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Abstract

In this thesis, we introduce and analyze models for air asset scheduling within a
military theater. Specifically, we seek to create models that generate aircraft-specific
schedules for Air Tasking Orders (ATOs) within a Joint Aerospace Operations Center
(JAOC).

A JAOC provides command and control of all air and space assets tasked to a
particular region/area of responsibility (AOR) or strategic command. Scheduling
these assets requires a high level of unified effort whereby centralized planning must
be handled in a decentralized fashion and is known as the Air Tasking Cycle. Given
the complexity of this process, subject matter experts from diverse backgrounds are
required to design and plan missions for most operations. In addition, the difficulty
of the process dictates that mission prioritization and aircraft/munitions allocation
are separated in the cycle, sacrificing some global perspective for the sake of efficiency
in the scheduling process.

We present a modeling framework that allows planners to simultaneously select
missions and assign aircraft/munitions to the missions, allowing for the optimal air as-
set scheduling toward the pursuit of theater-level objectives. This flexible framework
takes into account air refueling considerations as well as the need for certain missions
to be completed by “packages” of particular aircraft types. We submit heuristic, mixed
integer optimization (MIO), and hybrid models within this structure and analyze the
value of their schedules and the corresponding trade-offs with computational solve
time.
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Chapter 1

Introduction

Every day, the US military flies hundreds of air missions around the world in support

of war and peacetime operations. The goal of these missions varies widely, including

but not limited to strike operations, defensive counterair, reconnaissance, and airlift.

Given the global presence of US air assets, the military establishes regional Joint

Aerospace Operations Centers (JAOCs) wherever there is “a standing or potential

force” [27]. These JAOCs are responsible for the command and control of all air and

space assets in the region, including all aircraft and ballistic missiles. In addition,

JAOCs task all aircraft with missions designed to accomplish force objectives in that

region, and consequently, the efficient and intelligent use of air assets drives the

effectiveness of operations within the theater.

Planning missions for hundreds of aircraft of various types and functions is a

difficult task in and of itself. This process is complicated by mission requirements

dictating that aircraft of different (or similar) types must fly missions in “packages,”

necessitating coordination between aircraft that may begin missions from different

bases. Additionally, many aircraft will require air refueling. This requirement spawns

further complexity as fuel considerations must be managed for both aerial tankers

and fuel-receiving aircraft, and the air refueling sites must be selected.

In this thesis, we present a modeling framework that allows planners to create

aircraft-by-aircraft schedules that optimize the pursuit of theater-level objectives.

This framework captures the complexities involved with required air “packages” for
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mission completion, while also accounting for air refueling coordination. We examine

the effectiveness of heuristic, mixed integer optimization (MIO), and hybrid models,

analyzing their usefulness as scheduling aids for planners within a JAOC. While

these models have some limitations when considering larger theater-level problems, we

believe this modeling framework provides a proof of concept of simultaneous mission

planning and aircraft/munitions allocation as a technique for increasing the value of

air asset schedules.

1.1 Thesis Structure

This thesis is structured first to introduce the JAOC asset scheduling problem and

the advantages of utilizing an automated model to aid in the planning process. Con-

sequently, we discuss the purpose of the JAOC, highlighting areas for improvement in

the planning and scheduling process. Then, we introduce models that address these

weaknesses and analyze the effectiveness of the models as aids in the planning cycle.

In Chapter 2, we describe in depth the Air Tasking Cycle within a JAOC. We also

discuss some of the tenants of air refueling, in particular as they apply to intratheater

refueling. The chapter also contains a literature review, including an analysis of

discrete-time versus continuous-time modeling and a survey of literature on mission

planning.

In Chapter 3, we utilize our understanding of the Air Tasking Cycle to develop a

modeling framework conducive to aiding planners in a JAOC. We specifically develop

a MIO methodology and a greedy algorithm within this framework. We also provide

optional constraints for the MIO model that give mission planners more flexibility in

choosing which combinations of missions will be scheduled.

In Chapter 4, we run trials of our models and compare the results of the greedy

algorithm against the MIO model. We examine the schedules produced on mock

scenarios and investigate the performance of the MIO model when fewer missions

are provided. Given these insights, we create a hybrid model combining the greedy

heuristic and MIO models and explore the computational results of this model.
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Finally in Chapter 5, we summarize our findings and assess the viability of our

models as planning aids both now and in the future. In addition, we make suggestions

for future work, both as an extension to the proposed modeling framework in this

thesis and in the domain of JAOC planning, in general.

1.2 Contributions

We make the following contributions in this thesis:

∙ We propose a modeling framework that manages both the mission selection and

aircraft/munitions allocation stages of the Air Tasking Cycle (see Chapter 2).

Specifically, our framework creates an aircraft-specific schedule for every aircraft

over the entire time period of the model. That is, we do not simply assign

a squadron of aircraft to particular missions for completion, nor do we assign

aircraft to missions without specifying the mission completion time. Rather, our

models specify exactly where every aircraft will be operating for the duration of

the time horizon. In addition, our structure honors the constraint that missions

be completed by a “package” of aircraft of various types. It also manages air

refueling by routing all aircraft through anchor areas (see “Air Refueling Within

a JAOC” in Chapter 2 for a description) and coordinating fuel transfer between

tankers and other aircraft in these areas.

∙ We apply this framework to create both a greedy heuristic algorithm, as well

as a MIO formulation for creating air asset schedules. We also introduce cer-

tain optional constraints that can be added to the MIO formulation to manage

munitions or require synchronization between certain missions, for example.

∙ We compare the greedy algorithm and various subsets of the MIO formulation,

considering both “value” of missions and the number of missions scheduled,

and contrasting these measures of success with computational run time. Given

these results, we introduce a hybrid model of the greedy and MIO models that

balances computation time with value added.
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∙ We demonstrate the viability of the hybrid model. Specifically, for a problem

of 20 aircraft, 4 tankers, and 50 potential missions, after just one hour of run

time, we obtain an average solution that is within 8.1 percent of the provable

optimal solution. This solution represents a 6.39 percent increase in mission

“value” as compared to the greedy algorithm’s solution, which approximates

current scheduling methods. In addition, we show a 4.6 percent increase from

the greedy algorithm’s solution on a problem of 80 aircraft, 10 tankers, and 100

potential missions in one hour of run time. Given these results, we discuss the

usefulness of this model to planners in a JAOC.
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Chapter 2

Problem Background and Literature

Review

2.1 Optimized Air Mission Planning

Every day, the US military flies hundreds of missions around the world in support of

war and peacetime operations. The goal of these missions varies widely to include

strike operations, defensive counterair, reconnaissance, airlift, and many others. Con-

sequently, the branches of the US military operate over a hundred different types of

aircraft, with the total number of aircraft nearing 10,000. Acquisition, maintenance,

and operation of these aircraft is extremely expensive. For example, a recent RAND

study found the average annual cost of operating a single fighter wing (about 100

aircraft) to be nearly $500 million [23].

Smarter mission planning would allow the US military to complete more missions

(and/or more valuable missions) with the aircraft it currently has available, which

would provide for quicker conflict resolution while limiting military expenditures.

The goal of this thesis is to demonstrate a MIO framework that would allow the US

military to plan more effectively and efficiently. Specifically, our model optimizes the

the total “value” of all missions flown within a region given a finite set of aircraft

of varying types (to include tankers), outputting an aircraft-by-aircraft schedule for

a user-controlled time horizon. The model focuses on intratheater mission planning

17



based out of a regional JAOC. While this framework is by no means all-encompassing,

it is our hope that it provides proof of concept of model-based optimization for mission

planning and will inspire further development in this area.

2.1.1 Mission Planning Within a JAOC

A JAOC provides command and control of all air and space assets tasked to a par-

ticular region/area of responsibility (AOR) or strategic command. Regional JAOCs

exist “wherever there is a standing or potential joint force,” such as the JAOC at

Al Udeid in Qatar, which is responsible for the Middle East, ranging from Egypt to

Syria to Kazakhstan to Pakistan and everything in between [27]. The AOR for a

JAOC can vary greatly from the size of a country (such as the 607th JAOC in charge

of Korea) to the size of a continent (such as the 603rd JAOC in charge of Europe

and Africa) based on the political situation and operations tempo in the region. In

most cases, the JAOC is commanded by the Joint Forces Air Component Commander

(JFACC), whose role is to advise the Joint Forces Commander (JFC) on how he (or

she) can best use his air and space assets. While the JFC is ultimately responsible

for all operations within his AOR, he generally delegates authority for air and space

operations to the JFACC. Hundreds of personnel to include subject matter experts

from a variety of backgrounds (e.g., pilots, lawyers, etc.) support the JFACC in this

mission.

The process of centralized control by which the JFACC controls air forces within

a joint air operations environment is known as an Air Tasking Order (ATO) [20].

These orders, which generally cover a 24-hour period, list all sorties, both offensive

and defensive, to be flown during that ATO period along with call signs, mission types,

and aircraft types [20]. The creation of ATOs are (generally) planned out by hand

by military members during a 72-hour cycle in advance of a particular ATO day.

Consequently, five ATOs are simultaneously being planned, executed, or assessed

at any given time. The ATO process involves selecting targets and assigning the

appropriate aircraft and payload to those targets in accordance with the objectives

set forth by the JFC. The timely completion of an ATO is currently a six part process
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that involves the successive completion of many documents, requiring a high level of

unified effort whereby centralized planning must be handled in a decentralized fashion

[7].

The ATO Cycle, shown in Figure 2-1, is composed of six stages: Objectives,

Effects, and Guidance; Target Development; Weaponeering and Allocation; ATO

Production and Dissemination; Execution Planning and Force Execution; and As-

sessment. The process is cyclical; strategy development leads to mission selection,

which is limited by available resources. Selected missions are executed in accordance

with campaign goals, although modifications may occur on the spot to account for

last minute changes. Once executed, assessment of whether mission objectives are be-

ing met drives the evolution of strategy, which restarts the entire ATO development

process [20].

To support this cycle, the JAOC is separated into five divisions: Strategy; Combat

Plans; Combat Operations; Intelligence, Surveillance, and Reconnaissance (ISR); and

Air Mobility. The Strategy Division is in charge of big picture perspective. Personnel

in this division define campaign objectives and determine whether current operations

are meeting objectives. The Combat Plans Division is in charge of day-to-day mission

planning, to include target development and resource allocation. As our model is

designed to aid this division, its sub-processes are covered in more detail below. The

Combat Operations Division implements the ATO, sometimes also executing missions

not on the schedule if high-valued Time Sensitive Targets (TSTs) appear. The ISR

Division and Air Mobility Division operate in support capacities to the other three

divisions, providing critical intelligence and logistics information that aids in both

planning and execution of air operations [20, 27].

The Combat Plans Division is responsible for executing three steps within the

Air Tasking Cycle: Target Development, Weaponeering and Allocation, and ATO

Production and Dissemination. In the Target Development stage, the commander’s

guidance is taken and used to develop a Joint Air Operations Plan (JAOP), which lays

out how available forces and capabilities can be employed. Specifically, each air wing

component as well as the ISR Division develops a Target Nomination List (TNL),
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Figure 2-1: Air Tasking Cycle at a JAOC [20]
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which is then merged to create the Joint Integrated Prioritized Target List (JIPTL)

[7]. Once approved, the JIPTL becomes the groundwork for the ATO, containing the

listing of targets in order of priority, normally with a potential “cut line” of which

targets can be completed, all of which meet the commander’s intent [5].

In the Weaponeering and Allocation stage, the Master Air Attack Plan (MAAP)

Team within the Combat Plans Division creates the MAAP, a document that quanti-

fies the predicted results of both lethal and non-lethal weapons and other capabilities

used to ensure target objectives outlined in the JIPTL are met [20]. This plan details

the estimated effects of the weapons employment and provides a foundation for the

joint ATO [5]. Furthermore, target nominations may change slightly from the JIPTL

to reflect capability limitations, changes in the commander’s intent, or conflict in the

allocation of aircraft or other forces [20]. Once developed, the MAAP is reviewed, and

the JFC staff allocates which sorties will be flown by what aircraft on what mission,

excess sorties not required, and/or requests for additional air support [20].

In the ATO Production and Dissemination stage, the MAAP is approved by the

JFACC, all apportionment decisions are reviewed, and the specifics of the order are

finalized [7]. During this phase, the backbone of ATO planning has already been

completed; specifics are merely being rigorously defined to ensure coordinated mission

success. Once the ATO is finalized, it is forwarded to all wings throughout the AOR,

so they can prepare their aircraft for execution of the ATO.

The entire ATO process governs the development of “strike” missions [air inter-

diction, offensive counterair (OCA) surface attacks, etc.] as well as some suppression

of enemy air defenses (SEAD) missions for manned aircraft. However, this is only a

part of the mission planning that occurs. Unmanned aircraft are also tasked, and the

combined schedule for both manned and unmanned aircraft is found in the Integrated

Tasking Order (ITO). In addition, reconnaissance missions must also be scheduled.

The Joint Integrated Prioritized Collection List (JICPL) is developed in similar fash-

ion to the JIPTL to accomplish this task. Furthermore, the Combat Plans Division

must also ensure US and allied assets are adequately defended and that air supremacy

(or air superiority) is established. Consequently, the Airspace Control Order (ACO)
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is developed in accordance with the Air Defense Plan (ADP) to outline how defen-

sive counterair missions will be planned to meet this crucial objective [19]. Finally,

command and control (C2) aircraft are often required to monitor mission completion

and provide C2 from the battlefield [20]. Many of these mission types draw from the

same pool of aircraft or compete for other resources. Allocation decisions in these

cases are generally made early on when the JFACC makes his air apportionment rec-

ommendations during the Objectives, Effects, and Guidance stage of the ATO cycle

[20].

2.1.2 Air Refueling Within a JAOC

“Air refueling (AR) is the in-flight transfer of fuel between tanker and receiver aircraft”

[12]. It is crucial as a force multiplier for the US military, allowing aircraft to greatly

extend their range and project power globally. Taking on more fuel allows aircraft

performing counterair or other air operations to increase their payload, loiter over an

area longer, or service a mission from further away. For intratheater refueling, AR

permits aircraft to be based beyond the range of enemy threats, yet still fly daily

missions in enemy territory [19].

The US military primarily performs air refueling in one of two ways: in an anchor

area, or along an AR track. For the anchor method, a tanker is assigned to fly in a

racetrack pattern at a specified location. In this case, the tanker refuels receiver air-

craft along the racetrack and loiters on location between refueling separate missions.

For the AR track method, the tanker meets an aircraft or multiple aircraft along

their flight path to their destination (or along a designated track in the area) and

refuels the aircraft while continuing along that track. For intratheater AR, the anchor

method is normally preferred, because of airspace limitations and the capability for

tankers to operate centrally [12].

Air refueling can often be the limiting factor when planning missions. The Combat

Plans Division and Air Mobility Division must iteratively match aerial refueling assets

to receiver requirements to ensure all missions can be completed. “It is imperative

that air refueling planners provide the best match between tanker capabilities and
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receiver mission requirements in order to maximize overall mission accomplishment”

[12]. When establishing how tankers should be apportioned, the most important

objective is how the tankers contribute to total campaign success, and generally should

be apportioned in a fashion reflecting the relative apportionment of combat aircraft

put forth by the JFACC. However, given the sheer variety of missions flown, the

various interactions between those missions (such as a C2 aircraft supporting a strike

mission) and geographical considerations, scheduling tankers can hardly be considered

a straightforward task.

2.1.3 Current Technology in JAOCs

Due to the significant costs associated with operating and maintaining its air assets,

the US military has made a considerable investment creating and updating the Air

Operations Center Weapons System (AOC WS) to provide technical support to air-

men who are planning and executing operational missions worldwide. The AOC WS

integrates the command and control elements of each JAOC with the entire organi-

zational infrastructure, providing data synthesis and integrating software and hard-

ware over the entire network. For example, the Master Air Attack Planning Toolkit

(MAAPTK) (one component of AOC WS) accesses and updates data from the entire

AOC WS network so that combat planners can visualize and generate battle plans

with near real-time battle information [25]. This application significantly reduces

the amount of time and personnel required to create the appropriate missions. AOC

WS provides a very strong framework for these data synthesis exercises, allowing the

planner to focus on more sensitive areas of mission planning.

However, one of the weaknesses of AOC WS is its lack of automated tools for

strategy development and course of action (COA) planning, particularly in the area

of resource allocation. In large part, this automation aversion is well founded, as

the complexity involved in scheduling aircraft is staggering. In fact, this complexity

dictates that a group of subject matter experts from many backgrounds are required

to design and plan missions for most operations. However with large operations, this

method for mission planning is very time consuming. Furthermore, it necessitates
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breaking up mission prioritization and aircraft/munitions allocation, sacrificing some

global perspective for the sake of efficiency in the scheduling process. In contrast, the

evolution of operations research, particularly in the area of mixed integer optimiza-

tion, suggests that automated models for scheduling are now feasible, even for very

complex problems such as mission planning in a JAOC.

2.1.4 Optimization of Intratheater Mission Planning

As described above, the current process for mission planning within a JAOC is quite

decentralized. Planning for many mission types is handled by separate entities work-

ing on different documents, despite competing for the same tanker and C2 aircraft.

Furthermore, target selection and capability allocation (of aircraft and munitions)

occur in a sequential manner. While important for efficiency in the planning process,

all of these delegations prevent resources from being used in a manner most conducive

to campaign success.

Our proposed optimization model improves force distribution by considering tar-

get selection in accordance with capability limitations, and by scheduling the most

valuable missions, regardless of type. Furthermore, tankers are scheduled in a manner

that best supports the completion of mission objectives and can refuel different mis-

sion types on the same flight. The model’s framework is flexible enough to account

for most mission profiles and can capture the dependency of one mission on another.

However, the model is not designed to be a one-step scheduler. It does not,

for example, handle deconfliction of assets traveling to the battlefield. Rather, it

is designed as a tool to aid the Combat Plans Division. A planner should run the

model based on desired inputs, evaluate its output, and add constraints to implement

desired changes, or use the model’s output as a starting point for the scheduling

process. Using the model iteratively in this way allows a planner to take advantage of

its capability to efficiently schedule assets in such a way as to maximize their benefit

to the campaign. However, expert knowledge is still necessary for ensuring an ATO

can realistically be carried out effectively.

The model in this thesis is designed specifically to provide a schedule for intrathe-
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ater mission planning with a known quantity of aircraft and tankers. Furthermore,

the particular formulation described in this thesis has been primarily tested and evalu-

ated with an eye toward scheduling strike missions from the JIPTL. While the model’s

framework is quite flexible to the type of mission inputs, the model will perform best

if tailored to meet a particular JAOC’s needs. With more model complexity, there

is greater potential for improvement compared to a schedule created without aid of

the model, but the model will require more time to find good solutions. On the other

hand, the model can handle narrowly defined problems more quickly, but the benefits

will not be as substantial. Balancing this trade-off when determining the best use for

the model is crucial and should be handled differently at different JAOCs depending

on their particular situations.

2.2 Literature Review

2.2.1 Continuous-Time vs. Discrete-Time Scheduling

When creating MIO formulations which involve scheduling events or processes over

a time horizon, one can model the passage of time in one of two ways: discrete-time

modeling or continuous-time modeling. In general, discrete-time formulations are

much simpler. However, in order to get good approximations, time must often be

discretized into small intervals, which can lead to large combinatorial problems which

become computationally intractable. Continuous-time formulations are often much

more complex, and extra variables are required to keep track of important events.

However, these formulations give exactly optimal solutions (not optimal approxima-

tions) and do not grow combinatorially depending on process lengths [10].

Discrete-time formulations require breaking apart the time horizon into prese-

lected intervals of uniform length. Variables are easily defined to indicate whether a

process begins during a given time period (or is ongoing during that time period),

or specify units available (or in use, etc.) during that time period. Consequently,

constraints can be written in a very straightforward manner, which leads to relatively
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simple formulations [11]. Modeling unit availability and accounting for intermediate

changes such as deliveries requires no new additional variables or increases in com-

putation time. Furthermore, because of the simplistic nature of the formulations,

discrete-time models often solve faster than continuous-time models when sequences

are well-defined and fewer time periods are required [18].

On the other hand, when many time periods are required, the size of a discrete-

time model grows combinatorially. In order to ensure the optimal solution for the

discrete-time model matches that of the continuous-time model, time intervals must

be selected to be as small as the greatest common factor of the processing times [10].

Unless the greatest common factor is quite large, one faces a trade-off between the

accuracy of the solution and the computation time. In problems where processing

times are not consistent, are very small relative to the time horizon, or do not have

large common factors, this trade-off can be quite problematic [11].

In continuous-time modeling, variables are introduced to capture event times,

either defined globally or for each unit. A number of variables must be created a

priori to retain the time slots for when events occur. Also, variables may be required

to account for both when an event begins and ends [11]. However, since these variables

link additively as opposed to the multiplicative increases of discrete-time variables,

continuous-time formulations generally have far fewer variables and constraints in

comparison. Notably, they will almost always have fewer integer variables.

Continuous-time formulations do not rely on approximations of event time occur-

rences, so the optimal solutions found by these formulations will always be greater

than or equal to the discrete-time solutions. Computationally the problems are

smaller, but given the complicated structure, continuous-time models may perform

slower than discrete-time models [11]. Yet in certain scenarios, where many time

intervals would be needed or when sequence-dependence can create large changes in

process changeover times, continuous-time models will often solve faster than discrete-

time models, in addition to giving better solutions [18].

The ATO scheduling problem has many of the characteristics which suggest the

efficacy of continuous-time scheduling in comparison to discrete-time scheduling. Mis-
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sion completion times and travel times vary greatly, necessitating small time intervals

to get good approximations for a discrete-time formulation. In addition, missions

can be performed in different sequences, and these sequences have very different

changeover times between when an aircraft starts one mission and is available to

start another. Consequently, we hypothesize that continuous-time modeling suits the

ATO scheduling problem much better than discrete-time modeling.

2.2.2 Allocation of Military Assets and Mission Planning

Mission planning in the military is a large field covering a variety of topics. Areas as

wide-ranging as airlift transport [16, 26], target selection [8, 6], route planning [24],

sensor placement [22], and many more have been researched, using techniques such as

mixed integer optimization, dynamic programming [21], approximation algorithms,

and even more basic analyses such as theory of constraints [7]. We will focus on

literature specific to two areas: mixed integer optimization with regards to allocat-

ing assets for “mission completion” and any research that attempts to optimize the

production or completion of ATOs.

One area of military mission planning that has been extensively researched, in-

cluding formulations utilizing mixed integer optimization, is that of UAV (unmanned

aerial vehicle) planning, also known as RPA (remotely piloted aircraft) planning. In

2006, Bryant and Sakamoto both submitted theses as part of research for Draper Lab-

oratories investigating the optimization of UAV scheduling [6, 24]. Bryant’s research

utilizes a modified knapsack formulation to optimize the assignment of missions to

UAV squadrons over extended time horizons. He calculates an expected capacity of

each squadron to complete missions and allocates missions to the squadrons based

on these estimates. Sakamoto’s research utilizes a modified vehicle routing problem

formulation with time windows to route UAVs between assigned missions. In essence,

the two theses complement one another. First, missions are assigned to squadrons.

Then, individual UAVs are routed to assigned missions. In addition, both theses ac-

count for uncertainty in much of the data using robust optimization, allowing for the

generation of schedules that are effective, even within the “fog of war.”

27



However, these UAV planning formulations rely largely on characteristics of UAVs,

making the extension of the formulations to manned aircraft planning difficult. First,

UAVs normally operate autonomously and can largely be scheduled independently

from other aircraft. However, manned aircraft often fly missions in “packages” where

many aircraft must fly jointly to accomplish mission objectives. Bryant’s and Sakamoto’s

models do not provide the framework for ensuring many aircraft perform a mission in

collaboration. Along these lines, both authors only utilize two UAV types and write

constraints based solely on the characteristics of these UAV types. Neither provides

the flexibility for extending the formulation to a wide variety of different aircraft per-

forming different missions. Next, UAVs generally have very long ranges and can fly

long missions without the need for air refueling. However, manned aircraft often need

to refuel while airborne in order to complete their mission objectives. Consequently,

accounting for air refueling is a crucial factor when planning missions for manned air-

craft. Finally, UAVs generally fly longer missions or multiple missions in succession,

warranting a separation of the assignment and routing processes. As loiter times and

range decrease (as they do for many manned aircraft), separating the assignment and

routing processes can lead to substantial decreases in optimality as compared to a

joint assignment/routing process. All of these factors suggest that an effective UAV

planning formulation may not translate well to a planning formulation for a variety

of manned aircraft.

In 2013, Bertsimas et al. (as an extension to a thesis written by Culver [8])

extended the research of Bryant and Sakamoto toward the planning of reconnaissance

operations from both ground forces and UAVs [2]. Their research adds the concepts of

“redundancy” and “mixing” whereby multiple types of assets can perform surveillance

on a target. Furthermore, the formulation extends the time horizon, giving a more

descriptive schedule that combines both mission assignment and routing, and the

formulation is more flexible in general. However, the MIO model still does not provide

a concept of air refueling, nor does it account for requirements of joint completion of

missions by “packages” of different aircraft types.

The problem of optimizing the ATO planning process has been specifically ad-
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dressed in a variety of settings for over twenty years. In 1994, Briggs developed a

theater level combat planning model combining linear optimization approximations

to a MIO model and decision trees. In this thesis, Briggs utilizes “air strike packages”

consisting of both SEAD and escort aircraft [14]. In addition, his formulation takes

into consideration the geography of enemy defenses and provides for some contingency

planning based on the weather. However, Briggs’s model generally only considers the

allocation of aircraft over a single period and does not account for air refueling. Thus,

his formulation should be used as a big picture theater planning tool as opposed to a

day-to-day scheduling tool.

In addition, significant research has been done at the Naval Postgraduate School

with the goal of optimizing mission planning for the ATO. Castro developed two

models that allocate strike assets to missions in packages [9]. His static model can

handle packages with different aircraft, but only allocates aircraft to one mission over

one time period, similar to Briggs’s model. His dynamic model can schedule multiple

missions over a limited time period, but only homogeneous aircraft packages are

considered. Both models also handle the assignment of weapons to aircraft. However,

neither considers the addition of SEAD or escort aircraft to packages, nor do they

introduce air refueling. Consequently, Castro’s models have similar limitations to

Briggs’s model.

Also at the Naval Postgraduate School, Zacherl attempted to tackle the problem

of re-allocating assets on the ATO given the appearance of high-valued TSTs [27].

His heuristic algorithm was designed to quickly reassign assets to targets when TSTs

were realized. However, as a reactionary formulation, the algorithm cannot anticipate

TST appearances. Consequently, it acts not as a planning tool, but as an “on-the-job”

tool that fits a different niche as compared to the research considered in this thesis.

Given the literature listed above, our research seeks to attack the ATO planning

process from another angle. Specifically, we wish to create an ATO “scheduler,” a

formulation that describes where aircraft will be at all times throughout the day. In

addition, our formulation can handle a large variety of aircraft types in any combi-

nation and accounts for air refueling. We do assume that missions will have specific
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configuration and weapons requirements for the aircraft flying them and that the

packages required to complete the mission are preset. Given these limitations, how-

ever, our model can assign aircraft to multiple missions in the same day, even when

competing for a limited number of tankers. Thus, our model can be a powerful tool

for scheduling missions during the early periods of a campaign when the ability to

add more missions to the ATO can have profound benefits.
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Chapter 3

Modeling Intratheater Operations in

a JAOC

3.1 Problem Framework

We define a set ℐ of available aircraft to complete missions over a set time horizon

within a certain theater. In addition, we define a set 𝒯 of available tankers assigned

specifically to intratheater refueling of those aircraft. All tankers and other aircraft

have known fuel consumption rates, fuel capacities, and speeds. Both tankers and

other aircraft are located at their home bases at the beginning of the time horizon.

We also have a list of potential “missions” 𝒥 which can be flown. A “mission” can

be of any type to include strike, air-to-air, SEAD, and reconnaissance. Furthermore,

a mission can include multiple strike targets or a sequence of actions (e.g., SEAD

followed by a strike). Consequently, missions require a package for completion, where

a package is formed of a specific number of aircraft of specified types. Missions are

assigned a “value” reflecting their importance toward achieving campaign success. In

addition, missions have duration times, indicating the amount of time it takes to

complete the mission once the package reaches the mission starting point. Missions

also have time windows for completion within the time horizon; if completed, missions

must begin within their respective time windows.

To complete a mission, the required package of aircraft fly independently to an
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anchor refueling area of the set 𝒟, where the package meets. (For convenience, we will

henceforth refer to anchor refueling areas as anchor tracks, not to be confused with

point-to-point refueling tracks.) If one or more aircraft flying the mission require air

refueling, a tanker will also meet the package and refuel those aircraft at the anchor

point. Then, the package flies to the starting point of the mission and completes the

mission. Thereafter, aircraft return to the same anchor point, refuel if necessary, and

fly separately back to their home bases.

The goal of the optimization model is to maximize the total “value” of all missions

flown. Final output of the model includes a schedule of which missions an aircraft

will fly and at what times. It also specifies which missions tankers will refuel and on

what anchor tracks the refueling will occur.

3.1.1 Assumptions

We break apart our assumptions into two sets: structural assumptions and realism-

limiting assumptions.

Structural Assumptions

These assumptions are necessary in order for us to provide structure to our model.

None of these assumptions significantly restrict the solutions of our model. They

closely model realistic practices and provide a framework in which to schedule aircraft

and tankers to complete their required tasks.

∙ Every mission can only be completed once.

– One mission may include multiple passes or require a series of actions.

Redundancy in striking a target should be included in the mission descrip-

tion.

∙ All aircraft and tankers are available for the entire time horizon.

– Tankers are dedicated to theater support for the entire time horizon.
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∙ Anchor tracks are preselected and not subject to a change in location.

∙ All air refueling takes place at anchor points.

– Air refueling occurs before aircraft depart their anchor tracks to complete

a mission.

∙ All tankers can refuel all aircraft.

– Tankers may not be refueled; they may only refuel other aircraft.

We note that our assumption on air refueling occurring before mission comple-

tion is logical if our aircraft only need to be refueled once. We can alternatively

assume that tankers must loiter for the duration of a mission they refuel, providing

for refueling before and after mission completion. However, attempting to determine

whether or not a tanker should loiter during mission completion (or whether multiple

tankers should refuel the same aircraft before and after completing a mission) adds

computational complexity and is outside the scope of this model.

We also note that it is trivial to write constraints limiting which tankers can refuel

which aircraft, if this constraint is constant over the entire time horizon. However, it

is outside the scope of this model to limit only combinations of certain aircraft from

simultaneously being refueled by one tanker (e.g., limiting boom vs. drogue refueling

on any given flight).

Realism-Limiting Assumptions

These assumptions limit the accuracy or optimality of our solutions. Their inclusion

is not based on reality, but rather a need to limit model complexity so that com-

putational solve time is manageable. In other words, these assumptions limit the

flexibility of the scheduling process. A planner may not be able to schedule a mission

within this framework, but could relax these assumptions and still execute a mission

in practice. However, incorporating this flexibility in the model severely increases

computation time, making the model impractical.

33



∙ An aircraft starts at and returns to its home base after completing a mission.

– Every individual aircraft will only have one home base, although different

aircraft may have different home bases.

– Aircraft CANNOT fly multiple missions in a row without returning to base

in between.

∙ All aircraft packages meet and depart from an anchor point and return to the

same anchor point after completing the mission.

∙ Tankers may only refuel other aircraft at one anchor track per flight.

– Tankers must return to base in between refueling aircraft at different an-

chor tracks.

∙ Air refueling takes a negligible or constant amount of time.

– Aircraft-specific refueling time CANNOT be accounted for.

– Fuel loss occurring while loitering at anchor areas CANNOT be accounted

for, except for tankers.

∙ A mission CANNOT have the requirement that multiple tankers refuel the

aircraft flying it.

– One can pre-allocate that multiple specific tankers refuel a mission. How-

ever, this limits the flexibility of the model.

The first two sets of assumptions require that aircraft follow the same path flying to

a mission start location and returning back to base. Most missions will be completed

in this fashion. Should a planner want flexibility in scheduling an aircraft to start and

finish at different locations, or follow a different flight path, these missions should be

scheduled explicitly.

The tanker-receiver assumptions limit, in particular, the completion of missions re-

quiring very large packages. As very large packages generally require multiple tankers
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to refuel them and for aircraft to loiter while waiting for other aircraft to receive fuel,

these types of missions should also be scheduled explicitly.

3.2 Mixed Integer Optimization Model

3.2.1 Indices

∙ ℐ: Set of all aircraft 𝑖

∙ 𝒦: Set of all aircraft types 𝑘

– 𝒜𝑘: Set of all aircraft 𝑖 of type 𝑘

∙ 𝒯 : Set of all tankers 𝑡 (for air refueling)

∙ 𝒥 : Set of all potential missions 𝑗 that can be flown

∙ 𝒟: Set of all potential anchor tracks 𝑑 where air refueling can occur

∙ 𝒴 : Set of all flights 𝑦 taken by a tanker

3.2.2 Decision Variables

∙ 𝑥𝑖𝑗𝑑: Binary; aircraft 𝑖 engages target 𝑗 out of track 𝑑

∙ 𝑧𝑗𝑑: Binary; target 𝑗 is engaged with the necessary number of aircraft out of

track 𝑑

∙ 𝑓𝑗𝑑: Continuous; time at which refueling and/or package meet-up takes place

for mission 𝑗 at track 𝑑 (if refueling takes place)

∙ 𝑝𝑗1𝑗2 : Binary; takes on a value of 1 if 𝑗1 is engaged before 𝑗2 (if both are engaged)

∙ 𝑙𝑡𝑑𝑦: Continuous; amount of time tanker 𝑡 spends at track 𝑑 during flight 𝑦

∙ ℎ variables: Binary; does tanker 𝑡 refuel some mission on some track during

some flight?
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– ℎ1
𝑡𝑗𝑑𝑦: Binary; tanker 𝑡 refuels at least one aircraft flying mission 𝑗 on track

𝑑 during flight 𝑦

– ℎ2
𝑡𝑑𝑦: Binary; tanker 𝑡 refuels some mission on track 𝑑 during flight 𝑦

– ℎ2
𝑡𝑗: Binary; tanker 𝑡 refuels at least one aircraft flying mission 𝑗

∙ 𝑚 variables: Continuous; how much fuel does tanker 𝑡 transfer?

– 𝑚1
𝑖𝑡𝑗: Continuous; amount of fuel transferred by tanker 𝑡 to aircraft 𝑖 flying

mission 𝑗

– 𝑚2
𝑡𝑗𝑦: Continuous; amount of fuel transferred by tanker 𝑡 to all aircraft

flying mission 𝑗 during flight 𝑦

– 𝑚3
𝑡𝑗: Continuous; amount of fuel transferred by tanker 𝑡 to all aircraft

flying mission 𝑗

3.2.3 Data

Data on mission specifics is largely obtainable through the JIPTL. However, some of

the variables, including values, time windows, and mission completion times, require

planners to perform some extra work to format the data differently from the inher-

ent data found on the JIPTL. All data on aircraft specifics is obtainable from the

Friendly Order of Battle (FrOB) in coordination with MAAPTK. This includes the

calculations of speeds, fuel consumption rates, and fuel capacities which depend on

the configuration of the aircraft. As aircraft configuration is dependent on the mis-

sion flown, these variables can be calculated based on a given aircraft-mission-track

triplet. MAAPTK is well-suited to handle these data synthesis exercises.

∙ 𝑉𝑗: Value of completing mission 𝑗

∙ 𝐴𝑗𝑘: Number of aircraft of type 𝑘 required by target 𝑗

∙ 𝑄(𝑄1
𝑗𝑑, 𝑄

2
𝑗𝑑, 𝑄

𝑠
𝑗): Triplet specifying the window for when a package must leave

track 𝑑 to arrive at target 𝑗 within the target window
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– 𝑄1
𝑗𝑑: The earliest time at which mission 𝑗 can leave from track 𝑑

– 𝑄2
𝑗𝑑: The latest time at which mission 𝑗 can leave from track 𝑑

– 𝑄𝑠
𝑗 : The duration of mission 𝑗 once on location

∙ 𝐵𝐴𝑆𝐸𝑖: Base at which aircraft 𝑖 resides

∙ 𝐵𝐴𝑆𝐸𝑡: Base at which tanker 𝑡 resides

∙ 𝐷𝐼𝑆𝑇𝐵𝐴𝑆𝐸,𝑑: Distance from a particular base to a particular track

∙ 𝑆𝑃𝑖𝑗: Average speed of aircraft 𝑖 traveling to and from mission 𝑗 (varies de-

pending on payload)

∙ 𝑆𝑃𝑡: Average speed of tanker 𝑡

∙ 𝑇𝑇𝑖: Turn time for aircraft 𝑖 (amount of time it takes to get aircraft back in

the air after landing at base)

∙ 𝑇𝑇𝑡: Turn time for tanker 𝑡 (amount of time it takes to get tanker back in the

air after landing at base)

∙ 𝑀𝑇𝑖𝑗𝑑: Amount of time it take aircraft 𝑖 to complete mission 𝑗 and return to

base starting from track 𝑑

∙ 𝑅𝑡: Rate at which tanker 𝑡 burns fuel

∙ 𝐹𝐴𝑡: Fuel available for use and transfer by tanker 𝑡

∙ 𝐹𝑁𝑖𝑗𝑑: Amount of fuel aircraft 𝑖 must take on through air refueling when per-

forming mission 𝑗 out of track 𝑑

3.2.4 Formulation

Objective Function

𝑚𝑎𝑥
∑︁

𝑗∈𝒥 ,𝑑∈𝒟

𝑉𝑗 · 𝑧𝑗𝑑 (3.1)
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The objective of the model is to maximize the net value of all missions flown over

the time horizon.

Constraints on aircraft/time window requirements

𝑆𝑂𝑆1(𝑧𝑗𝑑 : ∀𝑑 ∈ 𝒟) ∀𝑗 ∈ 𝒥 (3.2)∑︁
𝑖∈𝒜𝑘

𝑥𝑖𝑗𝑑 = 𝐴𝑗𝑘 · 𝑧𝑗𝑑 ∀𝑘 ∈ 𝒦, 𝑗 ∈ 𝒥 , 𝑑 ∈ 𝒟 (3.3)

𝑓𝑗𝑑 ≥ 𝑄1
𝑗𝑑 · 𝑧𝑗𝑑 ∀𝑗 ∈ 𝒥 , 𝑑 ∈ 𝒟 (3.4)

𝑓𝑗𝑑 ≤ 𝑄2
𝑗𝑑 · 𝑧𝑗𝑑 ∀𝑗 ∈ 𝒥 , 𝑑 ∈ 𝒟 (3.5)

These constraints ensure that missions are completed with the right aircraft in the

proper time frame. Constraints (3.2) ensure that a mission is only completed out of

one track. In other words, a mission can only be completed once. Constraints (3.3)

call for the proper number of each type of aircraft to complete mission 𝑗, if mission 𝑗

is flown. Constraints (3.4) and (3.5) dictate that a mission must be flown in the time

window necessary for mission success, if flown.

We note that Constraints (3.2) (as well as Constraints (3.8) and (3.9) below)

utilize type 1 special ordered sets (SOS) for specifying integrality conditions. These

SOS1 constraints require that at most one variable of the set takes on a positive

value (since we use these constraints with binary variables, we are ensuring at most

one variable in the set can take the value 1). Constraining the variables using SOS1

constraints (as opposed to standard inequality constraints) speeds up the branch and

bound process for these variables as branches can occur on sets of variables as opposed

to each variable individually [1].

Constraints on the logistics of tanker variables and 𝑚/ℎ variable inter-

actions

𝑧𝑗𝑑 ≥ ℎ1
𝑡𝑗𝑑𝑦 ∀𝑡 ∈ 𝒯 , 𝑗 ∈ 𝒥 , 𝑑 ∈ 𝒟, 𝑦 ∈ 𝒴 (3.6)

ℎ2
𝑡𝑑𝑦 ≥ ℎ1

𝑡𝑗𝑑𝑦 ∀𝑡 ∈ 𝒯 , 𝑗 ∈ 𝒥 , 𝑑 ∈ 𝒟, 𝑦 ∈ 𝒴 (3.7)

𝑆𝑂𝑆1(ℎ2
𝑡𝑑𝑦 : ∀𝑑 ∈ 𝒟) ∀𝑡 ∈ 𝒯 , 𝑦 ∈ 𝒴 (3.8)
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𝑆𝑂𝑆1(ℎ1
𝑡𝑗𝑑𝑦 : ∀𝑑 ∈ 𝒟, 𝑦 ∈ 𝒴) ∀𝑡 ∈ 𝒯 , 𝑗 ∈ 𝒥 (3.9)

ℎ3
𝑡𝑗 ≤

∑︁
𝑑∈𝒟,𝑦∈𝒴

ℎ1
𝑡𝑗𝑑𝑦 ∀𝑡 ∈ 𝒯 , 𝑗 ∈ 𝒥 (3.10)

𝑚3
𝑡𝑗 ≥

∑︁
𝑖∈ℐ

𝑚1
𝑖𝑡𝑗 ∀𝑡 ∈ 𝒯 , 𝑗 ∈ 𝒥 (3.11)

𝑚3
𝑡𝑗 ≤

∑︁
𝑦∈𝒴

𝑚2
𝑡𝑗𝑦 ∀𝑡 ∈ 𝒯 , 𝑗 ∈ 𝒥 (3.12)

These constraints control the interaction between the variables governing tanker

flights. Constraints (3.6) ensure tankers only refuel missions that are flown and on

the proper track. Constraints (3.7) imply a mission can only be refueled on a track

that is open. Constraints (3.8) prevent a tanker from refueling more than one track

per flight and constraints (3.9) prevent a tanker from refueling the same mission on

different flights or different anchor tracks. Constraints (3.10) impose that a mission

must be refueled on at least one track and flight, if refueled. Finally, constraints

(3.11) and (3.12) govern the interaction of fuel transfer variables.

Travel time constraints

𝑥𝑖𝑗1𝑑1 + 𝑥𝑖𝑗2𝑑2 ≤ 1 + 𝑝𝑗1𝑗2 + 𝑝𝑗2𝑗1 ∀𝑖 ∈ ℐ, 𝑗1, 𝑗2 ∈ 𝒥 , 𝑑1, 𝑑2 ∈ 𝒟 (3.13)

𝑝𝑗1𝑗2 + 𝑝𝑗2𝑗1 ≤ 1 ∀𝑗1, 𝑗2 ∈ 𝒥 (3.14)

𝑓𝑗2𝑑2 − 𝑓𝑗1𝑑1 ≥ 𝑀𝑇𝑖𝑗1𝑑1 + 𝑇𝑇𝑖 +
𝐷𝐼𝑆𝑇𝐵𝐴𝑆𝐸𝑖,𝑑2

𝑆𝑃𝑖𝑗2

−𝑀 · (3− 𝑥𝑖𝑗1𝑑1 − 𝑥𝑖𝑗2𝑑2 − 𝑝𝑗1𝑗2)

∀𝑗1, 𝑗2 ∈ 𝒥 : 𝑗1 ̸= 𝑗2, 𝑑1, 𝑑2 ∈ 𝒟, 𝑖 ∈ ℐ (3.15)

𝑓𝑗2𝑑2 − 𝑓𝑗1𝑑1 ≥
𝐷𝐼𝑆𝑇𝐵𝐴𝑆𝐸𝑡,𝑑1

𝑆𝑃𝑡

+ 𝑇𝑇𝑡 +
𝐷𝐼𝑆𝑇𝐵𝐴𝑆𝐸𝑡,𝑑2

𝑆𝑃𝑡

−𝑀 · (2− ℎ1
𝑡𝑗1𝑑1𝑦1

− ℎ1
𝑡𝑗2𝑑2𝑦2

)

∀𝑗1, 𝑗2 ∈ 𝒥 : 𝑗1 ̸= 𝑗2, 𝑑1, 𝑑2 ∈ 𝒟, 𝑡 ∈ 𝒯 , 𝑦1, 𝑦2 ∈ 𝒴 : 𝑦1 < 𝑦2 (3.16)

Constraints in this section ensure travel time between bases, anchor tracks, and

mission locations are observed for aircraft flying multiple missions and for tankers per-
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forming multiple flights. Constraints (3.13) and (3.14) define “ordering precedence;” if

an aircraft performs multiple missions, one must have “order precedence.” Constraints

(3.15) do not allow an aircraft to engage target 𝑗2, the latter target, until it has fin-

ished traveling back to its home base and been refueled (and been re-outfitted with

weapons, if necessary) following the completion of its former target 𝑗1. Constraints

(3.16) do not allow a tanker to refuel missions on different flights unless it has finished

traveling to and from its home base and been refueled. Here the concept of tanker

“flights” are realized. A tanker may refuel many different missions on the same flight

without returning to base, so travel time restrictions only apply to missions refueled

by the same tanker on different “flights.”

Fuel constraints

𝑀 · ℎ3
𝑡𝑗 ≥ 𝑚3

𝑡𝑗 ∀𝑡 ∈ 𝒯 , 𝑗 ∈ 𝒥

(3.17)

𝑙𝑡𝑑𝑦 ≥ 𝑓𝑗1𝑑 − 𝑓𝑗2𝑑 −𝑀 · (2− ℎ1
𝑡𝑗1𝑑𝑦

− ℎ1
𝑡𝑗2𝑑𝑦

) ∀𝑡 ∈ 𝒯 , 𝑗1, 𝑗2 ∈ 𝒥 : 𝑗1 ̸= 𝑗2, 𝑑 ∈ 𝒟, 𝑦 ∈ 𝒴

(3.18)

𝑅𝑡 · 𝑙𝑡𝑑𝑦 +
∑︁
𝑗∈𝒥

𝑚2
𝑡𝑗𝑦 + 2𝑅𝑡 ·

𝐷𝐼𝑆𝑇𝐵𝐴𝑆𝐸𝑡,𝑑

𝑆𝑃𝑡

· ℎ2
𝑡𝑑𝑦 ≤ 𝐹𝐴𝑡 ∀𝑡 ∈ 𝒯 , 𝑑 ∈ 𝒟, 𝑦 ∈ 𝒴 (3.19)

∑︁
𝑡∈𝒯

𝑚1
𝑖𝑡𝑗 ≥ 𝐹𝑁𝑖𝑗𝑑 · 𝑥𝑖𝑗𝑑 ∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥 , 𝑑 ∈ 𝒟 (3.20)

These constraints ensure all aircraft and tankers have enough fuel to complete

their missions. Constraints (3.17) only permit a tanker to offload fuel to a mission

to which it is assigned. Constraints (3.18) calculate the amount of time a tanker

spends at a particular track during a particular flight. Constraints (3.19) provide

that the sum of fuel used by a tanker loitering and transferred to other aircraft does

not exceed its capacity after accounting for travel from its home base. Constraints

(3.20) ensure an aircraft receives enough fuel through air refueling to complete its

mission and return to its home base safely.

40



3.2.5 Optional Constraints

In addition to the formulation above, certain optional constraints can easily be added

to reflect the desires of mission planners. This section highlights just some of the ways

extra constraints can be added to the model. For ease in describing these constraints,

we use the following simplifications of variables:

𝑧𝑗 =
∑︁
𝑑∈𝒟

𝑧𝑗𝑑 ∀𝑗 ∈ 𝒥 (3.21)

𝑓𝑗 =
∑︁
𝑓∈𝒟

𝑓𝑗𝑑 ∀𝑗 ∈ 𝒥 (3.22)

𝑥𝑖𝑗 =
∑︁
𝑑∈𝒟

𝑥𝑖𝑗𝑑 ∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥 (3.23)

If optional constraints are implemented, these variables can be defined, or the

summation can be substituted for the variables on the left-hand side.

Constraints on relative time gaps

𝑧𝑗1 ≥ 𝑧𝑗2 (3.24)

𝑓𝑗1 ≤ 𝑓𝑗2 − 𝛼 · 𝑧𝑗1 +𝑀 · (1− 𝑧𝑗2) (3.25)

𝑧𝑗1 = 𝑧𝑗2 (3.26)

𝑓𝑗1 ≤ 𝑓𝑗2 − 𝛼 · 𝑧𝑗1 (3.27)

𝑓𝑗1 ≥ 𝑓𝑗2 − 𝛽 · 𝑧𝑗1 (3.28)

These constraints allow for the creation of relative time windows for multiple

missions that must be coordinated. If two missions must be synchronized, these

constraints provide the framework for that requirement. Used together, constraints

(3.24) and (3.25) can be combined to create an order precedence of mission 𝑗1 over

mission 𝑗2. Specifically, mission 𝑗2 can only be performed if mission 𝑗1 is performed.

Furthermore, mission 𝑗2 must not begin sooner than 𝛼 hours (or whatever time unit

is being used) after the beginning of mission 𝑗1. Similarly, constraints (3.26), (3.27),

and (3.28) can be combined to create an joint dependency of missions 𝑗1 and 𝑗2 on
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one another. Specifically, if mission 𝑗1 is performed, then mission 𝑗2 must also be

performed, and vice versa. Also, mission 𝑗2 must begin between 𝛼 and 𝛽 hours (time

units) after the beginning of mission 𝑗2.

Constraints on aircraft performing certain missions

𝑥𝑖𝑗1 = 𝑥𝑖𝑗2 = ... = 𝑥𝑖𝑗𝑛 (3.29)

𝑥𝑖1𝑗 = 𝑥𝑖2𝑗 = ... = 𝑥𝑖𝑛𝑗 = (𝑧𝑗) (3.30)

These constraints give mission planners the ability to require aircraft to fly certain

combinations of missions or create specific types of packages. Constraints (3.29)

ensure that if an aircraft performs mission 𝑗1, it also executes mission 𝑗2, 𝑗3, ...,

𝑗𝑛. A planner could use these constraints to ensure one aircraft handles an entire

subset of missions. Constraints (3.30) require a mission to be performed by a set

of aircraft if aircraft 𝑖1 performs the mission. By adding the last equality, these

constraints would designate certain aircraft must perform mission 𝑗, if performed.

Thus, a planner could ensure a specific squadron or set of aircraft work together to

execute a particular mission.

Constraints on mission subsets

𝑧𝑗1 = 𝑧𝑗2 = ... = 𝑧𝑗𝑛 (3.31)

𝑧𝑗1 + 𝑧𝑗2 + ...+ 𝑧𝑗𝑛 ≤ 1 (3.32)

These constraints allow mission planners to put restrictions on certain subsets of

missions. Constraints (3.31) require an entire subset of missions to be performed, or

none of the subset. If certain missions only have value when performed on the same

day as others, these constraints capture that effect. On the other hand, constraint

(3.32) only allows one mission to be flown from a subset of missions. This constraint

gives the planner more flexibility in the scheduling process, by allowing the model to

select how targets should be combined when flying missions. For example, two mis-

sions could both include bombing an enemy command and control center, but have
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different secondary targets. Adding this constraint would let the model select the mis-

sion which provides the most “value” and fits the daily schedule without redundantly

attacking the command and control center more than once.

Constraints on munitions

We let 𝒰 be the set of all munitions 𝑢 where there is a limited supply (and ℬ be

the set of all bases 𝑏). We introduce new data 𝑀𝑈𝑁𝑗𝑢 (or 𝑀𝑈𝑁𝑖𝑗𝑢) and 𝐶𝐴𝑃𝑀𝑢 (or

𝐶𝐴𝑃𝑀𝑏𝑢). 𝑀𝑈𝑁𝑗𝑢 represents the number of munitions of type 𝑢 needed to complete

mission 𝑗 (and 𝑀𝑈𝑁𝑖𝑗𝑢 represents the number of munitions of type 𝑢 needed by

aircraft 𝑖 to complete mission 𝑗). 𝐶𝐴𝑃𝑀𝑢 represents the total number of munitions

of type 𝑢 that can be allocated for use over the time horizon (and 𝐶𝐴𝑃𝑀𝑏𝑢 represents

the number of munitions of type 𝑢 and located at base 𝑏 that can be used over the

time horizon). Then we can define the following constraints.

∑︁
𝑗∈𝒥

𝑀𝑈𝑁𝑗𝑢 · 𝑧𝑗 ≤ 𝐶𝐴𝑃𝑀𝑢 ∀𝑢 ∈ 𝒰 (3.33)

∑︁
𝑖∈ℐ:𝐵𝐴𝑆𝐸𝑖=𝑏,𝑗∈𝒥

𝑀𝑈𝑁𝑖𝑗𝑢 · 𝑥𝑖𝑗 ≤ 𝐶𝐴𝑃𝑀𝑏𝑢 ∀𝑏 ∈ ℬ, 𝑢 ∈ 𝒰 (3.34)

These constraints allow mission planners to take into account limited munitions.

Constraints (3.33) ensure that the total number of munitions used of type 𝑢 does not

exceed the number of munitions of type 𝑢 available. Constraints (3.34) also takes into

account the location of munitions, ensuring that the total number of munitions used

by aircraft with home base 𝑏 does not exceed the number of munitions available at

that base.

3.3 Greedy Algorithm

We also consider a greedy algorithm to approximate how an intelligent human planner

might create an ATO schedule. Specifically with strike missions, we assume the

planner schedules the most important mission off of the JIPTL first. Then, he works
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his way down the JIPTL, attempting to schedule every mission with the remaining

aircraft. If a mission cannot be scheduled with any aircraft, the planner skips it.

Otherwise, he attempts to schedule every mission on the list or until all aircraft are

operating throughout the entire ATO day.

This algorithm attempts to replicate and automate the process above, while in-

telligently scheduling tankers to refuel multiple missions on the same flight if the

missions can be scheduled on the same anchor track around the same time frame.

We believe that this algorithm represents a good baseline for mission planning, as it

benchmarks the approximate performance an expert human planner can obtain. The

greedy algorithm is outlined in the steps below.

1. Order all potential missions from most to least important. Also calculate dis-

tance between aircraft/tanker bases and the potential mission locations, as well

as between anchor points and the mission locations. These distances will be

ordered for each mission to determine precedence of anchor points, aircraft, and

tankers when scheduling that mission.

2. Loop FOR all missions, starting with the most important. If no more missions

exist, EXIT ALGORITHM.

3. Loop FOR all potential times at which the mission can be scheduled, starting

at the earliest. This includes the beginning of the mission time window, one or

more random times in the time window, and the end of the time window. If no

more times exist, the mission cannot be scheduled. Skip to the next mission.

4. Loop FOR all potential anchor tracks, starting with the anchor track closest to

the mission starting location. If no more anchor tracks exist, the mission cannot

be scheduled at this time. Skip to the next potential mission start time.

5. Loop FOR all aircraft types required to complete the current mission. IF no

aircraft of that type are required, skip to the next type.

6. Loop FOR all aircraft of the selected type, starting with the closest aircraft

to the mission start location. If no more aircraft of the proper type exist and
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enough aircraft have not been assigned of that type to complete the mission, the

mission cannot be scheduled out of this anchor track at this time. Remove the

busy periods and fuel required of all aircraft previously assigned to the mission.

Skip to the next anchor track.

7. IF an aircraft cannot hold enough fuel to complete the mission from the selected

track, skip to the next aircraft. ELSE check to see if the aircraft is available

to complete the mission at the selected time, accounting for travel time to and

from the mission starting location, as well as mission completion time.

(a) IF the aircraft is available, schedule the aircraft for the mission at that

time. Record new busy times for the aircraft, as well as any increase in

fuel that will be required to refuel the scheduled aircraft. If there are now

the requisite number of aircraft scheduled for the mission of this type, skip

to the next aircraft type. Otherwise move to the next aircraft on the list.

(b) ELSE the aircraft is not available. Move to the next aircraft on the list.

8. Loop FOR all tankers, starting from the tanker closest to the currently selected

track. Check to see if any tanker is already scheduled to fly a mission from

the selected track within some time (e.g., 2.5 hours) of the currently proposed

mission start time. If no more tankers exist, skip to next tanker loop.

(a) IF such a tanker exists, check to see if it has enough fuel on board to

loiter between missions and refuel the next mission. Also check to see if

extending the flight time of the tanker will interfere with the tanker’s other

scheduled flights. If the tanker is available and has enough fuel on board,

assign the tanker to the mission. Record the extended busy time for the

tanker and subtract required fuel from the tanker’s fuel allotment for that

flight. MISSION SCHEDULED. Otherwise, proceed to next tanker.

9. Loop FOR all tankers, starting from the tanker closest to the currently scheduled

track. If no more tankers exist and none have been assigned to the mission, the

mission cannot be scheduled out of this anchor track at this time. Remove the
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busy periods and fuel required of all aircraft previously assigned to the mission.

Skip to the next anchor track.

10. Check to see if the tanker is available to complete the mission at the selected

time on a new flight, accounting for travel time to and from the currently

selected anchor track and the anchor tracks where the tanker refuels aircraft on

other flights.

(a) IF the tanker is available, schedule a new flight for the tanker to refuel

the mission at that time. Record new busy times for the tanker and sub-

tract required fuel from tanker’s fuel allotment for that flight. MISSION

SCHEDULED.

(b) ELSE the tanker is unavailable. Move to the next tanker on the list.

In comparing the greedy algorithm to the MIO model above, we note that the

greedy algorithm always produces a feasible solution to the MIO model, if no op-

tional constraints are added. In fact, the greedy algorithm often produces very good

solutions to the MIO model. Since the greedy algorithm solves in seconds, we can

use it as a warm start to the MIO model. A comparison of the solutions produced

by the greedy algorithm and by the MIO model can be found in the results section

of this thesis.

We note that the greedy algorithm may not provide a feasible solution if optional

constraints are added. While the greedy algorithm can be modified to account for

some of the optional constraints, these modifications are not trivial. In particular,

modifying the algorithm to account for equality constraints, such as the requirement

that a single aircraft fly multiple missions, can be quite difficult in the context of the

greedy algorithm.
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Chapter 4

Computational Results

In this chapter, we wish to examine the effectiveness of our model in creating ATO

schedules given a set of available aircraft (including tankers) and a potential mission

list. First, we display an example scenario, showing the exact data provided to the

model, as well as the corresponding schedules created by both the MIO model and

the greedy algorithm. This comparison informs our analyses of the trade-offs between

the two models. Then we present some computational run-time comparisons of the

models. In addition, we consider a hybrid which combines the two algorithms and

modifies them to achieve a balance between solution value (i.e., how close our solution

is to optimal) and solve time.

4.1 Example Scenario with Results

4.1.1 Inputs

We consider a scenario where the military has designated a set of aircraft to perform

“strike” missions (i.e., taking offensive actions in support of campaign objectives) and

to provide air support to friendly forces on the ground in enemy territory. These

aircraft may be tasked to perform missions ranging from offensive counterair (OCA)

(such as attacking enemy aircraft/missiles at their source) to strategic attack and

air interdiction (such as attacking an enemy’s command and control center) to close
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air support (CAS) (such as providing supporting fire to an Army unit engaged in

a firefight) [13]. In short, all missions performed in this scenario would fall under

the core functions of obtaining/maintaining air superiority or global precision attack,

but excluding defensive counterair (DCA) and airspace control missions. (For further

descriptions of mission types, please reference [13]. This document discusses the basic

doctrine of Air Force mission planning.)

We have 20 aircraft and 4 tankers assigned specifically to perform these missions

over a 24-hour time horizon. To accomplish these missions, aircraft must fly in “pack-

ages” of different aircraft types. To specify aircraft functionality, the US military

has developed designations which are used when naming air-frames. For example,

“F” stands for fighter aircraft, “A” stands for ground attack aircraft, “B” stands for

bombers, and “E” stands for aircraft with special electronic equipment. However,

specifying aircraft types solely by designation is generally not sufficient, as many

aircraft of the same designation perform vastly different functions.

Consequently we specify our aircraft types for this scenario based upon a mix of

aircraft designations and aircraft functionality. Loosely following “Air Force Doctrine

Document 1,” we classify our 20 aircraft as one of five types: strike fighters (strike

aircraft with an “F” designation), attack aircraft (ground attack aircraft with an

“A” designation), air-to-air fighters (aircraft with an “F” designation which generally

perform DCA or airspace control missions, to be used as escorts), bombers (aircraft

with a “B” designation), and SEAD aircraft (aircraft with an “F” or “E” designation

which have jamming equipment on board for the suppression of enemy air defenses)

[13]. Air-to-air and SEAD aircraft are only being considered for OCA support roles

in this scenario (such as OCA-Sweep and OCA-SEAD) (see [13] for explanation).

Furthermore, all tankers are tasked specifically to refuel these OCA missions for the

entire time horizon. All aircraft and tanker specifications can be found in Table 4.1

and Table 4.2, respectively. (Note all specifications are unclassified estimates and do

not in any way represent the actual specifications of the aircraft or tankers.)

All aircraft and tankers begin the time horizon at their home bases outside enemy

territory. In addition, all anchor track locations have been preselected just outside
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Aircraft Type Base Speed
(knots)

Fuel
Capacity
(1000lbs)

Burn Rate
(1000lbs/hr)

Turn
time
(hrs)

1 1 1 420 5.3 2.1 1.0
2 1 1 420 5.3 2.1 1.0
3 1 1 420 5.3 2.1 1.0
4 1 2 420 20.8 6.6 1.5
5 1 2 420 20.8 6.6 1.5
6 1 3 420 5.3 2.1 1.0
7 1 5 420 20.8 6.6 1.5
8 1 5 420 20.8 6.6 1.5
9 1 6 420 5.3 2.1 0.5
10 1 6 420 5.3 2.1 0.5
11 1 6 420 5.3 2.1 0.5
12 1 8 420 6.9 3.2 1.0
13 1 8 420 6.9 3.2 1.0
14 2 4 340 9.0 2.4 1.5
15 2 4 340 9.0 2.4 1.5
16 2 4 340 9.0 2.4 1.5
17 3 5 420 12.5 7.0 1.5
18 3 7 420 12.5 5.4 2.0
19 4 3 450 260.0 12.0 2.5
20 5 7 420 5.3 2.1 1.0

Table 4.1: Notional Aircraft Specifications

Tanker Base Speed
(knots)

Fuel
Capacity
(1000lbs)

Burn Rate
(1000lbs/hr)

Turn
time
(hrs)

1 3 480 340.0 22.3 2.0
2 3 480 340.0 22.3 2.0
3 6 400 180.0 8.1 2.0
4 6 400 180.0 8.1 2.0

Table 4.2: Notional Tanker Specifications
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enemy territory. We also assume all aircraft, to include tankers, may travel outside of

enemy territory without an escort (i.e., air supremacy has been established outside of

enemy territory). All strike missions begin and end at specific locations within enemy

territory. Locations for this scenario can be found in Figure 4-1 (with the rectangle

indicating enemy territory).

Figure 4-1: Scenario Locations

The missions that can potentially be completed over the 24-hour period have

characteristics designed to mirror those found on the JIPTL. Specifically, missions

may require a certain number of fighters, attack aircraft, and bombers, and may

require SEAD support, and/or an air-to-air escort. In addition, missions have varying

durations that could depend on a variety of factors. Some of these factors include

the requirement for a dependent sequence of actions (e.g., SEAD followed by a strike)
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or a mission-specific number of bombing passes. Also, missions must be completed

in particular time windows. These windows could reflect the need for a mission to

be completed in the dark (or during the day), to match scheduled efforts of ground

forces, or to honor Rules of Engagement, among other things. Finally, each mission

has an associated value that accounts for the importance of the mission. All mission

characteristics for this scenario are summarized in Table 4.3. Note that the drop-off in

values of missions is strongly non-linear (in this case, piece-wise linear). This drop-off

ensures that the most important missions are far more valuable than missions lower

on the JIPTL. If a planner is more interested in how many missions can be scheduled

(as opposed to the importance of those missions) assigning mission values that are

very similar or decrease approximately linearly will allow the model to make more

trade-offs and schedule more missions at the expense of a few higher valued missions.

In this scenario, we made many basic assumptions about distances required for

travel, aircraft speeds, fuel consumption rates, and turn times. Specifically, we as-

sumed all distances are strictly point-to-point (i.e., no detours are required for decon-

fliction or to avoid certain areas). Aircraft speeds are input as a constant estimate

of medium altitude cruise speeds based on aircraft type. Fuel consumption rates are

also input as constants reflecting estimated burn rates at a medium altitude cruise.

Turn times (i.e., the amount of time it takes to get an aircraft back in the air after

landing at base) are assumed to be constant for a given aircraft throughout the time

horizon.

All of this information is passed on to the model that is coded in the programming

language Julia using the domain-specific modeling language JuMP [4, 17]. The model

is passed to the solver Gurobi, which solves the model and sends the output back

through Julia [15]. All tests in this thesis are carried out on a Intel Xeon E5687W

(3.1 GHz) using up to 8 cores and 64 GB of RAM.

Observations on the flexibility of inputs

It is worth noting that the data input for aircraft travel times and fuel consump-

tion can be defined in any way, provided the data entries are constant for any given
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Mission Time Windows Amount of Time Number of Aircraft Required
Mission Value Earliest Start Time Latest Start Time on Station Required Strike-F Attack-A Air-to-Air Bombers-B SEAD
1 9713 11.96 15.53 0.19 4 0 1 0 0
2 9573 1.00 23.00 0.18 2 0 0 0 1
3 9525 1.00 23.00 0.63 2 0 0 0 0
4 9328 11.39 13.81 0.64 4 0 1 1 1
5 9274 18.25 18.62 0.96 0 1 0 0 0
6 8911 17.19 19.59 0.93 2 0 0 0 1
7 8719 1.00 23.00 0.21 2 0 0 0 1
8 8511 5.59 9.90 0.55 2 0 0 0 0
9 7736 13.75 17.15 0.52 2 0 1 0 0
10 7357 4.07 4.87 0.60 0 1 0 0 0
11 6893 4.83 5.04 1.39 0 1 1 0 0
12 6111 16.04 16.87 1.34 0 1 0 0 0
13 5989 4.76 5.46 0.67 0 1 0 0 0
14 5398 18.55 23.42 0.31 0 0 1 1 0
15 3672 1.00 23.00 0.59 2 0 0 0 0
16 3314 21.22 23.50 0.41 1 0 0 0 0
17 2836 19.49 23.50 0.50 2 0 0 0 0
18 2558 1.00 23.00 0.74 2 0 0 0 0
19 2424 1.00 23.00 0.87 2 0 0 0 0
20 2056 10.48 13.05 0.73 4 0 1 0 0
21 1929 1.00 23.00 0.51 2 0 0 0 0
22 1294 10.84 14.33 0.81 1 0 0 0 0
23 989 7.79 9.79 0.43 4 0 1 0 0
24 982 10.17 15.48 0.32 1 0 0 0 0
25 921 2.56 6.36 0.39 4 0 1 0 0
26 920 15.37 16.14 1.36 1 1 0 0 0
27 892 1.12 2.01 1.24 0 1 1 0 0
28 878 6.88 11.89 0.44 2 0 0 0 0
29 744 1.00 23.00 0.91 2 0 0 0 0
30 706 2.50 4.94 0.81 2 0 0 0 0
31 679 9.56 14.23 0.80 2 0 0 0 0
32 528 10.47 10.71 0.80 0 1 0 0 0
33 506 19.76 23.50 0.33 2 0 0 0 0
34 299 20.27 23.50 0.50 4 0 1 0 0
35 163 16.56 21.74 0.44 1 0 0 0 0
36 104 19.94 22.64 0.88 1 0 0 0 0
37 98 1.00 23.00 0.85 2 0 0 1 0
38 95 15.03 15.68 1.31 0 1 0 0 0
39 93 15.65 19.02 0.64 2 0 1 0 0
40 86 3.32 8.69 0.57 2 0 0 0 0
41 83 1.00 23.00 0.20 1 0 0 0 0
42 76 8.31 12.58 0.81 4 0 1 0 0
43 73 1.00 23.00 0.73 1 0 0 0 0
44 51 1.00 23.00 0.15 2 0 0 0 0
45 41 14.97 17.37 0.38 2 0 0 1 1
46 39 21.31 21.44 0.75 0 1 0 0 0
47 33 8.61 9.51 1.12 0 2 0 0 0
48 32 4.52 8.23 0.28 4 0 1 0 0
49 10 13.52 14.20 1.48 1 1 0 0 0
50 10 3.21 8.89 0.27 2 0 0 0 0

Table 4.3: Mission Characteristics
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mission-aircraft-anchor track triplet. For example, one can change the fuel consump-

tion rate for an aircraft depending on what mission it will be flying to account for the

munitions it will have on board. Cruise altitudes can affect fuel consumption rates

and average speeds; these differences can be accounted for on a mission-specific basis.

One could also account for increased travel times resulting from the need to avoid

certain airspace when flying to an anchor area or mission start location. However, all

fuel consumption rates and travel times must be constant regardless of which com-

bination of missions are flown or at what time the missions are flown. Given these

limitations, modifying these parameters will have little to no effect on the speed of

the models. As MAAPTK already organizes these data parameters, syncing its capa-

bilities with this thesis’s optimization model would allow a mission planner to capture

all the intricacies involved in the planning process while still utilizing computer-based

optimization.

Another area where the user has flexibility is in defining aircraft types. Aircraft

“types” in this thesis merely reference the categorization of a particular air-frame.

These categorizations can include designation-based categorizations or a breakdown

depending on aircraft functionality. In this scenario, we gave each aircraft only one

“type.” However, it is possible to give aircraft many possible types. For example,

one could define the types of “F-15E” and “strike fighters” and assign all F-15Es to

both types. Then, if a mission called for an F-15E in particular, one could require

the former aircraft type to complete the mission. If a mission had more flexible

requirements for the aircraft type, one could require the latter type. This option

gives the planner more insight into the trade-off of using an aircraft for a particular

mission versus saving it for other missions. Giving an aircraft more than one type

does increase computational complexity, but only marginally so. Consequently, as

long as the number of aircraft types are “reasonably managed,” classifying aircraft

into multiple types can be a worthwhile planning option.
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Observations on tanker refueling requirements

For this scenario, tankers are required to be present only when aircraft meet at an

anchor track to begin flying a mission. In addition, we do not allocate any time

to refueling, but assume the refueling takes place in negligible time. Clearly these

assumptions are inaccurate. We utilize these assumptions only to manage problem

complexity, so as to provide consistency when measuring other model characteristics.

As this model is not designed to be all-encompassing, but merely a proof of concept

for ATO mission scheduling, we believe these simplifications are reasonable within

the model scope. Instead, we discuss the ways tanker complexity can be handled in

the remainder of this section.

With regards to air refueling time, it is possible to allocate a constant amount of

time to air refueling for every mission. For example, one can allocate thirty minutes

for refueling a mission that requires two strike fighters and two bombers and ten

minutes for a mission that requires just two strike fighters. Then, it is straightfor-

ward to account for this extra time under the “mission completion” section for the

mission-oriented aircraft. Also, one can simply require that tankers remain at the

anchor track for that time period, and the tankers can be prevented from refueling

other missions at that time. However, air refueling times cannot be altered to ac-

count for on-load/off-load rates of individual aircraft or tankers. In addition, it is

very difficult to account for fuel loss experienced by aircraft loitering at the anchor

track while waiting for other aircraft to be refueled. Allowing multiple tankers to

refuel the same mission to decrease refueling time is often used in practice, but such

a solution falls outside the scope of this thesis (and is incompatible with the greedy

algorithm in its current form) [12]. Solving this fuel-loss loitering problem (or the

individual on-load/off-load rate problem) requires a significant increase in computa-

tional complexity within the modeling process and is probably better handled at the

individual mission-planning level.

With regards to managing when air refueling should occur, we have some flexibil-

ity. Within our anchor track framework, we want to restrict air refueling locations
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to our anchor tracks. Thus, we can refuel aircraft before a mission begins, after a

mission ends, both, or neither. Given the variability involved with fuel consumption,

we certainly want to refuel an aircraft before a mission if it will require air refueling.

However, certain aircraft may require refueling both before and after performing a

mission. It is straightforward to require any tanker refueling a mission to loiter at an

anchor track for the duration of the mission. It is also possible to require tankers to

loiter at an anchor track only if there is an aircraft flying the mission that requires air

refueling twice. However, the latter option significantly increases the computational

complexity of the MIO model (although it is compatible with the greedy algorithm).

One might also wish to consider the possibility of having different tankers refuel air-

craft before and after the completion of a mission. However, this concept is much

more difficult to capture and would require a significant increase in computational

complexity.

4.1.2 Outputs

At the conclusion of the algorithm, the model outputs which missions are performed

by which aircraft at what times on what tracks. This information is also output for

tankers, as well as “flights” of the particular tankers. This output, in addition to

previously defined travel and turn times, provides all the necessary data to create a

schedule of where aircraft will be for the entire time horizon. Schedules for both the

greedy algorithm and MIO model are shown in Figures 4-2 through 4-5.

In comparing the two models, we can analyze certain characteristics that the

models display. For example, we notice that the greedy algorithm tends to schedule

missions at three times: the beginning of the time period, the end of the time period,

and at the very middle of the time period, with a few exceptions. This behavior is

a consequence of the algorithm’s structure. The algorithm tries to schedule missions

first at the beginning of the mission’s time window, then some random time in the

middle, and finally at the end of the time window. However, this structure does

spawn a few beneficial attributes. First, we note that tankers are able to refuel

many missions simultaneously, while only having to loiter for short amounts of time.
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Figure 4-2: Greedy Algorithm’s Aircraft Schedule

Figure 4-3: Greedy Algorithm’s Tanker Schedule
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Figure 4-4: MIO Model’s Aircraft Schedule

Figure 4-5: MIO Model’s Tanker Schedule
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Also, most of the important missions are scheduled at the beginning of their time

windows (if scheduled). In this scenario, missions one through five and missions eight

through ten are all scheduled at the very beginning of their time windows. This

feature provides some protection against the unforeseeable. Even if unanticipated

events cause some delay to the schedule during execution, there should be enough

slack to ensure the most important missions can still be accomplished.

The MIO model, on the other hand, schedules missions more uniformly throughout

the entire ATO day. Aircraft and tankers are often scheduled to perform multiple

missions immediately in succession following their turnovers at their home bases.

While this does provide a lesser margin for error, more missions can be scheduled,

and more valuable missions can be substituted for less valuable ones. In addition, the

uniform distribution of missions throughout the day spreads out the competition for

resources required for aircraft and their pilots, such as runway use, airspace around

the base, and even cafeteria busy periods. A comparison of missions flown depending

on the model chosen is shown in Table 4.4.

The MIO model yields a total value of 127812 in comparison to the value of 119604

found by the greedy algorithm. This difference is primarily realized in the fact that

the MIO schedule substitutes the completion of both missions 7 and 11 for the greedy

algorithm’s completion of mission 9. In addition, the MIO schedule has a total of 32

missions as opposed to the 30 missions generated by the greedy schedule. Thus, we

can see the MIO model creates a schedule that performs both more valuable missions

and more missions in general.

A solution of 127812 represents a solution which is 8.64 percent removed from the

provable solution bound of 139856. In order to obtain this solution, we warm-started

our MIO model with the greedy algorithm’s best solution (from five trials) and allowed

the model to run for ten hours. Figure 4-6 shows the solution values obtained using

the MIO model over time, both with and without warm-starting the MIO model with

the greedy algorithm. As shown, utilizing a warm-start allows the MIO model to find

better solutions much more quickly. Consequently, we will use a greedy warm-start

in the remainder of the models considered in this thesis.
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Greedy MIO Value
Missions Completed 1 1 9713

2 2 9573
3 3 9525
4 4 9328
5 5 9274
6 6 8911

7 8719
8 8 8511
9 7736
10 10 7357

11 6893
12 12 6111
13 13 5989
14 14 5398
15 15 3672
16 16 3314
17 17 2836
18 18 2558
19 19 2424
21 21 1929
22 22 1294
24 24 982
28 28 878
29 29 744

30 706
32 528
33 33 506
35 35 163
36 36 104

37 98
38 95

41 41 83
43 43 73
44 44 51
46 39

Total Value 119604 127812
Total # of Missions 30 32

Table 4.4: Mission Completion Comparison
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Figure 4-6: Solution Value Obtained Over Time Depending on the Use of A Greedy
Warm-Start

However, even with a warm-start, the MIO model still does not find solutions

much better than the greedy algorithm in multiple hours of run time. This behavior

is not conducive to a daily scheduling tool, as planners will need to make modifications

to the model. We recognize that an effective model should use no more than about

an hour of run time. Consequently, the next section of the chapter analyzes the

effectiveness of the MIO model over time in comparison to the greedy algorithm,

depending on the number of potential missions provided to the MIO model.
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4.2 Comparing Greedy vs. MIO Solutions

In this section, we examine the process in which MIO solutions are improved upon in

comparison to their greedy counterparts. Specifically, we explore how quickly MIO

solutions improve and quantify how substantial those improvements are. We also

compare the suitability of the MIO model when it is provided with many potential

missions or far fewer.

We analyze ten separate scenarios, similar to the example scenario previously

presented. Specifically, we have 20 aircraft, 4 tankers, 4 anchor tracks, and 8 bases

oriented in the same way as the example scenario presented at the start of this chap-

ter. (Note that the example scenario presented is Trial 4 in this section and the

remainder of the thesis.) Each of the scenarios also has 50 potential missions. How-

ever, the missions are drawn uniformly over the enemy region and have varying values

drawn from a piece-wise linear distribution. Also, each of the missions may require

a different strike package, have varying time windows for completion, and require

varying amounts of time on station. We warm-started every scenario with the best

of five runs of the greedy algorithm (as the solutions change slightly depending on

the random selection of some possible completion times). Then, we allowed the MIO

model to run for up to ten hours, at which point the run was ended with the current

best solution and bounds recorded. Again all tests were programmed in Julia, inter-

faced with Gurobi, and were run on an Intel Xeon E5687W (3.1 GHz) using up to 8

cores and 64 GB of RAM.

4.2.1 Basic Run Comparison

When providing the MIO model with all variables, we note that its solution time is

very slow. This behavior is understandable, as a model of this size has approximately

15,000 variables and 3 million constraints. Even after presolve, the model must gen-

erally account for over 8,000 variables and 1 million constraints. As a result, we find

that the MIO model generally takes a very long time to improve upon the greedy

algorithm’s solution. In Figure 4-7, we show the improvement of the MIO solution as
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a percentage increase from the greedy algorithm’s solution.

Figure 4-7: Increase in Solution Value of MIO Model Over Greedy Algorithm

We can observe in Figure 4-7 that the MIO model does not improve upon the

greedy solution for at least two to three hours. Thereafter, modest improvements are

made, capping out at an improvement of approximately 8 percent from the greedy

solution. However, some runs yield no improvement or only marginal improvement

from the greedy solution, inviting the question of how much the MIO model really

helps a scheduler.

In some ways, the non-linearity of our mission values hides the actual benefits

proffered by the MIO model. Because of the relative importance of the most important

missions listed, completion (or non-completion) of these missions drives the objective

function. However, as the values are largely arbitrary, chosen only to force the model

to schedule the most important missions first, a more thorough analysis provides
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better insight into the benefits of the MIO model. In Tables 4.5 and 4.6, we break

down the missions scheduled using each model, grouping the missions in tens.

Missions Scheduled
Trials 1st Ten 2nd Ten 3rd Ten 4th Ten 5th Ten Total
1 9 8 4 3 5 29
2 9 8 7 1 2 27
3 8 6 5 4 2 25
4 9 8 5 4 4 30
5 8 8 4 4 1 25
6 7 10 5 2 3 27
7 7 5 5 6 1 24
8 7 7 7 3 5 29
9 9 5 4 3 4 25
10 8 5 5 6 4 28
Avg 8.1 7 5.1 3.6 3.1 26.9

Table 4.5: Greedy Algorithm Mission Completion Breakdown

Missions Scheduled
Trials 1st Ten 2nd Ten 3rd Ten 4th Ten 5th Ten Total
1 9 8 4 2 6 29
2 9 8 7 1 2 27
3 9 6 4 5 4 28
4 9 9 6 5 3 32
5 8 8 5 5 2 28
6 8 10 7 4 2 31
7 7 7 3 6 1 24
8 7 7 8 4 5 31
9 10 6 4 2 3 25
10 9 5 5 5 4 28
Avg 8.5 7.4 5.3 3.9 3.2 28.3

Table 4.6: MIO Model Mission Completion Breakdown

We notice that the MIO model adds about 1.5 missions on average to the schedule.

In addition, the most important missions receive the greatest average increases of

about 0.4 more missions scheduled per 10 mission category. In other words, utilization

of the MIO model allows planners to formulate a schedule with 1.5 extra missions per

day, without compromising anything in the way of scheduling the most important

missions. Over the course of a month, this would allow one to schedule over 40
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missions more with the same resources. Given the costs associated with operating

military aircraft, the savings could be substantial.

However, it is not practical to allow the MIO model to run for 10 hours. The ATO

scheduling process relies upon each stage of the planning process taking no more than

a few hours, and planners must be able to make adjustments to any schedule proposed

by the model, as the model simply cannot account for all specifics involved. In order

for the proposed model to be effective, its solution time should not exceed an hour

or so. Unfortunately, Figure 4-7 shows that stopping the model (in its current form)

before allowing it to run for at least 3-4 hours severely limits its impact.

4.2.2 Varying Number of Missions Provided to the Model

In our attempt to reduce solve time, we investigate the limiting variables and con-

straints on the solve time of our model. We note the biggest (non-dominated) variables

are the 𝑥, 𝑝, and ℎ variables that grow to the order 𝒪(𝑖𝑗𝑑), 𝒪(𝑗2), and 𝒪(𝑡𝑗𝑑𝑦), re-

spectively. The biggest constraints are those defining the ordering of the 𝑝 variables,

the travel times of the aircraft, and the travel and loiter times of the tankers [con-

straints (3.13), (3.15), (3.16), and (3.18)] which grow to the order 𝒪(𝑖𝑗2𝑑2), 𝒪(𝑖𝑗2𝑑2),

𝒪(𝑡𝑗2𝑑2𝑦2), and 𝒪(𝑡𝑗2𝑑𝑦), respectively.

While many different indices drive the growth of the model, it is impractical to

limit most of them. Limiting the number of aircraft or tankers runs counter to the

model’s goal of coordinating mission completion on a large scale. Limiting flights or

tracks reduces the flexibility of the refueling process, and these indices are relatively

small anyway. However, the number of potential missions is present as an index in

each of the problematic variables and constraints (and often as a squared factor).

Furthermore, the structure of the JIPTL is very conducive to limitation. As the

most important missions are already identified and hold much more relative value,

limiting the number of potential missions provided to the model can speed up run

time without compromising total objective function value.

In this section, we seek to quantify the impact of reducing the number of missions

provided to the model for scheduling. Utilizing the same trials as in the last section,
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we limited the number of potential missions provided to the model to 40, 30, and

20. Then, we ran the model for up to 10 hours and recorded the increase in value

from the 50 mission greedy algorithm for each (at a variety of time cutoffs). The

average results are shown in Table 4.7 (results for each of the trials can be found in

the appendix Tables A.1 through A.20).

Increase from 50 Mission Greedy Algorithm
Missions Provided 10 min 30 min 1 hr 3 hr 10 hr
50 0.00 0.00 0.00 1.16 4.97
40 0.48 0.50 1.45 6.08 6.53
30 0.91 4.46 5.49 6.30 6.30
20 1.71 1.71 1.71 1.71 1.71

Table 4.7: Percentage Increase of MIO Model from Greedy Algorithm Over Time

The results of Table 4.7 suggest that limiting the number of potential missions

provided to the model can greatly impact model performance. Not only do the

models with fewer potential missions find better solutions faster, but the best solutions

obtained by the limited models often exceed in value the best solutions found by the

basic model after the 10 hour limit. By limiting the model scope, the solver can

better search the solution space for schedules that best combine the aircraft toward

the completion of the most important missions.

However, we would also hypothesize that limiting the number of potential mis-

sions available to the model would impact the total number of missions scheduled.

To investigate this trade-off, we again split the potential missions into tens and in-

vestigate the breakdown of missions scheduled. The results are summarized in Table

4.8.

Average Number of Missions Scheduled
Missions Provided 1st Ten 2nd Ten 3rd Ten 4th Ten 5th Ten Total
50 8.5 7.4 5.3 3.9 3.2 28.3
40 8.5 8.0 6.1 5.0 0.0 27.6
30 8.6 8.0 6.4 0.0 0.0 23.0
20 8.6 8.0 0.0 0.0 0.0 16.6

Table 4.8: MIO Model Mission Completion Breakdown With Varying Missions Pro-
vided
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As shown in Table 4.8, decreasing the number of missions provided to the model

allows the solver to schedule the most important missions more frequently. While

the improvements may seem modest, even intra-category changes can yield signifi-

cant benefits when they involve the most important missions. On the other hand,

as hypothesized, a decrease in the number of missions provided also decreases the

total number of missions scheduled. When 40 missions are provided, the decrease in

missions scheduled is quite modest, suggesting a level of saturation within the sched-

ule. However, when 20 or 30 missions are provided, far fewer missions are scheduled,

suggesting that more missions could be scheduled provided the right type of aircraft

were available.

We recall from Table 4.7 that the best solutions were found when the MIO model

was provided with 30 or 40 missions. As a result, we can postulate that finding

the best solutions quickly involves balancing the ability to search the solution space

quickly with having enough choice to saturate the schedule over the entire period.

This conclusion suggests that a model that cleverly combines the flexibility of the

MIO model for the most important missions with the speed of the greedy algorithm

for saturating the schedule thereafter will yield the best results. We investigate such

a hybrid in the next section.

4.3 Hybrid Modeling

As shown in previous sections, utilizing exclusively the MIO model to create an ATO

schedule is not practical from a computational time perspective (even when warm-

started with the greedy algorithm). Furthermore, limiting the number of potential

missions provided to the MIO model reduces the number of total missions that can

be completed. However, it is possible to create hybrid models which employ the MIO

model to look for good solutions on a subset of the potential missions and then use

other algorithms to populate vacant times in the schedule with missions that fit into

those vacancies. Specifically, we consider a model that utilizes the greedy algorithm

to populate these openings.
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4.3.1 Greedy Completed MIO Model

The structure of the Greedy Completed MIO Model (GCMIO) can be summarized

as follows:

1. Split apart the potential missions into subsets of the 𝒥1 most important missions

and the 𝒥2 = 𝒥 − 𝒥1 remaining missions.

2. Apply the greedy algorithm to 𝒥1.

3. Using the warm-start from the previous step, run the MIO model on 𝒥1.

4. Lock in the solutions of the MIO model, noting aircraft/tanker busy times, fuel

consumption, etc.

5. Run the greedy algorithm on 𝒥2, only allowing missions to be completed if they

do not conflict with previously scheduled missions from earlier steps.

6. The final schedule is the combination of all missions completed from both 𝒥1

and 𝒥2.

In short, we run the MIO model on the most important missions, and use the

greedy algorithm to fill in any empty spaces with the most important missions that

fit into the vacancies. As the greedy algorithm solves in seconds, our computation

time is simply reduced to that of the MIO model on the subset of potential missions

𝒥1. Consequently, we can get solutions that approximate the MIO-only solutions in

a shorter amount of time. Average results are shown in Table 4.9 below.

The results of Table 4.9 are quite encouraging. Utilization of the GCMIO model

provides us with solutions comparable to the MIO-only model, but in a fraction of

the time (1 hour as opposed to 10 hours). We do note that the improvements are

not universal. For example, we notice that the MIO-only model had a better average

performance than the GCMIO model when solution time was less than or equal to

30 minutes. Looking at the individual trials (found in Tables A.1 through A.20 in

Appendix A) we notice that this behavior is likely attributable to randomness in the

selection of the mission completion time, particularly when the GCMIO model only
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Increase from 50 Mission Greedy Algorithm
Missions Provided 10 min 30 min 1 hr 3 hr 10 hr
50- MIO-only 0.00 0.00 0.00 1.16 4.97
40- MIO-only 0.48 0.50 1.45 6.08 6.53
30- MIO-only 0.91 4.46 5.49 6.30 6.30
20- MIO-only 1.71 1.71 1.71 1.71 1.71
40- GCMIO 0.73 0.99 2.10 n/a n/a
30- GCMIO 0.59 4.10 6.39 n/a n/a
20- GCMIO 5.61 5.61 5.61 n/a n/a

Table 4.9: Percentage Increase of MIO and GCMIO Models from Greedy Algorithm

makes very small improvements from the greedy warm start. However, when the

MIO portion of the model improves upon the greedy warm start substantially, the

GCMIO clearly outperforms the MIO-only model. This improvement is particularly

noticeable with the 20-missions provided GCMIO model, where just 10 minutes of

run time beats the greedy algorithm by an average of over 5.6 percent, giving up less

than 1 percent of an improvement from the best model.

To further examine the impact of the GCMIO on our solutions, we plot the so-

lutions obtained over time for the example scenario introduced at the start of the

chapter. This plot can be found in Figure 4-8. In this plot, upward and down-

ward facing triangles indicate the amount of value gained from the greedy completion

portion of the optimization. The 20-missions provided GCMIO model provides the

greatest insight for this scenario. We see that the MIO portion of the model solves

to optimality in just a few minutes, and the greedy completion portion of the model

adds nearly 5000 in value, bringing the final solution very close to the best solution

obtained (see Table A.7 in Appendix A for details). Obtaining such a good solution

in just a few minutes suggests that we can find good solutions to bigger problems

within our self-imposed one hour time limit. We will investigate this idea in the next

section.

In addition to computation time, the other area we hoped to investigate with

the GCMIO model was that of total missions scheduled. We explore this matter of

concern in Table 4.10.
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Figure 4-8: Trial 4 GCMIO Solution Value Over Time

Table 4.10 shows the true value of the GCMIO model. Given only 1 hour of

computation time as opposed to 10 hours, the GCMIO model schedules missions to a

level of saturation only a couple of missions short of the level found by the standard

50-missions provided MIO model. As a trade-off, the GCMIO model sacrifices only

modestly in the number of the most important missions scheduled. Given the quick

turnarounds required at every step of the Air Tasking Cycle, sacrificing some “value”

for computational speed is most certainly a good trade-off.
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Average Number of Missions Scheduled
Missions Provided 1st Ten 2nd Ten 3rd Ten 4th Ten 5th Ten Total
50- MIO-only 8.5 7.4 5.3 3.9 3.2 28.3
40- MIO-only 8.5 8.0 6.1 5.0 0.0 27.6
30- MIO-only 8.6 8.0 6.4 0.0 0.0 23
20- MIO-only 8.6 8.0 0.0 0.0 0.0 16.6
40- GCMIO 8.3 7.1 5.4 4.3 2.6 27.7
30- GCMIO 8.6 7.8 6.3 1.9 1.3 25.9
20- GCMIO 8.6 7.9 4.0 3.0 2.8 26.3

Table 4.10: 10 hr MIO vs. 1 hr GCMIO Mission Completion Comparison

4.4 Utilizing the GCMIO on a Larger Scenario

Ultimately, the goal of this thesis is to demonstrate the viability of our model on

theater-sized problems. Most JAOCs will maintain hundreds of aircraft, but not all

aircraft will be available to fly on any given day. Certain aircraft will have mainte-

nance issues, and the JFC may want to hold back certain aircraft in case unforeseen

circumstances arise. Consequently, we estimate that about 200 aircraft will be flown

on a busy day (although this estimate can vary greatly from JAOC to JAOC). While

our model cannot handle problems of this size, we wish to demonstrate its ability

to handle problems of about 80 aircraft at a time. Then, planners can break down

larger problems into chunks of 80 or so aircraft by region. The combined schedule

will generally approximate the optimal solution which can be obtained if the problem

is solved globally.

With that goal in mind, we define a problem with 80 aircraft, 10 tankers, and

100 potential missions. The map of the scenario is shown in Figure 4-9. To reduce

computational complexity, we take advantage of the fact that many aircraft types

(fighters, in particular) will not be assigned to fly missions as solo aircraft. They

will always fly missions at least in pairs. Consequently, we can model two aircraft as

one “aircraft variable,” thereby reducing our total number of aircraft variables to 50.

Aircraft and tanker specifications for this scenario are shown in Table 4.11 and 4.12,

respectively.

We make the same assumptions for this larger scenario as we made for our initial

70



Aircraft
Variable

Number of
Aircraft

Type(s) Base Speed
(knots)

Fuel
Capacity
(1000lbs)

Burn Rate
(1000lbs/hr)

Turn
time
(hrs)

1 2 1, 7 10 420 5.3 2.1 0.5
2 2 1, 7 10 420 5.3 2.1 0.5
3 2 1, 7 2 420 5.3 2.1 1.0
4 2 1, 7 2 420 5.3 2.1 1.0
5 2 1, 7 4 420 5.3 2.1 1.0
6 2 1, 7 4 420 5.3 2.1 1.0
7 2 1, 7 6 420 5.3 2.1 1.0
8 2 1, 7 6 420 5.3 2.1 1.0
9 2 1, 7 6 420 5.3 2.1 1.0
10 2 1, 7 6 420 5.3 2.1 1.0
11 2 1, 7 7 420 6.9 3.2 1.0
12 2 1, 7 7 420 6.9 3.2 1.0
13 2 1, 7 7 420 6.9 3.2 1.0
14 2 1, 7 7 420 6.9 3.2 1.0
15 2 1, 7 8 420 10.5 4.0 1.5
16 2 1, 7 8 420 10.5 4.0 1.5
17 2 1, 7 8 420 10.5 4.0 1.5
18 2 1, 7 8 420 10.5 4.0 1.5
19 2 1, 7 8 420 10.5 4.0 1.5
20 2 1, 7 8 420 10.5 4.0 1.5
21 2 1, 6 3 420 20.8 6.6 1.5
22 2 1, 6 3 420 20.8 6.6 1.5
23 2 1, 6 10 420 20.8 6.6 1.5
24 2 1, 6 10 420 20.8 6.6 1.5
25 1 2 1 340 9.0 2.4 1.5
26 1 2 1 340 9.0 2.4 1.5
27 1 2 4 340 9.0 2.4 1.5
28 1 2 4 340 9.0 2.4 1.5
29 1 2 4 340 9.0 2.4 1.5
30 1 2 9 340 9.0 2.4 1.5
31 1 2 9 340 9.0 2.4 1.5
32 1 2 7 420 14.5 3.3 0.5
33 1 2 7 420 14.5 3.3 0.5
34 1 2 7 420 14.5 3.3 0.5
35 1 2 7 420 14.5 3.3 0.5
36 1 2 7 420 14.5 3.3 0.5
37 2 3 1 420 12.5 7.0 1.5
38 2 3 1 420 12.5 7.0 1.5
39 2 3 6 420 12.5 5.4 2.0
40 2 3 6 420 12.5 5.4 2.0
41 1 4, 10 3 450 200.0 16.6 3.0
42 1 4 5 390 260.0 12.0 2.5
43 1 4 5 390 260.0 12.0 2.5
44 1 4 11 450 185.0 23.1 3.0
45 2 5, 8 4 420 5.3 2.1 1.0
46 2 5, 8 4 420 5.3 2.1 1.0
47 1 5, 9 1 280 53.0 5.2 1.5
48 1 5, 9 1 280 53.0 5.2 1.5
49 1 5, 9 8 420 9.8 4.4 1.5
50 1 5, 9 8 420 9.8 4.4 1.5

Table 4.11: Notional Aircraft Specifications
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Figure 4-9: Scenario Locations

scenario with two notable exceptions. First, we do not assume that travel from

bases to anchor tracks is necessarily point-to-point. Rather, we ensure travel does

not cross over enemy territory. This addition simply adds realism to the problem.

Second, we assign multiple “types” to certain aircraft. In other words, we assume

certain missions can only be performed by a specific air frame and create aircraft

types for those aircraft to dictate this special need (aircraft types are found in Table

4.11). Mission characteristics are drawn from the same distributions as for the initial

scenario, although package requirements are somewhat modified. Characteristics for

all of the missions can be found in Tables A.21 through A.23 in Appendix A.

Given the increased number of constraints and variables required, we opt for a

50-mission provided GCMIO model which greedily completes missions 51 through

100. Using the same Intel Xeon E5687W utilizing up to 8 cores and 64 GB of RAM,
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Tanker Base Speed
(knots)

Fuel
Capacity
(1000lbs)

Burn Rate
(1000lbs/hr)

Turn
time
(hrs)

1 5 400 160.0 8.1 2.0
2 5 400 160.0 8.1 2.0
3 5 400 160.0 8.1 2.0
4 11 400 160.0 8.1 2.0
5 11 400 160.0 8.1 2.0
6 2 480 331.0 22.3 2.0
7 2 480 331.0 22.3 2.0
8 2 480 331.0 22.3 2.0
9 5 480 331.0 22.3 2.0
10 5 480 331.0 22.3 2.0

Table 4.12: Notional Tanker Specifications

Missions Completed
Both Models Greedy Only GCMIO
1 10 25 46 72 55 34
2 11 26 52 79 60 43
3 14 27 53 81 65 44
5 15 30 54 83 71 48
6 17 38 56 84 78 49
7 20 39 57 91 50
8 21 41 63 82
9 24 42 69 94

Table 4.13: Big Scenario Mission Completion Comparison

we allow the model to run for 1 hour. The obtained schedule is shown in Figures 4-10

and 4-11.

We observe that the final solution takes on a value of 166187, a 4.6 percent increase

from the basic greedy solution of 158831. A more thorough analysis shows that the

GCMIO model schedules a total of 46 missions, as opposed to 43 missions scheduled

by the greedy. The detailed breakdown of which missions are completed can be

found in Table 4.13. This comparison shows that the GCMIO model schedules three

additional missions, while only upgrading to more valuable missions in the process.

Over the course of a month, the GCMIO model would allow planners to schedule

nearly 100 missions more than current methods. In a high operations environment,

the benefits could be significant.
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Figure 4-10: GCMIO Model’s Aircraft Schedule
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Figure 4-11: GCMIO Model’s Tanker Schedule
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Chapter 5

Conclusions and Future Work

Results of the modeling framework proposed in this thesis suggest that automated

mission scheduling will be a realistic tool for increasing planning proficiency in the

near future. The hybrid model presented in this thesis shows great potential, as it is

capable of finding nearly optimal solutions to moderate-sized problems in less than

an hour. Given even modest improvements in solver and computer processing power,

this model could solve theater-sized scheduling problems in the same time in just a

few years. Even without these processing improvements, cleverly breaking down the

AOR of a JAOC into smaller regions would allow a planner to utilize this model as it

currently stands with very modest compromises to solution values. In addition, the

flexible framework, which accounts for both aircraft “package” requirements and air

refueling considerations, can be modified and refined to manage a variety of campaign

objectives or fleet compositions. Accordingly, we believe the modeling framework in

this thesis provides a proof of concept for automated MIO-based models in the area

of coordinated mission scheduling.

5.1 Summary of Results and Contributions

∙ We summarized the Air Tasking Cycle within a JAOC. We identified an area

for improvement in the scheduling process; specifically, we wished to combine

the mission selection and aircraft/munitions allocation stages of the Air Tasking
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Cycle for optimal scheduling efficiency.

∙ We presented a modeling framework that incorporates both unified completion

of missions by aircraft packages and air refueling considerations. We utilized this

framework to create aircraft-by-aircraft schedules over a specified time horizon.

∙ We developed greedy heuristic, mixed integer optimization, and hybrid models

within this framework. We also offered optional constraints for the MIO model

that give extra flexibility to planners in the scheduling process.

∙ We compared the performance of the models, focusing on the total value of

missions completed and the total number of missions completed, and contrasting

these performance measures with computational run time.

∙ We demonstrated the capability of the GCMIO model to solve problems of 20

aircraft, 50 missions, and 4 tankers to within 8.1 percent of optimality in just

one hour of computation time, an increase of 6.39 percent from current greedy

methods. We also demonstrated its capability to solve a problem of 80 aircraft,

100 potential missions, and 10 tankers in one hour, yielding an increase of 4.6

percent from the greedy algorithm’s solution.

5.2 Future Work

Mission planning within JAOCs is a broad area where many improvements can be

made using operations research techniques. We discuss a few areas for future research

in this section.

5.2.1 Future Work Within This Modeling Framework

Within the modeling framework proposed in this thesis, there are a number of areas

where improvements could be made, both in computation time and realism of the

structure. For one, various hybrid models could be considered that may outperform

78



the hybrid model covered in this thesis. Second, adding robustness to many of the

model parameters would make the model robust to uncertainty.

As discussed in earlier sections, computation time for this modeling framework is

currently acceptable for moderate-sized problems, but somewhat excessive for theater-

sized problems. One way of curbing this computation time is by continuing to exam-

ine hybrid models that combine heuristics with standard mixed integer optimization

techniques, or use more complicated heuristics exclusively. For example, given the

relatively strong performance of the greedy algorithm, one could experiment with

utilizing a modified greedy algorithm as a heuristic at certain steps of the branch and

bound process of the MIO (see [3] for an explanation of the branch and bound pro-

cess). One could also run algorithms that explore different combinations of models, to

guess which hybrid model will be most effective. In the category of exclusively heuris-

tic algorithms, one could explore simulated annealing or genetic algorithms with the

mission scheduling problem as other options for finding good solutions fast.

A key complexity that must be dealt with by mission planners is the uncertainty

in certain model parameters. For example, weather could cause travel times for air-

craft to increase/decrease or fuel consumption rates to increase/decrease. If a planner

creates a schedule that is too full so that some of these normal variations cause the

schedule to fall apart, then the schedule is not particularly useful. Understandably,

creating a schedule that protects against such “normal” variation is crucial. Robust

optimization is designed to protect against this exact situation. Consequently, adding

robustness to uncertain parameters could yield significant benefits when applying the

model in practice. Uncertain parameters that could be controlled include value, travel

times, fuel consumption rates, and mission completion times. Creating a robust opti-

mization model that accounts for uncertainty in these parameters would significantly

aid mission planners in creating schedules that hold firm, even through the “fog of

war.”
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5.2.2 Future Work for Mission Planning in JAOCs

The mission planning area for JAOCs is ripe for development. There are many areas

within this context where improvements can be made. We will mention just a few of

these areas.

One area where improvement in mission planning could yield significant benefits

concerns itself with Time Sensitive Targets (TSTs). TSTs are high value targets

“requiring immediate response because they pose (or will soon pose) danger to friendly

forces or are highly lucrative, fleeting targets of opportunity” [27]. Given the nature

of TSTs, they cannot be dealt with through the standard ATO process. Rather,

commanders must decide whether fleeting targets should be attacked, and if so, what

forces should be diverted or otherwise tasked to deal with the targets. Methods have

been proposed to modify an ATO to maximize benefits once TSTs do appear (see

[27]). However, no models have been developed to create the initial ATO based on

the expectation that some TSTs will appear. Commanders have the ability to allocate

aircraft to “standby” missions, either in the air or at their home base, or can choose

to divert aircraft from assigned missions to attack TSTs. Creating a model that aids

mission planners in determining which aircraft should be tasked to known missions

and which should be placed on standby would allow for the best possible allocation

of aircraft on the battlefield.

Mission “creation” is another area for improvement within mission planning. In

this thesis, we assumed missions were already developed, but could include multiple

targets or require completing a sequence of actions. Consequently, we could assume

a finite, preselected mission completion time, fuel consumption rate, and number and

type of munitions required. However, the process of developing these missions is not

trivial. Targets can only be combined if an aircraft has enough fuel to travel between

locations, enough munitions to adequately attack (or otherwise engage) all targets,

and the capability to engage all targets, among other things. Jointly “creating” mis-

sions to accomplish campaign objectives and scheduling them provides the framework

for significant improvement from “by-hand” scheduling.
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Another area for improvement in the mission planning area centers on the air

refueling process. Finding ways to model how many tankers should refuel a given

package of aircraft and coordinating these refuelings to account for individual fuel

upload rates of aircraft could substantially improve the process of assigning tankers

for air refueling.
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Appendix A

Tables

Tables A.1 through A.20 contain the individual results of separate trials run on vary-

ing example scenarios (with 20 aircraft, 50 potential missions, and 4 tankers). These

tables show the total “value” obtained by missions scheduled over time, as well as the

total number of missions scheduled, broken down into groups of ten. Note that for

the tables displaying the number of missions scheduled, the MIO-only model results

are based on a computation time of 10 hours whereas the GCMIO model results are

based on a computation time of 1 hour.

Value
Missions Provided Greedy 10 min 30 min 1 hr 3 hr 10 hr
50- MIO-only 73304 73304 73304 73304 73304 74903
40- MIO-only 73286 73286 73286 75386 76824 77148
30- MIO-only 72867 72867 76379 76782 76782 76782
20- MIO-only 70841 74353 74353 74353 74353 74353
40- GCMIO 73304 73304 73304 76510 n/a n/a
30- GCMIO 73304 73304 77040 77040 n/a n/a
20- GCMIO 73304 75821 75821 75821 n/a n/a

Table A.1: Trial 1 Value Obtained Over Time
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Number of Missions Scheduled
Missions Provided 1st Ten 2nd Ten 3rd Ten 4th Ten 5th Ten Total
50- MIO-only 9 8 4 2 6 29
40- MIO-only 9 10 5 3 0 27
30- MIO-only 9 10 5 0 0 24
20- MIO-only 9 10 0 0 0 19
40- GCMIO 9 9 6 5 2 31
30- GCMIO 9 10 5 2 0 26
20- GCMIO 9 10 2 3 5 29

Table A.2: Trial 1 10 hr MIO vs. 1 hr GCMIO Mission Completion Comparison

Value
Missions Provided Greedy 10 min 30 min 1 hr 3 hr 10 hr
50- MIO-only 76440 76440 76440 76440 76440 76440
40- MIO-only 76767 76767 76767 77074 80511 80511
30- MIO-only 76711 76711 80148 80148 80148 80148
20- MIO-only 73964 77933 77933 77933 77933 77933
40- GCMIO 76440 76799 76919 79517 n/a n/a
30- GCMIO 76440 76832 80252 80252 n/a n/a
20- GCMIO 76440 79215 79215 79215 n/a n/a

Table A.3: Trial 2 Value Obtained Over Time

Number of Missions Scheduled
Missions Provided 1st Ten 2nd Ten 3rd Ten 4th Ten 5th Ten Total
50- MIO-only 9 8 7 1 2 27
40- MIO-only 9 10 7 5 0 31
30- MIO-only 9 10 7 0 0 26
20- MIO-only 9 10 0 0 0 19
40- GCMIO 9 9 7 4 2 31
30- GCMIO 9 10 7 1 2 29
20- GCMIO 9 10 4 2 2 27

Table A.4: Trial 2 10 hr MIO vs. 1 hr GCMIO Mission Completion Comparison

Value
Missions Provided Greedy 10 min 30 min 1 hr 3 hr 10 hr
50- MIO-only 64088 64088 64088 64088 64188 68837
40- MIO-only 67897 67897 67897 67897 68638 68960
30- MIO-only 63908 64011 68348 68348 68455 68455
20- MIO-only 66273 67205 67205 67205 67205 67205
40- GCMIO 64088 67990 67990 68104 n/a n/a
30- GCMIO 64088 67963 68560 68560 n/a n/a
20- GCMIO 64088 68492 68492 68492 n/a n/a

Table A.5: Trial 3 Value Obtained Over Time
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Number of Missions Scheduled
Missions Provided 1st Ten 2nd Ten 3rd Ten 4th Ten 5th Ten Total
50- MIO-only 9 6 4 5 4 28
40- MIO-only 9 7 5 6 0 27
30- MIO-only 9 7 5 0 0 21
20- MIO-only 9 7 0 0 0 16
40- GCMIO 9 6 4 5 3 27
30- GCMIO 9 6 4 2 1 22
20- GCMIO 9 6 3 2 4 24

Table A.6: Trial 3 10 hr MIO vs. 1 hr GCMIO Mission Completion Comparison

Value
Missions Provided Greedy 10 min 30 min 1 hr 3 hr 10 hr
50- MIO-only 119604 119604 119604 119604 126077 127812
40- MIO-only 119358 119358 119358 119358 128736 128736
30- MIO-only 118057 126956 135510 136216 136216 136216
20- MIO-only 112230 127842 127842 127842 127842 127842
40- GCMIO 119604 119604 119604 119604 n/a n/a
30- GCMIO 119604 119604 130152 136527 n/a n/a
20- GCMIO 119604 132884 132884 132884 n/a n/a

Table A.7: Trial 4 Value Obtained Over Time

Number of Missions Scheduled
Missions Provided 1st Ten 2nd Ten 3rd Ten 4th Ten 5th Ten Total
50- MIO-only 9 9 6 5 3 32
40- MIO-only 9 9 9 4 0 31
30- MIO-only 10 9 8 0 0 27
20- MIO-only 10 9 0 0 0 19
40- GCMIO 9 8 5 4 4 30
30- GCMIO 10 9 8 1 3 31
20- GCMIO 10 9 3 4 3 29

Table A.8: Trial 4 10 hr MIO vs. 1 hr GCMIO Mission Completion Comparison

Value
Missions Provided Greedy 10 min 30 min 1 hr 3 hr 10 hr
50- MIO-only 112092 112092 112092 112092 112377 112666
40- MIO-only 111996 111996 111996 111996 115674 115785
30- MIO-only 111731 112465 115788 115788 115788 115788
20- MIO-only 107081 110686 110686 110686 110686 110686
40- GCMIO 112092 112092 112092 112092 n/a n/a
30- GCMIO 112092 112092 112762 115999 n/a n/a
20- GCMIO 112092 115551 115551 115551 n/a n/a

Table A.9: Trial 5 Value Obtained Over Time
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Number of Missions Scheduled
Missions Provided 1st Ten 2nd Ten 3rd Ten 4th Ten 5th Ten Total
50- MIO-only 8 8 5 5 2 28
40- MIO-only 8 9 4 5 0 26
30- MIO-only 8 9 6 0 0 23
20- MIO-only 8 9 0 0 0 17
40- GCMIO 8 8 4 4 1 25
30- GCMIO 8 9 6 2 1 26
20- GCMIO 8 9 4 2 1 24

Table A.10: Trial 5 10 hr MIO vs. 1 hr GCMIO Mission Completion Comparison

Value
Missions Provided Greedy 10 min 30 min 1 hr 3 hr 10 hr
50- MIO-only 76533 76533 76533 76533 79286 82357
40- MIO-only 76060 76060 76199 80620 82315 83014
30- MIO-only 75021 79456 81908 81908 81908 81908
20- MIO-only 72472 76893 76893 76893 76893 76893
40- GCMIO 76533 76533 78440 80095 n/a n/a
30- GCMIO 76533 76533 82146 82146 n/a n/a
20- GCMIO 76533 80974 80974 80974 n/a n/a

Table A.11: Trial 6 Value Obtained Over Time

Number of Missions Scheduled
Missions Provided 1st Ten 2nd Ten 3rd Ten 4th Ten 5th Ten Total
50- MIO-only 8 10 7 4 2 31
40- MIO-only 8 10 8 5 0 31
30- MIO-only 8 10 8 0 0 26
20- MIO-only 8 10 0 0 0 18
40- GCMIO 8 9 5 3 3 28
30- GCMIO 8 10 8 2 2 30
20- GCMIO 8 10 6 1 2 27

Table A.12: Trial 6 10 hr MIO vs. 1 hr GCMIO Mission Completion Comparison

Value
Missions Provided Greedy 10 min 30 min 1 hr 3 hr 10 hr
50- MIO-only 73131 73131 73131 73131 73131 78500
40- MIO-only 73002 73002 73002 73002 78990 79026
30- MIO-only 72545 72545 72545 78444 78444 78444
20- MIO-only 71426 76632 76632 76632 76632 76632
40- GCMIO 73131 73131 73131 73131 n/a n/a
30- GCMIO 73131 73131 73131 78726 n/a n/a
20- GCMIO 73131 77744 77744 77744 n/a n/a

Table A.13: Trial 7 Value Obtained Over Time
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Number of Missions Scheduled
Missions Provided 1st Ten 2nd Ten 3rd Ten 4th Ten 5th Ten Total
50- MIO-only 7 7 3 6 1 24
40- MIO-only 7 7 5 8 0 27
30- MIO-only 7 7 6 0 0 20
20- MIO-only 7 7 0 0 0 14
40- GCMIO 7 5 5 6 1 24
30- GCMIO 7 7 6 3 0 23
20- GCMIO 7 7 3 4 1 22

Table A.14: Trial 7 10 hr MIO vs. 1 hr GCMIO Mission Completion Comparison

Value
Missions Provided Greedy 10 min 30 min 1 hr 3 hr 10 hr
50- MIO-only 69127 69127 69127 69127 69274 70226
40- MIO-only 68925 68925 68925 69232 69232 70540
30- MIO-only 68174 68174 68174 68956 68956 68956
20- MIO-only 63136 63136 63136 63136 63136 63136
40- GCMIO 69127 69127 69127 69782 n/a n/a
30- GCMIO 69127 69127 69127 69311 n/a n/a
20- GCMIO 69127 69127 69127 69127 n/a n/a

Table A.15: Trial 8 Value Obtained Over Time

Number of Missions Scheduled
Missions Provided 1st Ten 2nd Ten 3rd Ten 4th Ten 5th Ten Total
50- MIO-only 7 7 8 4 5 31
40- MIO-only 7 7 8 5 0 27
30- MIO-only 7 7 8 0 0 22
20- MIO-only 7 7 0 0 0 14
40- GCMIO 7 7 8 3 3 28
30- GCMIO 7 7 8 1 0 23
20- GCMIO 7 7 7 3 5 29

Table A.16: Trial 8 10 hr MIO vs. 1 hr GCMIO Mission Completion Comparison

Value
Missions Provided Greedy 10 min 30 min 1 hr 3 hr 10 hr
50- MIO-only 84297 84297 84297 84297 85950 91018
40- MIO-only 84440 84440 84440 84440 91153 91153
30- MIO-only 84068 84068 84068 84068 90781 90781
20- MIO-only 80236 87634 87634 87634 87634 87634
40- GCMIO 84297 84922 84922 84922 n/a n/a
30- GCMIO 84297 84297 84297 88847 n/a n/a
20- GCMIO 84297 90247 90247 90247 n/a n/a

Table A.17: Trial 9 Value Obtained Over Time

87



Number of Missions Scheduled
Missions Provided 1st Ten 2nd Ten 3rd Ten 4th Ten 5th Ten Total
50- MIO-only 10 6 4 2 3 25
40- MIO-only 10 6 4 2 0 22
30- MIO-only 10 6 4 0 0 20
20- MIO-only 10 6 0 0 0 16
40- GCMIO 9 5 5 3 3 25
30- GCMIO 10 5 4 2 2 23
20- GCMIO 10 6 3 2 2 23

Table A.18: Trial 9 10 hr MIO vs. 1 hr GCMIO Mission Completion Comparison

Value
Missions Provided Greedy 10 min 30 min 1 hr 3 hr 10 hr
50- MIO-only 73056 73056 73056 73056 73056 79053
40- MIO-only 72838 72838 72838 72838 79551 79968
30- MIO-only 71509 74208 78696 78696 78696 78696
20- MIO-only 68740 74979 74979 74979 74979 74979
40- GCMIO 73056 73056 73056 73056 n/a n/a
30- GCMIO 73056 72586 78321 79334 n/a n/a
20- GCMIO 73056 79487 79487 79487 n/a n/a

Table A.19: Trial 10 Value Obtained Over Time

Number of Missions Scheduled
Missions Provided 1st Ten 2nd Ten 3rd Ten 4th Ten 5th Ten Total
50- MIO-only 9 5 5 5 4 28
40- MIO-only 9 5 6 7 0 27
30- MIO-only 9 5 7 0 0 21
20- MIO-only 9 5 0 0 0 14
40- GCMIO 8 5 5 6 4 28
30- GCMIO 9 5 7 3 2 26
20- GCMIO 9 5 5 7 3 29

Table A.20: Trial 10 10 hr MIO vs. 1 hr GCMIO Mission Completion Comparison

Tables A.21 through A.23 show the mission characteristics for the 100 potential

missions to be flown in the larger scenario in Section 4.4. Note that certain packages

require a specific air frame (aircraft types 6 through 10) while others can be completed

using aircraft falling into broader categories (aircraft types 1 through 5). The GCMIO

model balances aircraft assignments according to these trade-offs.
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Appendix B

Military Acronyms

ACO Airspace Control Order
ADP Air Defense Plan
AOC WS Air Operations Center Weapons System
AOR Area Of Responsibility
AR Air Refueling
ATO Air Tasking Order
CAS Close Air Support
COA Course Of Action
C2 Command and Control
DCA Defensive Counterair
FrOB Friendly Order of Battle
ISR Intelligence, Surveillance, and Reconnaissance
ITO Integrated Tasking Order
JAOC Joint Aerospace Operations Center
JAOP Joint Air Operations Plan
JFACC Joint Forces Air Component Commander
JFC Joint Forces Commander
JIPCL Joint Integrated Prioritized Collection List
JIPTL Joint Integrated Prioritized Target List
MAAP Master Air Attack Plan
MAAPTK Master Air Attack Planning Toolkit
OCA Offensive Counterair
RPA Remotely Piloted Aircraft
SEAD Suppression of Enemy Air Defenses
TNL Target Nomination List
TST Time Sensitive Target
UAV Unmanned Aerial Vehicle
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