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Abstract

In the era of Big Data, online retailers have access to a large amount of data about their
customers. This data can include demographic information, shopping carts, transactions and
browsing history. In the last decade, online retailers have been leveraging this data to build
a personalized shopping experience for their customers with targeted promotions, discounts
and personalized item recommendations. More recently, some online retailers started having
access to social media data: more accurate demographic and interests information, friends,
social interactions, posts and comments on social networks, etc. Social media data allows to
understand, not only what customers buy, but also what they like, what they recommend
to their friends, and more importantly what is the impact of these recommendations. This
work is done in collaboration with an online marketplace in Canada with an embedded social
network on its website. We study the impact of incorporating social media data on demand
forecasting and we design an optimized and transparent social loyalty program to reward
socially active customers and maximize the retailer’s revenue.

The first chapter of this thesis builds a demand estimation framework in a setting of
heterogeneous customers. We want to cluster the customers into categories according to their
social characteristics and jointly estimate their future consumption using a distinct logistic
demand function for each category. We show that the problem of joint clustering and logistic
regression can be formulated as a mixed-integer concave optimization problem that can be
solved efficiently even for a large number of customers. We apply our algorithm using the
actual online marketplace data and study the impact of clustering and incorporating social
features on the performance of the demand forecasting model.

In the second chapter of this thesis, we focus on price sensitivity estimation in the context
of missing data. We want to incorporate a price component in the demand model built in
the previous chapter using recorded transactions. We face the problem of missing data: for
the customers who make a purchase we have access to the price they paid, but for customers
who visited the website and decided not to make a purchase, we do not observe the price
they were offered. The EM (Expectation Maximization) algorithm is a classical approach for
estimation with missing data. We propose a non-parametric alternative to the EM algorithm,
called NPM (Non-Parametric Maximization). We then show analytically the consistency of
our algorithm in two particular settings. With extensive simulations, we show that NPM is
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a robust and flexible algorithm that converges significantly faster than EM.
In the last chapter, we introduce and study a model to incorporate social influence among

customers into the demand functions estimated in the previous chapters. We then use
this demand model to formulate the retailer’ revenue maximization problem. We provide a
solution approach using dynamic programming that can deal with general demand functions.
We then focus on two special structures of social influence: the nested and VIP models
and compare their performance in terms of optimal prices and profit. Finally, we develop
qualitative insights on the behavior of optimal price strategies under linear demand and
illustrate computationally that these insights still hold for several popular non-linear demand
functions.

Thesis Supervisor: Georgia Perakis
Title: William F. Pounds Professor of Management
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Chapter 1

Introduction

1.1 Problem and Motivation

In the last years, the amount of data available to online retailers has increased exponentially.

The Big Data revolution is drastically changing e-commerce. Online retailers have access

to a tremendous amount of information about their customers: browsing history, shopping

carts and demographic information. According to [1], online retailers have to use Big Data

for “personalization, dynamic pricing and predictive analytics”. Customers shop from the

same retailer in different ways. The available data should be used to offer personalized

items or promotions and to reward loyal customers. Big Data can also be used to build

accurate predictive models. By learning customers’ tastes and preferences, the retailer can

forecast the future demand for specific items. This is of great help for managing inventory for

example. Finally, Big Data is a key tool for effective pricing strategies. According to a study

by McKinsey, a retailer using Big Data to its current potential could increase their operating

margin by up to 60% ([2]) and companies that used big data and analytics outperformed their

peers by 5% in productivity and 6% in profitability. Recently, social media data has become

accessible to some online retailers. Social media generate an incredibly large amount of data

that can be useful for a better understanding of customers’ tastes, social interactions and

behavior. Incorporating social media in a Big Data analytics approach is the new challenge

for pricing for online retailers.

This research is part of the Accenture and MIT Alliance on Business Analytics in col-
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laboration with SHOP.CA: an online retailer who uses social media data to build a social

loyalty program where customers receive different prices according to their social activity.

Using their data, we build an optimized loyalty program.

1.2 SHOP.CA

SHOP.CA is a Canadian online marketplace with a social network in its website. After

creating an account, customers can connect to other members with “Friend requests”. They

can use the social network to send private messages and item recommendations. They can

share with their friends comments and reviews about their purchases. They can connect

their account with Facebook, LinkedIn, Twitter and with personal blogs. This embedded

social network is built to improve the customer shopping experience. The basic idea is the

following: when a customer purchases an item online, most of the times he uses its reviews

and ratings to evaluate its quality. But the review written by a total stranger may not have

the same effect as one written by a “good” and trusted friend. With an embedded social

network, before making a purchase, customers will be able to see which of their friends

bought the item and what they thought about it. This creates a personalized shopping

experience.

From the retailer perspective, building a social network platform increases the available

information about customers. This additional information about customers’ behavior is

extremely valuable to identify different segments in the population and to better predict

their behavior.

Badges and Rewards SHOP.CA’s business model is based on social interactions be-

tween its customers. To incentivize customers to be more social (add friends, send messages

and reviews, share the items they purchased), they build a “social loyalty program” where

customers are rewarded for their social activity with cash back (discount to use for future

purchases).

16



Figure 1-1: Business Model

Figure 1-1 summarizes the current social loyalty program. Customers are clustered into

4 different categories (called “badges”) according to their social activity. Social activity is

measured in terms of number of friends, connections to external social platforms (as Facebook

and Twitter), reviews written and item recommendations (called “shares”). A customer who

just created an account is a “Member”. If he connects his account to a social network, adds 5

friends, shares 10 items AND writes 5 reviews then he becomes a “Sharer”. Adding additional

social networks, friend shares and reviews, he can successively become an “Influencer” and a

“Trendsetter”. Each of these badges is associated with a nominal level of rewards on every

purchase. Using SHOP.CA vocabulary we use the term rewards to mean discount. For

example, 3% rewards means that the customers receives a 3% discount on his purchase. A

Member receives 0.5% reward on each purchase, a Sharer receives 1%, an Influencer 1.5%

and a Trendsetter 2.5%. This nominal level of discount is applied on every transaction.

The customer receives it on a personal cash balance on the website. This cash-back can be

used without restrictions on any future purchase. Figure 1-1 is a screen shot from a user’s

account and reports the different level of badges and associated rewards. This specific user

is connected with 2 social networks, has 11 friends, 17 shares and 27 reviews, he is thus a

“Sharer”. In addition to this nominal level of discount that depends on the badge category,

social interactions are rewarded with a fixed amount of cash-back. For example, if a customer
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refers a friend to join SHOP.CA and this friend subsequently creates an account and makes

a first purchase, the referrer receives $ 10 cash-back.

SHOP.CA business model is based on transparency. Rather than sending complicated

targeted discounts campaigns where the customer is not aware of why he is offered a specific

discount and what level of discount is offered to the other customers, SHOP.CA aims on

a transparent rewards program. Every customer knows exactly what level of reward he is

assigned to and what actions are required to get to the next badge category. Furthermore, the

criteria defining the badges are based exclusively on social activities. The badge definition

does not depend on the amount spent on the website or the number of recent purchases.

SHOP.CA wants to incentivize his customers to be more social: to write more reviews, more

recommendations, have more friends and has built his loyalty program with this objective

in mind.

1.3 Contributions

SHOP.CA’s current business model is based on four badges levels defined according to re-

views, shares, friends and connections to external social network. For example, to get to the

level “Sharer”, 1 social network, 5 friends, 10 shares and 5 reviews are required. Furthermore,

the badges categories are associated with 0.5%, 1%, 1.5% and 2.5% rewards. The goal of

this work is to optimize the current social loyalty program and to answer the questions:

1. How should the badges categories be defined (which social features should be used and

how should the badges levels be defined) in order to have a good customer segmentation

and demand estimation?

2. What levels of rewards should be given to each badge in order to maximize the total

revenue?

In this work, we answer these questions in three steps. In Chapter 2, we focus on the

first of the two questions. We present an optimization framework that defines the badges

categories and estimates distinct demand models parameters for each badge. For each cluster,

we use the transaction history and social interactions of the customers to predict their future
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consumption with a logistic choice model. We show that this problem can be formulated as a

mixed-integer convex optimization that can be solved efficiently by commercial solvers. We

apply our results on SHOP.CA data and show that clustering customers and incorporating

social features in the demand model significantly improves the prediction accuracy.

The model built in Chapter 2 uses customers’ transaction history and social interactions

to predict their future consumption. A key aspect in a revenue management perspective

that is not incorporated in this model is the customers’ price sensitivity. Working only with

transaction data, we face a problem of missing data. We observe which customers make

purchases and which do not, but the prices are recorded only when a transaction occurs. We

do not observe the prices offered to customers that decide not to purchase. In Chapter 3, we

propose two possible approaches to incorporate price sensitivity to our predictive model. We

first present the EM algorithm: a classical parametric approach to parameter estimation in

a setting of missing data. We then propose a novel estimation algorithm that can be applied

in a more general non-parametric setting. We compare the two approaches on simulated

data.

In Chapter 4, we address the second question formulated above. We start by proposing a

model to capture the social influence between badges. Given a badge structure and associated

demand model, we then solve the problem of maximizing the total revenue with a Dynamic

Programming approach. We then focus on two specific structures of social influence: the

nested and VIP models. In a symmetric setting, we develop insights on the behavior of

optimal pricing policies.

1.4 Data

For our models, we used social and transaction data from SHOP.CA collected from January

2013 to February 2014. We considered four types of data: transaction data, item data,

customers’ demographic information, social activity data. In this section, we present the

raw data we received, in later chapters we will explain how this data has been transformed

to answer specific questions. Descriptive statistics and histograms can be found in Appendix

A.1.
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1.4.1 Transaction Data

For every transaction on the website we had the following information:

USER_ID ITEM_ID Date Nominal Price Rewards

unique identifier

of the buyer

unique identifier

of the item pur-

chased

price listed on

the website (be-

fore discount)

discount received ($)

Table 1.1: Transaction data

1.4.2 Item Data

For every item in the catalog we have

ITEM_ID category Reviews statistics

Electronics, Books,

Cooking, Outdoor . . .

average rating, num-

ber of reviews, num-

ber of recommenda-

tions

Table 1.2: Item data

1.4.3 Customer Demographic Information

For every customer registered on the website we have access to the following demographic

information. Note that some of the features may be missing if the customer didn’t reveal

the information

USER_ID Gender Age Zipcode

Table 1.3: Demographic data
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1.4.4 Social Activity Data

The social activity data is the most interesting component of our data. Every user’s action

or activity is recorded in the following format:

USER_ID Date and time Action and Action Attributes

Table 1.4: Social Activity data

The social actions that have the most important role in our work are:

∙ Log In : customer logs in to his account

∙ Review written

∙ Number of friends

∙ Recommendation/“share”: personal recommendation sent about a specific item

∙ Referral: invitation sent to a non-member to join SHOP.CA website (a referral is

considered as “successful” if the non-member creates an account after receiving the

invitation)

In addition, we have access to SHOP.CA internal social network. We know its structure (who

is friend with who), who sent the friend request and when and we observe the volume of

personal messages and item recommendations between every pair of friends. Furthermore, we

know which customers linked their profile with external social networks (Facebook, LinkedIn,

Twitter . . . ) and have access to SHOP.CA related posts on these external platforms.

A detailed presentation of all the recorded actions and their attributes can be found in

Table A.1 in the appendix.
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Chapter 2

Joint Clustering and Logistic Regression

2.1 Introduction and Literature Review

In this Chapter, we consider an online retailer who faces a set of heterogeneous customers.

The retailer aims to see if customers with "similar" characteristics naturally cluster into

segments. This can allow the retailer to build a distinct demand model for each of these

segments.

Customer segmentation: With the rise of airline revenue management in the last few

decades, customer segmentation has become a central topic of interest. In the context of

airlines, it is hard to model well every potential customer using the same demand function.

On one side, leisure travelers book a long time in advance, have flexible dates and are very

price sensitive. On the other, business travelers often book at the last minute, have a tight

schedule and are not price sensitive. For an efficient seat allocation among these two types

of travelers, the airline has to estimate different demand functions for the two segments. The

same problem arises in e-commerce when retailers have multiple sources of information about

their customers (not only transaction data but also browsing history and social interactions).

Adding customer segmentation can be extremely useful in order to build an accurate demand

model.
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Logistic demand function: Traditional retailers collect information in an aggregate way.

They collect the number of purchases in a given store, in a given day, they may have some

information on the store inventory and on the prices but they do not have information on

the individual customer preferences. In this setting, only the cumulative demand (at a store,

or at a regional level for a given day for example) can be forecasted as a function of the price

(and of some characteristics of the store and the day).

Modern online retailers often have access to a large amount of data about their customers

(transaction and browsing history, demographic information, and more recently social net-

work data). It is then possible to forecast the demand at a more personalized level. In

this setting, choice models are a powerful and flexible tool that allows to forecast which

individuals will make a purchase in the near future and what they will buy. In this work,

we will use the most common choice model for the demand estimation: the logit model.

The multinomial logit model can be used to predict purchase behavior when customers are

offered a set of distinct items. (Binary) logistic regression deals with the simple (and more

aggregated) setting where customers are offered only two alternatives: to buy or not to buy.

Joint clustering and demand estimation-Literature Review: The problem of joint

clustering and regression has been widely studied in the computational statistics literature.

Classification and Regression Trees (CART) greedily build a tree by recursively splitting

the data sets in rectangular areas ([3]). Regression trees then build a distinct regression

model for every leaf. Multivariate Adaptive Regression Splines (MARS) also split the points

into region but use splines for regression to guarantee continuity of the prediction between

one region and another ([4]). Another possible approach used in the revenue management

literature is a mixture of models. Mixtures do not allow to classify customers into categories

but rather represent the global demand as a weighted average of different demand functions.

This increases the granularity of the problem and gives a more accurate aggregated demand

prediction. These methods rely on continuous optimization techniques and can often be

approximately solved with greedy heuristics. They have been studied by the data mining

community in the last 20 years and have been used for a large number of applications thanks

to commercial software packages that have been developed.
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A different approach for classification and linear regression is proposed by Bertsimas and

Shioda in [5] using integer (rather than continuous) optimization. They derive a linear mixed

integer program able to separate the points into polyhedral regions and build a distinct linear

regression for each of these regions. With the advances in integer optimization in the last

decade, integer formulations of clustering problems have become competitive with classical

greedy approaches and can be solved even for large data sets.

Finally, in the context of pricing with choice models, Keller, Levi and Perakis in [6]

show that, taking advantage of monotonicity properties of choice models, it is possible to

reformulate an intractable constrained non-convex pricing problem into a convex program

that can be solved fast.

Contributions: To the best of our knowledge, the problem of joint clustering and logistic

regression has not been studied before. In this work, we show that it can be reformulated

as a strictly concave mixed-integer program and illustrate computationally that it can be

solved efficiently for large data sets. Least absolute value linear regression is inherently a

linear optimization problem and [5] is able to reformulate the problem of joint clustering and

L1 regression as a linear mixed-integer problem. In this paper, we exploit the monotonicity

properties of choice models highlighted in [6] to show that joint multinomial logistic regres-

sion and clustering can be rewritten as a mixed-integer concave optimization problem. We

then apply our method to predict customers’ future consumption using SHOP.CA data. We

show that our model is able to capture the heterogeneity in the customers’ population and

that, by adding a clustering step on top of the logistic demand estimation, the prediction

accuracy increases significantly. Furthermore, we show that social media data is extremely

valuable for online retailers. Considering social media features as the number of friends, the

number of messages sent, connections to social networks etc. allows a deeper understanding

of customers’ behavior and preferences which leads to a more accurate demand estimation.

Finally, performing sensitivity analysis on the output of our model can help retailers to un-

derstand which features (social or from transaction data) drive customers’ purchase behavior

and what is the marginal effect of each one of the features (the impact of an additional friend

or review on the customer’s likelihood to buy for example). This can be useful to decide how
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to allocate the Marketing efforts and to allocate rewards.

Outline: In Sections 2.2 and 2.3, we motivate and define our model and introduce the

notations we use in the rest of the Chapter. In Section 2.4, we present the problem of joint

clustering and (binary) logistic regression and show how it can be reformulated into a concave

mixed-integer program. In Section 2.5, we extend the previous result to the case where the

demand follows a multinomial logit model. Finally, in Sections 2.6 and 2.7 we analyze the

performance of our approach on SHOP.CA data.

2.2 Problem definition and Motivation

In this Section, we present the main motivations for our model.

2.2.1 A transparent and hierarchical business model

Recall the screen shot presented in Figure 1-1. In SHOP.CA’s website, customers are clus-

tered into 4 different categories (called “badges”) according to their social activity on the

website. Each of these badges is associated with a nominal level of rewards on every pur-

chase. SHOP.CA’s business model is based on transparency. Every customer knows exactly

what level of reward he is assigned to and what actions are required to get to the next badge

category. Finally, by definition of a loyalty program, there has to be a hierarchical structure.

If customer A is more active (more friends, more reviews, . . . ) than customer B, he has to

receive at least the same amount of reward as customer B.

SHOP.CA’s business model is based on transparency and hierarchy. We need to cluster

the customers into categories in a transparent and hierarchical way that is easily understand-

able by the customer.

2.2.2 Customer heterogeneity

We want to build a model that predicts customers’ future purchase behavior and is able to

take into account customer heterogeneity. We have data on different types of customers’

activity: purchases, reviews, recommendations, friends, activity on social networks etc. In
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a traditional revenue management setting, marketers have only access to purchase history.

They can define as “good customers” the customers who made several purchases (on a regular

basis or in the recent past). Once we consider social activity data, the definition of “good

customers” becomes more complex. A “good customer” can be an individual who purchases

from the website on a regular basis but is not active socially, or also a customer who shares

many items through social medias with “friends” and regularly sends referrals emails. In this

setting where purchase history and social activity are combined, it is hard to describe the

entire population in a single model.

In our data set, customers are extremely heterogeneous in terms of price sensitivity

(quantity of discounted items purchased), social activity and purchase behavior. This is a

characteristic of online retailing where different population segments purchase from the same

channel.

We want to create a framework that is able to identify the different segments in the

population and build a demand model for every segment of customers.

2.2.3 Demand estimation: Logistic choice model

There are several possible approaches for demand modeling. Linear models can be used to

predict the amount ($) spent and choice models can be used to predict which specific item is

purchased. Our modeling choice is driven from the data we have available. In e-commerce,

data is often sparse. Online retailers often have hundred of thousands of registered customers

where only a small fraction makes a purchase in a given time period, and even less make

multiple purchases. In order to have a robust model, we chose to aggregate the available

information and used a logistic choice model to predict whether a customer makes a purchase

in a Future period (for all categories of items together). A choice model allows to estimate a

probability to buy for each customers as a function of his observable features (past purchases,

social interactions, number of friends etc.).

To conclude, our goal is two-fold. In order to capture customers’ heterogeneity, we want

to, jointly,

∙ cluster customers into categories with hierarchical and transparent rules
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∙ fit a logistic demand model for every category (cluster)

2.3 Model

In this Section, we introduce the notation and assumptions we will use throughout this work.

2.3.1 Notations

Let us consider a set of customers {𝑖 ∈ [1, . . . , 𝑁 ]} characterized by their social and transac-

tion history. We consider a point in time 𝑡0 and we denote by “Past Period” (resp. “Future

Period”) all the actions taken before (resp. after) 𝑡0. For every customer 𝑖, we build a vector

of Past features Xi (a subset of the features presented in table A.2) and a binary variable

𝑦𝑖 that indicates whether customer 𝑖 makes a purchase in the Future Period. We want to

cluster the customers into 𝐾 categories and jointly estimate demand with a logistic model

for each cluster.

We will use the following notations:

∙ 𝑁 number of customers

∙ 𝑖 ∈ [1, . . . , 𝑁 ] index of a customer

∙ Xi ∈ R𝑚 vector of features of customer 𝑖 (the first element of Xi is 1 for each customer

to incorporate an intercept term)

∙ 𝐾 number of clusters

∙ 𝒞𝑘 cluster 𝑘

∙ 𝑦𝑖 =

⎧⎪⎨⎪⎩1 if customer 𝑖 makes at least one purchase in the Future Period

0 otherwise

∙ 𝑎𝑖,𝑘 =

⎧⎪⎨⎪⎩1 if customer 𝑖 is assigned to cluster 𝒞𝑘

0 otherwise
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Assumption 1. We assume that the purchase behavior follows a different logistic model for

each cluster:

P(𝑦𝑖 = 1|Xi, 𝑖 ∈ 𝒞𝑘) =
𝑒𝛽𝑘.Xi

1 + 𝑒𝛽𝑘.Xi

and

P(𝑦𝑖 = 0|Xi, 𝑖 ∈ 𝒞𝑘) =
1

1 + 𝑒𝛽𝑘.Xi

We want to define the clusters (by allocating customers to clusters) and jointly estimate

the logistic coefficients 𝛽𝑘 for each cluster.

2.3.2 Logistic Model

We describe, in this paragraph, the logistic model estimation in the classical setting where

𝐾 = 1, i.e. where clustering is not required. The logit model is by far the most commonly

used discrete choice model. It is widely used because there exists a closed form formula for

the choice probabilities which is easy to interpret. We will present here a short derivation of

the model, for a detailed description see Chapter 3 of [7].

In a classical choice model setting, assume that a customer 𝑖 faces a set of possible

alternatives 𝑗 ∈ 𝐽 . For example, if 𝐽 = {0, 1}, 𝑗 = 0 corresponds to “not to buy” and 𝑗 = 1

corresponds to “buy”. Assume that customer 𝑖 obtains from option 𝑗 an utility 𝑈𝑖𝑗 that can

be decomposed in:

𝑈𝑖𝑗 = 𝑉𝑖𝑗 + 𝜖𝑖𝑗

The classical choice model assumption is that 𝑉𝑖𝑗 is observed, while 𝜖𝑖𝑗 is not. Furthermore

customer 𝑖 decides to choose option 𝑗 if it is the option that generates the highest utility.

Thus customer 𝑖 chooses option 𝑗0 if

𝑈𝑖𝑗0 = max
𝑗

𝑈𝑖𝑗

and this happen with probability

𝑝𝑖,𝑗0 = P(𝑈𝑖𝑗0 = max
𝑗

𝑈𝑖𝑗)

29



The logit model is obtained assuming that

1. 𝑉𝑖𝑗 is a linear function of a customer-alternative vector 𝑋𝑖𝑗

2. the residuals 𝜖𝑖𝑗 are independent uniformly distributed according to the type I extreme

value distribution (also called Gumbel distribution)

The cumulative distribution function of the Gumbel distribution is given by

𝐹 (𝜖) = 𝑒𝑒
−𝜖

Thus customer 𝑖 chooses option 𝑗0 with probability

𝑝𝑖,𝑗0 = P(𝑈𝑖𝑗0 = max
𝑗

𝑈𝑖𝑗) =
𝑒𝑉𝑖𝑗0∑︀
𝑗 𝑒

𝑉𝑖𝑗

where the last equality comes from integrating the cumulative distribution function 𝐹 .

In the case where there are only two options, we can denote 𝑦𝑖 ∈ {0, 1} the choice of

customer 𝑖, and using the linearity assumption for 𝑉𝑖𝑗 we get:

P(𝑦𝑖 = 1|Xi) =
𝑒𝛽.Xi

1 + 𝑒𝛽.Xi
and P(𝑦𝑖 = 0|Xi) =

1

1 + 𝑒𝛽.Xi

where Xi is the vector of features of customer 𝑖.

The parameter of this model is 𝛽 and it is traditionally estimated through maximum

likelihood. If we observe 𝑁 customers with attributes (Xi, 𝑦𝑖) then the likelihood is

𝐿(𝛽) =
𝑁∏︁
𝑖=1

P(𝑦𝑖 = 1|Xi)
𝑦𝑖P(𝑦𝑖 = 0|Xi)

1−𝑦𝑖 =
𝑁∏︁
𝑖=1

(︂
𝑒𝛽.Xi

1 + 𝑒𝛽.Xi

)︂𝑦𝑖 (︂ 1

1 + 𝑒𝛽.Xi

)︂1−𝑦𝑖

and the log-likelihood becomes:

ℒ(𝛽) = log(𝐿(𝛽)) =
𝑁∑︁
𝑖=1

𝑦𝑖𝛽.Xi − ln(1 + 𝑒𝛽.Xi)

The log-likelihood ℒ is a concave function of 𝛽 and the maximum likelihood estimator
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defined by

𝛽 = argmax
𝛽
ℒ(𝛽)

is consistent (lim𝑁→∞ 𝛽 = 𝛽) and efficient (i.e. an estimator with minimum mean squared

error among the class of consistent estimators).

2.3.3 Problem Definition

In our case, we want to adapt the classical maximum likelihood approach for the logit model

(also called logistic regression) to incorporate different clusters. Assume that you have 𝐾

clusters and that for each cluster a different logit function describes the decision process.

We use a maximum likelihood approach to jointly cluster and estimate the logit coefficients.

Intuitively, we want to maximize the overall likelihood, knowing that every customer has to

be assigned to exactly one cluster.

We want to find 𝐾 clusters 𝒞1, . . . , 𝒞𝐾 and 𝐾 vectors 𝛽1, . . . , 𝛽𝐾 in order to maximize:

max
𝛽1,...,𝛽𝐾

𝐾∑︁
𝑘=1

∑︁
𝑖∈𝒞𝑘

𝑦𝑖𝛽𝑘.Xi − ln(1 + 𝑒𝛽𝑘.Xi) (2.1)

2.4 Joint clustering and logistic regression

In this Section, we first formulate the problem of joint clustering and logistic regression as a

non-linear mixed-integer program. We show that this first formulation is intractable because

of a non concave objective function with binary variables. We then state our main contribu-

tion: we provide an equivalent formulation of the problem that can be solved efficiently in

terms of computational time by commercial solvers even with a large number of customers.

2.4.1 Problem Formulation

The objective is to allocate the customers into 𝐾 clusters and estimate a logistic demand

function for each cluster in order to maximize the overall likelihood. This allows to capture

the different segments in the population and can significantly improve the accuracy of the

prediction.
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As stated in equation (2.1), this can be achieved by finding 𝐾 clusters 𝒞1, . . . , 𝒞𝐾 and 𝐾

vectors 𝛽1, . . . , 𝛽𝐾 that maximize:

max
𝛽𝑘,𝒞𝑘

𝐾∑︁
𝑘=1

∑︁
𝑖∈𝒞𝑘

𝑦𝑖𝛽𝑘.Xi − ln(1 + 𝑒𝛽𝑘.Xi)

This problem can be written as an integer program with binary variables 𝑎𝑖,𝑘 defined by:

𝑎𝑖,𝑘 =

⎧⎪⎨⎪⎩1 if customer 𝑖 is assigned to cluster 𝒞𝑘

0 otherwise

Every customer has to be assigned to exactly one cluster. This can be enforced with the

following constraints on 𝑎𝑖,𝑘 ⎧⎪⎨⎪⎩∀(𝑖, 𝑘) 𝑎𝑖,𝑘 ∈ {0, 1}

∀𝑖
∑︀𝐾

𝑘=1 𝑎𝑖,𝑘 = 1

If the sum of binary variables equals 1, then exactly one of these variables is equal to 1 and

the others are equal to 0. This translates into the fact that every customer has to be assigned

to exactly one cluster.

The joint clustering and logistic regression problem can thus be written as:

max
𝛽𝑘,𝑎𝑖,𝑘

∑︁
𝑘,𝑖

𝑎𝑖,𝑘
[︀
𝑦𝑖𝛽𝑘.X𝑖 − ln(1 + 𝑒𝛽𝑘.X𝑖)

]︀
subject to

∑︁
𝑘

𝑎𝑖,𝑘 = 1, 𝑖 = 1, . . . , 𝑁.

𝑎𝑖,𝑘 ∈ {0, 1}, 𝑖 = 1, . . . , 𝑁, 𝑘 = 1, . . . , 𝐾.

𝛽𝑘 ∈ R𝑚, 𝑘 = 1, . . . , 𝐾.

(2.2)

In the objective function of (2.2), for every cluster 𝑘 we sum over the customers where

𝑎𝑖,𝑘 = 1 thus those that are assigned to cluster 𝑘. It is easy to see that problem (2.2) is

equivalent to (2.1).

This formulation has a non-concave objective function containing integer variables, thus

standard gradient descent techniques cannot be applied in this setting. Solving (2.2) is thus
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a challenging optimization problem. On simulations, we observed that commercial solvers

can take several hours to solve such an instance even with a small number of customers.

2.4.2 Reformulation

Proposition 1.1. Problem (2.2) is equivalent to

max
𝛽𝑘,𝑎𝑖,𝑘,Δ𝑖

∑︁
𝑖

Δ𝑖𝑦𝑖 − ln(1 + 𝑒Δ𝑖)

s. t.

(1− 2𝑦𝑖)Δ𝑖 ≥ (1− 2𝑦𝑖)𝛽𝑘.X𝑖 −𝑀(1− 𝑎𝑖,𝑘) 𝑖 = 1, . . . , 𝑁, 𝑘 = 1, . . . , 𝐾.∑︁
𝑘

𝑎𝑖,𝑘 = 1, 𝑖 = 1, . . . , 𝑁.

𝑎𝑖,𝑘 ∈ {0, 1}, 𝑖 = 1, . . . , 𝑁, 𝑘 = 1, . . . , 𝐾.

𝛽𝑘 ∈ R𝑚, 𝑘 = 1, . . . , 𝐾.

Δ𝑖 ∈ R, 𝑖 = 1, . . . , 𝑁.

(2.3)

where 𝑀 is a “big” constant.

In problem (2.3), 𝑦𝑖,Xi and 𝑀 are input and the decision variables are the logistic

regression coefficients (𝛽𝑘), the binary variables that associate customers to clusters (𝑎𝑖,𝑘) and

Δ𝑖. The definition of the variable Δ𝑖 is presented in the proof of Proposition 1.1. Intuitively,

Δ𝑖 comes from a change of variable and Δ𝑖 = 𝛽𝑘.X𝑖 for 𝑘 such that 𝑎𝑖,𝑘 = 1. Note that the

constraints are linear in terms of the decision variables. Thus problem (2.3) is a mixed-integer

optimization problem with linear constraints. In our application 𝑀 ≥ max{max𝑋𝑖, 1000}

is sufficient (The constant 1000 is chosen in order to have 𝑒−𝑀 ≃ 0).

Proof. The proof of Proposition 1.1 can be decomposed into 4 major steps.

1. The first step aims to remove the binary variables 𝑎𝑖,𝑘 from the objective function of

problem (2.2). We follow the approach used in [5], and do the change of variables
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“𝛿𝑖 = 𝑦𝑖𝛽𝑘.X𝑖 − ln(1 + 𝑒𝛽𝑘.X𝑖), if 𝑎𝑖,𝑘 = 1”. This can be rewritten as

max
𝛽𝑘,𝑎𝑖,𝑘,𝛿𝑖

∑︁
𝑖

𝛿𝑖

subject to

𝛿𝑖 ≤ 𝑦𝑖𝛽𝑘.X𝑖 − ln(1 + 𝑒𝛽𝑘.X𝑖), if 𝑎𝑖,𝑘 = 1∑︁
𝑘

𝑎𝑖,𝑘 = 1, 𝑖 = 1, . . . , 𝑁.

𝑎𝑖,𝑘 ∈ {0, 1}, 𝑖 = 1, . . . , 𝑁, 𝑘 = 1, . . . , 𝐾.

𝛽𝑘 ∈ R𝑚, 𝑘 = 1, . . . , 𝐾.

𝛿𝑖 ∈ R, 𝑖 = 1, . . . , 𝑁.

(2.4)

Note that the equality constraint presented in the change of variables is relaxed to an

inequality. This is due to the fact that we are maximizing over 𝛿𝑖 thus the constraint

𝛿𝑖 ≤ 𝑦𝑖𝛽𝑘.X𝑖 − ln(1 + 𝑒𝛽𝑘.X𝑖), if 𝑎𝑖,𝑘 = 1

will be tight at optimality and thus equivalent to

𝛿𝑖 = 𝑦𝑖𝛽𝑘.X𝑖 − ln(1 + 𝑒𝛽𝑘.X𝑖), if 𝑎𝑖,𝑘 = 1

Adding the variables 𝛿𝑖, we have transformed problem (2.2) into an equivalent problem

without binary variables in the objective.

2. In the second step, we take advantage of some monotonicity properties of the logistic

function. Following the approach used in [6], let us introduce two functions:

𝑓1(𝑥) = 𝑥− ln(1 + 𝑒𝑥)

𝑓1 is strictly increasing and strictly concave. Let 𝑓−1
1 be its inverse.

𝑓0(𝑥) = − ln(1 + 𝑒𝑥)
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𝑓0 is strictly decreasing and strictly concave. Let 𝑓−1
0 be its inverse.

Recall that 𝑦𝑖 is data and takes binary values thus, the first constraint of (2.4) can be

rewritten using the functions 𝑓1 and 𝑓0.

∙ If 𝑦𝑖 = 1

𝛿𝑖 ≤ 𝑦𝑖𝛽𝑘.X𝑖 − ln(1 + 𝑒𝛽𝑘.X𝑖)

becomes

𝛿𝑖 ≤ 𝑓1(𝛽𝑘.X𝑖)⇔ 𝑓−1
1 (𝛿𝑖) ≤ 𝛽𝑘.X𝑖 (2.5)

∙ If 𝑦𝑖 = 0

𝛿𝑖 ≤ 𝑦𝑖𝛽𝑘.X𝑖 − ln(1 + 𝑒𝛽𝑘.X𝑖)

becomes

𝛿𝑖 ≤ 𝑓0(𝛽𝑘.X𝑖)⇔ 𝑓−1
0 (𝛿𝑖) ≥ 𝛽𝑘.X𝑖 (2.6)

Note that in equation (2.6) the sense of the inequality is reversed because 𝑓0 is a

decreasing function.

3. We then introduce one last set of variables defined by:

Δ𝑖 =

⎧⎪⎨⎪⎩𝑓−1
0 (𝛿𝑖) if 𝑦𝑖 = 0

𝑓−1
1 (𝛿𝑖) if 𝑦𝑖 = 1

This definition allows us to rewrite the equations as

𝛿𝑖 = 𝑓1(Δ𝑖)𝑦𝑖 + 𝑓0(Δ𝑖)(1− 𝑦𝑖)

And, replacing 𝛿𝑖 by the previous expression in (2.4), we have
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max
𝛽𝑘,𝑎𝑖,𝑘,Δ𝑖

∑︁
𝑖

𝑓1(Δ𝑖)𝑦𝑖 + 𝑓0(Δ𝑖)(1− 𝑦𝑖)

subject to

Δ𝑖 ≤ 𝛽𝑘.X𝑖, if 𝑦1 = 1 and 𝑎𝑖,𝑘 = 1

Δ𝑖 ≥ 𝛽𝑘.X𝑖, if 𝑦1 = 0 and 𝑎𝑖,𝑘 = 1∑︁
𝑘

𝑎𝑖,𝑘 = 1, 𝑖 = 1, . . . , 𝑁.

𝑎𝑖,𝑘 ∈ {0, 1}, 𝑖 = 1, . . . , 𝑁, 𝑘 = 1, . . . , 𝐾.

𝛽𝑘 ∈ R𝑚, 𝑘 = 1, . . . , 𝐾.

Δ𝑖 ∈ R, 𝑖 = 1, . . . , 𝑁.

(2.7)

4. We then rewrite the “if..then” constraints of problem (2.7) as linear constraints using a

“big M” constant. Let 𝑀 be a large constant (larger than max𝑖,𝑗 𝑋𝑖,𝑗). Then, in (2.7),

we can replace ⎧⎪⎨⎪⎩Δ𝑖 ≤ 𝛽𝑘.X𝑖, if 𝑦1 = 1 and 𝑎𝑖,𝑘 = 1

Δ𝑖 ≥ 𝛽𝑘.X𝑖, if 𝑦1 = 0 and 𝑎𝑖,𝑘 = 1

by

(1− 2𝑦𝑖)Δ𝑖 ≥ (1− 2𝑦𝑖)𝛽𝑘.X𝑖 −𝑀(1− 𝑎𝑖,𝑘) 𝑖 = 1, . . . , 𝑁, 𝑘 = 1, . . . , 𝐾.

In fact,

∙ If 𝑎𝑖,𝑘 = 0 the right-hand side of the previous equation becomes very negative (if

𝑀 is big −𝑀 approximates −∞) and there is no constraint on (Δ𝑖, 𝛽𝑘).

∙ If 𝑎𝑖,𝑘 = 1 and 𝑦𝑖 = 0 then the previous equation becomes Δ𝑖 ≥ 𝛽𝑘.X𝑖.

∙ If 𝑎𝑖,𝑘 = 1 and 𝑦𝑖 = 1 then the previous equation becomes −Δ𝑖 ≥ −𝛽𝑘.X𝑖 ⇔ Δ𝑖 ≤

𝛽𝑘.X𝑖.

This is exactly what is enforced by the two first constraints in (2.7).
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Thus formulation (2.7) can be rewritten as

max
𝛽𝑘,𝑎𝑖,𝑘,Δ𝑖

∑︁
𝑖

𝑓1(Δ𝑖)𝑦𝑖 + 𝑓0(Δ𝑖)(1− 𝑦𝑖)

subject to

(1− 2𝑦𝑖)Δ𝑖 ≥ (1− 2𝑦𝑖)𝛽𝑘.X𝑖 −𝑀(1− 𝑎𝑖,𝑘) 𝑖 = 1, . . . , 𝑁, 𝑘 = 1, . . . , 𝐾.∑︁
𝑘

𝑎𝑖,𝑘 = 1, 𝑖 = 1, . . . , 𝑁.

𝑎𝑖,𝑘 ∈ {0, 1}, 𝑖 = 1, . . . , 𝑁, 𝑘 = 1, . . . , 𝐾.

𝛽𝑘 ∈ R𝑚, 𝑘 = 1, . . . , 𝐾.

Δ𝑖 ∈ R, 𝑖 = 1, . . . , 𝑁.

(2.8)

Finally, we replace 𝑓0 and 𝑓1 by their expression and obtain formulation (2.3).

max
𝛽𝑘,𝑎𝑖,𝑘,Δ𝑖

∑︁
𝑖

Δ𝑖𝑦𝑖 − ln(1 + 𝑒Δ𝑖)

s. t.

(1− 2𝑦𝑖)Δ𝑖 ≥ (1− 2𝑦𝑖)𝛽𝑘.X𝑖 −𝑀(1− 𝑎𝑖,𝑘) 𝑖 = 1, . . . , 𝑁, 𝑘 = 1, . . . , 𝐾.∑︁
𝑘

𝑎𝑖,𝑘 = 1, 𝑖 = 1, . . . , 𝑁.

𝑎𝑖,𝑘 ∈ {0, 1}, 𝑖 = 1, . . . , 𝑁, 𝑘 = 1, . . . , 𝐾.

𝛽𝑘 ∈ R𝑚, 𝑘 = 1, . . . , 𝐾.

Δ𝑖 ∈ R, 𝑖 = 1, . . . , 𝑁.

Proposition 1.2. Formulation (2.3) gives rise to a concave maximization problem with

linear constraints.

Proof. The proof follows as:

∙ 𝑓 : Δ→ Δ𝑦𝑖 − ln(1 + 𝑒Δ) is a strictly concave function.

∙ The constraints in Problem (2.3) are linear in terms of the variables (Δ𝑖, 𝛽𝑘).
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Note that the objective function of (2.3) is the sum of strictly concave functions of a

single variable. Thus its gradient and Hessian are easy to compute. Furthermore, because

of the special shape of the objective function, we can approximate Δ → − ln(1 + 𝑒Δ) by a

piece-wise linear function and get an accurate approximation of the solution by solving a

linear mixed integer program.

2.4.3 Adding clustering constraints

In the previous Section, we have shown that the joint clustering and logistic regression prob-

lem can be reformulated as a concave mixed integer problem. This can be solved efficiently

in terms of computational time with a “large” amount of customers as illustrated in the ap-

plication in Section 2.7. Nevertheless, the formulation proposed in (2.3) leads to overfitting,

clustering constraints need to be added.

Remark 1.1. Formulation (2.3) leads to overfitting.

Proof. Formulation (2.3) does not include any constraint on how customers should be as-

signed to clusters. It just enforces that every customer is assigned to exactly one cluster.

This lack of “clustering rules” leads to overfitting. Intuitively, the formulation allows to clas-

sify the customers according to their purchase behavior (variable 𝑦𝑖), this leads to a perfect

classification on the training set but a total lack of prediction power for new unobserved data

points.

In order to prove this, let us divide the data set into 𝒟𝑏 the subset of buyers (𝑦𝑖 = 1) and

𝒟𝑛𝑏 the subset of non-buyers (𝑦𝑖 = 0). Recall that a model with perfect fitting accurately

predicts the purchase behavior of every single customer. A perfect fitting model predicts

that P(𝑦𝑖 = 1) = 1 for customers in 𝒟𝑏 and P(𝑦𝑖 = 1) = 0 for customers in 𝒟𝑛𝑏. Recall that

the likelihood of a logistic model is given by
∏︀

𝑖 P(𝑦𝑖 = 1|𝑋𝑖)
𝑦𝑖P(𝑦𝑖 = 0|𝑋𝑖)

1−𝑦𝑖 . A likelihood

is always smaller than 1 and a model with perfect fitting achieves a likelihood value of 1,

which translates into a log-likelihood value of 0.

Let us consider that 𝐾 ≥ 2 (otherwise the problem is reduced to a simple logistic re-

gression). Let us also assume without loss of generality that X𝑖 ≥ 0 for all 𝑖. Let us build
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a feasible solution for Problem (2.3) that allocates the customers in 𝒟𝑏 to cluster 1 and the

customers in 𝒟𝑛𝑏 to cluster 2. Let us also set 𝛽1 = 𝐵1 and 𝛽2 = −𝐵1, where 1 is a vector

of ones and 𝐵 is a constant that goes to infinity. Let us also set Δ𝑖 = 𝛽1𝑋𝑖 if 𝑖 ∈ 𝒟𝑏 and

Δ𝑖 = 𝛽2𝑋𝑖 otherwise.

We can verify that this solution is feasible for Problem (2.3) as every customer is assigned

to exactly one cluster and the first constraint of (2.3) is verified.

We then have,

P(𝑦𝑖 = 1|𝑋𝑖, 𝑖 ∈ 𝒞1) =
𝑒𝐵1.𝑋𝑖

1 + 𝑒𝐵1.𝑋𝑖

P(𝑦𝑖 = 0|𝑋𝑖, 𝑖 ∈ 𝒞2) =
1

1 + 𝑒−𝐵1.𝑋𝑖

By definition, 𝑦𝑖 = 1 for every 𝑖 in 𝒞1 and 𝑦𝑖 = 0 for every 𝑖 in 𝒞2 thus the likelihood of this

problem is ∏︁
𝑖∈𝒞1

𝑒𝐵1.𝑋𝑖

1 + 𝑒𝐵1.𝑋𝑖

∏︁
𝑖∈𝒞2

1

1 + 𝑒−𝐵1.𝑋𝑖

which goes to 1 when 𝐵 goes to infinity.

Thus, by defining cluster 1 as the cluster of buyers and cluster 2 as the cluster of non-

buyers and setting 𝛽1 = 𝐵1 and 𝛽2 = −𝐵1, we build a feasible solution to (2.3). When 𝐵

goes to infinity this maximizes the likelihood (value of 1). Thus solving formulation (2.3)

creates perfect fitting.

Formulation (2.3) can still be extremely valuable if we add clustering rules to avoid this

overfitting issue, namely to prevent from allocating customers according to the customer

future purchase behavior (the dependent variable 𝑦). There are several possible ways of

adding such constraints. Our approach is motivated by two main reasons.

First of all, recall the business model of the online retailer. Customers have to be clustered

into categories according to their social activity with transparent and hierarchical rules. If

a customer is strictly more active socially than another he cannot be assigned to a lower

category. Furthermore, customers are allocated to categories following “threshold rules”. For

example, in Figure 1-1, “sharers” are defined as customers with at least 𝑛1 social networks,

𝑛2 friends, 𝑛3 items shared and 𝑛4 reviews. Adding this type of constraints and adding

𝑛1, 𝑛2, 𝑛3, 𝑛4 as decision variables avoids overfitting and allows to implement and optimize
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the retailer business model. Another motivation for these clustering rules is that, as we will

prove later, they can be written as linear constraints on the decision variables. This is a great

advantage, as adding linear constraints to formulation (2.3) does not change the complexity

of the problem.

Definition 1.1. Assume that a set of customers {𝑖 ∈ [1, . . . , 𝑁 ]} each defined by a vector of

non-negative features 𝑥𝑖 ∈ R𝑀 need to be clustered into 𝐾 groups.

A “Threshold rule” is a clustering rule defined by 𝐾 vectors Γ1, . . . ,Γ𝐾 ∈ R𝑀 such that

Γ1
𝑗 ≤ . . . ≤ Γ𝐾

𝑘 for all 𝑗 = 1 . . .𝑀 .

Customer 𝑖 is allocated to cluster 𝑘 if and only if

𝑥𝑖,𝑗 ≥ Γ𝑘−1
𝑗 ∀𝑗 AND ∃𝑗 such that 𝑥𝑖,𝑗 < Γ𝑘

𝑗 (2.9)

where Γ0 = 0

Example 1.1. For the sake of simplicity, we illustrate the definition of a threshold rule in

the simple case where 𝐾 = 2. Note that the same approach can be generalized to any number

of clusters 𝐾.

Assume that we want to build two clusters denoted by “Low” and “High”. Cluster “High”

will capture the social customers and “Low” the rest. Assume that we want to differentiate

the two clusters according to their number of friends (denoted by 𝐹 ) and their number of

reviews (denoted by 𝑅). Then, using the retailer threshold business model we need to define

two threshold values Γ𝑓 and Γ𝑟 and allocate customers to clusters according to the following

rule:

if 𝐹𝑖 ≥ Γ𝑓 AND 𝑅𝑖 ≥ Γ𝑟 then assign 𝑖 to cluster High

else assign 𝑖 to cluster Low (2.10)
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Figure 2-1: Threshold Clustering

This clustering rule is illustrated in Figure 2-1 where cluster High is represented in red and

cluster Low in blue. This follows the retailer business model in our setting and constraints

(2.10) can be rewritten as linear constraints with binary variables.

Proposition 1.3. The constraints defining threshold rules (2.9) can be written as linear

constraints with binary variables.

Proof. We derive the result in the case where 𝐾 = 2. The same approach can be used when

𝐾 > 2. Consider a general setting where we want to cluster according to 𝑀 features rep-

resented by the vector 𝑥𝑖 ∈ R𝑀 for every customer. Let us represent the threshold values in a

vector Γ. Then the constraints in (2.10) can be rewritten

⎧⎪⎨⎪⎩𝑎𝑖,𝐻 = 1 if ∀𝑗 𝑥𝑖,𝑗 ≥ Γ𝑗

𝑎𝑖,𝐿 = 1 if ∃𝑗 such that 𝑥𝑖,𝑗 < Γ𝑗

.

We can easily add the previous rule in our formulation using linear constraints.

Let us define a constant Γ𝑚𝑎𝑥 such that Γ𝑗 ≤ Γ𝑚𝑎𝑥 ∀𝑗. We define this constant using the

maximum value of 𝑥𝑖,𝑗 in the dataset for example. Let us also define 𝜖 a “small number”. (If

𝑥𝑖 has integer values 𝜖 = 0.5 could be an example.)

∙ The statement ∃𝑗 𝑥𝑖,𝑗 < Γ𝑗 ⇒ 𝑎𝑖,𝐿 = 1 can be written in the following way:

𝑎𝑖,𝐿 ≥
1

Γ𝑚𝑎𝑥

(Γ𝑗 − 𝜖− 𝑥𝑖,𝑗)

In fact if 𝑥𝑖,𝑗 < Γ𝑗 then
1

Γ𝑚𝑎𝑥
(Γ𝑗 − 𝜖− 𝑥𝑖,𝑗) > 0 and this will enforce 𝑎𝑖,𝐿 = 1.

If 𝑥𝑖,𝑗 ≤ Γ𝑗 this implies 𝑎𝑖,𝐿 ≥ 0 which does not enforce any additional constraint on

𝑎𝑖,𝐿.
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∙ For the constraint on 𝑎𝑖,𝐻 we have to define the binary variable 𝑏𝑖,𝑗 =

⎧⎪⎨⎪⎩1 if 𝑥𝑖,𝑗 ≥ Γ𝑗

0 otherwse

.

In order to do that we can define 𝑏𝑖,𝑗 as a binary variable and write:

𝑏𝑖,𝑗 ≥
1

Γ𝑚𝑎𝑥

(𝑥𝑖,𝑗 − Γ𝑗) ∀𝑗

1− 𝑏𝑖,𝑗 ≥
1

Γ𝑚𝑎𝑥

(Γ𝑗 − 𝑥𝑖,𝑗) ∀𝑗

and then the constraint “𝑎𝑖,𝐻 = 1 if ∀𝑗𝑥𝑖,𝑗 ≥ Γ𝑗” becomes:

𝑎𝑖,𝐻 ≥
∑︁
𝑗

𝑏𝑖,𝑗 −𝑚+ 1

where 𝑚 is the number of features.

This last constraint enforces 𝑎𝑖,𝐻 = 1 if and only if
∑︀

𝑗 𝑏𝑖,𝑗 = 𝑚, which is equivalent to

𝑥𝑖,𝑗 ≥ Γ𝑗 for all 𝑗.

Finally, the constraints in (2.10) can be written with linear constraints:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑎𝑖,𝐿 ≥ 1
Γ𝑚𝑎𝑥

(Γ𝑗 − 𝜖− 𝑥𝑖,𝑗) ∀𝑖∀𝑗

𝑏𝑖,𝑗 ≥ 1
Γ𝑚𝑎𝑥

(𝑥𝑖,𝑗 − Γ𝑗) ∀𝑖∀𝑗

1− 𝑏𝑖,𝑗 ≥ 1
Γ𝑚𝑎𝑥

(Γ𝑗 − 𝑥𝑖,𝑗) ∀𝑗

𝑎𝑖,𝐻 ≥
∑︀

𝑗 𝑏𝑖,𝑗 −𝑚+ 1 ∀𝑖

𝑏𝑖,𝑗 ∈ {0, 1} ∀𝑖∀𝑗

(2.11)

The same approach can be used with any number of cluster 𝐾. In general it is possible

to implement “If.. then” constraints with linear constraints. Sometimes introduction of

auxiliary binary variables is required. In our application, this does not change significantly

the complexity of our formulation as we already have binary variables and linear constraints.
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Generally the number of features in the clustering (𝑚) is small (4 in Figure 1-1), and we

need to add 𝑚×𝑁 additional binary variables.

2.4.4 Summary

We have built a mixed integer concave optimization problem for joint clustering and logistic

regression. It takes as an input the desired number of clusters 𝐾 and a set of customers,

each defined by two vectors of features: 𝑋𝑖 used in the logistic regression and 𝑥𝑖 used in

the clustering (𝑥 = (𝐹𝑟𝑖𝑒𝑛𝑑𝑠,𝑅𝑒𝑣𝑖𝑒𝑤𝑠) in Example 1.1). It finds the threshold coefficients

Γ1, . . .Γ𝐾 and the logistic regression coefficients 𝛽1, . . . , 𝛽𝐾 that maximize the overall log-

likelihood. This optimally clusters customers into categories according to threshold rules

AND jointly estimate a distinct logistic demand function for each cluster. This allows to

efficiently capture customers’ heterogeneity and build a more accurate demand model dif-

ferentiated across customers’ segments. To conclude, note that we have chosen here to use

threshold rules for the clustering to follow the retailer business model. This is not a require-

ment in our formulation. Any type of linear separators can be used without significantly

increasing the complexity of the problem. In Example 1.1, a hyperplane separator can be

chosen (as illustrated in Figure 2-2). In this case, the decision variable Γ is replaced by the

intercept and slope of the separating hyperplane.

Figure 2-2: Clustering with an hyperplane
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2.5 Joint clustering and multinomial logit

In the previous Section, we have formulated the problem of joint clustering and logistic

regression as a mixed integer concave optimization problem. The same approach can be

used when the customer faces more than two possible choices. We will show here that the

same approach can be extended to multinomial logit choice models.

2.5.1 Multinomial logit choice model

The multinomial logit model is a generalization of the logit model where customers have

the choice between 𝐽 ≥ 2 options. A classical transportation application is when customers

can choose between several transportation means: bus, train, bicycle, car. . . . A probability

is associated with each of the choices according to customer/choice attributes. In a online

retailing setting, customers have the choice between several items on sale. The set of available

options can be {“not to buy”,“buy item 1”,“buy item 2”,“buy item 3”,. . .}. The multinomial

logit model can be derived from the discussion in Section 2.3.2. Let us assume that customers

have the choice between 𝐽 + 1 options where option 0 is the no purchase option and 𝑗 ∈

{1, . . . , 𝐽} are the different purchase options. Let us assume, as in the previous Section, that

customer 𝑖 is characterized by a vector of features 𝑋𝑖. Then a multinomial logit model is

defined by 𝐽 vectors 𝛽1, . . . , 𝛽𝐽 . Customer 𝑖 chooses option 𝑗 ≥ 1 with probability:

𝑒𝛽
𝑗 .X𝑖

1 +
∑︀𝐽

𝑢=1 𝑒
𝛽𝑢.X𝑖

and chooses the no purchase option 𝑗 = 0 with probability:

1

1 +
∑︀𝐽

𝑢=1 𝑒
𝛽𝑢.X𝑖

Note that if 𝐽 = 1 we recover exactly the logit model with binary choice.

2.5.2 Notations and problem definition

We want to generalize the approach presented in Section 2.4 to the case where customers

face more than two choices. We start by introducing the notations we will use in this Section
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and then formulate the joint clustering and multinomial logit problem.

Notations: To be consistent with the previous part we will adopt the following notations:

∙ 𝑖 index of a customer, 𝑖 ∈ {1, . . . , 𝑁}

∙ 𝑘 index of a cluster, 𝑘 ∈ {1, . . . , 𝐾}

∙ 𝑗 index of a choice, 𝑗 ∈ {0, . . . , 𝐽}

∙ 𝛽𝑗
𝑘 parameters of choice 𝑗 in cluster 𝑘

𝛽0
𝑘 is set to 0 for every cluster 𝑘

∙ 𝑋𝑖 ∈ R𝑚 vector of features of customer 𝑖

∙ decision variable that allocates customers to clusters

𝑎𝑖,𝑘 =

⎧⎪⎨⎪⎩1 if customer 𝑖 is allocated to cluster 𝑘

0 otherwise

∙ choice decision variable (data)

𝑦𝑖,𝑗 =

⎧⎪⎨⎪⎩1 if customer 𝑖 chooses option 𝑗

0 otherwise

Every customer makes exactly one choice thus
∑︀

𝑗 𝑦𝑖,𝑗 = 1.

The overall likelihood becomes:

∏︁
𝑖,𝑘,𝑗

(︃
𝑒𝛽

𝑗
𝑘.X𝑖

1 +
∑︀𝐽

𝑢=1 𝑒
𝛽𝑢
𝑘 .X𝑖

)︃𝑎𝑖,𝑘𝑦𝑖,𝑗

=
∏︁
𝑖,𝑘,𝑗

(︃
𝑒𝑦𝑖,𝑗𝛽

𝑗
𝑘.X𝑖

1 +
∑︀𝐽

𝑢=1 𝑒
𝛽𝑢
𝑘 .X𝑖

)︃𝑎𝑖,𝑘

because for every customer
∑︀

𝑗 𝑦𝑖,𝑗 = 1.

Problem Formulation: Similarly to Section 2.4, we want to allocate customers to clusters

(decision variables 𝑎𝑖,𝑘) and find the logistic coefficients 𝛽𝑗
𝑘 (for each cluster and option) in
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order to maximize the overall log-likelihood. The log-likelihood maximization problem can

be written:

max
𝛽𝑗
𝑘,𝑎𝑖,𝑘

∑︁
𝑖,𝑘

𝑎𝑖,𝑘

[︃∑︁
𝑗>0

(︀
𝑦𝑖,𝑗𝛽

𝑗
𝑘.X𝑖

)︀
− ln

(︃
1 +

∑︁
𝑗>0

𝑒𝛽
𝑗
𝑘.X𝑖

)︃]︃

s. t. ∑︁
𝑘

𝑎𝑖,𝑘 = 1, 𝑖 = 1, . . . , 𝑁.

𝑎𝑖,𝑘 ∈ {0, 1}, 𝑖 = 1, . . . , 𝑁, 𝑘 = 1, . . . , 𝐾.

𝛽𝑗
𝑘 ∈ R𝑚, 𝑘 = 1, . . . , 𝐾 𝑗 = 1, . . . 𝐽

(2.12)

We use similar techniques to Section 2.4 to reformulate this problem into a mixed-integer

concave optimization with linear constraints. We start the derivation with the simple case

where 𝐽 = 2 and then show that the same approach can be used for any value of 𝐽 .

2.5.3 Reformulation when customers have two choices

Let us consider the case where 𝐽 = 2. The customer can choose between {“not to buy”,“buy

item 1”,“buy item 2”}. The objective function of problem (2.12) becomes:

∑︁
𝑖,𝑘

𝑎𝑖,𝑘

[︁
𝑦𝑖,1𝛽

1
𝑘 .X𝑖 + 𝑦𝑖,2𝛽

2
𝑘 .X𝑖 − ln

(︁
1 + 𝑒𝛽

1
𝑘.X𝑖 + 𝑒𝛽

2
𝑘.X𝑖

)︁]︁

Proposition 1.4. The joint clustering and multinomial logistic problem with two choices
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and 𝐾 clusters can be reformulated into:

max
𝛽𝑗
𝑘,𝑎𝑖,𝑘,𝛿𝑖,𝑣𝑖

∑︁
𝑖

(1− 𝑦𝑖,0)𝛿𝑖 − ln(1 + 𝑒𝛿𝑖 + 𝑒𝑣𝑖)

s. t.

(−1 + 2𝑦𝑖,0)𝛿𝑖 ≥ 𝑦𝑖,0𝛽
1
𝑘 .X𝑖 −

∑︁
𝑙>0

𝑦𝑖,𝑗𝛽
𝑗
𝑘.X𝑖, if 𝑎𝑖,𝑘 = 1

𝑣𝑖 ≥ 𝑦𝑖,0𝛽
2
𝑘 .X𝑖 + (1− 𝑦𝑖,0)

∑︁
𝑗>0

(1− 𝑦𝑖,𝑗)𝛽
𝑗
𝑘.X𝑖, if 𝑎𝑖,𝑘 = 1

∑︁
𝑘

𝑎𝑖,𝑘 = 1, 𝑖 = 1, . . . , 𝑁.

𝑎𝑖,𝑘 ∈ {0, 1}, 𝑖 = 1, . . . , 𝑁, 𝑘 = 1, . . . , 𝐾.

𝛽𝑗
𝑘 ∈ R𝑚, 𝑘 = 1, . . . , 𝐾 𝑗 = 0, . . . 𝐽

(2.13)

This formulation has a strictly concave objective function and linear constraints.

Proof. The goal is to remove the binary decision variables 𝑎𝑖,𝑘 from the objective function

to make the problem more tractable. This is done in two steps.

Let us focus on a customer 𝑖 and on cluster 𝑘 such that 𝑎𝑖,𝑘 = 1. Let us distinguish two

cases:

∙ If 𝑦𝑖,0 = 1 then 𝑦𝑖,1 = 𝑦𝑖,2 = 0 and the objective function can be rewritten as

− ln(1 + 𝑒𝛽
1
𝑘.X𝑖 + 𝑒𝛽

2
𝑘.X𝑖)

Following the approach used in Section 2.4, we introduce the auxiliary variables 𝛿𝑖 and

𝑣𝑖. Note that we need two variables here instead of one because 𝐽 = 2. Using the

change of variable 𝛿𝑖 = 𝛽1
𝑘 .X𝑖 and 𝑣𝑖 = 𝛽2

𝑘 .X𝑖 we get

max − ln(1 + 𝑒𝛿𝑖 + 𝑒𝑣𝑖)

s. t. 𝛿𝑖 ≥ 𝛽1
𝑘 .X𝑖

𝑣𝑖 ≥ 𝛽2
𝑘 .X𝑖

(2.14)

Note that the equality constraints can be relaxed because the objective is decreasing
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in both variables.

∙ If 𝑦𝑖,0 = 0 then 𝑦𝑖,1 or 𝑦𝑖,2 is equal to 1. Let us define: 𝛿𝑖 = 𝑦𝑖,1𝛽
1
𝑘 .X𝑖 + 𝑦𝑖,2𝛽

2
𝑘 .X𝑖 and

𝑣𝑖 = (1 − 𝑦𝑖,1)𝛽
1
𝑘 .X𝑖 + (1 − 𝑦𝑖,2)𝛽

2
𝑘 .X𝑖. (Let 𝑗, 𝑗̄ ∈ [1, . . . , 𝐽 ], the previous definitions

enforce that if the customer chooses option 𝑗 and rejects choice 𝑗̄ then 𝛿𝑖 = 𝛽𝑗
𝑘.X𝑖 and

𝑣𝑖 = 𝛽 𝑗̄
𝑘.X𝑖.)

and the maximization problem can be reformulated:

max 𝛿𝑖 − ln(1 + 𝑒𝛿𝑖 + 𝑒𝑣𝑖)

s. t. 𝛿𝑖 ≤ 𝑦𝑖,1𝛽
1
𝑘 .X𝑖 + 𝑦𝑖,2𝛽

2
𝑘 .X𝑖

𝑣𝑖 ≥ (1− 𝑦𝑖,1)𝛽
1
𝑘 .X𝑖 + (1− 𝑦𝑖,2)𝛽

2
𝑘 .X𝑖

(2.15)

where, again, the equality constraints have been relaxed because the objective is in-

creasing in 𝛿 and decreasing in 𝑣.

Similarly to Section 2.4, we can put these two cases together using linear constraints and

obtain formulation (2.13).

Finally, as illustrated in the previous Section we can translate the “If 𝑎𝑖,𝑘 = 1 then...”

constraints into linear constraints by introducing a “big M” parameter.

Again, the objective function of problem (2.13) is strictly concave and the constraints

are linear. Similarly as before, we can then add clustering constraints to avoid overfitting.

We will not present the details here as the implementation is exactly the same as when the

choice is binary.

2.5.4 Reformulation when 𝐽 ≥ 2

The same exact approach can be used in the case where 𝐽 ≥ 2. The steps of the reformulation

are similar to the case 𝐽 = 2 but in addition we have to make a distinction between the

customers that choose the no buy option and the others. We then add auxiliary variables

for every pair (customer, choice) and we take advantage of the monotonicity of the objective

function to relax the change of variable equalities into inequalities.
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Proposition 1.5. The joint clustering and multinomial logistic problem with 𝐽 choices and

𝐾 clusters can be reformulated into:

max
𝛽𝑗
𝑘,𝑎𝑖,𝑘,𝛿𝑖,𝑣

𝑗
𝑖

∑︁
𝑖

(1− 𝑦𝑖,0)𝛿𝑖 − ln(1 + 𝑒𝛿𝑖 +
∑︁
𝑙≥2

𝑒𝑣
𝑗
𝑖 )

s. t.

(−1 + 2𝑦𝑖,0)𝛿𝑖 ≥ 𝑦𝑖,0𝛽
1
𝑘 .X𝑖 −

∑︁
𝑗>0

𝑦𝑖,𝑗𝛽
𝑗
𝑘.X𝑖, if 𝑎𝑖,𝑘 = 1

𝑣𝑗𝑖 ≥ 𝑦𝑖,0𝛽
l
𝑘.X𝑖 + (1− 𝑦𝑖,0)

[︀
(1− 𝑦𝑖,𝑗)𝛽

𝑗
𝑘.X𝑖 + 𝑦𝑖,𝑙𝛽

1
𝑘 .X𝑖

]︀
, if 𝑎𝑖,𝑘 = 1∑︁

𝑘

𝑎𝑖,𝑘 = 1, 𝑖 = 1, . . . , 𝑁.

𝑎𝑖,𝑘 ∈ {0, 1}, 𝑖 = 1, . . . , 𝑁, 𝑘 = 1, . . . , 𝐾.

𝛽𝑗
𝑘 ∈ R𝑚, 𝑘 = 1, . . . , 𝐾 𝑗 = 0, . . . 𝐽

(2.16)

This formulation has a strictly concave objective function and linear constraints.

The proof can be found in Appendix A.2.

2.6 Data

In this Section, we use the data from SHOP.CA to build a Logistic Clustering to predict

future consumption. First, we explain how we transformed our data set for this purpose.

We start by splitting our data into two time periods that we denote “Past” and “Future”.

The Past period is used to build the customers’ features (𝑋𝑖) and we use the Future period

to determine the indicator of future purchases (𝑦𝑖 ∈ {0, 1}).

Definition 1.2. We define

∙ Past Period: starts January 1st 2013 and ends October 31st 2013 (10 months)

∙ Future Period: starts November 1st 2013 and ends February 20th 2014 (4 months)

On SHOP.CA’s website, the mean return time (defined as the mean time between two

consecutive purchases for a customer) is three months. We choose a four months period for

the Future to capture a fraction large enough of returning customers. We start by considering

49



the set of customers that made at least one purchase and at least one social activity in the

Past Period.

From the Past Period data we extracted social and transaction history features for every

customer, the list of features we considered is reported in Table A.2 in the Appendix. Using

the data in the Future period we build the customer specific indicator variable defined as

𝑦𝑖 =

⎧⎪⎨⎪⎩1 if customer 𝑖 makes at least a purchase in the Future period

0 otherwise

2.6.1 Interested customers

It is common practice, when trying to predict customers’ purchase behavior, to eliminate

customers that are “not interested”. Traditionally, the only tool online retailers use to define

“interested customers” is transaction history. Thus, customers who have not done a purchase

for a long period of time (“long” is defined with respect to the average return time to the

website, for example) are considered as non interested (or as churners) and are discarded

from the data used in the analysis. An example of a non interested customer is a customer

who creates an account, makes a purchase and then never visits the website again. In e-

commerce, this type of behavior is common because online retailers often offer important

discounts on the first purchase to attract new clients. “Not interested” customers need to

be removed from the data set to build an effective demand model. In our setting, we have

several tools to define interested and non interested customers. We have access to transaction

history, but also browsing history (customers log ins) and social interactions. This allows

for a more accurate definition of interested customers. A customer with frequent log ins

or frequent social interactions can be categorized as interested. This would not have been

possible if we had access only to transaction data. Removing from the analysis non interested

customers is a crucial step and can be assimilated to outliers’ detection. First of all, it allows

to remove customers on which the retailer has too little information to be able to predict

their future behavior. Secondly, and this is particularly important when dealing with social

features, it reduces the sparsity of the data. As discussed before, when dealing with multiple

customers’ features, it is easy to encounter data sparsity: most of the features have a really
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high mode at 0. Non interested customers create sparsity. Thus, by removing them, we build

a more balanced data set. This gives more room to predictive algorithms to build efficient

and robust predictions for future purchase behavior.

Our definition of “interested customers” comes from a discussion with SHOP.CA and their

experience on their customers’ purchase behavior. It is motivated by three main principles.

First of all, we want to use only Past data (transaction and social interactions). Then, we

want to capture customers who are active enough recently in terms of social interactions

and purchases. In order to quantify “active” and “recently”, we face a trade-off between

eliminating all non interested customers and having a data set large enough to train a

predictive model. We use the following definition of interested customers. Note that the 4

months time period is motivated again from the mean return time on the website.

Definition 1.3. We define as “interested customers” all the customers with, in the last 4

months of the Past period, at least:

∙ one purchase

∙ one social activity

∙ two active days

Focusing only on interested customers, we create a data set of 503 customers where 37%

of them make a purchase in the future. Note that the definition of interested customers

is only based on Past data and allows to consider only customers who are active on the

website recently and thus who are potential candidates for making purchases in the future.

The vast majority of the customers we discarded do not make a purchase in the future.

Figure A-3 summarizes the histograms of some social and transaction features for interested

customers. Note that focusing on interested customers allows to decrease the sparsity of

the data, but the distributions of social activities are still skewed towards 0. Histograms of

the distributions of some key features of interested customers are reported in Figure A-3 in

Appendix A.1.

Restricting the analysis to interested customers has thus two main advantages. First, it

allows to create a more balanced data set where a significant amount of customers buy in the
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future. This helps comparing the performance of different predictive algorithms. Secondly,

the data set becomes less sparse.

2.7 Implementation and results

In this Section, we solve the formulation presented in Section 2.4 for the set of interested

customers (Definition 1.3). We then analyze its predictive performance and compare it to

other predictive models that we use as benchmarks. We show that using clustering and

incorporating social features increases significantly the predictive power. Finally, we analyze

the sensitivity of our model to the data with a bootstrap approach.

2.7.1 Joint clustering and logistic regression for the set of interested

customers

We focus on the set of interested customers defined in Definition 1.3. Because of the sparsity

of the data, we build 𝐾 = 2 clusters.

Clustering features selection (𝑥)

Customers are assigned to clusters using a threshold implementation according to a vector of

features 𝑥 that can incorporate social or transaction history from the Past Period. We want

to choose the features present in 𝑥 in order to build two clusters approximately balanced (i.e.

with approximately the same number of customers in each cluster). As explained previously,

most of interested customers have few social interactions. Thus, it was not possible to include

the social features presented in Table A.2. Because of the structure of the threshold rules, the

vast majority of the customers would have been assigned to cluster “Low”. Thus we include

only the feature “Number of Purchases” in the clustering vector 𝑥. This choice is exclusively

motivated by the sparsity issue. With a richer data set in terms of social interactions, one

can try different combinations of features for the vector 𝑥 in order to have the best prediction

fit.

52



Regression features selection (𝑋)

To select the features to be included in the logistic model (𝑋) we use a greedy backward

selection strategy. We start by considering in vector 𝑋 all the features presented in Table

A.2 and get the threshold value Γ and the logistic coefficients 𝛽1 and 𝛽2. Then, for each

cluster separately, we run a logistic regression and compute the standard deviation and p-

value for every feature. We use these p-values to eliminate in an iterative way the features

that have p-values above 0.05 for both clusters. Note that the coefficients 𝛽1 and 𝛽2 found

by the joint formulation and the logistic regressions are the same, we use the second stage

regression only to get p-values and select significant features.

Solving the joint formulation

As mentioned in Section 2.4, the objective function of problem (2.3) is the sum of strictly

concave functions of one variable:
∑︀

𝑖 𝑓𝑖(Δ𝑖), where 𝑓𝑖(𝑥) = 𝑦𝑖𝑥− ln(1+𝑒𝑥). The constraints

of problem (2.3) are linear. In order to efficiently solve this problem, we approximate the

functions 𝑓𝑖 by piecewise-linear functions and transform problem (2.3) into a linear mixed-

integer program. Note the specific shape of the functions 𝑓𝑖 are illustrated in Figures 2-3

and 2-4. 𝑓1 and 𝑓0 have linear asymptotes in + and − infinity, this allows for accurate

approximations by piece-wise linear functions, without having to introduce a large number

of breakpoints (only 3 are used in Figures 2-3 and 2-4).
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Figure 2-3: 𝑓1(𝑥) = 𝑥− ln(1 + 𝑒𝑥)
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Figure 2-4: 𝑓0(𝑥) = − ln(1 + 𝑒𝑥)
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Solving the joint clustering and logistic regression problem takes under 10 minutes with

a laptop with Intel Core i5-2430M CPU with 2.40 GHz and 2.40 GHz processor, 4 GB

RAM and 64-bit Windows operating system. This is a reasonable run time for the demand

estimation problem as it does not need to be updated as frequently.

Results

With the data set of “interested customers” and using Number of Past Purchases for cluster-

ing we find that the threshold value Γ = 3. Thus, customers with less than 3 Past Purchases

are assigned to cluster Low and customers with at least 3 Past Purchases are assigned to

cluster High. Out of the 503 interested customers, 212 customers are in cluster Low and 291

are in cluster High. This creates balanced clusters in terms of number of customers.

The regression coefficients and significant variables for each cluster are reported in Tables

2.1 and 2.2. Overall the variables Past Purchases, Days since last log in, Reviews and

Successful Referrer are significant. Note that the signs of the coefficients are consistent: the

farther in time a customer’s last log in, the lower the probability to buy for that customer.

Past Purchases, Reviews and Successful Referrer have a positive impact on the probability

to buy. Also note that the two clusters do not have the same set of significant features.

This illustrates the flexibility of the Logistic clustering algorithm that is able to capture the

different behaviors of the population segments.

Estimate Std. Error z value P(> |𝑧|)
Intercept -0.9135 0.3473 -2.63 0.0085**

Days since last log in -0.0133 0.0065 -2.03 0.0428*
Reviews 0.0924 0.0509 1.81 0.0694*

Successful Referrer 1.2384 0.4115 3.01 0.0026**
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

Table 2.1: Regression results for cluster Low

Performance

There are several possible ways to evaluate the performance of a probabilistic classifier. We

analyze the predictive power of our model looking at its confusion matrix and ROC curve.
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Estimate Std. Error z value P(> |𝑧|)
Past Purchases 0.0017 0.0004 4.25 < 10−4***

Days since last log in -0.0290 0.0041 -7.07 < 10−11***
Successful Referrer 0.7338 0.2494 2.94 0.0033**

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

Table 2.2: Regression results for cluster High

Confusion matrix A logistic model predicts a probability 𝑝𝑖 to buy for every customer.

We can transform it into a binary classifier (that predicts a binary value: whether the

customer is going to make a purchase in the future or not) by choosing a threshold value

𝛾 and predicting that all the customers with 𝑝𝑖 > 𝛾 are buyers. In this case we choose a

priori the same threshold value for the two clusters: 𝛾 = 0.5. This is validated for cluster

High by the ROC curve plotted in Figure 2-6 ("top left corner" of the curve). Note that the

hyper parameter 𝛾 can be tuned (and different values can be chosen for the two clusters)

using cross-validation. We do not use this approach here to avoid overfitting the data. We

can evaluate the predictive performance of a binary classifier looking at its confusion matrix

and at some associated metrics.

Tables 2.3 and 2.4 represent the confusion matrix and the accuracy, specificity, sensitivity

and precision for the two clusters. A detailed presentation of how a confusion matrix is built

and definitions of its associated metrics can be found in Appendix A.3. In a confusion matrix,

the rows represent the actual customer behavior and the columns represent the prediction.

For example, in cluster Low there are 5 customers who did not make a purchase (𝑦𝑖 = 0)

but for whom we predicted that they were buyers. Accuracy, specificity, sensitivity and

precision are computed from the confusion matrix and measure the quality of the prediction

conditioned on a column or a row of the table (see Appendix A.3). A perfect classifier

achieves 100% score for each of these metrics.

We can see that cluster Low is unbalanced: 76% of its customers do not make a pur-

chase. Recall that cluster Low is the set of less frequent customers with less than three Past

Purchases, it makes sense that a low percentage of them makes a purchase in the future.

We also have less information about these customers, and this makes the prediction more

challenging. Our model correctly classifies most of the customers as non-buyers (156 out of

212) and has high scores for accuracy, specificity and precision. The only low score is the
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sensitivity that captures the number of correctly classified customers among the buyers (here

13 out of 38+13). This is not surprising because among non frequent customers, the model

probably does not have enough information to correctly identify all the buyers.

Cluster High is balanced: almost half of the customers make a purchase in the future.

Cluster High is the cluster of frequent customers, the model has more information about the

customers and is able to make more accurate predictions on customers’ future behavior. We

observe good scores for the four metrics we considered.

In summary, the in sample confusion matrix suggests a good overall performance of the

algorithm. Further analysis is done by comparing the performance of our algorithm relative

to two benchmarks (2.7.2) and analyzing the sensitivity of the parameters (2.7.3).

Prediction

0 1

𝑦𝑖
0 156 5

1 38 13

Proportion of non-buyers 76%

Accuracy 80%

Specificity 97%

Sensitivity 25%

Precision 72%

Table 2.3: Confusion Matrix for cluster Low

Prediction
0 1

𝑦𝑖
0 129 26
1 43 93

Proportion of non-buyers 53%
Accuracy 76%
Specificity 83%
Sensitivity 68%
Precision 78%

Table 2.4: Confusion Matrix for cluster High

AUC and ROC A logistic model predicts a probability for every customer and is not a

simple binary classifier. A way to estimate the predictive performance of these probabilities

that does not require the choice of a specific threshold value 𝛾 is the ROC curve (Receiver

Operating Characteristic). The ROC curve represents, for different values of 𝛾 ∈ (0, 1)

the true positive and false positive rates. A random classifier (that predicts 1 with 50%

probability) has a ROC curve aligned with the first diagonal. A perfect classifier has a false

positive rate of 0 and a true positive rate of 1 (top left corner of the plot) for every value of
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𝛾. Thus, looking at the ROC curve is a good way of evaluating the performance of the model

for different values of 𝛾 > 0. A bad probabilistic classifier has a ROC curve close to the first

diagonal, a good one gets close to the top left corner. A quantitative way of evaluating a

ROC curve is computing the Area Under Curve (AUC), that geometrically is the area under

the ROC curve and represents the probability that, given two customers one with 𝑦𝑖 = 1

and the other 𝑦𝑖 = 0, the model is able to correctly determine which one is which. Figures

2-5 and 2-6 represent the ROC curves for the two clusters. The AUC for cluster Low is 69%

and 81% for cluster High. Again, we can notice a better predictive performance in cluster

High, this is due to the sparsity of the data for non-frequent customers. Overall, the ROC

curves and AUC scores show a good performance of the probabilistic classifier. Note that,

on Figures 2-5 and 2-6 the curve are labeled by the corresponding values of 𝛾. To build an

effective binary classifier we need to choose the classifier with the highest pair (False Positive

Rate, True Positive Rate). For both plots 𝛾 = 0.5 seems a good choice, and this validates

the choice done in building the confusion matrix in the previous paragraph.
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Figure 2-5: ROC curve for cluster Low
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Figure 2-6: ROC curve for cluster High

2.7.2 Comparing to alternative approaches

In this Section, we compare the performance of our predictive model to a different benchmark.

We want to evaluate the impact of using social features and of clustering customers on the

predictive performance.

We define:
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1. Baseline: a simple model that predicts the most frequent outcome for every customer

(here as the majority of the customers do not buy in both clusters it predicts that

nobody buys in the future)

2. Benchmark: joint clustering and logistic regression that does not use social features

(only transaction history)

3. Aggregated model: a model that does not use clustering but predicts customers’

probability to buy using a single logistic regression model (it can incorporate social

features)

A detailed description of these models is presented in Appendix A.4.

We want to compare the out of sample accuracy of logistic clustering to the three bench-

marks. In order to do that,we randomly split the data set of interested customers into a

training set of 302 customers and a test set of 201 customers. In order to have a consistent

baseline, we keep the percentage of buyers and the ratios between clusters Low and High

constant in the the training and test sets. We train the four models on the training set and

report their out of sample accuracy (computed on the test set) in Table 2.5. Notice that

the accuracy of the Logistic Clustering (rounded to the nearest integer) does not change

from the result presented in the confusion matrix. This suggests that Logistic Clustering

is a robust model that can be consistently generalized to include new data points. We can

see that Logistic Clustering significantly outperforms the Baseline and the Benchmark. On

the entire data set, Logistic Clustering has correctly classified 15% more customers than the

Baseline. Note that Logistic Clustering also outperforms the Aggregated model, but the dif-

ference between their performances is smaller. The intuition is that, with a clustering step,

we are able to build a more accurate and robust model that captures the different aspects

influencing the different segments of the population.

We can conclude that incorporating social features for demand prediction significantly

increases the predictive performance. Furthemore, smartly clustering customers into cate-

gories creates a more robust and flexible model that is able to capture segments’ specificity.

Note that with a richer data set better performance can be achieved and the impact of

clustering can become even more valuable.
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Model Cluster Low Cluster High Entire data set

Logistic clustering 79% 77% 78%

Baseline 76% 53% 63%

Benchmark 75% 64% 69%

Aggregated model 75% 74% 74%

Table 2.5: Out of sample accuracy of different models

2.7.3 Sensitivity Analysis

We have performed the analysis of the Logistic Clustering algorithm with a set of 503 cus-

tomers because of data sparsity. This number of customers is not really large and it is

important to check the sensitivity of our results with respect to the data. In Section 2.7.2,

we divide the set of interested customers into a training and a test set and we compute the

out of sample accuracy. In what follows, we use a different approach based on bootstrap to

evaluate the sensitivity of the Logistic Clustering Parameters to the data.

Bootstrap approach

for 𝑏 = 1 . . . 𝐵 bootstrap repetition

∙ Generate a bootstrap sample of size 503 with replacement from the set of interested

customers

∙ run the Logistic Clustering algorithm

∙ store the value of the threshold Γ̂𝑏 and the regression coefficients 𝛽1𝑏 and 𝛽2𝑏

This allows us to approximate the distribution of Γ̂, 𝛽1 and 𝛽2 and their sensitivity to

the data.

We simulate 𝐵 = 100 bootstrap iterations and we reproduce our results in Figure 2-7.

The top plots are box-plots of the logistic regression coefficients for significant features for

the two clusters. In a box-plot, the thick horizontal line represents the median and the box

represents the 25 and 75 quantiles. The Inter Quartile Range is defined as the distance

between the 25 and the 75 quantiles. Outliers (points which distance from the median is
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larger than 1.5 times the inter quartile range) are represented by a circle. We added a red

horizontal line representing the value estimated with the original data set (from Tables 2.1

and 2.2). First of all, notice that the red line falls inside the box and in most of the cases is

close to the median. This suggests that our model is robust to the data. Secondly, the signs

of the coefficients of the significant variables are consistent. For example, for Days since last

log in in cluster High, the estimated coefficient from Table 2.2 is negative and in the box-plot

only points defined as outliers are positive. This is another indicator of the robustness of

the model. Finally, note that, thanks to the bootstrap approach, we are able to estimate the

distribution of the threshold Γ̂. We can see that, in our simulations, Γ̂𝑏 takes values between

2 and 7 with more than half of the values being between 3 and 4. This is another indicator

of the robustness of our model.

To conclude, more data would have been extremely valuable for the performance of our

model. Nevertheless, a sensitivity analysis based on bootstrap resampling shows that the

estimated parameters are robust with respect to the data variability.

2.8 Conclusions

We considered a set of customers characterized by their transaction and social interactions

history. The goal of this research was to define segments in the population using transparent

and hierarchical rules in order to have a better demand estimation. In Section 2.4, we showed

that the problem of joint clustering and logistic regression can be formulated as a strictly

concave mixed-integer problem and can be solved efficiently by commercial software. In

Section 2.5, the same approach is extended to the multinomial logit model where customers

can choose between a set 𝐽 of items to purchase. Finally, in Section 2.7, we apply the

Logistic Clustering algorithm to SHOP.CA data. We analyze its performance and compare

it to alternative predictive models. Our model has a 78% accuracy on the set of interested

customers and significantly outperforms the classical models we use as benchmarks. We

show that adding social features to the model significantly improves the predictive accuracy.

For example, in this specific application, we show that the number of reviews written, the

number of successful recommendations sent and the days since the last log in are good
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Figure 2-7: Bootstrap sensitivity results

predictors of the customer future purchase behavior. This suggests that incorporating social

interactions in demand models can be extremely valuable for online retailers. In addition,

when facing heterogeneous customers, splitting customers into segments is extremely valuable

and allows to capture the differences in purchase behaviors across the population segments.

In our application, we implemented Threshold Rules to define the clusters but this is not

a constraint of the algorithm. Any polyhedral separator can be used. To conclude, even

if more testing with different data sets is needed, we believe that the Logistic Clustering

algorithm is a valuable and flexible tool to jointly find population segments and estimate

their demand function with a logit choice model.
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Chapter 3

Price sensitivity estimation with missing

data

3.1 Introduction and Motivation

A key aspect in e-commerce is understanding how customers respond to discounts (that we

will call rewards here). There are multiple possible sources of rewards: coupons and promo

codes offered on social networks, targeted promotions for a short period of time (Cyber

Monday for example), cash-back earned after a previous purchase. . . Not only rewards come

from different sources, they can also be redeemed in different ways: they range between

a fixed price discount on a specific category or item ($10 off a specific T-shirt or brand)

to a percentage of discount applied to any purchase. These different vehicles for rewards

have different impacts on customers. In traditional retailing, the promotions vehicles used

simultaneously are often limited, it is possible to keep track of the rewards used and the

number of customers that received them in order to evaluate the impact of each of these

vehicles. In online retailing, with a large amount of items on sale and different promotion

vehicles used simultaneously, it is impossible to keep track of which rewards were offered

to which customers. In a given day, multiple promo codes with different values can be

offered on social networks, and different promotions can be active on different items. In this

context, it is impossible to know which customers are “aware” of which rewards. Nevertheless,

when a customer makes a purchase, the retailer keeps track of the type of rewards used
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and their amount. This situation can be described as a problem of missing data: for the

customers that make a purchase, the retailer knows exactly what is amount of rewards

they used and what was its source, but for non-buyers the retailer does not know what is

the amount of discount they were offered. Understanding the impact of different types of

rewards on different customers is key to build effective pricing strategies. The problem of

missing or incomplete data has been widely studied in the Revenue Management literature.

The classical example is an airline reservation website where all the transactions are recorded

but there is no record of “the outside-option”: the customers that visit the website, observe

the prices and decide not to buy or to buy from a different carrier (see [9] or [13]).

In our specific problem, the problem is twofold. We first need to understand how rewards

are allocated between customers. For example, if rewards are offered through social networks

or friends’ recommendations, social customers are more likely to receive these offers, while

if they are offered through the retailer website, frequent customers will see them. After

modeling the distribution of rewards, we need to understand how customers respond to

these rewards by adding a price sensitivity component in the customer demand function.

Contributions: In a traditional parametric approach, the EM algorithm can be used to

solve this incomplete data problem. The main contribution of this work is a generalization

of the EM algorithm that allows a non-parametric estimation of the distribution of rewards.

This approach, denoted by NPM (“Non Parametric Maximization”), is more flexible and

robust and can be applied without restrictive hypothesis on the shape of the distribution of

rewards. With a logistic demand function, we show that the NPM is a consistent estimator

of the price sensitivity and distribution of rewards. Furthermore, with extensive simulations,

we show that the NPM converges significantly faster (3 times faster on average) than the

EM algorithm.

3.2 Model description

Consider a retailer selling a product online. He faces a set of customers where each customer

is defined by 𝑋𝑖 a set of observable (by the retailer) characteristics: (past purchases, social

64



activities, social interactions, friends etc.). Furthermore, each customer is assigned to a

level of reward (that corresponds to a percentage of discount). These rewards can come

from multiple sources: cashback from previous purchases, promotions in a special period of

time, coupons or promo codes promoted through social media etc. We assume that active

consumers (in terms of social networks and past purchases) are more likely to receive high

level of rewards. Customers that are very active on social networks are more likely to be

aware of special promotions or promo codes posted by the retailer on these platforms. Other

customers may have cashback earned on previous purchases. Mathematically, we assume that

every customer’s rewards level, denoted by 𝑅𝑖, is random and lies on a finite and discrete

set ({0%,1%,5%,10%} for example). We also assume that the distribution of 𝑅𝑖 depends on

the customers’ characteristics.

3.2.1 Model

We assume that the decision process of customer 𝑖 is in two steps:

1. The customer is assigned to a random reward level 𝑅𝑖. We assume that 𝑅𝑖 lies in a

discrete and finite set ℛ and that distribution of 𝑅𝑖 depends on a vector of customer

features denoted 𝑋𝑖 . We don’t assume a specific form for this distribution and we

denote P(𝑅𝑖 = 𝑟|𝑋𝑖) = 𝑓𝑋𝑖
(𝑟).

2. After observing his reward level 𝑅𝑖, the customer decides whether to make a purchase

according to a logistic model.

3.2.2 Estimation Problem

Let us assume that the retailer wants to estimate customers’ purchase behavior using only

transaction data. Given a dataset 𝒟, this means that for every customer 𝑖 we observe his

vector of characteristics and whether he decides to make a purchase. For the customers that

made a purchase, we also observe the level of rewards they received 𝑅𝑖. For the customers

that did not make a purchase we do not observe 𝑅𝑖. This is thus an estimation problem with

missing data.

Define
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∙ 𝑖: index of a customer

∙ 𝑁 : total number of customers (data)

∙ 𝑋𝑖: vector of features of customer 𝑖 (data)

∙ 𝑅𝑖: reward offered to customer 𝑖 (data only for buyers)

∙ 𝑦𝑖: binary variable that indicates whether the customer makes a purchase (data)

∙ 𝒟𝑏: subset of buyers (subset of data for which we have complete information)

Let us also assume that 𝑅 lies in a discrete set 𝑅𝑖 ∈ ℛ = {𝑟1, . . . , 𝑟𝐾}. Let us denote :

P(𝑅𝑖 = 𝑟|𝑋𝑖) = 𝑓𝑋𝑖
(𝑟)

and

P(𝑦𝑖 = 1|𝑅𝑖, 𝑋𝑖) =
𝑒𝛽.𝑋𝑖+𝛽𝑟𝑅𝑖

1 + 𝑒𝛽.𝑋𝑖+𝛽𝑟𝑅𝑖

Assumption 2. We assume that 𝑅𝑖 and 𝑋𝑖 are independent.

We introduce this assumption to avoid colinearity between the logistic regression features

(𝑋𝑖, 𝑅𝑖). A sufficient condition is that 𝑋𝑖 is a set of independent features that can be split

into two disjoint subsets 𝑋1
𝑖 ,𝑋

2
𝑖 where 𝑓 depends only on 𝑋1 and P(𝑦𝑖 = 1|𝑅𝑖, 𝑋𝑖) depends

only on 𝑋2. This condition is, of course, not necessary but avoids colinearity in the regressors

and simplifies the analysis. In the rest of this chapter, we will assume that assumption 2

holds.

We want to estimate the distribution function 𝑓 and the parameters of the logistic regression(𝛽, 𝛽𝑟)

using only transaction data, this is an estimation problem with missing data.

We will use the following definition of consistency:

Definition 2.1. Let 𝑁 be the number of customers. 𝜃𝑁 is a consistent estimator of 𝜃0 if 𝜃𝑁

converges to 𝜃0 in probability:

𝜃𝑁
P−→

𝑁→∞
𝜃0
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We will need to compute local averages of functions, we will use the following notation

to represent the local average of the function 𝑓 within a neighborhood of 𝑥 with size 𝜖.

Ê𝑋𝑖≃𝑥(𝑓)
𝑑
=

∑︀
𝑖 1|𝑋𝑖−𝑥|<𝜖𝑓(𝑋𝑖)∑︀

𝑖 1|𝑋𝑖−𝑥|<𝜖

In the following, we will not explicitly denote the value of 𝜖 and keep in mind that it is a

parameter that has to be tuned.

3.3 Motivation: missing data approach

In this Section, we build the likelihoods of complete and incomplete data sets.

3.3.1 Complete data likelihood

If we consider a complete data set, i.e. where the retailer observes the rewards for every

customer and whether they make a purchase or not, the likelihood for a data point (𝑥, 𝑟, 𝑦)

can be decomposed in two steps:

∙ If a customer has a features’ vector 𝑋𝑖 = 𝑥 then the corresponding probability of

receiving the reward level 𝑟 is P(𝑅𝑖 = 𝑟|𝑋𝑖 = 𝑥) = 𝑓𝑥(𝑟)

∙ If a customer has a features’ vector 𝑋𝑖 = 𝑥 and received a reward level 𝑅𝑖 = 𝑟 then the

corresponding purchase probability is given by P(𝑦𝑖 = 1|𝑋𝑖 = 𝑥,𝑅𝑖 = 𝑟) = 𝑒𝛽.𝑥+𝛽𝑟𝑟

1+𝑒𝛽.𝑥+𝛽𝑟𝑟

and P(𝑦𝑖 = 0|𝑋𝑖 = 𝑥,𝑅𝑖 = 𝑟) = 1
1+𝑒𝛽.𝑥+𝛽𝑟𝑟 .

∙ Finally, the likelihood of a data point (𝑥, 𝑟, 𝑦) is

𝑦𝑓𝑥(𝑟)
𝑒𝛽.𝑥+𝛽𝑟𝑟

1 + 𝑒𝛽.𝑥+𝛽𝑟𝑟
+ (1− 𝑦)𝑓𝑥(𝑟)

1

1 + 𝑒𝛽.𝑥+𝛽𝑟𝑟

As 𝑦 ∈ {0, 1} the first term of the sum represents a buyer and the second term repre-

sents a non-buyer.
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Thus, the complete data log-likelihood becomes

ℒ𝑐(𝒟, 𝛽, 𝑓) =
∑︀𝑁

𝑖=1 𝑦𝑖 log
(︁
𝑓𝑋𝑖

(𝑅𝑖)
𝑒𝛽.𝑋𝑖+𝛽𝑟𝑅𝑖

1+𝑒𝛽.𝑋𝑖+𝛽𝑟𝑅𝑖

)︁
+(1− 𝑦𝑖) log

(︁
𝑓𝑋𝑖

(𝑅𝑖)
1

1+𝑒𝛽.𝑋𝑖+𝛽𝑟𝑅𝑖

)︁ (3.1)

3.3.2 Incomplete data likelihood

When the rewards offered to non-buyers are missing, the likelihood for buyers can be built

using the previous approach, while for non-buyers the expression is slightly different.

∙ For buyers, the data is complete thus the likelihood of a data point (𝑥, 𝑟, 𝑦 = 1) is

𝑓𝑥(𝑟)
𝑒𝛽.𝑥+𝛽𝑟𝑟

1+𝑒𝛽.𝑥+𝛽𝑟𝑟 .

∙ For non-buyers, we do not observe the reward level 𝑅𝑖 and the likelihood of a data

point (𝑥,∅, 𝑦 = 0) is given by the law of iterated expectations:

P(𝑦 = 0|𝑥) = E [P(𝑦 = 0|𝑥,𝑅)]

and the likelihood for a non-buyer becomes:

log

(︃∑︁
𝑟∈ℛ

𝑓𝑋𝑖
(𝑟)

1

1 + 𝑒𝛽.𝑋𝑖+𝛽𝑟𝑟

)︃

The incomplete data log-likelihood is:

ℒ𝑖(𝒟, 𝛽, 𝑓) =
∑︀𝑁

𝑖=1 𝑦𝑖 log
(︁
𝑓𝑋𝑖

(𝑅𝑖)
𝑒𝛽.𝑋𝑖+𝛽𝑟𝑅𝑖

1+𝑒𝛽.𝑋𝑖+𝛽𝑟𝑅𝑖

)︁
+(1− 𝑦𝑖)

(︁
log
(︁∑︀

𝑟∈ℛ 𝑓𝑋𝑖
(𝑟) 1

1+𝑒𝛽.𝑋𝑖+𝛽𝑟𝑟

)︁)︁ (3.2)

To illustrate the expression of this likelihood, let us consider a simple example where we

assume a parametric shape for 𝑓 : 𝑓𝑋𝑖,𝛼 where 𝛼 is a set of parameters. Let us assume that

we are just interested in whether a customer receives a reward or not: ℛ = {0, 1}. Let us

also assume that, the probability of receiving a reward is a linear function of the features of

the customer:

P(𝑅𝑖 = 1|𝑋𝑖) = 𝛼.𝑋𝑖
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where 𝛼 is a vector. Then we have

𝑓𝑥(1) = 𝛼.𝑥 and 𝑓𝑥(0) = 1− 𝛼.𝑥

In this setting, the incomplete data likelihood ℒ𝑖 can be written in terms of the data and

the pair (𝛽, 𝛼) and we can estimate these parameters by maximizing the incomplete data

log-likelihood with respect to (𝛽, 𝛼). Unfortunately, with a large number of customers and a

multidimensional vector of features, this approach can be numerically intensive. In addition,

we can show that, in general, ℒ𝑖 is neither concave nor quasi-concave.

Proposition 2.1. ℒ𝑖(𝒟, 𝛽, 𝑓) is not quasi-concave.

Proof. Consider the simple case where there are no customer features and ℛ = {0, 1}. With

binary reward levels, 𝑅𝑖 = 0 means that the customer is not offered a reward and 𝑅𝑖 = 1

means that the customer is offered a reward. In this case all the customers are the same and

they all have the same probability of receiving rewards level 1. Then let 𝛼 = P(𝑅 = 1) and

1− 𝛼 = P(𝑅 = 0) (this does not depend on 𝑖).

Using the second term of equation 3.2, the log-likelihood for non-buyers becomes:

𝑙(𝛼, 𝛽𝑟) = log

(︂
𝛼

1

1 + 𝑒𝛽𝑟
+

1− 𝛼

2

)︂

This is not a concave function of (𝛼, 𝛽𝑟). In fact if (𝛼1, 𝛽𝑟1) = (0, 1) and (𝛼2, 𝛽𝑟2) = (1, 0),

let (𝛼3, 𝛽𝑟3) be an intermediate point: (𝛼3, 𝛽𝑟3) = (𝛼1+𝛼2

2
, 𝛽𝑟1+𝛽𝑟2

2
) = (.5, .5). Then we have

𝑙(𝛼1, 𝛽𝑟1) = 𝑙(𝛼2, 𝛽𝑟2) = − log(2) ≃ −0.69 and 𝑙(𝛼1+𝛼2

1
, 𝛽𝑟1+𝛽𝑟2

2
) = −0.8237792, which is

smaller than the previous two. Therefore, concavity is violated.

In the same setting without features, it is possible to find numerical examples with more

than one customer where the likelihood is not quasi-concave. Consider 8 customers with 7

non-buyers and one buyer that does not receive a reward. Then ℒ𝑖 becomes:

𝑙(𝛼, 𝛽𝑟) = log(
1− 𝛼

2
) + 7 log

(︂
𝛼

1

1 + 𝑒𝛽𝑟
+

1− 𝛼

2

)︂

If you consider a parameter 𝑥 ∈ [0, 1] and the pair (𝛼, 𝛽𝑟) = (𝑥, 1− 𝑥), then the slice of the

likelihood function defined by 𝑥→ 𝑙(𝑥, 1− 𝑥) is not concave as shown in Figure 3-3.
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Figure 3-1: Non concavity of the incom-
plete data likelihood: 𝑙(𝑥, 1− 𝑥)

Figure 3-2: Surface of the likelihood for
non-buyers

Figure 3-3: Non concave slice of likelihood

3.4 EM algorithm

The Expectation-Maximization (EM) algorithm is a classical approach to parameter estima-

tion with missing data introduced by Dempster et al. in 1977 ([8]). Consider a data set 𝒟𝑐

and assume that some data is missing and we can only observe a censored data set 𝒟. In
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our case, 𝒟𝑐 is a complete data set where we observe the rewards for every customer and 𝒟

is the incomplete data set where the rewards for non-buyers are missing. The EM algorithm

turns out to be particularly useful in the case where the log-likelihood of the incomplete

data is hard to maximize (it is not quasi-concavity and has multiple local optima. . .) while

the complete data log-likelihood has a simple form. This is the case in our setting, we have

shown that the incomplete data likelihood is not quasi-concave in general and it is easy to

prove that the complete data likelihood is concave. The EM algorithm has been used in

the Operations Management literature to take into account censored or unobserved data in

several applications. In [9], Vulcano et al. estimate the customers’ arrival process on an

airline booking website, Phillips et al. ([10]) use the EM algorithm to estimate unobserved

reserve prices and willingness-to-pay in a business to business negotiation, Jagabathula et

al. ([11]) focuses on customers’ willingness-to-pay in a revenue management setting. The

EM algorithm is also widely used in Machine Learning for clustering problems as it provides

a fast and robust approach to estimate mixture of Gaussians.

Let 𝜃 be the set of parameters to estimate. Consider the complete and incomplete data

sets 𝒟𝑐 and 𝒟 and their associated log-likelihoods ℒ𝑐(𝒟𝑐, 𝜃) and ℒ𝑖(𝒟, 𝜃). Assume that ℒ𝑖

is hard to maximize while ℒ𝑐 has a simple form. The idea of the EM algorithm is to replace

the complicated incomplete data likelihood ℒ𝑖 by the expectation of the complete data log-

likelihood. The EM algorithm starts with an initial value for the parameters 𝜃0. For every

iteration 𝑘, in the Expectation step “E”, it computes the expectation of the complete data

log-likelihood given 𝜃𝑘: E𝜃𝑘 (ℒ𝑐(𝒟𝑖, 𝜃)). This expected log-likelihood has the same simple

form as ℒ𝑐 and can thus be directly maximized to find updated parameters 𝜃𝑘+1 in the

Maximization step “M”.

In summary, the steps of the EM algorithm are:

∙ Initialization: Set 𝜃 = 𝜃0

On the 𝑘𝑡ℎ iteration:

∙ E step: compute 𝑒(𝜃𝑘, 𝜃) = E𝜃𝑘 [ℒ𝑐(𝒟, 𝜃)]
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∙ M step: update 𝜃 by setting

𝜃𝑘+1 = argmax𝜃 𝑒(𝜃𝑘, 𝜃)

These steps are repeated until convergence of (𝜃𝑘).

The EM algorithm is a simple and fast way of building an estimator of 𝜃. Dempster

([8]) proves that, under some regularity conditions on ℒ𝑖, ℒ𝑖 increases after each iteration

of the EM algorithm. If the incomplete log-likelihood function is continuous in 𝜃 then

all limit points of the EM algorithm are stationary points of the incomplete log-likelihood

function ([15]). Thus, if the EM algorithm converges, it converges to a stationary point.

By starting with different values 𝜃0, running the EM algorithm until convergence (if any),

and finally considering the estimation of 𝜃 with the highest likelihood value, we obtain a

maximum likelihood estimator of 𝜃, that is consistent and efficient. In summary, the EM

algorithm is a simple and robust way of estimating parameters with missing or unobserved

data. Nevertheless, in some applications, it has been criticized for requiring a large number of

iterations before reaching convergence of the parameters ([13]). Having to run the algorithm

from different starting points to avoid reaching local optima of the likelihood function may

not be a practical approach.

In our setting, the EM algorithm can be applied to estimate jointly 𝛽,𝛽𝑟 and 𝑓 if we

assume that 𝑓 has a parametric shape. Let 𝛼 be the parameters of 𝑓 and 𝜃 = (𝛽, 𝛽𝑟, 𝛼).

Then

ℒ𝑖(𝒟, 𝜃) =
𝑁∑︁
𝑖=1

𝑦𝑖 log

(︂
𝑓𝑋𝑖,𝛼(𝑅𝑖)

𝑒𝛽.𝑋𝑖+𝛽𝑟𝑅𝑖

1 + 𝑒𝛽.𝑋𝑖+𝛽𝑟𝑅𝑖

)︂
+(1−𝑦𝑖)

(︃
log

(︃∑︁
𝑟∈ℛ

𝑓𝑋𝑖,𝛼(𝑟)
1

1 + 𝑒𝛽.𝑋𝑖+𝛽𝑟𝑟

)︃)︃

and

𝑒(𝜃𝑘, 𝜃) = E𝜃𝑘ℒ𝑐(𝒟, 𝜃) =
𝑁∑︁
𝑖=1

𝑦𝑖 log

(︂
𝑓𝑋𝑖,𝛼(𝑅𝑖)

𝑒𝛽.𝑋𝑖+𝛽𝑟𝑅𝑖

1 + 𝑒𝛽.𝑋𝑖+𝛽𝑟𝑅𝑖

)︂
+(1− 𝑦𝑖)E𝜃𝑘

[︂
log

(︂
𝑓𝑋𝑖,𝛼(𝑅𝑖)

1

1 + 𝑒𝛽.𝑋𝑖+𝛽𝑟𝑅𝑖

)︂]︂
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where the expectation is taken over the unobserved variable 𝑅𝑖 for non-buyers. Note that 𝑒

and ℒ𝑖 are identical for buyers (𝑦𝑖 = 1) as there is no missing data for these customers but

differ for non-buyers (𝑦𝑖 = 0). In 𝑒, there is no sum over 𝑟 ∈ ℛ inside the logarithm, and

this is the reason why maximizing 𝑒 is a concave optimization problem while maximizing ℒ𝑖

may not be one.

In order to compute the expectation E𝜃𝑘 we need to compute P(𝑅𝑖 = 𝑟|𝑦𝑖 = 0, 𝑋𝑖, 𝜃
𝑘).

This can be done using Bayes’ rule:

𝑝𝑘𝑟,𝑖 = P(𝑅𝑖 = 𝑟|𝑦𝑖 = 0, 𝑋𝑖, 𝜃
𝑘) =

P(𝑦𝑖 = 0|𝑅𝑖 = 𝑟,𝑋𝑖)P(𝑅𝑖 = 𝑟|𝑋𝑖)

P(𝑦𝑖 = 0|𝑋𝑖)

=

1

1+𝑒𝛽
𝑘.𝑋𝑖+𝛽𝑘𝑟 𝑟

𝑓𝑋𝑖,𝛼𝑘(𝑟)∑︀
𝑠∈ℛ 𝑓𝑋𝑖,𝛼𝑘(𝑠) 1

1+𝑒𝛽
𝑘.𝑋𝑖+𝛽𝑘𝑟 𝑠

Overall the expected log likelihood becomes:

𝑒(𝜃𝑘, 𝜃) =
∑︁
𝑖

𝑦𝑖
[︀
log (𝑓𝑋𝑖,𝛼(𝑅𝑖)) + 𝛽.𝑋𝑖 + 𝛽𝑟𝑅𝑖 − log(1 + 𝑒𝛽.𝑋𝑖+𝛽𝑟𝑅𝑖)

]︀
+
∑︁
𝑖

(1− 𝑦𝑖)
∑︁
𝑟∈ℛ

[︀
𝑝𝑘𝑟,𝑖 log (𝑓𝑋𝑖,𝛼(𝑟))− 𝑝𝑘𝑟,𝑖 log(1 + 𝑒𝛽.𝑋𝑖+𝛽𝑟𝑟)

]︀
We implemented the EM algorithm with simulated data in a parametric setting. The

results can be found in Section 3.6.

3.5 NPM algorithm

The EM algorithm is a classical approach used for parameter estimation with missing data.

For our application, if the function 𝑓 is parametric, it is a fast and efficient method for jointly

estimating 𝑓 and 𝛽. There are theoretical guarantees for the convergence of the estimator

under regularity conditions of the incomplete data likelihood function. We present here an

alternative approach that does not require any parametric assumption on 𝑓 .

Recall that 𝑓𝑋𝑖
(𝑟) represents the probability that a customer with a feature vector 𝑋𝑖

receives the reward level 𝑟. This model assumes that the distribution of rewards depends

on the customer’s characteristics because more active and social customers are more likely
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to be aware of promotions and promo codes. While this dependency is intuitive, assuming a

specific parametric representation for 𝑓 seems to be a strong hypothesis and can be difficult

to justify. When modeling customer behavior, the risk of mispecification is high and a

non-parametric analysis is extremely appealing due to its flexibility and robustness.

The Non Parametric Maximization (“NPM”) algorithm extends the EM algorithm ap-

proach to the case where 𝑓 is non-parametric. As in the EM algorithm, an iterative ap-

proach is used and the “difficult” maximization part of the incomplete data log-likelihood is

replaced by a simpler maximization problem. The intuition behind this algorithm is that,

even though the incomplete data likelihood is not guaranteed to be concave in (𝑓, 𝛽, 𝛽𝑟), it

is concave in (𝛽, 𝛽𝑟) when 𝑓 is fixed. Thus, if we have an estimation of 𝑓 , we can recover an

estimation of 𝛽 by maximizing the incomplete data likelihood only with respect to (𝛽, 𝛽𝑟)

which is a simple concave optimization problem.

3.5.1 Description

In what follows we will denote as 𝛽 the vector (𝛽, 𝛽𝑟). The NPM algorithm starts with initial

estimates of the coefficients 𝛽(0). Without prior knowledge of the impact of the features, a

good starting point is 𝛽(0) = 0. This sets the probability of making a purchase to 50% for

every customer (An intuitive explanation of why 𝛽(0) = 0 is an appropriate starting point is

presented later). It then uses this initial estimate to build a non-parametric estimator 𝑓 (0) of

the function 𝑓 . This is the Non Parametric “NP” step. Then, in the Maximization step “M”,

it replaces 𝑓 by this first estimate 𝑓 (0) in the incomplete data log-likelihood and maximizes

the latter with respect to 𝛽 to update its estimation 𝛽(1). The process is then repeated until

convergence of (𝑓, 𝛽).

In summary, the steps of the NPM algorithm are:

∙ Initialization: Set 𝛽 = 𝛽(0) (𝛽(0) = 0 is a good initial guess)

On the 𝑘𝑡ℎ iteration:

∙ NP step: 𝑓 (𝑘): non parametric estimation of 𝑓 knowing 𝛽(𝑘)
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∙ M step: replace 𝑓 by 𝑓 (𝑘) in ℒ𝑖 and set

𝛽(𝑘+1) = argmax𝛽ℒ𝑖(𝒟, 𝛽, 𝑓 (𝑘))

∙ The process is repeated until convergence of (𝑓, 𝛽).

“NP” step: Non Parametric Estimation of the function 𝑓

In the NP step, we use the data and an estimation of 𝛽 to build a non-parametric estimation

of the function 𝑓 . Recall that 𝑅𝑖 lies in a discrete set ℛ. For the sake of simplicity in

the explanation, we will consider, without loss of generality, the case where the rewards

are binary: ℛ = {0, 1}. This means that we are just interested in whether a customer

receives a reward or not. We do not consider the possibility of having a range of rewards

(0,5%,10%. . . ). Nevertheless, the same approach can be similarly used for a general discrete

and finite set ℛ. The description of the NPM algorithm with a general set ℛ can be found

in Appendix B.1.

If the rewards are binary, for every customer we are interested only in the quantity

𝑓𝑋𝑖
(1) = P(𝑅𝑖 = 1|𝑋𝑖) because we can get 𝑓𝑋𝑖

(0) from 𝑓𝑋𝑖
(0) = 1− 𝑓𝑋𝑖

(1).

Naive approach A naive approach to build an estimator of 𝑓 uses only the available data,

i.e. the rewards received by buyers. Let us consider the subset of buyers 𝒟𝑏. For this subset

of customers we observe the rewards they receive. We can thus build a non-parametric

estimator of P(𝑅𝑖 = 1|𝑖 ∈ 𝒟𝑏, 𝑋𝑖) = P(𝑅𝑖 = 1|𝑦𝑖 = 1, 𝑋𝑖) using 𝒟𝑏. With a moving average

estimator for example, we can approximate P(𝑅𝑖 = 1|𝑖 ∈ 𝒟𝑏, 𝑋𝑖 = 𝑥) by the proportion of

buyers that received a reward in the neighborhood of 𝑥.

Filling missing data using averages of observable data is a common practice in marketing.

In the econometrics literature, [12] focuses on supermarket sales data, where customers can

choose between different brands but only the price of the purchased option is recorded. They

show that there is a systematic bias in filling the missing price of a brand by the average

price of observed transactions of this brand. If customers are price sensitive, they tend to

purchase cheap options. Looking only at transaction data for a product means conditioning
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on the fact that this product has been purchased, thus that it was cheap. Averaging over

observed prices leads to a systematic underestimation of the price.

We observe the same phenomenon in our application because we assume that rewards

have a positive impact on the customer purchase behavior (𝛽𝑟 > 0). Intuitively, if a customer

receives a reward he is more likely to make a purchase. Thus, among buyers, there is a higher

proportion of customers that received a reward compared to the whole population. By

computing the proportion of customers that receive a reward among buyers we overestimate

the probability 𝑓(1). It is not possible to use only buyers data to estimate the distribution

of rewards.

Proposition 2.2. The naive approach leads to an overestimation of the probability of re-

ceiving a reward:

P(𝑅𝑖 = 1|𝑦𝑖 = 1, 𝑋𝑖) > P(𝑅𝑖 = 1|𝑋𝑖) for any feature vector 𝑋𝑖

Proof. We assume that 𝛽𝑟 > 0, thus

P(𝑦𝑖 = 1|𝑅𝑖 = 1, 𝑋𝑖) =
𝑒𝛽.𝑋𝑖+𝛽𝑟

1+𝑒𝛽.𝑋𝑖+𝛽𝑟 > P(𝑦𝑖 = 1|𝑅𝑖 = 0, 𝑋𝑖) =
𝑒𝛽.𝑋𝑖

1+𝑒𝛽.𝑋𝑖
, since 𝑒−𝛽𝑟 < 1.

Therefore,

P(𝑦𝑖 = 1|𝑅𝑖 = 1, 𝑋𝑖) >P(𝑦𝑖 = 1|𝑋𝑖)

=P(𝑦𝑖 = 1|𝑅𝑖 = 1, 𝑋𝑖)× P(𝑅𝑖 = 1|𝑋𝑖)

+P(𝑦𝑖 = 1|𝑅𝑖 = 0, 𝑋𝑖)× (1− P(𝑅𝑖 = 1|𝑋𝑖))

Finally, using Bayes’ rule:

P(𝑅𝑖 = 1|𝑋𝑖, 𝑦𝑖 = 1) =
P(𝑦𝑖 = 1|𝑅𝑖 = 1, 𝑋𝑖)

P(𝑦𝑖 = 1|𝑋𝑖)
P(𝑅𝑖 = 1|𝑋𝑖)

>P(𝑅𝑖 = 1|𝑋𝑖)

(3.3)

Thus this naive approach leads to an overestimation of the distribution of rewards.
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Figure 3-4: Naive estimation and true distribution for different shapes of 𝑓

In Figure 3-4 we represent two shapes of function 𝑓 (linear and piece wise constant) in

a one dimensional case. Here customers are characterized by a one dimension vector 𝑋𝑖

that is represented on the x-axis. (The range of 𝑥 is taken to represent the variable “Past

Purchases” introduced in Section 3.6). To every value of 𝑥 is associated a probability of

receiving a reward represented by the green line in Figure 3-4. The red dots represent the

empirical distribution of rewards on a data set of 10000 customers (buyers and non-buyers),

the black dots represent the estimation given by the naive approach (empirical distribution

among buyers). We can see that in both plots the naive approach significantly overestimate

the function 𝑓 for all values of the feature vector 𝑥.

NPM approach With the example of the naive approach, we have seen that is not possible

to recover an unbiased estimation using only data from buyers. Nevertheless, it is possible

to use the data 𝒟 and an estimation of 𝛽 to build a non parametric estimator of 𝑓 . In

the “NP” step, we combine the non-parametric estimation given by the naive approach with

Bayes’ rule. Doing so, we are able to correct for the systematic bias of the naive approach

and recover an estimation of 𝑓 from the data and an estimation of 𝛽.

Let us start with Bayes’ rule:

P(𝑅𝑖 = 1|𝑋𝑖, 𝑦𝑖 = 1) =
P(𝑦𝑖 = 1|𝑅𝑖 = 1, 𝑋𝑖)

P(𝑦𝑖 = 1|𝑋𝑖)
P(𝑅𝑖 = 1|𝑋𝑖) (3.4)

In the previous equation, the left-hand side can be estimated from the data using the
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naive approach. We will show that the right hand-side can be written as a simple function

(that is denoted 𝑔) of the data, 𝛽 and 𝑓 . Thus, by inverting this function 𝑔, we can recover

a non-parametric estimation of 𝑓 .

First let us remark that:

1. P(𝑅𝑖 = 1|𝑋𝑖) = 𝑓𝑋𝑖
(1) is the quantity we want to estimate

2. We can build a non parametric estimator of P(𝑅𝑖 = 1|𝑋𝑖, 𝑦𝑖 = 1) using the subset of

buyers 𝒟𝑏 (see naive approach)

3. If we know the value of 𝛽 then P(𝑦𝑖 = 1|𝑅𝑖, 𝑋𝑖) =
𝑒𝛽.𝑋𝑖+𝛽𝑟𝑅𝑖

1+𝑒𝛽.𝑋𝑖+𝛽𝑟𝑅𝑖
.

4.

P(𝑦𝑖 = 1) = P(𝑅𝑖 = 1|𝑋𝑖)P(𝑦𝑖 = 1|𝑅𝑖 = 1, 𝑋𝑖) + (1− P(𝑅𝑖 = 1|𝑋𝑖))P(𝑦𝑖 = 1|𝑅𝑖 = 0, 𝑋𝑖)

= 𝑓𝑋𝑖
(1)P(𝑦𝑖 = 1|𝑅𝑖 = 1, 𝑋𝑖) + (1− 𝑓𝑋𝑖

(1))P(𝑦𝑖 = 1|𝑅𝑖 = 0, 𝑋𝑖)

Let us combine the previous remarks. Using remark 3 we can build a non-parametric

estimator of P(𝑦𝑖 = 1|𝑅𝑖, 𝑋𝑖 = 𝑥, 𝛽) with a kernel smoothing. For example with a window

kernel we can approximate it by

Ê𝑋𝑖≃𝑥

(︂
𝑒𝛽𝑋𝑖+𝛽𝑟𝑟

1 + 𝑒𝛽𝑋𝑖+𝛽𝑟𝑟

)︂

Finally, the right hand side of equation (3.4) becomes

𝑓𝑥(1)Ê𝑋𝑖≃𝑥

(︁
𝑒𝛽𝑋𝑖+𝛽𝑟

1+𝑒𝛽𝑋𝑖+𝛽𝑟

)︁
𝑓𝑥(1)Ê𝑋𝑖≃𝑥

(︁
𝑒𝛽𝑋𝑖+𝛽𝑟

1+𝑒𝛽𝑋𝑖+𝛽𝑟

)︁
+ (1− 𝑓𝑥(1))Ê𝑋𝑖≃𝑥

(︁
𝑒𝛽𝑋𝑖

1+𝑒𝛽𝑋𝑖

)︁
Let 𝑔 be:

𝑔(𝒟, 𝛽, 𝑥, 𝑓) =
𝑓 Ê𝑋𝑖≃𝑥

(︁
𝑒𝛽𝑋𝑖+𝛽𝑟

1+𝑒𝛽𝑋𝑖+𝛽𝑟

)︁
𝑓 Ê𝑋𝑖≃𝑥

(︁
𝑒𝛽𝑋𝑖+𝛽𝑟

1+𝑒𝛽𝑋𝑖+𝛽𝑟

)︁
+ (1− 𝑓)Ê𝑋𝑖≃𝑥

(︁
𝑒𝛽𝑋𝑖

1+𝑒𝛽𝑋𝑖

)︁ (3.5)

Notice that, given 𝒟, 𝛽 and 𝑥, 𝑔 is a homography with respect to 𝑓 (ratio of two affine
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functions) and thus can be inverted easily in closed form. We can then build a non parametric

estimator of 𝑓𝑋𝑖=𝑥(1) solving the equation with respect to 𝑓 :

P̂(𝑅𝑖 = 1|𝑥, 𝑦𝑖 = 1) = 𝑔(𝒟, 𝛽, 𝑥, 𝑓)

where the left hand side is a non parametric estimator of P(𝑅𝑖 = 1|𝑋𝑖 = 𝑥, 𝑦𝑖 = 1). This

gives:

𝑓𝑥(1) = −
Ê𝑋𝑖≃𝑥

(︁
𝑒𝛽𝑋𝑖

1+𝑒𝛽𝑋𝑖

)︁
P̂(𝑅𝑖 = 1|𝑥, 𝑦𝑖 = 1)[︁

Ê𝑋𝑖≃𝑥

(︁
𝑒𝛽𝑋𝑖+𝛽𝑟

1+𝑒𝛽𝑋𝑖+𝛽𝑟

)︁
− Ê𝑋𝑖≃𝑥

(︁
𝑒𝛽𝑋𝑖

1+𝑒𝛽𝑋𝑖

)︁]︁
P̂(𝑅𝑖 = 1|𝑥, 𝑦𝑖 = 1)− Ê𝑋𝑖≃𝑥

(︁
𝑒𝛽𝑋𝑖+𝛽𝑟

1+𝑒𝛽𝑋𝑖+𝛽𝑟

)︁
Choice of a starting value for 𝛽: The NPM algorithm starts with an initial estimate of

(𝛽, 𝛽𝑟). Without any prior knowledge of the values of (𝛽, 𝛽𝑟), (𝛽
(0), 𝛽

(0)
𝑟 ) = (0, 0) is a good

starting point. This can be seen from the equation above that defines the update of 𝑓 done

in the NP step. Notice that, replacing (𝛽, 𝛽𝑟) by (0, 0) in the equation above, the expression

is simplified and we get 𝑓𝑥(1)
(0) = P̂(𝑅𝑖 = 1|𝑥, 𝑦𝑖 = 1), which corresponds to the estimator

given by the naive approach. Recall that the naive approach is the best approximation of 𝑓 ,

without any a knowledge of the values of (𝛽, 𝛽𝑟). Thus, this is a good starting point for the

iterative algorithm.

M step: Estimation of the logistic regression coefficients

In the previous Subsection, we have shown how, using an estimation of the logistic coefficients

𝛽 we can build a non parametric estimator of the function 𝑓 . This is the “NP” step of the

NPM algorithm. In this paragraph, we focus on the “M” step: using an estimator 𝑓 of 𝑓 , we

build an estimator of the logistic regression coefficients 𝛽.

Assume you have access to an estimator 𝑓 of 𝑓 . Recall that the incomplete data log-

likelihood is given in (3.2):

ℒ𝑖(𝒟, 𝛽, 𝑓) =
𝑁∑︁
𝑖=1

𝑦𝑖 log

(︂
𝑓𝑋𝑖

(𝑅𝑖)
𝑒𝛽.𝑋𝑖+𝛽𝑟𝑅𝑖

1 + 𝑒𝛽.𝑋𝑖+𝛽𝑟𝑅𝑖

)︂
+ (1− 𝑦𝑖)

(︃
log(

∑︁
𝑟∈ℛ

𝑓𝑋𝑖
(𝑟)

1

1 + 𝑒𝛽.𝑋𝑖+𝛽𝑟𝑟
)

)︃

Proposition 2.3. Given 𝒟 and 𝑓 , ℒ𝑖(𝒟, 𝛽, 𝑓) is a quasi-concave function of 𝛽.
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Proof. For one customer 𝑖, the log-likelihood is

𝑦𝑖
(︀
log (𝑓𝑋𝑖

(𝑅𝑖)) + 𝛽.𝑋𝑖 + 𝛽𝑟𝑅𝑖 − log
(︀
1 + 𝑒𝛽.𝑋𝑖+𝛽𝑟𝑅𝑖

)︀)︀
+(1−𝑦𝑖)

(︃
log(

∑︁
𝑟∈ℛ

𝑓𝑋𝑖
(𝑟)

1

1 + 𝑒𝛽.𝑋𝑖+𝛽𝑟𝑟
)

)︃

∙ 𝛽.𝑋𝑖 + 𝛽𝑟𝑅𝑖 is a linear function of 𝛽

∙ − log(1 + 𝑒𝛽.𝑋𝑖+𝛽𝑟𝑅𝑖) is a concave function of 𝛽

∙ log(
∑︀

𝑟∈ℛ 𝑓𝑋𝑖
(𝑟) 1

1+𝑒𝛽.𝑋𝑖+𝛽𝑟𝑟 ) is quasi-concave in 𝛽 as it is the logarithm of a sum of

sigmoids

Thus, given 𝒟 and 𝑓 , the incomplete data log-likelihood is a quasi-concave function of

𝛽.

The “M” step of the NPM algorithm is the following:

Assuming a previous estimation 𝑓 of 𝑓 , we build an estimator of 𝛽 by maximizing the

incomplete data log-likelihood with respect to 𝛽:

𝛽 = argmax𝛽ℒ𝑖(𝒟, 𝛽, 𝑓)

3.5.2 Advantages

The NPM algorithm is an alternative to the EM algorithm that can be applied without

any parametric assumption on the distribution function 𝑓 . The NPM algorithm is thus a

semi-parametric approach: the distribution of rewards 𝑓 is estimated in a non-parametric

way while the purchase behavior is assumed to follow a (parametric) logistic shape. There

are several advantages to this approach.

A non parametric approach

Non-parametric approaches allow for flexibility in data estimation and do not rely on heavy

distributional assumptions. This is particularly valuable when modeling customers’ or retail-

ers’ behavior tend not to follow classical linear or normal distributions. It has been observed
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([14]) that, when modeling human decision processes, non-parametric approaches are ex-

tremely valuable because the observed behavior does not verify the assumptions underlying

classical parametric models. In our specific application, the function 𝑓𝑋(.) represents the

distribution of rewards received by a customer with features vector 𝑋. While we can assume

that this distribution depends on the customer’s characteristics and the probability of having

high rewards is higher for “active” customers, it is difficult to justify a specific parametric

shape for this relationship (linear, quadratic or piecewise constant for example). In this

setting, the flexibility of non-parametric estimation allows to capture complex dependency

between the different variables.

On the other hand, we have to note that non-parametric approaches are criticized because

of the so-called “curse of dimensionality”. They are extremely powerful and allow to estimate

a more accurate relationship between the variables when dealing with a small (and small

often means one) number of dependent variables, but become computationally intractable

when the number of dependent variables increase. An intuitive understanding of the curse of

dimensionality comes from the sparsity of the data in high dimensional spaces. For example,

in the NP step of the NPM algorithm, we need to compute local averages in equation (3.5).

If the dimension of the features vector 𝑋 increases, more and more data points are needed

to be able to find enough observations to perform meaningful local averages. Intuitively, if 𝑛

data points are required for a non-parametric estimation in a 1-dimensional space, 𝑛𝑑 data

points are required to have a comparable training data density in a 𝑑-dimensional space. For

more details on non-parametric estimation see for example [16].

Another drawback of non-parametric estimation, which is closely related to the curse of

dimensionality, is that non-parametric approaches can tend to overfit the data and may not

be able to generalize to other datasets. There is a tradeoff between localization (ability to

capture all the information in the training set) and generalization (to other data sets). This is

captured by the tuning parameters in the non-parametric approach, in the NPM algorithm it

lies in the non-parametric smoothing technique used (local average, kernel density estimation,

k-nearest neighbors, etc). Several parameter tuning techniques exist to avoid overfitting.
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Computational advantages

The specific approach of the NPM algorithm creates interesting computational advantages.

First of all, it decouples the estimation of the function 𝑓 (done in the NP step) from the

estimation of the logistic regression coefficients 𝛽 (done in the M step). As mentioned before,

this allows having two different estimation techniques: non-parametric for 𝑓 and parametric

for 𝛽. This is not possible in the EM algorithm where all the parameters are estimated

together in a maximization step, and thus where a non-parametric component cannot be

handled. This decoupling also allows for a faster maximization step. Both the EM and

NPM algorithms, in the M step, maximize a concave likelihood function. In the case of the

EM algorithm, the maximization is over the entire set of variables (𝑓 and 𝛽 here) while in the

NPM algorithm, the maximization is only over the variables 𝛽. This decreases the complexity

of the maximization and can significantly reduce its running time. The complexities of the

E and NP steps are comparable, with the difference that the E step does not require the

computation of local averages.

Another important advantage of the NPM algorithm that has been observed in simula-

tions is its convergence rate. In practical applications, the EM algorithm has been criticized

for requiring a prohibitively large number of iterations before convergence of the estimation

([13]). After extensive simulations demonstrated in later Sections, we show that, in our ap-

plication setting, the NPM algorithm requires significantly less iterations to converge. This

is an extremely valuable asset when dealing with extremely large data sets in the case of

online retailers and when estimates of customer behavior need to be updated frequently.

3.5.3 Theoretical results

Proof in the case where there are no customer features

In this Section, we consider the simple case where there is no vector of features 𝑋𝑖. This

is equivalent to the case where all the customers are identical. In fact, in the latter case

for every customer 𝛽.𝑋𝑖 is a constant that can be considered as a common intercept. We

will analytically prove that, in this simplified setting, the NPM algorithm converges and is

a consistent estimator of 𝛽 and 𝑓 .
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Setting Let us consider the case where all the customers are identical, i.e. there is no

vector of features 𝑋𝑖. Let us also assume that rewards are binary: each customer can be

assigned to reward level 0 or 1. (𝑅𝑖 ∈ {0, 1}). Let us denote:

∙ 𝛼0 = P(𝑅𝑖 = 1): this is the true value we want to estimate (this probability is the

same for every customer)

∙ P(𝑦𝑖 = 1|𝑅𝑖) =
𝑒𝛽𝑟0𝑅𝑖

1+𝑒𝛽𝑟0𝑅𝑖
with 𝛽𝑟0 > 0

For the sake of simplicity we do not consider an intercept in the logistic function: we

assume that P(𝑦𝑖 = 1|𝑅𝑖 = 0) = 0.5

NPM algorithm In this specific setting, the NPM algorithm becomes a parametric al-

gorithm, as the distribution of rewards is constant across customers: 𝑓𝑋𝑖
(1) = 𝛼0. We can

replace 𝑓 by the scalar 𝛼 in the notations, and prove the convergence and consistency of the

NPM estimator. Note that, even in this parametric setting, the NPM algorithm is different

than the EM algorithm. The main underlying difference is that in the M step of the NPM

algorithm the maximization is done only over the variable 𝛽𝑟 and not on the distribution of

rewards parameter 𝛼.

We first describe the steps of the NPM algorithm in this specific setting and then provide

a proof for its convergence and consistency.

Initialization: We start with an initial estimate of 𝛽𝑟: 𝛽
(0)
𝑟 = 0.

In the 𝑘𝑡ℎ step:

NP step The NP step updates the estimation of 𝛼 using 𝛽
(𝑘)
𝑟 and Bayes’ rule. Let us

recall that 𝛼(𝑘) is the value of 𝛼 that solves

P̂(𝑅𝑖 = 1|𝑦𝑖 = 1) = 𝑔(𝒟, 𝛽(𝑘), 𝑥, 𝛼)

where 𝑔 is defined by

𝑔(𝒟, 𝛽, 𝑥, 𝛼) =
𝛼Ê𝑋𝑖≃𝑥

(︁
𝑒𝛽𝑋𝑖+𝛽𝑟

1+𝑒𝛽𝑋𝑖+𝛽𝑟

)︁
𝛼Ê𝑋𝑖≃𝑥

(︁
𝑒𝛽𝑋𝑖+𝛽𝑟

1+𝑒𝛽𝑋𝑖+𝛽𝑟

)︁
+ (1− 𝛼)Ê𝑋𝑖≃𝑥

(︁
𝑒𝛽𝑋𝑖

1+𝑒𝛽𝑋𝑖

)︁
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In the case where 𝑋𝑖 = 0 the expression of 𝑔 can be simplified. As there are no features

there is no need to average over the values of 𝑋𝑖. Thus g becomes:

𝑔(𝒟, 𝛽𝑟, 𝑥, 𝛼) =
𝛼 𝑒𝛽𝑟

1+𝑒𝛽𝑟

𝛼 𝑒𝛽𝑟

1+𝑒𝛽𝑟
+ (1− 𝛼)1

2

Let us denote 𝑅𝐵 the empirical probability of having a reward given that the customer is a

buyer:

𝑅𝐵 =

∑︀
𝑖 𝑦𝑖𝑅𝑖∑︀
𝑖 𝑦𝑖

then 𝛼(𝑘) satisfies

𝑅𝐵 =
𝛼(𝑘) 𝑒𝛽

(𝑘)
𝑟

1+𝑒𝛽
(𝑘)
𝑟

𝛼(𝑘) 𝑒𝛽
(𝑘)
𝑟

1+𝑒𝛽
(𝑘)
𝑟

+ (1− 𝛼(𝑘))1
2

and thus, inverting the function 𝑔 we get:

𝛼(𝑘) =
−1

2
𝑅𝐵(︂

𝑒𝛽
(𝑘)
𝑟

1+𝑒𝛽
(𝑘)
𝑟
− 1

2

)︂
𝑅𝐵 − 𝑒𝛽

(𝑘)
𝑟

1+𝑒𝛽
(𝑘)
𝑟

(3.6)

Note that if 𝛽
(0)
𝑟 = 0 then 𝛼(0) = 𝑅𝐵, i.e. the initial estimation of 𝛼 is the empirical

estimation of P(𝑅𝑖 = 1|𝑦𝑖 = 1) introduced in the naive approach. Thus 𝛼(0) > 𝛼0.

M step In this setting the incomplete data likelihood given in equation (3.2) becomes:

ℒ𝑖(𝒟, 𝛽, 𝛼) =
𝑁∑︁
𝑖=1

𝑦𝑖𝑅𝑖 log

(︂
𝛼

𝑒𝛽𝑟

1 + 𝑒𝛽𝑟

)︂
+𝑦𝑖(1−𝑅𝑖) log

(︂
(1− 𝛼)

1

2

)︂
+(1−𝑦𝑖) log

(︂
𝛼

1 + 𝑒𝛽𝑟
+

1− 𝛼

2

)︂

Notice that only the first and last term of the sum are functions of 𝛽𝑟.

The M step updates the estimation of 𝛽𝑟 given 𝛼(𝑘) by setting:

𝛽(𝑘+1)
𝑟 = argmax𝛽ℒ𝑖(𝒟, 𝛽, 𝛼(𝑘))
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Convergence and consistency In this paragraph we provide an analytical proof of the

convergence and consistency of the NPM estimates of 𝛽𝑟 and 𝛼. The proof is in two steps.

We first start showing that, starting from 𝛽
(0)
𝑟 = 0 the sequence

(︁
𝛽
(𝑘)
𝑟

)︁
𝑘
is increasing and

thus converging. We then show that the limit point of
(︁
𝛽
(𝑘)
𝑟 , 𝛼(𝑘)

)︁
is the maximum likelihood

estimator of ℒ𝑖. This proves the consistency of the NPM algorithm.

Convergence

Proposition 2.4. Starting from 𝛽
(0)
𝑟 = 0 and assuming 𝛽𝑟0 > 0, 𝛽

(𝑘)
𝑟 is a strictly increasing

sequence and 𝛼(𝑘) is strictly decreasing.

Proof. We describe the proof in four steps:

1. First, note that in the NP step 𝛼(𝑘) is defined by equation (3.6):

𝛼(𝑘) =
−1

2
𝑅𝐵(︂

𝑒𝛽
(𝑘)
𝑟

1+𝑒𝛽
(𝑘)
𝑟
− 1

2

)︂
𝑅𝐵 − 𝑒𝛽

(𝑘)
𝑟

1+𝑒𝛽
(𝑘)
𝑟

where 𝑅𝐵 is estimated directly from data. The right hand side is a strictly decreasing

function of 𝛽
(𝑘)
𝑟 thus, if 𝛽

(𝑘)
𝑟 increases, 𝛼(𝑘) strictly decreases.

2. Secondly, we can show that 𝛽
(1)
𝑟 > 𝛽

(0)
𝑟 = 0.

In fact, using the result of Proposition 2.3, we know that, for a fixed value of 𝛼,

ℒ𝑖(𝒟, 𝛽, 𝛼) is a concave function of 𝛽. Furthermore, we know that 𝛼(0) = 𝑅𝐵 > 𝛼0.

Finally,

𝜕ℒ𝑖

𝜕𝛽𝑟

(𝒟, 0, 𝛼(0)) =
∑︁
𝑖

1

2
𝑦𝑖𝑅𝑖 − (1− 𝑦𝑖)𝛼

(0)1

2

=
∑︁
𝑖

1

2
𝑦𝑖𝑅𝑖 ×

(︂
1−

∑︀
𝑖(1− 𝑦𝑖)∑︀

𝑖 𝑦𝑖

)︂
> 0

because 𝛼(0) = 𝑅𝐵 =
∑︀

𝑖 𝑦𝑖𝑅𝑖∑︀
𝑖 𝑦𝑖

and
∑︀

𝑖(1−𝑦𝑖)∑︀
𝑖 𝑦𝑖

< 1 (because P(𝑦𝑖 = 1) > P(𝑦𝑖 = 0) and for

𝑁 large enough,
#non-buyers

#buyers < 1).
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Thus, ℒ𝑖(𝒟, 𝛽𝑟, 𝛼
(0)) is a concave function of 𝛽𝑟 and its derivative at 0 is positive, thus

its maximum is strictly positive and 𝛽
(1)
𝑟 > 0.

3. If, for a given 𝑘, 𝛼(𝑘−1) < 𝛼(𝑘) then 𝛽
(𝑘)
𝑟 > 𝛽

(𝑘+1)
𝑟 .

This step can be derived using the first order conditions in the M step of the NPM

algorithm.

𝛽(𝑘+1)
𝑟 = argmax𝛽ℒ𝑖(𝒟, 𝛽, 𝛼(𝑘))

=⇒ 𝜕ℒ𝑖

𝜕𝛽𝑟

(𝒟, 𝛽(𝑘+1)
𝑟 , 𝛼(𝑘)) = 0

=⇒
∑︀

𝑖 𝑦𝑖𝑅𝑖

2
∑︀

𝑖(1− 𝑦𝑖)
=

𝛼(𝑘) 𝑒𝛽
(𝑘+1)
𝑟

1+𝑒𝛽
(𝑘+1)
𝑟

𝛼(𝑘) 1

1+𝑒𝛽
(𝑘)
𝑟

+ (1− 𝛼(𝑘))1
2

The right hand-side of equation (3.7) is increasing in both 𝛽𝑟 and 𝛼 while the left

hand-side depends only on data. The pairs (𝛽
(𝑘+1)
𝑟 , 𝛼(𝑘)) are the solutions to this fixed

point equation. We can thus conclude that if 𝛼(𝑘−1) < 𝛼(𝑘) then 𝛽
(𝑘)
𝑟 > 𝛽

(𝑘+1)
𝑟 .

4. Finally, combining the two previous results, we can get the result by induction:

∙ Initialization: 𝛽
(1)
𝑟 > 𝛽

(0)
𝑟 using step 2.

∙ Assume that, for a given 𝑘, 𝛽
(𝑘)
𝑟 > 𝛽

(𝑘−1)
𝑟 . Then, using step 1 we have that

𝛼(𝑘−1) < 𝛼(𝑘) and, using step 3, we get that 𝛽
(𝑘+1)
𝑟 > 𝛽

(𝑘)
𝑟 .

∙ We can then conclude that 𝛽
(𝑘)
𝑟 is an increasing sequence and 𝛼(𝑘) is a decreasing

sequence.

Proposition 2.5. Starting from 𝛽
(0)
𝑟 = 0 and assuming 𝛽𝑟0 > 0, 𝛽

(𝑘)
𝑟 and 𝛼(𝑘) converge (in

R ∪ {∞}).

Proof. 𝛽
(𝑘)
𝑟 and 𝛼(𝑘) are monotonic sequences, thus they converge.

Consistency From the previous paragraph we have that, starting from 𝛽
(0)
𝑟 = 0 and

assuming 𝛽𝑟0 > 0, 𝛽
(𝑘)
𝑟 and 𝛼(𝑘) are converging sequences. Let us denote 𝛽

(∞)
𝑟 and 𝛼(∞) their

limit points. We will show here that these limit points are 𝛽𝑟0 and 𝛼0.
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Proposition 2.6. In this simplified setting without customers’ features, the NPM algorithm

is a consistent estimator of (𝛽𝑟0, 𝛼0).

Proof. The iterations of the NPM algorithm are defined by

𝛼(𝑘) =
−1

2
𝑅𝐵(︂

𝑒𝛽
(𝑘)
𝑟

1+𝑒𝛽
(𝑘)
𝑟
− 1

2

)︂
𝑅𝐵 − 𝑒𝛽

(𝑘)
𝑟

1+𝑒𝛽
(𝑘)
𝑟

and

𝛽(𝑘+1)
𝑟 = argmax𝛽ℒ𝑖(𝒟, 𝛽, 𝛼(𝑘))

First of all, let us notice that, by consistency of the maximum likelihood estimator,

(𝛽𝑟0, 𝛼0) maximize the expected incomplete data likelihood:

(𝛽𝑟0, 𝛼0) = argmax(𝛽𝑟,𝛼)E [ℒ𝑖(𝒟, 𝛽, 𝛼)]

ℒ𝑖 is a differentiable function, thus⎧⎪⎨⎪⎩
𝜕

𝜕𝛽𝑟
E [ℒ𝑖] (𝛽𝑟0, 𝛼0) = 0

𝜕
𝜕𝛼
E [ℒ𝑖] (𝛽𝑟0, 𝛼0) = 0

(3.7)

Secondly, by definition of 𝛼 we have that:

𝛼0 =
−1

2
𝑅𝐵(︁

𝑒𝛽𝑟0

1+𝑒𝛽𝑟0
− 1

2

)︁
𝑅𝐵 − 𝑒𝛽𝑟0

1+𝑒𝛽𝑟0

With an abuse of notation, let us denote

𝛼(𝛽𝑟) =
−1

2
𝑅𝐵(︁

𝑒𝛽𝑟

1+𝑒𝛽𝑟
− 1

2

)︁
𝑅𝐵 − 𝑒𝛽𝑟

1+𝑒𝛽𝑟

We then have 𝛼(𝛽𝑟0) = 𝛼0 and 𝛼(𝛽
(𝑘)
𝑟 ) = 𝛼(𝑘).

Using this notation, the limit points (𝛽
(∞)
𝑟 , 𝛼(∞)) are a fixed point for the system of
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equations:

(𝛽𝑟, 𝛼) such that

⎧⎪⎨⎪⎩𝛼(𝛽𝑟) = 𝛼

𝜕
𝜕𝛽𝑟

E [ℒ𝑖] (𝛽𝑟, 𝛼) = 0

(3.8)

We already know that (𝛽𝑟0, 𝛼0) verifies this system of equations. Showing that this system

of equations has an unique fixed point, we prove that (𝛽𝑟0, 𝛼0) = (𝛽
(∞)
𝑟 , 𝛼(∞)) which means

that the NPM is a consistent estimator.

Let us consider the function that associates to 𝛽𝑟 the derivative of the expected likelihood

with respect to the first variable, evaluated at (𝛽𝑟, 𝛼(𝛽𝑟)).

ℎ : 𝛽𝑟 −→
𝜕

𝜕𝛽𝑟

E [ℒ𝑖] (𝛽𝑟, 𝛼(𝛽𝑟))

Then:

∙ ℎ(𝛽𝑟0) = 0

∙ ℎ is a decreasing function

ℎ(𝛽) =
1

1 + 𝑒𝛽

⎛⎝E(𝑦𝑖𝑅𝑖)− E

⎛⎝(1− 𝑦𝑖)
𝛼(𝛽) 𝑒𝛽

1+𝑒𝛽

𝛼(𝛽)
(︁

1
1+𝑒𝛽
− 1

2

)︁
+ 1

2

⎞⎠⎞⎠

because the first term does not depend on 𝛽 and 𝛽 :→
𝛼(𝛽) 𝑒𝛽

1+𝑒𝛽

𝛼(𝛽)
(︁

1

1+𝑒𝛽
− 1

2

)︁
+ 1

2

is an increasing

function of 𝛽.

Thus 𝛽𝑟0 is the only root of ℎ thus (𝛽𝑟0, 𝛼0) is the only fixed point of the system of equations

(3.8), (𝛽𝑟0, 𝛼0) = (𝛽
(∞)
𝑟 , 𝛼(∞)) and the NPM algorithm is consistent.

Results with synthetic data: no features In the simple case where all the customers

are identical, we simulate synthetic data with different values of (𝛼, 𝛽𝑟) and different number

of customers (𝑁) and analyze the performance of the NPM algorithm in terms of convergence

to the true value and running time.
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We build 18 different data sets combining different values of the problem’s dimensions:

∙ the number of customers 𝑁 ∈ {1000, 10000}

∙ the proportion of rewards 𝛼 ∈ {0.2, 0.5, 0.7}

∙ the price sensitivity 𝛽𝑟 ∈ {0.5, 2, 3}

For every combination of parameters (𝑁,𝛼, 𝛽𝑟) we run the NPM algorithm until the difference

between two consecutive log-likelihood is less than 10−6 and the difference between two

consecutive values of 𝛼 and 𝛽 is less than 10−2.
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Figure 3-5: NPM algorithm for 𝑁 = 10000, 𝛼0 = 0.5, 𝛽𝑟0 = 3

𝛼 𝛽 iterations Running time(s)
0.2 0.5 17 0.05
0.2 2.0 19 0.05
0.2 3.0 17 0.06
0.5 0.5 7 0.02
0.5 2.0 8 0.02
0.5 3.0 9 0.03
0.7 0.5 5 0.03
0.7 2.0 7 0.01
0.7 3.0 6 0.02

Table 3.1: Iterations and
running time for 𝑁 = 1000

𝛼 𝛽 iterations Running time(s)
0.2 0.5 14 0.30
0.2 2.0 18 0.36
0.2 3.0 22 0.50
0.5 0.5 7 0.19
0.5 2.0 9 0.22
0.5 3.0 10 0.29
0.7 0.5 5 0.14
0.7 2.0 6 0.14
0.7 3.0 7 0.19

Table 3.2: Iterations and
running time for𝑁 = 10000

General case with 𝛽 known

The result proved in the last paragraph can be extend to a more general case including

customers’ features 𝑋𝑖.
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𝛼 𝛽𝑟 𝛼̂ 𝛽𝑟 % error 𝛼 % error 𝛽𝑟

0.20 0.50 0.19 0.53 1.09 6.26
0.20 2.00 0.20 1.80 0.17 9.78
0.20 3.00 0.21 2.75 0.25 8.33
0.50 0.50 0.50 0.54 0.49 7.74
0.50 2.00 0.50 1.95 0.08 2.26
0.50 3.00 0.52 2.60 0.52 13.39
0.70 0.50 0.70 0.52 0.37 4.31
0.70 2.00 0.69 2.14 0.49 6.80
0.70 3.00 0.70 3.15 0.01 4.84

Table 3.3: 𝑁 = 10000, estimated values and percentage errors

Proposition 2.7. Assume that

∙ P(𝑦𝑖 = 1|𝑋𝑖, 𝑅𝑖) =
𝑒𝛽.𝑋𝑖+𝛽𝑟𝑅𝑖

1+𝑒𝛽.𝑋𝑖+𝛽𝑟𝑅𝑖

∙ 𝑓𝑥(𝑟) = P(𝑅𝑖 = 𝑟|𝑥) and that 𝑥 is a vector that can take a finite number of values

∙ the value of 𝛽 is known

Then the NPM algorithm is a consistent estimator of (𝛽𝑟, 𝑓).

The second assumption is often realized in practice. Assume that 𝑓 depends only on a

subset of features present in 𝑋. In our application, 𝑓 can depend only on the social features

(number of friends, reviews etc.). These features take discrete and finite values.

The strongest assumption is the third one. 𝑋𝑖 is the set of features that can be observed

for each customer. Assuming that 𝑋 and 𝑅 are independent, we can get a good estimate

of 𝛽 (except the intercept term) by running a classical logistic regression of 𝑦𝑖 on 𝑋𝑖. The

only term that cannot be computed this way is 𝛽𝑟. Thus, in our context, it is reasonable to

assume that the NPM algorithm starts with a good approximation of 𝛽.

The proof of 2.7 follows the same outline as in the no feature case. We first prove the

convergence of 𝛽𝑟 and 𝑓 by proving that 𝛽
(𝑘)
𝑟 is increasing and (𝑓𝑘

𝑥 (1))𝑘 is decreasing in 𝑘

for any given value of 𝑥. We then prove the consistency of the estimator by proving that

it is solution to a fixed point equation with an unique solution. The detail of the proof are

reported in Appendix B.2.
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General case

We study the general case,where 𝛽 is not assumed to be known, using simulations in the

next Section. Computationally, we observe that the NPM algorithm is a consistent estimator

(that converges fast compared to the EM algorithm).

3.6 Results on simulated data

We presented three different approaches to jointly estimate the distribution of rewards 𝑓 and

the logistic regression coefficients (𝛽, 𝛽𝑟):

∙ Direct maximization of the incomplete data likelihood (“DM”)

∙ EM algorithm

∙ NPM algorithm

Recall that the incomplete data likelihood is not always concave. This makes the direct

maximization computationally intensive and, we do not have guarantees that the solution

we find is the global maximum.

In this Section, we compare the performances of the three approaches in terms of esti-

mation accuracy and running time in a setting where the three approaches can be applied.

We simulate 𝑁 = 1000 customers with two features each and we apply the three approaches

to this synthetic data set.

3.6.1 Simulation framework

We simulate 𝑁 = 10000 independent customers with two features. The definition of these

features is closely related to the significant features in the logistic clustering part.

Each customer is characterized by :

∙ 𝑑𝑖 (days since last purchase): uniformly distributed on [0 : 100]

∙ 𝑝𝑖 (Past Purchases): uniformly distributed on 10× [0 : 100]

91



∙ the rewards levels are binary (𝑅𝑖 ∈ {0, 1}) and depend only on 𝑝𝑖: P(𝑅𝑖 = 1|𝑋𝑖) = 𝑟(𝑝𝑖)

where 𝑓 is a piece-wise constant function

𝑓(𝑝) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝛼1 if 𝑝 ≤ 330

𝛼2 if 330 < 𝑝 ≤ 660

𝛼3 if 660 < 𝑝

(3.9)

∙ customers decide whether to make a purchase according to a logistic function that

depends on 𝑑𝑖 and 𝑅𝑖: P(𝑦𝑖 = 1|𝑅𝑖, 𝑑𝑖) =
𝑒𝛽0+𝛽𝑑𝑑𝑖+𝛽𝑟𝑅𝑖

1+𝑒𝛽0+𝛽𝑑𝑑𝑖+𝛽𝑟𝑅𝑖

∙ 𝑑𝑖 and 𝑝𝑖 are independent to satisfy assumption 2.

For each instance generated, we compare the performance of the NPM algorithm, the

EM algorithm and the direct maximization of the likelihood.

Convergence of the NPM algorithm

Figure 3-6 illustrates the convergence of the NPM algorithm in a particular instance, we can

notice that the convergence rate is fast: in 20 iterations the algorithm converges and the

estimated values are less than 5% far from the true parameters. It is important to remember

that here we consider a setting where the distribution of rewards is parametric and where we

give the same parametric assumptions (piece-wise structure of the function 𝑓) as an input

for the NPM algorithm. Relaxing this hypothesis, a full non-parametric estimation of the

distribution of rewards is possible.

In Figure 3-7, we compare the convergence rate of the EM and NPM algorithms on

the same instance as before, we can see that the NPM algorithm convergence significantly

faster: the estimated 𝛽𝑟 gets at less than 5% from the true value in 20 iterations while the

EM algorithm requires 100 iterations to get to the same accuracy.

3.6.2 Comparing performances

In this Section, we compare the performances of the three methods in terms of accuracy

and running time. We consider random values for (𝛼, 𝛽, 𝛽𝑟), generate data sets of 100 000
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Figure 3-6: Parameter estimation for 𝑁 = 10000, 𝛼 = (0.3, 0.5, 0.7), (𝛽0, 𝛽𝑑, 𝛽𝑟) =
(−1,−0.04, 3), 20 iterations

customers and apply the three methods for parameter estimation. In Table B.1 in Appendix

B.3 we reported the estimation accuracy, the number of iterations and the running time for

20 instances.

% error 𝛽0 % error 𝛽𝑑 % error 𝛽𝑟 # Iterations Running Time (s)
NPM 10.4 3.73 5.69 12.0 63.6
EM 8.0 3.39 4.03 47.5 541.4

Table 3.4: Average absolute percentage error and number of iterations

In Table 3.4 we compare the NPM and the EM algorithm in terms of average absolute

percentage errors on the estimation of 𝛽 and average number of iterations before convergence.

The average is taken over 80 instances (including the ones in Table B.1). We can notice that

the two algorithms have similar accuracy but that the NPM algorithm converges significantly

faster: it requires on average almost 4 times less iterations and a 8.5 times shorter running
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Figure 3-7: Comparing convergence rate of the EM and NPM algorithm
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Figure 3-8: Average Number of Iterations and Running Time for NPM and EM

time. We observed this difference in speed consistently: in 96% of our simulations, the NPM

algorithm requires less iterations than the EM algorithm.

In conclusion, on synthetic data, the NPM algorithm has a good performance- comparable

to the EM algorithm- in terms of estimation accuracy but is significantly faster. In most

of the cases, with 100 000 customers and 6 parameters to estimate it converges in less than

20 iterations. The NPM algorithm significantly outperforms the EM algorithms in terms of

convergence rate.

NPM algorithm without any parametric assumption on 𝑓 In the previous para-

graph, we wanted to compare the performances of EM and NPM. The EM algorithm can

only be used in settings where the function 𝑓 has a parametric shape. Thus, we simulated

a piece-wise constant distribution of rewards (defined in equation (3.9)). But the strength

of the NPM algorithm is that it can be used in a general setting without any parametric
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assumption. The non-parametric approach of the NPM allows to get a good estimation of

𝑓 without any a priori information on its shape. To illustrate this, we use the simulation

framework presented in Subsection (3.6.1) where we replace 𝑓 by a bell shaped function.

We simulate 𝑁 = 100, 000 customers. We then apply the NPM algorithm and use local

averages as the non-parametric estimator in the NP step. Figure 3-9 shows the result of the

estimation of 𝑓 . The algorithm converges after 60 iterations. We can see that NPM allows

a good estimation of the distribution of rewards without parametric assumptions.

We used here local average to provide an estimation of the function 𝑓 . One could argue

that we could get the same estimator from the EM algorithm if we make the problem

parametric by dividing the range of possible values of 𝑝 into small intervals. Doing so, we

add a large number of additional variables 𝛼 to the EM algorithm. Recall that in the EM

algorithm, the Maximization step is over all the variables (and not only 𝛽), thus this will

increase significantly the complexity of the M step. To conclude, the flexibility of the NP step

and the fact that it decouples estimation of 𝑓 and 𝛽, make the NPM algorithm extremely

attractive and efficient estimator when the shape of the function 𝑓 is unknown.
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Figure 3-9: Non Parametric estimation of the function 𝑓

3.7 Conclusion

In this chapter, we studied the problem of customers’ price sensitivity estimation in a setting

of missing data. We first apply EM, a well-known parametric algorithm, to estimate the

parameters of our model and then propose a novel non-parametric approach denoted NPM.

The NPM approach allows for a more flexible and robust estimation of the distribution of
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rewards using a non-parametric approach. We provide an analytical proof of the convergence

and consistency of the NPM algorithm in two simplified settings. Using simulations and

synthetic data, we validate its convergence on data sets with general customer’ features and

show that the NPM algorithm converges significantly faster (4 times less iterations and 8

less running time) than the EM algorithm. These two aspects make the NPM algorithm

extremely attractive for its flexibility and convergence rate.
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Chapter 4

Optimal Pricing Strategies

4.1 Introduction

In the two previous Chapters, we have built a demand estimation framework that identifies

segments in the customers’ population and jointly estimates their demand with a distinct

logit choice model for each segment. The logit model incorporates customers’ specific charac-

teristics (previous purchase behavior and social activity) and a price sensitivity component.

One last aspect is missing in the demand function: social influence. If an influential cus-

tomer buys an item, how will this affect the purchase behavior of his friends? How customers’

purchase behavior is influenced by a transparent rewards policy? In this Chapter, we first

present a model to describe the social influence among the population segments. We then

develop an optimization framework for the pricing problem. We identify the levels of rewards

that should be given to each badge category in order to maximize the total revenue. We then

formulate the pricing optimization problem and propose a dynamic programming approach

to solve it efficiently for a general shape of demand function. Finally, we focus on the case

where customers are symmetric and develop insights on the performance and behavior of

optimal pricing policies.
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Literature Review

Social networks have been deeply studied in marketing in the last decades. Viral marketing

is defined by the Oxford English Dictionary as “a method of product promotion that relies on

getting customers to market an idea, product, or service on their own by telling their friends

about it, usually by e-mail”. In other words, on a pricing perspective, assume that after

purchasing an item customers recommend it to their friends and that this encourages the

latter to purchase the same item. Then, it is extremely profitable for the retailer to identify

“influencers” (central customers with many friends for example) and offer them an important

price incentive (even offering the item for free sometimes) to make sure that they buy the

item and recommend it to their friends. The classical example comes from the fashion

industry, where VIP (famous singers, actors etc.) are offered clothes for free in exchange of

the advertisement the brand receives.

Different approaches have been used to model this social influence. Their common under-

lying structure is a connected graph where nodes represent customers and edges represent

friendship relations. An approach, inspired from the economics literature, is to consider that

every customer decides his purchase behavior by maximizing a utility function. This utility

is customer specific and depends on his friends consumption and on the item’s price (that can

be different for different customers). This gives rise to a bilevel optimization problem where,

in the lower level, the customers simultaneously choose their consumption by maximizing

their utility given the price and, in the upper level, the retailer decides what price to offer

to every customer. [17] and [19] study the case where customers’ consumption is continuous

while [18] focuses on when consumption is binary (customers can only choose whether to

buy or not). This approach gives important insights from a theoretical point of view but,

on an application perspective, it is difficult to justify a specific shape of utility function and

it is even harder to estimate a distinct function for every customer.

Another possible approach relies on modeling the spread of influence as a diffusion pro-

cess that can be deterministic (heat diffusion model) or probabilistic (cascade model). The

reference paper for a probabilistic diffusion process is [21], where, after proposing different

diffusion processes, they tackle the problem of finding the set of “VIP” to which the product
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is offered for free initially in order to maximize the total consumption over the entire net-

work. The general problem is NP-hard but heuristics are provided with good performance

guarantees (see [22] for example).

Finally, [20] proposes a discrete choice model decision process in two steps. Customers

face a finite set of choices: neighborhoods in which to live in their application. In the first

step, customers make a decision according to a discrete choice model depending only on

customer characteristics (income, family size etc.) and option characteristics (price, distance

from schools etc.). In the second step, customers observe what their friends chose in the

previous step and can adjust their decision. The social influence is captured in this second

step.

4.2 Model

We propose a model to incorporate social influence in the demand function and then formu-

late the pricing problem. We do not consider individual pricing (as studied in [17] or [19])

but follow SHOP.CA business constraints: every customer in the same badge category has

to receive the same reward level.

In this Chapter, to follow standard notations we will talk about prices rather than re-

wards. Rewards levels are percentages of discount, thus price and reward follow the simple

equation 𝑝𝑖 = 𝑝0(1 − 𝑟𝑖) where 𝑝𝑖 is the price offered to customer 𝑖, 𝑝0 is the base price

(without discount) and 𝑟𝑖 is the reward level of customer 𝑖.

4.2.1 Modeling Social Influence

Recall SHOP.CA business model illustrated in Figure 1-1. Customers are clustered into badge

categories according to transparent rules. Furthermore, they know what is the rewards level

they receive and what are the rewards levels the other clusters receive.

We first consider a setting with 𝐾 = 2 clusters and introduce and motivate our social in-

fluence model. We then generalize our approach to a general number of clusters 𝐾. Consider

a set of customers, divided into two clusters. Cluster 1 corresponds to cluster Low defined
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Figure 4-1: Sketch of social influence in a setting with two clusters

in Chapter 2. Cluster 2 corresponds to cluster High: the set of most influential and socially

active customers. Assume that 𝛼 percent of the customers are in cluster 2 and 1−𝛼 percent

are in cluster 1. Let us denote 𝑝1 the price assigned to customers in cluster 1 and 𝑝2 the price

paid by customers in cluster 2. Assume that the influential customers receive a lower price

than the non-influential.First of all, we assume that the social influence depends on the price

discrimination (𝑝2 − 𝑝1). The intuition is the following: customers in the lower category are

aware of the different prices and they know that by being more active (make more purchases,

write more reviews, share more items etc.) they can reach this additional level of discount.

This will increase the value they give to an additional purchase, or in other words, this will

incentivize them to buy. On the other end, influencers do not receive any additional benefit

from the social interactions (except the discounted price they pay). We also assume that the

social influence depends on the fraction of customers in cluster 2. This is motivated by two

main reasons. First of all, if the population in cluster 2 increases, this means that there are

more socially active customers that send recommendations, share purchases, write reviews.

This will influence the rest of the population to buy more. Secondly, on a price incentive

point of view, a customer in cluster 1 who has a large fraction of his friends in cluster 2- who

receive a higher discount than him- will be incentivized to accomplish the required actions

to get to cluster 2. In summary, we make the following assumptions:

Assumption 3. The demand of customer 𝑖 in cluster 𝑘 ∈ {1, 2} depends on:

∙ 𝑋𝑖: the customer’s specific features described in Chapter 2 (transaction history, social

interactions . . . ).

∙ 𝑝𝑘: price offered to cluster 𝑘
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∙ An additional social influence term is present only for cluster 1. We assume that the

social influence depends on 𝛼 fraction of “influencers” in the population and on 𝑝1− 𝑝2

the additional level of discount offered to these influencers. Thus this influence term

can be written 𝑓(𝛼, 𝑝1 − 𝑝2) where 𝑓 is increasing in both arguments. We make the

further assumptions:

– the effects of 𝛼 and 𝑝1 − 𝑝2 are independent

– 𝑓 is a concave function of 𝛼

– 𝑓 is approximated by a linear function of 𝑝1 − 𝑝2

Finally we can write 𝑓(𝛼, 𝑝1 − 𝑝2) = 𝜎(𝛼)(𝑝1 − 𝑝2) where 𝜎 is a concave function with

𝜎(0) = 0 and 𝜎(1) = 1.

It is common practice to assume that the influence is a concave function of the population

size. In fact, intuitively, the marginal effect of having one additional influencer is decreasing

with the number of influencers. [23] proves this property at a global scale (cluster level)

starting from the local assumptions (customer level) of [21].

If the demand function follows a logistic model we then have the following definition.

Definition 3.1. The demand function of customer 𝑖 in cluster 1 is given by

𝑓 1
𝑖 (𝑋𝑖, 𝑝1, 𝑝2) =

𝑒𝛽1.𝑋𝑖−𝛽𝑟,1𝑝1+𝛽𝑟,1𝛾1𝜎(𝛼)(𝑝1−𝑝2)

1 + 𝑒𝛽1.𝑋𝑖−𝛽𝑟,1𝑝1+𝛽𝑟,1𝛾1𝜎(𝛼)(𝑝1−𝑝2)
(4.1)

where 𝜎 is a concave and increasing function that satisfies 𝜎(0) = 0 and 𝜎(1) = 1 and

𝛾1 ∈ [0, 1] is the cross-cluster influence coefficient.

The demand function of customer 𝑖 in cluster 2 is given by

𝑓 2
𝑖 (𝑋𝑖, 𝑝2) =

𝑒𝛽2.𝑋𝑖−𝛽𝑟,2𝑝2

1 + 𝑒𝛽2.𝑋𝑖−𝛽𝑟,2𝑝2
(4.2)

Note that the coefficients 𝛽 and 𝛽𝑟 are cluster specific (as in Chapter 2). The social

influence is captured by the term 𝛽𝑟,1𝛾1𝜎 (𝛼) (𝑝1 − 𝑝2) in equation (4.1). We introduced the

coefficient 𝛾1 that measures the intensity of the social influence of cluster 2 on cluster 1. We

assume that, if 𝑝1−𝑝2 > 0, i.e. the influencers receive a lower price, there is a positive social
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influence, thus 𝛾1 > 0. We also assume that the price sensitivity is always greater than the

social influence, thus 𝛽𝑟,1 < 𝛽𝑟,1𝛾1 i.e. 𝛾1 < 1. Also note that if 𝑝1 = 𝑝2, i.e. no additional

discount is offered to cluster 2, then there is no social influence.

For settings with 𝐾 > 2 clusters, we use the same model with an additional myopic

assumption. We assume that each customer is influenced only by one cluster. This gives rise

to two possible structures of influences.

4.2.2 Two special structures

We focus on two structures of social influence: the nested model, where clusters are hier-

archically ordered and the VIP model where a cluster of “VIP” influences the rest of the

population.

Figure 4-2: Nested model with 3 clusters Figure 4-3: VIP model with three clusters

Nested model

The nested model is illustrated in Figure 4-2. Its structure comes from SHOP.CA business

model. The lowest cluster (1) corresponds to the badge level “Member”, the second cluster

(2) is “Sharer” etc. With our myopic assumption, we consider that cluster 𝑘 is only influenced

by cluster 𝑘 + 1. This is equivalent to assuming that customers are myopic and think “one

step at a time”. If a customer is in cluster 𝑘, he will only consider the price offered to him

and to the cluster just above him to make his purchase decision. He does not consider the

additional level of discounts he would get if he was two clusters above. This assumption

relies on the fact that a large number of actions are required to get from one badge level
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to another (reviews, shares, friends) and thus customers consider one step at a time. The

demand of customer 𝑖 in cluster 𝑘 is defined by:

𝑓𝑘
𝑖 (𝑋𝑖, 𝑝𝑘, 𝑝𝑘+1) =

𝑒𝛽𝑘.𝑋𝑖−𝛽𝑟,𝑘𝑝𝑘+𝛽𝑟,𝑘𝛾𝑘𝜎(𝛼𝑘+1)(𝑝𝑘−𝑝𝑘+1)

1 + 𝑒𝛽𝑘.𝑋𝑖−𝛽𝑟,𝑘𝑝𝑘+𝛽𝑟,𝑘𝛾𝑘𝜎(𝛼𝑘+1)(𝑝𝑘−𝑝𝑘+1)
(4.3)

where 𝛼𝑘 is the fraction of customers in cluster 𝑘 and we set 𝛼𝐾+1 = 0.

VIP model

The VIP model structure is illustrated in Figure 4-3. It is characterized by a cluster of “VIP”

(cluster 𝐾) that influences all the other clusters (1, . . . , 𝐾 − 1). The typical example is a

network with a group of extremely popular people (famous artists for example) that are able

to influence the entire population. The rest of the customers are segmented according to

specific characteristics (geographical location, interests, price sensitivity, etc.) but they do

not interact between each other.

Thus the demand function of customer 𝑖 in cluster 𝑘 < 𝐾 depends only on 𝑝𝑘, 𝑝𝐾 and

𝛼𝐾 :

𝑓𝑘
𝑖 (𝑋𝑖, 𝑝𝑘, 𝑝𝐾) =

𝑒𝛽𝑘.𝑋𝑖−𝛽𝑟,𝑘𝑝𝑘+𝛽𝑟,𝑘𝛾𝑘𝜎(𝛼𝐾)(𝑝𝑘−𝑝𝐾)

1 + 𝑒𝛽𝑘.𝑋𝑖−𝛽𝑟,𝑘𝑝𝑘+𝛽𝑟,𝑘𝛾𝑘𝜎(𝛼𝐾)(𝑝𝑘−𝑝𝐾)
(4.4)

Note that the different lower clusters 1, . . . , 𝐾 − 1 still have different parameters (𝛽, 𝛾) but

they all are influenced by the VIP cluster 𝐾.

In summary, the nested and VIP models represent two possible approaches to model

social influence. In the nested model, 𝐾 clusters are ordered hierarchically and each cluster

influences the cluster below. The VIP model selects a group of highly influential customers

that are able to influence the whole population. The rest of the customers are “at the same

level” and segmented according to common characteristics. Our goal is to solve the pricing

problem for the these two structures and compare the results in terms of pricing policies

(reward levels) and total revenue.
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4.2.3 Optimization Formulation

We want to assign a price 𝑝𝑘 to each cluster 𝑘 in order to maximize the total revenue taking

into account the social interactions. In a general setting, let us denote 𝑓𝑘
𝑖 (𝑋𝑖, 𝑝𝑘, 𝑝−𝑘) the

demand of customer 𝑖 in cluster 𝑘. 𝑝−𝑘 represent the prices offered to the other clusters.

Note that in the nested model 𝑓 depends only on (𝑝𝑘, 𝑝𝑘+1) and in the VIP model it depends

only on (𝑝𝑘, 𝑝𝐾).

The revenue generated by customer 𝑖 in cluster 𝑘 is 𝑝𝑘𝑓
𝑘
𝑖 (𝑋𝑖, 𝑝𝑘, 𝑝−𝑘) and thus the revenue

maximization problem can be written:

max
𝑝1,...,𝑝𝐾

𝐾∑︁
𝑘=1

𝑝𝑘
∑︁
𝑖∈𝒞𝑘

𝑓𝑘
𝑖 (𝑋𝑖, 𝑝𝑘, 𝑝−𝑘)

s. t. 𝑝𝑚𝑖𝑛 ≤ 𝑝𝑘 ≤ 𝑝𝑚𝑎𝑥, 𝑘 = 1, . . . 𝐾

additional business rules for 𝑝

(4.5)

This problem can incorporate additional business constraints on 𝑝, for example the retailer

may want to bound the difference in prices between certain clusters, or bound the sum of

discounts offered. Any business rule that can be formulated with linear constraints can be

added.

4.3 Dynamic Programming approach

We propose an approach to solve the optimization problem formulated in (4.5) based on Dy-

namic Programming. We detail our approach for the nested model. We start by simplifying

the notations and aggregate the demand for every cluster. We define:

𝑓𝑘(𝑝𝑘, 𝑝𝑘+1) =
∑︁
𝑖∈𝒞𝑘

𝑓𝑘
𝑖 (𝑋𝑖, 𝑝𝑘, 𝑝𝑘+1)

𝑓𝑘 is the total demand from cluster 𝑘.

Assume that 𝑝1 can take continuous values while 𝑝2, . . . , 𝑝𝐾 take values in a discrete set

𝑟1, . . . , 𝑟𝐽 . Imagine that the retailer has initially in mind a price 𝑝0 for his product. He
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wants to assign a base price 𝑝1 that will be reported on his website for new members or

“non-influencers”. 𝑝1 can take continuous values and can be lower or greater than 𝑝0. For

clusters 2 to 𝐾, the retailer wants to assign prices from a predefined grid 𝑟1, . . . , 𝑟𝐽 that

represent for example a fraction of 𝑝0. This situation is common in practice because prices

often need to end by .99 or .49.

We can then use a dynamic programming approach to solve this problem. Dynamic pro-

gramming is a standard approach that enables to decompose a complex optimization problem

in simpler subproblems. It is based on recursive relationships called Bellman equations. They

express the problem for one cluster as a function of the previous cluster in a recursive way

that preserves optimality.

Here, the Bellman equations are:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑉 (2, 𝑝2) = max
𝑝1

𝑝1𝑓1(𝑝1, 𝑝2)

𝑉 (𝑘 + 1, 𝑝𝑘+1) = max
𝑝𝑘

𝑝𝑘𝑓𝑘(𝑝𝑘, 𝑝𝑘+1) + 𝑉 (𝑘, 𝑝𝑘)

𝑉 (𝐾 + 1) = max
𝑝𝐾

𝑝𝐾𝑓𝐾(𝑝𝐾) + 𝑉 (𝐾, 𝑝𝐾)

(4.6)

where 𝑉 is the value function and 𝑉 (𝐾 + 1) gives the solution to 4.5.

These equations translate the following recursive approach:

1. For 𝑝2 ∈ {𝑟1, . . . 𝑟𝐽}, fix the value of 𝑝2 and solve the pricing problem for cluster 1:

max
𝑝1

𝑝1𝑓1(𝑝1, 𝑝2)

Denote its optimal value 𝑉 (2, 𝑝2) and store the associated optimal price 𝑝1(𝑝2).

k. For 𝑘+1 ∈ {3, . . . , 𝐾}, fix a value of 𝑝𝑘+1 ∈ {𝑟1, . . . , 𝑟𝐽} and solve the pricing problem

for clusters 1 until 𝑘:

max
𝑝1,...,𝑝𝑘

𝑘∑︁
𝑖=1

𝑝𝑖𝑓𝑖(𝑝𝑖, 𝑝𝑖+1) = max
𝑝𝑘

𝑝𝑘𝑓𝑘(𝑝𝑘, 𝑝𝑘+1) + 𝑉 (𝑘, 𝑝𝑘)

105



where 𝑉 (𝑘, 𝑝𝑘) denotes the optimal revenue from clusters 1 to 𝑘− 1 given the value of

𝑝𝑘.

K+1. Finally, the optimal revenue for 𝐾 clusters can be obtained by

max
𝑝𝐾

𝑝𝐾𝑓𝐾(𝑝𝐾) + 𝑉 (𝐾, 𝑝𝐾)

Note that for 𝑘 ≥ 2 the values of 𝑝𝑘 are in a discrete set, thus the maximization problems

𝑉 (𝑘, .) can be solved by simple enumeration.

The approach used in dynamic programming is represented graphically on Figure 4-4.

Figure 4-4: Sketch of Dynamic Programming approach

Complexity

Dynamic Programming allows to significantly reduce the complexity of the problem. Instead

of considering all the possible values of (𝑝2, . . . , 𝑝𝐾) ∈ {𝑟1, . . . , 𝑟𝐽}𝐾−1, only a subset (that

scales linearly with 𝐾) is considered. This makes the problem tractable even for a large

number of clusters 𝐾.

Assume that max
𝑝1

𝑝1𝑓1(𝑝1, 𝑝2) for 𝑝2 fixed can be solved efficiently. This is a univariate

optimization problem that can be solved fast if the objective function is concave or unimodal

for example. Denote |𝒜| the complexity of this problem. Then the overall complexity of the

dynamic programming approach is 𝒪(𝐽 |𝒜|+𝐽(𝐾−1)) where J is the cardinal of the discrete

set {𝑟1, . . . , 𝑟𝐽}. Note that this is linear in 𝐾 and thus the dynamic programming approach

can be solved “fast” even with a large number of clusters. In summary, if one can solve the

(univariate) pricing problem for a single cluster, our Dynamic Programming approach can
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be used to solve efficiently the pricing problem for 𝐾 clusters.

Note that the same Dynamic Programming approach can be used for the VIP model.

In this case, the Bellman equations have an easier form (as the cluster of VIP influences

directly every other cluster). We first have to fix 𝑝𝐾 and solve the pricing problem for

clusters {1, . . . , 𝐾 − 1} separately and then choose the best value of 𝑝𝐾 ∈ {𝑟1, . . . , 𝑟𝐽}. The

complexity of the problem becomes 𝒪((𝐾 − 1)𝐽 |𝒜|).

To conclude, the myopic property of our demand model (where clusters are influenced only

by the price offered to the cluster above) allows to decompose the optimization into simpler

sub-problems and to solve it efficiently using dynamic programming if we assume that the

prices offered to the clusters 2 to 𝐾 lie in a discrete set. This approach can be used for any

shape of demand function and different types of business constraints (order of prices, bounds

on the feasible prices . . .) can be incorporated.

4.4 Insights in symmetric case

After proposing an efficient way to solve the revenue optimization problem under a general

demand model, we want to characterize the optimal solutions. We want to answer the

questions:

∙ How does 𝑝𝑘 depends on 𝑘?

∙ What is the role of the cross-cluster coefficient 𝛾?

∙ How do the nested and VIP compare in terms of optimal policy and optimal revenue?

∙ How does the optimal solution depend on the distribution of customers across clusters

(𝛼)?

To answer these questions, we consider a simple setting where the customers are symmet-

ric: every cluster has the same demand function. We start our analysis with an additional

simplifying hypothesis: we assume a linear function for the demand 𝑓𝑘. This allows us to

solve problem (4.5) in closed form, study the relationship between the solution and the prob-

lem parameters and present meaningful insights on the behavior of the solution. We will
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then show using computations that the same results extend to different common demand

functions (including the logistic model).

4.4.1 Symmetric Linear Model

Let us assume that the demand function is symmetric (every cluster has the same parameters

and same number of customers) and linear. For 𝐾 clusters we then have:

⎧⎪⎨⎪⎩𝑓𝑘(𝑝𝑘, 𝑝𝑘+1) = 𝑑− 𝛽𝑝𝑘 + 𝛽𝛾(𝑝𝑘 − 𝑝𝑘+1) for 𝑘 < 𝐾

𝑓𝐾(𝑝𝐾) = 𝑑− 𝛽𝑝𝐾

(4.7)

In a linear demand model, 𝑑 represents the market share (or the demand in the case where the

product is offered for free) and 𝛽 is the price sensitivity. The symmetry assumption means

that both clusters have the same market share and price sensitivity, the only difference is

the social influence. Note that the term 𝜎(𝛼), introduced in the initial definition of influence

is dropped here. 𝛼 is a constant in this case, it represents the fraction of customers in each

clusters: 𝛼 = 1
𝐾

as the clusters are equally populated. To simplify the notations, we write

𝛾 ← 𝜎(𝛼)𝛾 in the symmetric case.

Proposition 3.1. Under a linear demand model, the nested and VIP optimization problems

are quadratic problems and can be solved in closed form.

The details of the formulation and the proof of Proposition 3.1 can be found in Appendix

C.1.

4.4.2 Comparing optimal solutions for the Nested and VIP models

In this paragraph, we compare the solutions for the nested and VIP models. For 𝐾 = 2 the

two models are equivalent, we will start our analysis with 𝐾 = 3.

Optimal prices for VIP For the VIP model, the assumption of symmetric demand func-

tion simplifies the problem. Clusters 1 to 𝐾 − 1 have the same linear demand coefficients
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(𝑑, 𝛽, 𝛾) and they all are influenced by the cluster of VIP (𝐾). By symmetry of the problem,

clusters 1 to 𝐾 − 1 are offered the same price.

Proposition 3.2. For a symmetric VIP model with 𝐾 clusters and linear demand the op-

timal prices are

𝑝𝐾 =
𝑑 (𝛾 − 2)

𝛽 ((𝐾 − 1) 𝛾2 + 4𝛾 − 4)

𝑝1 = . . . = 𝑝𝐾−1 =
𝑑 (𝐾𝛾 + 𝛾 − 2)

𝛽 ((𝐾 − 1) 𝛾2 + 4𝛾 − 4)

where 𝑝𝐾 < 𝑝𝐾−1 = . . . = 𝑝1

The cluster of VIP customers (𝐾) receives a lower price than the other clusters. Note

that the ration between 𝑝1 and 𝑝𝐾 depends only on 𝛾 and 𝐾. When the social influence is

stronger (large 𝛾) then the ratio increases, this translates a stronger price discrimination.

Optimal prices for the nested model For the nested model, we can solve the pricing

problem in closed form for any value of 𝐾 by solving the linear system presented in equation

C.3 in Appendix C. Nevertheless, the symmetry of the problem in this case is not sufficient

to give a closed form expression that can be applied for any value of 𝐾. For this reason, we

focus here on the case where 𝐾 = 3.

Proposition 3.3. For a symmetric nested model with 𝐾 = 3 clusters the optimal prices are

𝑝3 =
𝑑

𝛽

−3𝛾 + 2

𝛾3 + 2𝛾2 − 8𝛾 + 4
(4.8)

𝑝2 =
𝑑

𝛽

𝛾2 − 4𝛾 + 2

𝛾3 + 2𝛾2 − 8𝛾 + 4
(4.9)

𝑝1 =
𝑑

𝛽

3𝛾2 − 5𝛾 + 2

𝛾3 + 2𝛾2 − 8𝛾 + 4
(4.10)

and, for 𝛾 < 0.5, we have 𝑝3 < 𝑝2 < 𝑝1.

The proof of Proposition 3.3 is straightforward and is derived from inverting the linear

system of equations (C.3). Proposition 3.3 shows that the optimal price allocation gives a

lower price to most influential customers. This result is intuitive and confirms the validity

of our modeling assumptions. The condition 𝛾 < 0.5 required for the correct ordering of
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prices, is derived from analyzing the closed form expressions for 𝑝1, 𝑝2, 𝑝3 and guarantees the

diagonal dominance of the matrix 𝑀 presented in Appendix C.1. This is a mild assumption

from a modeling perspective, because we assume that the cross-cluster influence is smaller

than the price sensitivity.

Figure 4-5: Optimal prices for the nested
model with 3 clusters as a function of 𝛾 for
𝑑
𝛽
= 1

Figure 4-6: Optimal prices for the VIP
model with 3 clusters as a function of 𝛾
for 𝑑

𝛽
= 1

Comparing nested and VIP model We first compare the optimal pricing policies for

the two models. Note that, for both models, the closed form expression for the prices can

be decomposed as 𝑑
𝛽
times a function of 𝛾. Thus, 𝑑 and 𝛽 influence in the same way all

the clusters while 𝛾 drives the pricing difference among the clusters. Figures 4-5 and 4-6

show the optimal prices for 3 clusters and for a ratio 𝑑
𝛽
= 1. Note that in both cases, when

𝛾 = 0 the prices are identical. In fact, 𝛾 = 0 corresponds to a situation without cross-cluster

influence. The two clusters are then identical and they receive the same price. Also note that

when 𝛾 increases the price discrimination (difference between the prices) increases. This is

also intuitive, as with a high cross-cluster influence the retailer should offer lower prices to

the influencers to increase the overall consumption and he can afford to offer higher prices

to the lower clusters. Note also that the price discrimination is larger in the VIP model

than in the nested model (for 𝛾 = .45, in the nested model 𝑝3 = 40, 𝑝2 = 0.45, 𝑝1 = 0.72,

in the VIP model 𝑝3 = 0.11, 𝑝2 = 𝑝1 = 0.86). In general, for 𝐾 = 3 and 𝛾 < 0.5 we have

𝑝3𝑉 𝐼𝑃 ≤ 𝑝3𝑛𝑒𝑠𝑡 ≤ 𝑝2𝑛𝑒𝑠𝑡 ≤ 𝑝1𝑛𝑒𝑠𝑡 ≤ 𝑝2𝑉 𝐼𝑃 = 𝑝1𝑉 𝐼𝑃 .

110



We can also compare the two models in terms of optimal revenue generated. We consider

again the case 𝐾 = 3 and we use the expressions for the optimal prices computed above to

compute the optimal revenue in the two cases.

Proposition 3.4. For linear symmetric demand function and 𝐾 = 3 the ratio of the optimal

revenues generated by the nested and VIP models is given by:

Π𝑉 𝐼𝑃

Π𝑛𝑒𝑠𝑡𝑒𝑑

= 1.5
(1− 𝛾) (𝛾3 + 2𝛾2 − 8𝛾 + 4)

(−𝛾2 − 𝛾 + 2) (2𝛾2 − 6𝛾 + 3)
≥ 1

Thus, if the two models have the same parameters (𝑑, 𝛽, 𝛾), then the VIP model always

generates more revenue than the nested.

Figure 4-7: Ratio of revenues generated by the VIP and nested model for 𝐾 = 3

Note that the ratio of revenues does not depend on 𝑑 and 𝛽. It only depends on 𝛾.

Figure 4-7 represents the ratio of revenues as a function of 𝛾. We can see that it is an

increasing function of 𝛾, thus, the greatest the social influence, the greatest is the additional

revenue generated by the VIP model compared to the nested. For 𝛾 = 0.5 the VIP model

generates 25% more revenue than the nested (assuming that the two models have the same

parameters).

To summarize, we compared the VIP and nested models for a symmetric and linear demand

model in terms of optimal pricing strategies and optimal reward generated. For 𝐾 = 3

clusters, we have seen that both models assign lower prices to more influential customers

and that the difference among prices increases with the cross-cluster influence parameter 𝛾.

The VIP model has a more “aggressive” strategy and gives an important discount to the VIP
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cluster and the same and higher price to the other clusters. The nested model has a more

gradual approach with less price discrimination. Assuming the same demand parameters

(𝑑, 𝛾, 𝛽), the VIP model always generate more revenue than the nested and the the ratio of

revenues is an increasing function of 𝛾. This makes sense intuitively, when the population

has a set of VIP that can influence the entire population, the retailer can extract a significant

revenue by giving an important discount to the VIP and letting them influence the entire

population. If there is a hierarchical structure as in the nested model, the retailer has to give

discounts to a significant fraction of the population in order to have a cascading cross-cluster

influence, this decreases the potential revenue.

We have detailed our analysis under a symmetric and linear model to keep the analysis

tractable for the revenues and prices. The same analysis can be done with more general

symmetric demand functions. The optimal prices and revenues can be derived by solving

the dynamic programming approach presented in Section 4.3. We found extremely similar

behaviors for other types of demand functions. We consider an exponential demand function:

𝑑𝑒𝑥𝑝(𝑝𝑘, 𝑝𝑘+1) = 𝑑𝑒−𝛽𝑝𝑘+𝛽𝛾(𝑝𝑘−𝑝𝑘−1)

and the logistic demand function introduced in equation (4.1).

Figure 4-8: Exponential de-
mand and nested model

Figure 4-9: Logistic de-
mand and nested model

Figure 4-10: Ratio of rev-
enue for different demand
models

Figures 4-8 and 4-9 show the behavior of the optimal solutions for the nested model under

exponential and logistic demand functions. The behavior of the solutions as a function of 𝛾
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is really similar to the linear case. Even more striking is Figure 4-10 where the ratio between

VIP and nested revenues are extremely similar for the three possible demand shapes. We

can conclude that the qualitative insights developed on the nested and VIP models under

linear demand extend to other demand functions (and especially to a logistic demand) under

a symmetry assumption.

Allocation of customers among clusters

In the previous paragraphs, we have considered a totally symmetric case where every cluster

has the same number of customers. Let us now study the impact of different number of

customers in the clusters. In this paragraph we only consider the case where there are two

clusters (illustrated in Figure 4-1). Let us assume that 𝛼% of the population is in cluster

2. The demand function follows the assumptions given in 3. Then, under the symmetry

assumption, for a logistic demand model, we have:

𝑑1(𝑝1, 𝑝2) = (1− 𝛼)
𝑒𝛽0−𝛽𝑟𝑝1+𝛽𝑟𝛾𝜎(𝛼)(𝑝1−𝑝2)

1 + 𝑒𝛽0−𝛽𝑟𝑝1+𝛽𝑟𝛾𝜎(𝛼)(𝑝1−𝑝2)
(4.11)

𝑑2(𝑝2) = 𝛼
𝑒𝛽0−𝛽𝑟𝑝2

1 + 𝑒𝛽0−𝛽𝑟𝑝2
(4.12)

We multiply the original demand functions presented in equation (4.3) by the number of cus-

tomers in the clusters. Note also that here the parameter of interest is 𝛼 thus we reintroduce

the term 𝜎(𝛼) in the cross-cluster influence. We assumed that 𝜎 is a concave and increasing

function with 𝜎(0) = 0 and 𝜎(1) = 1 and we consider the family of functions 𝜎(𝛼) = 𝛼𝑖 with

𝑖 ∈ (0, 1).

Figure 4-11 represents the optimal revenue as a function of 𝛼 for 𝜎(𝛼) =
√
𝛼. We

obtain a concave and non-symmetric “bell-shaped” function that reaches its maximum for

𝛼 < .5. Note that with 𝛼 = 0 and 𝛼 = 0 there is effectively only one cluster and this

generates the same level of revenue. For 𝛾 ∈]0, 1[, the model builds two distinct clusters

and thus the revenue is larger. We prove that the optimal revenue function is concave,

under the assumption that the revenue given 𝑝 is concave in 𝛼, in Proposition 3.5. This

result intuitively makes sense. For a concave influence function 𝜎 it is optimal to give a
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discount to a “small” fraction of customers that will be able to significantly increase the

overall consumption. The value of 𝛼 that maximizes the revenue depends on the shape of

the influence function 𝜎. In Figure 4-12, we represent the optimal value of 𝛼 for 𝜎(𝑥) = 𝑥𝑖 for

different values of 𝑖 ∈ (0, 1). The result again is intuitive. Small values of 𝑖 represent a very

“steep” influence function, thus it is sufficient to consider a smaller fraction of the population

as influencers in order to maximizes the total revenue. Notice that for every value of 𝑖 < 1

the optimal ratio 𝛼𝑚𝑎𝑥 is lower than 50%.

Figure 4-11: Optimal revenue as a function
of 𝛼 for 𝜎(𝛼) =

√
𝛼

0.2 0.4 0.6 0.8
0.

0
0.

2
0.

4

σ(α)=αi

i

α m
ax

Figure 4-12: Optimal value of 𝛼 for differ-
ent influence functions 𝜎

Proposition 3.5. Let us consider two clusters and let 𝑅(𝛼, 𝑝) be the revenue generated by

price vector 𝑝 if a proportion 𝛼 of the population is in cluster 2. Let

Π* : 𝛼→ max
𝑝

𝑅(𝛼, 𝑝)

Assume that 𝑅 is a concave function of 𝛼. Then Π* is a concave function of 𝛼.

Proof. We have that, Π*(𝛼) = max
𝑝

𝑅(𝛼, 𝑝). By assumption, for 𝛼 fixed, 𝑅(𝛼, .) is a concave

function thus it has an unique maximum. Let us denote 𝑝*(𝛼) = argmax
𝑝

𝑅(𝛼, 𝑝). We then

have that Π*(𝛼) = 𝑅(𝛼, 𝑝*(𝛼)). The first order conditions give 𝜕
𝜕𝑝
𝑅(𝛼, 𝑝*(𝛼)) = 0. Let us
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compute the second derivatives of Π*:

𝜕

𝜕𝛼
Π*(𝛼) =

𝜕

𝜕𝛼
𝑅(𝛼, 𝑝*(𝛼)) +

𝜕

𝜕𝑝
𝑅(𝛼, 𝑝*(𝛼))⏟  ⏞  

=0

(𝑝*)
′
(𝛼) (4.13)

𝜕2

𝜕2𝛼
Π*(𝛼) =

𝜕2

𝜕2𝛼
𝑅(𝛼, 𝑝*(𝛼)) +

𝜕2

𝜕𝛼𝜕𝑝
𝑅(𝛼, 𝑝*(𝛼))⏟  ⏞  

=0

(𝑝*)
′
(𝛼) (4.14)

=
𝜕2

𝜕2𝛼
𝑅(𝛼, 𝑝*(𝛼)) ≤ 0 (4.15)

because, using the first order conditions, 𝜕
𝜕𝑝
𝑅(𝛼, 𝑝*(𝛼)) = 0 for all 𝛼 and 𝜕2

𝜕𝛼𝜕𝑝
𝑅(𝛼, 𝑝*(𝛼)) =

𝜕
𝜕𝛼

𝜕
𝜕𝑝
𝑅(𝛼, 𝑝*(𝛼)).

Conclusion on the symmetric case

In this Section,we have studied the symmetric case where every cluster has the same param-

eters (𝛽, 𝛾). We have first started our analysis considering a linear demand model. We have

shown that the VIP model leads to an aggressive strategy where the price discrimination

between VIP and the other clusters is important. The nested model leads to a more grad-

ual pricing strategy with smaller price discrimination between clusters. Assuming the same

demand parameters, we also show that the VIP model generates more revenue than the the

nested and that the ratio of revenues depends only on the cross-cluster influence factor 𝛾.

We prove these results under the linear demand assumption and, using simulations, we show

that the qualitative results extend to more general demand function (including the logistic

model). We finally consider the problem of allocating customers to clusters and we show

that for a strictly concave influence function 𝜎(𝑥) = 𝑥𝑖 with 𝑖 ∈ (0, 1) it is always optimal

to consider less than 50% of the population as influencers.
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Chapter 5

Conclusion and Further Research

This research considers the problem of building a social loyalty program for an online retailer

using social media data. Our approach has three main components.

In Chapter 2, we consider the problem of joint clustering and logistic regression. our goal

is to cluster customers into categories according to their social media and purchase behavior

and jointly build a distinct demand function for each category. We choose a logistic (binary

or multinomial) function to model the customers’ purchase decision process. We start by

showing that the problem of joint clustering and logistic regression can be formulated as

a mixed-integer optimization problem with a concave objective function (in the continuous

variables) and linear constraints. We show with computations that this problem can be solved

efficiently by commercial solvers even for a large number of customers. We then apply our

results to SHOP.CA data and highlight two main results. First of all, incorporating social

media data to a demand estimation model significantly improves the forecasting accuracy

(by 13% in our application). The number of reviews written, the frequency of website log ins

and the number of referrals sent are efficient predictors of the future demand. Social media

data can be extremely useful for online retailers to have a more accurate understanding

of customers’ behavior and correctly identify segments in the population. Secondly, in a

setting with heterogeneous customers, adding a clustering step in the demand estimation

process can be extremely valuable. The logistic clustering model outperforms by 6% in

terms of prediction accuracy an aggregated model that uses the same set of features in the

demand model but does not incorporate clusters. The logistic clustering method seems an

117



efficient and robust approach to demand estimation with heterogeneous customers. This

has to be confirmed with extensive simulations on different types of data sets coming from

different application settings. Furthermore, we restricted our analysis to the "threshold

implementation" for the clustering step. A study of the performances of other types of linear

constraints has to be done. Finally, we carried our analysis with a set of 500 customers, with

a larger amount of data, an unsupervised pre-clustering step (as in [5] for example) can be

considered to reduce the computation time.

In Chapter 3, we focus on demand estimation with missing data. In Chapter 2, we

estimated customers’ demand as a function of past social and transaction activity: char-

acteristics that are observable for every customer. We want to incorporate in the demand

function a price sensitivity component but we have missing data. For customers that make

a purchase in the future we observe the price they paid, for customers that decide not to

make a purchase we do not observe the price they were offered. We want to jointly estimate

the distribution of rewards among customers and to incorporate rewards in the demand

function in this setting of missing data. We first introduce a classical parametric approach:

the EM algorithm. Then, we introduce a novel non parametric approach, denoted NPM

algorithm, that can be used without any parametric assumption on the shape of the distri-

bution of rewards. The non parametric assumptions allow for more flexibility, a key aspect

when modeling human behavior. We show that the NPM algorithm is a consistent estimator

in the "no features" setting and validate our approach in the general case with extensive

simulations. With synthetic data, we show that the NPM algorithm is a robust and efficient

estimator that significantly outperforms the EM algorithm in terms of computation time- in

our simulations, the NPM algorithm converges faster than the EM in 96% of the instances.

Finally, Chapter 4 focuses on the pricing problem. We assume that the customers are

clustered into categories and that we have estimated each category’s demand function. We

first incorporate a social influence component in the demand and define two special struc-

tures: the nested and VIP models. We then analyze and compare these models in terms

of optimal pricing and revenue. We analyze the symmetric and linear demand setting and

build insights on the behavior of the optimal solutions. We show that the VIP model ex-

tracts more profit than the nested model and that, in a general setting, it is optimal to give
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higher discounts to the most influential customers. We then show numerically that these

results extend to nonlinear demand models as the logistic. Finally we analyze the impact

of the proportion of customers considered as influencers on the total profit. The last step

of this research would be to test these optimal pricing strategies (with the demand models

estimated in Chapters 2 and 3).
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Appendix A

Data and estimation

A.1 Data

A.1.1 Transaction Data

Transaction data
Number of transactions 200k
Number of unique users 100k

Time range January 2013-February 2014

months

12 02 04 06 08 10 12 02

Figure A-1: Histogram of monthly trans-

action from January 2013 to February 2014

 

Percentage discount

0 10 20 30 40

Figure A-2: Histogram of percentage of

discount received

A.1.2 Social interactions

The list of possible actions is reported in the following table:
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Action Attributes Customer Action Description

Log In Logs in into his account

Update Profile picture, descrip-

tion

Updates his profile: add or up-

date a picture, add or update per-

sonal description

Message Recipient ID Sends a private message to other

registered member (the recipient)

Review ITEM_ID, Rat-

ing

Writes a review about item

ITEM_ID and gives a rating

Recommendation ITEM_ID,

USER_ID

Private recommendation to an-

other registered member about a

specific item

Referral Success Email invitation to register to the

website sent to a person that is

not already a registered member.

If the attribute Success=1, the re-

cipient accepts the invitation and

creates an account

Social Network

Information

(Action, Social

Network)

Interaction with a social network.

Customers can link their account

with their profile on a social net-

work, they can post something

on the social network through

the online retailer website, or

send messages. Possible social

networks: Facebook, LinkedIn,

Twitter

Friends USER_ID Friend added in the internal net-

work

Table A.1: Possible Social Actions

122



Category Feature Description

Transactions

Number of Purchases

Past Purchases Total amount spent ($)

Number of promo codes used

Average rewards used

Days since last purchase

Social Activity

computed as of

11/1/13

Days since last log in

Days since last social activity

Active days in the last 4 months An “active day” is a day

where the customer logs in

on his account

Successful Referrer Referrals sent with Suc-

cess=1

Referrals received

Reviews Number of reviews written

Messages Number of messages sent

and received

Sharer Number of item recommen-

dations sent

Share referree Number of item recommen-

dations received

Social Networks Total number of activities

on a social network

Friends Number of Friends (on the

website platform)

Friends Past Purchases Amount ($) spent on the

website but the customer’s

friends

Table A.2: Customers Features built from Past Period
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Figure A-3: Features of interested customers

A.2 Proof of Proposition 1.5

Proof. The approach is similar to the one used before, we need to define the variables 𝛿𝑖 and

𝑣𝑗𝑖 for 𝑗 = 2 . . . 𝐽 .

As before, let us focus on a customer 𝑖 and on 𝑘 such that 𝑎𝑖,𝑘 = 1. Then we have to

distinguish two cases:
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∙ If 𝑦𝑖,0 = 1 then the objective function can be rewritten as

− ln(1 +
∑︁
𝑗≥1

𝑒𝛽
𝑗
𝑘.X𝑖)

and the maximization can be reformulated:

max − ln(1 + 𝑒𝛿𝑖 +
∑︁
𝑙≥2

𝑒𝑣
𝑙
𝑖)

s. t. 𝛿𝑖 ≥ 𝛽1
𝑘 .X𝑖

𝑣𝑗𝑖 ≥ 𝛽𝑗
𝑘.X𝑖, 𝑗 ≥ 2

(A.1)

The objective is decreasing in every variable, thus the equality constraints can be

transformed into inequalities.

∙ If 𝑦𝑖,0 = 0 then the objective function can be rewritten as

∑︁
𝑗≥1

𝑦𝑖,𝑗𝛽
𝑗
𝑘.X𝑖 − ln(1 +

∑︁
𝑗≥1

𝑒𝛽
𝑗
𝑘.X𝑖)

and the maximization can be reformulated:

max 𝛿𝑖 − ln(1 + 𝑒𝛿𝑖 +
∑︁
𝑗≥2

𝑒𝑣
𝑗
𝑖 )

s. t. 𝛿𝑖 ≤
∑︁
𝑗≥1

𝑦𝑖,𝑗𝛽
𝑗
𝑘.X𝑖

𝑣𝑗𝑖 ≥ (1− 𝑦𝑖,𝑗)𝛽
𝑗
𝑘.X𝑖 + 𝑦𝑖,𝑗𝛽

1
𝑘 .X𝑖 𝑗 ≥ 2

(A.2)

as the objective is increasing in 𝛿 and decreasing in 𝑣.

We can put these two cases together using linear constraints and get our result.
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A.3 Evaluating the performance of a classifier

Definition of confusion matrix and accuracy measures. Consider a data set with 𝑃 positive

labels (𝑦𝑖 = 1) and 𝑁 negative labels. A classification algorithm predicts a value for each

data points. Some are correctly classified some are not. To assess the predictive power

of the classifier we count the number of true positives 𝑇𝑃 (the label is positive and the

algorithm predicts positive), true negatives 𝑇𝑁 , false positives 𝐹𝑃 (the label is negative but

the algorithm predicts positive) and false negatives 𝐹𝑁 . The algorithm predicts correctly

for the true positive and the true negatives. The four possible outcomes are presented in

Table A.3. Accuracy, Specificity, Sensitivity and Precision are four ways of evaluating the

performance of a binary classifier in a context of an unbalanced data set (where one of the

labels is present significantly more often than the other).

Prediction
0 1

𝑦𝑖
0 TN FP
1 FN TP

Proportion of non-buyers 𝑁
𝑁+𝑃

Accuracy 𝑇𝑃+𝑇𝑁
𝑃+𝑁

Specificity 𝑇𝑁
𝑁

Sensitivity 𝑇𝑃
𝑃

Precision 𝑇𝑃
𝑇𝑃+𝐹𝑃

Table A.3: Definition of Confusion Matrix and accuracy measures

A.4 Benchmarks

In Section 2.7.2, we introduced three alternative models to benchmark the performance of

the Logistic Clustering. In what follows, we present here the details of these approaches.

Baseline The baseline is the simplest model we can think of. For every cluster, it predicts

for every customer the most frequent outcome. Here, for our two clusters, the most frequent

outcome is 𝑦𝑖 = 0 thus the Baseline predicts that none of the customers makes a purchase in

the future. This model seems rather simple but it demonstrates good accuracy in situations

of unbalanced data (as in this case) where one of the two outcomes is significantly more

frequent than the other. With unbalanced data, it is already hard to build a predictive

model that outperforms the baseline.

126



Benchmark We introduce the benchmark to analyze the value of using social features in

the demand estimation. In traditional revenue management, retailers use only transaction

data to predict future demand. We want to show that incorporating social information about

customers can turn out to be extremely valuable to estimate their future consumption. For

clusters High and Low, we run a logistic regression model using only the Transaction features

presented in Table A.2. In the same way as for Logistic Clustering, we use a greedy backward

selection approach to eliminate non-significant features. The only significant feature is Past

Purchases. The regression coefficients for Cluster Low and High are reported in Tables A.1

and A.2.

Estimate Std. Error z value P(> |𝑧|)
Intercept -1.2761 0.2169 -5.88 < 10−8***

Past Purchases 0.0007 0.0008 0.89 0.3723
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

Table A.1: Regression Results for Benchmark for cluster Low

Estimate Std. Error z value P(> |𝑧|)

Intercept -0.9377 0.1961 -4.78 < 10−5***

Past Purchases 0.0021 0.0004 4.69 < 10−5***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

Table A.2: Regression Results for Benchmark for cluster High

Aggregated model We introduce the aggregated model to investigate the impact of the

clustering step in Logistic Clustering. The Aggregated model builds a single logistic regres-

sion for the entire interested customers data set (without splitting it into clusters Low and

High). All the social and transaction features presented in Table A.2 can be used. Again,

we first run a model with the entire set of features and then use a greedy backward selection

approach to remove non-significant features. The regression coefficients estimated from the

train set presented in 2.7.2 are reported in Table A.3.
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Estimate Std. Error z value P(> |𝑧|)

Past Purchases 0.0017 0.0005 3.80 0.0001***

successful referrer 0.7441 0.2604 2.86 0.0043**

days since last log in -0.0304 0.0038 -7.96 < 10−14***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

Table A.3: Regression Coefficients for Aggregated model (train set)
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Appendix B

NPM algorithm

B.1 NPM algorithm under a general set of possible re-

wards ℛ

Let us consider that the possible rewards are in a discrete and finite set ℛ = {𝑟1, . . . , 𝑟𝐾}.

In this case, the NPM algorithm can be applied in a very similar way as in the binary case

described in 3.5.1.

NP step

In the NP step we want to build an estimate of 𝑓𝑥(𝑟𝑘) for 𝑘 = 1, . . . , 𝐾. The approach is

the same as in the binary case, but instead of inverting a ratio of linear functions, we have

to solve a system of linear equations.

For every 𝑘 we write Bayes’ rule and, assuming that we know 𝛽, we transform it into:

P(𝑅𝑖 = 𝑟𝑘|𝑋𝑖 = 𝑥, 𝑦𝑖 = 1) =
P(𝑦𝑖 = 1|𝑅𝑖 = 𝑟𝑘, 𝑋𝑖)P(𝑅𝑖 = 𝑟𝑘|𝑋𝑖 = 𝑥)

P(𝑦𝑖 = 1|𝑋𝑖 = 𝑥)
(B.1)

P̂(𝑅𝑖 = 𝑟𝑘|𝑋𝑖 = 𝑥, 𝑦𝑖 = 1) =
Ê𝑋𝑖≃𝑥

(︁
𝑒𝛽𝑋𝑖+𝛽𝑟𝑟𝑘

1+𝑒𝛽𝑋𝑖𝛽𝑟𝑟𝑘

)︁
𝑓𝑥(𝑟𝑘)∑︀𝐾

𝑞=1 𝑓𝑥(𝑟𝑞)Ê𝑋𝑖≃𝑥

(︁
𝑒𝛽𝑋𝑖+𝛽𝑟𝑟𝑞

1+𝑒𝛽𝑋𝑖𝛽𝑟𝑟𝑞

)︁ (B.2)

For every value of 𝑘, the left hand side can be estimated from the available data. Thus by

multiplying equation (B.2) by the denominator of the right-hand side, it becomes a linear
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equation on 𝑓𝑥(𝑟𝑞) for 𝑞 ∈ [1, 𝐾]. We have a different equation for every value of 𝑘. Thus

solving this system of linear equations we recover the values of 𝑓𝑥. Note that for every value

of 𝑘 the denominator in the right hand side is the same. Thus this system of equation can

be solved easily (without having to invert a matrix) and we get:

𝑓𝑥(𝑟) = 𝐶
P̂(𝑅𝑖 = 𝑟|𝑋𝑖 = 𝑥, 𝑦𝑖 = 1)

Ê𝑋𝑖≃𝑥

(︁
𝑒𝛽𝑋𝑖+𝛽𝑟𝑟

1+𝑒𝛽𝑋𝑖𝛽𝑟𝑟

)︁
where 1

𝐶
=
∑︀

𝑟∈ℛ
P̂(𝑅𝑖=𝑟|𝑋𝑖=𝑥,𝑦𝑖=1)

Ê𝑋𝑖≃𝑥

(︂
𝑒𝛽𝑋𝑖+𝛽𝑟𝑟

1+𝑒𝛽𝑋𝑖𝛽𝑟𝑟

)︂ .

M step

The M step is identical to the one considered in the binary rewards case. The incomplete

data likelihood given in equation (3.2) is written for a general set ℛ.

B.2 Proof of Proposition 2.7

The proof of Proposition 2.7 follows the same outline as the proof in the no feature case.

To simplify the notations let us assume that 𝑋𝑖 takes only a finite and discrete set of values

𝜒. We have seen that this assumption is not necessary, we only need that the subset of 𝑋

that influences 𝑓 takes a finite number of values. To avoid to insert a new notation we will

assume that 𝑓 depends on 𝑋𝑖 and that 𝑋𝑖 takes a finite and discrete number of values. To

mimic the notations introduced in the no features case, let us denote 𝛼𝑥 = 𝑓𝑥(1).

Convergence

Proposition 3.6. Starting from 𝛽
(0)
𝑟 = 0 and assuming 𝛽𝑟0 > 0, 𝛽

(𝑘)
𝑟 is a strictly increasing

sequence and 𝛼𝑥(𝑘) is strictly decreasing for every value of 𝑥 ∈ 𝜒.

Proof. Recall that in the no feature case we defined 𝑅𝐵 as the empirical expected reward

among buyers. Here, let us define 𝑅𝐵𝑥 the empirical expected reward among buyers that

have 𝑋𝑖 = 𝑥: 𝑅𝐵𝑥 = Ê(𝑅|𝑦 = 1, 𝑋 = 𝑥).

We, then, describe the proof in four steps:
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1. First, note that in the NP step 𝛼
(𝑘)
𝑥 is defined in section 3.5.1:

𝛼(𝑘)
𝑥 = −

Ê𝑋𝑖≃𝑥

(︁
𝑒𝛽𝑋𝑖

1+𝑒𝛽𝑋𝑖

)︁
𝑅𝐵𝑥[︁

Ê𝑋𝑖≃𝑥

(︁
𝑒𝛽𝑋𝑖+𝛽𝑟

1+𝑒𝛽𝑋𝑖+𝛽𝑟

)︁
− Ê𝑋𝑖≃𝑥

(︁
𝑒𝛽𝑋𝑖

1+𝑒𝛽𝑋𝑖

)︁]︁
𝑅𝐵𝑥 − Ê𝑋𝑖≃𝑥

(︁
𝑒𝛽𝑋𝑖+𝛽𝑟

1+𝑒𝛽𝑋𝑖+𝛽𝑟

)︁
The right hand side is a strictly decreasing function of 𝛽

(𝑘)
𝑟 thus, if 𝛽

(𝑘)
𝑟 increases, 𝛼

(𝑘)
𝑥

strictly decreases.

2. Secondly, we can show that 𝛽
(1)
𝑟 > 𝛽

(0)
𝑟 = 0.

In fact, using the result of Proposition 2.3, we know that, for a fixed value of 𝛼,

ℒ𝑖(𝒟, 𝛽, 𝛼) is a concave function of 𝛽. Furthermore, we know that 𝛼
(0)
𝑥 = 𝑅𝐵𝑥 > 𝑓𝑥(1).

Finally,

𝜕ℒ𝑖

𝜕𝛽𝑟

(𝒟, 𝛽, 𝛽𝑟 = 0, 𝛼(0)) =
∑︁
𝑖

𝑦𝑖𝑅𝑖
1

1 + 𝑒𝛽.𝑋𝑖
− (1− 𝑦𝑖)𝛼

(0)
𝑋𝑖

𝑒𝛽.𝑋𝑖

1 + 𝑒𝛽.𝑋𝑖

=
∑︁
𝑥∈𝜒

∑︁
𝑖|𝑋𝑖=𝑥

𝑦𝑖𝑅𝑖
1

1 + 𝑒𝛽.𝑥
− (1− 𝑦𝑖)𝛼

(0)
𝑥

𝑒𝛽.𝑥

1 + 𝑒𝛽.𝑥

=
∑︁
𝑥∈𝜒

1

1 + 𝑒𝛽.𝑥

∑︁
𝑖|𝑋𝑖=𝑥

𝑦𝑖𝑅𝑖

[︃
1−

∑︀
𝑖|𝑋𝑖=𝑥 1− 𝑦𝑖∑︀

𝑖|𝑋𝑖=𝑥 𝑦𝑖
𝑒𝛽.𝑥

]︃
> 0

because, for every value of 𝑥, 𝛼
(0)
𝑥 = 𝑅𝐵𝑥 =

∑︀
𝑖|𝑋𝑖=𝑥 𝑦𝑖𝑅𝑖∑︀
𝑖|𝑋𝑖=𝑥 𝑦𝑖

and 𝛽𝑟 > 0 thus:

∑︀
𝑖|𝑋𝑖=𝑥(1− 𝑦𝑖)∑︀

𝑖|𝑋𝑖=𝑥

𝑒𝛽.𝑥 ≃ P(𝑦𝑖 = 0|𝑋𝑖 = 𝑥)

P(𝑦𝑖 = 1|𝑋𝑖 = 𝑥)
𝑒𝛽.𝑥 =

𝛼𝑥
1

1+𝑒𝛽.𝑥+𝛽𝑟 + (1− 𝛼𝑥)
1

1+𝑒𝛽.𝑥

𝛼𝑥
𝑒��𝛽.𝑥+𝛽𝑟

1+𝑒𝛽.𝑥+𝛽𝑟 + (1− 𝛼𝑥) ��𝑒𝛽.𝑥

1+𝑒𝛽.𝑥

�
��𝑒𝛽.𝑥 < 1

Thus, ℒ𝑖(𝒟, 𝛽𝑟, 𝛼
(0)) is a concave function of 𝛽𝑟 and its derivative at 0 is positive, thus

its maximum is strictly positive and 𝛽
(1)
𝑟 > 0.

3. If, for a given 𝑘, 𝛼
(𝑘−1)
𝑥 < 𝛼

(𝑘)
𝑥 for all values of 𝑥 then 𝛽

(𝑘)
𝑟 > 𝛽

(𝑘+1)
𝑟 .

This step can be derived using the first order conditions in the M step of the NPM
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algorithm.

𝛽(𝑘+1)
𝑟 = argmax𝛽ℒ𝑖(𝒟, 𝛽, 𝛼(𝑘))

=⇒ 𝜕ℒ𝑖

𝜕𝛽𝑟

(𝒟, 𝛽(𝑘+1)
𝑟 , 𝛼(𝑘)) = 0

=⇒
∑︁
𝑥∈𝜒

∑︁
𝑖|𝑋𝑖=𝑥

𝑦𝑖𝑅𝑖
1

1 + 𝑒𝛽.𝑥+𝛽
(𝑘+1)
𝑟

− (1− 𝑦𝑖)

𝛼
(𝑘)
𝑥

𝑒𝛽.𝑥+𝛽
(𝑘+1)
𝑟(︂

1+𝑒𝛽.𝑥+𝛽
(𝑘+1)
𝑟

)︂2

𝛼
(𝑘)
𝑥

1

1+𝑒𝛽.𝑥+𝛽
(𝑘+1)
𝑟

+ (1− 𝛼
(𝑘)
𝑥 ) 1

1+𝑒𝛽.𝑥⏟  ⏞  
increasing in 𝛼 and decreasing in 𝛽𝑟

= 0

The pairs (𝛽
(𝑘+1)
𝑟 , 𝛼(𝑘)) are the solutions to the fixed point equation in ((B.3)). We can

thus conclude that if 𝛼
(𝑘−1)
𝑥 < 𝛼

(𝑘)
𝑥 for all 𝑥 then 𝛽

(𝑘)
𝑟 > 𝛽

(𝑘+1)
𝑟 .

4. Finally, combining the two previous results, we can get the result by induction:

∙ Initialization: 𝛽
(1)
𝑟 > 𝛽

(0)
𝑟 using step 2.

∙ Assume that, for a given 𝑘, 𝛽
(𝑘)
𝑟 > 𝛽

(𝑘−1)
𝑟 . Then, using step 1 we have that

𝛼
(𝑘−1)
𝑥 < 𝛼

(𝑘)
𝑥 for all 𝑥 and, using step 3, we get that 𝛽

(𝑘+1)
𝑟 > 𝛽

(𝑘)
𝑟 .

∙ We can then conclude that 𝛽
(𝑘)
𝑟 is an increasing sequence and 𝛼(𝑘) is a decreasing

sequence.

Proposition 3.7. Starting from 𝛽
(0)
𝑟 = 0 and assuming 𝛽𝑟0 > 0, 𝛽

(𝑘)
𝑟 and 𝛼(𝑘) converge.

Proof. 𝛽
(𝑘)
𝑟 and 𝛼(𝑘) are monotonic sequences, thus they converge.

Consistency From the previous paragraph we have that, starting from 𝛽
(0)
𝑟 = 0 and

assuming 𝛽𝑟0 > 0, 𝛽
(𝑘)
𝑟 and 𝛼(𝑘) are converging sequences. Let us denote 𝛽

(∞)
𝑟 and 𝛼(∞) their

limit points. We will show here that these limit points are 𝛽𝑟0 and 𝛼0.

Proposition 3.8. If 𝛽 is assumed to be known and 𝑋𝑖 take discrete values, the NPM algo-

rithm is a consistent estimator of (𝛽𝑟0, 𝛼0(𝑥)).
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Proof. The iterations of the NPM algorithm are defined by

𝛼(𝑘)
𝑥 = −

Ê𝑋𝑖≃𝑥

(︁
𝑒𝛽𝑋𝑖

1+𝑒𝛽𝑋𝑖

)︁
𝑅𝐵𝑥[︁

Ê𝑋𝑖≃𝑥

(︁
𝑒𝛽𝑋𝑖+𝛽𝑟

1+𝑒𝛽𝑋𝑖+𝛽𝑟

)︁
− Ê𝑋𝑖≃𝑥

(︁
𝑒𝛽𝑋𝑖

1+𝑒𝛽𝑋𝑖

)︁]︁
𝑅𝐵𝑥 − Ê𝑋𝑖≃𝑥

(︁
𝑒𝛽𝑋𝑖+𝛽𝑟

1+𝑒𝛽𝑋𝑖+𝛽𝑟

)︁
and

𝛽(𝑘+1)
𝑟 = argmax𝛽𝑟

ℒ𝑖(𝒟, 𝛽, 𝛽𝑟, 𝛼
(𝑘))

First of all, let us notice that, by consistency of the maximum likelihood estimator,

(𝛽𝑟0, 𝛼0) maximize the expected incomplete data likelihood:

(𝛽𝑟0, 𝛼0) = argmax(𝛽𝑟,𝛼)E [ℒ𝑖(𝒟, 𝛽, 𝛽𝑟, 𝛼)]

ℒ𝑖 is a differentiable function, thus⎧⎪⎨⎪⎩
𝜕

𝜕𝛽𝑟
E [ℒ𝑖] (𝛽, 𝛽𝑟0, 𝛼0) = 0

𝜕
𝜕𝛼
E [ℒ𝑖] (𝛽, 𝛽𝑟0, 𝛼0) = 0

(B.3)

Secondly, by definition of 𝛼 we have that:

𝛼𝑥 = −
𝑒𝛽𝑥

1+𝑒𝛽𝑥
𝑅𝐵𝑥[︁

𝑒𝛽𝑥+𝛽𝑟0

1+𝑒𝛽𝑥+𝛽𝑟0
− 𝑒𝛽𝑥

1+𝑒𝛽𝑥

]︁
𝑅𝐵𝑥 − 𝑒𝛽𝑥+𝛽𝑟0

1+𝑒𝛽𝑥+𝛽𝑟0

With an abuse of notation, let us denote

𝛼𝑥(𝛽𝑟) = −
𝑒𝛽𝑥

1+𝑒𝛽𝑥
𝑅𝐵𝑥[︁

𝑒𝛽𝑥+𝛽𝑟0

1+𝑒𝛽𝑥+𝛽𝑟 − 𝑒𝛽𝑥

1+𝑒𝛽𝑥

]︁
𝑅𝐵𝑥 − 𝑒𝛽𝑥+𝛽𝑟

1+𝑒𝛽𝑥+𝛽𝑟

We then have 𝛼(𝛽𝑟0) = 𝛼0 and 𝛼(𝛽
(𝑘)
𝑟 ) = 𝛼(𝑘).

Using this notation, the limit points (𝛽
(∞)
𝑟 , 𝛼(∞)) are a fixed point for the system of

equations:

(𝛽𝑟, 𝛼) such that

⎧⎪⎨⎪⎩𝛼(𝛽𝑟) = 𝛼

𝜕
𝜕𝛽𝑟

E [ℒ𝑖] (𝛽𝑟, 𝛼) = 0

(B.4)
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We already know that (𝛽𝑟0, 𝛼0) verifies this system of equations. Let us show that it is

the only fixed point.

Let us consider the function that associates to 𝛽𝑟 the derivative of the expected likelihood

with respect to the first variable, evaluated in (𝛽𝑟, 𝛼(𝛽𝑟)).

ℎ : 𝛽𝑟 −→
𝜕

𝜕𝛽𝑟

E [ℒ𝑖] (𝛽, 𝛽𝑟, 𝛼(𝛽𝑟))

Then:

∙ ℎ(𝛽𝑟0) = 0

∙ ℎ is a decreasing function

Thus 𝛽𝑟0 is the only root of ℎ thus (𝛽𝑟0, 𝛼0) is the only fixed point of the system of equations

(B.4), (𝛽𝑟0, 𝛼0) = (𝛽
(∞)
𝑟 , 𝛼(∞)) and the NPM algorithm is consistent.

B.3 Simulation results
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Appendix C

Optimal Prices in the symmetric and

linear case

C.1 Closed form solution under a linear demand function

We prove Proposition 3.1 and detail the derivation of the closed form solution under a linear

demand function.

C.1.1 Nested Model

Under the nested model, the demand is⎧⎪⎨⎪⎩𝑓(𝑝𝑘, 𝑝𝑘+1) = 𝑑− 𝛽𝑝𝑘 + 𝛽𝛾(𝑝𝑘 − 𝑝𝑘+1) for 𝑘 < 𝐾

𝑓𝐾(𝑝𝐾) = 𝑑− 𝛽𝑝𝐾

137



This can be written in a matrix way. Let 𝑑(𝑝) ∈ R𝐾 be the vector of demands for the

different clusters. Then 𝑑(𝑝) = 𝑑−𝑀𝑝 where

𝑀 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛽(1− 𝛾) 𝛽𝛾 0 . . . 0

0 𝛽(1− 𝛾) 𝛽𝛾 . . . 0
...

. . . . . . . . . 0

0 𝛽(1− 𝛾) 𝛽𝛾

0 . . . . . . 0 𝛽

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(C.1)

C.1.2 VIP model

Under the VIP model, the demand is⎧⎪⎨⎪⎩𝑓(𝑝𝑘, 𝑝𝐾) = 𝑑− 𝛽𝑝𝑘 + 𝛽𝛾(𝑝𝑘 − 𝑝𝐾) for 𝑘 < 𝐾

𝑓𝐾(𝑝𝐾) = 𝑑− 𝛽𝑝𝐾

As for the nested model, let 𝑑(𝑝) ∈ R𝐾 be the vector of demands for the different clusters.

Then 𝑑(𝑝) = 𝑑−𝑀𝑝 where

𝑀 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛽(1− 𝛾) 0 . . . 0 𝛽𝛾

0 𝛽(1− 𝛾)
. . . 0 𝛽𝛾

...
. . . . . . . . . 𝛽𝛾

0 𝛽(1− 𝛾) 𝛽𝛾

0 . . . . . . 0 𝛽

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(C.2)

For both models, the revenue maximization problem can be rewritten

max
𝑝1,...,𝑝𝐾

𝑝.𝑑(𝑝) = max
𝑝

𝑝.(𝑑−𝑀𝑝)

This is a quadratic program. Without any constraints on 𝑝 derived from business rules, it

can be solved in closed form using the first order conditions:

∇𝑝

[︀
𝑝.
(︀
𝑑−𝑀𝑝

)︀]︀
= 0⇔ 𝑑 = (𝑀 +𝑀𝑇 )𝑝⇔ 𝑝 = (𝑀 +𝑀𝑇 )−1𝑑 (C.3)
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