power is the available power capacity per unit of mass and power
density is the power capacity per unit of volume. All four of these metrics are ex-
tremely important for small scale energy storage systems, and especially for vehicular
systems, as they limit the amount of power and energy available in a constrained

environment.

Efficiency is a measurement of the losses that occur during charging and discharg-
ing and is an example of a factor which influences other performance intensity met-
rics. In addition to the efficiency of the storage medium, the efficiency of the power
conversion system must be considered for energy storage systems such as batteries,
supercapacitors, and SMES which require conversion of alternating current (AC) to
direct current (DC) prior to storage. Specific technology intensity metrics for charg-
ing are generally reported in terms of AC-AC efficiency, combining both charging
and discharging into a single term. However, a more detailed analysis accounting for
differences in charging and discharging efficiency is valuable if these two values are
not the same. For example, in a double penstock PHS design, pumping water from
the lower to upper reservoir may occur at a different power loss than the generation

of electricity as the falling water turns a turbine.

Self-discharge is the loss of energy from a storage medium over time, and like

efficiency is a metric which influences other performance metrics. While efficiency is
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a metric for the power components of storage, self-discharge is the analogous met-
ric for the energy components. Energy can be lost from the storage system in a
variety of ways. Flywheels suffer from high self-discharge due to the friction of spin-
ning masses [24], PHS might suffer self-discharge due to evaporation of water from
the upper reservoir, and many batteries suffer from self-discharge through secondary
chemical interactions occurring in the cell [35]|. Self-discharge can also be thought of
as a scalability metric, in the sense that high self-discharge would limit a technology’s
use in systems which require long duration of storage, such as seasonal storage. Such

systems would only be valuable for storing large amounts of energy.

Ramping time is the amount of time it takes for a storage (or generation) facility to
achieve a desired level of output, and is a third metric which influences performance. It
measures the phenomenon that a storage or generation facility cannot instantly begin
producing at maximum capacity, but must instead be brought up to rated speed.
The rate in terms of kW /min that a facility can increase its output is known as the
ramp rate. Ramp rate is an important feature of energy storage and for renewable
integration, as existing thermal and nuclear facilities can be highly constrained by
their ramp rate [64]. One of the primary concerns caused by the increased penetration
of renewables, especially solar power, is the need for facilities with high ramp rates to
meet demand as it peaks at the same time solar resources decrease due to sunset [65].
This is shown graphically in figure 1-1 in which future increased renewable penetration
necessitates higher ramp rates to meet evening demand. ESS’s can help mitigate this

sharp ramp rate by smoothing renewables production over the course of a day.

Depth of discharge is a limitation applied to the available energy capacity of a
storage system. It is a requirement that some stored energy remain in the system for
proper functioning. Primarily, depth of discharge is associated with sealed batteries
and is a design feature of battery cycling, violations of which result in shortened bat-
tery life. Maintaining energy levels within the rated depth of discharge also improves
efficiency in systems in which efficiency is a function of storage level. In addition to
batteries, depth of discharge can also be a feature of compressed air energy storage,

where a certain positive pressure must be maintained in a cavern, perhaps to prevent
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Figure 1-1: The California ISO "duck" curve highlights the importance of both ramp
rate and the need for energy storage as renewable penetration increases [65]. As future
energy portfolio mixes rely more heavily on solar power, the ramp rate required of
thermal generation units, in order to meet late afternoon demand, increases.

the introduction of water or corrosive materials. Flywheels may also suffer depth of
discharge limitations if they must maintain some rotational velocity. When exploring
the value and optimal sizing of storage facilities, depth of discharge limits necessitate
a higher energy capacity to be installed to achieve the same desired output.

Safety is performance metric of storage which is not necessarily always an in-
tensive variable and therefore a performance intensity metric. It can be either an
intensive variable if dependent on the quantity of storage or it can be a factor in-
dependent of system size, but it is a concern of many different ESS’s. Li-ion and
lead-acid batteries have both experienced fires and other catastrophic failures [46].
Li-ion batteries require extra controllers to maintain safety, as the cell charging rate is
not self-regulated [8]. Flywheels also present a particular safety concern due the high
amounts of energy released in the form of flying projectiles in the case of catastrophic
failure [26, 27]. A NaS battery system suffered a serious fire in September of 2011

resulting in suspension of production by NGK Insulators, LTD. the sole producer of
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this technology [66, 67|.

Carbon emissions per unit power provided or energy stored are performance in-
tensity metrics which enable comparison of technologies in terms of environmental
performance. CAES is the one ESS that requires a fuel source, and therefore the only
technology with direct emissions during operation. This is not true for AA-CAES,
which relies on the storage and recovery of thermal energy generated during charg-
ing and used during the expansion phase. Diabatic CAES plants, such as those in
Huntorf, Germany and McIntosh, AL burn natural gas during the discharge phase
of energy storage |21, 20|. Carbon emissions as a performance intensity metric for
diabatic CAES require detailed information about both CO5 and methane emissions
in particular, as well as consensus on the proper equivalency tools for all other green-
house gasses that might be emitted [68]. In addition to direct emissions, overall life
cycle emissions can be determined for each technology, and these can also serve as an

environmental performance intensity metric.

Power and energy capital cost intensities represent the overnight capital costs
contributed by different components of an energy storage system, usually reported in
units $/kW and $/kWh (or other currencies as applicable) [69, 70, 7, 15, 30, 9, 71, 72].
Cost intensities serve as the primary performance intensity metric of interest for this
thesis. Cost intensities assume that a technology is modular in the sense that each
additional KW of power will cost the same amount as will each additional kWh or
energy capacity. This assumption is stronger for some technologies such as flow
batteries where the size of both the reactor and the storage tanks can be designed
to any scale. Other technologies, such as underground CAES are less modular in the

energy capacity since the size of a cavern is dependent on many other variables.

Cost intensities of power and energy also present a second modularity in terms of
costs because they split a system into its power components and its energy compo-
nents. For some technologies, such as PHS or CAES, the cost modularity in terms
of power and energy is prima facie evident. There are costs that are associated with
pumps, turbines, compressors, and expanders - the power related components - and

costs associated with the energy storage components, such as the cost of building
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reservoirs or underground storage chambers. Flow batteries similarly have separable
costs of power and costs of energy |53, 52|. However, stationary sealed batteries,
flywheels, and SMES are not clearly separable into power components and energy
components. For example, in a sealed battery such as a lead-acid battery, the power
and the energy capacities are both a function of the geometry of the electrodes, their
spacing, and the volume of electrolyte. Changes to any of these components necessar-
ily changes both the power capacity and the energy capacity, which in turn changes
the $/kW and$/kWh costs of the battery. One common method of maintaining power
and energy cost modularity in these ESS’s is to ascribe the power related costs solely
to the power conversion system and using the battery costs in total as the energy
related costs [11]. One reason this is a reasonable solution is that batteries are often
designed with energy capacity as the limiting feature [53|. Section 2.2 provides more
detail on the range of estimates for power and energy capital costs as presented in

the literature.

1.4.2 Scalability and other metrics

Scalability metrics measure the achievable scale of a technology. This scale may
be for a specific project installation or the scale of meeting the needs of all energy
storage projects globally Given the conditions of the scenario, these metrics assess
whether it is reasonable to expect that a given technology may be capable of meeting
a set need. Many of these metrics have to do with resource constraints that might
limit their ability to provide a service at the grid level on a global scale. Absent a
defined scenario, these metrics in general describe limitations that might apply to the
technology when developed for commercialization purposes. Scalability metrics also
provide constraints upon the design variables of installed power and energy capacity
for a specific project, thus limiting the ability of storage to perform a specific function.

Resource constraints are the most general types of scalability metrics. These may
take the form of space or location constraints, geographic constraints, or material
constraints. In section 1.2.1 the types of geological features required for underground

storage of compressed air were described. The geographic dispersal of the types of
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bedrock and aquifers required for building storage caverns is an example of a ge-
ographic limitation on the scalability of CAES [19]. Similarly, PHS requires two
reservoirs with a height difference between them for the storage of energy. Loca-
tions that cannot provide this are prevented from using PHS as an ESS, unless new

techniques such as the use of underground reservoirs can be commercialized [13].

Location constraints may limit which storage technologies can perform transmis-
sion and distribution deferral services as described in section 1.3. These deferral
functions require that technologies be located in specific places in the grid. Addition-
ally, technologies which can be moved are more beneficial since they can be reused
over time as the grid needs change. Technologies such as PHS and CAES are un-
likely to be able to fulfill this function as they are both immobile and also highly
restricted in where they can be located. Aboveground CAES using storage cylinders
may mitigate these concerns, but this technology has yet to be proven commercially

viable.

Material needs are a primary scalability constraint for some battery chemistries.
These constraints also include the environmental damage that might occur through
mining. Lead, zinc, lithium, and cobalt are all examples of metals which might con-
strain the production of either lead acid, Zn/Br, or Li-ion batteries [31]. Alternatives
to these resource constraints include recycling of used batteries to recover rare ma-
terials, research into alternative chemistries requiring only abundant materials, and
possible new sources for minerals other than mining [43|. As an example of this last
alternative, lithium can be extracted from seawater through adsorbents and the appli-
cation of electricity [73]. Material needs may also manifest themselves as limitations
through the application of disposal and recycling costs which will raise the life cycle
costs of a technology [50|. Lastly, water requirements for PHS can also qualify as a
material need if this limits the use of this ESS.

Parasitic load requirements place a different type of limitation on the scalability
of an ESS. Parasitic loads are a concern for technologies such as NaS batteries which
require heating sources to maintain the temperature between 280 °C and 390 °C and

SMES which requires additional equipment to cool the superconductor [40, 29]. The
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ability to maintain temperature control in very large or very small systems presents
a scalability metric for these technologies. When parasitic load requirements increase
more than linearly with system size, they provide a constraint on the size of a system
which can perform one of the specific function from section 1.3. The additional costs
applied by parasitic loads apply a scaling requirement to these technologies, as they
must be sized so that they can meet demand while also supplying their own loading

requirements.

1.5 Techno-economic modeling

Comparing the technologies of section 1.2 according to the different criteria of section
1.4 generally requires that the technologies be modeled according to how they would
best perform the functions of section 1.3. Techno-economic modeling uses the techni-
cal features and limitations of the different technologies as constraints limiting their
ability to be remunerated for providing a service. This section provides an overview
of the different types of techno-economic models that have previously been published
to highlight the need for the research presented in this thesis. Most models study
only one technology or one location, as opposed to comparing multiple technologies
across locations according to their cost intensities. This thesis contributes to the
techno-economic modeling literature by examining the value of multiple technologies
when performing arbitrage at different locations.

Benitez et al. (2008) use a non-linear optimization model to study the use of
storage to facilitate the growth in wind power in Alberta, Canada [74]. They model
PHS of a constrained size to study the effect the ESS has on reducing the needs for
peak generation capacity as wind penetration is increased. They find that storage
can reduce the need for maintaining peaking generators by providing reserve capacity
for the increased wind penetration. Connolly et al. (2012) similarly research the
effect PHS has in Ireland on increasing wind capacity for a national grid [75]. They
investigate both single penstock designs, in which the pumps and turbines are a single

unit and only one function can operate at a time, and double penstock designs, in
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which pumps and turbines are separate and so the storage can be both storing and
generating at the same time. They find that double penstock designs significantly
increase the penetration of wind power and reduce costs by eliminating the need for

redundant peaking plants, but that storage is not feasible because it is too costly.

Studies using storage combined with intermittent renewables to provide baseload
power frequently model storage with wind power and will be discussed next. Wind
generation has a non-zero probability of providing energy at any given time. This
is different than solar power, where providing baseload generation necessitates plan-
ning for the diurnal cycle and days of less irradiance. Denholm et al. (2005) explore
the possibility of using CAES in the midwest U.S. to enable wind power to provide
baseload energy [76]. They find that this is possible, but the use of diabatic CAES
reduces the environmental performance of wind, due to the burning of natural gas
as part of the energy recovery process. They also find a tradeoff between the ca-
pacity factor energy storage enables wind to achieve and the amount of spilled or
curtailed wind energy. In a similar study, Greenblatt et al. (2007) show that wind
and CAES operating as baseload power greatly expands the penetration potential for
wind energy [77]. They find that this is only economically feasible with the inclusion
of greenhouse gas emission prices in the market along with natural gas prices higher

than current values.

Birnie (2014) optimizes the size of a battery for a given solar array size to meet
demand in three case study locations in the U.S. [78]. The locations, Newark, NJ,
Boulder, CO, and Tucson, AZ, span a range of solar availability. The study focuses
on meeting as much demand as possible with either the size of the array, which
limits the total energy that can be generated, or the capacity of the battery serving
as the limiting factors. In a different demand based model, Leadbetter and Swan
(2012) study battery ESS’s for residential neighborhoods for use in peak shaving
applications [79]. This study uses the battery storage to provide peak shaving services
while meeting demand, and demonstrates a method for determining the optimal size
of the battery and the resulting battery lifetime given light cycling and few deep

discharges.
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Kaabeche and Ibtiouen (2014) focus on hybrid systems of PV, wind, a diesel
generator, and a battery ESS [80]. In their model they combine both an energy
deficit model, for meeting overall system demand, with a cost model to find the
optimal sizing and operation of the hybrid system for use by small islanding networks
of approximately 10 houses. Kaldellis and Zafirakis (2007) similarly use a minimum
cost optimization model to study hybrid renewable and storage configurations on
two Aegean islands [81|. They find that ESS viability is dependent on input energy
pricing, which can contribute up to 70% of total production costs. Hittinger et al.
(2010) take a different approach to the question of integrating renewables by focusing
instead on the ability of storage and natural gas to facilitate the integration of wind
by accounting for short duration, 10 seconds, fluctuations in power [82|. They find
that when analyzing the frequency regulation stresses that renewables penetration

places on the grid, storage is required to facilitate wind penetration levels about 12%.

Sioshansi (2010) studies how energy storage can be used to perform price arbitrage
in conjunction with wind power to increase the value of wind energy systems [83].
Using a supply function equilibrium model as an economic model and a simple energy
balance without power capacity constraints for the technical aspects, he shows that
the addition of storage helps a wind generator gain some market power which it can
then use to increase its value. However, a side effect of the increased value is reduced
consumer surplus, and in practicality he finds that no existing storage technologies
have sufficiently low enough capital costs to justify installing energy storage for this

purpose.

Sealed batteries have been installed in many locations in the U.S. to provide
ancillary services such as frequency regulation and spinning reserves [84]|. Alt et al.
(1997) optimize the size of a battery ESS to produce the most savings when providing
either frequency regulation, reserves, or load leveling functions [85]. Using a unit
commitment model, they find that the most savings are provided when battery ESS’s
are remunerated for providing reserves services. Similarly, Oudalov et al. (2007)
optimize the size of a battery for providing frequency regulation based on historical

frequency data [86]. An optimally sized battery ESS will also include emergency
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resistors to take care of higher energy events, so that meeting these events through
battery sizing doesn’t require additional capacity that is infrequently used. Lead acid

batteries may be profitable for this service at current price estimates.

Connolly et al. (2011) ask if it is possible to profit from PHS facility in an
existing market, and how would one operate such a system to maximize revenue [87].
In studying the Irish electricity market, they compare operation based on perfect
foresight of electricity prices to three different operation heuristics which preset the
times in which the system charges and discharges. They find that profits are feasible,
and that up to 97% of the perfect foresight profit can be captured through use of the
appropriate realistic operating strategy. Both Fares and Meyers (2013) and Ippolito
et al. (2014) investigate the appropriate use of batteries for providing frequency
regulation, load shifting, or voltage regulation services in existing markets [60, 88].
Fares demonstrates how a VRB used in the ERCOT market of Texas can be optimally
operated to provide a profit by offering frequency regulation services. Ippolito studies
different distributions of batteries within the existing grid of an Italian Island would
be distributed and operated to provide different functions. They find that when
optimally offering one service, the ESS provides minimal benefit when analyzed in

terms of other functions it could provide.

Maximizing the profit from a hybrid wind and storage facility is likely to pro-
vide additional benefits such as emissions reductions and reductions in the amount
of renewable energy that is curtailed. Castronuovo and Lopes (2004) optimize the
operation of a PHS system with wind power in Portugal [89]. In addition to finding
that storage shifts production of electricity to times of high prices, they also find a
substantial reduction in wind power. In another study of wind and PHS, Jaramillo
et al. (2004) compare the economic performance of the hybrid plant with other tech-
nologies in Oaxaca, Mexico [90]. Not only can wind power be combined with storage
to provide energy on demand, but the levelized production cost per kWh is compara-
ble to other technologies. Mason et al. (2008) study solar power used in conjunction
with CAES plants in the southwest U.S. [91]. CAES combined with solar power can

be used to replace either peaking natural gas plants or baseload power. However,
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they find that only operation as a peaking plant is likely to be cost competitive by
2020 because of the higher prices paid to peaking plants.

One last techno-economic model investigates a specific location and determines
which features of existing storage make certain technologies more suitable than other
technologies. Feng et al. (2014) use the EnergyPLAN model, which was also used in
Connolly et al. (2012) [75] to determined the amount of excess energy production that
could be conserved between various combinations of Li Ion and NaS batteries [92].
Similarly, Kaldellis et al. (2009) study technology neutral hybrid renewable storage
systems for various sized islands [93]. They find that sizes of islands and the markets
influence which technology is an appropriate choice. Sioshanshi et al. (2011) use an
energy balance cost minimization model with perfect foresight to compare diabatic
CAES with pure storage technologies for the PJM interconnection [94]. They find
that for arbitrage purposes pure storage out performs CAES because the extra cost of
natural gas prevents CAES from taking full advantage of low off-peak prices. Finally,
Walawalkar et al. (2007) study the NYISO and compare NaS batteries providing
arbitrage services and flywheels providing frequency regulation services [95]. Both
technologies can provide positive net present value in NY city, but only frequency
regulation provided by flywheels is likely to be profitable in the NY east and west
regions. They also find that trading efficiency for reduced capital costs is likely to
not be cost effective in the long run.

While these studies have explored the challenges and benefits of incorporating
ESS’s into the electric grid and operating them in combination with renewables, they
do not quantify how the value of storage depends on cost features of the storage
technology, across diverse technologies and installation locations. This study fills this

gap, exploring the value of storage for both wind and solar power plants.
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Chapter 2

Methodology

This thesis reports a technology cost evaluation of energy storage systems using a
linear optimization model. The analysis focuses on the use of a small energy storage
and renewables hybrid facility operating the ESS in arbitrage mode. The hybrid
facility is modeled as a price-taker, a reasonable simplification given the low levels
of renewable generation in the United States and globally. Using two years worth of
hourly electricity spot-market price data and renewables generation data, the optimal
operation of the ESS to provide maximum revenue is determined. This optimal
behavior provides increased revenue to the hybrid facility. This increase in revenue is
compared with the increased cost from adding energy storage to determine the value

of added storage.

Solar and wind data from three sites in the United States are compared with sim-
ilar wind generation data from Eastern Denmark, Western Denmark, and Portugal.
European price data was converted to U.S. dollars using the average currency conver-
sion for the two year period in question as provided by XE Currency Conversion [96].
Locations were chosen for data availability and as representative locations for per-
formance as a wind site, a solar site, or neither. European locations were chosen as

examples where high levels of penetration by wind power have been achieved.
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2.1 Solar and wind generation and electricity price

data

Three sites from the United States were examined: McCamey, TX; Palm Springs, CA;
and Plymouth, MA along with Eastern Denmark, Western Denmark, and Portugal.
McCamey, TX was chosen for the relatively high capacity factor for wind power over
the time period observed, 32%. Palm Springs, CA was chosen as a high performing
site for solar power, as exemplified by the average capacity factor of 23% over the
two year period. Plymouth, MA had a lower capacity factor in both wind and solar
power and was chosen as representing areas with neither high performance for wind
or solar generation facilities. Denmark was chosen as an example of a country which
has over 20% penetration by wind generation [97]. Portugal was chosen as a location
representative of regulated electricity markets.

For the locations in the United States, hourly zonal real-time prices for 2004 and
2005 were collected from ERCOT [98], CAISO [99], and ISONE [100|. The renewables
generation facility was simulated based on local windspeed and solar insolation data
from the Eastern and Western National Wind Integration Datasets and the National
Solar Radiation Database [101|. Power output per installed MW for the solar system
was based on a photovoltaic array producing rated power at an insolation of 1 kW m~2
while wind output was modeled from published performance data for a Vestas V90 3
MW wind turbine [102].

Eastern and Western Denmark real-time hourly price and wind generation were
taken from Energinet.dk [103]. During the period of this study, the Danish electricity
grid was run as two separate systems unconnected by transmission lines, with Eltra in
the west and Elkraft in the east as the two independent systems operators [104]. The
majority of wind generation was in the west, which had nearly double the generation
capacity of the eastern region, and it is expected to maintain this lead through at least
2020 [105]. Wind power in the west accounted for nearly half of the total demand,
making Denmark a unique location for the analysis of the value of energy storage. The

separation between the eastern and western systems provides for relative comparisons
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within the nation and also for comparisons with the data from locations in the United
States.

Danish price and wind generation data was taken from January 2008 through
December 2009, which is four years later than the data analyzed for the U.S. locations,
since Danish data was not available for the 2004-2005 period. 2008-2009 was chosen
in order to use the same experimental setup which accounts for the leap year in 2004
(2008). Similarly, the Danish Climate and Energy Ministry did not have data on solar
generation for either time period. As opposed to the U.S. locations where resource
availability was used to simulate the renewable generation, actual generation data
was used for the analysis of both Eastern and Western Denmark. Electricity prices
were converted to US$ based on the average exchange rate with the € for that time
period [96].

Portuguese electricity price data and wind generation data were obtained from
OMIP, the Iberian Energy Derivatives Exchange [106]. The time period for the Por-
tuguese data used is the same as for the Danish data. As the time periods were the
same, the same exchange rate was used to convert electricity prices in € to prices in

US$ for comparison to the cost intensities of power and energy of storage.

2.2 Energy storage capital cost intensity data

Extracting real world relevance from the storage model used in this study requires
knowledge of the cost intensities for a specific technology. This way, the technology
can be evaluated for the value it provides in a given location, and how much it must
improve to provide a given value or to reach profitability. Power capacity and energy
capacity cost intensities are reported from six different sources [11, 69, 70, 9, 7, 72].
Figures 2-1 and 2-2 and tables 2.1 and 2.2 demonstrate the large range in energy
storage cost estimates. With the exception of [11], the references are meta-analyses
of other studies. Several of these studies share sources and therefore some of the
underlying data may be repeated. The cost estimates presented here are meant to

represent approximate ranges of costs presented in the literature.
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The large range of reported values for storage cost intensities highlights an impor-
tant gap in the literature. The large range may merely be an indicator of a lack of
information exchange between industry and academia. It may also represent a larger
gap in the publication of detailed component-based cost analyses of ESS’s. Lastly,
as previously mentioned many of these studies are meta-analyses; as a result it is
unclear which sources for the initial values for the reported costs of storage are used.
It should be noted that many of the papers used for the construction of tables 2.1
and 2.2 also cite one another, in particular references 70, 7, 9, 72| all cite Chen et
al. (2009) [69]. While there are differences in the values they report for the cost of
energy storage, there are enough similarities between the papers to suggest that the
Chen et al. values are a strong influence on the costs reported elsewhere. Chen et
al. cites Kondoh et. al (2000) in their reporting of cost intensities of storage |69, 30].

Further attempts to find the initial sources for this data were unsuccessful.
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Figure 2-1: Power capacity capital costs presented in the energy storage literature
demonstrating the wide range in reported cost estimates|11, 69, 70, 9, 7, 72].
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2.3 Optimizing charging and discharging behavior

An optimization, as described in (2.1), was performed for each location using hourly
electricity price data and generation data. The optimization is designed to provide
maximum revenue for the operator of the hybrid renewables and energy storage facility
through control of the charge and discharge rate of energy from the ESS. Efficiency
losses in an AC-AC ESS will occur in both the charging and discharging phases while
self-discharge losses occur as a function of time in the storage medium. For the
purposes of this analysis, the roundtrip efficiency is applied as a single term during

system charging as seen in (2.1b) and (2.1c). Self discharge effects are not analyzed.

The optimization is performed in three week intervals using a week of overlap
between each interval to maintain continuity. The shorter time period is used to
reduce the computational intensity of the optimization, while the overlap ensures
that the storage system is not fully discharged at the end of each two week block.
Sioshansi (2010) used a similar method of overlapping periods to reduce computa-
tional time [83]. It is assumed that the operator has perfect foresight of electricity
prices and resource availability or generation profile for each three week period. Con-
nolly et al. (2011) show that the losses in revenue from operating according to a
heuristic rather than through perfect foresight might be as low as 3%, making this
a reasonable assumption [87]. A linear optimization is performed on the price and
generation data for each period, treating charging and discharging separately, and an
energy offset is included in the energy constraint to account for energy in the storage

unit carried over from the previous period.

N
Rtotal = maX(Z P(t) (xgeneration (t) + xdischm‘ge (t) - ajcharge (t)/?]))

t=0
0 S xdischarge<t) S Emax (213)
0 S xcharge(t) S min(nzgeneration(t)a nEmax) (21b)
0 S ZZ - ON (Icha’/‘ge(t) - xdischarge(t)) S hEmaX (210)
t

53



The power capacity, F.x, and storage duration, h, serve as constraints to the rate
at which energy can be added to the system (Emax) and the total amount of energy
that can be stored in the ESS (Emaxh). These values define the system size given in
units of MW /MW, and hours. For this analysis, the size of the storage facility both
in terms of power capacity and total energy capacity, Emaxh, are defined relative to
the size of the generation facility. To reduce the computational time, these values

range in increments of .25 MW /MW, and .25 hours spanning the ranges provided
in (2.2a) and (2.2b).

0 < Fpax < 5 (2.2a)
0<h<4 (2.2b)

Discharging is constrained by the power capacity of the storage unit as seen in
(2.1a). Charging is constrained by the smaller of either the power capacity of the ESS
or by the amount of electricity generated by the renewables, shown in (2.1b). This
prevents the storage unit from providing pure arbitrage on the grid in which it would
purchase electricity when prices are low and sell back when prices are higher. Thus,
the hybrid system is operating as a generation facility which provides non-negative
levels of electricity to the grid (either positive or no electricity). Lastly, the amount
of energy in the storage unit is limited by the energy capacity of the unit, equal to
the power capacity multiplied by the duration of storage. In (2.1c) the lower bound
serves to prevent the storage unit from operating at a deficit. It can only discharge

electricity that has been previously stored, and cannot borrow against future storage.

Power and energy capacity, or Emax and E’maxh, serve as independent variables
in the model which are manipulated within the constraints of (2.2a) and (2.2b).
As choices that can be made for each specific energy storage project they impact
the ability of storage to achieve a desired goal. This is different than limitations
impacted the physical limits of the technology, such as efficiency and self-discharge,

though separating the impacts of the design variables from the physical limits can be
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challenging. This research optimizes a storage system in terms of these design metrics
in order to determine the best value added of storage so that storage technologies can
be compared according to their cost intensities. In this way, both design variables
and performance intensity metrics contribute to determining the final performance
of a system. The remainder of this section describes the demonstrates the difference
in impact on storage from the design variables of power and energy capacity and the
physical limits of efficiency and self-discharge.

Figures 2-3, 2-4, A-1, A-2, and A-3 demonstrate the effects of system size con-
straints and the enabling metrics of efficiency and self-discharge on the ability of a
hybrid solar and storage facility to meet demand. Figure 2-3 demonstrates in isola-
tion the effect of an 8 MW charging power capacity limit of storage on the amount
of energy in storage and the subsequent ability to use stored energy to meet demand.
Of interest is the shallower slope of energy in storage leading to a lower total quantity
of energy in the bottom figure, and a shorter period in which demand is met in the
limited case compared to the non-limited case in the middle figure. A similar analysis
is shown in figure 2-4 where a 45 MWh energy capacity limits the total amount of

energy in storage.

2.4 Dimensionless performance metric - y

By shifting generation output to periods of higher prices, the addition of storage
increases the revenue of the wind or solar generation facility. This increased revenue
comes at increased capital cost for both the energy capacity component and the
power capacity component that define the total cost of storage. To determine the
value added by the addition and optimal use of storage a unitless benefit / cost ratio,
annual revenue over annual cost, is used. This performance metric, x, as defined in

(2.3), is evaluated for each pair of the independent variables: energy capacity cost,

Cenergy

power
storage’ C

and power capacity cost, Cgorage- Also included in the total system cost is
the cost of generation, Cgen, and the capital recovery factor, C RF', which amortizes

the capital costs for comparison to the yearly revenue.
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Figure 2-3: These figures demonstrate the effect of charging power capacity on the
amount of energy in storage, and the ability of that energy to meet demand. In the
top figure, hourly demand and solar generation data are presented for January 1, 2008
through January 5, 2008 for the north central region of ERCOT [98]. The middle
figure shows unmet demand, demand minus solar generation, for the case without
storage, with storage with no limitations, and with storage with a limitation of 8
MW charging power capacity. The bottom figure shows the amount of energy in
storage for both the limited and non-limited case.

_ Rtotal 2.3
X = ; power energy ( : )
CRF(Ogen + EmaX<Cstorage + hOstorage))

For constant Cye, and C'RF', the cost intensities of storage are varied in $2 in-
crements spanning the ranges given in (2.4a) and (2.4b). The Cje, is calculated for
$.5/Watt, $1/Watt, $2/Watt, $3/Watt, and $4/Watt. A single CRF is used in this
analysis based on a 20 year period with a 5% interest rate [59]. For each pair of
cost intensities, the highest value of x is determined based on the optimal charge
and discharge operation of storage for the range of power capacities and duration of

storage.
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Figure 2-4: These figures demonstrate the effect of energy capacity on the amount of
energy in storage, and the ability of that energy to meet demand. In the top figure,
hourly demand and solar generation data are presented for January 1, 2008 through
January 5, 2008 for the north central region of ERCOT [98]. The middle figure shows
unmet demand, demand minus solar generation, for the case without storage, with
storage with no limitations, and with storage with a limitation of 45 MWh energy
capacity. The bottom figure shows the amount of energy in storage for both the
limited and non-limited case.

2 < O < 700 (2.4a)
2 < CROT < 400 (2.4b)

The total cost of storage is a function of both the cost intensities and the power

capacity and energy capacity of storage as seen in the dominator of (2.3). The

power

storage 15 defined for a unique power capacity

highest value of y for each Clnrsy, and

storage
and duration of storage. Thus, the total output of the model is a matrix of y, optimal

power capacity, and optimal storage duration for each pair of cost intensities.
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2.5 Artificial price time series

To understand the way emergent features of the hourly electricity prices affect the
optimal sizing and value of storage a series of artificial hourly electricity prices were
developed and used in the optimization model. The artificial price series is composed
of a sinusoidal base price overlaid with price spikes of a set frequency, height, and
duration. The sinusoidal base varies with an amplitude of $10 centered at $110.
Price spikes are added to the sinusoidal base at varying in frequency of occurrence,
duration, and $ value, hereafter referred to as height.

The frequency ranged from less than diurnal to more than once a day, or specifi-
cally from 100 times per year to 500 times per year in 50 spike increments. Duration
was varied in one hour increments from one to four hours. Four additionally scenarios
were modeled building on this initial case: duration of two hours every third and ev-
ery other, and three hour long price spikes every third and every other spike. Lastly,
the height for any given series was a constant value ranging in $50 increments from
$150 to $500. The height was set as a constant $ value, and not an increase above
the value of the sinusoid, so that the spike was always of the same height regardless

of where it occurred in the base oscillation.
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(a) Artificial price series of frequency 100 (b) Artificial Price Series of Frequency
spikes/year, height $200/MWh, duration 400 spikes/year, Height $500/MWh, Du-
1 hour ration 3 hour

Figure 2-5: Comparison of two example electricity price artificial time series

In figure 2-5 a comparison is shown between two extreme examples of artificial
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electricity price series generated to explore the impact of changing price spike fre-
quency, height, and duration. Figure 2-5a shows price spikes that occur 100 times
per year to a height of $200/MWh and last 1 hour in duration. This can be com-
pared to figure 2-5b which has 400 price spikes per year of $500/MWh for three hours
each time. Neither figure 2-5a nor 2-5b are realistic price dynamics for a real market
place; their importance lies in the discrete manipulation of the price spike features
for exploring the effect of these features on the model output.

In addition to varying the duration of every price spike, artificial price series were
also developed with price spikes of longer duration ever other and every third spike.
Figure 2-6 shows an example price series in which the duration of price spikes is two
hours every other price spike, figure 2-6a, opposite an artificial price series where the
duration is two hours every third price spike, figure 2-6b. For both artificial price
series in figure 2-6 the frequency and height of price spikes are identical, the only

change is the frequency of longer price spikes.
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(a) Artificial price series of frequency 250 (b) Artificial Price Series of Frequency
spikes/year, height $350/MWh, duration 250 spikes/year, Height $350/ MWh, Du-
2 hours every other spike ration 2 hours every third price spike

Figure 2-6: Comparison of two example electricity price artificial time series in which
the price spikes vary in duration within the time series.
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Chapter 3

Results

This chapter presents the main results of the analysis of x and the electricity price
dynamics which are responsible for the variation in y across locations. After demon-
strating the model output and using the model to compare storage technologies, an
analysis of the slopes of lines of constant x is performed. It will be shown that the
frequency and height of price spikes are important for determining the value of x while
duration of price spikes is primarily responsible for the slope of the iso-x lines, and
therefore for the relative value of storage technologies across locations. This relative
tradeoff in the value of storage is largely location invariant. Lastly, an analysis of
the electricity price dynamics is conducted for the locations studied to show how the
features seen in the hourly electricity prices across locations explain the similarity in

the slopes of the iso-x lines.

3.1 , optimal storage duration, and optimal power
capacity

The final output of the linear optimization model used to analyze the value of storage
is a set of three matrices which provide the optimal y value and the optimal storage
duration and power capacity used to obtain that y for each pair of cost intensities

and each generation cost. For a given generation cost, the value of x is plotted as a
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function of the cost intensity of energy energy storage on the horizontal axis and the
cost intensity of power storage on the vertical axis. Figure 3-1 is an example of the
increased value which storage provides to a wind plant in Texas when the generation
cost is $2/W. The constant value of y in the upper right corner of figure 3-1 is the
benefit / cost ratio when storage is prohibitively expensive. This lower x value is the

value of the renewables facility without any storage included.
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Figure 3-1: Example benefit / cost ratio x for Texas wind farm with $2/W generation
cost

Figures 3-2 and 3-3 are examples of the optimal storage duration and power ca-
pacities which correspond to the x values in figure 3-1. It should be noted that the
boundary at which storage becomes valuable can be clearly seen in figures 3-2 and
3-3 as the limit at which storage duration and power capacity go to zero. The figures
presented here are stylized renditions of the optimal model output that have reduced
some of the system noise which results from the discrete values of storage duration

and power capacity that serve as inputs to the model.
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Figure 3-2: Example optimal energy storage duration for the x values in figure 3-1
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Figure 3-3: Example optimal power capacities for the y values in figure 3-1

3.2 Energy storage technology comparisons

Overlaying the cost intensities of a specific technology onto the plot of x allows for

comparison of technologies based on the value they add to a renewables generation
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Figure 3-4: Cost intensities of a range of energy storage technologies [69, 70, 7, 9, 11,
72| overlaid with lines, for a given generation cost, which show the threshold storage
cost intensities at which it becomes valuable to incorporate storage into an West
Denmark wind farm. The ellipses are plotted for each storage technology to highlight
the uncertainty of energy and power costs of storage. Figures B-1, B-2, B-3, B-4, B-5,
B-6, B-7, and B-8 present similar results for the other locations studied [1].

facility with a given Cge,. Using the technological cost intensity data presented in 2.2,
the published costs for each technology is plotted in the cost plane. The downward
sloping lines in figure 3-4 depict the boundary at which storage becomes valuable for
each given Cge, of renewables.

The large range in the reported cost intensities is shown in figure 3-4 represented
as ovals overlaid on the energy and power cost space. As can be seen, when compared
against the iso-y lines which denote when storage becomes valuable for different gen-
eration costs, a technology’s individual cost intensities are an important determinant
as to whether or not it will provide value to a hybrid renewables and storage sys-
tem. The distance from a technology’s initial cost intensities to the iso-y line of value

determines the cost target for the technology.

The ranges of some technologies are much larger than the area on the cost plane
where storage is valuable. This complicates the determination of technological cost

targets and the comparison of different technologies. Rather than choose values from
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a particular reference, the rest of this analysis will utilize a hypothetical pair of cost
intensities designed to be representative of the differences technologies can have in

their cost of energy storage and cost of power storage.

3.3 Slope of iso-x lines

The lines in figure 3-4 which depict the boundary for the cost space for a given Cge,
are also lines with the same y value, iso-x lines. Iso-x lines for the regions of study

have the same general shape; they are downward sloping when plotted on a plane

Cpower Cenergy

defined on the vertical axis by the variable and by on the horizontal

storage storage

axis.

An analysis of the units of Cg7. and by CEi>" shows that the slope of the iso-x
line is in units of hours: % = hours. The derivative of an iso-x line with respect

dCPover
t0 Cliorage and CGonir, %fgg; can be determined for all points by taking the partial
a dCstorage a

. X C e X

derivative —a5z and dividing it by ——=swe—- S0
OCSinr. ST,

dcéaower 8X/acenergy

torage | o storage (3 1)
energy X power .
dCstorage 8X/ac(storage

By making the simplifying assumption that Fp.. and h are independent of the
Cliorage and Cgon. the partial derivatives of x become relatively simple to calculate.

Note that the capital recovery factor, CRF', will be written as v for the following

derivation.

8X _Rtotalnymaxh
8Cetnergy = 5 (32)
storage ; ower ener,
(7{Cgen + Emax(oggorage + thtoraggye) })
aX —R o al’YEmax
S oo = tot (3.3)

storage

2
(7{Cgen + Emax(Catorage T MCGorage) })
It can therefore be seen that the ratio of these two terms leaves only the energy
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storage duration, h. Along a constant x the marginal decrease in the power capacity

cost for a marginal increase in energy capacity cost is equal to the optimum number

of hours of energy storage capacity. An inspection of equation (2.3) for y shows that
power energy

this is indeed the case, with the key term being Cggrape + "Cyiorage Which appears in

the denominator.

A full derivation or y must account for the fact that Riotal, Fmax, and h are them-

selves functions of Chover and Chaney. and can more accurately be expressed as:

storage storage
Rtotal = f(Emaxa h’) (348‘)
Emax = f (ngfaggyev C&?)Y:;e) (34b)
h = f(Ciorage: Citorage) (3.4c)

This leads to partial derivatives:

a}%total aEmax a}%totaul ah
24 0B max WCstorage  Oh 0CGame

storage

ac«seg(lil;g); N C + E’ ( power + hCenergy>
8 v gen max \ ~storage storage

a E max ower aE max ah ; ener -
o (V{ Oz Criorse + (g gmey 1 + onerey Finas) Coornse Emaxh}>
storage storage

storage

- 2
<7{Cgen + Enax(Cliotage + hCiomage) })

(3.5)
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(’Y{Cgen + Emax(Ctorage + "Citorage) })

Equations (3.5) and (3.6) simplify to equations (3.2) and (3.3) respectively when

the following conditions are met:

Oh Oh

S — — =0 3.7

aeme O (3.72)
oF. oF,

_Jmax 0 _J/max 0 3.7b

aemoer SO (3.70)

There are two reasons (3.7a) and (3.7b) are reasonable simplifications for this
study. The first is that as the choice of power capacity and energy storage capacity
become more continuous, the magnitude of the marginal change in the number of

hours of storage, h, and the power capacity, Fyay each as a function of either Chove,

storage

or of Cgormme gets smaller. The small change in h and Eax that is currently modeled
as a discrete step will now be spread over the entire region of storage choices. This

can be seen in the large space between contours in figures 3-2 and 3-3.

The second reason the simplified equations, (3.2) and (3.3), are appropriate in
understanding the relationship between the x value and the cost inputs is that many
technologies are not fully modular in the size of their power capacity and energy
capacity. For example, many battery manufacturers only produce cells of a certain
size. Similarly, the companies which produce pumps and turbines for PHS and CAES
are also discrete in the sizes of these pieces of equipment. Because there will be some

granularity of A in terms of Ciors. and CEilsy, the approximation that the slope of
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Cenergy Opower

storage storage P1ane is equal to the hours of storage capacity

the iso-x line in the
holds.

This relationship can be seen graphically by overlaying a plot of the optimal energy
capacity with the plot of the iso-x lines. The inflection points in the iso-x lines overlap
with the transition from one discrete energy storage capacity to the next. Another
illustration of this can be performed by allowing the energy capacities to be evaluated
in quarter hour increments as opposed to only half hour increments. When this is

performed, the iso-y lines are noticeably smoother, since there are more inflection

points with smaller changes in slope at each point.
Ix 24
8Cenergy and acpower
storage storage

and the optimal storage duration for each pair of cost intensities confirms the results

A direct comparison of the ratio of partial derivatives of y;,

of this section. The ratio of these two terms are within 1% of the optimal energy
storage capacity in hours when operating in the space where (3.7a) and (3.7b) hold.
The percent error is higher at the points at which either the h or Fpay increase to

the next discretized value.

3.4 Detailed exploration of iso-y lines

Comparing ESS’s based on cost intensities is complicated by the two dimensions of

power

Cenergy
storage*

storage No current technology is strictly dominant in both; rather,

costs, and
most technologies have either lower energy costs but higher power costs - for example,
CAES and PHS, or they have lower power costs but higher energy costs - batteries,
flow batteries, flywheels, and others are examples of this ratio of cost intensities. The
importance of y is that it provides a single metric for valuing storage, and the iso-y
lines map to storage technologies that provide the same value. This section explores
the relationship of the slope of the iso-x lines across locations, showing that they are
roughly location invariant.

Iso-x lines also represent cost targets for ESS’s. The minimum cost reduction to

reach an iso-y line, is a cost improvement target. Particularly important targets are

the iso-y lines which demarcate the value threshold for a given generation cost. These
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lines denote the improvement required to make storage valuable in a given market
place. Several key items of interest arise in the exploration of the value of storage.
The first is the similarities across locations in the direction of optimal improvement
in storage costs for a given technology. Second, a storage technology will have nearly
the same relative value as another ESS independent of location. This is because the
slopes of the iso-y contour lines are roughly the same. Storage provides different
value in different locations, but the relative comparison across technologies is largely

location invariant.
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Figure 3-5: Thresholds of value for storage with renewables are shown for different
generation capital cost intensities for wind and solar. The blue lines show profitabil-
ity thresholds, y = 1. For wind power in all locations $1/W is always profitable
even without storage, but sufficiently in expensive storage can still provide additional
value. Figure B-9 show similar results for wind in Portugal, and solar in California,
Massachusetts, and Texas.

The location invariance of the relative value of storage can be seen in figure 3-5. A
hypothetical low energy / high power cost technology ($100/kWh and $700/kWh) is
compared with a high energy / low power cost technology ($400/kWh and $100/kW)

across locations and it is evident that in general these two technologies fall on roughly
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Required Energy Power Energy Power

Improvement Cost Cost Cost Cost
Location Technology to Meet Reduction | Reduction | Reduction | Reduction

Generation Cost Percent Percent
California Solar $2/W $20/kWh | $22/kW 5% 22%
California Wind $2/W $44/kWh | $43/kW 11% 43%
Massachusetts Wind $3/W $80/kWh | $81/kW 20% 81%
Texas Solar $2/W $25/kWh | $26/kW 6.5% 26%
Texas Wind $2/W $10/kWh $9/kW 2.5% 9%
W. Denmark Wind $3/W $86/kWh | $86/kW 22% 86%

Table 3.1: Required cost improvements for a high energy ($400/kWh) and low power
cost ($100/kW) technology to reach the nearest generation threshold. This table only
shows those improvements that are not corner solutions - where the optimal solution
is to reduce power costs to $2/kW. Improvements that require reducing power costs to
$2/kW are presented in table B.1 and improvements to meet one of the profitability
thresholds depicted in figures 3-5 and B-9 can be found in table B.3. All improvements
to meet the profitability thresholds are corner solutions.

the same iso-x line for each location. There are some subtle differences between
locations in the United States and those in Europe that a deeper exploration of
x demonstrates is related to differences in the electricity price dynamics of those
locations. This difference is the slightly higher slopes seen in West and East Denmark

relative to the U.S. locations.

Actual cost reductions for the hypothetical higher energy and lower power cost
technology and lower energy and higher power cost technology shown in figure 3-5 are
shown in tables 3.1 and 3.2. The results show that the best way to improve x for a
given technology is to focus on cost reductions of whichever is already less expensive
between the cost of energy storage and cost of power storage. This may not be a
feasible solution for improvements in ESS cost intensities as the potential for large
gains in cost reductions may be unachievable when the target cost intensity is already
the lower cost. Tables 3.1 and 3.2 also demonstrate a feature of the best direction of
improvement for ESS cost intensities which will be further explained below. For high

energy / low power cost technologies, the ratio of required improvements in cost of

70



Required Energy Power Energy Power

Improvement Cost Cost Cost Cost
Location Technology to Meet Reduction | Reduction | Reduction | Reduction

Generation Cost Percent Percent

California Solar $2/W $13/kWh | $4/kW 13% 0.5%
California Wind $2/W $45/kWh | $12/kW 45% 1.7%
Massachusetts Wind $3/W $67/kWh | $16/kW 67% 2.3%
Texas Solar $2/W $37/kWh | $10/kW 37% 1.4%
Texas Wind $2/W $15/kWh $4 /KW 15% 0.6%
E. Denmark Wind $3/W $57/kWh | $14/kW 57% 2%
W. Denmark Wind $2/W $96/kWh | $24/kW 96% 3.4%
W. Denmark Wind $3/W $37/kWh | $10/kW 37% 1.4%

Table 3.2: Required cost improvements for a low energy ($100/kWh) and high power
cost ($700/kW) technology to reach the nearest generation threshold. This table
only shows those improvements that are not corner solutions - where the optimal
solution is to reduce energy costs to $2/kW. Improvements that require reducing
energy costs to $2/kWh are presented in table B.2 and improvements to meet one of
the profitability thresholds depicted in figures 3-5 and B-9 can be found in table B.4.
All improvements to meet the profitability thresholds are corner solutions.

71



energy storage to cost of power storage is approximately equal, while for low energy
cost / high power cost technologies, a 4:1 ratio of improvement is needed. These

ratios are the same across the locations studied.

Figures 3-5 and B-9 show multiple value thresholds and profitability thresholds
that may provide cost targets for improvements in ESS cost intensities. Only those
improvements which don’t require either the minimum cost of energy storage or cost
of power storage are shown. More extreme improvement targets will tend to intercept
the nearer of the two axes before intercepting the iso-chi line. These boundary con-
dition cases require minimizing one of the cost intensities, as the best way to meet an
improvement target. Tables B.1 and B.2 show the required improvements to meet the
closest value threshold which constitute one of the boundary conditions for improve-
ment. These results do not follow the same ratios of cost of energy storage to cost
of power storage as seen in tables 3.1 and 3.2 but rather can be explained as follow-
ing that ratio until one of the cost intensities reaches its minimum and then further
reducing the remaining intensity until the threshold is achieved. Similar results are
found for the required improvements to reach a profitability threshold, all of which

also require a boundary condition improvement, which can be seen in tables B.3 and

B.4.

In section 3.3 a derivation of the formula for y was performed to show that the
slopes of the iso-y lines in areas where the optimal power capacity and optimal storage
duration are constant are equal to the values for the optimal storage duration. For
this reason it is informative to look at the optimal storage duration as a way to more
easily perceive the actual values for the slopes of the iso-x lines. This makes it easier
to compare the shapes of the curves across locations as presented in figures 3-5 and
B-9.

Figure 3-6 shows the optimal storage duration for each of the locations with renew-
ables generation being provided by wind power. For California and Texas a generation
cost of $2/W was used, while for Massachusetts and both East and West Denmark,
a $3/W generation cost was used. These different generation costs were compared

in order to use figures which had a threshold of value at roughly the same costs of
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Figure 3-6: Hours of storage duration for wind power for various generation costs
such that the threshold of value across location are roughly similar. Of importance
is that for a given cost of energy storage and power storage, the duration of storage
in Denmark and Portugal is equal to or higher than in the U.S. locations. Thus the
slopes of the iso-y lines are steeper. Figure B-10 shows similar results for solar power
and storage hybrid.

energy storage and costs of power storage. For Portugal, the highest generation cost
studied of $4/W was used to make the largest area in which storage adds value, in
the cost of energy storage and cost of power storage, for ease of comparison.
Important similarities across locations can be seen in figure 3-6. For the U.S. lo-
cations, the optimal storage durations for any given cost of energy storage and cost of
power storage are roughly the same for wind generation in California, Massachusetts,
and Texas. This can be seen in figure 3-6 in the similar locations of colors across
the cost of energy storage and power storage plane. This same color distribution is
found in figure B-10 for solar generation, providing an indication that this feature
is less dependent on the properties of the renewables generation dynamics. West
and East Denmark similarly have distributions of optimal storage duration that are
roughly the same, though different than those seen for California, Massachusetts, and

Texas. While difficult to show as clearly as the difference between optimal storage
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duration, and therefore iso-y slopes, in Denmark and the U.S., Portugal data appears
to be more similar to the Denmark data, with a much larger region of longer storage
duration in the cost of energy storage and power storage plane for which storage is
valuable.

The important feature that is different between the slopes of the iso-x lines in
Europe and those in the U.S., as seen in figure 3-6 as the value of optimal storage
duration, is that for any given cost of energy storage and cost of power storage the
slope of the iso-y line in Europe is as high or higher than the slope for U.S. locations.
This is clearly seen in figure 3-6 where Denmark has a comparatively smaller region
where the optimal storage duration is one hour in length and a much larger region
where the optimal duration is 4 hours in length. Storage in Portugal appears to follow
a similar pattern as storage in Denmark.

The optimal storage duration for European locations are as high or higher than
in the US at any point in the cost of energy storage and power storage plane in which
storage is valuable. Section 3.6 will explore causes for these differences that arise
from the properties of the input price time series. After exploring how the different
features of price spikes change the value of x and the slope of the iso-x lines in section
3.6, the actual electricity prices for each location will be analyzed for these features in
section 3.7. This analysis will be used to explain the observed differences in the slopes
of iso-x lines between U.S. and European locations. First, however, one additional

result of the analysis of y will be discussed.

3.5 Direction of optimal improvement in y

The derivation results of (3.5) and (3.6) will be primarily used in this study to analyze
the slope of the iso-x lines in order to understand the relative value of different storage
technologies and how this relative value is location invariant. The derivation results
are also inputs into a 7y analysis which enables determination of the change in
Ciiomge and CHovv. which lead to the greatest increase in y. Equation (3.8) details

this calculation of the gradient of x in which the terms égg;i;ggye and C’;?)Vrv:ée provide

74



the unit vectors in the direction of the respective axis.
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Figure 3-7: Gradients for Texas wind. 7 shows the direction of greatest improve-
ment in y. It is greater for lower costs because the same absolute improvement in
cost of energy storage or cost of power storage is a relatively greater improvement in
cost for lower cost technologies. For reference, the cost estimates as provided by [72]
are shown for CAES and lead-acid batteries. Figures B-11 and B-12 show similar
results for the other locations and generation technologies studied.

The red arrows in figure 3-7 show the direction and relative magnitude of greatest
improvement in y; fully described in equation (3.8). The gradient vectors of x show
a relative invariance across location and technology, which is expected since the di-
rection of the gradient is orthogonal to the iso-x line. The gradient vectors show the
relative magnitudes of improvement for different costs of energy storage and costs of
power storage. Figure 3-7 shows the gradient vectors for wind generation in Texas,
where each vector is given in multiples of $50/kW and $50/kWh for reference. Also
shown are cost estimates for CAES and lead-acid from Sundararagavan and Baker

(2012) [72]. These cost estimates are provided to highlight where in the Cg,.5, and

storage

Cliorage Plane actual technology estimates fall and their relative 7.

The improvement in Y is largest for cost reductions when costs of energy storage
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Figure 3-8: Gradients for Texas wind. 7y shows the direction of greatest improve-
ment in y given a 10% decrease in cost of energy storage or cost of power storage.
Proportional changes in cost show a generally consistent relative improvement in y
as compared with figure 3-7. For reference, the cost estimates as provided by [72] are
shown for CAES and lead-acid batteries. Figures B-13 and B-14 show similar results
for the other locations and generation technologies studied.

and power storage are already low. This is due to the fact that x is based on an
absolute change in costs and therefore a larger proportional change in cost occurs for
the same cost reduction when the starting costs are lower. This difference can be seen
in figure 3-8 which uses the same generation data for wind in Texas but instead looks
at when costs have reduced by 10% for either the cost of energy storage or the cost
of power storage. In this case, in which the absolute cost reductions are higher for
higher initial costs, the relative magnitudes for changes in y can be seen to be more
consistent across the cost of energy storage and cost of power storage plane. Similar

results are seen for other generation technologies and locations as shown in figures

B-11, B-12, B-13, and B-14.

3.6 Artificial price series and the effects of price spikes

Using the artificial price time series described in section 2.5, examples of which were

shown in figure 2-5, the effect of changing frequency, height, and duration of price

76



spikes on chi and on the optimal storage duration was explored. While all three
features of price spikes have an influence on the shape of the iso-y lines and on
the value of storage, the duration of price spikes goes the furthest in explaining
the similarities seen across the locations studied. This section shows the effect on
x when each of these features is varied independently. For the following figures, a
generation cost of $3/W along with the solar generation data for Texas was used
to help exaggerate the effects of frequency, height, and duration of price spikes by

making them easier to see in the Cgg e and CETE. plane.

3.6.1 Price spike frequency
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Figure 3-9: Using generation data for solar power in Texas, the effect of the frequency
of price spikes of constant height $200 and duration 1 hour on the benefit /cost ratio x
is shown. Figure 3-10 shows the optimal duration of storage resulting in the y values
shown in this figure, and therefore, as was shown in section 3.3, the values for the
slope of the iso-x lines. Figures B-15 and B-16 show similar results for higher price
spikes.

Increasing the frequency of price spikes has two effects on the value of storage.

The first is that for a given pair of cost intensities, storage becomes slightly more
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Figure 3-10: Using generation data for solar power in Texas, the effect of the frequency
of price spikes of constant height $200 and duration 1 hour on the optimal duration of
storage is shown. Figure 3-9 shows the optimal x resulting from the optimal storage
duration shown in this figure; as was shown in section 3.3, the values for the slope
of the iso-y lines in figure 3-9 are equal to the duration values shown here. Figures
B-15 and B-16 show similar results for higher price spikes.

valuable and the second is that more expensive storage technologies can also provide
benefit to the system despite their cost. The first effect is seen in the colorbar scales
in figure 3-9. For the second effect, the threshold of value at which storage becomes
valuable occurs at a higher Cgi % and CHol.. Locations with more price spikes
will find storage to be more valuable and will find that even more expensive ESS’s

may still provide value. Changing the frequency has little to no effect on the slope

of the iso-y lines as it does not change the optimal storage duration as seen in figure

Cenergy

3-10. The small variations in duration of storage at low Cgorame

seen in figure 3-10
are a feature of the generation data, but are not strong enough to explain the kinds
of variation seen in the slopes of the iso-y lines across costs of energy storage and

power storage for the locations studied.
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3.6.2 Price spike height
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Figure 3-11: Using generation data for solar power in Texas, the effect of the height
of price spikes of constant frequency 100 spikes per year of duration 1 hour on the
benefit /cost ratio x is shown. Figure 3-12 shows the optimal duration of storage
resulting in the y values shown in this figure, and therefore, as was shown in section
3.3, the values for the slope of the iso-x lines. Figures B-17 and B-18 show similar
results for more frequent price spikes.

Changing the height of the price spikes has similar effects as changing the fre-
quency of the price spikes and also provides only a small part of the explanation
for the value of storage of different cost intensities seen across the locations studied.
As shown in figure 3-11 increasing the height of price spikes has a larger effect on
the value of y than increasing the frequency of price spikes when comparing the y
values in the colorbars between figures 3-9 and 3-11. The differences in value added
of storage across locations might be partially explained by the different heights of
price spikes in each location. Higher price spikes also increase the area in the Cgg e
and Cfrage Plane in which storage is valuable. Height of price spikes has no effect on

changing the slopes of the iso-y lines as can be seen in figure 3-12, where even the

noise caused by the generation data that was seen in figure 3-10 is absent.
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Figure 3-12: Using generation data for solar power in Texas, the effect of the height
of price spikes of constant frequency 100 spikes per year of duration 1 hour on the

optimal duration of storage.

Figure 3-11 shows the optimal x resulting from the

optimal storage duration shown in this figure; as was shown in section 3.3, the values
for the slope of the iso-x lines in figure 3-11 are equal to the duration values shown
here. Figures B-17 and B-18 show similar results for more frequent price spikes.
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3.6.3 Price spike duration
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Figure 3-13: Using generation data for solar power in Texas, the effect of the du-
ration of price spikes of constant frequency 250 spikes per year of height $350 on
the benefit /cost ratio x is shown. Figure 3-14 shows the optimal duration of storage
resulting in the y values shown in this figure, and therefore, as was shown in section

3.3, the values for the slope of the iso-x lines. Figures B-19, B-20, B-21, and B-22
show similar results for price spikes of other frequencies and heights.
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Duration of price spikes explains most of the features of the iso-y lines for the
real price data for each location studied. Unlike frequency and height of price spikes,
the duration of the price spike has no effect on the value of y, as seen in figure 3-13.
Duration does have the effect of making storage of higher power cost valuable, and
it does this because it changes the slope of the iso-x lines. This can be more clearly
seen in figure 3-14 where the optimal storage duration is shown, a value which equals
the slope of the iso-y lines seen in figure 3-13. This effect can also be clearly seen in
figures B-19, B-20, B-21, and B-22 which show similar results for price spikes of other

frequencies and heights.

The sawtooth pattern at low CHii.. seen most clearly in the optimal storage

duration at 4 hours in figure 3-14 is a result of the granularity of the changing power
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Figure 3-14: Using generation data for solar power in Texas, the effect of the duration
of price spikes of constant frequency 250 spikes per year of height $350 on the optimal
duration of storage. Figure 3-13 shows the optimal x resulting from the optimal
storage duration shown in this figure; as was shown in section 3.3, the values for the
slope of the iso-x lines in figure 3-13 are equal to the optimal storage duration values
shown here. Figures B-19, B-20, B-21, and B-22 show similar results for price spikes
of other frequencies and heights.

capacities in the model. As the optimal capacity increases, the effect is to decrease
the optimal duration of storage as the optimization adjusts to rebalance costs in the
denominator. This effect is small, but is also explanatory of the types of noise seen in
the data for the real price series with respect to the interplay between changing power
capacity and changing energy capacity or storage duration. Also seen in figure 3-14
is a small increase in the slope of the iso-x lines at very low Cgi . similar to what
was seen when changing the price spike frequency in figure 3-10. This is actually the

same feature, since the frequency used for the duration comparison is 250 spikes per

year, putting it between the second and third plot of changing frequency.

Figures 3-15 and 3-16 utilize an artificial price series with varying duration of
price spikes within each series. Using time series like those described in figure 2-6,

the effect of having a longer price spike every other or every third price spike on the
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Figure 3-15: Using generation data for solar power in Texas, the effect of the duration
of price spikes of constant frequency 250 spikes per year of height $350 on the bene-
fit /cost ratio x is shown. Figure 3-16 shows the optimal duration of storage resulting
in the y values shown in this figure, and therefore, as was shown in section 3.3, the
values for the slope of the iso-x lines. Price spikes are of alternatively 1 hour and 2
or 3 hours in duration every other or every third spike. The effect of having different
duration price spikes produces the different slopes seen in the iso-x lines for the real
price data series.

values of y and on optimal storage duration is shown in figures 3-15 and 3-16. In
figure 3-15 a clear elbow can be seen either about halfway up each iso-x line or a
third of the way up each iso-x line respective of the frequency of longer price spikes
within the series. Because of the relationship between the slope of the iso-x line and
the optimal storage duration, figure 3-16 provides additional insight into the values
of the slope seen in figure 3-15. The optimal duration changes quickly from 1 hour
in the region of low power and high energy costs, to 2 hours or 3 hours of storage for

the higher power and lower energy costs.

As more variation is introduced into the duration of price spikes within a price
series, the optimal duration plots show even more similarity to those for the actual lo-

cations studied. Showing the difference between where the transition from less storage
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Figure 3-16: Using generation data for solar power in Texas, the effect of the duration
of price spikes of constant frequency 250 spikes per year of height $350 on the optimal
duration of storage. Figure 3-15 shows the optimal x resulting from the optimal
storage duration shown in this figure; as was shown in section 3.3, the values for the
slope of the iso-x lines in figure 3-15 are equal to the optimal storage duration values
shown here. The duration of storage for these artificial price series begins to resemble
the results for the real price series studied, demonstrating the importance of varying
durations of price spikes in understanding the tradeoffs between cost intensities of
power capacity and energy capacity.

duration to more storage duration occurs on the iso-x line is important for explaining
the difference between Denmark’s x values and slopes and those for locations in the
United States seen in section 3.4 and highlighted in figures 3-6 and B-10. Locations
with longer duration price spikes will have higher optimal storage duration for a given
cost of energy storage and cost of power storage. This indicates that electricity prices
in Denmark should exhibit longer duration price spikes than are seen in the U.S. This

will be shown to be the case in section 3.7.
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Figure 3-17: x for generation data for various locations studied is shown in combina-
tion with electricity prices with 100 price spikes per year of height $350 and duration
of 1 hour. Generation data has it’s greatest impact on the actual values of y and
relatively little impact on the threshold at which storage becomes valuable. Figure
B-23 shows similar results for the other locations studied.

3.6.4 Generation data

The results shown above all use solar generation in Texas for the generation data.
While this study has focused primarily on the electricity price dynamics as being the
drivers for the value added by storage and the relative value of different storage tech-
nologies, the generation data is also important for determining the actual y values.
Figure 3-17 shows the y value for wind generation in Texas, East Denmark, West
Denmark, and Portugal. Generation profiles have their greatest impact on y values,
and relatively little effect on the threshold at which storage becomes valuable. Gen-
eration data does not provide an explanation for the changing iso-x slopes seen in
figures 3-5 and B-9 which can be verified by observing the optimal storage duration
in figure 3-18. Similar results for the other locations studied can be found in figures

B-23 and B-24.
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Figure 3-18: Optimal storage duration for generation data for various locations stud-
ied is shown in combination with electricity prices with 100 price spikes per year of
height $350 and duration of 1 hour. Generation data does not explain the changing
iso-y slopes. Figure B-24 shows similar results for the other locations studied.

3.7 Electricity price dynamics

Having examined the slopes of the iso-x lines across several locations and the response
of x and the iso-y lines to artificial price series, this section analyzes empirically
observed electricity price series data. Hourly electricity price data for each location
studied also exhibit price spikes. However, unlike the artificial price time series used
to investigate the impact of the frequency, height, and duration of price spikes on Yy,
the data used to determine y for each location is more variable. This last section
analyzes the electricity price data for each location for the relative frequency, height,
and duration of price spikes. It will be shown that a difference in the duration of
price spikes between Denmark and the U.S. is seen which supports the finding that
for any given pair of cost intensities the optimal storage in Denmark should be as

long or longer than in the U.S.

In a deregulated market, electricity prices are a result of the signals which enable
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matching of supply and demand. Prices are correlated with demand, such that times
of high demand are generally times of high electricity prices and periods of low demand
are periods of low prices, but they are also dependent on generator availability, other
service interruptions, and the marginal cost of producing electricity at any given time.
Renewables have the effect of reducing electricity prices when the resource is available
since their marginal cost of production is effectively zero [5]. Important features of
electricity prices are that they are cyclical on both a yearly and a diurnal cycle and
they exhibit price spikes of varying frequency, height, and duration. Both of these

features will be explained below.

Electricity prices exhibit a diurnal cycle in which they are higher during the day
and lower at night. This cycle follows the electricity demand which peaks in the late
afternoon and is lowest in the evening. Figure 3-19 shows a fast Fourier transform of
the electricity prices in California and West Denmark. Important peaks that can be
seen for both locations occur at .0417 cycles per hour and .0833 cycles per hour which
correspond to a diurnal cycle and a twice daily cycle. The amplitude for these cycles
is higher for West Denmark than it is in California which means there is a stronger
cyclical dependence. Similar results are shown in figure B-26 where a stronger cyclical
dependence is shown for East Denmark, similar to West Denmark, than for Texas and

Massachusetts, which have results comparable to California.

Portuguese electricity prices are regulated and thus show much less cycling than
the other five locations presented in figures 3-19 and B-26. For all frequencies shown,
the amplitudes for Portugal are lower, and there is significantly less noise in the fast
Fourier transform. This demonstrates the extreme end of stability in which the prices
are controlled by an external agency. Alternatively, locations with a strong cyclical
dependence also present their own form of stability. The highly defined peaks and low
noise for both East and West Denmark are an indication that there is lower volatility
in the electricity prices in these locations as compared with the locations shown from
the United States. Additional indications of greater price stability in Europe will be
shown in figures 3-20 and 3-21.

Price spikes are finite duration events in which the price of electricity is abnor-
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Figure 3-19: Fast Fourier transforms of electricity prices in California and West
Denmark show a strong diurnal, at .0417 cycles per hour, and twice daily, at .0833
cycles per hour, pattern. The figure to the right for each location is zoomed in to show
more detail for the spikes. The amplitudes for these cycles is higher in West Denmark,
suggesting more stable electricity prices. This matches with the lower number of price
spikes in West Denmark which is similarly an indication of volatile electricity prices.
Fast Fourier transforms for Texas, Massachusetts, East Denmark, and Portugal are
shown in figure B-26.

mally high. Two possible definitions of price spikes are used and each shows similar
behaviors across the locations studied. The first is to compare prices to the daily
mean for the day in which the spike occurred. This removes any seasonal variation
in prices by only comparing prices to similar prices for that day. It is also useful for
understanding some possible behaviors of energy storage systems which when operat-
ing on a diurnal cycle will likely only be concerned with discharging at a price higher
than the related, or daily, mean. Figure 3-20 shows the fraction of price spikes of
different durations normalized by the total number of price spikes, where price spike
is defined as being above the daily mean, in the large plot. The other method of
quantifying price spikes is to compare them to the yearly “whisker” price as seen in

a box plot. The whisker price is one and a half times the distance between the first
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Figure 3-20: Emergent properties of electricity spot market prices for California,
West Denmark, and Portugal are shown. In the main plot, the frequency of price
spikes of various duration are shown weighted by the total number of price spikes,
defined as prices above the daily mean. Note that West Denmark has many more
price spikes of duration 14-17 hours. The box plots in the upper left show the range
of hourly electricity prices as compared to the daily mean price. The lower left figure
shows the actual electricity prices by hour for the first 120 hours of the data set to
demonstrate the variability and diurnal cycles of electricity prices. Figure B-25 shows
similar results for Texas, Massachusetts, and East Denmark.

and third quartiles added onto the third quartile. The large plot in figure 3-21 shows
the normalized fraction of price spike by duration when the price spike is defined as

a price above the whisker price.

The large plots in figures 3-20 and 3-21 show the fraction of price spikes, normal-
ized by the total number of price spikes, of different durations for a given location.
In figure 3-20 the price spikes are defined relative to the daily mean, while in figure
3-21 the price spikes are defined as being above the yearly whisker price. In Portugal,
prices never exceed the yearly whisker price, as this is a regulated market. More im-
portant is the comparison between California and West Denmark. For each definition

of price spike the same feature is seen in the comparison of duration of price spikes.
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West Denmark has a much larger fraction of price spikes that are of 10 to 17 hours of
duration as composed to California where the majority of price spikes are of only one
to three hours in duration. When price spike is defined as being above the whisker
price, half of California’s price spikes are of only one hour in duration and 80% are

of three hours or less.
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Figure 3-21: Price spikes can also be measured against the whisker price as opposed
to the daily mean price, as in figure 3-20. On the left is the fraction of price spikes,
defined as prices above the whisker price, normalized by the number of price spikes
as a function of duration. As in figure 3-20, West Denmark has a higher proportion
of price spikes of longer duration while California has a higher proportion of price
spikes of short duration. The figure on the right shows a comparison of the number of
hours the price was in a spike for the two different definitions. When defined as price
above the whisker price, there are an order of magnitude fewer price spikes. Figure
B-27 shows similar results for Texas, Massachusetts, and East Denmark.

Analysis of the price spikes in each location provides information on the relative
frequency, height, and duration of price spikes, and how these statistics are similar
across locations. The upper right plot in figure 3-20 shows a box plot of prices which
have been adjusted to show the spread of prices around the daily mean. This shows

the height of price spikes and how they compare across locations. The frequency of
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price spikes is highly dependent on how the price spike is defined. The number of
price spikes for each definition is shown in the left plot in figure 3-21. As can be seen,
when compared to the daily mean, there are significantly more events which qualify
as a price spike. This is an important feature, as it indicates the robustness of the
features seen when looking at the fraction of price spikes of different durations, the

two large plots in figures 3-20 and 3-21.

Price spike analysis can also be used to confirm the features seen in the fast Fourier
analysis of the electricity price time series. The lower left of figure fig:MultipanePricel
shows electricity prices plotted for the first five days of the year; in this plot you can
see both the diurnal cycle and evidence of a strong twice daily cycle in West Denmark
as was shown in the fast Fourier transforms of figure 3-19. The lower left plot also
shows an example of the noise, or variability, in the California prices as compared to
the smoother price time-series for West Denmark and Portugal. The box plot in the
upper left shows that the variability in height, electricity price, of the price spikes is
similar between California and West Denmark, but is much smaller in the regulated

Portuguese electricity market.

Similar results can be seen in figures B-25, B-27, and B-28 which show results for
Texas, Massachusetts, and East Denmark. The locations in the U.S. exhibit similar
electricity price dynamics in the form of weaker diurnal and twice-daily cycles, noisier
price time-series, and price spikes that are of shorter duration. East Denmark presents
results similar to those of West Denmark in that again, the fraction of price spikes
of long duration is much higher there than in any of the U.S. locations. For ease of

comparison, figure B-28 is included which shows all six locations studied in one figure.

The longer duration of price spikes seen in figures 3-20 and 3-21 when comparing
West Denmark to California, and in figures B-25 and B-27 comparing East Denmark
with Massachusetts and Texas are a confirmation of the results expected from the
analysis of y using artificial price series. For any given pair of cost intensities, the
optimal duration of storage was as high or higher in Denmark than in the U.S.; this
means that the slope of the iso-x lines in Denmark are steeper on average than in

the U.S. This is likely a result of the increased duration of price spikes in Denmark,
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which make storage with a higher cost of power relative to energy more valuable.
This result is confirmed for both definitions of price spike used. Lastly, the regulation
of the Portuguese electricity market provides an explanation for the lower y values

and smaller areas of the cost plane where storage is valuable seen in Portugal.
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Chapter 4

Discussion

Energy storage is widely recognized as critical for enabling an increasing penetration
of renewables in the electricity market. Current and planned investment in energy
storage technologies are summarized for both the U.S. and global electricity markets
in tables 4.1, 4.2, and 4.3. The data, summarized from the U.S. Department of
Energy’s Global Energy Storage Database [84], shows the dominance of PHS in both
the existing and the planned energy storage markets. Table 4.1 summarizes the
currently operating U.S. energy storage facilities as confirmed by the U.S. Department
of Energy, while table 4.2 presents the same information for projects that are currently
announced, contracted, or under construction. Globally aggregated data is shown in

table 4.3.

The future planned investment in energy storage technologies highlights the need
for a single metric that enables comparison of technologies across a range of attributes.
In this way, the best technology can be chosen for a given system, to provide the most
value. The location invariance in the relative value of storage and the cost targets for
storage improvement can inform the planners and researchers developing the planned
projects in tables 4.2 and 4.3. These results provide guidelines for researchers and pri-
vate R&D as well informing national research policy and demand-pull market policies

for the development and investment in storage, as discussed further in this chapter.
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Technology Confirmed | Rated Power | Energy Capacity
Projects

Pumped Hydro Energy Storage 24 15,5000 MW | 1237,600 MWh

Compressed Air Energy Storage 3 114 MW 3362 MWh

Thermal Storage 98 433 MW 2300 MWh

Lithium Ion Batteries 66 81 MW 72 MWh

Lead Acid Batteries 19 60 MW 51 MWh

Sodium Batteries 14 21 MW 14 MWh

(NaS and Others)

Other Battery Technologies 11 33 MW 10 MWh

Flywheel Energy Storage 4 42.5 MW 10 MWh

Flow Batteries (Zn-Bromine 6 1 MW 5 MWh

& Vanadium Redox)

Table 4.1: Energy storage facilities in the United States, ranked by total energy
capacity, that are confirmed in current operation as reported by the U.S. Department
of Energy [84].

94



Technology Confirmed | Rated Power | Energy Capacity
Projects
Pumped Hydro Energy Storage ) 3250 MW 17,000 MWh
Compressed Air Energy Storage 2 309 MW 3040 MWh
Thermal and Other Storage 4 316 MW 2300 MWh
Flow Batteries (Zn-Bromine 9 33 MW 134 MWh
& Vanadium Redox)
Lithium Ion Batteries 28 40 MW 27 MWh
Other Battery Technologies 6 2 MW 10 MWh
Lead Acid Batteries 2 0.4 MW 0.6 MWh
Flywheel Energy Storage 2 2 MW 0.6 MWh

Table 4.2: Energy storage projects in the U.S., ranked by total planned energy ca-
pacity, that are announced, contracted, under construction as reported by the De-
partment of Energy [84].

Technology Confirmed | Rated Power | Energy Capacity
Projects

Pumped Hydro Energy Storage 28 8900 MW 53,800 MWh

and Electro-Mechanical Storage

Thermal Storage 11 640 MW 3740 MWh

Other Battery Technologies 31 81 MW 436 MWh

Lithium Ion Batteries 64 90 MW 78 MWh

Table 4.3: Energy storage projects globally, ranked by total planned energy capacity,
that are announced, contracted, under construction as reported by the U.S. Depart-
ment of Energy [84].
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4.1 Policy implications

The primary implications resulting from an analysis of the value of storage is the
required improvement in the cost intensities of storage to help make renewables com-
petitive. This analysis provides insight into several research policy decisions, at all
levels from lab to government funding, that could be made to help advance stor-
age technologies making their combination with renewables valuable, and potentially
profitable. The gradients of x presented in section 3.5 inform a research agenda de-
signed to increase the value of ESS’s. The sy results show which aspects of storage,
either energy or power, will provide the most improvement for the same reduction in
total costs. Lastly, when combined with specific climate change mitigation goals, the
values of x and the respective cost targets can be used to set government subsidies
for investment in storage.

Many of the recommendations discussed in this section are based on the results
of the thesis research and the usable conclusions to emerge. However, this section
also covers suggestions for future input to the model, that could be provided by

researchers, policy makers, and firms.

4.1.1 Guidance for researchers

One of the findings of this study which could improve the model results is the range
of reported cost estimates for different storage technologies. A study of the value of
storage requires accurate initial conditions, or reported cost intensities, in order to be
able to say anything definite when comparing one storage technology to another. The
range of estimates presented in section 2.2 highlight the difficulty of comparing tech-
nologies. The large ellipses in figure 3-4 further exemplify the difficulty in accurately
comparing technologies or of saying something concrete about the value of storage in a
hybrid storage renewables facility. This is an area of research that could be improved
to help modelers in making predictions and comparisons of technologies. Providing
cost intensity estimates in real or nominal dollar amounts, and accurately describing

the elements included in each intensity would enable fair comparison across the dif-
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ferent technologies. This type of research would likely require collaboration between
academic institutions and business interests, sharing knowledge generated through

research and through experience.

Batteries, specifically sealed batteries, would further benefit from a standardiza-
tion in reported cost intensities clearly delineating which components are included in
the cost of energy storage and which in the cost of power storage. Some references,
such as Schoenung and Hassenzahl (2003), clearly specify that only the power con-
version system is counted as the cost of power storage [11]. Most studies, however,
do not specify what constitutes the elements in the cost of power storage, nor are
they clear on whether power conversion systems are considered as a cost intensity of
storage or as a balance of plant cost. Not only will this standardize the reported cost
intensities, but it will also improve the input technological cost data for the model
especially when comparing the relative value of storage technologies. For all technolo-
gies, balance of plant costs are an additional capital cost that were not included in this
study. These costs also represent an area for research to find specific improvements

in overall storage costs in order to improve its value.

The results of this model of a hybrid renewable and storage facility also provide
guidance for areas in which researchers can focus their efforts to improve the value
of energy storage technologies. For instance, reducing the energy capacity costs of
PHS and CAES will provide a larger increase in their value than focusing on similar
sized reductions in the power capacity costs. For sealed batteries, the focus on cost
reduction should be evenly split between power capacity components and energy
capacity components. Researchers who focus on electricity spot-market prices and
the systematic features that influence changing prices should research the cause of
price spikes, and specifically the underlying causes of longer duration price spikes
in order to better understand what the relative value of storage technologies will be
in different locations, and how these values may be influenced by grid and market

structures.
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4.1.2 Private R&D and investment

In addition to working closely with academic researchers to provide better capital cost
estimates for storage for model improvement described above, the results of this model
highlight the impact businesses can have in making storage and renewables more
valuable by reducing the cost of renewables generation. There is a trade-off between
the value of storage and the ability of storage to increase the value of renewables as
generation costs decrease. At higher generation capital costs, more expensive storage
is able to provide value, as evidenced by a larger area in the CGi % and CE215, plane.
However, at these high generation costs, neither the renewables nor the renewable
storage hybrid generation facilities are profitable. However, as the cost of generation

for renewables drops to $1/W the facilities are profitable, but storage costs must be

lower for storage to provide value.

The results of this study indicate that investment in storage may be at a "sweet
spot" in which storage provides value now, but as generation costs decrease these
technologies will stop being valuable if their costs do not fall as well. Investment in
storage that provides value, even if the technologies are not profitable, may help lead
to cost reductions in storage technologies as learning rates improve. Long term busi-
ness success and market dominance may be the result of large electricity generation
companies investing in storage and storage facilities now, in order to drive down the

costs of storage for further future investment.

Cooperating with laboratory researchers and modelers is an important way in
which businesses and specifically the independent system operators (ISO) can have
a significant impact on improving the quality of electricity modeling. By making
more detailed price and demand data available to researchers, better guidance for
researchers, private entities, and government policy will result. This project focuses
on the impact of storage when operating in arbitrage mode largely as a result of the
availability of data only at hourly intervals. Many of the benefits of storage, such as
frequency regulation, voltage support, and power quality management, require shifts

in storage and operation on the order of seconds or minutes. Accurately modeling
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these effects and determining the value of storage for ancillary services requires input
price or demand data be provided at intervals of one minute or less. Businesses with
access to this data can help support the research community and the development
of more accurate models by making this data publicly available. This collaboration
across industry and academia can help refine models and thus produce more action-

able results.

4.1.3 Public R&D and market creation

The government, through agencies such as the National Science Foundation, the na-
tional laboratories, and the Department of Defense research facilities and laboratories,
is in the position to set broad national research policy to help further the guidance
described in section 4.1.1. This can occur through both government funding of re-
search and also through the kinds of energy storage research being conducted in the
national laboratories, particularly at Sandia National Laboratories, where there is a
focus on energy storage research. The results of this model can inform government
research funding to improve technologies, but also can inform funding that incentivize
the kinds of research and collaboration needed to improve the input assumptions of
the model described in this study. Government funding and regulations can also
be implemented which incentivize businesses and ISO’s to provide the kinds of data
which will enable more detailed analysis of the value of storage at providing ancillary
services. Finally, government research funding can incentivize the types of future
research and model development described in section 4.2.

No discussion of the impact of government policy on the penetration of renew-
ables is complete without mentioning the effects of externalities from carbon and the
government’s role in providing a properly operating free market. Externalities are
one of the four main market failures, the others being imperfect information, non-
competitive markets, and public goods [107, p. 77-85|. Externalities are a social cost
or benefit that is not considered in private decision making. When market failures are
present the basic economic assumptions of perfect markets breakdown and efficient

outcomes can no longer be assumed. Carbon and other greenhouse gas emissions
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are an externality in the electricity markets, as they represent a social cost, in the
form of climate change, that is not part of the private calculus in energy usage or the
construction of generation facilities. Coal, oil, and natural gas, produce carbon emis-
sions for which they do not pay, artificially lowering their cost of generation compared
with technologies which do not produce emissions. Externalities provide one of the

foundational principles for why government involvement in markets is important.

Market failures resulting from externalities provide an argument for government
intervention in the electricity market through subsidies for desired technologies, such
as wind and solar, or for carbon taxes, cap-and-trade, or other mechanisms of inter-
nalizing the externality. Government intervention in the market can be generally clas-
sified as either demand-pull policies or technology-push policies [108]. Guidance and
funding to researchers for the improvement of technologies fall into the technology-
push category. While the results of this analysis can provide general guidance for this
type of policy, it can provide much more specific input for policies which spur market

creation through demand-pull changes in prices and investment incentives.

Government subsidies to spur investment in storage should focus on subsidies and
investment credits for both renewables and storage facilities. With wind generation
currently at about $2/W and solar generation at about $3/W, this analysis shows
that most storage technology cost estimates do not find the addition of storage to
renewables to be valuable for most technologies at all locations. Additionally, at
current prices and operating without storage, renewables are not profitable at any
location studied. Spurring the investment in renewables and in storage will require
government subsidies of both the renewables generation capital costs and the costs of
energy storage and power storage for an ESS. Appropriately setting these subsidies
is an area of policy informed by this research. The thresholds of value for storage
at different locations show the cost targets that must be achieved by storage. In
the short run, to spur investment, storage cost reductions could be achieved through
government subsidy to help make up the difference between current costs and cost

goals.

Subsidies for storage and renewables based on the cost targets derived from the
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value and profitability thresholds that result from this model differ by location. They
also differ by technology. Subsidies which remain technologically neutral, and do

" will require detailed modeling and accurate knowledge of initial

not "pick winners,'
cost intensities. The former is provided by this model, and the latter is one of the

important implications of future research highlighted in this analysis.

4.2 Future research

This study focuses on hybrid renewables and storage facilities operating as price-takers
in the electricity market. Feedback effects resulting from the variable generation of
renewables on electricity prices are ignored, which is reasonable for the case of small
renewables penetration but will need to be adjusted as renewables adoption grows.
While the model used in this study provides for an efficiency parameter, this value
was not changed through the course of the experiments, and only a single roundtrip
efficiency value was used. To more accurately model the operations of energy storage
systems in order to determine their value, both a charging and discharging efficiency
should be included. Similarly, a charging and discharging power capacity should be
modeled to better capture technologies such as a double penstock facility. In addition
to more detailed efficiencies, self-discharge of the storage facility should be included
to accurately capture losses that might occur from trying to save energy over a longer
time period. Finally, more analysis is needed on the dependence of these performance
intensity metrics on the quantity of power or energy installed.

One example of the importance of future work exploring the effects of feedbacks in
the electricity markets is highlighted by the differences in price data between the U.S.
locations and Denmark. As discussed in section 2.1, the Danish electricity system
is heavily dependent on wind power, with over half of demand being met by wind
resources. At these levels, the variability in wind generation is likely to have a strong
effect on electricity prices, possibly explaining the longer duration of price spikes
in both East and West Denmark. If this is true, then increasing the penetration of

renewables is likely to have a positive feedback effect on the value of storage, requiring
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longer durations of storage to be installed as more renewables penetrate the market.
Additionally, if longer durations of storage are optimal as renewables penetrations
increase, the comparison of technologies across iso-x lines will change as the slopes of

the lines transition to higher values.

The inclusion of separable charge and discharge power capacities and efficiencies
will help better model the actual cost intensities of storage faced by an investor or
entrepreneur. The determination of y along three cost intensities will certainly com-
plicate the analysis of the models output, but will contribute a deeper understanding
of the relative value of different storage technologies. This type of modeling however
is dependent on better cost intensity research as described in section 4.1.1. As the
field currently stands, no data source provides separable charge and discharge cost in-
tensities for all technologies. Furthermore, the standardization of this practice would
require further specification for sealed batteries, where the distinction between power
components and energy components is already substantially blurred. Self-discharge
is also an important feature to model, as this will clearly distinguish those technolo-
gies that are suitable for time-shifting services such as arbitrage, compared to those
which might be relegated to only providing short duration ancillary services such as

frequency regulation and voltage support.

The variability of an intensity metric as a function of the quantity that it is in-
tensifying is a second-order effect of the features of a technology. In this study, an
example might be step changes in the power capacity costs of a CAES facility with
increasing sizes of turbine generators. An intensive analysis of the dependence of per-
formance intensity metrics on the quantity of power and energy installed is needed to
understand whether these second order effects can be safely ignored. This study mod-
els cost intensities and efficiency as independent of the installed capacity. This means
that economies of scale are excluded from this analysis, but also the dependence of
efficiency on charge and discharge rate. It is likely that all the performance intensity
metrics described in section 1.4 are not independent of the installed capacity as mod-
eled in this study. Understanding the dependence of performance intensity metrics on

their intensive quality will not only enable more accurate modeling of results, but will
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increase understanding of best operating conditions and practices that might likewise
change the way in which optimization of storage operation is performed. This is an
area of further research that may have important implications for the choice of storage

technology.
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Appendix A

Supplemental figures to support
methodology

The following figures, figures A-1, A-2, and A-3 demonstrate the effects of discharging
power capacity limits, efficiency, and self-discharge on the amount of energy in storage
and the ability of a hybrid solar and storage facility to meet that demand. The figures
are provided to complement the discussion in section 1.4 by demonstrating the effect
that each of the performance intensity metrics or system size constraints has on the
performance of the hybrid system. Of interest is the effect of the limits on unmet
demand and the amount of energy in storage, as well as the relationship between

these two quantities.
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Figure A-1: These figures demonstrate the effect of discharging power capacity on
the amount of energy in storage, and the ability of that energy to meet demand. In
the top figure, hourly demand and solar generation data are presented for January
1, 2008 through January 5, 2008 for the north central region of ERCOT [98]. The
middle figure shows unmet demand, demand minus solar generation, for the case
without storage, with storage with no limitations, and with storage with a limitation
of 8 MW discharging power capacity. The bottom figure shows the amount of energy
in storage for both the limited and non-limited case.
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Figure A-2: These figures demonstrate the effect of efficiency on the amount of energy
in storage, and the ability of that energy to meet demand. In the top figure, hourly
demand and solar generation data are presented for January 1, 2008 through January
5, 2008 for the north central region of ERCOT [98]. The middle figure shows unmet
demand, demand minus solar generation, for the case without storage, with storage
with no limitations, and with storage with an efficiency of 50%. The bottom figure
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shows the amount of energy in storage for both the limited and non-limited case.
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Figure A-3: These figures demonstrate the effect of self-discharge on the amount of
energy in storage, and the ability of that energy to meet demand. In the top figure,
hourly demand and solar generation data are presented for January 1, 2008 through
January 5, 2008 for the north central region of ERCOT [98]. The middle figure shows
unmet demand, demand minus solar generation, for the case without storage, with
storage with no limitations, and with storage with a self-discharge rate of 20% per
hour. The bottom figure shows the amount of energy in storage for both the limited

and non-limited case.
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Appendix B

Supplemental figures and tables of

results

B.1 Technology comparison figures
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Figure B-1: Cost intensities of a range of energy storage technologies [69, 70, 7, 9, 11,
72| overlaid with lines, for a given generation cost, which show the threshold storage
cost intensities at which it becomes valuable to incorporate storage into a California
solar farm. The ellipses are plotted for each storage technology to highlight the
uncertainty of energy and power costs of storage as discussed in section 2.2 [1].
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Figure B-2: Cost intensities of a range of energy storage technologies [69, 70, 7, 9, 11,
72| overlaid with lines, for a given generation cost, which show the threshold storage
cost intensities at which it becomes valuable to incorporate storage into a California
wind farm. The ellipses are plotted for each storage technology to highlight the
uncertainty of energy and power costs of storage as discussed in section 2.2 [1].
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Figure B-3: Cost intensities of a range of energy storage technologies (69, 70, 7, 9,
11, 72] overlaid with lines, for a given generation cost, which show the threshold
storage cost intensities at which it becomes valuable to incorporate storage into a
Massachusetts solar farm. The ellipses are plotted for each storage technology to
highlight the uncertainty of energy and power costs of storage as discussed in section
2.2 [1].
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Figure B-4: Cost intensities of a range of energy storage technologies [69, 70, 7, 9,
11, 72| overlaid with lines, for a given generation cost, which show the threshold
storage cost intensities at which it becomes valuable to incorporate storage into a
Massachusetts wind farm. The ellipses are plotted for each storage technology to

highlight the uncertainty of energy and power costs of storage as discussed in section
2.2 [1].
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Figure B-5: Cost intensities of a range of energy storage technologies [69, 70, 7, 9, 11,
72| overlaid with lines, for a given generation cost, which show the threshold storage
cost intensities at which it becomes valuable to incorporate storage into a Texas solar
farm. The ellipses are plotted for each storage technology to highlight the uncertainty
of energy and power costs of storage as discussed in section 2.2 [1].
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Figure B-6: Cost intensities of a range of energy storage technologies [69, 70, 7, 9, 11,
72| overlaid with lines, for a given generation cost, which show the threshold storage
cost intensities at which it becomes valuable to incorporate storage into a Texas wind
farm. The ellipses are plotted for each storage technology to highlight the uncertainty
of energy and power costs of storage as discussed in section 2.2 [1].
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Figure B-7: Cost intensities of a range of energy storage technologies |69, 70, 7, 9,
11, 72] overlaid with lines, for a given generation cost, which show the threshold
storage cost intensities at which it becomes valuable to incorporate storage into an
East Denmark wind farm. The ellipses are plotted for each storage technology to
highlight the uncertainty of energy and power costs of storage as discussed in section

2.2 [1].
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Figure B-8: Cost intensities of a range of energy storage technologies [69, 70, 7, 9,
11, 72| overlaid with lines, for a given generation cost, which show the threshold
storage cost intensities at which it becomes valuable to incorporate storage into a
Portugal wind farm. The ellipses are plotted for each storage technology to highlight
the uncertainty of energy and power costs of storage as discussed in section 2.2 [1].

113



B.2 Iso-y lines figures and tables
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Figure B-9: As in figure 3-5, thresholds of value for storage with renewables are
shown for different generation capital cost intensities for wind in Portugal and solar
in the United States. The blue lines show profitability thresholds, y = 1. For wind in
Portugal, generation capital cost intensities of $2/W and less are always profitable.
However, it should be noted that for storage with wind to be valuable in Portugal,
storage power and energy cost intensities must be significantly lower than in all other
locations studied.
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Required Energy Power Energy Power

Improvement Cost Cost Cost Cost
Location Technology to Meet Reduction | Reduction | Reduction | Reduction

Generation Cost Percent Percent
California Solar $1/W $140/kWh | $98/kW 35% 98%
California Wind $1/W $175/kWh | $98/kW 44% 98%
Massachusetts Solar $3/W $119/kWh | $98/kW 30% 98%
Massachusetts Wind $2/W $155/kWh | $98/kW 39% 98%
Texas Solar $1/W $157/kWh | $98/kW 39% 98%
Texas Wind $1/W $142/kWh | $98/kW 36% 98%
E. Denmark Wind $3/W $107/kWh | $98/kW 27% 98%
W. Denmark Wind $2/W $152/kWh | $98/kW 38% 98%
Portugal Wind $3/W $317/kWh | $98/kW 79% 98%

Table B.1: Required cost improvements for a high energy ($400/kWh) and low power
cost ($100/kW) technology to reach the nearest generation threshold when this thresh-
old is a corner solution at a power cost of $2/kW. Also shown are the corner solutions
to reach the next lower generation cost for locations with solutions shown in table
3.1.
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Required Energy Power Energy Power

Improvement Cost Cost Cost Cost
Location Technology to Meet Reduction | Reduction | Reduction | Reduction

Generation Cost Percent Percent
California Solar $1/W $98/kWh | $145/kW 98% 21%
California Wind $1/W $98/kWh | $222/kW 98% 32%
Massachusetts Solar $3/W $98/kWh | $85/kW 98% 12%
Massachusetts Wind $2/W $98/kWh | $107/kW 98% 15%
Texas Solar $1/W $98/kWh | $195/kW 98% 28%
Texas Wind $1/W $98/kWh | $158/kW 98% 23%
E. Denmark Wind $2/W $98/kWh | $78/kW 98% 11%
W. Denmark Wind $1/W $98/kWh | $329/kW 98% 47%
Portugal Wind $3/W $98/kWh | $454/kW 98% 65%

Table B.2: Required cost improvements for a low energy ($100/kWh) and high power
cost ($700/kW) technology to reach the nearest generation threshold when this thresh-
old is a corner solution at an energy cost of $2/kWh. Also shown are the corner
solutions to reach the next lower generation cost for locations with solutions shown
in table 3.2.

Required Energy Power Energy Power

Improvement Cost Cost Cost Cost
Location Technology to Meet Reduction | Reduction | Reduction | Reduction

Generation Cost Percent Percent
California Wind $2/W $337/kWh | $98/kW 84% 98%
Massachusetts Solar $1/W $347/kWh | $98/kW 87% 98%
Massachusetts Wind $2/W $382/kWh | $98/kW 95% 98%
Texas Solar $2/W $386/kWh | $98/kW 96% 98%
Texas Wind $2/W $289/kWh | $98/kW 72% 98%
E. Denmark Wind $2/W $388/kWh | $98/kW 97% 98%
W. Denmark Wind $2/W $397/kWh | $98/kW 38% 98%

Table B.3: Required cost improvements for a high energy ($400/kWh) and low power
cost ($100/kW) technology to reach the profitability threshold when one exists for a
given generation cost. Note that as in table B.1 this threshold is a corner solution at
a power cost of $2/kW.

116



Required Energy Power Energy Power

Improvement Cost Cost Cost Cost
Location Technology to Meet Reduction | Reduction | Reduction | Reduction

Generation Cost Percent Percent
California Wind $2/W $98/kWh | $544/kW 98% 78%
Massachusetts Solar $1/W $98/kWh | $592/kW 98% 85%
Massachusetts Wind $2/W $98/kWh | $645/kW 98% 92%
Texas Solar $2/W $98/kWh | $653/kW 98% 93%
Texas Wind $2/W $98/kWh | $495/kW 98% 1%
E. Denmark Wind $2/W $98/kWh | $660,/kW 98% 94%
W. Denmark Wind $2/W $98/kWh | $696/kW 98% 99%

Table B.4: Required cost improvements for a low energy ($100/kWh) and high power
cost ($700/kW) technology to reach the profitability threshold when one exists for a
given generation cost. Note that as in table B.2 this threshold is a corner solution at
an energy cost of $2/kWh.
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Figure B-10: Hours of storage duration for solar power are shown for California,
Massachusetts, and Texas. Results show that hours of optimal storage duration follow
the same general cost intensities as seen for the same locations with wind power, seen
in figure 3-6. This compares to results for West and East Denmark where optimal
storage duration is as high or higher for any given cost of energy storage and cost of
power storage.
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B.3 Gradients of y
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Figure B-11: Gradients for both wind and solar for California and Massachusetts.
v x shows the direction of greatest improvement in x. It is largely invariant across
generation technologies and locations. It is greater for lower costs because the same
absolute improvement in cost of energy storage or cost of power storage is a rela-
tively greater improvement in cost for lower cost technologies. For reference, the cost
estimates as provided by [72| are shown for CAES and lead-acid batteries.
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Figure B-12: Gradients for both wind and solar for Denmark, Portugal, and solar
power in Texas. 1/x shows the direction of greatest improvement in y. It is largely
invariant across generation technologies and locations. It is greater for lower costs
because the same absolute improvement in cost of energy storage or cost of power
storage is a relatively greater improvement in cost for lower cost technologies. For
reference, the cost estimates as provided by [72] are shown for CAES and lead-acid
batteries.
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Figure B-13: Gradients for both wind and solar for California and Massachusetts.
VX shows the direction of greatest improvement in x given a 10% decrease in cost of
energy storage or cost of power storage. Proportional changes in cost show a generally
consistent relative improvement in x as compared with figure B-11. For reference,
the cost estimates as provided by [72] are shown for CAES and lead-acid batteries.
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Figure B-14: Gradients for both wind and solar for Denmark, Portugal, and solar
power in Texas. v/ shows the direction of greatest improvement in y given a 10%
decrease in cost of energy storage or cost of power storage. Proportional changes in
cost show a generally consistent relative improvement in x as compared with figure

B-12. For reference, the cost estimates as provided by [72] are shown for CAES and
lead-acid batteries.
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B.4 Artificial price series figures
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Figure B-15: Using generation data for solar power in Texas, the effect of the fre-
quency of price spikes of constant height $350 and duration 1 hour on the benefit /cost
ratio x is shown. Figure B-16 shows the optimal duration of storage resulting in the
x values shown in this figure, and therefore, as was shown in section 3.3, the values
for the slope of the iso-x lines.
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Figure B-16: Using generation data for solar power in Texas, the effect of the fre-
quency of price spikes of constant height $350 and duration 1 hour on the optimal
duration of storage is shown. Figure B-15 shows the optimal y resulting from the
optimal storage duration shown in this figure; as was shown in section 3.3, the values
for the slope of the iso-x lines in figure B-15 are equal to the duration values shown
here.
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Figure B-17: Using generation data for solar power in Texas, the effect of the height
of price spikes of constant frequency 250 spikes per year of duration 1 hour on the
benefit/cost ratio x is shown. Figure B-18 shows the optimal duration of storage
resulting in the y values shown in this figure, and therefore, as was shown in section
3.3, the values for the slope of the iso-y lines.
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Figure B-18: Using generation data for solar power in Texas, the effect of the height
of price spikes of constant frequency 250 spikes per year of duration 1 hour on the
optimal duration of storage. Figure B-17 shows the optimal y resulting from the
optimal storage duration shown in this figure; as was shown in section 3.3, the values
for the slope of the iso-x lines in figure B-17 are equal to the duration values shown

here.
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Figure B-19: Using generation data for solar power in Texas, the effect of the dura-
tion of price spikes of constant frequency 100 spikes per year of height $350 on the
benefit /cost ratio x is shown. Figure B-20 shows the optimal duration of storage
resulting in the y values shown in this figure, and therefore, as was shown in section
3.3, the values for the slope of the iso-y lines. Figures 3-13, 3-14, B-21, and B-22
show similar results for price spikes of other frequencies and heights.
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Figure B-20: Using generation data for solar power in Texas, the effect of the duration
of price spikes of constant frequency 100 spikes per year of height $350 on the optimal
duration of storage. Figure B-19 shows the optimal y resulting from the optimal
storage duration shown in this figure; as was shown in section 3.3, the values for the
slope of the iso-x lines in figure B-19 are equal to the optimal storage duration values
shown here. Figures 3-13, 3-14, B-21, and B-22 show similar results for price spikes
of other frequencies and heights.
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Figure B-21: Using generation data for solar power in Texas, the effect of the dura-
tion of price spikes of constant frequency 250 spikes per year of height $200 on the
benefit /cost ratio x is shown. Figure B-22 shows the optimal duration of storage
resulting in the x values shown in this figure, and therefore, as was shown in section
3.3, the values for the slope of the iso-y lines.
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Figure B-22: Using generation data for solar power in Texas, the effect of the duration
of price spikes of constant frequency 250 spikes per year of height $200 on the optimal
duration of storage. Figure B-21 shows the optimal y resulting from the optimal
storage duration shown in this figure; as was shown in section 3.3, the values for the
slope of the iso-x lines in figure B-21 are equal to the optimal storage duration values
shown here.
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Figure B-23: x values for generation data for various locations studied is shown in
combination with electricity prices with 100 price spikes per year of height $350 and
duration of 1 hour. Generation data has it’s greatest impact on the actual values of
x and relatively little impact on the threshold at which storage becomes valuable.
Figure 3-17 shows similar results for the other locations studied.
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Figure B-24: Optimal storage duration for generation data for various locations stud-
ied is shown in combination with electricity prices with 100 price spikes per year of
height $350 and duration of 1 hour. Generation data does not explain the changing
iso-y slopes. Figure 3-18 shows similar results for the other locations studied.
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B.5 Electricity price dynamics
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Figure B-25: Emergent properties of electricity spot market prices for Texas, Mas-
sachusetts, and East Denmark are shown complementing figure 3-20. In the main
plot, the frequency of price spikes of various duration are shown weighted by the
total number of price spikes, defined as prices above the daily mean. The box plots
in the upper left show the range of hourly electricity prices as compared to the daily
mean price. The lower left figure shows the actual electricity prices by hour for the
first 120 hours of the data set to demonstrate the variability and diurnal cycles of
electricity prices.
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Figure B-26: Fast Fourier transforms of electricity prices in Texas, Massachusetts,
East Denmark, and Portugal to complement figure 3-19. As in figure 3-19, the peaks
at .0417 cycles per hour and .0833 cycles per hour correspond to daily and twice daily
patterns in the prices. East Danish prices are similarly more stable than U.S. prices.
Portugal’s Fourier transform shows the effect of regulation on electricity prices.
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Figure B-27: Price spikes can also be measured against the whisker price as opposed
to the daily mean price, complementing figures B-25 and 3-21. On the left is the
fraction of price spikes, defined as prices above the whisker price, normalized by the
number of price spikes as a function of duration. The figure on the right shows a
comparison of the number of hours the price was in a spike for the two different
definitions. When defined as price above the whisker price, there are an order of

magnitude fewer price spikes.
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Figure B-28: For ease of comparison, the data presented in figures 3-21 and B-27 are
shown to allow comparison of electricity price dynamics across all locations studied.
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