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Abstract 

The Last Mile Problem refers to the provision of travel service from the nearest public 

transportation node to a home or office. Last Mile Transportation Systems (LMTS) are 

critical extensions to traditional public transit systems. We study the LMTS from three 

perspectives.  

The first part of this thesis focuses on the design of a LMTS. We study the supply 

side of LMTS in a stochastic setting, with batch demands resulting from the arrival of 

groups of passengers at rail stations or bus stops who request last-mile service. Closed-

form bounds and approximations are derived for the performance of LMTS as a function 

of the fundamental design parameters of such systems. It is shown that a particular strict 

upper bound and an approximate upper bound perform consistently and remarkably well. 

These expressions can therefore be used for the preliminary planning and design of Last 

Mile Transportation Systems. 

The second part of the thesis studies operating strategies for LMTS. Routes and 

schedules are determined for a multi-vehicle fleet of delivery vehicles with the objective 

of minimizing the waiting time and riding time of passengers. A myopic operating 

strategy is introduced first. Two more advanced operating strategies are then described, 

one based on a metaheuristic using tabu search and the other using an exact Mixed 

Integer Programming model, which is solved approximately in two stages. It is shown 

that all three operating strategies greatly outperform the naïve strategy of fixed routes and 

fixed vehicle dispatching schedules.  

The third part presents a new perspective to the study of passenger utility functions in 

a LMTS. The unknown parameters of a passenger utility function are treated as 

unobserved events, and the characteristics of the transportation trips made by the 

passengers are treated as observed outcomes. We propose a method to identify the 

probability measures of the events given observations of the frequencies of outcomes by 

introducing the concept and assumptions of the Core Determining Class. We introduce a 



 
 

combinatorial algorithm in which the noise in the observations data is ignored and a 

general procedure in which data noise is taken into consideration. 
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Chapter 1 

Introduction 

1.1    Introduction and Literature Review 

The Last Mile Problem (LMP) refers to the provision of travel service from a public 

transportation node to home or workplace (“last mile”) or vice versa (“first mile”). This 

public transportation node could be the nearest rapid transit rail station or a stop of a 

scheduled bus line. The unavailability of this type of service is one of the main deterrents 

to the use of public transport in urban areas, especially for certain demographic groups, 

such as schoolchildren, seniors and people with certain physical handicaps. Currently, the 

default solutions to the LMP are walking, riding a bike, taking a taxi, or driving a private 

vehicle. 

A conceptual Last Mile Transportation System (LMTS) is described schematically in 

Figure 1.1, which shows an urban area surrounding a public-transit rail station, where 

trains arrive and discharge passengers. The passengers’ final destinations (homes, 

apartments, offices and workplaces) are distributed in the area. A fleet of vehicles 

transports these passengers to their eventual destinations (or locations which are very 

close to their eventual destinations) and empty vehicles return to the station to pick up 

waiting passengers or newly arriving ones. We describe the specific setting of LMTS in 

more detail in Chapter 2 and Chapter 3, in the context of system design and system 

operation, respectively. 
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Figure 1.1 Schematic of a Last Mile Transportation System (LMTS) 

 

Many issues must be addressed when designing and operating a LMTS. On the supply 

side, it is essential to deal with difficult questions concerning the stochastic aspects of the 

system; additionally, operating strategies addressing vehicle routing and scheduling, and 

passenger service assignment are needed to support system operations. The demand side 

requires an understanding and estimation of the potential LMTS loads as a function of 

demographic characteristics, nature of trip, level of service, time-of-day, cost, etc. The 

LMTS loads can be partially estimated through a study of passenger utility functions.  

An extensive literature in this general area has generated various models for a number 

of application contexts related to the LMP with early work dating back to the 1960s. We 

mention here only a few that are among the most influential in the field or especially 

relevant to the approach we have adopted. Many references specific to the individual 

topics studied are provided, respectively, in Chapters 2, 3, and 4. 

Several influential papers in the Operations Research literature have addressed 

problems with significant similarities to the LMP. The Dynamic Traveling Repairman 

Problem (DTRP) was introduced in two papers by Bertsimas and Van Ryzin. They 

consider the DTRP in the cases of a single-vehicle “fleet” (1991) and of multiple vehicles 

(1993).  The Dynamic Pick-up and Delivery Problem (DPDP) was studied by Swihart 

and Papastavrou (1999), who derived bounds on the performance of several DPDP 

variants for light and heavy traffic. The Car Pooling Problem (CPP), introduced by 

Baldacci et al. (2004), also has features similar to the LMP – or, more exactly, to the First 

Width=b miles

Length=a miles

Rail Station

: Passenger destination

Track
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Mile Problem. The paper presents both exact and heuristic methods for solving the CPP 

based on integer programming formulations.  

Many more recent papers deal with last mile supply chains and freight last mile 

systems in the age of booming e-commerce. The related literature has been growing 

rapidly in the last 15 years, including Lee and Whang (2001), Punakivi et al. (2001), 

Esper et al. (2003), Balcik et al. (2008), Boyer et al. (2009), and Song et al. (2009). For 

example, Balcik et al. (2008) consider a vehicle-based last mile distribution system 

geared to the needs of humanitarian relief chains. They propose a mixed integer 

programming model to determine delivery schedules for vehicles and to allocate 

resources equitably in the face of certain types of constraints. Boyer et al. (2009) examine 

the effects of two factors, customer density and delivery window length, on the overall 

efficiency of “last mile routes” for package deliveries. As for passenger last mile systems, 

some case studies provide analysis of LMTS in different contexts, such as the study of a 

bicycle-sharing program for an LMTS in Beijing by Liu et al. (2012).  

Personal rapid transit (PRT), which refers to a variety of transportation systems with 

characteristics similar in some ways to the last mile transportation system studied in this 

thesis, has also attracted significant attention in recent years. Papers considering PRT 

systems from a range of perspectives (all different from those presented here) include 

those by Anderson (1998), Bly and Teychenne (2005), Lees-Miller et al. (2009, 2010), 

Berger et al. (2011), and Mueller and Sgouridis (2011).  

Finally, a large number of papers have dealt with the Dial-a-Ride Problem (DARP) 

and related variations – see, e.g., Jaw et al. (1986), Lei et al. (2012). A good critical 

review of the DARP literature by Cordeau and Laporte (2007) underlines, among other 

points, the fact that this body of work does not address well some of the queueing aspects 

of the subject systems – a deficiency that Chapter 2 tries to remedy.  

It should also be noted that similarities exist between the LMP and various queuing, 

dispatching, routing, scheduling, service assignment, and resource allocation problems 

arising in entirely different contexts such as the design of manufacturing systems, the 

operation of elevator banks, and the scheduling of school-bus systems. The major 
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difference between the LMP and the more “traditional” problems is that, in the LMP, 

passengers (service requests) arrive in (possibly large) batches, not singly. This 

difference, however, makes the analysis of LMP much more difficult analytically than the 

analysis of these other problems. 

 

1.2    Thesis Outline and Contributions 

The main body of this thesis is organized as follows.   

In Chapter 2, we study the supply side of the last mile transportation system in a 

stochastic setting, with stochastic batch demands resulting from the arrival of groups of 

passengers who request last-mile service at urban rail stations or bus stops. The main 

contribution of this chapter is the derivation of several closed-form expressions that 

approximate the principal performance characteristics of last mile transportations systems 

as a function of the fundamental design parameters of such systems. An initial set of 

results is obtained for the case in which a fleet of vehicles of unit capacity provides the 

Last Mile service and each delivery route consists of a simple round-trip between the rail 

station or bus stop and a single passenger’s destination. These results are then extended to 

the general case in which the capacity of a vehicle is a small number (up to 20). It is 

shown through comparisons with simulation results that the approximations perform 

consistently well for a broad and realistic range of input values and conditions. These 

expressions can therefore be used for the preliminary planning and design of last mile 

transportation systems, especially for determining approximately resource requirements, 

such as the number of vehicles/servers needed to achieve some pre-specified level of 

service, as measured by the expected waiting time until a passenger is picked up from the 

station or delivered to her destination.  

In Chapter 3, we consider the operation of a last mile transportation system with batch 

demands. The main contribution of this chapter is the development of operating strategies 

and algorithms for the design of passenger delivery schedules and vehicle routes for a 

multi-vehicle fleet of delivery vehicles with the objective of minimizing the waiting time 

and riding time of passengers. A myopic operating strategy is introduced first, for the 
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case in which the last mile demand from each group of arriving passengers is revealed 

sequentially. Two more advanced operating strategies are then described in detail, one 

based on a metaheuristic using tabu search and the other using an exact Mixed Integer 

Programming (MIP) model, which is solved approximately in two stages. These 

operating strategies are implemented in a number of computational experiments with a 

broad and realistic range of inputs values and conditions. It is shown that: the myopic 

strategy performs well for certain ranges of the input values and poorly for others; the 

tabu search metaheuristic provides solutions of good quality in a reasonably short 

computational time; and the MIP model provides the best solutions, but has greatly 

increased computational requirements. Thus the best approach to the routing and 

scheduling of the LMTS fleet depends on the context and the user’s needs. 

In Chapter 4, we present a novel approach to the study of the passenger utility 

function in a last mile transportation system. The passenger utility function provides 

critical information to LMTS service providers when it comes to understanding and 

estimating passenger demand and designing and operating their systems. From our new 

perspective, which is significantly different from existing ones, the unknown parameters 

in the passenger utility function are treated as unobserved events (defined in detail in 

Chapter 4), and the specific characteristics of transportation trips, such as passenger 

waiting time, vehicle travel time and monetary travel cost that can be collected in the real 

data, are considered as observed outcomes (defined in detail in Chapter 4). In this chapter, 

given a bipartite graph representing the relations between events and outcomes, we 

develop a combinatorial algorithm to identify irredundant linear inequalities to bound the 

probability measures of events using observations of the frequencies of the outcomes. We 

then extend the irredundant linear inequality identification problem and propose a general 

inequality selection procedure in which we take the data noise of the outcome 

observations into consideration. The primary model, which is similar to the Dantzig 

Selector in the 𝑙1-regularization problem, is a linear programming formulation motivated 

by Farkas’ lemma. It measures the importance of each linear inequality among an entire 

set of numerous inequalities under sparse assumptions. The novel approach presented in 

Chapter 4 calibrates the possible set of the unknown parameters in the passenger utility 
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function and is helpful in understanding and estimating passenger demand for last mile 

transportation systems. 

Finally, in Chapter 5 we conclude with a summary of the thesis and discuss several 

directions for future research. 
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Chapter 2 

Design of a Last Mile Transportation System 

The focus of this chapter is on the stochastic analysis of the supply side of LMTS: given 

a probabilistic description of demand, design a LMTS that operates under dynamic and 

stochastic conditions according to certain guidelines and satisfies a set of Level of 

Service (LOS) requirements. This implies specifying such system characteristics as 

vehicle fleet size, service frequency, vehicle dispatching strategies, vehicle routing 

strategies, monitoring and control of operations, etc. We propose several closed-form 

expressions as functions of system parameters to bound and estimate system performance, 

such as the average passenger waiting time and the average passenger riding time. The 

analytical expressions derived herein can be very useful in designing LMTS, specifically 

in determining resource requirements for these systems, such as how many vehicles 

would be necessary to achieve a specified level of service (as measured by expected time 

until a passenger boards a vehicle or is delivered to his/her destination) and how many 

kilometers per day these vehicles would travel. 

 

2.1    Background 

Bounding and approximating the performance of a last mile transportation system is 

difficult analytically, as the planning and management of a LMTS generally involves 

such complications as: stochastic travel times; batch arrivals of prospective passengers; 

partitioning of demands among vehicles; routing of the vehicles; queueing issues; and, 
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obviously, numerous considerations concerning staffing and economic sustainability.  

With the exception of staffing and economic issues, these complications are addressed in 

this chapter in a static setting. 

In a general LMTS, passengers arrive in batches, not singly. Moreover, the size of 

these batches is a random variable. Queueing systems with batch arrivals are notoriously 

difficult analytically. A further complication is that the “service times” of passengers are 

determined by the length (or the duration) of the routes traveled by each vehicle. Thus, in 

designing a LMTS, it is necessary to consider simultaneously the problems of: allocating 

passengers among vehicles; routing the vehicles and estimating the lengths of the routes; 

and computing the queueing performance characteristics of the system. 

The main body of this chapter is organized as follows. In Section 2.2, we describe in 

detail the version of the LMP that we are studying and discuss the associated fundamental 

assumptions. Section 2.3 outlines our overall approach: we begin by deriving a set of 

queueing results by considering a fleet of vehicles with capacity for a single passenger 

(𝑐 = 1) and then extend the analysis by allowing the vehicle capacity to be arbitrary and 

by incorporating the resulting travel time estimates into the queueing expressions derived 

for the 𝑐 = 1 case. Section 2.4 presents our analysis and results for the unit-capacity case. 

We derive an upper bound and an approximate expression for the performance of a 

LMTS as a function of its design parameters and then show through a set of simulation 

experiments that the resulting estimates approximate well the observed waiting times. 

Section 2.5 examines the general capacity case (𝑐 > 1) by, first, proposing approximate 

analytical expressions for the expected value and the variance of the travel times 

associated with fleets consisting of vehicles with general capacity, and then applying 

these expressions to the queueing approximation derived in Section 2.4. The results again 

compare well with those obtained from simulations. We also show that the relaxation 

time of the queue in the LMTS is significantly shorter than the duration of the time 

intervals during which the respective demand rates for an LMTS system can be 

approximated as being roughly constant. It is therefore reasonable to use the steady state 

approximations derived in this chapter. Section 2.6 contains a summary and concluding 

remarks. 
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2.2    Problem Description and Assumptions 

We now describe in more detail the LMP scenario of Figure 1.1. The LMTS operates as 

follows: let STA be the transit rail station served by the LMTS. Consider a passenger, 

PAX, who boards a train at any station (“ORIGIN”) for the purpose of traveling to STA 

and will then board a LMTS vehicle for transport to her home. PAX is required to 

provide advance notice to LMTS of her impending arrival at STA. The time interval 

between the advance notice and the actual arrival of PAX at STA is of the order of 

several minutes (e.g., at least 5 or 10 minutes) to give the LMTS system sufficient time to 

plan the service of PAX. In practical terms, the advance notice could be generated by 

PAX in a number of alternative ways. For example, PAX could use a smart-phone when 

she arrives at ORIGIN or when she enters her train to STA; or, she could tap a smart card 

on a special-purpose screen, as she is entering ORIGIN or while aboard the train. The 

resulting message to the LMTS includes the expected time of arrival of PAX at STA 

(easy to predict, once the passenger is at the ORIGIN station or aboard a train) and her 

ultimate destination, e.g., her home address. If the great majority of LMTS users are 

subscribers whose home addresses are pre-registered, then the only information that PAX 

will have to provide will be an identification number or code.  

Once the information about PAX is received the LMTS will assign PAX to one of the 

vehicles of the LMTS fleet, plan the route of that vehicle so it includes a visit to the 

ultimate destination of PAX, estimate the departure time of the vehicle from STA, and 

notify PAX accordingly. PAX will receive a message (on her smart-phone or by tapping 

her card on a screen when she arrives at STA) that indicates the vehicle she has been 

assigned to and the planned departure time of the vehicle from STA (e.g., “please board 

Vehicle 123 which will depart from STA at 4:26 PM”).  Once all the passengers assigned 

to a vehicle are on board, the vehicle will execute a delivery route, visiting the destination 

of each of the passengers and will then return to STA to pick up the passengers for its 

next delivery tour. 
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The LMTS described above possesses the generic system features that we are most 

interested in: arrivals of passengers in “batches” (groups) at STA; clustering of 

passengers into subgroups for assignment to a fleet of vehicles; routing of the vehicles to 

deliver the passengers on board; and a requirement for fast computation of waiting times 

and other performance parameters so that, for example, passengers can be notified in a 

timely way of the departure time of the vehicle they have been assigned to. Actual 

implementations would probably involve some simpler variants of the above features. 

Given the service region’s geometry, passenger demand, the spatial distribution of the 

passenger destinations, and the number, capacity and travel speed of the LMTS vehicles, 

examples of performance metrics that we wish to compute include: the average waiting 

time until boarding a vehicle, the average riding time of passengers, the average waiting 

time until delivery, the minimum number of vehicles we need to reach stable operation, 

vehicle productivity and workload, and eventually (but not in this thesis) the general cost 

of operating the system and the service vs. cost trade-offs involved. 

We now identify briefly the specifics of the model considered. With reference to 

Figure 2.1, we make the following assumptions: (i) headways, ℎ, between arrivals of 

trains at the station (and discharges of passengers) are constant; (ii) passengers are 

discharged in batches after each train’s arrival; (iii) the batch size is a general random 

variable, 𝑁 , with known expectation 𝐸(𝑁) = 𝑛  and variance 𝑉𝑎𝑟(𝑁) = 𝜎𝑁
2 ; (iv) all 

passengers arriving in a single batch request service essentially simultaneously; (v) given 

the size of any particular batch, 𝑁 = 𝑁0, the destinations of the 𝑁0 passengers in the batch 

are distributed identically, uniformly and independently in a service region; (vi) the 

service region is convex and compact with known dimensions; (vii) the delivery fleet (or 

pick-up fleet, in the case of “First Mile” service) consists of 𝑚 vehicles, each with integer 

capacity, 𝑐.  

We believe that these assumptions are sufficiently general for approximating, to a 

first order, the characteristics of many potential variations of LMTS. Note that our model 

includes the most difficult, from the analytical point of view, features that one might 

encounter in an LMTS: batch arrivals, stochastic demand, stochastic service times, and 

the presence of queueing phenomena interfaced with clustering and routing problems.   
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2.3    Description of Overall Approach 

Sections 2.4 and 2.5 of the chapter describe in detail our analysis and results. In this 

section we provide a brief description of the overall approach we have followed to 

provide perspective for these detailed sections. We have adopted a viewpoint under 

which the LMTS is regarded as a spatially distributed queueing system. In line, with 

typical queueing terminology, we shall refer henceforth to passengers as “customers”. 

The 𝑚 parallel servers (the vehicle fleet) serve customers in groups of 𝑐 or smaller, where 

𝑐 is the capacity of each vehicle. The service time for each group is equal to the travel 

time associated with a vehicle tour that begins at the station/depot, visits each of the 𝑐 (or 

fewer) customer destinations and returns to the station/depot to pick up a new group.  

Because queueing systems with batch arrivals (like the arrivals of customers at STA) 

and batch services (like the service of groups of customers by each vehicle) are difficult 

to analyze, we resort to a two-step approach. In Step 1, we assume that 𝑐 = 1, i.e., that the 

delivery vehicles have unit capacity. Thus, service times consist simply of the duration of 

a round-trip between STA and one customer’s destination (Figure 2.1), with the 

destination being randomly and uniformly distributed within the service area per our 

assumption (v) in Section 2.2. In this way, we obtain a 𝐷𝑁/𝐺/𝑚/∞ queueing system in 

queueing theory notation, where 𝐷𝑁 indicates batch arrivals at constant (“Deterministic”) 

intervals with the number of arriving customers in each batch described by random 

variable 𝑁; 𝐺 denotes the fact that the distribution of service times (i.e., the duration of 

the round trips between STA and customer destinations) is “general”; and 𝑚  and ∞ 

indicate, respectively, the number of service vehicles and the fact that no a priori limit is 

placed on the number of customers waiting for pickup at STA.  
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Figure 2.1 Customer destinations and vehicles routes of the Unit-Capacity, Multi-Vehicle 

LMP 

 

As no closed-form expressions are available for the fundamental quantities that 

describe the performance of a 𝐷𝑁/𝐺/𝑚/∞ system, we then attempt to obtain expressions 

for similar queueing systems, which are more tractable mathematically. Through a series 

of simplifications, we derive (i) an upper bound and (ii) an approximate expression for 

the mean waiting time associated with 𝐷𝑁/𝐺/𝑚/∞  queues. We then carry out an 

extensive set of simple simulation experiments and conclude that these expressions 

provide good estimates of the performance of the system (with 𝑐 = 1) under a broad 

range of system design parameters.  

Step 2 examines the general case, in which service times are equal to the duration of 

delivery tours consisting of 𝑐(> 1) or fewer delivery stops, as shown in Figure 2.2. To 

apply to the general capacity case the queueing expressions that were derived in Step 1, 

we need to partition the customers, design near-optimal tours/routes for the vehicles, and 

compute the approximate expectation and variance of the vehicle tour length. We 

accomplish this by using arguments from geometrical probability and from the literature 

on the Traveling Salesman Problem and Vehicle Routing Problem. We then use these 

expressions, along with the queueing-based approximation derived in Step 1, to complete 

the process of estimating the performance of the LMTS for the general case of arbitrary 

fleet size and arbitrary vehicle capacity. Finally, we compare again our approximate 

estimates to the results of a series of simulations over a broad range of input values. 
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Figure 2.2 Customer destinations and vehicles routes of the General-Capacity, Multi-

Vehicle LMP 

 

2.4    The Unit-Capacity, Multi-Vehicle LMP 

In this section we present the analysis of the case described in Section 2.3 as Step 1, in 

which 𝑐 = 1, and 𝑚 is an arbitrary positive integer. As already indicated (Figure 2.1), the 

length of the vehicle trips in this case is equal to two times the distance between the rail 

station and a customer’s destination. If we postulate constant and unit travel speed, the 

expressions for travel times are identical with those derived for travel distances. 

The basic notation is summarized as follows: 

ℎ = the constant headway between arrivals of trains (and discharges of customers) at 

the station STA; 

𝑁  = a random variable denoting the number of LMTS customers (“batch size”) 

discharged after the arrival of a train at STA, with the sizes of successive batches being 

mutually independent, and 𝐸(𝑁) = 𝑛  and 𝑉𝑎𝑟(𝑁) = 𝜎𝑁
2  denoting, respectively, the 

expectation and variance of 𝑁;  

𝜆𝑎 = the arrival rate of customer batches (= 1/ℎ); 

𝜎𝑎
2 = the variance of the inter-arrival time of customer batches (𝜎𝑎

2 = 0 for constant 

headways); 

Width=b miles

Length=a miles

Rail Station

: Passenger destination

Track
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𝑆 = a random variable denoting the service time of a random LMTS customer with 

𝐸(𝑆) = 𝑠 and variance 𝑉𝑎𝑟(𝑆) = 𝜎𝑆
2. 

Note that the successive service times of any given vehicle in the fleet are 

independent and identically distributed. The traffic load (or utilization ratio) is given 

by  𝜌 = 𝑛𝑠/ℎ𝑚 , since 𝑚/𝑠  is the service rate of the LMTS, while 𝑛/ℎ  is the rate of 

customer arrivals per unit of time.   

We are particularly interested in the expected waiting time, 𝑊𝑞, of LMTS customers 

until they board one of the 𝑚 vehicles to be transported to their eventual destination.  

Determining this expected waiting time as a function of the LMTS design parameters is a 

critical step toward developing the means to design LMTS satisfying certain level-of-

service requirements. 

 

2.4.1 General Upper Bound and Approximation 

We begin by obtaining a general upper bound and approximate expression for 𝑊𝑞 in the 

original Unit-Capacity, Multi-Vehicle 𝐷𝑁/𝐺/𝑚/∞  model. To do this, for each train’s 

arrival, we pre-assign the discharged customers to different vehicles and then construct a 

corresponding single-server queueing model 𝐷𝑁𝑆/𝐺/1/∞ for each vehicle, where 𝑁𝑆 is the 

random variable indicating the number of customers from any single train assigned to the 

same vehicle. Each customer can be served only by the vehicle to which she has been 

pre-assigned. 

With such an assignment policy, service inefficiencies will exist since a customer is 

required to wait for his or her assigned vehicle, even when other vehicles may be 

available. Thus, the average waiting time in this case will be larger than the average 

waiting time in the original model. The customer flow is shown schematically in Figure 

2.3. 
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Figure 2.3 Customer flow in the pre-assignment policy 

 

The 𝐷𝑁𝑆 /𝐺/1/∞  model is still difficult to work with. To obtain approximate 

expressions for 𝑊𝑞, we decompose the problem into two parts.  First, the 𝑁𝑆 customers in 

a batch who are assigned to the same vehicle are treated as a single “macro-customer” 𝑃. 

If we only consider the “macro-customer”, this reduces the 𝐷𝑁𝑆/𝐺/1/∞ model to the 

more tractable 𝐷/𝐺/1/∞ model and allows us to obtain an approximation for 𝑊𝑞1, the 

expected waiting time until the first customer in 𝑃 receives service.  

Let 𝑇 be the service time of the “macro-customer”, 𝑇 = ∑ 𝑆𝑖
𝑁𝑆
𝑖=1 , where 𝑁𝑆 depends on 

the assignment policy and 𝑆1, 𝑆2, … , 𝑆𝑁 are the service times of the real customers, which 

are mutually independent and identically distributed. Note that 𝑁𝑆 is a random variable. 

Therefore, 

𝐸(𝑇) = ∑ 𝐸(𝑆𝑖) =

𝑁𝑆

𝑖=1

𝐸(𝑁𝑆)𝑠, 𝑉𝑎𝑟(𝑇) = 𝐸(𝑁𝑆)𝜎𝑆
2 + 𝑠2𝑉𝑎𝑟(𝑁𝑆),

 

𝐶𝑇
2 =

𝐸(𝑁𝑆)𝜎𝑆
2 + 𝑠2𝑉𝑎𝑟(𝑁𝑆)

𝐸2(𝑁𝑆)𝑠2  

Additionally, 𝜎𝑎
2 = 0  because of constant “macro-customer” inter-arrival times, 

𝜆𝑎 = 1/ ℎ, 𝜌 = 𝐸(𝑇)/ℎ = 𝐸(𝑁𝑆)𝑠/ℎ. According to Kingman (1961), Kingman (1962), and 

Ott (1987), an upper bound for 𝑊𝑞1, the expected waiting time of 𝐷/𝐺/1/∞ queue is: 
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𝑊𝑞1 = 𝑊𝑞(𝐷/𝐺/1/∞) ≤
𝜆𝑎(𝜎𝑎

2 + 𝜎𝑇
2)

2(1 − 𝜌)
=

1
ℎ

(0 + 𝑉𝑎𝑟(𝑇))

2(1 −
𝐸(𝑇)

ℎ
)

=
𝐸(𝑁𝑆)𝜎𝑆

2 + 𝑠2𝑉𝑎𝑟(𝑁𝑆)

2(ℎ − 𝐸(𝑁𝑆)𝑠)
  (2.1) 

According to Kraemer et al. (1976), an approximation of 𝑊𝑞1 is provided by: 

𝑊𝑞1 = 𝑊𝑞(𝐷/𝐺/1/∞) ≈
𝑉𝑎𝑟(𝑇)

2(ℎ − 𝐸(𝑇))
∙ exp [−

2(ℎ − 𝐸(𝑇))𝐸(𝑇)

3𝑉𝑎𝑟(𝑇)
]

=
𝐸(𝑁𝑆)𝜎𝑆

2 + 𝑠2𝑉𝑎𝑟(𝑁𝑆)

2(ℎ − 𝐸(𝑁𝑆)𝑠)
∙ exp [−

2(ℎ − 𝐸(𝑁𝑆)𝑠)𝐸(𝑁𝑆)𝑠

3𝐸(𝑁𝑆)𝜎𝑆
2 + 3𝑠2𝑉𝑎𝑟(𝑁𝑆)

]   (2.2) 

In a second step, we then compute the additional expected waiting time, 𝑊𝑞2, until 

each of the individual customers in macro-customer 𝑃 receives service, following the 

service to the “macro-customer”. For the 𝑖 𝑡ℎ customer in 𝑃, we consider the additional 

expected waiting time due to being preceded by 𝑖 − 1 other customers in 𝑃. If the macro-

customer consists of 𝑘 customers and 𝑘 ≥ 1, the customer in the 𝑖 𝑡ℎ position suffers the 

expected additional total waiting time  𝑊𝑞,𝑖 𝑡ℎ = ∑ 𝑠𝑗
𝑖−1
𝑗=1 = (𝑖 − 1)𝑠 , where 𝑠𝑗  is the 

expected service time of the 𝑗 𝑡ℎ  customer served before the 𝑖 𝑡ℎ  customer. Let 

𝑊𝑞,𝑘 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 denote the expected total additional waiting time of the 𝑘 customers: 

𝑊𝑞,𝑘 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 =
∑ 𝑊𝑞,𝑖 𝑡ℎ

𝑘
𝑖=1

𝑘
=

∑ (𝑖 − 1)𝑠𝑘
𝑖=1

𝑘
=

(𝑘 − 1)𝑠

2
, 𝑘 ≥ 1 

If 𝑘 = 0, no customers are served, so that 𝑊𝑞,0 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 = 0. According to the Law of 

Total Expectation, the expected additional waiting time of a customer is then given by: 

𝑊𝑞2 =
∑ 𝑃(𝑘)𝑊𝑞,𝑘 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠𝑘∞

𝑘=0

∑ 𝑃(𝑘)𝑘∞
𝑘=0

=
𝑠𝑉𝑎𝑟(𝑁𝑆) + 𝑠𝐸2(𝑁𝑆) − 𝑠𝐸(𝑁𝑆)

2𝐸(𝑁𝑆)
    (2.3) 

Thus the upper bound we seek is: 

𝑊𝑞 = 𝑊𝑞1 + 𝑊𝑞2 ≤
𝐸(𝑁𝑆)𝜎𝑆

2 + 𝑠2𝑉𝑎𝑟(𝑁𝑆)

2(ℎ − 𝐸(𝑁𝑆)𝑠)
+

𝑠𝑉𝑎𝑟(𝑁𝑆) + 𝑠𝐸2(𝑁𝑆) − 𝑠𝐸(𝑁𝑆)

2𝐸(𝑁𝑆)
   (2.4) 

The approximation, using (2.2) and 𝑊𝑞2, is: 
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𝑊𝑞 = 𝑊𝑞1 + 𝑊𝑞2

≈
𝐸(𝑁𝑆)𝜎𝑆

2 + 𝑠2𝑉𝑎𝑟(𝑁𝑆)

2(ℎ − 𝐸(𝑁𝑆)𝑠)
∙ exp [−

2(ℎ − 𝐸(𝑁𝑆)𝑠)𝐸(𝑁𝑆)𝑠

3𝐸(𝑁𝑆)𝜎𝑆
2 + 3𝑠2𝑉𝑎𝑟(𝑁𝑆)

]

+
𝑠𝑉𝑎𝑟(𝑁𝑆) + 𝑠𝐸2(𝑁𝑆) − 𝑠𝐸(𝑁𝑆)

2𝐸(𝑁𝑆)
      (2.5) 

Expression (2.4) and (2.5) are valid under general assumptions about the probability 

density functions of the batch size, 𝑁, and the service times, 𝑆. Moreover, (2.4) and (2.5) 

have been derived without considering how exactly customers are assigned to vehicles. 

We next analyze one particular reasonable policy for customer assignment to vehicles. 

The policy will provide a modified 𝐷𝑁𝑆 /𝐺/1/∞ model with 𝐸(𝑁𝑆) and 𝑉𝑎𝑟(𝑁𝑆), leading to 

corresponding expressions for 𝑊𝑞1 and 𝑊𝑞2, and, ultimately, to an upper bound and an 

approximation for 𝑊𝑞.  

 

2.4.2 Cyclic Assignment Policy  

One possible policy for allocating customers to vehicles is to assign customers in cyclic 

order to the vehicles: the first customer in the batch is assigned to Vehicle 1, the second 

to Vehicle 2, …, the (𝑚 + 1) 𝑡ℎ  to Vehicle 1 again, and so forth. No jockeying of 

customers, after being assigned to vehicles, is allowed. Figure 2.4 illustrates this policy, 

which requires assigning an “identification number” to each vehicle to distinguish among 

them. 

 

Figure 2.4 Cyclic assignment policy 
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We have a total of 𝑚 vehicles, labeled as “Vehicle 1”, “Vehicle 2”,…, “Vehicle 𝑚”. 

Let 𝑁𝑖 be the random variable indicating the number of customers assigned to “Vehicle i” 

after the arrival of a particular train, with the assignment process upon arrival of each 

train being independent of the arrival process upon arrival of any other train. When one 

train arrives, we order the 𝑚 vehicles in sequence: the vehicle that receives customers 

first is called “1st server”, the vehicle that receives customers second is called “2nd 

server”, etc. Let 𝑋𝑖 be the random variable indicating the number of customers assigned 

to the “𝑖 𝑡ℎ server” after the arrival of a particular train. Then,  

𝑋1 = ⌊
𝑁 + 𝑚 − 1

𝑚
⌋ , 𝑋2 = ⌊

𝑁 + 𝑚 − 2

𝑚
⌋ , … , 𝑋𝑚−1 = ⌊

𝑁 + 1

𝑚
⌋ , 𝑋𝑚 = ⌊

𝑁

𝑚
⌋ 

𝑁 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑚−1 + 𝑋𝑚 

If we order the vehicles randomly, the probability that Vehicle 𝑖 will become the 𝑗 𝑡ℎ 

server for some train is 1/𝑚. The modified model can be considered as 𝐷𝑁𝑖/𝐺/1/∞. Since 

𝑁1, 𝑁2, … , 𝑁𝑚 are identically distributed, all 𝐷𝑁𝑖/𝐺/1/∞ models can be viewed as identical 

𝐷𝑁𝑆/𝐺/1/∞ models although 𝑁1, 𝑁2, … , 𝑁𝑚 are not necessarily independent.  

Recalling that 𝑁  is the random variable indicating the total number of customers 

coming from one train, let 𝑁 = 𝐾𝑚 + 𝑅, where 𝐾 = ⌊𝑁/𝑚⌋, and 𝑅 is the remainder after 

division of 𝑁 by 𝑚. We can therefore express 𝑁 as a 2-dimensional random vector, (𝐾, 𝑅). 

𝑋𝑖 = {
𝐾 + 1, 1 ≤ 𝑖 ≤ 𝑅;
𝐾, 𝑅 + 1 ≤ 𝑖 ≤ 𝑚;

   

𝐸(𝑁𝑆|(𝐾, 𝑅)) =
1

𝑚
[𝐸(𝑋1|(𝐾, 𝑅)) + 𝐸(𝑋2|(𝐾, 𝑅)) + … + 𝐸(𝑋𝑚|(𝐾, 𝑅))] =

𝑁

𝑚
;  

𝑉𝑎𝑟(𝑁𝑆|(𝐾, 𝑅)) = 𝑃(𝑁𝑆 = 𝐾 + 1)(𝐾 + 1 − 𝐸(𝑁𝑆|(𝐾, 𝑅)))2 + 𝑃(𝑁𝑆 = 𝐾)(𝐾 − 𝐸(𝑁𝑆|(𝐾, 𝑅)))2

=
𝑅

𝑚
∙ (𝐾 + 1 −

𝐾𝑚 + 𝑅

𝑚
)2 +

𝑚 − 𝑅

𝑚
∙ (𝐾 −

𝐾𝑚 + 𝑅

𝑚
)2 =

𝑅𝑚 − 𝑅2

𝑚2
 

𝐸(𝑁𝑆) = 𝐸(𝐸(𝑁𝑆|(𝐾, 𝑅))) = 𝐸(
𝑁

𝑚
) =

𝑛

𝑚
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𝑉𝑎𝑟(𝑁𝑆) = 𝐸(𝑉𝑎𝑟(𝑁𝑆|(𝐾, 𝑅))) + 𝑉𝑎𝑟(𝐸(𝑁𝑆|(𝐾, 𝑅))) = 𝐸(
𝑅𝑚 − 𝑅2

𝑚2
) + 𝑉𝑎𝑟(

𝑁

𝑚
)

=
𝐸(𝑅𝑚 − 𝑅2)

𝑚2
+

𝜎𝑁
2

𝑚2
 

Since 𝑅 < 𝑚, it is also true that 𝑅𝑚 − 𝑅2 ≤ 𝑚2/4, and 

𝑉𝑎𝑟(𝑁𝑆) ≤
1

4
+

𝜎𝑁
2

𝑚2
=

4𝜎𝑁
2 + 𝑚2

4𝑚2
 

In practice, the number of customers 𝑁 from each batch will typically be much larger 

than the number of vehicles 𝑚, and the remainder 𝑅 will tend to be uniformly distributed 

in {0, 1, … , 𝑚 − 1}. Then, 

𝐸(𝑅𝑚 − 𝑅2) ≈
𝑚2 − 1

6𝑚2
, 𝑉𝑎𝑟(𝑁𝑆) ≈

6𝜎𝑁
2 + 𝑚2 − 1

6𝑚2  

By substituting the bound and approximation of 𝐸(𝑁𝑆) and 𝑉𝑎𝑟(𝑁𝑆) into (2.4) and 

(2.5), respectively, the model corresponding to the cyclic assignment policy finally leads 

to the following upper bound and approximation for the case of a General service time 

distribution: 

𝑊𝑞 ≤
4𝑚𝑛2(𝜎𝑆

2 + 𝑠2) − 4𝑛3𝑠2 + 4ℎ𝑚𝑠(𝜎𝑁
2 + 𝑛2) + ℎ𝑚3𝑠 − 4ℎ𝑚2𝑛𝑠

8𝑚𝑛(ℎ𝑚 − 𝑛𝑠)     (2.6) 

𝑊𝑞 ≈
6𝑚𝑛𝜎𝑆

2 + 6𝑠2𝜎𝑁
2 + 𝑚2𝑠2 − 𝑠2

12𝑚(ℎ𝑚 − 𝑛𝑠)
∙ exp [−

4(ℎ𝑚 − 𝑛𝑠)𝑛𝑠

6𝑚𝑛𝜎𝑆
2 + 6𝑠2𝜎𝑁

2 + 𝑚2𝑠2 − 𝑠2
]

+
(6𝜎𝑁

2 + 𝑚2 + 6𝑛2 − 6𝑚𝑛 − 1)𝑠

12𝑚𝑛
     (2.7) 

Assuming the service area is a 𝑏 × 𝑏  square with the train station located at the 

square’s center, the travel metric is right angle, and the travel speed is constant 

throughout the service region and equal to 1, and for Poisson batch sizes, the bound (2.6) 

becomes: 

𝑊𝑞 ≤
14𝑏2𝑚𝑛2 + 12𝑏ℎ𝑚𝑛2 − 12𝑏2𝑛3 + 12𝑏ℎ𝑚𝑛 − 12𝑏ℎ𝑚2𝑛 + 3𝑏ℎ𝑚3

24𝑚𝑛(ℎ𝑚 − 𝑏𝑛)
   (2.8)  

The approximation for this special case is: 
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𝑊𝑞 ≈
(𝑚 + 6)𝑏2𝑛 + 𝑏2𝑚2 − 𝑏2

12𝑚(ℎ𝑚 − 𝑏𝑛)
∙ exp [−

4(ℎ𝑚 − 𝑏𝑛)𝑛

𝑏𝑚𝑛 + 6𝑏𝑛 + 𝑏𝑚2 − 𝑏
]

+
(𝑚2 + 6𝑛2 + 6𝑛 − 6𝑚𝑛 − 1)𝑏

12𝑚𝑛
       (2.9) 

 

2.4.3 Another Approximation 

In addition to the approach described above, we have developed an alternative way to 

simplify and approximate the 𝐷𝑁/𝐺/𝑚 queue of the Unit-Capacity, Multi-Vehicle LMP. 

As shown in Figure 2.5, in this alternative approximation, the waiting time is 

decomposed into two parts: 𝑊𝑞3, the waiting time until the first passenger in a batch 

receives service; and 𝑊𝑞4, the waiting time until the following individual customers in 

that batch receive service. We treat all the customers from each arrival batch as a single 

“macro-customer” 𝑃′ and do not pre-assign them to vehicles. This reduces the 𝐷𝑁/𝐺/𝑚/

∞ model to the 𝐷/𝐺/𝑚/∞ model and allows us to obtain an approximation for 𝑊𝑞3 

using approximations of the 𝐺/𝐺/𝑚/∞ model, such as those of Köllerström (1974) and 

Whitt (1993).  

Wq3 Wq4

Time that a batch 
arrives at the 
D/G/m queue

Time that the first 
passenger in the batch 

get service

Average time that 
following passengers in 
the batch get service

  

Figure 2.5 Waiting time component 

 

The detailed derivation is described as follows. 

Let 𝑇′ be the service time of the “macro-customer” 𝑃′, 𝑇′ = ∑ 𝑆𝑖
𝑁
𝑖=1 , then: 

𝐸(𝑇′) = ∑ 𝐸(𝑆𝑖)

𝑁

𝑖=1

= 𝑛𝑠, 𝑉𝑎𝑟(𝑇′) = 𝑛𝜎𝑠
2 + 𝑠2𝜎𝑁

2 , 𝐶𝑇′
2 =

𝑛𝜎𝑠
2 + 𝑠2𝜎𝑁

2

𝑛2𝑠2
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In addition, 𝜎𝑎
2 = 0, 𝜆𝑎 = 1/ ℎ, 𝜌 = 𝐸(𝑇′)/𝑚ℎ = 𝑛𝑠/𝑚ℎ. According to Whitt (1994), a 

good approximation for 𝐷/𝐺/𝑚/∞ queue can be written as: 

𝑊𝑞3 ≈ 𝜙(𝑚, 𝜌)
𝐶𝑇′

2

2
𝑊𝑞(𝑀/𝑀/𝑚) 

where  

𝜙(𝑚, 𝜌) = (1 − 4 ∙ 𝑚𝑖𝑛 {0.24,
(1 − 𝜌)(𝑚 − 1) ((4 + 5𝑚)

1
2 − 2)

16𝑚𝜌
}) ∙ 𝑒𝑥𝑝 (

−2(1 − 𝜌)

3𝜌
) 

and 

𝑊𝑞(𝑀/𝑀/𝑚) ≈
𝐸(𝑇′)(𝜌(√2(𝑚+1)−1))

𝑚(1 − 𝜌)
 

Therefore, substituting 𝐸(𝑇′), 𝑉𝑎𝑟(𝑇′), 𝐶𝑇′
2  and 𝜌, we obtain: 

𝑊𝑞3 ≈ (1 − 4 ∙ 𝑚𝑖𝑛 {0.24,
(𝑚ℎ − 𝑛𝑠)(𝑚 − 1) ((4 + 5𝑚)

1
2 − 2)

16𝑚𝑛𝑠
}) ∙ 𝑒𝑥𝑝 (

−2(𝑚ℎ − 𝑛𝑠)

3𝑛𝑠
) ∙

∙
ℎ ∙ (𝑛𝑠)

(√2(𝑚+1)−2)
∙ (𝑛𝜎𝑠

2 + 𝑠2𝜎𝑁
2)

2 ∙ (𝑚ℎ)(√2(𝑚+1)−1) ∙ (𝑚ℎ − 𝑛𝑠)
 

      (2.10) 

Next we study 𝑊𝑞4. At the point in time when the first passenger in the batch gets 

access to service, one server becomes available, while the other servers are still busy. 

Hence, the following passengers in the batch should wait for more available servers. We 

can approximate the expected waiting time until the next server becomes available as 

𝑠/𝑚. Therefore, assuming 𝑘 passengers in the batch: 

For the first passenger in the batch: 𝑊𝑞4,1𝑠𝑡 = 0; 

For the second passenger in the batch: 𝑊𝑞4,2𝑛𝑑 = 𝑠/𝑚; 

For the third passenger in the batch: 𝑊𝑞4,3𝑟𝑑 = 2𝑠/𝑚; 

… 
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For the 𝑘 𝑡ℎ passenger in the batch: 𝑊𝑞4,𝑘 𝑡ℎ = (𝑘 − 1)𝑠/𝑚; 

Let 𝑊𝑞4,𝑘 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 denote the average additional waiting time of the 𝑘 customers: 

𝑊𝑞4,𝑘 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 =
∑ 𝑊𝑞4,𝑖 𝑡ℎ

𝑘
𝑖=1

𝑘
=

∑ (𝑖 − 1)𝑠/𝑚𝑘
𝑖=1

𝑘
=

(𝑘 − 1)𝑠

2𝑚
, 𝑘 ≥ 1 

If 𝑘 = 0, no customers are served, so that 𝑊𝑞4,0 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 = 0. According to the Law of 

Total Expectation, the expected additional waiting time of a customer is given by: 

𝑊𝑞4 =
∑ 𝑃(𝑘)𝑊𝑞4,𝑘 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠𝑘∞

𝑘=0

∑ 𝑃(𝑘)𝑘∞
𝑘=0

=
𝑠𝑉𝑎𝑟(𝑁) + 𝑠𝐸2(𝑁) − 𝑠𝐸(𝑁)

2𝑚𝐸(𝑁)
=

𝑠𝜎𝑁
2 + 𝑠𝑛2 − 𝑠𝑛

2𝑚𝑛
 

  (2.11) 

Therefore, the approximation of the expected waiting time of passengers is obtained: 

𝑊𝑞 ≈ 𝑊𝑞3 + 𝑊𝑞4

≈ (1 − 4 ∙ 𝑚𝑖𝑛 {0.24,
(𝑚ℎ − 𝑛𝑠)(𝑚 − 1) ((4 + 5𝑚)

1
2 − 2)

16𝑚𝜆𝑠
})

∙ 𝑒𝑥𝑝 (
−2(𝑚ℎ − 𝑛𝑠)

3𝑛𝑠
) ∙

ℎ ∙ (𝑛𝑠)
(√2(𝑚+1)−2)

∙ (𝑛𝜎𝑠
2 + 𝑠2𝜎𝑁

2)

2(𝑚ℎ − 𝑛𝑠) ∙ (𝑚ℎ)(√2(𝑚+1)−1)
+

𝑠𝜎𝑁
2 + 𝑠𝑛2 − 𝑠𝑛

2𝑚𝑛
 

           (2.12) 

Expression (2.12) is valid under general assumptions about the probability density 

functions of the batch size 𝑁, and the service times 𝑆. For Poisson batch sizes, a square 

service region with a right-angle distance metric, and vehicles with unit capacity and 

constant speed 1, the approximation (2.12) becomes: 

𝑊𝑞 ≈ (1 − 4 ∙ 𝑚𝑖𝑛 {0.24,
(𝑚ℎ − 𝑛𝑏)(𝑚 − 1) ((4 + 5𝑚)

1
2 − 2)

16𝑚𝑛𝑏
}) ∙ 𝑒𝑥𝑝 (

−2(𝑚ℎ − 𝑛𝑏)

3𝑛𝑏
)

∙
7𝑏ℎ

12(𝑚ℎ − 𝑛𝑏)
∙ (

𝑛𝑏

𝑚ℎ
)

(√2(𝑚+1)−1)

+
𝑠𝑛

2𝑚
 

     (2.13) 
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According to numerical experiments, these approximations (2.12) and (2.13) perform 

worse than the approximations (2.7) and (2.9) in most cases, except under extremely high 

utilization ratios when the system is unstable and both approximations perform poorly, 

anyway. Additionally, the expressions (2.7) and (2.9) are simple closed-form expressions, 

much simpler than expressions (2.12) and (2.13).  

 

2.4.3 Numerical Experiments for the Unit-Capacity, Multi-Vehicle LMP 

To assess the performance of the expressions obtained in Sections 2.4.1 and 2.4.2 under a 

broad range of conditions, a simple simulation of the Unit-Capacity, Multi-Vehicle LMP 

was carried out with a program written in java. We consider a square service region with 

geometry  𝑏/𝑣 = 2.5 𝑚𝑖𝑛 = 150 𝑠𝑒𝑐 , headway ℎ = 10 𝑚𝑖𝑛 = 600 𝑠𝑒𝑐 , and Poisson-

distributed batch sizes of  𝑛 = 20, 40, 60, 80. We selected these parameters so that the 

system would make sense physically.  

 

Figure 2.6 Simulation results, bounds and approximations of average waiting time 

when 𝒏 = 𝟐𝟎 
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Figure 2.7 Simulation results, bounds and approximations of average waiting time 

when 𝒏 = 𝟒𝟎 

 

 

Figure 2.8 Simulation results, bounds and approximations of average waiting time 

when 𝒏 = 𝟔𝟎 
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Figure 2.9 Simulation results, bounds and approximations of average waiting time 

when 𝒏 = 𝟖𝟎 

 

Figures 2.6 – 2.9 plot the simulation results and our estimates for the average waiting 

time per customer 𝑊𝑞  (in seconds) against the utilization ratio 𝜌 = 𝑠𝑛/ℎ𝑚 . Since the 

simulated system has Poisson customer batch size and a square service region, the upper 

bound (expression (2.8)), and the approximation (expression (2.9)) from Sections 2.4.2 

are applicable and considered here. For each demand intensity 𝑛, the utilization ratio 𝜌 

takes on a set of discrete values because the number of vehicles, 𝑚, is integer. We have 

plotted the points with utilization ratio less than 0.9, above which the system is highly 

unstable and the average waiting time is too long to be accepted practically. 

It can be seen that (2.8) is a consistently reliable upper bound for 𝑊𝑞, while (2.9) 

provides a very good approximation for the entire range of parameter values for which 

the LMTS remains stable. In a practical system, it would be desirable to achieve values of 

1 to 5 minutes, for the average waiting time until customers board a vehicle. Note from 

Figures 2.6 – 2.9 that for this range of values (60 to 300 seconds) the difference between 

the approximation and the simulation results stays small in absolute or percentage terms. 

For example, when 𝑛 = 20 (Figure 2.6), this difference never exceeds the greater of 15 

seconds or 12% for values of 𝑊𝑞 between 1 and 4 minutes.  

We have also performed simulation experiments with rectangular and diamond-

shaped service regions and with discontinuities in the travel medium, such as an 

0.6 0.65 0.7 0.75 0.8 0.85 0.87
50

100

150

200

250

300

350

400

450

500

Utilization Ratio

E
x
p
e
c
te

d
 W

a
it
in

g
 T

im
e
 (

s
e
c
)

h=600 sec, b=150 sec, n=80, c=1

 

 

Upper Bounds

Approximations

Simulations Results



40 
 

impenetrable barrier to travel. For these environments we have derived expressions for 

𝑊𝑞, analogous to (2.8) and (2.9), based on (2.6) and (2.7) – see Wang (2012). These 

experiments led to the conclusion that the analytical upper bound and approximation 

continue to perform well under a wide range of conditions.   

 

2.5    General-Capacity, Multi-Vehicle LMP: Approximations 

In this section we shall generalize the results of Section 2.4 by considering the General-

Capacity, Multi-Vehicle LMP, in which the vehicle capacity, 𝑐 , and the number of 

vehicles, 𝑚 , are arbitrary positive integers. The vehicles will now travel along more 

complicated routes than in the 𝑐 = 1 case to deliver customers to their destinations. In 

practice, one would expect the vehicle capacity to be smaller than that of a regular bus – 

typically a number between 3, for service provided by taxi-like vehicles, and 20, for large 

vans. 

As explained in Section 2.3, the General-Capacity, Multi-Vehicle LMTS will be 

viewed as a spatially distributed queueing system in which the service times are equal to 

the amount of time it takes to complete a customer delivery tour and return to the train 

station (Figure 2.2). After each batch of arrivals, the customers must be partitioned into 

clusters and assigned to vehicles according to their destinations and the vehicles must 

then be routed with the objective of obtaining a shortest total travel distance – which 

translates into shortest service times and smallest overall queueing. This means that the 

estimation of model parameters, such as the expected value and the variance of service 

times, is now far more complicated than when 𝑐 = 1.  

 

2.5.1 Adjustment of the Queueing Model 

We first need to make some adjustments to the principal expression (2.7) that we have 

derived from our queueing model. For the General ( 𝑐 > 1 ) Capacity case, General 

distribution of customer batch size and General service times, the approximation for the 

waiting time until boarding a vehicle is given by:   
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𝑊𝑞,𝐵𝑜𝑎𝑟𝑑 ≈
6𝑚𝐸(𝑁𝐸)𝑉𝑎𝑟(𝑆𝐸) + 6𝐸2(𝑆𝐸)𝑉𝑎𝑟(𝑁𝐸) + 𝐸2(𝑆𝐸)𝑚2 − 𝐸2(𝑆𝐸)

12𝑚(ℎ𝑚 − 𝐸(𝑁𝐸)𝐸(𝑆𝐸))

∙ 𝑒𝑥𝑝 [−
4(ℎ𝑚 − 𝐸(𝑁𝐸)𝐸(𝑆𝐸))𝐸(𝑁𝐸)𝐸(𝑆𝐸)

6𝑚𝐸(𝑁𝐸)𝑉𝑎𝑟(𝑆𝐸) + 6𝐸2(𝑆𝐸)𝑉𝑎𝑟(𝑁𝐸) + 𝐸2(𝑆𝐸)𝑚2 − 𝐸2(𝑆𝐸)
]

+
(6𝑉𝑎𝑟(𝑁𝐸) + 𝑚2 + 6𝐸2(𝑁𝐸) − 6𝑚𝐸(𝑁𝐸) − 1)𝐸(𝑆𝐸)

12𝑚𝐸(𝑁𝐸)
 

(2.14) 

The expression (2.14) is exactly the same as (2.7), except 𝑆 is substituted by 𝑆𝐸, the 

travel time to serve 𝑐 customers, and 𝑁 by 𝑁𝐸, the random variable indicating the number 

of tours formed following the arrival of a batch of customers. 

Note that in (2.14) we have used the notation 𝑊𝑞,𝐵𝑜𝑎𝑟𝑑 for the expected waiting time 

until a customer will board a vehicle, while in (2.7) we used the notation 𝑊𝑞 for the same 

quantity. This is because we also want to introduce here another quantity, 𝑊𝑅𝑖𝑑𝑖𝑛𝑔, which 

is defined as the expected time a customer will spend riding on the vehicle before being 

delivered to her destination. Considering the riding component of the trip, the total 

expected time from the instant a customer arrives at the rail station until she is delivered 

at her destination is given by 

𝑊𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 = 𝑊𝑞,𝐵𝑜𝑎𝑟𝑑 + 𝑊𝑅𝑖𝑑𝑖𝑛𝑔        (2.15) 

The expected riding time of the 𝑖 𝑡ℎ delivered customer in a tour with 𝑐  customer 

deliveries is approximated by 𝑖 × 𝐸(𝑆𝐸)/(𝑐 + 1) and the expected riding time of a random 

customer is 𝐸(𝑆𝐸)/2. 

 

2.5.2 Approximating the Expected Value of Customer Service Times  

We turn next to the task of evaluating the performance of the general expressions (2.14) 

and (2.15). To do this, expressions must be developed for all terms involving 𝑆𝐸 and 𝑁𝐸. 

In this subsection and the next two, we propose a set of such approximate expressions for 

the case in which the destinations of the customers are uniformly and independently 
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distributed within a square 𝑏 × 𝑏 district, assuming Euclidean travel. An entirely different 

operating environment is examined in Section 2.5.6. 

We start with the critical quantity 𝐸(𝑆𝐸) , the expected travel time to deliver 𝑐 

customers. Consider the situation in which 𝑗 customers are to be delivered by vehicles 

with capacity 𝑐 each within the district of interest in a minimum total amount of travel 

time. Vehicles must return to their origin (the train station). This is a classical Vehicle 

Routing Problem (VRP).  

Eilon et al. (1971) proposed an empirical formula for 𝐸(𝑇𝑉𝑅𝑇𝑗,𝑐), the total length of 

vehicle routing tours when a total of 𝑗 customers are delivered using vehicles of capacity 

𝑐, but tested it for only up to 𝑗 = 70 and 𝑐 = 10. Daganzo (1984) provided another simple 

and intuitive analytical approximation: 

𝐸(𝑇𝑉𝑅𝑇𝑗,𝑐) ≈
2𝑟𝑗

𝑐
+ 0.57√𝑗𝐴        (2.16) 

where 𝑟 is the average distance between the customers and the depot and 𝐴 is the area of 

service region. For a 𝑏 × 𝑏 square region, uniformly distributed customer destinations, 

and the depot located at the center of the region, 𝑟 = 0.382𝑏  and expression (2.16) 

becomes: 

𝐸(𝑇𝑉𝑅𝑇𝑗,𝑐) ≈ 0.764
𝑗

𝑐
𝑏 + 0.57√𝑗𝑏        (2.17) 

The expectation of a single route length of the vehicle routing tours 𝑉𝑅𝑇𝑗,𝑐 can then be 

approximated as: 

𝐸(𝑉𝑅𝑇𝑗,𝑐) ≈
𝐸(𝑇𝑉𝑅𝑇𝑗,𝑐)

𝑗/𝑐
≈ 0.764𝑏 + 0.57

𝑐

√𝑗
𝑏      (2.18) 
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Figure 2.10 Best routes for a 𝒋 = 𝟒𝟎, 𝒄 = 𝟏𝟎 instance (left), a 𝒋 = 𝟒𝟎, 𝒄 = 𝟒 instance (right) 

 

To assess the accuracy of (2.18), we took advantage of the fact that good heuristics 

exist for the VRP. Specifically, we simulated hundreds of thousands of instances of 

LMTS train arrivals and associated customer destinations. To create the clusters and 

routes we applied two widely used VRP heuristics, the Sweep algorithm (coupled with a 

TSP heuristic) and the Clark-Wright algorithm. According to Cordeau et al. (2002), these 

fast and simple heuristics provided an average deviation of 6.71% and 7.09%, 

respectively, from the best solutions obtained on CMT benchmark instances. We solved 

all the simulated instances we generated using each of the two heuristics separately and, 

for each instance, we chose the better of the two solutions.  Figures 2.10 shows the best 

solutions obtained for two examples, both with 𝑗 = 40 customers but in one case with 

𝑐 = 10 and in the other with 𝑐 = 4.  As might be expected, the Sweep algorithm generated 

the solution shown on the left and Clark-Wright the one shown on the right. For a broad 

range of vehicle capacities, 𝑐 (2 to 20), and number of routes 𝑗/𝑐  (2 to 20), the average 

error of (18), in absolute value terms, was of the order of 2%. Table 2.1 shows part of this 

assessment.  
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𝑐 

3 4 5 6 7 8 9 10 

𝑗/𝑐  

4 5.90% 2.58% 1.48% 0.94% 0.52% 0.29% -0.12% -0.49% 

5 6.02% 3.24% 2.40% 1.56% 0.79% 0.77% 0.68% 0.54% 

6 5.68% 2.39% 1.97% 1.75% 1.40% 1.06% 0.82% 0.97% 

7 5.04% 2.99% 2.14% 1.38% 1.31% 1.24% 1.24% 1.47% 

8 4.29% 2.88% 1.86% 1.41% 1.25% 1.24% 1.41% 1.30% 

9 5.20% 2.94% 1.79% 1.33% 1.29% 1.20% 1.34% 1.28% 

10 4.39% 2.44% 1.58% 0.97% 0.92% 0.77% 0.87% 1.03% 

11 4.36% 2.54% 1.73% 0.92% 0.90% 0.84% 0.90% 1.27% 

12 4.09% 2.27% 1.48% 1.11% 0.84% 0.64% 0.64% 0.92% 

13 4.18% 2.20% 1.55% 1.08% 0.64% 0.43% 0.53% 0.51% 

14 4.05% 2.30% 1.29% 0.85% 0.75% 0.25% 0.38% 0.49% 

15 4.12% 2.38% 1.58% 0.81% 0.65% 0.28% 0.27% 0.30% 

Table 2.1 Error of expression (2.18) compared to results of simulation 

 

In the queueing model, the service time, 𝑆𝐸, is the time that a vehicle takes to traverse 

a tour and deliver a group of 𝑐  customers. Estimates of the length of a VRT can be 

converted into time units, using information about the speed of travel in the region of 

interest. To simplify this conversion, we shall continue to assume here that travel speed is 

constant and equal to 1 throughout the region. Considering that the size, 𝑗, of a customer 

batch is sampled from the General distribution of a random variable 𝑁, we finally have:  

𝐸(𝑆𝐸) ≈
∑ 𝑃(𝑁 = 𝑗) ∙

𝑗
𝑐 ∙ 𝐸(𝑉𝑅𝑇𝑗,𝑐)∞

𝑗=0

∑ 𝑃(𝑁 = 𝑗) ∙
𝑗
𝑐

∞
𝑗=0

=
∑ 𝑃(𝑁 = 𝑗) ∙ 𝑗 ∙ 𝐸(𝑉𝑅𝑇𝑗,𝑐)∞

𝑗=0

𝐸(𝑁)

≈

∑ 𝑃(𝑁 = 𝑗) ∙ 𝑗 ∙ (0.764𝑏 + 0.57
𝑐

√𝑗
𝑏)∞

𝑗=0

𝐸(𝑁)
=

0.57𝑐𝐸(√𝑁)𝑏 + 0.764𝐸(𝑁)𝑏

𝐸(𝑁)

=
0.57𝑐𝐸(√𝑁)

𝐸(𝑁)
𝑏 + 0.764𝑏 

      (2.19) 
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2.5.3 Approximating the Variance of Customer Service Times 

Our simulation experiments indicated that the coefficient of variation of 𝑉𝑅𝑇𝑗,𝑐 is small, 

typically of the order of 0.1 – 0.25 for most combinations of 𝑐 and 𝑗/𝑐 values in the range 

of 𝑐 = 3 − 20 and 𝑗/𝑐 = 4 − 20. Thus, the standard deviation of 𝑉𝑅𝑇𝑗,𝑐 is small compared 

to its expected value. In addition, it is well known from queueing theory (and has been 

confirmed by the simulation experiments in the specific context of this chapter) that the 

variance of the service times has only a secondary impact on expected waiting times 

because it does not affect the utilization ratio, 𝜌, of a queueing system. For these reasons, 

we can use simple approximations for the variance (or for the coefficient of variation) of 

𝑉𝑅𝑇𝑗,𝑐  without affecting by much the quality of the approximations obtained for the 

expected waiting time and expected time to delivery of (2.14) and (2.15).  

Beardwood et al. (1959) proposed a famous asymptotic expression for the expectation 

of the length of a Traveling Salesman Tour (TST) with 𝑘  independent, uniformly 

distributed points in a square of area 𝐴 with Euclidean travel,  

𝐸(𝑇𝑆𝑇)𝑘 ≈ 𝛽1,𝑘√𝑘𝐴        (2.20)  

For very large values of 𝑘 , the best available estimate seems to be 𝛽1,∞ ≈ 0.7124 

(Johnson 1996). Gremlich et al. (2004) have suggested that, the variance of the length of 

a TST with a large number of points can be approximated as,  

𝑉𝑎𝑟(𝑇𝑆𝑇)∞ ≈ 𝛽2,∞𝐴        (2.21) 

where 𝛽2,∞ ≈ 0.1385. Let 𝐶  denote a coefficient of variation. Then, using (2.20) and 

(2.21), we shall use  

𝐶𝑇𝑆𝑇,𝑘 =
√𝑉𝑎𝑟(𝑇𝑆𝑇)𝑘

𝐸(𝑇𝑆𝑇)𝑘
≈

√𝑉𝑎𝑟(𝑇𝑆𝑇)∞

𝐸(𝑇𝑆𝑇)∞
≈ √

𝛽2,∞

𝑘𝛽1,∞
2     (2.22) 

as an approximate expression for the coefficient of variation of the length of a TST. 
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For the case at hand, in which the number of points visited by vehicles with capacity 

𝑐 is 𝑐 + 1, we shall use the further approximation 

𝐶𝑉𝑅𝑇,𝑗,𝑐 ≈ 𝐶𝑇𝑆𝑇,𝑐+1 ≈ √
𝛽2,∞

(𝑐+1)𝛽1,∞
2        (2.23) 

on the premise that the variability of a VRT and a TST that visit the same number of 

points should be similar. This leads to 

𝑉𝑎𝑟(𝑉𝑅𝑇𝑗,𝑐) = 𝐸2(𝑉𝑅𝑇𝑗,𝑐) ∙ 𝐶𝑉𝑅𝑇,𝑗,𝑐
2 ≈

𝛽2,∞

(𝑐+1)𝛽1,∞
2 𝐸2(𝑉𝑅𝑇𝑗,𝑐)    (2.24) 

and finally, for speed of travel equal to 1, to  

𝑉𝑎𝑟(𝑆𝐸) ≈
𝛽2,∞

(𝑐+1)𝛽1,∞
2 𝐸2(𝑆𝐸)        (2.25) 

We tested the accuracy of (2.25) against the results of our simulations. Despite the 

rough nature of approximations (2.22) – (2.23) on which (2.25) is based, the observed 

average errors were of the order of only 30% for a broad range of values of the vehicle 

capacity 𝑐 and the number of routes 𝑗/𝑐. As the next subsection indicates this is very 

adequate due to the limited impact of 𝑉𝑎𝑟(𝑆𝐸) on the value of the expected waiting time. 

 

2.5.4 Simulation and Comparisons for the General-Capacity, Multi-Vehicle 

LMP 

Expressions (2.14) and (2.15) will now be tested for the case in which the size of 

customer batches has a Poisson distribution with intensity 𝑛. All the other assumptions 

(independent and uniform locations of customer destinations, Euclidean travel, square 

district with size 𝑏, travel speed equal to 1) are the same as above.  

Under the Poisson assumption 𝐸(√𝑁) ≈ √𝑛 in (2.15) and therefore,  

𝐸(𝑆𝐸) ≈
0.57𝑐√𝑛

𝑛
𝑏 + 0.764𝑏 =

0.57𝑐

√𝑛
𝑏 + 0.764𝑏     (2.26) 

The variance of 𝑆𝐸 is given in (2.25), while the various other terms of (2.14) and (2.15) 

take on the following values: 
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𝐸(𝑁𝐸) ≈
𝐸(𝑁)

𝑐
=

𝑛

𝑐
         (2.27) 

𝑉𝐴𝑅(𝑁𝐸) ≈ 𝑆𝑑2 (⌈
𝑁

𝑐
⌉) ≈ ⌈√𝑉𝑎𝑟 (

𝑁

𝑐
)⌉

2

≈ ⌈
√𝑛

𝑐
⌉

2

      (2.28) 

  𝐸(𝑁𝐸
2) ≈ ⌈

√𝑛

𝑐
⌉

2

+ (
𝑛

𝑐
)2        (2.29) 

 A simulation of a General-Capacity, Multi-Vehicle LMTS was performed with a 

program written in java. We consider a square service district with geometry  𝑎/𝑣𝑥 =

𝑏/𝑣𝑦 = 2.5 𝑚𝑖𝑛 = 150 𝑠𝑒𝑐 , headways between train arrivals of  ℎ = 10 𝑚𝑖𝑛 = 600 𝑠𝑒𝑐 , 

vehicle capacity 𝑐 = 3 − 20 and customer arrivals with batch sizes described by a Poisson 

distribution with 𝑛= 40, 80 and 120. These parameters were selected so that the system 

would make sense physically. As before, vehicle tours were generated by using the two 

well-known vehicle routing heuristics, the Sweep algorithm and the Clark-Wright 

algorithm. Specifically, the simulation generated sets of points, uniformly and 

independently distributed in a 𝑏 × 𝑏 square, and vehicle tours through these points were 

drawn using the better of the two solutions (shortest total length of the delivery tours).  

Figures 2.11 through 2.18 present a sample of comparisons between the simulation 

results and the analytical approximations of Section 2.5.1 for the following respective 

cases: 𝑐 = 5, 𝑛 = 40, 80, 120;  𝑐 = 10, 𝑛 = 40, 80, 120; and 𝑐 = 15, 𝑛 = 120;  𝑐 = 20, 𝑛 = 120. 

 

Figure 2.11 Simulation and analytical results when 𝒄 = 𝟓 𝒂𝒏𝒅 𝒏 = 𝟒𝟎 
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Figure 2.12 Simulation and analytical results when 𝒄 = 𝟓 𝐚𝐧𝐝 𝒏 = 𝟖𝟎 

 

  

Figure 2.13 Simulation and analytical results when 𝒄 = 𝟓 𝐚𝐧𝐝 𝒏 = 𝟏𝟐𝟎 

 

 

Figure 2.14 Simulation and analytical results when 𝒄 = 𝟏𝟎 𝐚𝐧𝐝 𝒏 = 𝟒𝟎 
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Figure 2.15 Simulation and analytical results when 𝒄 = 𝟏𝟎 𝐚𝐧𝐝 𝒏 = 𝟖𝟎 

 

  
Figure 2.16 Simulation and analytical results when 𝒄 = 𝟏𝟎 𝐚𝐧𝐝 𝒏 = 𝟏𝟐𝟎 

 

  
Figure 2.17 Simulation and analytical results when 𝒄 = 𝟏𝟓 𝐚𝐧𝐝 𝒏 = 𝟏𝟐𝟎 
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Figure 2.18 Simulation and analytical results when 𝒄 = 𝟐𝟎 𝐚𝐧𝐝 𝒏 = 𝟏𝟐𝟎 

 

The horizontal axis in Figures 2.11 – 2.18 shows the utilization ratio 𝜌 = 𝐸(𝑆𝐸)𝐸(𝑁𝐸)/

ℎ𝑚, while the vertical axis shows the expected waiting time until boarding a vehicle and 

the expected total waiting time spent between arrival at the station and delivery at the 

customer’s destination. “Approximation Until Boarding” is obtained from (2.14) and 

“Approximation Until Delivery” from (2.15). For each combination of vehicle capacity 𝑐 

and demand intensity 𝑛, the utilization ratio 𝜌 takes on a set of discrete values because the 

number of vehicles, 𝑚, is integer.  

We plot in Figures 2.11 - 2.18 the discrete points corresponding to utilization ratios 

less than 0.9. At values of 𝜌 higher than 0.9 the system is highly unstable and the average 

waiting time is too long to be acceptable in practice. As shown in Figures, the 

approximate expression (2.14) for the expected passenger waiting time until boarding a 

vehicle performs very well for both small and large vehicles and for the broad range of 

customer arrival intensities (𝑛= 40, 80, and 120) examined. The difference between the 

simulated average time until boarding and the analytical expression (2.14) is of the order 

of the greater of 5% or 10 seconds. Turning to the estimation of passenger expected total 

time until delivery, the analytical expression (2.15) also works well. The difference 

between the analytical and simulation results is now of the order of the greater of 5% or 

15 seconds. 
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For similar LMTS with irregular service region and non-uniform demand, the VRT 

length (and time, with assumption of speed) expectation can be approximated following 

the method described by Daganzo (1984), and the variance can be approximated 

following the method described in Section 2.5.3. Expression (2.14) and (2.15) can be then 

used to estimate the system performance.  

 

2.5.5 Relaxation Time 

In order to assess whether the steady state expressions derived in Section 2.5.1 can be 

used as reasonable approximations of expected queuing performance during a typical 

time interval in which we can assume a roughly steady demand rate, we look at the 

“relaxation time” of the LMTS 𝐷𝑁/𝐺/𝑚 queue. If the relaxation time is small compared 

to a typical time interval with steady demand rate, such as 2 to 3 hours, it is reasonable to 

use the steady state approximations.  

We note that the queuing literature provides very few exact expressions regarding 

relaxation times. Most of the (few) available results provide expressions for upper bounds 

on these relaxation times.  

We define 𝑡1 as the relaxation time of the 𝐷𝑁/𝐺/𝑚 queue in the original model, 𝑡2 as 

the relaxation time of the 𝐷𝑁𝑆/𝐺/1 queue with customer pre-assignment, and 𝑡3 as the 

relaxation time of the 𝐷/𝐺/1 queue with macro-customers. 

There exists mutual help (collaboration) between servers (vehicles) in the original 

𝐷𝑁/𝐺/𝑚 queue, while customers are pre-assigned to different vehicles in the 𝐷𝑁𝑆/𝐺/1 

queue. This implies that the 𝐷𝑁/𝐺/𝑚 queue has more flexibility than the 𝐷𝑁𝑆/𝐺/1 queue. 

Therefore, the 𝐷𝑁/𝐺/𝑚  queue will reach steady state faster than the 𝐷𝑁𝑆/𝐺/1  queue 

under the same demand and service conditions, i.e., 𝑡1 ≤ 𝑡2. 

𝑡3, the relaxation time for macro-customers waiting in the 𝐷/𝐺/1 queue, is exactly the 

same as the relaxation time for the first individual customer waiting in the 𝐷𝑁𝑆/𝐺/1 

queue.  
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For a random individual customer in a macro-customer group, the waiting time is 

given by 𝑊 = 𝑊𝑞1 + 𝑊𝑞2 , where 𝑊𝑞1  is the waiting time until the first individual 

customer in the macro-customer group receives service, and 𝑊𝑞2 is the additional waiting 

time that this customer will suffer after the first individual customer receives service. The 

transient behavior of 𝑊  depends only on the transient behavior of 𝑊𝑞1 . 𝑊𝑞2 does not 

affect in any way the transient behavior of W, because 𝑊𝑞2 is determined solely by the 

number of individual customers in the macro-customer group. 

In other words, the relaxation time for the first individual customer in the macro-

customer group is also the relaxation time for all individual customers in the macro-

customer, i.e., 𝑡2 = 𝑡3.  

Combining the two relations above, we obtain 𝑡1 ≤ 𝑡3. 

According to Odoni and Roth (1983), the relaxation time for a single-server queue is 

upper-bounded by: 

𝑢𝑟 = (𝐶𝐴
2 + 𝐶𝑆

2)/(2.8𝜇(1 − √𝜌)2)       (2.30) 

where 𝐶𝐴
2 is the square of the coefficient of variation for inter-arrival times, 𝐶𝑆

2 is the 

square of coefficient of variation for the service times, 𝜇 is the average service rate, and 𝜌 

is the system utilization ratio. 

According to Newell (1971), the relaxation time can be approximated as: 

𝑎𝑟 = (𝜌𝐶𝐴
2 + 𝐶𝑆

2)/(𝜇(1 − 𝜌)2)        (2.31) 

We evaluate 𝑢𝑟  and 𝑎𝑟  for the relaxation time for some of the typical sets of 

parameters used in this Chapter (Figures 2.11 – 2.18). Parts of the results are shown in 

Table 2.2. For each set of parameters, we indicate the estimates of the relaxation time 

(shown in bold in minutes with 𝑢𝑟 first and 𝑎𝑟 second) for the highest possible utilization 

ratio (shown as the first of the three numbers in each box), which corresponds to the 

longest possible relaxation time. We find that, in all cases with utilization ratios of 0.85 

or lower, the upper bound for the relaxation time, 𝑢𝑟, is less than or in the order of 25 

minutes. The estimated approximate relaxation time, 𝑎𝑟, is even smaller. Only when the 
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utilization ratio is extremely large (such as 0.93) does the highest possible relaxation time 

become roughly equal to a 2-3 hour interval. However, as noted in the Chapter, the 

LMTS is highly unstable at these very high utilization ratios and the average waiting time 

is too long to be acceptable. 

ℎ = 600 𝑠𝑒𝑐, 𝑏 = 150 𝑠𝑒𝑐 

(𝜌, 𝒖𝒓, 𝒂𝒓  

𝒊𝒏 𝒎𝒊𝒏𝒖𝒕𝒆𝒔) 
𝑛 = 40 𝑛 = 80 

𝑐 = 5 
𝑚 = 3 𝑚 = 4 𝑚 = 5 𝑚 = 6 

(0.81, 𝟐𝟐. 𝟐, 𝟏𝟕. 𝟐) (0.61, 𝟒. 𝟗, 𝟒. 𝟑) (0.87, 𝟑𝟐. 𝟖, 𝟐𝟒. 𝟕) (0.72, 𝟕. 𝟑, 𝟔. 𝟎) 

𝑐 = 10 
𝑚 = 2 𝑚 = 3 𝑚 = 3 𝑚 = 4 

(0.83, 𝟑𝟖. 𝟕, 𝟐𝟗. 𝟔) (0.56, 𝟓. 𝟔, 𝟓. 𝟏) (0.93, 𝟏𝟔𝟗. 𝟔, 𝟏𝟐𝟐. 𝟖) (0.70, 𝟖. 𝟐, 𝟔. 𝟖) 

Table 2.2 Upper bound and approximation of relaxation time 𝒕𝟑 

 

Note, in addition, that, in a real LMTS, the queueing system does not begin from rest 

(i.e., demand does not start from 0). The time to reach steady state should therefore be 

smaller than the computed upper limits for the relaxation time in Table 2.2. 

Thus, the time for the queue to reach steady state should be significantly shorter than 

the duration of the time intervals (e.g., morning rush period, or evening rush period, or 

midday period) during which the respective demand rates for an LMTS system can be 

approximated as being roughly constant. It is therefore reasonable to use the steady state 

approximations for all but the extremely high (i.e., greater than 0.9) utilization cases, 

which are unrealistic in practice, anyway. 

 

2.5.5 Another Test 

As a second test of the performance of (2.14) and (2.15), we study a last mile 

transportation system that operates only along two main streets, which intersect at the 

location of a subway station, as shown in Figure 2.19. The destinations of passengers 

alighting from the subway are uniformly distributed along the two streets up to a distance 
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of 𝑏 =  150 from the station. LMTS shuttles, operating in each of the four directions 

emanating from the station, deliver arriving passengers to their eventual destinations.  

 

Figure 2.19 Schematic LMTS around crossroad 

 

We have obtained approximate expressions for the expectation and variance of 𝑆𝐸 in 

this case as follows: 

𝐸(𝑆𝐸) ≈
2𝑛 + 𝑐 + 1

2(𝑛 + 1)
𝑏                   𝑉𝑎𝑟(𝑆𝐸) ≈ 4 ×

1

12
𝑏2 =

1

3
𝑏2 

We have applied these expressions to (2.14) and (2.15) and compared the resulting 

analytical approximations with results from simulations. For practical waiting times (1 – 

5 min), the difference between the simulated average time until boarding and the 

analytical approximation (2.14) is less than the greater of 15% and 15 seconds, while the 

difference between the simulated average time until delivery and the analytical 

approximation (2.15) is less than 15%. The approximations thus also work well for an 

environment that is very different from that of Sections 2.5.2 – 2.5.4. 

 

2.6    Conclusion 

Metro 
Station

Passenger 
destination

b=150

b=150

b=150

b=150
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This chapter has developed a set of fully analytical expressions to support the 

approximate estimation of the performance of a quite general version of a Last-Mile 

Transportation System (LMTS). Given a lengthy list of inputs about the system’s 

characteristics (headways between arrivals of trains at the station, passenger batch size 

from each train, number of vehicles in the service fleet, capacity of vehicles, dimensions 

and travel-related properties of the urban district served), the expressions we have 

developed estimate the expected waiting time until a passenger can board a vehicle, and 

the expected time between arrival at the station and delivery to the passenger’s 

destination.  A number of simple simulation experiments suggest that these expressions 

approximate well the expected performance of LMTS under a broad range of conditions 

typical of what one may encounter in practice. 

On the methodological side, the principal contribution of this research is the 

development of approaches for bounding and approximating the performance of a very 

difficult type of queueing system involving batch arrivals and requiring the simultaneous 

consideration of vehicle routing, queueing issues and the use of geometrical probability 

arguments. The analytical expressions can be very useful in designing LMTS, 

specifically in determining resource requirements for these systems, such as how many 

vehicles would be necessary to achieve a specified level of service (as measured by 

expected time until one boards a vehicle or is delivered to one’s destination) and how 

many kilometers per day these vehicles would travel.  
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Chapter 3 

Operation of a Last Mile Transportation System 

3.1    Introduction 

In this chapter, we study the operation of a last mile transportation system. The setting of 

the LMTS is slightly different from that in Chapter 2. As illustrated in Figure 3.1, while a 

passenger’s final destination can be any point in the service region, the LM stops of the 

vehicles are limited to a finite number of locations which are convenient for the vehicles 

to load/unload passengers, such as existing public transit stops, entrances of hotels, 

crossroads near office buildings, and points located close to residential buildings or 

complexes. The routes and schedules of the vehicles in the LMTS are flexible. They may 

change over time based on the specific last mile service requests. Essentially, LMTS is an 

on-demand urban transportation system with batch demands. We describe the setting in 

more detail in Section 3.2. 

Metro Station

: Passenger Destination

: Last Mile Stop (LM Stop)

 

Figure 3.1 Schematic of a Last Mile Transportation System with LM stops 
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The focus of this chapter is on the system’s operations: given the geometric 

configuration of the service region, the number and location of demand destinations, and 

the number and capacity of the vehicles, we provide efficient strategies of passenger 

assignment, vehicle routing and scheduling for operating the LMTS. The objective of the 

operation is to maximize the LOS, as measured by the average waiting time until a 

passenger is picked up from the metro station or delivered to her destination.  

Addressing these questions is difficult, as the operational decisions generally involve 

complicated combinatorial optimization problems, e.g., multi-server scheduling of batch 

demands and numerous service options. As shown in Section 3.5, the exact formulation 

of the problem is a large-scale Mixed Integer Programming (MIP) model, which is hard 

to solve optimally or even near-optimally in acceptable computational times.  

Routing and scheduling problems have been studied for a long time in Operations 

Research and a very extensive literature exists. We mention here only a few papers that 

are among the most influential in the field and especially relevant to our problem. The 

Vehicle Routing Problem with Time Windows (VRPTW) has been the subject of 

intensive research using both heuristic and exact optimization approaches. VRPTW 

considers temporal demand information as in the case of LMTS operations, but with a 

different objective, namely to minimize the number of vehicles used and/or the total 

travel distance of vehicles. A good review of the VRPTW literature can be found in 

Bräysy and Gendreau (2005a, 2005b). Scheduling for multi-server vehicle systems is an 

important problem which has been studied in diverse contexts. Examples include Liu and 

Liu (1998), Zee et al. (2001), and Lee et al. (2006). The problems of lot-sizing and 

scheduling also have similarities with the LMTS operation problem. A survey on these 

intensely studied problems can be found in Drexl and Kimms (1997). 

Our goal is to propose methodologies to efficiently identify feasible solutions of good 

quality for realistically dimensioned instances of the problem.  

The main body of this chapter is organized as follows: In Section 3.2, we describe in 

detail the operation problem of LMTS we are studying and discuss the associated 

fundamental assumptions. In Section 3.3, we describe a myopic operating strategy which 
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can be easily implementable and approximate approaches could be utilized in practical 

application, especially when limited information about future demand is available. 

Section 3.4 presents a quick tabu search metaheuristic, which can often improve 

significantly the solution provided by the myopic operating strategy. Section 3.5 proposes 

an exact MIP model for the LMTS routing and scheduling problem and a simple two-

stage heuristic method to solve it. Section 3.6 defines a set of test instances and performs 

computational experiments. Section 3.7 contains a summary and concluding remarks.  

 

3.2    Problem Description 

We now describe in more detail the problem with reference to Figure 3.1. The setting is 

slightly different from that in Chapter 2. The LMTS operates as follows: STA denotes the 

transit metro station served by the LMTS. Any passenger, PAX, who needs last mile 

service is required to register in a service reservation system (either through a smart-

phone application or on a website), indicating the LM stop which is closest to her final 

destination. As described in Chapter 2, PAX is required to provide advance notice to 

LMTS of her arrival time at STA, i.e., of the time she will need last mile service. In 

practical terms, the advance notice could be generated in a number of alternative ways. 

Each alternative may be associated with a different length of advance notice and a 

different service horizon. For example, at one extreme, consider the case in which all 

passengers are regular subscribers, each passenger follows an exact known schedule 

every day (“request last mile service from STA to LM Stop 1 at 6:00 pm from Monday to 

Friday”) and the metro service is punctual and reliable, then, the LMTS operator has a 

long advance notice of the service requirements of each passenger and a service horizon 

that may span a sequence of many metro arrivals (“we shall serve every afternoon about 

65 passengers with known destinations who will arrive in the sequence of six metro trains 

that reach STA between 5 and 6 PM”). In this environment, the LMTS operator will wish 

to optimize service to the entire (known) set of passengers over the entire service horizon 

(5 – 6 PM, in this instance). At the opposite extreme, if the service subscribers have a 

variable schedule from day to day (or if the metro system is crowded and unreliable), 

service requests may be known only a short time before passengers arrive at STA. 
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Specifically, PAX could use a smart-phone or tap a smart card on a special-purpose 

screen to send the service request when she arrives at any station (“ORIGIN”) for the 

purpose of traveling to STA or when she enters her train to STA. The resulting message 

to the LMTS includes the time of arrival of PAX at STA (easy to predict through the train 

schedules, once the passenger is at the ORIGIN station or aboard a train) and her ultimate 

LM stop. Thus, the advance notice is of the order of 10 – 20 minutes and the LMTS 

operator can plan service (“service horizon”) for passengers arriving on only the next 

very few (perhaps 1 to 3) metro trains. 

Since the number of LM stops served by the LMTS is finite, the number of possible 

vehicle routes (sequences of LM stops in a delivery trip, also referred as route types) is 

also finite. Based on the service region’s geometry, we pre-select a set of feasible routes 

that are practical in the sense of satisfying some typical constraints, such as the maximum 

number of LM stops in a single route and the maximum travel distance (or travel time) in 

a route. For each feasible route, the optimal sequence in which its LM stops are visited 

(with shortest total travel distance/time as the criterion) and the corresponding travel 

distance/time to each LM stop are obtained from TSP heuristics. For example, if the 

maximum number of LM stops in a single route is set to 4 in the LMTS illustrated in 

Figure 3.2, the blue route is feasible, while the red route is not. 

Metro Station

: Passenger Destination

: Last Mile Stop (LM Stop)

: A Feasible Route

: An Infeasible Route

 

Figure 3.2 Examples of feasible route and infeasible route 

 

In the LMTS operation problem, we determine the routes and schedules of vehicles 

for delivering all the PAX to their LM stops. The operational decisions include the 

assignment of each PAX to a vehicle as well as the selection of the route option and 
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schedule of each vehicle. Drivers of vehicles are provided with a detailed plan that 

indicates the route, schedule and the number of passengers to each LM stop in every 

service trip (e.g., “depart STA at 6:36 PM and follow the route Stop 3 - Stop 1 - Stop 2 

that delivers 4 passengers to Stop 3, 2 passengers to Stop 1 and 3 passengers to Stop 2”).  

PAX will receive a message (on her smart-phone or by tapping her smart-card on a 

screen when she arrives at STA) that indicates the vehicle she has been assigned to, the 

planned departure time from STA, the planned route, and the planned arrival time at her 

LM stop (e.g., “board Vehicle #123 which will depart from STA at 6:36 PM; the route of 

the trip is Stop 3 - Stop 1- Stop 2; you will arrive at your destination LM Stop 1 at 6:41 

PM”). The vehicle executes the service trip, visits the planned LM stops in the sequence 

specified and returns to STA to pick up the passengers for its next planned service trip. 

Given the service region’s geometry (location of LM stops, feasible routes travel 

distances, etc.), passenger demand (arrival time at STA and destination LM stops), and 

the number, capacity and travel speed of the LMTS vehicles, we wish to provide the 

detailed plan of vehicle operations with the objective of minimizing the passenger 

waiting time until boarding a vehicle and the passenger riding time. 

With reference to Figure 3.2, we make the following assumptions: (i) the LM stops 

are pre-specified; (ii) the set of feasible routes for the LMTS vehicles are pre-selected; (iii) 

the train schedules are fixed and known for a specified period of time; (iv) the arrival 

time and destination LM stop of every passenger (i.e., demand information) are known in 

advance for a pre-specified period of time; and (v) the delivery fleet consists of m 

vehicles, each with integer capacity, 𝑐.  

As noted earlier, the length of time for which the demand is known in advance 

depends on the practical implementation and service reservation requirements of the 

LMTS at hand. In this chapter, it is assumed that, once a demand becomes known 

(whether only 10 minutes in advance of arrival at STA or hours in advance), that demand 

will materialize exactly as expected. This “deterministic” version of the LMTS operation 

problem is a reasonable approximation to reality in many contexts. Its solution can also 

serve as a benchmark for contexts in which large stochastic variability exists. 

 



62 
 

3.3    Myopic Operation 

In this section, we describe a myopic approach for solving the LMTS operation problem. 

In the myopic approach, we make decisions on the vehicle routes assuming that the 

demand information is revealed sequentially, one train at a time. This is equivalent to 

assuming that the last mile service request of a passenger becomes known only at the 

instant when must then she actually arrives at STA (i.e., the extreme case without 

passenger advance notice). When a train (batch of passengers) arrives at STA, we 

consider (i) the new LMTS passengers that arrive on that train, and (ii) any previously 

unserved passengers who are already waiting for LM service at the station. Under the 

myopic approach, the LMTS operator specifies delivery routes upon arrival of each train 

at STA based on the revealed demand information, i.e., the passengers in classes (i) and 

(ii) at STA. The myopic method is easy to implement in practical terms. It may also be 

the default solution to the LMTS operation problem in the case of systems where no 

advance demand information is available to the LMTS operator.  

 

3.3.1 Procedure of Myopic Operation 

Let 𝐽 denote the number of pre-specified LM stops. Let 𝑢𝑗  be the number of unserved 

passengers with LM stop j as their destination, and denote by 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝐽} the set 

of numbers of unserved passengers to all destinations. Let 𝐾 be the total number of pre-

selected feasible vehicle routes. Let 𝑆 = {𝑘1, 𝑘2, … } denote the set of suggested route 

types (see Section 3.3.2), where 𝑘𝑖 ∈ {1, … , 𝐾}. The procedure of the myopic operation is 

illustrated in Figure 3.3 and described in Table 3.1. 
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(0) Whenever a new train arrives at STA: 

(1) Update the set of unserved passengers 𝑈 using the information of the newly arrived 

passengers. 

(2) Empty the set of suggested route types 𝑆. 

(3) Use a Mixed Integer Programming model (Myopic Formulation (MF), Section 3.3.2) 

to suggest a set of route types 𝑆. 

(4) Use ranking criteria (Section 3.3.3) to determine the selection priorities of the route 

types in 𝑆; rank the route types in 𝑆 in the order of selection priority. 

(5) Whenever there are idle vehicles: 

(5.1) Dispatch an idle vehicle to provide a service trip of the route type with the 

highest priority in 𝑆. 

(5.2) Update the status of passengers. 

(5.3) Update the status of vehicles. 

(5.4) Delete the selected one from the set of suggested route types 𝑆.  

D 

Table 3.1 Procedure of myopic operation 

 

The process is repeated every time a train (batch of passengers) arrives until the end 

of the time horizon for the LMTS operation problem. The waiting time and riding time 

for each passenger is calculated and reported. 

 



64 
 

Myopic Formulation

Ranking Criteria (S)

Unserved   

Passengers (U)
Idle Vehicles

Suggested 

Route types (S)

Selected 

Route type

Service Trip

Train Arrives
(1)

(3)

(4)

(5.1)

(5.2)

(2)

(5.4)

(0)
(5.3)

 

Figure 3.3 Procedure of myopic operation 

 

We use an LMTS operation problem with just 2 train arrivals as an example to 

demonstrate the myopic operation approach. The headway between the two trains is 5 

minutes. We assume the following system settings: 

4 LM stops: 𝑗1, 𝑗2, 𝑗3, 𝑗4. 

10 feasible route types: 

 𝑘1: serve stop 𝑗1 with total service time of 5 minutes 

 𝑘2: serve stop 𝑗2 with total service time of 3 minutes 

 𝑘3: serve stop 𝑗3 with total service time of 6 minutes 

 𝑘4: serve stop 𝑗4 with total service time of 5 minutes 

 𝑘5: serve stops 𝑗1 and 𝑗2 with total service time of 7 minutes 

 𝑘6: serve stops 𝑗1 and 𝑗3 with total service time of 10 minutes 

 𝑘7: serve stops 𝑗2 and 𝑗3 with total service time of 8 minutes 

 𝑘8: serve stops 𝑗1 and 𝑗4 with total service time of 8 minutes 

 𝑘9: serve stops 𝑗3 and 𝑗4 with total service time of 9 minutes 

 𝑘10: serve stops 𝑗1, 𝑗2 and 𝑗3 with total service time of 12 minutes 
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The number of vehicles 𝑚 = 2 and we assume that both vehicles are available at the 

time when the first of the two trains arrives. 

Vehicle capacity: 𝑐 = 5.  

The myopic operation of this LMTS is illustrated in Table 3.2.  

(0.1) Train 1 arrives at 𝑡 = 0: 

(1) Train 1 brings 3 passengers to stop 𝑗1, 2 passengers to stop 𝑗2, 4 passengers to 

stop 𝑗3, and 4 passengers to stop 𝑗4:  

 𝑈 = {3,2,4,4} 

(2) Empty the set of suggested route types: 

 𝑆 = ∅ 

(3) Use the Myopic Formulation (described in Section 3.3.2) to suggest a set of route 

types: 

 𝑆 = {𝑘3, 𝑘4, 𝑘5} 

(4) Use a ranking criterion (described in Section 3.3.3) to determine the selection 

priority: 

 𝑆 = {𝑘4, 𝑘3, 𝑘5} 

(5) Vehicle 1 is idle at 𝑡 = 0: 

(5.1) Provide a trip of route type 𝑘4, serving 4 passengers to stop 𝑗4; 

(5.2) 𝑈 = {3,2,4,0}; 

(5.3) Vehicle 1 returns to STA at 𝑡 = 5; 

(5.4) 𝑆 = {𝑘3, 𝑘5}; 

Vehicle 2 is idle at 𝑡 = 0: 

(5.1) Provide a trip of route type 𝑘3, serving 4 passengers to stop 𝑗3; 

(5.2) 𝑈 = {3,2,0,0}; 

(5.3) Vehicle 2 returns to STA at 𝑡 = 6; 

(5.4) 𝑆 = {𝑘5}; 

 

(0.2) Train 2 arrives at 𝑡 = 5: 

(1) Train 2 brings 2 passengers to stop 𝑗1, 1 passenger to stop 𝑗2, 1 passengers to stop 

𝑗3, and 4 passengers to stop 𝑗4: 
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 𝑈 = {5,3,1,4} 

(2) Empty the set of suggested route types: 

 𝑆 = ∅ 

(3) Use the Myopic Formulation (described in Section 3.3.2)  to suggest a set of route 

types: 

 𝑆 = {𝑘1, 𝑘2, 𝑘9} 

(4) Use a ranking criterion (described in Section 3.3.3) to determine the selection 

priority: 

 𝑆 = {𝑘1, 𝑘2, 𝑘9} 

(5) Vehicle 1 becomes idle at 𝑡 = 5: 

(5.1) Provide a trip of route type 𝑘1, serving 5 passengers to stop 𝑗1; 

(5.2) 𝑈 = {0,3,1,4}; 

(5.3) Vehicle 1 returns to STA at 𝑡 = 10; 

(5.4) 𝑆 = {𝑘2, 𝑘9}; 

Vehicle 2 becomes idle at 𝑡 = 6: 

(5.1) Provide a trip of route type 𝑘2, serving 3 passengers to stop 𝑗2; 

(5.2) 𝑈 = {0,0,1,4}; 

(5.3) Vehicle 2 returns to STA at 𝑡 = 9; 

(5.4) 𝑆 = {𝑘9}; 

Vehicle 2 becomes idle at 𝑡 = 9: 

(5.1) Provide a trip of route type 𝑘9 , serving 1 passenger to stop 𝑗3  and 4 

passengers to stop 𝑗4; 

(5.2) 𝑈 = {0,0,0,0}; 

(5.3) Vehicle 2 returns to STA at 𝑡 = 18; 

(5.4) 𝑆 = ∅; 

 

Table 3.2 Example of myopic operation 
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3.3.2 Myopic Formulation 

In Step 3 of the myopic operation approach, a set of route types 𝑆 is suggested for the 

service trips that could be provided before next train arrives. The suggestions are based 

on the details of the passenger demand, i.e., the number of unserved passengers with 

destination at each LM stop. A Mixed Integer Programming model (Myopic Formulation) 

is proposed to make the suggestions 𝑆.  

The notation for the Myopic Formulation is introduced in Table 3.3. 

Parameters: 

 𝑛𝑗
𝑖,𝑈

 : number of unserved passengers with destination at LM stop 𝑗 before the arrival 

of train 𝑖; 

 𝑛𝑗
𝑖 : number of passengers with destination at LM stop 𝑗 brought by train 𝑖; 

 𝜙𝑗𝑘 : 1 if LM stop 𝑗 is served by route type 𝑘; 0 otherwise; 

 𝑡𝑘 : total service time of route type 𝑘; 

 𝑡𝑗𝑘 : travel time to LM stop 𝑗 on route type 𝑘; 

 𝑐 : maximum number of passengers served by a vehicle (vehicle capacity); 

 𝛽1 : coefficient in the objective function; 

 𝛽2 : coefficient in the objective function; 

 𝛽3 : coefficient in the objective function; 

Decision variables: 

 𝑧𝑗𝑘 : number of passengers with destination at LM stop 𝑗 assigned to a trip of route 

type 𝑘; 

 𝑤𝑘 : number of trips of route type 𝑘; 

 𝑚 : total number of trips to serve all passengers in the decision epoch. 

Table 3.3 Notation for myopic formulation 
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The Myopic Formulation for the decision epoch of arrival of train 𝑖 (𝑀𝐹𝑖) is defined 

as follows: 

 min    𝛽1 ∙ 𝑚 + 𝛽2 ∙  ∑ 𝑡𝑘 ∙ 𝑤𝑘

𝑘

+ 𝛽3 ∙ ∑ ∑ 𝑡𝑗𝑘 ∙ 𝑧𝑗𝑘

𝑘𝑗

 (3.1) 

 ∑ 𝑧𝑗𝑘 ∙ 𝜙𝑗𝑘

𝑘

= 𝑛𝑗
𝑖,𝑈 + 𝑛𝑗

𝑖 ,    ∀𝑗 
(3.2) 

 ∑ 𝑧𝑗𝑘 ∙ 𝜙𝑗𝑘

𝑗

≤ 𝑐 ∙ 𝑤𝑘 ,    ∀𝑘 
(3.3) 

 ∑ 𝑤𝑘

𝑘

= 𝑚, (3.4) 

 𝑚, 𝑤𝑘 ∈ 𝒁∗, 𝑧𝑗𝑘 ∈ 𝑹∗,   ∀𝑗, 𝑘 (3.5) 

With coefficients 𝛽1 ≫ 𝛽2 ≫ 𝛽3, the objective (3.1) has three hierarchies: (i) first, 

minimize the number of trips to serve all passengers, (ii) second, minimize the total travel 

distance/time of vehicles, and (iii) finally, minimize the total travel distance/time of 

passengers. In practice, the values of 𝛽1, 𝛽2  and 𝛽3  can be adjusted to incorporate 

different decision preferences.  

In the formulation 𝑀𝐹𝑖, any passengers and last mile service requests that appear after 

train 𝑖  has arrived are assumed to have no influence on the 𝑀𝐹𝑖  decisions. 𝑀𝐹𝑖  is 

essentially suggesting route types and the number for each route type, without 

considering the passengers who will arrive in the future. This is indeed a “myopic” 

decision. Constraint (3.2) makes sure that every passenger is assigned to a route type; 

(3.3) guarantees the vehicle capacity is not exceeded; (3.4) captures the total number of 

trips needed; (3.5) defines the domains of the decision variables. 

When 𝑚 is set to a fixed value, the mathematical structure of the formulation 𝑀𝐹𝑖 is 

exactly the same as the traditional Capacitated Facility Location Problem (CFLP) if 𝜙𝑗𝑘 is 

not taken into consideration in 𝑀𝐹𝑖: 𝑤𝑘 is analogous to the location choice of facility and 

𝑧𝑗𝑘  is analogous to the assignment of demand to the chosen facility. CFLP is a well-

studied problem. One can refer to a review in Sridharan (1995) for the various heuristic 
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and exact methods for CFLP. When solving 𝑀𝐹𝑖 , we begin by setting the decision 

variable 𝑚 = ⌈(∑ (𝑛𝑗
𝑖,𝑈 + 𝑛𝑗

𝑖))𝑗 /𝑐⌉. Because of the limitations of the pre-selected route 

types and topological relations between the route types and LM stops, 𝑀𝐹𝑖  may be 

infeasible with this initial value of 𝑚. We increase 𝑚 by 1 whenever 𝑀𝐹𝑖 is infeasible. 

When the number of LM stops is not very large (e.g., 𝐽  does not exceed 20), the 

corresponding 𝑀𝐹𝑖 with fixed value of 𝑚 (which is similar to the CFLP) can be solved 

directly and quickly with common commercial optimization software, such as ILOG 

CPLEX.  

 

3.3.3 Ranking Criterion 

The Myopic Formulation 𝑀𝐹𝑖 suggests a set of route types that could be carried out in the 

inter-arrival time between train 𝑖  and train 𝑖 + 1 . Before dispatching idle vehicles to 

provide service trips, we need a ranking criterion to determine the selection priorities of 

the suggested route types in 𝑆.  

Generally, a trip with shorter travel time serving more passengers should be given 

higher priority than a trip with longer travel time serving fewer passengers. Therefore, as 

a simple criterion, for the route type with 𝑤𝑘 = 1, we use the value ∑ 𝑧𝑗𝑘 ∙ 𝜙
𝑗𝑘𝑗 /𝑡𝑘  to 

decide the selection priority, where ∑ 𝑧𝑗𝑘 ∙ 𝜙
𝑗𝑘𝑗  is the total number of passengers that trips 

of route type 𝑘 will serve, and 𝑡𝑘 is the total service time of the trip of route type 𝑘. The 

suggested route types in 𝑆  are then ranked and selected in the descending order of 

∑ 𝑧𝑗𝑘 ∙ 𝜙
𝑗𝑘𝑗 /𝑡𝑘. When 𝑤𝑘 > 1, we dispatch passengers to fill up one trip before starting a 

new one. 

 

3.4    Tabu Search 

In this section, we describe a method based on tabu search, a local search metaheuristic 

that explores the solution space by moving, at each iteration, from the current solution to 

the best solution in its neighborhood. Tabu search (TS) was proposed and developed by 
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Glover (see Glover, 1989, 1990a, 1990b), inspired by the principles of artificial 

intelligence.  

The main concepts used in tabu search are: attributes, neighborhood and 

neighborhood size, moves and evaluation of the moves, tabu list, tabu list size, aspiration 

criteria, and termination conditions. Tabu search has been applied intensively to various 

types of routing and scheduling problems, with very good results. Examples of 

applications include vehicle routing (Gendreau et al, 1994, Cordeau and Maischberger, 

2012), multi-purpose machine job scheduling (Hurink et al, 1994), nurse scheduling 

(Dowsland, 1998), real-time vehicle routing and dispatching (Gendreau et al, 1999), 

vehicle routing with time windows (Cordeau et al, 2001), split delivery vehicle routing 

(Archetti et al, 2006), vehicle routing with simultaneous pick-up and delivery service 

(Montané and Galvao, 2006), and dynamic dial-a-ride (Berbeglia et al, 2012). 

In this section, we assume that the demand information for a certain period of time is 

known before the LMTS operator make operational decisions. The LMTS operator has an 

advance notice of the service requirements of each passenger and a service horizon that 

span a sequence of several metro arrivals. In this environment, the LMTS operator will 

wish to optimize service to the entire (known) set of passengers over the entire service 

horizon. 

In what follows, we first introduce the notation and attributes used in the method. We 

then provide detailed descriptions of the tabu search concepts for the LMTS operation 

problem.  

 

3.4.1 Notation and Attributes 

In this tabu search metaheuristic, the solution attributes are the route types of the trips 

initiated during each inter-arrival time of trains (batches of passengers). Let 𝑇𝑖 denote the 

arrival time of train 𝑖, and let ℎ𝑖 = [𝑇𝑖, 𝑇𝑖+1) denote the inter-arrival time between train 𝑖 

and train 𝑖 + 1. Solution 𝑠 is then represented by (𝑅1, 𝑅2, … 𝑅𝐼), where 𝑅𝑖  is the set of 

route types of the trips initiated during inter-arrival time ℎ𝑖 (𝑅𝐼 is the set of route types of 

the trips initiated after the arrival of the last train, i.e., train 𝐼).  
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For example, in an LMTS operation problem with 3 trains, a solution 𝑠 denoted by 

(𝑅1 ={𝑘1, 𝑘3}, 𝑅2 ={𝑘2}, 𝑅3 ={𝑘1, 𝑘4}) represents the operation plan in which: vehicle 

fleet initiates two service trips in the inter-arrival time ℎ1, and one trip is of route type 𝑘1 

and the other is of route type 𝑘3; one service trip of route type 𝑘2 in the inter-arrival time 

ℎ2; and two service trips in the time period ℎ3, one of route type 𝑘1 and the other of route 

type 𝑘4. 

Note that, the solution 𝑠 = (𝑅1, 𝑅2, … , 𝑅𝐼) represents only the route types of the trips 

initiated during each inter-arrival time, while the sequence/priorities of route types within 

each inter-arrival time should be determined by some ranking criteria. We can use, for 

example, the same ranking criterion used in the myopic operation method described in 

Section 3.3.3. 

 

3.4.2 Neighborhood Exploration 

Before deciding on the search mechanism to be used, it is important to consider the space 

(neighborhood) over which the search will be conducted. The LMTS operation problem 

has two natural neighborhoods. The first, and simplest, involves changing the route types 

of trips within a single inter-arrival time ℎ𝑖: the possible changes of route types include 

swaps of LM stops, shifts, elimination and addition. The second neighborhood involves 

changing the route types of trips interactively in two consecutive inter-arrival times, ℎ𝑖 

and ℎ𝑖+1(or ℎ𝑖−1): the possible changes of route types include swaps and shifts of LM 

stops.  

Let 𝑟𝑘(𝑗1, 𝑗2, … , 𝑗𝐿) denote the service trip of route type 𝑘 visiting the LM stops 𝑗1, 

𝑗2,…, and 𝑗𝐿 in that order. Then the details of the possible routing changes, referred to 

henceforth as “moves” can be described as follows: 
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Move within a Single Inter-arrival Time 𝒉𝒊 

 

(1) Swap LM stops between two trips. 

 

 

 Before move:   ℎ𝑖: 𝑟𝑘1
(𝑗1, 𝒋𝟐, … ),      𝑟𝑘2

(𝒋𝟑, 𝑗4, … ) 

 After move:      ℎ𝑖: 𝑟𝑘3
(𝑗1, 𝒋𝟑, … ),      𝑟𝑘4

(𝒋𝟐, 𝑗4, … ) 

 

The move is valid if and only if both the route type 𝑘3  and 𝑘4  are feasible 

according to the route pre-selection requirements.  

We use (𝑖, 𝑘, 𝐴 or 𝐸) to denote the route type change of the service trips, where 𝑖 

is the index of inter-arrival times (arrival train 𝑖 ), 𝑘  is the route type of the 

changed route, 𝐴  means route type 𝑘  is added and 𝐸  means route type 𝑘  is 

eliminated. Therefore, the move (𝑀𝑣 ) above is denoted as 𝑀𝑣 = (𝑖, 𝑘1, 𝐸) ∩

(𝑖, 𝑘2, 𝐸) ∩ (𝑖, 𝑘3, 𝐴) ∩ (𝑖, 𝑘4, 𝐴). 

 

(2) Shift an LM stop from one trip to another. 

 

 

Before move:    ℎ𝑖: 𝑟𝑘1
(𝑗1, 𝒋𝟐, … ),        𝑟𝑘2

(𝑗3, … )      

After move:       ℎ𝑖: 𝑟𝑘3
(𝑗1, … ),             𝑟𝑘4

(𝑗3, 𝒋𝟐, … ) 

 

The move is valid if and only if both the route type 𝑘3  and 𝑘4  are feasible 

according to the route pre-selection requirements.  

The move is denoted as 𝑀𝑣 = (𝑖, 𝑘1, 𝐸) ∩ (𝑖, 𝑘2, 𝐸) ∩ (𝑖, 𝑘3, 𝐴) ∩ (𝑖, 𝑘4, 𝐴). 

 

(3) Split a trip into two trips: one serves a single LM stop and the other serves the 

remaining LM stop(s). 

 

 

Before move:    ℎ𝑖: 𝑟𝑘1
(𝑗1, 𝒋𝟐, … ),                         

After move:       ℎ𝑖: 𝑟𝑘2
(𝑗1, … ),               𝑟𝑘3

(𝒋𝟐) 
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The move is valid if and only if both the route types 𝑘2  and 𝑘3  are feasible 

according to the route pre-selection requirements.  

The move is denoted as 𝑀𝑣 = (𝑖, 𝑘1, 𝐸) ∩ (𝑖, 𝑘2, 𝐴) ∩ (𝑖, 𝑘3, 𝐴). 

 

(4) Add an LM stop to a trip. 

 

 

Before move:    ℎ𝑖: 𝑟𝑘1
(𝑗1, … ),                𝒋𝟐       

After move:       ℎ𝑖: 𝑟𝑘2
(𝑗1, 𝒋𝟐 … ),                         

 

The move is valid if and only if the route type 𝑘2 is feasible according to the route 

pre-selection requirements.  

The move is denoted as 𝑀𝑣 = (𝑖, 𝑘1, 𝐸) ∩ (𝑖, 𝑘2, 𝐴). 

 

(5) Add a trip serving a single LM stop. 

 

 

Before move:      ℎ𝑖:                                  𝒋𝟏 

After move:        ℎ𝑖:  𝑟𝑘1
( 𝒋𝟏),                           

 

The move is valid if and only if the route type 𝑘1 is feasible according to the route 

pre-selection requirements.  

The move is denoted as 𝑀𝑣 = (𝑖, 𝑘1, 𝐴). 

 

(6) Eliminate an LM stop from a trip. 

 

Before move:     ℎ𝑖:  𝑟𝑘1
(𝑗1, 𝒋𝟐 … ),                   

      After move:        ℎ𝑖:  𝑟𝑘2
( 𝑗1, … ),                              

 

The move is valid if and only if the route type 𝑘2 is feasible according to the route 

pre-selection requirements.  

The move is denoted as 𝑀𝑣 = (𝑖, 𝑘1, 𝐸) ∩ (𝑖, 𝑘2, 𝐴). 
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Move involving Two Consecutive Inter-arrival Times, 𝒉𝒊 and 𝒉𝒊′ (𝒊′ = 𝒊 − 𝟏 𝐨𝐫 𝒊 + 𝟏) 

(1) Swap LM stops between a trip in ℎ𝑖 and a trip in ℎ𝑖′. 

 

Before move:    ℎ𝑖: 𝑟𝑘1
(𝑗1, 𝒋𝟐, … ),       

Before move    ℎ𝑖′: 𝑟𝑘2
(𝑗3, 𝒋𝟒, … ),       

 

After move:      ℎ𝑖: 𝑟𝑘3
(𝑗1, 𝒋𝟒, … ),       

Before move    ℎ𝑖′: 𝑟𝑘4
(𝑗3, 𝒋𝟐, … ),       

 

The move is valid if and only if both the route type 𝑘3  and 𝑘4  are feasible 

according to the route pre-selection requirements.  

The move is denoted as 𝑀𝑣 = (𝑖, 𝑘1, 𝐸) ∩ (𝑖′, 𝑘2, 𝐸) ∩ (𝑖, 𝑘3, 𝐴) ∩ (𝑖′, 𝑘4, 𝐴). 

 

(2) Shift an LM stop from a trip in ℎ𝑖 to an existing trip in ℎ𝑖′. 

 

Before move:    ℎ𝑖: 𝑟𝑘1
(𝑗1, 𝒋𝟐, … ), 

Before move   ℎ𝑖′: 𝑟𝑘2
(𝑗3, … ),    

 

After move:      ℎ𝑖: 𝑟𝑘3
(𝑗1, … ),       

Before move    ℎ𝑖′: 𝑟𝑘4
(𝑗3, 𝒋𝟐, … ), 

 

The move is valid if and only if both the route type 𝑘3  and 𝑘4  are feasible 

according to the route pre-selection requirements.  

The move is denoted as 𝑀𝑣 = (𝑖, 𝑘1, 𝐸) ∩ (𝑖′, 𝑘2, 𝐸) ∩ (𝑖, 𝑘3, 𝐴) ∩ (𝑖′, 𝑘4, 𝐴). 

 

(3) Shift an LM stop from a trip in ℎ𝑖 to a new single LM stop trip in ℎ𝑖′. 

 

Before move:    ℎ𝑖: 𝑟𝑘1
(𝑗1, 𝒋𝟐, … ), 

Before move   ℎ𝑖′:                                       

 

After move:      ℎ𝑖: 𝑟𝑘2
(𝑗1, … ),       

Before     ℎ𝑖′: 𝑟𝑘3
(𝒋𝟐), 
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The move is valid if and only if both the route type 𝑘2  and 𝑘3  are feasible 

according to the route pre-selection requirements.  

The move is denoted as 𝑀𝑣 = (𝑖, 𝑘1, 𝐸) ∩ (𝑖, 𝑘2, 𝐴) ∩ (𝑖′, 𝑘3, 𝐴). 

 

With the solution format 𝑠 = (𝑅1, 𝑅2, … , 𝑅𝐼) in which the sequence of route types in 

each inter-arrival time is not taken into consideration, it is obvious that any solution 

(including the optimal solution) can be obtained by imposing a limited number of moves 

described above on any other solution. 

 

3.4.3 Tabu List 

Each move described in Section 3.4.2 contains one or several route type changes, which 

are denoted as(𝑖, 𝑘, 𝐴)  or (𝑖, 𝑘, 𝐸). In this chapter, a move is tabu if it contains a change 

to (𝑖, 𝑘, 𝐴) (or (𝑖, 𝑘, 𝐸)) while any move in the tabu list contains a change to (𝑖, 𝑘, 𝐸) (or 

(𝑖, 𝑘, 𝐴)). Essentially, this means that any move that reverses a change of a route type in 

recent iterations (recorded in the tabu list) is forbidden. 

The best size of the tabu list for each kind of problem has to be found empirically. 

Computational tests need to be implemented for different problems. Some work on 

similar problems provides observations on good tabu list sizes. For example, Cordeau et 

al. (1997) observes that the best tabu list size for solving the Periodic Vehicle Routing 

Problem (PVRP) and Multi-Depot Vehicle Routing Problem (MDVRP) is 7.5 𝑙𝑜𝑔10 𝑛, 

where 𝑛 is the number of customers. Other work has shown experimentally that a tabu 

list of variable size tends to give better results than a fixed one. For example, Taillard 

(1991) sets the size of the tabu list to a random number in a specified interval. 

For our problem, we have tested several simple tabu list sizes and chosen a fixed size 

1 + 𝐽/2 for our algorithm, where 𝐽 is the number of pre-specified LM stops in the LMTS. 

A variable size of the tabu list can be easily implemented anyway. 

 

 

3.4.4 Evaluation of Moves and Aspiration Criteria 
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The objective value (passenger waiting time + riding time) of the solution 𝑠 =

(𝑅1, 𝑅2, … , 𝑅𝐼) can be obtained if we have a criterion to decide the selection priorities of 

the route types in each 𝑅𝑖  . The evaluation procedure is similar to that in the myopic 

operation method, while the set of suggested route types 𝑆 during each inter-arrival time 

is replaced by 𝑅𝑖 in the solution 𝑠.  

The evaluation procedure is illustrated in Figure 3.4 and described in Table 3.4.  

(0) When considering train 𝑖: 

(1) Update the set of unserved passengers 𝑈 using the information on the passengers 

arriving on train 𝑖. 

(2) Empty the set of suggested route types 𝑆. 

(3) 𝑅𝑖 in solution 𝑠 is the new set of suggested route types. 

(4) Use some ranking criteria (e.g., the same ranking criterion described in the myopic 

method) to determine the selection priorities of the route types in 𝑅𝑖; rank the route 

types in 𝑅𝑖 in the order of selection priority. 

(5) Whenever there are idle vehicles: 

(5.1) Dispatch an idle vehicle to provide a service trip of the route type with the 

highest priority in 𝑅𝑖. 

(5.2) Update the status of passengers. 

(5.3) Update the status of vehicles. 

(5.4) Delete the selected one from the set of suggested route types 𝑅𝑖.  

D 

Table 3.4 Evaluation procedure for solution 𝒔 in tabu search 

 

The process is repeated every time a train (batch of passengers) arrives until the end 

of the time horizon for the LMTS operation problem. The waiting time and riding time 

for each passenger is calculated and reported. 
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Solution s=(R1,…,RI)

Ranking Criteria (Ri)

Unserved  

Passengers (U)
Idle Vehicles

Ri=(r1,r2,…)

Selected 

Route type

Service Trip

Each Train i

(4)

(5.1)

(5.2)

(5.4)

(2)

(3)

(1)

(0) (5.3)

 

Figure 3.4 Evaluation procedure for solution 𝒔 in tabu search 

 

Aspiration criteria are the set of criteria that, if satisfied, allow moves that override 

tabus. In our problem, we allow a move that overrides a tabu, if that move results in an 

objective value (passenger waiting time and riding time) that is better than the best-

known objective value so far.  

 

3.4.5 Termination Conditions 

Our termination rule is based on a limit to the maximum number of total iterations and a 

limit to the maximum number of iterations without solution improvement. The search 

terminates if a maximum number of total iterations (𝑁1) is reached or if the best solution 

so far has not been improved for a certain number of iterations (𝑁2). After tests with a 

number of computational experiments, we have set 𝑁1 = 500 and 𝑁2 = 50 when we use 

the solution from the myopic approach as the initial solution in the tabu search.  

 

3.4.6 Tabu Search Algorithm 
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Based on the concepts discussed in Section 3.4.1 – Section 3.4.5, the tabu search 

algorithm is described in Table 3.5 

 

0. Obtain an initial solution 𝑠0 from another method, e.g., myopic operation method 

Set best solution 𝑠∗ = 𝑠0 

Set current solution 𝑠𝑐 = 𝑠0 

Tabu list 𝑇𝐿 = ∅ 

1. REPEAT: 

IF termination condition is satisfied 

THEN 

 STOP; 

ELSE 

1.1 For each neighbor in the neighborhood of 𝑠𝑐, DO 

Calculate the objective value using the evaluation procedure 

1.2 Select and move to the best neighbor, which is not tabu or satisfies the 

aspiration criteria 

1.3 Update 𝑠∗, 𝑠𝑐 and 𝑇𝐿 

 

Table 3.5 Tabu search algorithm 

 

3.5    Mixed Integer Programming Formulation 

In this section, we present an exact Mixed Integer Programming (MIP) model for the 

LMTS operation problem described in Section 3.5.1. In this section, we also assume the 

LMTS operator has an advance notice of the service requirements of each passenger and 

a service horizon that span a sequence of several metro arrivals. The LMTS operator will 

wish to optimize service to the entire (known) set of passengers over the entire service 

horizon. The large scale of the formulation makes it difficult to solve the MIP quickly. In 

Section 3.5.2 and Section 3.5.3 we propose a two-stage heuristic to solve the MIP model 

approximately.  
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3.5.1 Exact MIP model 

First, we introduce the following some additional notation in Table 3.6: 

Parameters: 

 𝑛𝑗
𝑡 : number of passengers with destination at LM stop 𝑗 arriving at station at time 

𝑡; obtained from train schedules and the LM service reservation system; 

 𝛽𝑤 : weight of passenger waiting time until boarding in the objective function; 

 𝛽𝑟 : weight of passenger in-vehicle riding time in the objective function; 

Decision variables: 

 𝑧𝑗𝑘
𝑡  : number of passengers with destination at LM stop 𝑗 that board a vehicle 

initiating a trip of route type 𝑘 at time 𝑡;  

 𝑤𝑘
𝑡  : number of trips of route type 𝑘 initiated at time 𝑡; 

Intermediate variables: 

 𝑟𝑗
𝑡 : number of unserved passengers with destination at LM stop 𝑗 waiting at the 

train station at the end of time 𝑡; 

 𝑣𝑡 : number of available vehicles at the end of time 𝑡; 

Table 3.6 (Additional) Notation for the exact MIP model 

 

In this formulation, we discretize the time into intervals of one minute, so we can 

approximate what will happen in practice.  

The objective function (3.6) is defined as minimizing the weighted summation of the 

time spent by all passengers in the LMTS: (i) waiting time until boarding a vehicle and (ii) 

in-vehicle riding time:  

 min     𝛽𝑤 ∙  ∑ ∑ 𝑟𝑗
𝑡

𝑗𝑡

+ 𝛽𝑟 ∙ ∑ ∑ ∑ 𝑡𝑗𝑘 ∙ 𝑧𝑗𝑘
𝑡

𝑘𝑗𝑡

 (3.6) 
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For example, since we discretize the time into one minute intervals and 𝑟𝑗
𝑡 counts the 

unserved passengers at the end of time period 𝑡, if 𝑟𝑗
𝑡 = 20 for some 𝑡, this means that 20 

minutes of waiting were added during the minute 𝑡 for passengers going to stop 𝑗. 

If 𝛽𝑤 = 𝛽𝑟, the objective is to minimize the summation of passenger waiting time and 

riding time, i.e., the time from the arrival of passengers at STA to delivery at their 

destination LM stops.  

The formulation has the following constraints: 

a) Passenger flow constraints: expressions (3.7), (3.8) and (3.9) define and constrain the 

number of unserved passengers with destination at each LM stop waiting in the 

station at the end of each time 𝑡. 

 𝑟𝑗
0 = 𝑛𝑗

0 − ∑ 𝑧𝑗𝑘
0 ∙ 𝜙𝑗𝑘

𝑘

,    ∀𝑗 (3.7) 

 𝑟𝑗
𝑡 = 𝑟𝑗

𝑡−1 + 𝑛𝑗
𝑡 − ∑ 𝑧𝑗𝑘

𝑡 ∙ 𝜙𝑗𝑘

𝑘

,    ∀𝑗, 𝑡 ≥ 1 (3.8) 

 𝑟𝑗
𝑡 ≥ 0,    ∀𝑗, 𝑡 (3.9) 

b) Vehicle flow constraints: expressions (3.10), (3.11) and (3.12) define and constrain 

the number of available vehicles waiting at the station at the end of each time 𝑡. 

 𝑣0 = 𝑚 − ∑ 𝑤𝑘
0

𝑘

,     (3.10) 

 𝑣𝑡 = 𝑣𝑡−1 + ∑ 𝑤𝑘
𝑡−𝑡𝑘

𝑘

− ∑ 𝑤𝑘
𝑡

𝑘

,    ∀𝑡 ≥ 1 (3.11) 

 𝑣𝑡 ≥ 0,    ∀𝑡 (3.12) 

c) Service capacity constraints: expression (3.13) guarantees the vehicle service capacity 

restriction. 

 ∑ 𝑧𝑗𝑘
𝑡 ∙ 𝜙𝑗𝑘

𝑗

≤ 𝑐 ∙ 𝑤𝑘
𝑡 ,    ∀𝑘, 𝑡  (3.13) 

d) Domains of decision variables. 
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 𝑤𝑘
𝑡 ∈ 𝒁∗, 𝑧𝑗𝑘

𝑡 ∈ 𝑹∗    ∀𝑗, 𝑘, 𝑡 (3.14) 

The model described above deviates from a large class of traditional vehicle routing 

and scheduling problems. Note that, (i) the model considers the routes and schedules of a 

multi-vehicle fleet, (ii) the temporal demand for a set of LM stops is known, (iii) a set of 

feasible routes are pre-selected beforehand, and (iv) the performance evaluation metric is 

the waiting time and riding time of passengers, instead of the travel distance/time of 

vehicles. These characteristics make the model important for other applications. Similar 

models can be applied very usefully in many other contexts, particularly in problems 

involving multi-server systems that provide flexible service options.  

It is hard to obtain optimal or even near-optimal solutions for the MIP model 

described above. In Section 3.5.2 and Section 3.5.3, we provide a two-stage heuristic to 

solve the formulation approximately, aiming at solutions of good quality.  

 

3.5.2 First Stage: Solve MIP to the Level of Inter-arrival Time 

In the first stage, we modify the original exact MIP model by replacing the time 

dimension 𝑡 in the decision variables 𝑧𝑗𝑘
𝑡  and 𝑤𝑘

𝑡  with the train’s ID 𝑖. In other words, 

instead of making detailed decisions for every minute 𝑡 in the original formulation, we 

shift our focus to making more aggregate decisions for every inter-arrival time ℎ𝑖. The 

modified model can reduce the problem scale and the required computational time.    

The notation is modified as in Table 3.7. 

Parameters: 

 𝑛𝑗
𝑖 : number of passengers with destination at LM stop 𝑗 arriving on train 𝑖;  

Decision variables: 

 𝑧𝑗𝑘
𝑖  : number of passengers with destination at LM stop 𝑗 that board a vehicle 

initiating a trip of route type 𝑘 during the inter-arrival time ℎ𝑖;  

 𝑤𝑘
𝑖  : number of trips of route type 𝑘 initiated during the inter-arrival time ℎ𝑖; 

Intermediate variables: 
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 𝑟𝑗
𝑖 : number of unserved passengers with destination at LM stop 𝑗 waiting at the 

station at the end of inter-arrival time ℎ𝑖; 

Table 3.7 (Additional) Notation for the first stage model 

 

The objective function (3.15) captures (i) part of passenger waiting time until 

boarding vehicle and (ii) all the passenger in-vehicle riding time: 

 min     𝛽𝑤 ∙  ℎ𝑖 ∙ ∑ ∑ 𝑟𝑗
𝑖

𝑗𝑖

+ 𝛽𝑟 ∙ ∑ ∑ ∑ 𝑡𝑗𝑘 ∙ 𝑧𝑗𝑘
𝑖

𝑘𝑗𝑖

 (3.15) 

The modified formulation has the following constraints: 

a) Passenger flow constraints: expressions (3.16), (3.17), and (3.18) are directly 

modified from expressions (3.7), (3.8), and (3.9), respectively. The dimension of time 

𝑡 is replaced with train 𝑖. 

 𝑟𝑗
1 = 𝑛𝑗

1 − ∑ 𝑧𝑗𝑘
1 ∙ 𝜙𝑗𝑘

𝑘

,    ∀𝑗 (3.16) 

 𝑟𝑗
𝑖 = 𝑟𝑗

𝑖−1 + 𝑛𝑗
𝑖 − ∑ 𝑧𝑗𝑘

𝑖 ∙ 𝜙𝑗𝑘

𝑘

,    ∀𝑗, 𝑖 ≥ 2 (3.17) 

 𝑟𝑗
𝑖 ≥ 0,    ∀𝑗, 𝑖 (3.18) 

b) Vehicle flow constraints: we cannot capture the detailed vehicle schedules without 

decision variables 𝑤  defined at every time 𝑡 ; instead, we use some heuristic 

constraints to make the vehicle schedules roughly feasible. Constraints (3.19) and 

(3.20) limit the total number of trips initiated within one and two consecutive inter-

arrival times, respectively; constraints (3.21) and (3.22) limit the total service time of 

trips initiated within one and two consecutive inter-arrival times, respectively. The 

values of the upper limits 𝑚max1 , 𝑚max2 , 𝑡max1  and 𝑡max2  could be set as their 

realized values in solution to other approaches, for example, the myopic operation 

approach.  

 ∑ 𝑤𝑘
𝑖

𝑘

≤ 𝑚max1,   ∀𝑖 = 1, 2, … , 𝐼    (3.19) 
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 ∑(𝑤𝑘
𝑖 + 𝑤𝑘

𝑖+1)

𝑘

≤ 𝑚max2,   ∀𝑖 = 1, 2, … , 𝐼 − 1  (3.20) 

 ∑ 𝑡𝑘 ∙ 𝑤𝑘
𝑖

𝑘

≤ 𝑡max1,   ∀𝑖 = 1, 2, … , 𝐼   (3.21) 

 ∑ 𝑡𝑘 ∙ (𝑤𝑘
𝑖 + 𝑤𝑘

𝑖+1)

𝑘

≤ 𝑡max2,   ∀𝑖 = 1, 2, … , 𝐼 − 1  (3.22) 

c) Service capacity constraints: expression (3.23) is modified from expression (3.13). 

 ∑ 𝑧𝑗𝑘
𝑖 ∙ 𝜙𝑗𝑘

𝑗

≤ 𝑐 ∙ 𝑤𝑘
𝑖 ,    ∀𝑘, 𝑖  (3.23) 

d) Domains of decision variables. 

 𝑤𝑘
𝑖 ∈ 𝒁∗, 𝑧𝑗𝑘

𝑖 ∈ 𝑹∗    ∀𝑗, 𝑘, 𝑖 (3.24) 

Essentially, the modified formulation in the first stage uses the inter-arrival time 

between trains as the smallest time unit to make decisions. However, unlike the myopic 

operation approach, the modified formulation does take into consideration the mutual 

interactions that exist among demands from all the trains.  

 

3.5.3 Second Stage: Column Generation in the Original Formulation 

The solution to the modified formulation in the first stage suggests the service route types 

that could be provided in each inter-arrival time ℎ𝑖. In the second stage, we implement 

the original exact MIP model proposed in Section 3.5.1 with the decision variables 

(columns) generated using the information revealed in the first stage solution. 

Specifically, if 𝑤𝑘
𝑖 > 0 in the optimal solution of the first stage problem, we generate 

vehicle decision variables 𝑤𝑘′
𝑡 , for: (i) every time 𝑡 ∈ ℎ𝑖 ; and (ii) every route type 𝑘′ 

which is a sub-tour of route type 𝑘, including route type 𝑘 itself. 

For example, if a route type 𝑘 serving three LM stops is selected for the inter-arrival 

time ℎ𝑖 in the first stage solution, as shown in Figure 3.5, we generate decision variables 

𝑤𝑘′
𝑡 , for: (i) every time 𝑡 in ℎ𝑖 = [𝑇𝑖, 𝑇𝑖+1); and (ii) the 23 − 1 = 7 specific route types, 

where each route type serves a subset of the three LM stops, as shown in Figure 3.6.   
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Figure 3.5 Route type selected in the first stage 

 

       

Figure 3.6 Route types of decision variables generated in the second stage 

 

With the decision variables generated as described above, the exact MIP model in 

Section 3.5.1 can be solved in Stage 2 in much less computational time.  

 

3.6    Computational Study 

We present a computational study based on the approaches described in Section 3.3 to 

Section 3.5. We compare the results of the myopic operating strategy, the tabu search 

metaheuristic, and the MIP model, which is solved approximately in two stages. A 

conventional service with fixed routes and schedules is taken as a benchmark to evaluate 

the performance of the LMTS with each of these three different operating strategies. The 

computational experiments are coded in Java and run on 64-bit computers with 2.9 GHZ 
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processors and 4GB RAM. All the corresponding MIP problems are solved using ILOG 

CPLEX (version 12) with a time limit of 5 minutes for each instance.  

We first discuss the settings of test instances for the computational experiments in 

Section 3.6.1. We then describe in Section 3.6.2 a common multi-vehicle conventional 

transportation system with fixed routes and schedules that will serve as our benchmark of 

comparisons. Finally, Section 3.6.3 presents our computational results, followed by a 

brief discussion. 

 

3.6.1 Settings of Test Instances 

Metro Station

: Passenger Destination

: Last Mile Stop (LM Stop)

a/v=10 min

b/v=6 min

 

Figure 3.7 Schematic of the LMTS in the computational experiments 

 

We consider an LMTS in a rectangular service region illustrated in Figure 3.7. To travel 

through the region’s length and width, LMTS vehicles require 10 minutes and 6 minutes, 

respectively. The number of pre-specified LM stops (assumed to be uniformly distributed 

in the region) is denoted as 𝐽 and takes values ranging from 8 to 12 in the experiments. 

Assuming the vehicles travel according to the Euclidean metric and the service time at 

each LM stop (e.g., time for vehicle deceleration, loading/unloading of passengers and 

vehicle acceleration) is set to 1 minute. The feasible routes are then selected to satisfy the 

requirements that (i) the maximum number of LM stops in a route is 3, and (ii) the 

maximum total service time (travel time + service time at stops) in a route is 14 minutes. 

The number of feasible routes, 𝐾, under such conditions will be in the region of 100 to 

300.  
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Trains with passengers arrive at the metro station every 10 minutes. The size of a 

passenger batch from each train is assumed to be Poisson-distributed with intensity 𝑁 

taking values ranging from 10 to 30. Passenger destinations are assumed to be distributed 

among the LM stops either (a) uniformly, or (b) slightly heterogeneously or (c) extremely 

heterogeneously. An example of demand intensity at LM stops in a case with 𝐽 = 8 and 

𝑁 = 16 is shown in Table 3.8. 

𝐽 = 8, 𝑁 = 16 
Ratio of highest demand 

over lowest demand 
Demand intensity at LM stops 

Uniform (UN) 2.0/2.0 = 1 2.0 for all 

Slightly heterogeneous (SH) 3.0/0.5 = 6 0.5, 1.5, 1.5, 2.0, 2.0, 2.5, 3.0, 3.0 

Extremely heterogeneous (EH) 4.0/0.2= 20 0.2, 0.6, 1.0, 1.8, 2.2, 2.8, 3.4, 4.0 

Table 3.8 Demand intensity at LM stops 

 

A fleet of vehicles with capacity taking values ranging from 3 to 12 serves the LMTS. 

Experiments with different fleet sizes are used to evaluate the performance of LMTS in 

situations of high and low vehicle utilization. 

We have selected the above parameters so that the system would make sense 

physically. For each combination of parameter settings, we carry out 10 test instances. 

 

3.6.2 Conventional Service with Fixed Routes and Schedules  

In order to study the potential advantages of on-demand service in LMTS, we introduce a 

commonly used multi-vehicle conventional transportation system with fixed routes and 

schedules as a benchmark of comparisons. In the conventional system, each vehicle in the 

fleet follows a pre-designed fixed bus route. We apply a simple integer programming 

model to design the bus routes and service. As general design guidance, we require that 

each LM stop be served by at least one bus route, the service capacity provided to each 

LM stop is roughly proportional to its passenger demand rate, and we aim to minimize 

the total service time of all bus routes while keeping these service times roughly similar. 

Table 3.9 introduces the relevant notation. 
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Parameters: 

 𝑡𝑑 : upper limit on the difference between the service times of different bus lines; 

 𝑐𝑑 : upper limit on the difference between general service capacities provided to 

each LM stop; 

 𝜆𝑗 : passenger demand rate to LM stop 𝑗; 

 𝑀 : a large positive number; 

Decision variables: 

 𝑥𝑘 : binary integer variable to indicate whether route type 𝑘 is selected as a bus line 

in the conventional service;  

Table 3.9 (Additional) Notation for bus line design for conventional service 

 

The integer programming model for the bus lines is defined as follows: 

 

 

 

min     ∑ 𝑡𝑘 ∙ 𝑥𝑘

𝑘

 (3.24) 

 ∑ 𝜙𝑗𝑘 ∙ 𝑥𝑘

𝑘

≥ 1,    ∀𝑗 
(3.25) 

 ∑ 𝑥𝑘

𝑘

= 𝑚,     (3.26) 

 ∑ 𝑐 ∙ 𝜙𝑗𝑖𝑘 ∙ 𝑥𝑘𝑘 /(𝑑𝑘 ∙ 𝑡𝑘)

𝜆𝑗𝑖

−
∑ 𝑐 ∙ 𝜙𝑗𝑠𝑘 ∙ 𝑥𝑘/(𝑑𝑘𝑘 ∙ 𝑡𝑘)

𝜆𝑗𝑠

≤ 𝑐𝑑,

∀𝑗𝑖, 𝑗𝑠 ∈ {1, … , 𝐽} 

(3.27) 

 𝑡𝑘𝑖
− 𝑡𝑘𝑗

≤ 𝑀 ∙ (2 − 𝑥𝑘𝑖
− 𝑥𝑘𝑗

) + 𝑡𝑑 ,     ∀𝑘𝑖, 𝑘𝑗 ∈ {1, … , 𝐾} (3.28) 

 𝑥𝑘 ∈ {0,1}, ∀𝑘 (3.29) 

Objective function (3.24) is to minimize the total service time of the selected bus 

lines; constraint (3.25) makes sure that every LM stop is served by at least one bus line; 
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constraint (3.26) makes sure that the number of bus lines equals the number of available 

vehicles in the fleet; constraints (27) ensures the general service capacity difference 

between any pair of LM stops does not exceed the upper limit; constraints (3.28) ensures 

the service time difference between any pair of selected bus lines does not exceed the 

upper limit; constraint (3.29) defines the domains of the binary decision variables. 

 

3.6.3 Results and Discussion 

Tables 3.10 – 3.14 display the objective values (passenger waiting time + riding time) 

and the computational time associated with different operating strategies with diverse 

parameter settings. UN denotes uniform demand among LM stops, SH denotes slightly 

heterogeneous demand (the ratio of the highest demand over the lowest demand is 6), and 

EH denotes extremely heterogeneous demand (the ratio is 20). The objective value is in 

minutes and the running time is in seconds for every instance.  

𝐽 = 8, 
𝑁 = 16, 
𝑐 = 6, 
𝑚 = 3 

UN SH EH 

Objective 

value 

(min) 

Running 

time  

(sec) 

Objective 

value 

(min) 

Running 

time 

(sec) 

Objective 

value 

(min) 

Running 

time 

(sec) 

Conventional  13.08  14.67  18.78  

Myopic 7.53 0.6 7.16 0.4 6.38 0.5 

Myopic + Tabu 5.36 0.6 + 4 5.35 0.4 + 7 4.77 0.5 + 6 

MIP (2-stage) 5.09 244 5.13 172 4.43 167 

MIP (2-stage) + Tabu 5.09 244 + 11 5.10 172 + 7 4.49 167 + 6 

Table 3.10 Results for 𝑱 = 𝟖, 𝑵 = 𝟏𝟔, 𝒄 = 𝟔, 𝒎 = 𝟑 

 

𝐽 = 8, 
𝑁 = 16, 
𝑐 = 6, 
𝑚 = 7 

UN SH EH 

Objective 

value 

(min) 

Running 

time  

(sec) 

Objective 

value 

(min) 

Running 

time 

(sec) 

Objective 

value 

(min) 

Running 

time 

(sec) 

Conventional  9.18  10.49  6.82  

Myopic 4.16 0.4 3.65 0.4 3.82 0.4 

Myopic + Tabu 3.62 0.4 + 8 2.93 0.4 + 9 3.32 0.4 + 15 

MIP (2-stage) 3.56 126 2.81 167 3.24 115 

MIP (2-stage) + Tabu 3.56 126 + 9 2.80 167 + 11 3.24 115 + 6 

Table 3.11 Results for 𝑱 = 𝟖, 𝑵 = 𝟏𝟔, 𝒄 = 𝟔, 𝒎 = 𝟕 
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𝐽 = 12, 
𝑁 = 30, 
𝑐 = 6, 
𝑚 = 5 

UN SH EH 

Objective 

value 

(min) 

Running 

time  

(sec) 

Objective 

value 

(min) 

Running 

time 

(sec) 

Objective 

value 

(min) 

Running 

time 

(sec) 

Conventional  18.47  26.19  32.19  

Myopic 9.09 1 8.62 1 7.12 0.7 

Myopic + Tabu 6.93 1 + 33 6.58 1 + 42 5.51 0.7 + 31 

MIP (2-stage) 5.95 448 5.95 443 4.94 334 

MIP (2-stage) + Tabu 6.25 448 + 29 6.23 443+30 5.20 334 + 32 

Table 3.12 Results for 𝑱 = 𝟏𝟐, 𝑵 = 𝟑𝟎, 𝒄 = 𝟔, 𝒎 = 𝟓 

 

𝐽 = 12, 
𝑁 = 30, 
𝑐 = 6, 
𝑚 = 7 

UN SH EH 

Objective 

value 

(min) 

Running 

time  

(sec) 

Objective 

value 

(min) 

Running 

time 

(sec) 

Objective 

value 

(min) 

Running 

time 

(sec) 

Conventional  9.51  11.79  18.82  

Myopic 5.00 1 4.29 0.8 4.07 0.7 

Myopic + Tabu 4.17 1 + 63 3.81 0.8 + 49 3.57 0.7 + 50 

MIP (2-stage) 4.17 275 3.81 296 3.50 301 

MIP (2-stage) + Tabu 4.07 275 + 60 3.77 296+48 3.55 301+74 

Table 3.13 Results for 𝑱 = 𝟏𝟐, 𝑵 = 𝟑𝟎, 𝒄 = 𝟔, 𝒎 = 𝟕 

 

𝐽 = 8, 
𝑁 = 20, 

𝑐 × 𝑚 = 24, 
UN 

𝑐 = 12, 𝑚 = 2 𝑐 = 8, 𝑚 = 3 𝑐 = 4, 𝑚 = 6 

Objective 

value 

(min) 

Running 

time  

(sec) 

Objective 

value 

(min) 

Running 

time 

(sec) 

Objective 

value 

(min) 

Running 

time 

(sec) 

Conventional  12.55  12.83  14.05  
Myopic 8.48 0.7 8.02 0.4 4.36 0.3 

Myopic + Tabu 5.73 0.7 + 2 5.65 0.4 + 8 3.82 0.3 + 7 

MIP (2-stage) 5.51 311 5.28 211 3.71 232 

MIP (2-stage) + Tabu 5.26 311 + 2 5.27 211 + 6 3.75 232 + 6 

Table 3.14 Results for 𝑱 = 𝟖, 𝑵 = 𝟐𝟎, 𝒄 × 𝒎 = 𝟐𝟒, demand is UN 

 

The conventional service is taken as a benchmark. The myopic operating strategy, 

which can be implemented easily in LMTS, could reduce the passenger waiting time and 

riding time significantly compared to the conventional service. For example, in the 

uniform demand case (UN) in Table 3.8, the passenger waiting time and riding time in 

the LMTS myopic strategy is only 57.6% of that in the conventional service. In addition, 

it can be seen that the advanced operating strategies, i.e., the tabu search metaheuristic 
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and the MIP model provide even better routing and scheduling solutions. In the same 

instances in Table 3.10, the tabu search, using the myopic solution as its initial solution, 

provides an objective value which is only 41.0% of that for the conventional service; the 

MIP model solved approximately in two stages provides an objective value which is only 

38.9% of the conventional service. However, the tabu search that uses the MIP solution 

as its initial solution does not achieve much improvement, which can be seen as evidence 

of the high-quality of the MIP solution itself. 

In terms of computational time, the myopic operating strategy can provide solutions 

in seconds; the computational time of the tabu search metaheuristic depends on the 

parameters in the search termination conditions: if the maximum total number of 

iterations (𝑁1) is 500 and the maximum number of iterations without improvement (𝑁2) 

is 50, the tabu search takes a computational time ranging from several seconds in small 

cases (small 𝐽  and 𝐾 ) to 1 minutes in large cases (large 𝐽  and 𝐾 ); the MIP method 

requires the longest computational times. 

The advantage of flexible LMTS over conventional bus service is greater when 

vehicle capacity is small than when vehicle capacity is large. Table 3.14 displays results 

for systems with same geometric configuration, same passenger demand, and equal total 

vehicle capacity (𝑐 × 𝑚 = 24) in the fleet. The improvements of the best solutions 

achieved by LMTS are 58%, 59%, 73%, for = 12,  𝑐 = 8 , and 𝑐 = 4  respectively, 

compared to conventional service.  

In the case of low demand and low utilization of vehicles, it is highly probable that 

the batch of passengers from any particular train can be served before the next train 

arrives. In these conditions, the performance of the myopic operating strategy is quite 

close to that of the tabu search or of the MIP method. Stated differently, information 

about passengers in the “next” train does not help much in improving system 

performance, if most passengers on the “current” train can be served before the “next” 

train arrives. By contrast, when demand and vehicle utilization are high, it is more 

beneficial to apply advanced methods such as the tabu search metaheuristic and the MIP 

method as these methods consider simultaneously demands from all trains, i.e., take 

advantage of information about demand from “future trains”. For example, Table 3.10 
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and Table 3.11 have the same system parameters, with the exception of the number of 

vehicles. Table 3.10 shows a high utilization situation with 3 vehicles, while Table 3.11 a 

low utilization one with 7 vehicles. In the UN case, the tabu search metaheuristic (or the 

MIP method) reduces the passenger waiting time and riding time compared to myopic 

operating strategy by 13.0% (or 14.4%) in the low utilization situation, while the 

improvement is 28.8% (or 32.4%) in the high utilization situation. The same trend can be 

found in Tables 3.12 and 3.13: the improvement is 16.6% (or 18.6%) in the low 

utilization situation and 23.8% (or 34.5%) in the high utilization situation. 

Figures 3.8 and 3.9 compare some of the detailed characteristics of the solutions 

shown in Table 3.12 for the UN case. Taking conventional service with fixed routes and 

schedules as the benchmark, it is obvious (Figure 3.8) that all the non-naïve methods for 

operating LMTS provide better service, i.e., of reduced passenger waiting time and riding 

time. Additionally, the LMTS achieves reduced total vehicle service time (Figure 3.9). 

Specifically, the tabu search metaheuristic starting from the myopic solutions tends to 

provide operating plans with good service quality and the least vehicle service time. The 

MIP method provides operating plans with the best service quality, which result from 

customized routes that typically use a larger number of trips than the other methods 

(Figure 3.8).  

The results of Tables 3.10 – 3.14 also suggest that LMTS may provide significant 

cost savings, for both the service users (passengers) and the service providers (e.g., 

government, private company). First, less waiting time and riding time in LMTS actually 

means monetary savings for its users. According to Gómez-Ibañez et al. (1999), for work 

trips in San Francisco, the monetary value of a unit transfer waiting time is 195% of the 

users’ after-tax wages, and the monetary value of a unit in-vehicle riding time is 76% of 

the users’ after-tax wages. The equivalent economic savings are very large when we 

consider these monetary values of time. Second, the reduced vehicle service time 

achieved by LMTS also means monetary savings for its operators. Given a fixed size of 

vehicle fleet, the operation cost of the transportation system is largely proportional to the 

vehicle service time, e.g., the labor cost of the drivers is positively correlated with the 

vehicle service time, and the fuel cost of the vehicles directly depends on the vehicle 

travel time/distance.  
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Figure 3.8 Passenger waiting time and riding time for 𝑱 = 𝟏𝟐, 𝑵 = 𝟑𝟎, 𝒄 = 𝟔, 𝒎 = 𝟓  

 

 

Figure 3.9 Vehicle service time and number of trips for 𝑱 = 𝟏𝟐, 𝑵 = 𝟑𝟎, 𝒄 = 𝟔, 𝒎 = 𝟓 
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3.7    Conclusion 

This chapter has proposed several methods for operating the vehicle fleet of a Last Mile 

Transportation System (LMTS). Given the geometry of the service region (pre-specified 

LM stops, feasible routes), the number of vehicles in the service fleet, the capacity of the 

vehicles, and a set of known LM service requests (arrival time and destination of 

passengers), the operation methods we have developed provide the detailed routing and 

scheduling plan for the vehicle fleet, with the objective of minimizing passenger waiting 

time until boarding a vehicle and passenger riding time on a vehicle. Computational 

experiments suggest that, compared to a conventional service system with fixed routes 

and schedules, an LMTS operating with any non-naive method, such as the myopic 

operating strategy, the tabu search metaheuristic, and the MIP model, performs better 

under a broad range of conditions. The myopic operation method can be implemented 

easily and quickly; the tabu search metaheuristic provides solutions of good quality in a 

short computational time; the MIP method provides the best solution, but with the 

greatest computational requirements. 

On the methodological side, the principal contribution of this research is the 

development of approaches for the routing and scheduling operation of a very difficult 

type of problem involving batch arrivals, batch service and multiple servers. On the 

practical side, we believe that the operation methods we have proposed can be very 

useful for LMTS, providing good operating plans for these complex systems. 
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Chapter 4 

A New Perspective to Study Passenger Utility Functions – Core 

Determining Class: Construction, Approximation and 

Inference 

Fast expanding data availability in a variety of industries is bringing unprecedented 

opportunities to the Operations Research community. Huge volumes of sales data, service 

records, or even instant messages, are generated in this modern era of “big data” through 

the wide utilization of information and communications technologies. The data allows us 

to infer critical aspects of service systems and markets, such as service-specific demand 

distributions and hidden customer preferences. This also makes it possible to pursue 

promising improvements in many areas, such as better planning strategies, more efficient 

operations, customized products, and accurate marketing.  

The field of transportation and logistics provides an excellent example of this major 

development with fast expanding data availability in every segment and mode of the 

sector. With the wide application of information technologies and devices, such as 

sensors deployed along streets/roads, portable GPS devices, personal location and timing 

record systems, and electronic payment tools, the characteristics and information 

corresponding to many aspects of a transportation trip, including the average/maximum 

vehicle speed, passenger waiting time, in-vehicle riding time, distance from origin to 

final destination, and travel cost/fee, can be measured, collected and stored easily. The 
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possibility to collect and utilize the data creates opportunities to study transportation 

systems in very different ways and perspectives. In this Chapter, we provide a new 

perspective for studying passenger utility functions, taking advantage of increasing data 

availability. This also offers an example of how hidden information can be inferred from 

observed data in a context in which only some correlations are known between 

unobservable events and observed outcomes. This is a key problem in the era of “big 

data”. 

From this point on, this Chapter presents joint work with Mr. Ye Luo, a PhD 

candidate in the Department of Economics in MIT. The contributions of the thesis author 

is (1) a combinatorial algorithm to construct the Core Determining Class (defined in 

Section 4.3) in the case without observation data noise; (2) a linear optimization 

formulation to select an approximated Core Determining Class in the case with 

observation data noise; (3) and a set of numerical experiments to evaluate the statistical 

property of the formulation.  

 

4.1    Overall Approach 

Utility is the (perceived) ability of something to satisfy needs or wants. In general, it 

represents the satisfaction experienced by the consumer of a good. Not coincidentally, a 

good is something that satisfies human wants and provides utility. For a passenger, who 

is the consumer of a transportation service, the good is the transport service provided. 

The utility to passengers is derived through the benefits, satisfaction or happiness attained 

as a result of arrival at their final destinations. The passenger utility function, a function 

to measure and quantify the utility experienced by the passengers in a transportation 

service, plays an important role in understanding and estimating the distribution of the 

passenger demand. This is critical information that can be used by the service provider to 

design and operate a transportation system. 

Utility is very difficult to observe and measure directly and utility functions are 

typically estimated and calibrated in various indirect ways. In this Chapter, we study the 

estimation of utility functions from a very new perspective, significantly different from 
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existing ones. We provide an alternative angle for calibrating the probability measures of 

the unknown parameters in passenger utility functions.   

As an overall approach in this Chapter, (1) we treat the unknown parameters (which 

need calibration) in the passenger utility function as unobserved events, and the observed 

characteristics of transportation trips, such as passenger waiting time, in-vehicle riding 

time and monetary travel cost, as observed outcomes; then, (2) we construct a bipartite 

graph representing the relationships between the events and the outcomes; and finally, (3) 

we propose a general method for identifying the probability measures of the events given 

the observations of the frequencies of the outcomes, including a combinatorial algorithm 

in which the data noise of the observations is ignored and a general procedure in which 

data noise is taken into consideration.  

The closest researches to our topic are Galichon and Henry (2006, 2011) and Chesher 

and Rosen (2012). Galichon and Henry (2011) propose the Core Determining Class 

problem, i.e., finding the minimum set of inequalities to describe the feasible region of 

probability measure on unobserved events. Chesher and Rosen (2012) provide an 

inequality selection algorithm, but may still contain some redundant inequalities in the 

selected set. Andrews and Soares (2010) propose moment inequality selection procedure 

using criterions such as BIC. 

There are many studies on performing inference of sets. Chernozhukov et al. (2007, 

CHT) proposes general inference procedure with moment inequality constraints. Romano 

and Shaikh (2010) provide improvements for CHT (2007). Beresteanu et al. (2011) use 

random set theory to perform inference with convex inequality restrictions. Andrews and 

Shi (2013) construct inference based on conditional moment inequalities. For related 

empirical studies, see Manski and Tamer (2002), Bajari et al. (2007), Bajari et al. (2010) 

and etc.. 

We address the redundancy of linear constraints in the problem of identification of 

probability measures. There is also a wide literature on detection and elimination of 

redundant constraints when data noise is not taken into consideration. For example, 

Telgen (1983) develops two methods to identify redundant constraints and implicit 
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equalities. Caron et al. (1989) present a degenerate extreme point strategy which 

classifies linear constraints as either redundant or necessary. Paulraj et al. (2006) propose 

a heuristic approach using an intercept matrix to identify redundant constraints. 

The main body of this Chapter is organized as follows. In Section 4.2, we construct in 

detail a bipartite graph relating the unobserved events (unknown parameters in the utility 

function) and the observed outcomes (observed characteristics of transportation trips), 

assuming a reasonably simple form of the passenger utility function. Section 4.3 

introduces the general model and basic assumptions of the Core Determining Class. 

Section 4.4 studies the Core Determining Class from the structure of the bipartite graph 

and provides a combinatorial algorithm to construct the exact Core Determining Class 

when data noise of observations is not taken into consideration. Section 4.5 proposes a 

general linear inequality selection procedure under noisy data with the definition of 

sparse assumptions. Section 4.6 discusses the additional technical assumptions and 

proves the main theorems of the statistical properties of the selection procedure, with 

application in the Core Determining Class problem. Section 4.7 provides some 

concluding remarks. 

 

4.2    Example of Bipartite Graph 

In this Chapter, we construct a bipartite graph as an example to demonstrate the 

relationships between unobserved events and observed outcomes. We assume a linear 

form of the passenger utility function: 

𝑢 = 𝑑 − 𝛽 ∙ (𝛼𝑡𝑤 + 𝑡𝑟) − 𝛾 ∙ 𝑝        (4.1) 

where  

𝑑: distance from origin to final destination (observed); 

𝑡𝑟: passenger in-vehicle riding time (observed); 

𝑡𝑤: passenger waiting time before boarding (observed); 
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𝑝: travel cost (observed); 

𝛼: weight to capture different perceptions of waiting time and riding time (obtained from 

other sources); 

𝛽: unknown non-negative parameter (target); 

𝛾: unknown non-negative parameter (target); 

A basic assumption in the example is that, a transportation trip will be chosen (by the 

passenger), realized (by the service provider), and then observed (by any observers), if 

and only if a passenger derives from the trip a utility with non-negative value: 

𝑢 = 𝑑 − 𝛽 ∙ (𝛼𝑡𝑤 + 𝑡𝑟) − 𝛾 ∙ 𝑝 ≥ 0 

which is equivalent to, 

𝛾 + 𝛽 ∙
𝛼𝑡𝑤 + 𝑡𝑟

𝑝
≤

𝑑

𝑝
 

If we denote (𝛼𝑡𝑤 + 𝑡𝑟)/𝑝 as 𝑐1 and 𝑑/𝑝 as 𝑐2, then a trip will be observed if and 

only if expression (4.2) is satisfied.  

𝛾 + 𝛽 ∙ 𝑐1 ≤ 𝑐2          (4.2) 

For any combination of 𝑐1  and 𝑐2 , there is a set of combinations of 𝛽  and 𝛾  that 

satisfies expression (4.2). If (a) we discretize the continuous values of 𝑐1, 𝑐2, 𝛽 and 𝛾 to 

discretized segments, (b) define the combination of a 𝛽 and 𝛾 discretized segment as an 

unobserved event, and (c) define the combination of a 𝑐1 and 𝑐2 discretized segment as an 

observed outcome, then we can construct a correspondence mapping to represent the 

relationships between the events and the outcomes which may generate non-negative 

utility for passengers and realize the transportation trip. The correspondence mapping is a 

bipartite graph. A link between an event and an outcome means, the event (combination 

of 𝛽 and 𝛾) together with the outcome (combination of 𝑐1 and 𝑐2) satisfies expression 

(4.2) and makes the trip possible to be realized and observed.  
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As a simple example, we assume the range of 𝛽 is [0.1,1] and discretize it into two 

segments: [0.1,0.5) and [0.5,1]; we assume the range of 𝛾 is [0.1,1] ∪ {0} and discretize 

it into three segments: {0}, [0.1,0.5) and [0.5,1] (where 𝛾 = 0 means the passenger is not 

sensitive to the travel cost for some reason, e.g., the travel cost is fully reimbursed by 

his/her employer). Let 𝑢 denote events, which are the Cartesian product of a 𝛽 and a 𝛾 

segment. Then there are 6 events: 

𝑢1: 𝛽 ∈ [0.1,0.5) ∩ 𝛾 ∈ {0}; 

𝑢2: 𝛽 ∈ [0.1,0.5) ∩ 𝛾 ∈ [0.1,0.5); 

𝑢3: 𝛽 ∈ [0.1,0.5) ∩ 𝛾 ∈ [0.5,1]; 

𝑢4: 𝛽 ∈ [0.5,1] ∩ 𝛾 ∈ {0}; 

𝑢5: 𝛽 ∈ [0.5,1] ∩ 𝛾 ∈ [0.1,0.5); 

𝑢6: 𝛽 ∈ [0.5,1] ∩ 𝛾 ∈ [0.5,1]; 

As for the outcomes, we assume the range of 𝑐1 is [1,5] and discretize it into two 

segments: [1,3)  and [3,5] ; and the range of 𝑐2  is [0,2]  and discretize it into three 

segments: [0,0.5), [0.5,1)  and [1,2] . Let y  denote outcomes, which are the Cartesian 

product of a 𝑐1 and a 𝑐2 segments. Then there are 6 outcomes: 

𝑦1: 𝑐1 ∈ [1,3) ∩ 𝑐2 ∈ [0,0.5); 

𝑦2: 𝑐1 ∈ [1,3) ∩ 𝑐2 ∈ [0.5,1); 

𝑦3: 𝑐1 ∈ [1,3) ∩ 𝑐2 ∈ [1,2); 

𝑦4: 𝑐1 ∈ [3,5] ∩ 𝑐2 ∈ [0,0.5); 

𝑦5: 𝑐1 ∈ [3,5] ∩ 𝑐2 ∈ [0.5,1); 

𝑦6: 𝑐1 ∈ [3,5] ∩ 𝑐2 ∈ [1,2); 

A link between an event 𝑢 (combination of 𝛽 and 𝛾) and an outcome 𝑦 (combination 

of 𝑐1  and 𝑐2 ) is added to the bipartite graph if there exist parameter values of this 
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combination of 𝑢  and 𝑦  such that expression (4.2) is satisfied. The corresponding 

bipartite graph is illustrated in Figure 4.1. With the bipartite graph and the observations 

of the frequencies of the outcomes (𝑐1 and 𝑐2), we can apply the methodologies described 

in Section 4.3 to 4.6 to identify the probability measures of the hidden events, i.e., the 

unknown parameters 𝛽 and 𝛾 in the passenger utility function in which we are interested. 

 

Figure 4.1 Example of a bipartite graph 

 

4.3    Core Determining Class 

Given a bipartite graph 𝐺 = (𝑈, 𝑌, 𝜑), suppose 𝑈 is a set of vertices representing events, 

and 𝑌 is a set of vertices representing outcomes. Suppose an event 𝑢 ∈ 𝑈 leads to a set of 

possible outcomes 𝜑(𝑢) ∈ 𝑌, where 𝜑(𝑢) is a set of vertices in 𝑌. For any set 𝐴 ⊂ 𝑈, 

𝜑(𝐴): =∪𝑢∈𝐴 𝜑(𝑢). Therefore, 𝜑: 2𝑈 → 2𝑌 is a correspondence mapping between 𝑈 and 
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𝑌 . The inverse of 𝜑 , denoted as 𝜑−1 , is defined as 𝜑−1:   2𝑌 → 2𝑈, 𝜑−1(𝐵): =

{𝑢 ∈ 𝑈|𝜑(𝑢) ∩ 𝐵 ≠ ∅}, ∀𝐵 ⊂ 𝑌.  

Let 𝑣 be the probability measure on 𝑈. Let 𝜇𝑛,0 be the true measure on 𝑌 which could 

change with the model. Let �̂�𝑛 be the measure observed in a sample set of outcomes 𝑌. 

Denote 𝑑1 = |𝑈|  and 𝑑2 = |𝑌| . For a bipartite graph 𝐺 = (𝑈, 𝑌, 𝜑) , we say 𝐺  is 

connected if ∀𝐴1, 𝐴2 ⊂ 𝐺 and 𝐴1 ∪ 𝐴2 = 𝐺, it holds that 𝜑(𝐴1) ∩ 𝜑(𝐴2) ≠ ∅. 

Assumption: 4.1 [Non-Degeneracy of 𝑮, 𝝁𝒏,𝟎 and �̂�𝒏] (1) Assume 𝐺 is connected: 

we say 𝐺 is non-degenerate if 𝐺 is connected; (2) for the probability measure 𝜇 = 𝜇𝑛,0 or 

�̂�𝑛, assume that for any 𝑦 ∈ 𝑌, 𝜇(𝑦) > 0: we say that 𝜇 is non-degenerate if 𝜇(𝑦) > 0 for 

any 𝑦 ∈ 𝑌. 

We assume that Assumption 4.1 holds throughout this Chapter. The parameter of 

interest is the 𝑑1 × 1 vector 𝑣 , which is the probability measure which generates the 

events 𝑢 ∈ 𝑈. In general, we are unable to obtain a point estimation of 𝑣 unless additional 

information is provided. Instead, we aim to obtain inequality bounds on 𝑣  given the 

bipartite graph 𝐺 = (𝑈, 𝑌, 𝜑) and the measure 𝜇 on 𝑌. More specifically, for any set of 

events 𝐴 ⊂ 𝑈, the probability measure on the corresponding outcomes should fall into the 

set 𝜑(𝐴) . Thus, for any 𝐴 ⊂ 𝑈 , we can obtain the inequality 𝑣(𝐴) ≔ ∑ 𝑣(𝑢) ≤𝑢∈𝐴

𝜇(𝜑(𝐴)) ≔ ∑ 𝜇(𝑦)𝑦∈𝜑(𝐴) . 

The Artstein's theorem stated in Artstein (1983) presents that all information of 𝑣 in 

the biparte graph model 𝐺 = (𝑈, 𝑌, 𝜑) can be characterized by the set of linear inequality 

constraints described in Lemma 4.1. 

Lemma 4.1 [Artstein's Theorem] The following set of inequalities/equalities 

contains sharp information of 𝑣: 

(1) ∀𝐴 ⊂ 𝑈, 𝑣(𝐴) ≔ ∑ 𝑣(𝑢) ≤ 𝜇(𝜑(𝐴))𝑢∈𝐴 , where 𝜇(𝜑(𝐴)) ≔ ∑ 𝜇(𝑦)𝑦∈𝜑(𝐴) ; 

(2) ∑ 𝑣(𝑢)𝑢∈𝑈 = 1. 

Our model, denoted as 𝑃𝐺 , is presented in Definition 4.1. 
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Definition 4.1 [Model 𝑷𝑮] Finding the set of all feasible probability measure 𝑣 on 𝑈 

such that: 

∀𝐴 ⊂ 𝑈, 𝑣(𝐴) ≤ 𝜇(𝜑(𝐴))        (4.3) 

∑ 𝑣(𝑢)𝑢∈𝑈 = 1         (4.4) 

The non-degeneracy assumption prevents the model 𝑃𝐺  from decomposition, i.e., we 

cannot decompose graph 𝐺 into sub-graphs 𝐺1 and 𝐺2 and proceed with sub-problems 𝑃𝐺1
 

and 𝑃𝐺2
. Otherwise the problem can be simplified by looking at 𝐺1 and 𝐺2 separately. 

In general, the set of inequality constraints stated in Definition 4.1 contains redundant 

inequalities. Define the minimum model 𝑇0  of 𝑃𝐺  as the set of linear inequality 

constraints stated in expression (4.3) such that 𝑇0 together with the equality (4.4) has a 

minimum number of constraints which generate the same set of feasible measure as 𝑃𝐺 . 

In other words, 𝑇0  consists of all irredundant constraints in 𝑃𝐺 . If the number of 

irredundant constraints in 𝑇0 is much less than 2𝑑1 − 1 stated in Definition 4.1, then it is 

more accurate and computational efficient to conduct inference on the Core Determining 

Class (defined in Definition 4.2) using 𝑇0 . Galichon and Henry (2011) propose the 

concept “Core Determining Class” as follows. 

Definition 4.2 [Core Determining Class problem] The Core Determining Class 

problem is the problem of finding all binding constraints in model 𝑃𝐺 . The Core 

Determining Class is any collection of subsets of 𝑈 that contains the sharp information on 

𝑣, i.e., the corresponding inequalities includes all binding inequalities. The exact Core 

Determining Class is defined as the set of subsets of 𝑈  which corresponds to the 

irredundant inequalities in the model 𝑇0. 

The definition of Core Determining Class in Galichon and Henry (2006) is slightly 

different from the definition in this Chapter. Galichon and Henry (2006) define Core-

Determining Class as any set that contains all the binding inequalities. In this Chapter, we 

refer “exact Core Determining Class” as the set of all binding inequalities, i.e., the 

smallest (in cardinality) set which characterizes the identified set of the parameters of 

interest. 
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In many cases, there may exist a parametric model for 𝑣 , which is denoted as 

𝑣𝑖 = 𝐹𝑖(𝜃). The function 𝐹𝑖 can be non-linear. The inference problem on 𝜃 is generally 

difficult if the number of inequalities about 𝑣 is large. Therefore, if we can find the truly 

binding inequalities about 𝑣 , we would perform estimation and inference on 𝜃  much 

faster. 

In reality, the true probability measure 𝜇𝑛,0 on the outcome set 𝑌 is unobservable. 

Instead, given some data, we could observe the empirical measure �̂�𝑛  on 𝑌 . Due to 

uncertainty of the data, we would like to solve a relaxed problem 𝑃𝐺
′ , the solution set of 

which covers the solution set of the true model 𝑃𝐺  with probability approaching 1 as the 

sample size 𝑛 of the data approaching infinity. 

The relaxed problem 𝑃𝐺
′  provides conservative inference for the model 𝑃𝐺 . 

Definition 4.3 [Model 𝑷𝑮
′ ]. For a small 𝜆, finding the set of all feasible probability 

measure 𝑣 on 𝑈 such that: 

∀𝐴 ⊂ 𝑈, 𝑣(𝐴) ≔ ∑ 𝑣(𝑢)𝑢∈𝐴 ≤ �̂�𝑛(𝜑(𝐴)) + 𝜆     (4.5) 

∑ 𝑣(𝑢)𝑢∈𝑈 = 1         (4.6) 

Ideally 𝜆 should converge to 0 when 𝑛 → ∞. The dimensionality of the problem, |𝑈|, 

and the number of inequalities in 𝑃𝐺
′ , should affect the tuning parameter 𝜆. In fact, 𝜆 

should be chosen properly such that: (1) the feasible set of 𝑣 found in model 𝑃𝐺
′  covers 

the feasible set of 𝑣 found in model 𝑃𝐺  with probability approaching 1, so 𝑃𝐺
′  provides 

reliable inference on 𝑃𝐺; and (2) 𝜆 is not be too large to exaggerate the feasible set of 𝑣 

found in model 𝑃𝐺
′ . We will discuss the choice of 𝜆 in Section 4.6. 

According to the Artstein's theorem, model 𝑃𝐺  contains 2𝑑1 − 2 inequalities, which is 

a very large number when 𝑑1 is large and even grows with 𝑛  in some contexts. The 

numerous inequalities lead to both computational difficulties and undesirable statistical 

properties. In fact, some or even most of the inequalities stated in the Artstein's theorem 

may be redundant. Galichon and Henry (2011) analyze the monotonic structure of the 

graph 𝐺  and claim that there are at most 2𝑑1 − 2 sets in the Core Determining Class 
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under a special structure. Chesher and Rosen (2012) provide an algorithm which could 

get rid of some, but not necessarily all, redundant inequalities. In Section 4.4, we fully 

characterize the Core Determining Class by exploring the combinatorial structure of the 

bipartite graph 𝐺. We prove that the Core Determining Class only rely on the structure of 

graph 𝐺  under the non-degeneracy assumption of 𝜇  and 𝐺 . The results are novel 

compared to existing studies. We also propose a fast algorithm in Section 4.4 to compute 

the exact Core Determining Class when data noise of observation is not taken into 

consideration. 

In addition, besides the redundant inequalities, many of the binding inequalities could 

be “nearly” redundant, meaning that although they are informative in model 𝑃𝐺  with 

empirical �̂� , they could be “implied” by other inequalities in model 𝑃𝐺
′  with a small 

relaxation 𝜆. Therefore, it may be possible to use a smaller number of inequalities, i.e., a 

“small” model, to approximate the full and exact one. Such a smaller model will enjoy 

better statistical properties compared to the full model, i.e., it will be less sensitive to 

modeling errors. In Section 4.5, we propose a general inequality selection procedure 

similar to the Dantzig Selector in regression to obtain a smaller model. 

 

4.4    Exact Core Determining Class 

In this section, we present our discovery of the combinatorial structure of the Core 

Determining Class, along with a fast algorithm to generate the Core Determining Class. 

In Galichon and Henry (2011), whether an inequality 𝑣(𝐴) ≤ 𝜇(𝜑(𝐴)) is in the Core 

Determining Class is examined by numerical computations using the probability measure 

𝜇. 

In fact, given the correspondence mapping 𝜑 of the bipartite graph 𝐺(𝑈, 𝑌, 𝜑), we can 

identify the redundant inequalities without any observations of the outcomes in 𝑌. For 

example, for 𝐴1 ∈ 𝑈 and 𝐴2 ∈ 𝑈, if 𝐴1 ∩ 𝐴2 = ∅ and 𝜑(𝐴1) ∩ 𝜑(𝐴2) = ∅, then the two 

inequalities, 𝑣(𝐴1) ≤ 𝜇(𝜑(𝐴1))  and 𝑣(𝐴2) ≤ 𝜇(𝜑(𝐴2)) can generate the inequality 

𝑣(𝐴1 ∪ 𝐴2) = 𝑣(𝐴1) + 𝑣(𝐴2) ≤ 𝜇(𝜑(𝐴1)) + 𝜇(𝜑(𝐴2)) = 𝜇(𝜑(𝐴1) ∪ 𝜑(𝐴2)) =

𝜇(𝜑(𝐴1 ∪ 𝐴2)), which is exactly the inequality corresponding to the set 𝐴 = 𝐴1 ∪ 𝐴2. In 
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other words, the inequality 𝑣(𝐴) ≤ 𝜇(𝜑(𝐴))  with 𝐴 = 𝐴1 ∪ 𝐴2  is redundant given 

𝑣(𝐴1) ≤ 𝜇(𝜑(𝐴1))  and 𝑣(𝐴2) ≤ 𝜇(𝜑(𝐴2)) . Also, if 𝑢 ∉ 𝐴  satisfies 𝜑({𝑢}) ⊂ 𝜑(𝐴) , 

then the inequality 𝑣({𝑢} ∪ 𝐴) ≤ 𝜇(𝜑({𝑢} ∪ 𝐴)) = 𝜇(𝜑(𝐴))  will imply a redundant 

inequality 𝑣(𝐴) ≤ 𝜇(𝜑(𝐴)). 

In this section, we propose a combinatorial method to generate the exact Core 

Determining Class. We prove that, in theory, if the probability measure 𝜇  is non-

degenerate, our method excludes all redundant inequalities in the model 𝑃𝐺  regardless the 

values of 𝜇 . That is to say, the Core Determining Class can be exactly constructed 

through combinatorial method and it is independent from 𝜇. 

Definition 4.4 [Set 𝑺𝑼] 𝑆 ⊂ 2𝑈 is the collection of all non-empty subsets 𝐴 ⊂ 𝑈 and 

𝐴 ≠ 𝑈, such that 𝑣𝑀(𝐴) > 𝜇(𝜑(𝐴)),  

where 𝑣𝑀(𝐴) ≔ max {𝑣(𝐴)|𝑣(𝐴′) ≤ 𝜇(𝜑(𝐴′)), ∀𝐴′ ⊂ 𝑈, 𝐴′ ≠ 𝐴}. 

Set 𝑆𝑈  is defined using probability measure 𝜇 . The inequality generated by any 

𝐴 ∈ 𝑆𝑈 is informative: it is irredundant given other inequalities described in expression 

(4.3). Essentially, 𝑆𝑈 identifies the irreducible inequalities for model 𝑃𝐺  when the critical 

equality ∑ 𝑣(𝑢)𝑢∈𝑈 = 1 is not taken into consideration. 

Definition 4.5 [Set 𝑺𝑼
′ ] 𝑆′ ⊂ 2𝑈 is the collection of all non-empty subsets 𝐴 ⊂ 𝑈 and 

𝐴 ≠ 𝑈, such that: 

(1) 𝐴 is self-connected, i.e., ∀𝐴1, 𝐴2 ⊂ 𝑈  such that 𝐴1, 𝐴2 ≠ ∅ and 𝐴1 ∪ 𝐴2 = 𝐴 , it 

holds that 𝜑(𝐴1) ∩ 𝜑(𝐴2) ≠ ∅; 

(2)There exists no 𝑢 ∈ 𝑈, such that 𝑢 ∉ 𝐴 and 𝜑(𝑢) ⊂ 𝜑(𝐴). 

Lemma 4.2. If 𝜇 is non-degenerate, the collection of subsets defined in Definition 4.4 

and Definition 4.5 are identical, i.e., 𝑆𝑈 = 𝑆𝑈
′ . 

Proof: see Appendix A.1 

𝑆𝑈 and 𝑆𝑈
′  describe the irreducible inequalities in 𝑃𝐺  if the equality ∑ 𝑣(𝑢)𝑢∈𝑈 = 1 is 

not taken into consideration. Theorem 5 of Chesher and Rosen (2012) proposes a subset 
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of inequalities with property (1) stated in Definition 4.5. This subset contains the set of 

all binding inequalities, which is Core Determining. Lemma 4.2 shows that with an 

additional property (2) in Definition 4.5, we can find all binding inequalities when the 

equality ∑ 𝑣(𝑢) = 1𝑢∈𝑈  is ignored. In fact, adding this equality can further substantially 

reduce the number of inequalities and it is impossible to find the minimum set of 

inequalities in 𝑃𝐺  without the key equality ∑ 𝑣(𝑢) = 1𝑢∈𝑈 .  

To find the minimum binding set of inequalities, i.e., the exact Core Determining 

Class, we further look at the problem 𝑃𝐺  from the opposite direction: consider the 

inequalities from 𝑌 to 𝑈. For any non-degenerate probability measure �̃� on 𝑈, we define 

𝑆𝑌 and 𝑆𝑌
′ , which are collections of subsets of  𝑌 and similar to 𝑆𝑈 and 𝑆𝑈

′ . 

Definition 4.6 [Set 𝑺𝒀] Given a non-degenerate probability measure �̃� on 𝑈, 𝑆𝑌 ⊂ 2𝑌 

is the collection of all subsets 𝐵 ⊂ 𝑌 and 𝐵 ≠ 𝑌, such that 𝜇𝑀(𝐵) > �̃�(𝜑−1(𝐵)),  

where 𝜇𝑀(𝐵) ≔ max {�̃�(𝐵)|�̃�(𝐵′) ≤ �̃�(𝜑−1(𝐵′)), ∀𝐵′ ⊂ 𝑌, 𝐵′ ≠ 𝐵}  and 𝜇  is a 

probability measure on 𝑌. 

Definition 4.7 [Set 𝑺𝒀
′ ] 𝑆𝑌

′ ⊂ 2𝑌  is the collection of all subsets 𝐵 ⊂ 𝑌 and 𝐵 ≠ 𝑌 , 

such that:  

(1) 𝐵 is self-connected, i.e., ∀𝐵1, 𝐵2 ⊂ 𝐵, such that 𝐵1, 𝐵2 ≠ ∅ and 𝐵1 ∪ 𝐵1 = 𝐵, it 

holds that 𝜑−1(𝐵1) ∩ 𝜑−1(𝐵2) ≠ ∅; 

(2) There exists no 𝑦 ∈ 𝑌, such that 𝑦 ∉ 𝐵 and 𝜑−1(𝑦) ⊂ 𝜑−1(𝐵). 

The Lemma below presents result similar to Lemma 4.2. 

Lemma 4.3 𝑺𝒀 = 𝑺𝒀
′  

The proof is similar to the proof of Lemma 4.2. 

Definition 4.8 [Set 𝑺𝒀
−𝟏] 𝑆𝑌

−1  is the collection of 𝐴 ⊂ 𝑈 and 𝐴 ≠ 𝑈 such that there 

exists 𝐵 ⊂ 𝑆𝑌
′  satisfying 𝐴 = 𝜑−1(𝐵)𝑐. 



108 
 

Below we give a numerical definition of the exact Core Determining Class using 

linear programming. 

Definition 4.9 [Set 𝑺∗] The Core Determining Class 𝑆∗ is the collection of all subsets 

𝐴 ⊂ 𝑈 and 𝐴 ≠ 𝑈, such that 𝑣𝑀∗
(𝐴) > 𝜇(𝜑(𝐴)), 

where 𝑣𝑀∗
(𝐴) ≔ max {𝑣(𝐴)|𝑣(𝐴′) ≤ 𝜇(𝜑(𝐴′)), ∀𝐴′ ⊂ 𝑈, 𝐴′ ≠ 𝐴; 𝑣(𝑈) = 1}. 

In Definition 4.9, the equality 𝑣(𝑈) = 1  is taken into consideration. 𝑆∗  contains 

subsets in 𝑈  corresponding to irreducible inequalities under 𝑣(𝑈) = 1 . The theorem 

below characterizes and constructs the Core Determining Class 𝑆∗. 

Theorem 4.1. The Core Determining Class 𝑆∗  is characterized by the following 

equation:  

𝑆∗ = 𝑆𝑈 ∩ 𝑆𝑌
−1 

Proof: See Appendix A.2 

Notice that both 𝑆𝑈
′  and 𝑆𝑌

′  are defined via combinatorial rules, so 𝑆𝑈 and 𝑆𝑌
−1 can be 

found via combinatorial rules and the Core Determining Class 𝑆∗ is independent from 𝜇 

if 𝜇 is non-degenerate. In an example followed, we show that considering only 𝑆𝑈 may 

not be able to substantially reduce the number of inequalities, when 𝑆𝑈 ∩ 𝑆𝑌
−1 can be a 

very small set in cardinality. 

Consider the set 𝑈 = {𝑢1, … , 𝑢𝑑1
}  and the set  𝑌 = {𝑦1, … , 𝑦𝑑1+1} . 𝜑  is the 

correspondence mapping between 𝑈 and 𝑌 such that 𝜑(𝑢𝑗) = {𝑦𝑗 , 𝑦𝑗+1} for all 1 ≤ 𝑗 ≤

𝑑1. The correspondence mapping is illustrated in Figure 4.2. 
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Figure 4.2 Correspondence mapping of an example 

 

If we only consider 𝑆𝑈 , we can obtain 𝑆 = 2𝑈 − {∅, 𝑈}, which consists of 2𝑑1 − 2 

subsets and essentially makes no selection of inequalities. The Core Determining Class 

𝑆∗  constructed in Theorem 4.1 is {𝑈 − 𝑢𝑗|1 ≤ 𝑗 ≤ 𝑑1} . It is obvious that it is the 

minimum number of subsets carrying full information on 𝑣  for model 𝑃𝐺 . The Core 

Determining Class 𝑆∗  contains 𝑑1  inequalities, which is much less than the 2𝑑1 − 2 

inequalities selected by Theorem 5 in Chesher and Rosen (2012). 

Therefore, we utilize the combinatorial structure revealed in Definition 4.5 and 

Definition 4.7 to construct the sets 𝑆𝑈
′  and 𝑆𝑌

′ : algorithm illustrated in Figure 4.3 

generates set 𝑆𝑈
′  and a similar algorithm generates set 𝑆𝑌

′ , and then set 𝑆𝑌
−1. Then we can 

obtain the exact Core Determining Class 𝑆∗ = 𝑆𝑈 ∩ 𝑆𝑌
−1. 
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Figure 4.3 Algorithm to generate set 𝑺𝑼
′  

 

The complexity of the algorithm is 𝑂(2max {𝑑𝑢,𝑑𝑦} ∙ 𝑑1
2 ∙ 𝑑2

2), where 

 𝑑𝑢 is defined as  

𝑑𝑢 ≔ max𝐴 |𝐴| 

𝑠. 𝑡. 𝐴 ⊂ 𝑈 

𝜑(𝐴) = 𝑌 

𝜑(𝐴/𝑢) ⊊ 𝑌, ∀𝑢 ∈ 𝐴 
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𝑑𝑦 is defined as  

𝑑𝑦 ≔ max𝐵 |𝐵| 

𝑠. 𝑡. 𝐵 ⊂ 𝑌 

𝜑−1(𝐵) = 𝑈 

𝜑−1(𝐵/𝑦) ⊊ 𝑈, ∀𝑦 ∈ 𝐵 

Under the assumption of non-degenerate 𝐺 and 𝜇, in a bipartite graph with practical 

applications, 𝑑𝑢 and 𝑑𝑦 is much smaller than 𝑑1 and 𝑑2 respectively, so the algorithm is 

fast in practice. 

 

4.5    A General Selection Procedure and Sparse Assumption 

Essentially, the objective of model 𝑃𝐺  is to obtain a feasible set of measure 𝑣 given the 

observation �̂� , i.e., to obtain �̂� ≔ {𝑣|𝑣(𝐴) ≤ �̂�𝑛(𝜑(𝐴)), ∀𝐴 ⊂ 𝑈; ∑ 𝑣(𝑢) = 1𝑢∈𝑈 } . In 

Section 4.4 we explore the structure of the bipartite graph 𝐺  to obtain the set of 

irreducible inequalities to define �̂�. In this section, we propose a procedure for a general 

problem of linear inequality selection with data noise of �̂�. This procedure chooses the set 

of linear inequalities with sharp information on 𝑣  as 𝑛 → ∞ . It can identify the 

inequalities which are binding but “close” to redundant, so to further reduce the number 

of inequalities in �̂�. The procedure can be applied to general linear inequality selection 

problems, including the Core Determining Class problem allowing mixed strategy as 

defined in Galichon and Henry (2011). 

 

4.5.1 General Selection Procedure 

Problem 𝑃 can be interpreted as computing the feasible region of a collection of linear 

inequality constraints. It could be generalized as computing the feasible region of 

𝑄 ≔ {𝑣|𝑀𝑣 ≤ 𝑏, 𝑣 ≥ 0}, 
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where 𝑀 is a 𝑚 × 𝑑1 matrix, 𝑣 is a 𝑑1 × 1 vector, and 𝑏 is a 𝑚 × 1 vector.  

In many situations, the number of inequalities, 𝑚, is too large for us to effectively 

conduct any known estimation and inference procedures such as the CHT inference in 

Chernozhukov et al. (2007). For example, there are 𝑚 = 2𝑑1  inequalities in the Core 

Determining Class problem in Section 4.3 without implementation of any inequality 

selection procedures (we could view 𝑣(𝑈) = 1  as two inequalities: 𝑣(𝑈) ≤ 1  and 

𝑣(𝑈) ≥ 1).  

There are two reasons that we do not use the entire set of the 2𝑑1 inequalities: first, 

there could be many redundant inequalities which are not informative at all; second, 

when 𝑚 and 𝑑1 are growing, there could be many inequalities which are nearly redundant, 

compared to the scale of noise in the data.  

Notice that the random noise of 𝑏, which comes from �̂�𝑛 − 𝜇𝑛,0, is ignored in Section 

4.4 when data noise of observation is not taken into consideration. In this section, we 

develop a procedure to select informative inequalities in a general 𝑄  considering the 

random noise of 𝑏.  

For any subset 𝐼 of set {1,2, … , 𝑚}, denote 𝑀𝐼 as the matrix comprised of the rows 

indexed by 𝐼 in matrix 𝑀. Similarly, denote 𝑏𝐼  as the subvector of 𝑏 comprised of the 

elements indexed by 𝐼. By the Farkas’ Lemma, for a general matrix 𝑀 and a vector 𝑏, if 

the set of constraints indexed by 𝐼  can imply all other constraints, i.e., the set 𝑄𝐼 ≔

{𝑣|𝑀𝐼𝑣 ≤ 𝑏𝐼 , 𝑣 ≥ 0}  equals 𝑄 , then there must exist a non-negative 𝑚 × 𝑚 matrix 𝛱 

such that:   

𝛱𝑀 ≥ 𝑀, 𝛱 ≥ 0 

𝛱𝑏 ≤ 𝑏 

𝛱𝑙𝑗 = 0 

for any 1 ≤ 𝑙 ≤ 𝑚 and 𝑗 ∉ 𝐼. 
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For any 𝑗 ∈ {1,2, … , 𝑚}, we denote 𝑀𝑗  as the 𝑗𝑡ℎ row of 𝑀, 𝛱𝑗  as the 𝑗𝑡ℎ  row of  𝛱 

and  𝛱𝑘 as the 𝑘𝑡ℎ column of 𝛱. The coefficient matrix 𝛱 can serve as a signal of the 

importance of each inequality. If all the coefficients of the 𝑘𝑡ℎ inequality, 𝛱𝑘, are zero or 

close to 0, then this inequality is not very informative to 𝑣 . Inspired by the Farkas’ 

Lemma, we propose the following selection procedure which slightly relaxes the 

constraints on 𝛱: 

Problem �̂� 

min𝛱 ∑ 𝑔(𝛱𝑘)

𝑚

𝑘=1

 

subject to: 

𝛱𝑀 ≥ 𝑀, 𝛱 ≥ 0 

𝛱�̂� ≤ �̂� + 𝛬𝑛 

where observed �̂� is a 𝑚 × 1 vector which converges to 𝑏 as the data sample size 𝑛 goes 

to ∞, and 𝛬𝑛,𝑚 = (𝜆𝑛,𝑚, … , 𝜆𝑛,𝑚)′ in which 𝜆𝑛,𝑚 is a relaxation parameter measuring the 

maximum error allowed for each inequality.  

The Vector 𝛬𝑛,𝑚  can also be chosen to be specific to each inequality. For the 

inequality which we believe to be too important to be ruled out, we could set the 

corresponding 𝜆𝑛,𝑚 in 𝛬𝑛,𝑚 to 0. 

We choose the objective function 𝑔(∙) such that it measures the importance of the 

constraints. One choice is 𝑔(𝛱𝑘) = sign(∑ 𝛱𝑗𝑘1≤𝑗≤𝑚 ). With this objective function 𝑔(∙), 

the selection procedure �̂� is essentially a binary integer programming model to select a 

minimum number of inequalities. We call the procedure 𝐿0 selector. 

The 𝐿0 selector is extremely difficult to implement when 𝑚 is large. However, many 

studies on LASSO and the Dantzig Selector show that some 𝐿1 objective functions could 

enjoy nice statistical properties in model selection and also low computational costs. 

Below we propose a feasible 𝐿1 objective function 𝑔(∙): 
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𝑔(𝛱𝑘) = max1≤𝑗≤𝑚 𝛱𝑗𝑘 

where 𝛱𝑗𝑘 is the (𝑗, 𝑘)𝑡ℎ entry of 𝛱.  

With the above choice of 𝑔(∙) and homogenous 𝜆𝑛,𝑚(i.e., 𝜆), the formulation of the 

problem �̂� is rewritten as: 

Problem �̂�: 

min𝛱 ∑ max1≤𝑗≤𝑚 𝛱𝑗𝑘

𝑚

𝑘=1

 

subject to: 

𝛱𝑀 ≥ 𝑀, 𝛱 ≥ 0 

||(𝛱�̂� − �̂�)+||∞ ≤ 𝜆 

 

4.5.2 Sparse Assumptions 

Sparse assumptions play an essential role in the analysis of some 𝐿1  penalization 

procedures, such as LASSO and the Dantzig Selector. In this subsection, we define sparse 

assumptions. 

For any 1 ≤ 𝑗 ≤ 𝑚, we define a separation of inequality 𝑗 as: 

𝑐𝑗 ≔ max𝑣∈𝑄𝑗
𝑀𝑗𝑣 − 𝑏𝑗  

where 

𝑄𝑗 ≔ {𝑣|𝑀𝑖𝑣 ≤ 𝑏𝑖, ∀𝑖 ≠ 𝑗; 𝑣 ≥ 0} 

𝑐𝑗 measures the maximal separation of the 𝑗𝑡ℎ inequality for all points in 𝑄𝑗. If 𝑐𝑗 > 0, 

the 𝑗𝑡ℎ inequality is irredundant, otherwise the 𝑗𝑡ℎ inequality is redundant. Let 𝑇0 be the 

set of indices 𝑗  with 𝑐𝑗 > 0  denoting the set of irredundant inequalities. Since 𝑐𝑗 
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characterizes the information carried by the 𝑗𝑡ℎ  inequality, we can define sparse 

assumptions using 𝑐𝑗. 

Definition 4.10 [Exact Sparse] Recall that 𝑇0 is the subset of {1,2, … , 𝑚} denoting 

all the irredundant inequalities, let 𝛱∗ be the solution to the following problem: 

Problem 𝑅: 

min𝛱 ∑ 𝑔(𝛱𝑘)

𝑚

𝑘∈𝑇0

 

subject to: 

𝛱𝑀 ≥ 𝑀, 𝛱 ≥ 0 

𝛱𝑏 ≤ 𝑏 

𝛱𝑘 = 0 if 𝑘 ∉ 𝑇0 

For any 𝑚 × 𝑚 matrix 𝛱 , denote 𝑔(𝛱) ≔ ( 𝑔(𝛱1), … , 𝑔(𝛱𝑚))′, which is a 𝑚 × 1 

vector. The exact sparse assumption is defined as follows.  

There exists absolute positive constants 𝐾𝑢, 𝑟 and 𝐾, and an absolute constant 𝑐𝑔,𝑛 

which may depend on 𝑛, such that:  

(1) 𝑠0 ≔ |𝑇0| = 𝑜(𝑛 ∧ 𝑚), which may increase at a slow rate as 𝑚 and 𝑛 increases; 

(2) The sum of coefficients needed to construct each inequality is bounded: 

max1≤𝑗≤𝑚 ||𝛱𝑗
∗||1 ≤ 𝐾𝑑1

𝑟;  

If ||𝑀||2 is normalized to be 1, then in general 𝑟 = 1/2. In the Core Determining 

Class problem, we can prove that 𝐾 = 1 and 𝑟 = 1. 

(3) max1≤𝑘≤𝑚 𝑔(𝛱∗𝑘) ≤ 𝐾𝑢; 

(4) min𝑗∈𝑇0
𝑐𝑗 ≥ 𝑐𝑔,𝑛. 
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The exact sparse assumption assumes that all the binding constraints are informative 

and we are able to distinguish these constraints when the data noise is small enough. 

Denote set 𝐼∗ as the set of indices with non-zero components in 𝑔(𝛱∗). In general set 𝐼∗ is 

not necessarily the same as the set of indices corresponding to the minimum number of 

constraints in 𝑇0. We use 𝑇0 to denote the set of indices corresponding to its constraints if 

there is no confusion. In the special case of the Core Determining Class problem with a 

bipartite graph, we can show that 𝐼∗ = 𝑇0. That is to say, the 𝐿1 selector recovers the Core 

Determining Class when 𝜆 is set to be 0. We expect the set 𝐼∗ should not be too large 

compared to 𝑇0. We show that in the next section, similar to the results in Candes and 

Tao (2007), the number of non-zero components in 𝐼∗  has an order of 𝑂(𝑠0)  with 

probability approaching 1 if we employ a cutoff value 0 < 𝜂 < 1 to the solution 𝑔(𝛱∗). 

For a 𝑞 dimensional vector �̃� and a scalar 𝜆, we define �̃� + 𝜆 ≔ (�̃�1 + 𝜆, … , �̃�𝑞 + 𝜆). 

Throughout the Chapter, we assume that 𝑀 is a matrix with fixed value. Define 𝐹 ≔

{�̃�𝐼(�̃�)|�̃�𝐼(�̃�) = {𝑣|𝑀𝐼𝑣 ≤ �̃�𝐼}, �̃� ∈ 𝑅𝑚}  as a collection of sets which takes the 

formulation {𝑣|𝑀𝐼𝑣 ≤ �̃�𝐼} for some �̃� ∈ 𝑅𝑚 and 𝐼 ⊂ {1,2, … , 𝑚}. Define the operation ⨁ 

which maps a set �̃�𝐼(�̃�) ∈ 𝐹 and a real number 𝜆 to another set �̃�𝐼(�̃�) ⨁ 𝜆 = {𝑣|𝑀𝐼𝑣 ≤

𝑏𝐼 + 𝜆}. In the rest of this Chapter, let �̃�𝐼 ⨁ 𝜆 be the abbreviation of �̃�𝐼(�̃�) ⨁ 𝜆 if there is 

no confusion. 

By analogy with the exact sparse assumption, we propose a more feasible 

approximate sparse assumption. 

Definition 4.11 [Approximate Sparse] Suppose we can order the separations 

𝑐1, … , 𝑐𝑚 into 𝑐(1) ≥ 𝑐(2) ≥ ⋯ ≥ 𝑐(𝑚) and suppose there exists a positive integer 𝑠∗ such 

that: 

(1) 𝑠∗ = 𝑜(𝑛 ∧ 𝑚); 

Let 𝑇∗ be the set of indices of the inequalities with the first 𝑠∗ largest separations. 

Suppose 𝐾 and 𝑟 are absolute positive constants. Let 𝜎2 ≔ max1≤𝑗≤𝑚 𝑉𝑎𝑟(�̂�𝑗 − 𝑏𝑗). Let 

𝛱∗ be the solution to the following problem. 
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Problem 𝑅: 

min𝛱 ∑ 𝑔(𝛱𝑘)

𝑚

𝑘∈𝑇∗

 

subject to: 

𝛱𝑀 ≥ 𝑀, 𝛱 ≥ 0 

𝛱𝑏 ≤ 𝑏 + 𝐾𝑑1
𝑟𝜎√

log (𝑠∗)

𝑛
 

𝛱𝑘 = 0 if 𝑘 ∉ 𝑇∗ 

Then, it holds that: 

(2) max1≤𝑗≤𝑚 ||𝛱𝑗
∗||1 ≤ 𝐾𝑑1

𝑟; 

(3) There exists an absolute constant 𝐾𝑢 such that max1≤𝑘≤𝑚 𝑔(𝛱∗𝑘) ≤ 𝐾𝑢; 

(4) 𝑄𝑇∗ ⊂ 𝑄 ⨁ 𝐾𝑑1
𝑟𝜎√

log (𝑠∗)

𝑛
. 

In the approximate sparse assumption, we allow 𝑐𝑗 > 0 for all 1 ≤ 𝑗 ≤ 𝑚. Therefore, 

in the worst case, 𝑔(𝛱∗𝑘) > 0  for all 𝑘 ∈ {1,2, … , 𝑚} . Essentially, the approximate 

sparse assumption assumes that there is a small set 𝑇∗ indicating a set of inequalities to 

describe a feasible region similar to 𝑄 while the size of 𝑇∗ is much smaller than 𝑚. 

 

4.6    Properties of the Selection Procedure with Application in the Core 

Determining Class Problem 

 

4.6.1 General Properties 
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In this subsection, we analyze the property of the selection procedure �̂� and the choice of 

the relaxation parameter 𝜆𝑛,𝑚. We impose high level assumptions on �̂� and 𝜆𝑛,𝑚 and then 

discuss a set of sufficient conditions for the assumptions. 

Assumption 4.2 [Dominance of 𝝀 ] Suppose we have data 𝐵1, 𝐵2, … , 𝐵𝑛 with 

dimension 𝑚 × 1  such that 𝑏 = 𝐸(𝐵𝑖) , 1 ≤ 𝑖 ≤ 𝑛 . Suppose in practice we use �̂� ≔

𝐸𝑛(𝐵𝑖) to estimate 𝑏. Suppose that with probability at least 1 − 𝛼, 

(1) max1≤𝑗≤𝑚 |�̂�𝑗 − 𝑏𝑗| ≤ 𝜆𝑛,𝑚; 

(2) 𝜆𝑛,𝑚 → 0. 

In Assumption 4.2, we require that the choice of relaxation parameter 𝜆𝑛,𝑚 dominate 

the maximal discrepancy between �̂�𝑗  and 𝑏𝑗  for all 𝑗 ∈ {1,2, … , 𝑚} . In addition, 𝜆𝑛,𝑚 

should converge to 0 as sample size 𝑛 increases to guarantee consistency. 

Given 𝜆𝑛,𝑚, suppose that the solution to �̂� is �̂�. Denote �̂�𝑘 ≔ max1≤𝑗≤𝑚 �̂�𝑗𝑘 for all 

1 ≤ 𝑘 ≤ 𝑚. Define 𝐼 ≔ {𝑘|�̂�𝑘 ≠ 0} as the set of indices selected by the procedure �̂�. We 

consider the post-selection estimator �̂� 𝐼 ≔ {𝑣|𝑀 𝐼𝑣 ≤ �̂� 𝐼} as the feasible set defined by 

the inequalities with indices in  𝐼. 

Lemma 4.4. If Assumption 4.2 holds, then with probability ≥ 1 − 𝛼, �̂� 𝐼 satisfies: 

(1) 𝑄 ⊂ �̂� 𝐼 ⨁ 𝜆𝑛,𝑚; 

(2) �̂� 𝐼 ⊂ 𝑄 ⨁ 2𝜆𝑛,𝑚. 

Proof: see Appendix A.3 

Lemma 4.4 shows that 𝑄 and �̂� 𝐼 are very close to each other. Therefore, 𝜆𝑛,𝑚 should 

be at least as large as the (1 − 𝛼) quantile of the random variable 𝑟𝑛,𝑚, where  

𝑟𝑛,𝑚 ≔ max1≤𝑗≤𝑚 |�̂�𝑗 − 𝑏𝑗| 

Chernozhukov, Chetverikov and Kato (2012) (CCK later) show that the distribution 

of √𝑛𝑟𝑛,𝑚  can be well approximated by the distribution of the maxima of a Gaussian 
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vector under certain conditions and 
(log 𝑚)7

𝑛
→ 0  along with other mild regularity 

conditions. The calculation can be easily performed via Gaussian Multiplier bootstrap. A 

weaker bound (but still relatively sharp in many cases) of the (1 − 𝛼) quantile of 𝑟𝑛,𝑚 

could be obtained using modest deviation theory of self-normalized vectors described in 

De La Puna (2009), which requires 
(log 𝑚)(2+𝛿)

𝑛
→ 0 where 𝛿 > 0. 

Assumption 4.3 [Regularity Conditions] 

(1) The data 𝐵𝑖  is i.i.d. (The i.i.d. assumption can be extended to the i.n.i.d. 

assumption as both Lemma 4.5 and Lemma 4.6 allow i.n.i.d data with small 

modifications in the statement). 

(2) There exists an absolute positive constant 𝐶 > 0 such that  

max1≤𝑖≤𝑛,1≤𝑗≤𝑚 |𝐵𝑖𝑗| ≤ 𝐶 

(3) There exist an absolute positive constant 𝑐1 > 0 such that  

min1≤𝑖≤𝑛,1≤𝑗≤𝑚 𝐸(𝐵𝑖𝑗
2 ) ≥ 𝑐1 

The statement (2) in Assumption 4.3 holds for the Core Determining Class problem 

with the constant 𝐶 = 1. Statement (3) may not be true in the Core Determining Class 

problem when the dimension 𝑑1 grows. However, the problem can be fixed by 

multiplying √𝑑1  to 𝐵𝑖𝑗  when we make the assumption that 
𝑐

𝑑1
≤ 𝑣(𝑢𝑖) ≤

𝑐′

𝑑1
 for some 

absolute positive constants 𝑐  and 𝑐′. We use Assumption 4.3 to derive properties for 

general selection procedure �̂� . In Section 4.6.2, we apply �̂�  to the Core Determining 

Class problem without Assumption 4.3. 

Under Assumption 4.3, we are able to obtain the following two Lemmas on the choice 

of relaxation parameter 𝜆. These two Lemmas are based on the results stated in De La 

Puna et al. (2009). 

Lemma 4.5 [Choosing 𝝀  using Multiplier Bootstrap] Let 

𝑟𝑛,𝑑
𝐺 ≔ max1≤𝑗≤𝑚

∑ 𝐵𝑖𝑗𝑒𝑖𝑗1≤𝑖≤𝑛

𝑛
, where 𝑒𝑖𝑗  are independent standard normal random 
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variables. Suppose Assumption 4.3 holds and 
(log 𝑚∨𝑛)7

𝑛
→ 0, then the (1 − 𝛼) quantile of 

√𝑛𝑟𝑛,𝑑
𝐺  is a consistent estimator of the (1 − 𝛼) quantile of √𝑛𝑟𝑛,𝑑. 

Proof: Theorem 3.1 of CCK (2012) shows that under Assumption 4.3, at quantile 

(1 − 𝛼), the multiplier bootstrap estimator of √𝑛𝑟𝑛,𝑑
𝐺  is consistent with √𝑛𝑟𝑛,𝑑. 

Lemma 4.6 [Choosing 𝝀  using Modest Deviation Theory of Self-Normalized 

Vectors] Denote �̂�2 ≔ max1≤𝑗≤𝑚{𝐸𝑛(𝐵𝑖𝑗
2 ) − 𝐸𝑛(𝐵𝑖𝑗)2} . Let 𝜆𝑛,𝑚 ≔

𝐶�̂�2𝛷−1(1−
𝛼

2𝑚
)

√𝑛
for 

some constant 𝐶 > 1. Suppose Assumption 4.3 holds and 
(log 𝑚)(2+𝛿)

𝑛
→ 0 for some 𝛿 > 0, 

then as 𝑛 → ∞, with probability at least 1 − 𝛼,  

max1≤𝑗≤𝑚 |�̂�𝑗 − 𝑏𝑗| ≤ 𝜆𝑛,𝑚 

Proof: We refer the proof in De La Puna et al. (2009). 

Next we discuss the performance of the 𝐿1 selector �̂� under the sparse assumptions. 

Theorem 4.2 [Recovery of Informative Inequalities under Exact Sparse 

Assumption] Suppose Assumptions 4.2, 4.3 and the exact sparse assumption hold. Recall 

that 𝑐𝑗  is the maximal separation of the 𝑗𝑡ℎ  inequality and 𝑐𝑔,𝑛 ≤ 𝑐𝑗  for all 𝑗 ∈ 𝑇0 . Let 

0 < 𝜂 < 1 be an absolute constant. Assume that 𝑚, 𝑛, 𝑠0, 𝑑1 and 𝑐𝑔,𝑛 obey a key growing 

condition: 

(𝑑1
2𝑟log (𝑠0)) ∨ log(𝑚)

𝑛𝑐𝑔,𝑛
2

→ 0 

Consider the following two-step procedure: 

(a) Step 1: set 𝜆𝑆 ≔ (1 + 𝜖)𝐾𝑑1
𝑟�̂�√log(

4𝑠0
𝛼

)

𝑛
+ 𝜆𝑛,𝑚 , with 𝜖 > 0  be an absolute 

constant and 𝜆𝑛,𝑚 to be chosen according to Lemma 4.5 or Lemma 4.6. 

(b) Step 2: let �̂�𝑆  be the solution to �̂�  with 𝜆 = 𝜆𝑆  and let 𝐼𝑆 ≔ {𝑗|�̂�𝑆,𝑗 ≠ 0}, then, 

construct set 𝐼𝑆,𝜂 ≔ {𝑗|�̂�𝑆,𝑗 ≥ 𝜂}. 
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Then, with probability ≥ 1 − 𝛼, 𝐼𝑆,𝜂 has the following properties: 

(1) There exists an absolute constant 𝐶𝑇 such that ||𝐼𝑆,𝜂||0 ≤
𝐶𝑇𝑠0

𝜂
; 

(2) 𝐼𝑆,𝜂 ⊃ 𝑇0; 

(3) 𝑄 ⊂ �̂� 𝐼𝑆,𝜂
 ⨁ 𝜆𝑛,𝑚; 

(4) �̂� 𝐼𝑆,𝜂
⊂ 𝑄 ⨁ 𝜆𝑛,𝑚. 

Proof: see Appendix A.4 

In Theorem 4.2, we consider a two-step procedure. First, we select the inequalities 

using a larger relaxation parameter 𝜆𝑆 . Such relaxation can significantly reduce the 

number of inequalities. However, as soon as 𝜆𝑆  converges to 0 fast enough, all the 

informative inequalities will be preserved. Second, the cutoff strategy additionally throws 

away some nearly redundant inequalities which were not detected in the first step 

selection. The set of those inequalities survive the two-step procedure has good properties: 

(1) it has the same size compared to the minimum set of inequalities, 𝑇0, up to a constant 

multiplier; (2) it contains 𝑇0 with probability approaching 1; (3) �̂� 𝐼𝑆,𝜂
 is close to the true 

feasible region 𝑄 = {𝑣|𝑀𝑣 ≤ 𝑏}, with error up to 𝑂(𝜆𝑛,𝑚). 

The constant 𝐾 can be computed via 𝑀. If ||𝑀𝑖𝑗||2 = 1 for all 𝑗 and 𝑀𝑖𝑗 > 0 for all 𝑖 

and 𝑗, then 𝐾 ≤ 1 and 𝑟 = 1/2. In practice, 𝑠0 is unknown, so we recommend to use 𝑛 

for 𝑠0 as a starting value and then iterate a few times. We also recommend to use 𝜖 = 0.1 

in practice. 

Theorem 4.3 [Recovery of Informative Inequalities under Approximate Sparse 

Assumption] Suppose Assumptions 4.2, 4.3 and the approximate sparse assumption hold. 

Let 0 < 𝜂 < 1  be an absolute constant. Assume that 𝑚, 𝑛, 𝑠0, 𝑑1  and 𝑐𝑔,𝑛  obey a key 

growing condition:  

(𝑑1
2𝑟log (𝑠∗)) ∨ log(𝑚)

𝑛𝑐𝑔,𝑛
2

→ 0 
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Consider the following estimation procedure: 

(a) Step 1: set 𝜆𝑆 ≔ 2(1 + 𝜖)𝐾𝑑1
𝑟�̂�√log(

4𝑠∗

𝛼
)

𝑛
+ 𝜆𝑛,𝑚 , with 𝜖 > 0  be an absolute 

constant and 𝜆𝑛,𝑚 to be chosen according to Lemma 4.5 or Lemma 4.6. 

(b) Step 2: let �̂�𝑆  be the solution to �̂�  with 𝜆 = 𝜆𝑆  and let 𝐼𝑆 ≔ {𝑗|�̂�𝑆,𝑗 ≠ 0}, then, 

construct set 𝐼𝑆,𝜂 ≔ {𝑗|�̂�𝑆,𝑗 ≥ 𝜂}. 

Then, with probability ≥ 1 − 𝛼, 𝐼𝑆,𝜂 has the following properties: 

(1) There exists an absolute constant 𝐶𝑇 such that ||𝐼𝑆,𝜂||0 ≤
𝐶𝑇𝑠∗

𝜂
; 

(2) 𝑄 ⊂ �̂� 𝐼𝑆,𝜂
 ⨁ 𝜆𝑛,𝑚; 

(3) �̂� 𝐼𝑆,𝜂
⊂ 𝑄 ⨁ 

𝜆𝑛,𝑚+𝜆𝑆

2
. 

Proof: see Appendix A.5 

Again, in practice we can set 𝑠∗ = 𝑛 as a starting value and then iterate for a few 

times. If the approximate sparse assumption holds instead of the exact sparse assumption, 

the estimation procedure suffers from additional estimation error with size 𝜆𝑆 , which 

depends on the unknown parameter 𝑠∗.  

 

4.6.2 Application in Estimating Measure 𝒗 in the Core Determining Class 

Problem 

To find the Core Determining Class given a bipartite graph 𝐺 = (𝑈, 𝑌, 𝜑), we can use the 

method proposed in Section 4.4 to eliminate all the redundant inequalities and find exact 

solution when data noise of observation is not taken into consideration. We can also use 

the 𝐿1  selector proposed in Section 4.6.1 to find an approximate solution to the Core 

Determining Class problem. In addition, we can consider a hybrid method: first, we find 

the exact solution according to the method described in Section 4.4, and second, we apply 
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the selection procedure presented in Section 4.6.1 using the inequalities selected from the 

previous step. 

The hybrid method may speed up the selection procedure significantly. In this 

subsection, we discuss the general selection procedure first, and then briefly discuss the 

hybrid method. 

In the Core Determining Class problem, the equality 𝑣(𝑈) = 1 is never redundant. 

Therefore, we let the (𝑚 − 1)𝑡ℎ and 𝑚𝑡ℎ inequalities be 𝑣(𝑈) ≥ 1 and 𝑣(𝑈) ≤ 1 among 

the total 𝑚 inequalities. Since there is no reason to drop the last two inequalities, we 

define problems 𝑅𝐶 and �̂�𝐶: 

Problem 𝑅𝐶: 

min𝛱 ∑ max1≤𝑗≤𝑚−2 𝛱𝑗𝑘

𝑚−2

𝑘=1

 

subject to: 

𝛱𝑀 ≥ 𝑀, 𝛱 ≥ 0 

𝛱𝑏 ≤ 𝑏 

Problem �̂�𝐶: 

min𝛱 ∑ max1≤𝑗≤𝑚−2 𝛱𝑗𝑘

𝑚−2

𝑘=1

 

subject to: 

𝛱𝑀 ≥ 𝑀, 𝛱 ≥ 0 

𝛱�̂� ≤ �̂� + 𝛬 

where 𝛬 = (𝜆𝑛,𝑚, … , 𝜆𝑛,𝑚, 0,0) with 𝜆𝑛,𝑚 left to be chosen. 
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Let �̂� be the solution to �̂�𝐶. First, we prove an important result specific to the Core 

Determining Class problem. 

Lemma 4.7 [Perfect Recovery of the Minimum Mode 𝑻𝟎] If �̂�𝑛 is non-degenerate 

and 𝜆𝑛,𝑚 = 0, let �̂�(�̂�𝑘) = max1≤𝑗≤𝑚−2 �̂�𝑗𝑘, then: 

(1) The 𝐿0 norm of �̂�, ||�̂�||0, satisfies ||�̂�||0 = 𝑠0; 

(2) max1≤𝑗≤𝑚−2 ||�̂�𝑗||1 ≤ 𝑑1; 

(3) max1≤𝑘≤𝑚−2 �̂�(�̂�𝑘) ≤ 1; 

(4) The set of indices with non-zero entries of �̂� satisfies: 

𝐼 ≔ {𝑘|�̂�𝑘 ≠ 0} = 𝑇0 

As a special case, 𝐼∗ = 𝑇0. 

Proof: see Appendix A.6 

Lemma 4.7 indicates that under the exact sparse assumption, the recovery of model 𝑇0 

could be done simply by looking at the non-zero entries of the solution to the problem �̂�𝐶. 

Due to the special property presented in Lemma 4.7, we show that the relaxation 

parameter 𝜆𝑆 in Theorem 4.3 can be much tighter. 

Therefore, the selection procedure would require much less number of observations in 

order to achieve good performance. 

Definition 4.12 [Approximate Sparse on Core Determining Class] Suppose we can 

order the separations 𝑐1, … , 𝑐𝑚−2 into 𝑐(1) ≥ 𝑐(2) ≥ ⋯ ≥ 𝑐(𝑚−2) and suppose there exists 

a positive integer 𝑠∗ such that: 

(1) 𝑠∗ = 𝑜(𝑛 ∧ 𝑚); 

Let 𝑇∗ be the set of indices of the inequalities with the first 𝑠∗ largest separations. 

Suppose 𝐾  and 𝑟  are absolute positive constants. Let 𝜎2 ≔ max1≤𝑗≤𝑚−2 𝑉𝑎𝑟(�̂�𝑗 − 𝑏𝑗). 

Let 𝛱∗ be the solution to the following problem: 
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Problem 𝑅: 

min𝛱 ∑ 𝑔(𝛱𝑘)

𝑚−2

𝑘∈𝑇∗

 

subject to: 

𝛱𝑀 ≥ 𝑀, 𝛱 ≥ 0 

𝛱𝑏 ≤ 𝑏 + 𝐾𝑑1
𝑟𝜎√

log (𝑠∗)

𝑛
 

𝛱𝑘 = 0 if 𝑘 ∉ 𝑇∗ 

Then, it holds that: 

(2) max1≤𝑗≤𝑚 ||𝛱𝑗
∗||1 ≤ 𝐾𝑑1

𝑟; 

(3) There exists an absolute constant 𝐾𝑢 such that max1≤𝑘≤𝑚−2 𝑔(𝛱∗𝑘 ) ≤ 𝐾𝑢; 

(4) 𝑄𝑇∗ ⊂ 𝑄 ⨁ 𝐾𝑑1
𝑟𝜎√

log (𝑠∗)

𝑛
. 

Define �̂�2 ≔ max1≤𝑗≤𝑚−2(𝐸𝑛(𝐵𝑖𝑗
2 ) − 𝐸𝑛(𝐵𝑖𝑗)2). 

Lemma 4.8 [Recovery of Informative Inequalities under Core Determining Class] 

Suppose Assumptions 4.2, 4.3 and the exact sparse assumption hold. Suppose 𝐺 and �̂�𝑛 

are non-degenerate. Recall that 𝑐𝑗  is the maximal separation of the 𝑗𝑡ℎ  inequality and 

𝑐𝑔,𝑛 ≤ 𝑐𝑗  for all 𝑗 ∈ 𝑇∗ . Let 0 < 𝜂 < 1  be an absolute constant and set 𝜆𝑆
𝐶 ≔ (1 +

𝜖)�̂�√log (
4𝑠∗

𝛼
)

𝑛
 where 𝜖 > 0  is a constant. Assume that 𝑠∗  and 𝑐𝑔,𝑛  obey a key growing 

condition: 

log (𝑠∗)

𝑛𝑐𝑔,𝑛
2

→ 0 
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Assume that with probability approaching 1, the empirical measure �̂�𝑛 obeys: 

max1≤𝑙≤𝑑2

|�̂�𝑛(𝑙) − 𝜇(𝑙)|

𝜇(𝑙)
→ 0 

Let �̂� be the solution to 𝑅𝐶 with 𝜆𝑛,𝑚 = 𝜆𝑆
𝐶. Let �̂�𝑆,𝑘 ≔ max1≤𝑗≤𝑚−2 �̂�𝑗𝑘. 

Then, with probability ≥ 1 − 𝛼 , the set 𝐼𝑆,𝜂 ≔ {𝑗|�̂�𝑆,𝑘 ≥ 𝜂}  has the following 

properties: 

(1) There exists an absolute constant 𝐶𝑇 such that ||𝐼𝑆,𝜂||0 ≤
𝐶𝑇𝑠∗

𝜂
; 

(2) 𝑄 ⊂ �̂� 𝐼𝑆,𝜂
 ⨁ 𝜆𝑆

𝐶; 

(3) �̂� 𝐼𝑆,𝜂
⊂ 𝑄 ⨁ 2𝜆𝑆

𝐶. 

The value 𝑠∗ can be obtained iteratively by setting 𝑠∗ = 𝑛 as an initial value. 

Proof: see Appendix A.7 

The key assumption max1≤𝑙≤𝑑2

|�̂�𝑛(𝑙)−𝜇(𝑙)|

𝜇(𝑙)
→ 0 mainly relies on the growing rate of 

𝑑2 . When 𝜇(𝑙) = 𝑂(
1

𝑑2
)  and 

𝑑2
3

𝑛
→ 0 , the assumption max1≤𝑙≤𝑑2

|�̂�𝑛(𝑙)−𝜇(𝑙)|

𝜇(𝑙)
→ 0  holds. 

Lemma 4.8 obtains stronger results compare to Theorem 4.3 due to the structure of the 

bipartite graph. 

It is natural to consider a hybrid estimation strategy combining the combinatorial 

method in Section 4.4 and the selection procedure in Section 4.6. There are a few points 

that we would like to make about the hybrid method: 

(1) When 𝑠0  is small, the hybrid method performs similarly to the combinatorial 

method only. 

(2) When 𝑠0 is large, there may be significant gains from the hybrid method in terms 

of computational speed compared to the selection procedure in Section 4.6 only, and 
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significant inequality reduction compared to the combinatorial method in Section 4.4 

only. 

 

4.7    Conclusion 

In this Chapter, we present a novel approach to the study of the passenger utility 

functions in a last mile transportation system. The unknown parameters in the passenger 

utility function are treated as unobserved events and the specific characteristics of 

transportation trips are treated as observed outcomes. We consider estimating the 

probability measure on the unobservable events given observations of the frequencies of 

the outcomes.  

We try to select the set of a minimum number of inequalities, which is called the Core 

Determining Class, to describe the feasible set of the target probability measure. We 

propose a procedure to construct the exact Core Determining Class when data noise of 

observation is not taken into consideration. We prove that, if there is no degeneracy, the 

Core Determining Class only depends on the structure of the bipartite Graph, not the 

probability measure 𝜇 on the outcomes. 

For a general problem of linear inequality selection under data noise, we propose a 

selection procedure similar to the Dantzig selector in regression. A formulation is 

proposed to identify the importance of each inequality in a feasible set defined by many 

inequalities constraints. We describe the exact sparse assumptions and approximate 

sparse assumptions, which are similar to the traditional sparse assumptions in a linear 

regression environment. We prove that the selection procedure has good statistical 

properties under the sparse assumptions. We also apply the selection procedure to the 

Core Determining Class problem and develop a hybrid selection method combining a 

combinatorial method and a selection formulation. 
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Chapter 5 

Concluding Remarks 

Last mile transportation systems are critical extensions to traditional public transit 

systems. The unavailability of this type of service is one of the main deterrents to the use 

of public transport in urban areas. Good design and operations of LMTS can make the 

overall public transportation systems more efficient and attractive. In this thesis, we study 

the LMTS from three perspectives. We have presented queueing, optimization and 

inference approaches for design and operation of the LMTS.   

In Chapter 2, we study the LMTS from a queueing perspective. We consider the 

supply side of the LMTS in a stochastic setting, with stochastic batch demands resulting 

from the arrival of groups of passengers who request last-mile service at urban rail 

stations or bus stops. We study a very difficult type of queueing system involving batch 

arrivals and requiring the simultaneous consideration of vehicle routing, queueing issues 

and the use of geometrical probability arguments. We derive several closed-from 

expressions for bounding and approximating the principal performance characteristics of 

systems as a function of the fundamental design parameters of such systems. The 

expressions perform consistently well for a broad and realistic range of input values and 

conditions. On the practical side, these expressions can therefore be used for the 

preliminary planning and design of last mile transportation systems, especially for 

approximately determining resource requirements, such as the number of vehicles/servers 

needed to achieve some pre-specified level of service. 
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In Chapter 3, we study the LMTS from an optimization perspective. We have 

developed several operating strategies and algorithms for the design of passenger 

delivery schedules and vehicle routes for a multi-vehicle fleet of delivery vehicles with 

the objective of minimizing the waiting time and riding time of passengers. A myopic 

operating strategy is introduced first for the case in which the last mile demand from each 

group of arriving passengers is revealed sequentially. Two more advanced operating 

strategies are then described in detail, one based on a metaheuristic using tabu search and 

the other using an exact Mixed Integer Programming model, which is solved 

approximately in two stages. These operating strategies are implemented in a number of 

computational experiments with a broad and realistic range of input values and conditions. 

We believe that the operating strategies we have proposed can be very useful for LMTS, 

providing good operating plans for these complex systems. The best approach to the 

passenger service assignment, vehicle routing, and scheduling of the LMTS depends on 

the context and the user’s needs.  

In Chapter 4, we present a novel approach to study the passenger utility function in a 

last mile transportation system. The passenger utility function provides critical 

information to LMTS service providers when it comes to understanding and estimating 

passenger demand and designing and operating their systems. In this chapter, we treat the 

unknown parameters in the passenger utility function as unobserved events, and the 

observed characteristics of transportation trips, such as passenger waiting time, in-vehicle 

riding time and monetary travel cost, as observed outcomes. We construct a bipartite 

graph representing the relationships between the events and the outcomes. We propose a 

general method for identifying the probability measures of the events given the 

observations of the frequencies of the outcomes, including a combinatorial algorithm in 

which the data noise of the observations is ignored and a general procedure in which data 

noise is taken into consideration. This chapter offers an example in the field of 

transportation and logistics of how hidden information can be inferred from observed 

data in a context in which only some correlations are known between unobservable 

events and observed outcomes. This is a key problem in the era of “big data” with fast 

expanding data availability in a variety of industries. 
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A natural extension of our analysis is to study the bounding and approximation of the 

performance of a transportation system combining the “last mile” service described here 

with a “first mile” service, i.e., have the vehicles pick up passengers from the serviced 

district and transport them to the rail station. Under certain conditions, this may lead to 

increased efficiencies since vehicles will not be returning to the rail station empty. 

However, the analysis of this type of combined first- and last-mile service is significantly 

more complicated, if it is to be carried out at a similar level of detail as the analysis 

presented in Chapter 2 for last-mile services alone. We can also study the stochastic 

versions of the LMTS operation problem described in Chapter 3, involving some 

combination of unreliable train schedules, probabilistic last mile service requests, and 

uncertainty about vehicle service times due to traffic congestion. As for the information 

inference topic in Chapter 4, an important future direction is to consider the possibility of 

discretization and segmentation of hidden events and observable outcomes with 

continuous values.  
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Appendix A 

Proofs in Chapter 4 

A.1 Proof of Lemma 4.2 

For any 𝐴 ∉ 𝑆𝑈
′ , suppose (1) ∃𝐴1, 𝐴2 ⊂ 𝐴 ,  𝐴1, 𝐴2 ≠ ∅ , and 𝐴1 ∪ 𝐴2 = 𝐴 , such that 

𝜑(𝐴1) ∩ 𝜑(𝐴2) = ∅; or (2) ∃𝑢 ∈ 𝑈, such that 𝑢 ∉ 𝐴 and 𝜑(𝑢) ⊂ 𝜑(𝐴). 

If (1) is true, then 𝑣𝑀(𝐴) = 𝑣𝑀(𝐴1 ∪ 𝐴2) = 𝑣(𝐴1) + 𝑣(𝐴2) ≤ 𝜇(𝜑(𝐴1)) +

𝜇(𝜑(𝐴2)) = 𝜇(𝜑(𝐴1) ∪ 𝜑(𝐴2)) = 𝜇(𝜑(𝐴1 ∪ 𝐴2)) = 𝜇(𝜑(𝐴)), so 𝐴 ∉ 𝑆𝑈. 

If (2) is true, then 𝑣𝑀(𝐴) ≤ 𝑣(𝐴 ∪ {𝑢}) ≤ 𝜇(𝜑(𝐴 ∪ {𝑢})) = 𝜇(𝜑(𝐴)), so 𝐴 ∉ 𝑆𝑈. 

Therefore, by definition of 𝑆𝑈
′ , we obtain 𝑆𝑈 ⊂ 𝑆𝑈

′ . 

For any 𝐴 ∉ 𝑆𝑈 , assuming elements in 𝑆𝑈  are denoted as 𝐴𝑖  for 1 ≤ 𝑖 ≤ |𝑆𝑈|. For 

simplicity of notations, we can consider 𝐴𝑖 as a vector in {0,1}𝑑1. By definition, ∃𝜋 ≥ 0, 

s.t., (1) ∑ 𝜋𝑖𝐴𝑖
𝑟
𝑖=1 ≥ 𝐴, and (2) ∑ 𝜋𝑖𝜇(𝜑(𝐴𝑖))𝑟

𝑖=1 ≤ 𝜇(𝜑(𝐴)), where 𝑟 ≔ |𝑆𝑈|. Without 

loss of generality, assume 𝜋𝑖 > 0, ∀𝑖 = 1,2, … , 𝑟, otherwise we would simply omit the 𝐴𝑖 

which corresponds to 𝜋𝑖 = 0 in the sum above. Such an assumption does not affect our 

analysis below.  

Since ∑ 𝜋𝑖𝐴𝑖
𝑟
𝑖=1 ≥ 𝐴 , we have ∑ 𝜋𝑖1(𝐴𝑖 ∩ 𝜑−1(𝑦) ≠ ∅) ≥ 1(𝑟

𝑖=1 𝐴 ∩ 𝜑−1(𝑦) ≠ ∅)) 

for any 𝑦 ∈ 𝑌. By Galichon and Henry (2011), 𝜇 is sub-modular. Therefore,  
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∑ 𝜋𝑖𝜇(𝜑(𝐴𝑖))
𝑟

𝑖=1

= ∑ ∑ 𝜋𝑖𝜇(𝑦)1(𝐴𝑖 ∩ 𝜑−1(𝑦) ≠ ∅) ≥ ∑ 𝜇(𝑦)1(𝐴 ∩ 𝜑−1(𝑦) ≠ ∅)

𝑦∈𝑌

𝑟

𝑖=1
𝑦∈𝑌

= 𝜇(𝜑(𝐴)) 

However, by construction, we know that ∑ 𝜋𝑖𝜇(𝜑(𝐴𝑖)) ≤ 𝜇(𝜑(𝐴))𝑟
𝑖=1 . Hence the 

inequality above holds as an equality, i.e., for any 𝑦 ∈ 𝑌, 

∑ 𝜋𝑖1(𝐴𝑖 ∩ 𝜑−1(𝑦) ≠ ∅) = 1(
𝑟

𝑖=1
𝐴 ∩ 𝜑−1(𝑦) ≠ ∅) 

On the other hand, we know that ∑ 𝜋𝑖𝐴𝑖
𝑟
𝑖=1 ≥ 𝐴. Therefore, for any 𝑦 ∈ 𝑌, we have 

𝜑−1(𝑦) ∩ 𝐴 ⊊ 𝐴𝑖 or 𝜑−1(𝑦) ∩ 𝐴 ∩ 𝐴𝑖 = ∅ for all 𝑖. 

We prove the above argument by contradiction. Assuming that there exists a 𝑦 ∈ 𝑌 

and 1 ≤ 𝑖 ≤ 𝑟 such that 𝜑−1(𝑦) ∩ 𝐴 ∩ 𝐴𝑖 = ∅ and 𝜑−1(𝑦) ∩ 𝐴 ⊊ 𝐴𝑖 , then, there exists 

𝑢 ≠ 𝑢′ such that 𝑢, 𝑢′ ∈ 𝜑−1(𝑦), 𝑢 ∈ 𝐴 ∩ 𝐴𝑖, 𝑢
′ ∈ 𝐴 but 𝑢′ ∉ 𝐴𝑖. Thus,  

∑ 𝜋𝑖𝐴𝑖1(𝐴𝑖 ∩ 𝜑−1(𝑦) ≠ ∅) =
𝑟

𝑖=1
𝜋𝑖 + ∑ 𝜋𝑗𝐴𝑗1(𝐴𝑗 ∩ 𝜑−1(𝑦) ≠ ∅)

𝑗≠𝑖

≥ 𝜋𝑖 + ∑ 𝜋𝑗1(𝑢′ ∈ 𝐴𝑗)

𝑗≠𝑖

= 𝜋𝑖 + ∑ 𝜋𝑗1(𝑢′ ∈ 𝐴𝑗)
𝑟

𝑖=1
≥ 𝜋𝑖 + 1 > 1

= 1(𝐴 ∩ 𝜑−1(𝑦) ≠ ∅) 

It is a contradiction. Thus, for any 𝑦 ∈ 𝑌, we have 𝜑−1(𝑦) ∩ 𝐴 ⊊ 𝐴𝑖 or 𝜑−1(𝑦) ∩ 𝐴 ∩

𝐴𝑖 = ∅ for all 𝑖. 

The above statement immediately implies the following conclusion: 

If 𝐴  is self-connected, then for any 𝐴𝑖 , either 𝐴𝑖 ∩ 𝐴 = ∅  or 𝐴𝑖 ∩ 𝐴 = 𝐴 . By the 

equality, for any 𝐴𝑖, there exists no 𝑦 ∈ 𝜑(𝐴𝑖) such that 𝑦 ∉ 𝜑(𝐴). So we have 𝜑(𝐴𝑖) =

𝜑(𝐴). Since 𝐴 = 𝐴𝑖, there exists 𝑢 ∈ 𝑈 such that 𝜑(𝑢) ⊂ 𝜑(𝐴). Since 𝑈 ∉ 𝐴, we have 

𝐴 ∉ 𝑆𝑈
′ .  

Otherwise 𝐴 is not self-connected and we have 𝐴 ∉ 𝑆𝑈
′ . 
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Therefore, in both cases, 𝐴 ∉ 𝑆𝑈
′ . This means that 𝑆𝑈 ⊃ 𝑆𝑈

′ .  

Combining with the result that 𝑆𝑈
′ ⊃ 𝑆𝑈, we have  𝑆𝑈 = 𝑆𝑈

′ . 

 

 

A.2 Proof of Theorem 4.1 

Since 𝑆∗ is the minimum set of inequalities which contains all information if condition 

𝑣(𝑈) = 1 holds, therefore, 𝑆∗ ⊂ 𝑆𝑈 and 𝑆∗ ⊂ 𝑆𝑌
−1. We have 𝑆∗ ⊂ 𝑆𝑈 ∩ 𝑆𝑌

−1. 

For any 𝐴 ∈ 𝑆𝑈 ∩ 𝑆𝑌
−1, by contradiction, suppose 𝐴 ∉ 𝑆∗. So there exists 𝜋𝑖 > 0 and 

𝐴 ∈ 𝑆∗, 1 ≤ 𝑖 ≤ 𝑟 and 𝜋0 ≥ 0, such that: 

(1) ∑ 𝜋𝑖𝐴𝑖 −1≤𝑖 𝜋0 ≥ 𝐴; 

(2) ∑ 𝜋𝑖𝜇(𝜑(𝐴𝑖)) −1≤𝑖 𝜋0 ≥ 𝜇(𝜑(𝐴)). 

By the similar argument of Lemma 4.2, all the inequalities in (2) must hold as 

equalities. Again, for any 𝑦 ∈ 𝑌 , either 𝜑−1(𝑦) ∩ 𝐴  is a subset of 𝐴𝑖 , or it does not 

intersect with 𝐴𝑖 . Since 𝐴 ∈ 𝑆𝑈  is connected, we have either 𝐴𝑖 ⊃ 𝐴 or 𝐴𝑖 ∩ 𝐴 = ∅ for 

any 𝐴𝑖. 

Since there exists 𝐵 such that 𝜑−1(𝐵) = 𝐴𝑐, then 𝜑−1(𝜑(𝐴)𝑐) = 𝐴𝑐. Without loss of 

generality, let 𝐵 = 𝜑(𝐴)𝑐. Since the graph is connected, it must hold that 𝜑(𝑢) ∩ 𝜑(𝐴) ≠

∅ for some 𝑢 ∈ 𝐴𝑐. Since 𝜋0 > 0, then there must exist a set 𝐴𝑖0 such that 𝑢 ∈ 𝐴𝑖0. So 

𝐴𝑖 ⊃ 𝐴 due to 𝜑(𝑢) ∩ 𝜑(𝐴) ≠ ∅. Also, for any 𝑦 ∈ 𝐵, it is also required that 𝜑−1(𝑏) ⊂

𝐴𝑖 or 𝜑−1(𝑏) ∩ 𝐴𝑖 = ∅. 

However, the set 𝐵  is self-connected. Therefore, for any 𝐴𝑖 , we have 𝐵 ⊂ 𝐴𝑖  or 

𝐵 ∩ 𝐴𝑖 = ∅. Hence, 𝐴𝑖0 = 𝑈, which contradicts with the definition of 𝑆∗. 

Therefore, 𝑆∗ = 𝑆𝑈 ∩ 𝑆𝑌
−1. 
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A.3 Proof of Lemma 4.4 

The selected set 𝐼  implies all relaxed inequalities 𝑀𝑗𝑣 ≤ �̂�𝑗 + 𝜆𝑛,𝑚 . Therefore, �̂� 𝐼 ⊂

�̂� ⨁ 𝜆𝑛,𝑚 . According to Assumption 4.2, max1≤𝑗≤𝑚 |�̂�𝑗 − 𝑏𝑗 | ≤ 𝜆𝑛,𝑚  with probability 

1 − 𝛼, so 𝑄 ⊂ �̂� ⨁ 𝜆𝑛,𝑚 and �̂� ⊂ 𝑄 ⨁ 𝜆𝑛,𝑚with probability 1 − 𝛼.  

Therefore, 𝑄 ⊂ �̂� 𝐼 ⨁ 𝜆𝑛,𝑚 and �̂� 𝐼 ⊂ �̂� ⨁ 𝜆𝑛,𝑚 ⊂ 𝑄 ⨁ 2𝜆𝑛,𝑚 with probability 1 − 𝛼. 

 

 

A.4 Proof of Theorem 4.2 

Consider 𝛱∗ defined in Definition 4.10, for every 1 ≤ 𝑗 ≤ 𝑚 , |𝛱𝑗
∗(�̂� − 𝑏)| ≤ ||𝛱𝑗

∗||1 ∙

max𝑗∈𝑇0
|�̂�𝑗 − 𝑏𝑗 | ≤ 𝐾𝑑1

𝑟�̂�√log (
4𝑠0

𝛼
)

𝑛
 with probability at least 1 − 𝛼. Therefore, it is easy to 

see that 𝛱∗ is a feasible solution to the problem �̂� with probability at least 1 − α. Now we 

focus on the event when 𝛱∗ is a feasible solution to �̂�. 

Let �̂� be the solution to the problem �̂�, so  

||𝑔(�̂�)||1 ≤ ||𝑔(𝛱∗)||1 ≤ 𝑠0𝐾𝑢 

and 

𝐼𝑆,𝜂 ≤
𝑠0𝐾𝑢

𝜂
 

For any 𝑗 ∈ 𝑇0, let 𝑣𝑗  be the point such that the maximal separation is realized while 

other inequalities hold for 𝑣. Therefore, by construction, 

�̂�(𝑀𝑣𝑗 − �̂�) ≥ 𝑀𝑣𝑗 − �̂� − 𝜆𝑆 

We have 𝑀𝑣𝑗 ≥ 𝑏 + 𝑐𝑔,𝑛  and 𝑀𝑣𝑗′ − �̂� ≤ 0  for all 𝑗′ ≠ 𝑗 . So the 𝑗𝑡ℎ  inequality 

indicates that  

�̂�𝑗𝑗(𝑐𝑔,𝑛 − �̂�𝑗 + 𝑏𝑗) ≥ 𝑐𝑔,𝑛 − 𝜆𝑆 − �̂�𝑗 + 𝑏𝑗 
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Therefore,  

�̂�𝑗𝑗 ≥
𝑐𝑔,𝑛 − 𝜆𝑆 − (�̂�𝑗 − 𝑏𝑗)

𝑐𝑔,𝑛 − (�̂�𝑗 − 𝑏𝑗)
≥

𝑐𝑔,𝑛 − 𝜆𝑆 − 𝜆𝑛,𝑚

𝑐𝑔,𝑛 − 𝜆𝑛,𝑚
 

The growing condition 
𝑑1

2𝑟log (𝑠0)∨log (𝑚)

𝑛𝑐𝑔,𝑛
2 → 0 guarantees that �̂�𝑗𝑗 > 𝜂 for any 𝜂 < 1 as 

𝑛 → ∞. Therefore, 𝑗 ∈ 𝐼𝑆, 𝑗 ∈ 𝐼𝑆,𝜂 and 𝐼𝑆,𝜂 ⊃ 𝑇0. 

Since we know that 𝑇0 ⊂ 𝐼𝑆,𝜂, then �̂� 𝐼𝑆,𝜂
⊂ �̂� 𝑇0

⊂ 𝑄 ⨁ 𝜆𝑛,𝑚.  

By construction, 𝑄 ⊂ �̂� ⨁ 𝜆𝑛,𝑚 ⊂ �̂� 𝐼𝑆,𝜂
 ⨁ 𝜆𝑛,𝑚. 

 

 

A.5 Proof of Theorem 4.3 

Consider 𝛱∗ defined in Definition 4.11, for every 1 ≤ 𝑗 ≤ 𝑚 , |𝛱𝑗
∗(�̂� − 𝑏)| ≤ ||𝛱𝑗

∗||1 ∙

max𝑗∈𝑇0
|�̂�𝑗 − 𝑏𝑗| ≤ 𝐾𝑑1

𝑟�̂�√log(
4𝑠∗

𝛼
)

𝑛
 with probability at least 1 − 𝛼. Therefore, it is easy to 

see that 𝛱∗ is a feasible solution to the problem �̂� with probability at least 1 − 𝛼. Now 

we focus on the event when 𝛱∗ is a feasible solution to  �̂�. 

Let �̂� be the solution to the problem �̂�, so 

||𝑔(�̂�)||1 ≤ ||𝑔(𝛱∗)||1 ≤ 𝑠∗𝐾𝑢 

and 

𝐼𝑆,𝜂 ≤
𝑠∗𝐾𝑢

𝜂
 

For any 𝑗 ∈ 𝑇∗, let 𝑣𝑗  be the point such that the maximal separation is realized while 

other inequalities hold for 𝑣. Therefore, by construction, 

�̂�(𝑀𝑣𝑗 − �̂�) ≥ 𝑀𝑣𝑗 − �̂� − 𝜆𝑆 
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We have 𝑀𝑣𝑗 ≥ 𝑏 + 𝑐𝑔,𝑛  and 𝑀𝑣𝑗′ − �̂� ≤ 0  for all 𝑗′ ≠ 𝑗 . So the 𝑗𝑡ℎ  inequality 

indicates that  

�̂�𝑗𝑗(𝑐𝑔,𝑛 − �̂�𝑗 + 𝑏𝑗) ≥ 𝑐𝑔,𝑛 − 𝜆𝑆 − �̂�𝑗 + 𝑏𝑗 

Therefore, 

�̂�𝑗𝑗 ≥
𝑐𝑔,𝑛 − 𝜆𝑆 − (�̂�𝑗 − 𝑏𝑗)

𝑐𝑔,𝑛 − (�̂�𝑗 − 𝑏𝑗)
≥

𝑐𝑔,𝑛 − 𝜆𝑆 − 𝜆𝑛,𝑚

𝑐𝑔,𝑛 − 𝜆𝑛,𝑚
 

The growing condition 
𝑑1

2𝑟log (𝑠∗)∨log (𝑚)

𝑛𝑐𝑔,𝑛
2 → 0 guarantees that �̂�𝑗𝑗 > 𝜂 for any 𝜂 < 1 as 

𝑛 → ∞. Therefore, 𝑗 ∈ 𝐼𝑆, 𝑗 ∈ 𝐼𝑆,𝜂, and 𝐼𝑆,𝜂 ⊃ 𝑇∗. 

Since we know that 𝑇∗ ⊂ 𝐼𝑆,𝜂, so �̂� 𝐼𝑆,𝜂
⊂ �̂� 𝑇∗ ⊂ 𝑄 ⨁ 

𝜆𝑆+𝜆𝑛,𝑚

2
.  

By construction, 𝑄 ⊂ �̂� ⨁ 𝜆𝑛,𝑚 ⊂ �̂� 𝐼𝑆,𝜂
 ⨁ 𝜆𝑛,𝑚. 

 

 

A.6 Proof of Lemma 4.7 

Let 𝛱 be a feasible solution to the problem 𝑅: 

min𝛱 ∑ max1≤𝑗≤𝑚−2 𝛱𝑗𝑘

𝑚−2

𝑘=1

 

subject to: 

𝛱𝑀 ≥ 𝑀, 𝛱 ≥ 0 

𝛱𝑏 ≤ 𝑏 

𝛱𝑖𝑗 = 0, if 𝑗 ∉ 𝑇0 

A feasible solution to this above problem is that 𝛱𝑖𝑖 = 1 for all 𝑖 ∈ 𝑇0, and 𝛱𝑖𝑗 = 0 

for all 𝑖 ≤ 𝑗. Hence, the optimal value of the objective function is no worse than 𝑠0. 
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In our case, if we denote 𝑝 = 𝑚, except for the 𝑝𝑡ℎ  row of 𝑀, every row satisfies 

𝑀𝑖𝑖 ∈ {0,1}𝑑. Again, for the problem 𝑅, a feasible solution is 𝛱𝑖𝑖 = 1 for any 𝑖 ∈ 𝑇0.  

Therefore, the value of the objective function is no worse than 𝑠0. Meanwhile, for any 

𝑖 ∉ 𝑇0, by definition, there exists 𝛼𝑗 ≥ 0 for any 𝑗 ≠ 𝑖, 𝑗 ∈ 𝑇0 and 𝛼𝑝 ≥ 0 such that:  

∑ 𝛼𝑗𝑀𝑗 − 𝛼𝑝 
𝑗∈𝑇0

≥ 𝑀𝑖  

and  

∑ 𝛼𝑗𝑏𝑗 − 𝛼𝑝 
𝑗∈𝑇0

≤ 𝑏𝑖 

Without loss of generality, we could assume that 𝛼1 ≥ 𝛼2 ≥ ⋯ ≥ 𝛼𝑟 > 0 = 𝛼𝑟+1 =

⋯ = 𝛼𝑝−1. Next we prove that there must be a feasible vector of 𝛼𝑖 such that 𝛼1 ≤ 1. 

Then we could conclude that the minimum value of the objective function in problem 𝑅 

is 𝑠0 , and the optimal solution exactly recovers the true model. Denote the set 𝐴 

correspond to 𝑀𝑗, and 𝐴𝑖 correspond to 𝑀𝑖. Without loss of generality, by Galichon and 

Henry (2011), 𝜇(𝜑(𝐴)) is a sub-modular, since 𝑏𝑗 = 𝜇(𝜑(𝐴)), then, 

∑ 𝛼𝑖𝑏𝑗 − 𝛼𝑝 
1≤𝑖≤𝑟

= ∑ 𝛼𝑖𝜇(𝜑(𝐴𝑖)) − 𝛼𝑝𝜇(𝜑(𝑈)) ≥ 𝜇(𝜑 (∑ 𝛼𝑖𝐴𝑖 − 𝛼𝑝 
1≤𝑖≤𝑟

)
1≤𝑖≤𝑟

≥ 𝜇(𝐴) = 𝑏𝑗  

Therefore, the above equality holds as an equality. If 𝛼1 > 1, then 𝛼𝑝 > 0. So for any 

𝑢 ∉ 𝐴𝑖, there must be 𝑗 ∈ 𝑇0 such that 𝑢 ∈ 𝑀𝑗 .  

So for any 𝑦 ∈ 𝜑(𝐴), either 𝜑−1(𝑦) ∩ 𝐴𝑖 ∩ 𝐴 = ∅ or (𝜑−1(𝑦) ∩ 𝐴) ⊂ 𝐴𝑖. Similarly, 

for any 𝑦 ∉ 𝜑(𝐴), we have 𝜑−1(𝑦) ∩ 𝐴𝑖 = ∅  or 𝜑−1(𝑦) ⊂ 𝐴𝑖. 

(1) 𝐴 is connected. Let 𝐴′ be {𝑢|𝜑(𝑢) ⊂ 𝐴}. So 𝐴′ implies 𝐴. We only need to prove 

that 𝐴′ can be constructed via ∑ 𝛼𝑖𝐴𝑖 − 𝛼𝑝𝑈 1≤𝑖≤𝑟 . 
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(2) 𝐴 is connected and there is no 𝑢 ∉ 𝐴 such that 𝜑(𝑢) ⊂ 𝜑(𝐴), we have 𝐴 ⊂ 𝑆𝑈 . 

Hence 𝐵 ≔ 𝜑(𝐴)𝑐 is not connected. Let 𝐵1, … , 𝐵𝑟 denote all the disconnected branches 

of 𝐵 . Let 𝐶𝑘 = 𝜑(𝐵𝑘) for any 1 ≤ 𝑘 ≤ 𝑟. Therefore, ∪𝑘=1
𝑟 𝐶𝑘 = 𝐴𝑐 , 𝐶𝑘1

∩ 𝐶𝑘2
 for any 

𝑘1 ≠ 𝑘2, and each 𝐶𝑘 is connected with 𝐴. 

If we denote 𝐶𝑘 = {𝑢|𝑢 ∈ 𝐴𝑐, 𝑢 ∉ 𝐶𝑘}, then 𝐴 ∪ 𝐶1, 𝐴 ∪ 𝐶2,..., 𝐴 ∪ 𝐶𝑟 are sets in 𝑆𝑈. 

They are also sets in 𝑆𝑌
−1 since 𝐶𝑘 = (𝐴 ∪ 𝐶𝑘)𝑐 is connected. Therefore, All these sets are 

in 𝑆∗. Let 𝛼𝑖 = 1 and 𝛼𝑝 = 𝑟 − 1, we could reconstruct the inequality indicated by 𝐴. 

Since 𝑟 ≥ 2, so all the coefficients 𝛼𝑘 ≤ 1. 

(3) 𝐴  is not connected. Let 𝐴1, … , 𝐴𝑤  be the connected branches. Let 𝐵 = 𝜑(𝐴𝑐). 

Without loss of generality, similar to (1), we could assume that 𝐴𝑖 ∈ 𝑆𝑈 for 1 ≤ 𝑖 ≤ 𝑤. 

Assume 𝐵1, … , 𝐵𝑘 is the connected branches of 𝐵. Let 𝐶𝑖 = 𝜑−1(𝐵𝑖) for 1 ≤ 𝑖 ≤ 𝑘, then  

𝐶𝑖1
∩ 𝐶𝑖2

= ∅ for any 𝑖1 ≠ 𝑖2 and 𝐶𝑖 ∩ 𝐴 ≠ ∅ for any 𝑖. Therefore, 𝐶𝑖  for 1 ≤ 𝑖 ≤ 𝑘 and 

𝐴𝑗 for 1 ≤ 𝑗 ≤ 𝑤 form a bipartite graph 𝐺0. For every 𝐴𝑖, let 𝐴𝐶1, … , 𝐴𝐶𝑖𝑟
 be the connect 

branches of 𝐺0 − {𝐴𝑖}. Since the entire graph is connected, so 𝐴𝐶𝑖 is connected with 𝐴𝑖 

for 1 ≤ 𝑖 ≤ 𝑖𝑟 . Let 𝐴𝐶𝑖 ≔ {𝑢|𝑢 ∉ 𝐴𝐶𝑖}, then 𝐴𝐶𝑖  is a set in 𝑆𝑈 ∩ 𝑆𝑌
−1 = 𝑆∗ . Therefore, 

the set 𝐴𝑖 could be constructed by ∑ 𝐴𝐶𝑘 − (𝑖𝑟 − 1)𝑈
𝑖𝑟
𝑘=1 . 

If for some set 𝐴𝐶𝑘  appears in different 𝑖 , let 𝐴𝐶  be such a set that it appears in 

1 ≤ 𝑖 ≤ 𝐽, 𝐽 ≥ 2. Hence 𝐴1, 𝐴2, … , 𝐴𝐽 ⊂ 𝐴𝐶 = ∅. Without loss of generality, we suppose 

𝐶1, … , 𝐶𝑞 ⊂ 𝐴𝐶, 𝑞 ≥ 1 and 𝐶𝑞+1, … , 𝐶𝑘 ∩ 𝐴𝐶 = ∅. Then, for any 1 ≤ 𝑖 ≤ 𝐽, 𝐴𝐶 − 𝐴𝑖 is a 

connected branch in 𝐺0 − 𝐴𝑖 , which means that 𝐶1, … , 𝐶𝑞  does not connected with 

𝐴 − 𝐴𝐶, and 𝐶𝑞+1, … , 𝐶𝑘 does not connect with 𝐴𝐶 − 𝐴𝑖. If 𝐽 ≥ 2, 𝐶𝑞+1, … , 𝐶𝑘 does not 

connect with 𝐴𝐶 − 𝐴1 and 𝐴𝐶 − 𝐴2. However, we have (𝐴𝐶 − 𝐴1) ∪ (𝐴𝐶 − 𝐴2) = 𝐴. So 

𝐶𝑞+1, … , 𝐶𝑘 does not connect with 𝐴𝐶 and 𝐶1, … , 𝐶𝑞 does not connect with 𝐴𝐶. Then it is 

known that 𝐴𝐶 and 𝐴 are not connected. Each 𝐴𝐶𝑘 can appear twice in constructing 𝐴𝑖, 

1 ≤ 𝑖 ≤ 𝑘 . Therefore, there exists one way to construct 𝐴  from 𝑆∗  such that all the 

coefficients 𝜋𝑖𝑗 ≤ 1, for 1 ≤ 𝑗 ≤ 𝑝 − 2. 

Therefore, the optimal solution to the problem 𝑅 is 𝑠0, and 𝐼∗ = 𝑇0. 
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A.7 Proof of Lemma 4.8 

The proof is similar to the proof in Theorem 4.3. However, this Lemma achieves better 

rates because the structure of the Core Determining Class is special. For any 𝛱 ≥ 0 such 

that 𝛱𝑀 ≥ 𝑀 , as we show in the proof of Lemma 4.7, the residual 𝛱𝑏 ≥ 𝑏  can be 

rewritten as a sum ∑ 𝛼𝑙𝜇(𝑙)1≤𝑙≤𝑑2
 where 𝛼𝑙 > 0 for all 1 ≤ 𝑙 ≤ 𝑑2. Therefore, when we 

replace 𝜇  with �̂�𝑛 , the residual 𝛱𝑏 − 𝑏  and 𝛱�̂� − �̂�  are very close. According to the 

assumption that max1≤𝑙≤𝑑2

|𝜇(𝑙)−�̂�𝑛(𝑙)|

𝜇
→ 0 , 𝛱𝑏 − 𝑏 = 𝛱�̂� − �̂�(1 + 𝑜𝑝(1)) . Therefore, 

with probability ≥ 1 − 𝛼 , 𝛱∗�̂� − �̂� = (𝛱∗𝑏 − 𝑏)(1 + 𝑜𝑝(1)) ≤ 𝜆𝑆 . So 𝛱∗  is a feasible 

solution to �̂�  with probability 1 − 𝛼 . The rest of the derivation follows the proof of 

Theorem 4.3. 
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