
Statistical Learning for Decision Making:
Interpretability, Uncertainty, and Inference

by

Benjamin Letham

B.S.E., Arizona State University (2005)
M.S.E., The Johns Hopkins University (2007)

Submitted to the Sloan School of Management
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Operations Research

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2015

c○ 2015 Massachusetts Institute of Technology. All rights reserved.

Author .
Sloan School of Management

May 12, 2015

Certified by. .
Cynthia Rudin

Associate Professor of Statistics
Thesis Supervisor

Accepted by .
Patrick Jaillet

Dugald C. Jackson Professor, Department of Electrical Engineering and
Computer Science

Co-Director, Operations Research Center

2

Statistical Learning for Decision Making: Interpretability,

Uncertainty, and Inference

by

Benjamin Letham

Submitted to the Sloan School of Management
on May 12, 2015, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Operations Research

Abstract

Data and predictive modeling are an increasingly important part of decision making.
Here we present advances in several areas of statistical learning that are important for
gaining insight from large amounts of data, and ultimately using predictive models
to make better decisions.

The first part of the thesis develops methods and theory for constructing inter-
pretable models from association rules. Interpretability is important for decision
makers to understand why a prediction is made. First we show how linear mixtures
of rules can be used to make sequential predictions. Then we develop Bayesian Rule
Lists, a method for learning small, ordered lists of rules. We apply Bayesian Rule
Lists to a large database of patient medical histories and produce a simple, inter-
pretable model that solves an important problem in healthcare, with little sacrifice
to accuracy. Finally, we prove a uniform generalization bound for decision lists.

In the second part of the thesis we focus on decision making from sales transac-
tion data. We develop models and inference procedures for using transaction data
to estimate quantities such as willingness-to-pay and lost sales due to stock unavail-
ability. We develop a copula estimation procedure for making optimal bundle pricing
decisions. We then develop a Bayesian hierarchical model for inferring demand and
substitution behaviors from transaction data with stockouts. We show how posterior
sampling can be used to directly incorporate model uncertainty into the decisions
that will be made using the model.

In the third part of the thesis we propose a method for aggregating relevant
information from across the Internet to facilitate informed decision making. Our con-
tributions here include an important theoretical result for Bayesian Sets, a popular
method for identifying data that are similar to seed examples. We provide a gener-
alization bound that holds for any data distribution, and moreover is independent
of the dimensionality of the feature space. This result justifies the use of Bayesian
Sets on high-dimensional problems, and also explains its good performance in settings
where its underlying independence assumption does not hold.

3

Thesis Supervisor: Cynthia Rudin
Title: Associate Professor of Statistics

4

Acknowledgments

Thanks first to Cynthia Rudin for five years of advising. I came to MIT because I

wanted to work with her, and it was as great as I hoped it would be. Thanks for

giving me freedom to work on whatever research problem I was interested in and for

being very supportive.

Thanks to Roy Welsch and Itai Ashlagi for being on my thesis committee, and

my general exam committee before that. I’ve enjoyed our discussions over the years.

Thanks to the many colleagues and collaborators at MIT and elsewhere who have

supported my research and given me inspiration. Thanks to Ed Browne for asking

some hard questions that ended up inspiring some fun research. Thanks to all of my

coauthors the last 5 years, in particular David Madigan, who played an important

role in my first research project at MIT, and others since.

Thanks to friends and family. I immensely enjoyed doing research with Lydia and

Portia. Thanks to my parents. Thanks to all of the friends who made us feel like

family. Thanks to Matt and SalleeAnn, who helped keep me focused on the impact

I can have on humanity.

And thanks most of all to Sharla, who made this thesis even more fun than the

last.

5

6

Contents

1 Introduction and Contributions 19

2 Weighted Association Rules and Sequential Events 25

2.1 Sequential Event Prediction . 29

2.2 Empirical Risk Minimization . 30

2.2.1 The One-Stage Model . 31

2.2.2 The ML-Constrained Model 32

2.2.3 The General Loss Function . 33

2.2.4 Scalability . 34

2.2.5 Baseline Algorithms . 35

2.3 Application 1: Email Recipient Recommendation 36

2.4 Application 2: Patient Condition Prediction 39

2.5 Application 3: An Online Grocery Store Recommender System 44

2.5.1 Fitting a Sequential Prediction Model to an Unordered Set . . 45

2.5.2 Specifying the Loss Function 46

2.5.3 ERM for the Online Grocery Store Recommender System . . . 48

2.5.4 Experimental Results . 52

2.6 Related Work . 55

2.7 Conclusions . 58

3 Bayesian Association Rules and Decision Lists 59

3.1 Bayesian Rule Lists . 62

3.1.1 Bayesian Association Rules and Bayesian Decision Lists 62

7

3.1.2 Antecedent Mining . 63

3.1.3 Generative Model . 64

3.1.4 The Hierarchical Prior for Antecedent Lists 65

3.1.5 The Likelihood Function . 67

3.1.6 Markov Chain Monte Carlo Sampling 67

3.1.7 The Posterior Predictive Distribution and Point Estimates . . 68

3.2 Simulation Studies . 70

3.2.1 Simulated Data Sets . 70

3.2.2 A Deterministic Problem . 72

3.3 Stroke Prediction . 73

3.3.1 Additional Experiments . 77

3.4 Related Work and Discussion . 77

3.5 Conclusion . 80

4 Statistical Learning Theory and Association Rules 83

5 Decision Making from Sales Transaction Data: Bundle Pricing 89

5.1 Copula Inference and Bundle Pricing 91

5.1.1 Valuations and Consumer Rationality 91

5.1.2 Joint Distribution Models and Copula Inference 92

5.1.3 Margin Likelihood and Demand Models 94

5.1.4 Copula Inference over Latent Variables 95

5.1.5 Consistency and Scalability 97

5.1.6 Computing the Optimal Bundle Price 98

5.1.7 Distributional Assumptions 100

5.2 Simulation Studies . 101

5.3 Data Experiments . 104

5.4 Discussion and Conclusions . 106

6 Decision Making from Sales Transaction Data: Stockouts and De-

mand Estimation 109

8

6.0.1 Prior Work . 110

6.0.2 The Bayesian Approach . 112

6.1 A Generative Model for Transaction Data with Stockouts 113

6.1.1 The Data . 113

6.1.2 Modeling Customer Arrivals 114

6.1.3 Models for Substitution Behavior 116

6.1.4 Segments and Mixtures of Choice Models 118

6.1.5 The Likelihood Model . 119

6.1.6 Prior Distributions and the Log-Posterior 123

6.2 Stochastic Gradient MCMC Inference 124

6.2.1 The Expanded-Mean Parameterization 124

6.2.2 Riemannian Langevin Dynamics 125

6.3 Simulation Study . 126

6.3.1 Homogeneous Rate and Exogenous Choice 126

6.3.2 Hill Rate and Exogenous Choice 128

6.3.3 Hill Rate and Nonparametric Choice 128

6.4 Data Experiments . 129

6.4.1 Inferring Demand for Breakfast Pastries 131

6.4.2 Inferring Demand for Cookies 133

6.4.3 An Evaluation of Predictive Performance 134

6.4.4 Lost Sales Due to Stockouts 136

6.5 Discussion . 138

7 Bayesian Sets and Information Retrieval 141

7.1 Algorithm for Retrieval and Aggregation 142

7.2 Generalization Bounds for Bayesian Sets 149

7.3 Algorithmic Stability and Bayesian Sets 152

7.3.1 The Effect of the Prior on Generalization. 161

7.3.2 Bayesian Sets and Uniform Stability. 163

7.4 Experiments . 164

9

7.4.1 Wikipedia Gold Standard Lists 164

7.4.2 Experimental Analysis of Algorithm Steps 167

7.4.3 Open-Ended Experiments . 169

7.5 Related Work . 174

7.6 Conclusions . 180

10

List of Figures

2-1 An illustration of the online grocery store recommender system, in

which items from an unordered shopping list are sequentially added to

the user’s basket. At each time step, the set of items in the basket is

used to predict future items that will be added. 28

2-2 An illustration of the medical condition prediction problem, in which

collections of medical conditions occur at various time steps. At each

time step, we use past collections of conditions to predict conditions

that will subsequently be presented. 28

2-3 Training and test errors for email recipient recommendation. 38

2-4 Mean average precision for email recipient recommendation. Larger

numbers indicate better performance. 39

2-5 An example of fitted model variables for the ten most frequent con-

ditions in the patient condition prediction problem, for the one-stage

and ML-constrained models, together with the association rule confi-

dence matrix. This figure illustrates the differences between the fitted

variables of the two models. Row 𝑎 column 𝑏 is: Conf(𝑎 → 𝑏) for

association rules; 𝜇𝑎P̂(𝑏|𝑎) for the ML-constrained model; and 𝜆𝑎,𝑏 for

the one-stage model. Abbreviated symptoms are Nutritional support

(Nutr. supp.), Hypercholesterolaemia (HCL), Vitamin supplementa-

tion (Vit. suppl.), Gastroeophageal reflux disease (GERD), Hormone

replacement therapy (HRT), and Hypothyroidism (Hypothyr.). 42

2-6 Training and test errors for patient condition prediction. 44

11

2-7 An illustration of how the model variables can be partitioned into re-

gions that lead to different orderings of the items in each shopping

basket. The borders between regions correspond to selections of model

variables for which the argmax in (2.11) is not unique, i.e., there is a

tie. The regions are polyhedral, and the objective function is convex

over each region but discontinuous at the borders. 49

2-8 List loss training and test errors for the online grocery store recom-

mender system. 54

2-9 Item loss training and test errors for the online grocery store recom-

mender system. 54

3-1 Decision list for Titanic. In parentheses is the 95% credible interval

for the survival probability. 60

3-2 (a) Average Levenshtein distance from posterior samples to the true

decision list, for differing numbers of observations. The black solid line

indicates the median value across the 100 simulated datasets of each

size, and the gray dashed lines indicate the first and third quartiles.

(b) The proportion of posterior samples with the specified distance to

the true decision list, for a randomly selected simulation with 𝑛 = 100

observations and a randomly selected simulation with 𝑛 = 5000. . . . 71

3-3 Decision list for determining 1-year stroke risk following diagnosis of

atrial fibrillation from patient medical history. The risk given is the

mean of the posterior consequent distribution, and in parentheses is

the 95% credible interval. 75

3-4 ROC curves for stroke prediction on the MDCD database for each of

5 folds of cross-validation, for the BRL point estimate, CHADS2, and

CHA2DS2-VASc. 76

12

5-1 Convergence of both (A) margin parameters and (B) the correlation

coefficient to their true values as the number of simulated transactions

𝑇 is increased. In (A), the lines indicate the first and third quartiles

of the margin parameter errors across all simulations with the same

number of transactions 𝑇 . In (B), each pair of lines shows the first

and third quartiles of the estimated correlation coefficient 𝜑 across all

simulations with the corresponding values of 𝜑 and 𝑇 102

5-2 Demand models for each of the two items for one of the simulated

datasets. The circles give the empirical purchase probabilities mea-

sured from the data, and the lines show the fitted margin distribution

function. 102

5-3 Change in relative profits from introducing the bundle at a particular

discount relative to the sum of item prices, as estimated from the true

distribution, the fitted copula model, and a distribution using the fit

margins but assuming independence. 103

5-4 Fitted marginal distributions for items (A) 38, (B) 14, and (C) 08 from

the Ta-Feng retail transaction dataset. The underset histogram shows

the number of transactions for which the item was offered at each price.

For each price at which the item was offered, the circles indicate the

purchase probability at that price as measured from the data. The line

gives the model fit. 104

5-5 Copula predictive log-likelihood minus the independence model log-

likelihood, across 10 folds of cross-validation for each of the four bundles.106

5-6 Change in relative profits by introducing bundles (A) 38-14, (B) 38-

08, (C) 14-08, and (D) 38-14-08 as a function of the level of bundle

discount, estimated from the Ta-Feng dataset. In red is the prediction

obtained from the fitted copula model, and in blue is the prediction

obtained using the same fitted margins, but assuming independence. . 106

13

6-1 Normalized histograms of posterior samples of 𝜃𝜎1 for each of the three

stores used in the simulation. The vertical line indicates the true value. 127

6-2 Markers in the top panel show, for each randomly chosen value of 𝜂𝜎1
used in the set of simulations (3 stores × 10 simulations), the corre-

sponding estimate of the posterior mean. The bottom panel shows the

same result for each value of 𝜃𝜎𝑘 used (3 stores × 2 segments × 10

simulations). 127

6-3 Each gray line is the rate function evaluated using a 𝜂1 randomly

sampled from the posterior, with a total of 20 such samples. The blue

line is the true rate function for this simulation. 128

6-4 Posterior density for the non-zero segment proportions from a simu-

lation with nonparametric choice. The corresponding ordering 𝜑𝑘 is

given below each panel. 129

6-5 Each marker corresponds to the posterior distribution for 𝜃1𝑘 from a

simulation with the corresponding number of time periods, across the

3 values of 𝑘 where the true value equaled 0.33. The top panel shows the

posterior mean for each of the simulations across the different number

of time periods. The bottom panel shows the interquartile range (IQR)

of the posterior. 130

6-6 In black is a normalized histogram of the purchase times for the break-

fast pastries, across all 151 days. Each blue line is a posterior sample

for the model fit of this quantity, given in (6.7). 132

6-7 Normalized histograms of posterior samples for each segment propor-

tion, for the breakfast pastries with the nonparametric choice model.

The corresponding ordered list for each segment is indicated. 132

6-8 Normalized histogram of posterior samples of the exogenous choice

model substitution rate, for the breakfast pastry data. 133

6-9 A normalized histogram of purchase times for the cookies, across time

periods, along with posterior samples for the model’s corresponding

predicted purchase rate. 133

14

6-10 Normalized histogram of posterior samples of the exogenous choice

model substitution rate, for the cookie data. 134

6-11 Posterior densities for the number of purchases during test set intervals

with the indicated stock availability for items [bagel, scone, croissant].

The density in blue is for the nonparametric choice, red is for the

exogenous choice, and gray is for a homogeneous arrival rate with MNL

choice. The vertical line indicates the true value. 135

6-12 Posterior densities for the number of purchases during test set inter-

vals with the indicated stock availability for cookies [oatmeal, double

chocolate, chocolate chip]. The density in blue is for the nonparametric

choice, red is for the exogenous choice, and gray is for a homogeneous

arrival rate with MNL choice. The vertical line indicates the true value.136

6-13 For the cookie data, posterior densities for the number of purchases

during all periods, if there had been no stockouts. The blue density is

the result with the nonparametric choice model, and the red with the

exogenous. The vertical line indicates the number of purchases in the

data. 137

6-14 For the breakfast pastry data, posterior densities for the number of

purchases during all periods, if there had been no stockouts. The blue

density is the result with the nonparametric choice model, and the red

with the exogenous. The vertical line indicates the number of purchases

in the data. 138

7-1 The stability bound 𝜂 as a function of the prior 𝛾min, for fixed 𝑚 = 100

and 𝑝min = 0.001. For 𝛾min large enough relative to 𝑝min, stronger priors

yield tighter bounds. 162

7-2 (a) Precision@10 and (b) average precision across all 50 list growing

problems sampled from Wikipedia. The median is indicated in red. . 166

15

7-3 (a) Average precision across the Wikipedia gold standard problems

when extracting items using all tags (original implementation),

tags only, and <a> tags only. (b) The proportion of correct items

extracted during the Wikipedia gold standard experiments that were

found using a specific tag, for the six most commonly found tags. . . 168

7-4 Average precision across the Wikipedia gold standard problems when

(a) expanding the number of seed items used in scoring, and (b) re-

stricting the feature space construction to sites containing at least two

seed items, that is, sites found in source discovery. 169

16

List of Tables

3.1 Mean classification accuracy in the top row, with standard deviation

in the second row, for machine learning algorithms using 5 folds of

cross-validation on the Tic-Tac-Toe Endgame dataset. 73

3.2 Mean, and in parentheses standard deviation, of AUC and training

time across 5 folds of cross-validation for stroke prediction. Note that

the CHADS2 and CHA2DS2-VASc models are fixed, so no training time

is reported. 76

3.3 Mean, and in parentheses standard deviation, of AUC and training

time (mins) across 5 folds of cross-validation for stroke prediction . . 78

7.1 Items and the domain of their source sites from the top of the ranked

list for the Boston events experiment. Superscript numbers indicate

the iteration at which the item was added to the seed via implicit

feedback. “[...]” indicates the URL was truncated to fit in the figure.

To improve readability, duplicate items were grouped and placed in

italics. 170

7.2 Complete Google Sets results and top 25 Boo!Wa! results for the

Boston events experiment (seed italicized). Google Sets and our im-

plementation of our method return results all lower case, and in these

tables we have capitalized the first letter for aesthetics. Boo!Wa! re-

turns capitalized results, and we use here the capitalization that was

returned. 171

17

7.3 Items and their source domains from the top of the ranked list for the

Jewish foods experiment. 173

7.4 Complete Google Sets results and top 25 Boo!Wa! results for the Jew-

ish foods experiment (seed italicized). 174

7.5 Items and their source domains from the top of the ranked list for the

smartphone apps experiment. 175

7.6 Complete Google Sets results and top 25 Boo!Wa! results for the smart-

phone apps experiment (seed italicized). 176

7.7 Items and their source domains from the top of the ranked list for the

U.S. politicians experiment. 177

7.8 Complete Google Sets results and top 25 Boo!Wa! results for the U.S.

politicians experiment (seed italicized). 178

18

Chapter 1

Introduction and Contributions

Gaining insight and meaningful predictions from large amounts of data presents a

number of unique challenges and opportunities. In this thesis we present work on

several facets of predictive modeling that extend beyond the accuracy of the model.

These facets are important considerations when the ultimate purpose of learning the

model is to make better decisions, as it often is in practice.

We first study interpretability in predictive models. Interpretability is a crucial

property for a predictive model meant for decision making. Despite the wide avail-

ability of powerful learning algorithms such as AdaBoost and SVM, there are many

areas of practice in which domain experts still use simple, less accurate heuristics.

A notable example is in medicine, where decisions on various treatment options are

often made using extremely simple scoring models, typically built from a small set of

known risk factors and calibrated to a small sample of data. Doctors, and experts in

many other non-mathematical domains, are often not interested in black-box models

that they do not understand; they need to know why a particular decision is made.

The ability to decompose the decision into simple components that can be understood

by the domain expert can be more important than the performance gain achieved by

state-of-the-art machine learning algorithms over heuristics. In Chapters 2, 3, and

4, we provide new methods and theoretical results for constructing predictive models

based on association rules, which combine the power of statistical learning with the

interpretability of simple rules.

19

In Chapter 2 we develop an empirical risk minimization framework for learning

optimally weighted linear combinations of association rules, tailored for sequential

prediction tasks (Letham et al, 2013b). These association rule-based models prove to

be a natural approach for solving sequential prediction tasks, since they can be applied

to data examples with sequentially revealed features. The natural interpretability

that comes with association rules can also be important for using the model as a

recommender system, for which explanations can be important: We recommend item

𝑎 because you purchased item 𝑏. The learning procedure is formulated as a convex

minimization problem and can be applied to large datasets. We show that our ERM-

learned weighted rule models can significantly outperform a standard approach to item

recommendation (collaborative filtering) on three real-world problems: email recipient

recommendation, grocery item recommendation, and patient symptom prediction.

Thus we see that association rules can provide interpretability without sacrificing

accuracy.

Chapter 3 presents a different way of combining association rules to form a classi-

fier, again with the goal of producing an interpretable predictive model. Here we study

decision lists, in which rules are ordered and then chained together by if...elseif...

statements. We define a Bayesian association rule, which serves as the fundamental

unit for a Bayesian hierarchical model for learning short lists of rules from data called

Bayesian Rule Lists (Letham et al, 2015b). These models are particularly well-suited

for applications in medicine because the entire model can be expressed in a few rules

and a prediction can easily be made by hand, for instance by a doctor during a

visit with a patient. We used Bayesian Rule Lists to solve an important problem in

medicine: using a patient’s medical history to predict their 1-year stroke risk given

a diagnosis of atrial fibrillation. This prediction is usually made using an extremely

simple scoring system (CHADS2), that adds up points for a total of five features.

The outcome of the prediction is used to make an important decision: Should the

patient be put on blood thinners or not? This decision has real consequences for the

life of the patient, and as such transparency and interpretability of the model are

essential. Using a large database of patient medical histories, Bayesian Rule Lists

20

is able to produce a simple, interpretable collection of rules that has the predictive

power that comes with statistical learning but the same simplicity as the current

heuristics. The rule list has much better accuracy than CHADS2, as well as other

interpretable approaches like decision trees. This work shows that our interpretable

models can achieve accuracy comparable to the state-of-the-art opaque models, on

real-sized datasets and using a reasonable amount of time for training.

Chapter 4 provides a theoretical result that connects the results of Chapters 2

and 3. Here we use the VC dimension from statistical learning theory to prove a

generalization bound for decision lists. The result is a uniform generalization bound,

which shows that expected performance of any decision list will not be too different

from the performance on the training data (Rudin et al, 2013). Interestingly, the same

bound also holds for the weighted linear rule combination models that we learned in

Chapter 2. This result suggests that these two approaches for combining association

rules into a predictive model should have similar generalization behavior.

In the following two chapters, Chapters 5 and 6, we turn our attention to deci-

sion making from sales transaction data. Large sales transaction datasets have the

potential to be useful in operations management decisions such as pricing and in-

ventory planning, however realizing that potential requires addressing several issues

specific to inference from transaction data. In Chapter 5 we develop a method for

using historical transaction data to predict the profit obtained by offering a bundle

discount for a collection of items (Letham et al, 2014). This prediction is important

for deciding what items to offer as a bundle, and at what discount. Predicting bundle

profits requires estimating the amount that customers are willing to pay for each of

the items in the bundle, as well as the correlations across items. Retail transaction

data do not directly reveal how much a customer was willing to pay - they tell only

whether or not the customer purchased the item at the offered price. We develop a

tractable and statistically consistent procedure for inferring willingness-to-pay that

uses a copula to estimate the correlations between items. The method scales to large

transaction databases, and, importantly, is naturally integrated with existing models

for demand estimation.

21

In Chapter 6 we address another way in which sales transaction data are often

censored: stockouts. Estimating demand is necessary to make decisions about pricing

and stocking, however in the presence of stockouts the observed sales might not reflect

the actual customer demand. The sales of the stocked out item might be lower than

the actual demand, and the sales of substitutable products might be higher than

their actual demands. In Chapter 6 we develop a Bayesian hierarchical model for

simultaneously inferring the underlying demand and customer substitution behavior

from sales transaction data (Letham et al, 2015a). In doing so we address another

facet of statistical learning that is important for decision making: incorporating model

uncertainty into the decision making process. Our Bayesian model includes a direct

measurement of its uncertainty, obtained via posterior sampling. We show how this

uncertainty can be directly incorporated into the estimation of derivative quantities,

such as the lost sales due to stock unavailability, thus leading to better informed

decisions.

Finally, in Chapter 7 we present a new approach for a certain type of information

retrieval called web-based set expansion. When making a decision it may be important

to have complete information on a given topic. It is easy to find expert knowledge

on the Internet on almost any topic, but obtaining a complete overview of a given

topic while avoiding extraneous information is not always easy: Information can be

scattered across many sources and must be aggregated to be useful. We introduce a

method for intelligently growing a list of relevant items, starting from a small seed of

examples (Letham et al, 2013a). This is done by finding relevant lists of information

across the Internet and aggregating them to produce a single, complete list. We show

that in practice our approach significantly outperforms existing solutions, and we also

provide important theoretical results. The core of our method is an algorithm called

Bayesian Sets, which is used to determine if scraped items are related to the seed

examples. We prove a generalization bound for Bayesian Sets, showing that with

high probability the score of relevant items is close to the score of the seed examples.

The result is remarkable inasmuch as it does not depend on the number of features

used for the scoring. The bound provides a powerful justification for using Bayesian

22

Sets in high-dimensional settings.

This thesis includes contributions to several areas of statistical learning that are

important for decision making. Our methods for producing interpretable predictive

models from association rules, particularly the Bayesian Rule Lists of Chapter 3, have

the potential for significant impact in domains that have been slow to adopt modern

machine learning methods due to their opacity. We hope that Bayesian Rule Lists

will replace decision tree algorithms like CART as the standard approach for learning

simple classification models. Our work on inference from sales transaction data lays a

foundation for leveraging this ubiquitous data source for making better revenue man-

agement decisions. Through Bayesian modeling and posterior sampling we encourage

incorporating model uncertainty directly into the decision making process, leading to

decisions that are less sensitive to possible overfitting. Finally, our advances in set

expansion provide both practical tools and theoretical underpinnings for future work

in information retrieval.

23

24

Chapter 2

Weighted Association Rules and

Sequential Events

Given a collection of mined association rules, how should we use these rules to build

a predictive model? In this chapter, we present optimization-based algorithms for

learning a weighted linear combination of association rules for sequential event pre-

diction. Here sequential event prediction refers to a wide class of problems in which

a set of initially hidden events are sequentially revealed. The goal is to use the set

of revealed events, but not necessarily their order, to predict the remaining (hidden)

events in the sequence. We have access to a “sequence database" of past event se-

quences that we can use to design the predictions. Predictions for the next event are

updated each time a new event is revealed. There are many examples of sequential

prediction problems. Medical conditions occur over a timeline, and the conditions

that the patient has experienced in the past can be used to predict conditions that

will come (McCormick et al, 2012). Music recommender systems, e.g. Pandora, use a

set of songs for which the user has revealed his or her preference to construct a suit-

able playlist. The playlist is modified as new preferences are revealed. Online grocery

stores such as Fresh Direct (in NYC) use the customer’s current shopping cart to

recommend other items. The recommendations are updated as items are added to

the basket. Motivated by this application, “sequential event prediction" was formal-

ized by Rudin et al (2011, 2013), who created a theoretical foundation along with

25

some simple algorithms based on association rules. The algorithms we develop in this

chapter are based on the principle of empirical risk minimization (ERM). We apply

our algorithms to data from three applications: an online grocery store recommender

system, email recipient recommendation, and medical condition prediction.

Recommender systems are a particularly interesting example of sequential event

prediction because the predictions are expected to influence the sequence (Senecal and

Nantel, 2004, for example), and it may be important to take this into account. For

instance, there has recently been work showing that measurements of user behavior

can be used to improve search engine rankings (Agichtein et al, 2006a,b). For an

online grocery store recommender system, items are added to the basket one at a

time. The customer may not have an explicit preference for the order in which items

are added, rather he or she may add items in whichever order is most convenient. In

particular, the customer may add items in the order provided by the recommender

system, which means the predictions actually alter the sequence in which events

appear. Our formulation allows for models of user behavior to be incorporated while

we learn the recommender system.

The same formulation used for the online grocery store recommender system can

be directly applied to email recipient recommendation. Given a partial list of recip-

ients on an email, we wish to predict the remaining recipients. An email recipient

recommendation algorithm can be a very useful tool; an algorithm for this purpose

was recently implemented on a very large scale by Google and is integrated into the

Gmail system used by millions of people (Roth et al, 2010).

Medical condition prediction is a new yet active area of research in data mining

(Davis et al, 2010; McCormick et al, 2012). Accurate predictions of subsequent patient

conditions will allow for better preventative medicine, increased quality of life, and

reduced healthcare costs. Rather than a sequence of single items, the data comprise

a sequence of sets of conditions. Our formulation can handle sequences of sets, and

we apply it to a medical dataset consisting of individual patient histories.

The sequential event prediction problems we consider here are different from time-

series prediction problems, that one might handle with a Markov chain. For instance,

26

the online grocery store recommender system problem has no intrinsic order in which

groceries should be added to the basket, and in email recipient recommendation the

order of the addresses is likely of little importance. Only the set of past items are

useful for predicting the remaining sequence. Figure 2-1 gives an illustration of this

point using the online grocery store recommender system. For instance, at time

𝑡 = 2, apples and cherries are in the basket and are together used to predict what

will be added next. The fact that apples were added before cherries is not necessarily

useful. In the medical condition prediction problem, collections of conditions occur

at different time steps, and we use all past collections of conditions to predict the

next collection. Figure 2-2 shows a sequence of these collections of conditions as

they occur over time. For instance, at time 𝑡 = 1, we use the entire collection of

conditions {Hypertension, Sore throat, Gastric Ulcer} to make a prediction about

the next collection. At time 𝑡 = 2, we use the two collections {Hypertension, Sore

Throat, Gastric Ulcer} and {Hypertension, Influenza} to make a prediction about

the following time step. The collections of conditions occur sequentially in a certain

order, however each collection is itself an unordered set of conditions. For example, it

might not be sensible at 𝑡 = 3 to say that elevated cholesterol preceded Headache. On

the surface, the online grocery store recommender system and the medical condition

prediction problem seem quite different, but the methodology we develop for each

problem derives from a general formulation which could be adapted to a wide range

of other sequential event prediction problems.

We treat each step of sequential event prediction as a supervised ranking problem.

Given a set of revealed events from the current sequence, our algorithms rank all

other possible events according to their likelihood of being a subsequent event in the

sequence. The accuracy of our prediction is determined by how far down the list we

need to look in order to find the next item(s) to be added.

Section 2.1 gives a formal introduction to sequential event prediction and provides

the notation that we will use throughout the paper. Section 2.2 presents our ERM-

based method for sequential event prediction. In Section 2.3 we apply the ERM-based

algorithms to email recipient recommendation, in which the sequence is one of email

27

t = 1 t = 2 t = 3 t = 4 t = 5

Figure 2-1: An illustration of the online grocery store recommender system, in which
items from an unordered shopping list are sequentially added to the user’s basket. At
each time step, the set of items in the basket is used to predict future items that will
be added.

t = 1 t = 2 t = 3 t = 4

Hypertension
Headache

Cholesterol levels
raised

Gastric ulcer
Influenza

Sore throat
Hypertension

Hypertension

Hypercholesterolemia

Hypertension

Figure 2-2: An illustration of the medical condition prediction problem, in which
collections of medical conditions occur at various time steps. At each time step,
we use past collections of conditions to predict conditions that will subsequently be
presented.

28

addresses. In Section 2.4 we study patient condition prediction, and the sequences

are of sets of medical conditions. The third and final application is in Section 2.5,

where we apply our methods to an online grocery store recommender system. In that

application we allow the recommendations to influence the order of the sequence,

and provide algorithms for performing ERM. Our approach synthesizes ideas from

supervised ranking in machine learning, convex optimization, and customer behavior

modeling to produce flexible and powerful methods that can be used broadly for

sequential event prediction problems.

2.1 Sequential Event Prediction

We begin by presenting the formal framework and notation of sequential event pre-

diction problems, and discussing previously developed algorithms for sequential event

prediction based on association rules.

We suppose that we have access to a collection of 𝑚 sequences, which in our

applications would be 𝑚 visits from a grocery store customer, 𝑚 emails, or 𝑚 patient

histories. The items in the sequence (e.g., grocery items, email addresses, or medical

conditions) come from a library of 𝑁 items, 𝒵 being the set of these items. Sequence

𝑖 in the sequence database (e.g., visit 𝑖, email 𝑖, or patient 𝑖) includes a total of

𝑇𝑖 time steps, with items (or sets of items) occurring in the sequence at time steps

𝑡 = 1, . . . , 𝑇𝑖. The item (or set of items) added to the sequence at time 𝑡 is denoted

𝑧𝑖,𝑡. As illustrated in Figure 2-2, each step in the sequence may be a set of items

and thus we consider 𝑧𝑖,𝑡 to be a set in general. In many applications, such as the

online grocery store recommender system and email recipient recommendation, 𝑧𝑖,𝑡

will contain only one item. The observed part of the sequence at time 𝑡 is denoted

𝑥𝑖,𝑡 = {𝑧𝑖,𝑗}𝑗=1,...,𝑡. The full sequence, 𝑥𝑖,𝑇𝑖
, is denoted 𝑋𝑖. We denote the collection

of 𝑚 training sequences as 𝑋𝑚
1 .

It is not clear how to adapt standard modeling techniques (e.g., logistic regression)

to sequential event prediction problems because they estimate full probabilities rather

than partial probabilities. The difficulties in using regression for sequential event

29

prediction are discussed in detail by Rudin et al (2013), where we propose algorithms

for sequential event prediction based on association rules.

Association rules have the advantage of being able to model the conditional prob-

abilities directly. In this context, an association rule is a rule “𝑎→ 𝑏,” meaning that

itemset 𝑎 in the sequence implies item 𝑏 is also in the sequence. We define the confi-

dence of rule “𝑎→ 𝑏” to be the proportion of training sequences with itemset 𝑎 that

also have item 𝑏: Conf(𝑎 → 𝑏) = P̂(𝑏|𝑎) = #(𝑎 and 𝑏)
#𝑎

. A natural strategy for using

association rules for sequential event prediction is to: 0) Specify a set 𝒜 of allowed

itemsets. 1) Form all rules with left-hand side (antecedent) 𝑎 an allowed itemset in

the observed portion of the sequence and right-hand side 𝑏 a potential future item in

the sequence. 2) For each right-hand side 𝑏, find the rule with the maximum confi-

dence. 3) Rank the right-hand sides (potential future items in the sequence) in order

of descending confidence, and use this ranked list for predictions. This is the “max-

confidence" algorithm, used throughout the association rule literature and applied to

sequential event prediction by Rudin et al (2013).

In this work, we develop a framework for using ERM techniques in sequential

event prediction. The ERM-based algorithms give increased flexibility over the max-

confidence association rule algorithms by allowing the loss function to be tailored

to the requirements of the specific application, and the ERM learning procedure

leads to better predictions. Rather than making a prediction using the single rule

with maximum confidence, we will make a prediction using an optimally weighted

combination of all of the association rules.

2.2 Empirical Risk Minimization

We present a general framework for using ERM in sequential event prediction, and

then show how the framework can be specified to specific applications by presenting

email recipient recommendation, the online grocery store recommender system, and

medical condition prediction as case studies.

The core of our ERM-based approach to sequential event prediction is a ranking

30

model of the relationship between items in the observed part of the sequence and

potential future items. The ranking model is a scoring function 𝑓(𝑥𝑖,𝑡, 𝑏) that, given

the observed part of the sequence 𝑥𝑖,𝑡, scores each item 𝑏 ∈ 𝒵 according to the

predicted likelihood that it is a future item in the sequence. Ideally we would like

𝑓(𝑥𝑖,𝑡, 𝑏) to be related to P(𝑏|𝑥𝑖,𝑡), the conditional probability of item 𝑏 being in the

sequence given that the items in 𝑥𝑖,𝑡 are in the sequence. The predictions will be

made by ordering the items in descending score, so we need only that 𝑓(𝑥𝑖,𝑡, 𝑏) is

monotonically related to P(𝑏|𝑥𝑖,𝑡) in order for the predictions to be accurate. We

present here two possible scoring models, which we call the one-stage model and the

ML-constrained model.

2.2.1 The One-Stage Model

Our first scoring model relies on a set of real-valued variables {𝜆𝑎,𝑏}𝑎,𝑏 to model the

influence that rule antecedent (itemset) 𝑎 has on the likelihood that item 𝑏 will be

in the sequence, for each itemset-item pair that we are willing to consider. We let

𝒜 be the allowed set of itemsets, and we introduce a variable 𝜆𝑎,𝑏 for every 𝑎 ∈ 𝒜

and for every 𝑏 ∈ 𝒵 (that is, for every association rule). We require ∅ ∈ 𝒜 so that

every (partial) sequence contains at least one itemset from 𝒜. If itemset 𝑎 and item

𝑏 are likely to be present in the sequence together, 𝜆𝑎,𝑏 will be large and positive.

Also, 𝜆𝑎,𝑏 can be negative in order to model negative correlations between items that

are not generally found in the same sequence. The influences of the itemsets in the

observed part of the sequence are combined linearly to yield the score for a given

item. For example, suppose the observed sequence is 𝑥𝑖,𝑡 = {𝑎1, 𝑎2} and 𝒜 = ∅ ∪ 𝒵.

In other words, 𝒜 includes the empty itemset and all itemsets consisting of a single

item. Item 𝑏 is then scored as 𝑓({𝑎1, 𝑎2}, 𝑏; �⃗�) = 𝜆∅,𝑏 + 𝜆𝑎1,𝑏 + 𝜆𝑎2,𝑏. For a general

observed sequence 𝑥𝑖,𝑡, the score of item 𝑏 is:

𝑓(𝑥𝑖,𝑡, 𝑏; �⃗�) := 𝜆∅,𝑏 +
𝑡∑︁

𝑗=1

∑︁
𝑎⊆𝑧𝑖,𝑗
𝑎∈𝒜∖∅

𝜆𝑎,𝑏. (2.1)

31

In applications such as medical condition prediction, events in the sequence that are

far in the past may be less influential than recent events. The effect of time can be

incorporated into (2.1) by inserting a weighting factor before the inner sum that is

inversely proportional to the elapsed time since sequence step 𝑗. In some applications,

it may be important to capture nonlinear effects of combinations of items. Feature

variables for those combinations of items, such as 𝜆{𝑎 and 𝑏},𝑐, allow the model to

express more complex inter-item relationships while maintaining the computational

benefits of a linear model. Any antecedent discovered by the rule-mining algorithm

can be used as a feature variable.

We call this the one-stage model because all of the variables �⃗� are fit simultane-

ously in a single optimization problem. The model uses a total of |𝒜|𝑁 variables:

�⃗� ∈ R
|𝒜|𝑁 . A straightforward implementation is to take 𝒜 as itemsets of size less

than or equal to 1, which is 𝒜 = ∅ ∪ 𝒵. The itemsets of size 1 give variables 𝜆𝑎,𝑏

∀𝑎, 𝑏 ∈ 𝒵 that describe pairwise influences between items. The empty itemset gives

rise to “base" scores 𝜆∅,𝑏 that model the likelihood of choosing item 𝑏 in the absence of

any information about the sequence. In this implementation, the number of variables

is |𝒜|𝑁 = 𝑁2 +𝑁 .

The dimensionality of the problem can be controlled by limiting the set |𝒜|, for

instance using a maximum itemset size or a minimum support requirement, where

elements of 𝒜 must be found often enough in the dataset. Alternatively, the dimen-

sionality of the problem could be reduced by separating items into categories and

using 𝜆𝐴,𝑏 to model the influence of having any item from category 𝐴 on item 𝑏. For

example, 𝑎1 and 𝑎2 could represent individual flavors of ice cream, and 𝐴 the category

“ice cream." The choice of which itemsets to consider is a feature selection (or model

selection) problem.

2.2.2 The ML-Constrained Model

Our second model, the ML-constrained model, reduces the dimensionality by, for

every non-empty itemset 𝑎, forcing each 𝜆𝑎,𝑏 to be proportional to P̂(𝑏|𝑎), the maxi-

mum likelihood (ML) estimate of the conditional probability of having item 𝑏 in the

32

sequence given that itemset 𝑎 is in the sequence. Specifically, we set

𝜆𝑎,𝑏 = 𝜇𝑎P̂(𝑏|𝑎)

where 𝜇𝑎 is a free variable that does not depend on 𝑏. P̂(𝑏|𝑎) is estimated directly

from the training data, prior to any optimization for model fitting, as described in

Section 2.1. Then, the ML-constrained model is:

𝑓ML(𝑥𝑖,𝑡, 𝑏; �⃗�∅, �⃗�) := �⃗�∅,𝑏 +
𝑡∑︁

𝑗=1

∑︁
𝑎⊆𝑧𝑖,𝑗
𝑎∈𝒜∖∅

𝜇𝑎P̂(𝑏|𝑎), (2.2)

To use this strategy, we first compute the ML estimates of the conditional proba-

bilities. Then the 𝑁 base scores 𝜆∅,𝑏 and the |𝒜| proportionality coefficients 𝜇𝑎 are

fit during ERM, for an optimization problem on |𝒜| + 𝑁 variables. Appropriate re-

strictions on |𝒜| (for example, itemsets of size less than or equal to 1) lead to an

optimization problem over 𝑂(𝑁) variables.

2.2.3 The General Loss Function

We use the training set and the ERM principle to fit vector �⃗�. For the sequence 𝑖 at

time step 𝑡, we define a set of items 𝐿𝑖,𝑡 ⊂ 𝒵 that should be ranked strictly higher

than some other set of items 𝐾𝑖,𝑡 ⊂ 𝒵. For instance, 𝐿𝑖,𝑡 might be the remaining

items in the sequence and 𝐾𝑖,𝑡 might be items not in the sequence. The value of the

loss function depends on how much this is violated; specifically, we lose a point every

time an item in 𝐾𝑖,𝑡 is ranked above an item in 𝐿𝑖,𝑡. We will subsequently explore

different definitions of 𝐿𝑖,𝑡 and 𝐾𝑖,𝑡 appropriate for our specific applications. The

most general loss function, evaluated on the training set of 𝑚 sequences, is:

𝑅0-1(𝑓,𝑋
𝑚
1 ; �⃗�) :=

1

𝑚

𝑚∑︁
𝑖=1

𝑇𝑖−1∑︁
𝑡=0

1

𝑇𝑖

1

|𝐾𝑖,𝑡|
1

|𝐿𝑖,𝑡|
∑︁
𝑙∈𝐿𝑖,𝑡

∑︁
𝑘∈𝐾𝑖,𝑡

1[𝑓(𝑥𝑖,𝑡,𝑘;�⃗�)≥𝑓(𝑥𝑖,𝑡,𝑙;�⃗�)]
. (2.3)

In our algorithms, we use the exponential loss (used in boosting), a smooth upper

33

bound on 𝑅0-1. Specifically, we use that 1[𝑏≥𝑎] ≤ 𝑒𝑏−𝑎, and add an ℓ2-norm regular-

ization term:

𝑅exp(𝑓,𝑋𝑚
1 ; �⃗�) :=

1

𝑚

𝑚∑︁
𝑖=1

𝑇𝑖−1∑︁
𝑡=0

1

𝑇𝑖

1

|𝐾𝑖,𝑡|
1

|𝐿𝑖,𝑡|
∑︁
𝑙∈𝐿𝑖,𝑡

∑︁
𝑘∈𝐾𝑖,𝑡

𝑒𝑓(𝑥𝑖,𝑡,𝑘;�⃗�)−𝑓(𝑥𝑖,𝑡,𝑙;�⃗�) + 𝛽||�⃗�||22,

(2.4)

where 𝛽 is a parameter that determines the amount of regularization. Minimizing the

loss function in (2.4) will produce model parameters �⃗� that make accurate predictions

across the sequence. Although we expressed these loss functions using 𝑓 and �⃗� as

with the one-stage model, they apply directly to the ML-constrained model 𝑓ML and

its parameters �⃗�∅ and �⃗�.

2.2.4 Scalability

In most cases, such as our email recipient recommendation and patient condition

prediction examples, the loss function 𝑅exp in (2.4) is convex in �⃗� and thus fitting

the scoring model to data requires only convex minimization in |𝒜|𝑁 variables for

the one-stage model, or |𝒜| + 𝑁 variables for the ML-constrained model. There

are a number of efficient algorithms for convex minimization whose scalability has

been addressed (Bertsekas, 1995). Our ERM-based algorithms inherit the scalability

of whichever convex minimization algorithm is used for model fitting, subject to

the dimensionality of the chosen model. Our examples show that the ERM-based

algorithms can be applied to real datasets with thousands of sequences and millions

of model variables. In our online grocery store recommendation example, we consider

a situation where the sequence order depends directly on the recommendations. In

this case the loss function is not convex, however we present algorithms based on

convex programming and gradient descent. Variants of gradient descent, particularly

stochastic gradient descent, are known to have excellent scalability properties in large-

scale learning problems (Bottou, 2010).

34

2.2.5 Baseline Algorithms

In our experiments we compare the performance of our ERM-based algorithms to

two baselines: the max-confidence association rule algorithm described in Section

2.1 and an item-based collaborative filtering algorithm. We use cosine similarity

item-based collaborative filtering (Sarwar et al, 2001) as a baseline method. Cosine

similarity is intended for a setting in which user 𝑖 applies a rating 𝑅𝑖,𝑏 to item 𝑏.

To adapt it to sequential recommendations, we let 𝑅𝑖,𝑏 = 1 if sequence 𝑖 contains

item 𝑏, and 0 otherwise. For each item 𝑏, we construct the binary “ratings" vector

�⃗�𝑏 = [𝑅1,𝑏, . . . , 𝑅𝑚,𝑏] and then compute the cosine similarity between every pair of

items 𝑎 and 𝑏:

𝑠𝑖𝑚(𝑎, 𝑏) =
�⃗�𝑎 · �⃗�𝑏

||�⃗�𝑎||2||�⃗�𝑏||2
.

For each item 𝑏, we define the neighborhood of 𝑏, Nbhd(𝑏; 𝑘), as the 𝑘 most similar

items to 𝑏. To make a prediction from a partial sequence 𝑥𝑖,𝑡, we score each item 𝑏

by adding the similarities for all of the observed items in the sequence that are also

in the neighborhood of 𝑏, and normalizing:

𝑓𝑠𝑖𝑚(𝑥𝑖,𝑡, 𝑏; 𝑘) :=

∑︀
𝑎∈⋃︀𝑡

𝑗=1 𝑧𝑖,𝑗
⋂︀

Nbhd(𝑏;𝑘) 𝑠𝑖𝑚(𝑎, 𝑏)∑︀
𝑎∈Nbhd(𝑏;𝑘) 𝑠𝑖𝑚(𝑎, 𝑏)

. (2.5)

In Section 2.6, we discuss in depth why item-based collaborative filtering is not a

natural fit for sequential event prediction problems. Nevertheless, since it is com-

monly used for similar problems, we use it as a baseline in our experiments. In our

experiments, we used neighborhood sizes of 20, 40, and all items (Sarwar et al, 2001;

Herlocker et al, 1999). Any ties when determining the top 𝑘 most similar items were

broken randomly.

35

2.3 Application 1: Email Recipient Recommenda-

tion

In this application we study the sequence in which recipients are added to an email.

Given a partial set of recipients, the goal is to predict the remaining recipients. In

this application, each item in the sequence, 𝑧𝑖,𝑡, is a single email address. An email

recipient recommender system knows who the sender of the email is, thus we initialize

the sequence by setting 𝑧𝑖,0 as the address of the sender of email 𝑖. We then construct

the rest of the sequence using the 𝑇𝑖 addresses placed in the “To:" and “CC:" fields,

in the order that they appear in the email.

To apply our ERM-based algorithms to this application, we must specify the sets

𝐿𝑖,𝑡 and 𝐾𝑖,𝑡 used in the loss function. A natural goal for this problem setting is, at

each time step 𝑡, to attempt to rank all of the actual recipients that have not yet been

added higher than all of the non-recipients. This goal is expressed by taking

𝐿𝑖,𝑡 =

𝑇𝑖⋃︁
𝑗=𝑡+1

𝑧𝑖,𝑗 and 𝐾𝑖,𝑡 = 𝒵 ∖
𝑇𝑖⋃︁
𝑗=0

𝑧𝑖,𝑗.

We call this the list loss, as it tries to put the entire set of remaining recipients at the

top of the recommendation list. For notational convenience we define 𝑍𝑖 :=
⋃︀𝑇𝑖

𝑗=0 𝑧𝑖,𝑗

to be the complete collection of email addresses in the sequence. The general loss

function in (2.3) can then be rewritten

𝑅list
0-1(𝑓,𝑋

𝑚
1 ; �⃗�) :=

1

𝑚

𝑚∑︁
𝑖=1

𝑇𝑖−1∑︁
𝑡=0

1

𝑇𝑖(𝑁 − 𝑇𝑖)(𝑇𝑖 − 𝑡)

𝑇𝑖∑︁
𝑙=𝑡+1

∑︁
𝑘∈𝒵∖𝑍𝑖

1[𝑓(𝑥𝑖,𝑡,𝑘;�⃗�)≥𝑓(𝑥𝑖,𝑡,𝑧𝑖,𝑙;�⃗�)]

(2.7)

and (2.4) then becomes:

𝑅list
exp(𝑓,𝑋𝑚

1 ; �⃗�) :=

1

𝑚

𝑚∑︁
𝑖=1

𝑇𝑖−1∑︁
𝑡=0

1

𝑇𝑖(𝑁 − 𝑇𝑖)(𝑇𝑖 − 𝑡)

𝑇𝑖∑︁
𝑙=𝑡+1

∑︁
𝑘∈𝒵∖𝑍𝑖

𝑒𝑓(𝑥𝑖,𝑡,𝑘;�⃗�)−𝑓(𝑥𝑖,𝑡,𝑧𝑖,𝑙;�⃗�) + 𝛽||�⃗�||22.

(2.8)

36

We applied our algorithm to the Enron email dataset, a collection of about 500,000

email messages from about 150 users (http://www.cs.cmu.edu/∼enron/). We limited

our experiments to the “sent" folders of the 6 users who had more than 2000 emails in

their “sent" folders and only considered emails with more than 2 recipients, yielding

a reduced dataset of 1845 emails with a total of 1200 unique recipients. The number

of recipients per email ranged from 3 to 6.

We evaluated algorithm performance across 10 iterations, each iteration using ran-

domly selected training and test sets of 500 emails each. For each iteration, we chose

the allowed itemsets (features) 𝒜 by applying the FP-Growth algorithm (Borgelt,

2005), a frequent itemset mining algorithm, to the training set. We mined itemsets of

size up to 4, with a minimum support requirement of 3 emails. The median number

of allowed itemsets across the 10 iterations was 625.5 (minimum 562, maximum 649),

including the empty set. Thus the median number of variables in the one-stage model

was 750,600 (𝒜𝑁) and the median number of variables in the ML-constrained model

was 1,825.5 (𝒜 +𝑁).

We used the training and test sets to evaluate the performance of the one-stage

model, ML-constrained model, max-confidence association rules, and cosine similarity

item-based collaborative filtering methods. For our ERM-based algorithms, we found

�⃗� (or, �⃗�∅ and �⃗� for the ML-constrained model) that minimized (2.8) on the training

set using L-BFGS-B, the limited memory implementation of the Broyden-Fletcher-

Goldfarb-Shanno algorithm (Byrd et al, 1995; Zhu et al, 1997). We set the amount of

ℓ2-norm regularization, 𝛽, using 10-fold cross validation on each training set separately

with 𝛽 = 0, 0.001, 0.01, and 0.1. For both the one-stage model and the ML-constrained

model, for all iterations, 𝛽 = 0 minimized mean error over the validation sets and was

chosen. The minimum support requirement when choosing the itemsets serves as a

form of regularization, which may be why ℓ2-norm regularization was not necessary.

In Figure 2-3 we evaluated performance using the zero-one loss in (2.7). When

evaluating the test error in Figure 2-3, we excluded email addresses that were not

encountered in the training set because these recipients were impossible to predict

and resulted in a constant error for all methods. The results show that our ERM-

37

Train Test Train Test Train Test Train Test Train Test Train Test

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Tr

ai
ni

ng
 a

nd
 T

es
t E

rro
rs

Cosine
similarity, 20

Cosine
similarity, 40

Cosine
similarity, all

Max-conf.
assoc. rules

One-stage
model

ML-constrained
model

Figure 2-3: Training and test errors for email recipient recommendation.

based algorithms performed very well compared to the baseline algorithms. Cosine

similarity, at all neighborhood sizes, had a tendency to overfit the data, with much

higher test error than training error. The performance of the ML-constrained model

was very close to that of the one-stage model, despite using many fewer variables.

We additionally evaluated performance using mean average precision. Mean aver-

age precision is a combination of precision and recall that is frequently used to evalu-

ate ranking performance in information retrieval (Järvelin and Kekäläinen, 2000; Yue

et al, 2007). The average precision of a ranked list is the average of the precision

values computed at each of the relevant items. The average precision across many

ranked lists is averaged to obtain the mean average precision. We measured average

precision at each prediction (that is, each step in the sequence) and computed mean

average precision by averaging over both time steps and sequences. We followed the

procedure of McSherry and Najork (2008) to account for the presence of ties in the

ranked lists. Figure 2-4 shows the mean average precision for each of the 10 iterations.

Even though our methods were not optimized to maximize mean average precision,

they performed well relative to both max confidence association rules and cosine sim-

ilarity item-based collaborative filtering (shown in the figure only for the “all items"

neighborhood, which was the best performing neighborhood size).

38

Cosine Max-conf. One-stage ML-constrained
0.15

0.20

0.25

0.30

M
ea

n
Av

er
ag

e
Pr

ec
is

io
n

similarity, all assoc. rules model model

Figure 2-4: Mean average precision for email recipient recommendation. Larger num-
bers indicate better performance.

2.4 Application 2: Patient Condition Prediction

Here we tailor the formulation to patient condition prediction in the context of data

from a large clinical trial. In this trial, patients visited the doctor periodically and

reported all medical conditions for which they were taking medications. The names of

the medical conditions were taken from the Medical Dictionary for Regulatory Activi-

ties (MedDRA). The dataset includes activities such as vitamin supplementation and

flu shots as medical “conditions,” but mainly consists of conditions that are not vol-

untarily chosen by the patients. We chose to predict both voluntary and involuntary

conditions/activities.

In this application, each event in the sequence is a set of conditions, as opposed to

the single items in the email recipient recommendation application. The patient visits

are ordered in time, however, each visit itself consists of a set of symptoms which we

treat as unordered. Also, the same condition can occur at multiple visits throughout

the patient history, unlike email recipient recommendation, in which addresses are not

repeated in a sequence. Because of this, it is important to be able to predict condition

recurrence. We thus estimate P̂(𝑏|𝑎) used by the max-confidence association rule

algorithm and the ML-constrained model as the probability of having condition 𝑏 later

in the sequence given that 𝑎 has been observed in the sequence. In this application

it is not natural to make a prediction before the patient’s first visit (𝑡 = 0), thus we

39

make predictions only at visits 𝑡 = 1, . . . , 𝑇𝑖 − 1.

Some patients present chronic, pre-existing conditions that were present before

their first visit and persisted after their last visit. Common chronic, pre-existing

conditions include Hypertension (high blood pressure), Hypercholesterolaemia (high

cholesterol), and Asthma. It is possible for a condition to be chronic, pre-existing in

one patient, but not in another. For instance, some patients developed Hypertension

during the study, so Hypertension was not pre-existing in those patients. We denote

the set of chronic, pre-existing conditions for patient 𝑖 as 𝐶𝑖 ⊆ 𝒵, and place each

chronic, pre-existing condition in the set of conditions for each visit: 𝑐 ∈ 𝑧𝑖,𝑗 for all

𝑐 ∈ 𝐶𝑖, for 𝑗 = 1, . . . , 𝑇𝑖, and for all 𝑖. Chronic, pre-existing conditions were used

to make predictions for subsequent conditions, but we did not attempt to predict

them because predicting the recurrence of a chronic condition is trivial. We removed

chronic, pre-existing conditions from the loss function by defining 𝑧𝑖,𝑗 = 𝑧𝑖,𝑗 ∖𝐶𝑖 as the

set of reported conditions excluding chronic, pre-existing conditions. We then adapt

the framework of (2.3) and (2.4) for training by setting 𝐿𝑖,𝑡 = 𝑧𝑖,𝑡+1, the correct,

subsequent set of non-trivial conditions, and 𝐾𝑖,𝑡 = 𝒵 ∖ 𝑧𝑖,𝑡+1, all other possible

conditions. Then (2.3) becomes:

𝑅cond
0−1 (𝑓,𝑋𝑚

1 ; �⃗�) :=
1

𝑚

𝑚∑︁
𝑖=1

𝑇𝑖−1∑︁
𝑡=1

[︃
1

(𝑇𝑖 − 1)(𝑁 − |𝑧𝑖,𝑡+1|)
×

∑︁
𝑘∈𝒵∖𝑧𝑖,𝑡+1

∑︁
𝑙∈𝑧𝑖,𝑡+1

1

|𝑧𝑖,𝑡+1|
1[𝑓(𝑥𝑖,𝑡,𝑘;�⃗�)≥𝑓(𝑥𝑖,𝑡,𝑙;�⃗�)]

]︃
. (2.9)

If at a particular visit the only conditions reported were chronic, pre-existing condi-

tions, then 𝑧𝑖,𝑡+1 = ∅ and the inner most sum is simply not evaluated for that 𝑖 and 𝑡

to avoid dividing by zero with |𝑧𝑖,𝑡+1|. We further write (2.4) for this application as:

𝑅cond
exp (𝑓,𝑋𝑚

1 ; �⃗�) :=
1

𝑚

𝑚∑︁
𝑖=1

𝑇𝑖−1∑︁
𝑡=1

[︃
1

(𝑇𝑖 − 1)(𝑁 − |𝑧𝑖,𝑡+1|)
×

∑︁
𝑘∈𝒵∖𝑧𝑖,𝑡+1

∑︁
𝑙∈𝑧𝑖,𝑡+1

1

|𝑧𝑖,𝑡+1|
𝑒𝑓(𝑥𝑖,𝑡,𝑘;�⃗�)−𝑓(𝑥𝑖,𝑡,𝑙;�⃗�)

]︃
+ 𝛽||�⃗�||22. (2.10)

40

We used L-BFGS-B to minimize (2.10) to fit the one-stage and ML-constrained

models to the medical histories of 2433 patients. Each patient made multiple visits

to the doctor, at an average of 6.4 visits per patient (standard deviation, 3.0). At

each visit, multiple conditions were reported, with an average of 3.2 conditions per

visit (standard deviation, 2.0). We perform patient level predictions, meaning for

each patient we predict the conditions that the patient will experience in the future.

Conditions came from a library of 1864 possible conditions. We took 𝒜 as all itemsets

of size 1, plus the empty set. Fitting model variables required an optimization problem

on 3,476,360 variables for the one-stage model (𝑁2 +𝑁) and 3,728 variables for ML-

constrained model (2𝑁).

To illustrate the behavior of our models, and the differences between the one-stage

model and the ML-constrained model, in Figure 2-5 we show the model influence

variables corresponding to the ten most frequent conditions, fitted to a randomly

selected set of 2190 (= 0.9 × 2433) patients and normalized.

The association rule confidence matrix in Figure 2-5 shows Conf(𝑎 → 𝑏) for each

pair of items in row 𝑎 and column 𝑏, which is equivalent to the conditional probability

estimate P̂(𝑏|𝑎). The high confidence values on the diagonal indicate that the condi-

tional probability of having these conditions in the future given their past occurrence

is high. In many instances, but not all, these conditions are chronic, pre-existing con-

ditions. In addition to the high confidence values along the diagonal, the rules with

Hypertension and Nutritional support on the right-hand side have higher confidences,

in part because Hypertension and Nutritional support are the most common condi-

tions. The ML-constrained influence variables, 𝜇𝑎P̂(𝑏|𝑎), are obtained by weighting

each row 𝑎 of the association rule confidence matrix by 𝜇𝑎. However, the main features

of the ML-constrained model variables are different from those of the association rule

confidence matrix, and in fact the ML-constrained variables are similar to those of

the one-stage model, 𝜆𝑎,𝑏. With both models, the strength with which the recurrence

of a condition is predicted (the variables on the diagonal) is greatly reduced. This is

because in many instances these are chronic, pre-existing conditions, and so they are

excluded from the loss function and the model has no reason to predict them. For

41

Hy
po

th
yr

.
De

pr
es

sio
n

HR
T

GE
RD

Vi
t.

su
pp

l.
HC

L
Pr

op
hy

lax
is

He
ad

ac
he

Nu
tr.

 su
pp

.
Hy

pe
rte

ns
ion

Hypothyr.
Depression

HRT
GERD

Vit. suppl.
HCL

Prophylaxis
Headache

Nutr. supp.
Hypertension

Association rule confidence

Hy
po

th
yr

.
De

pr
es

sio
n

HR
T

GE
RD

Vi
t.

su
pp

l.
HC

L
Pr

op
hy

lax
is

He
ad

ac
he

Nu
tr.

 su
pp

.
Hy

pe
rte

ns
ion

Hypothyr.
Depression

HRT
GERD

Vit. suppl.
HCL

Prophylaxis
Headache

Nutr. supp.
Hypertension

ML-constrained model

Hy
po

th
yr

.
De

pr
es

sio
n

HR
T

GE
RD

Vi
t.

su
pp

l.
HC

L
Pr

op
hy

lax
is

He
ad

ac
he

Nu
tr.

 su
pp

.
Hy

pe
rte

ns
ion

Hypothyr.
Depression

HRT
GERD

Vit. suppl.
HCL

Prophylaxis
Headache

Nutr. supp.
Hypertension

One-stage model

0.1

0.2

0.3

0.4

>.5

Figure 2-5: An example of fitted model variables for the ten most frequent conditions
in the patient condition prediction problem, for the one-stage and ML-constrained
models, together with the association rule confidence matrix. This figure illustrates
the differences between the fitted variables of the two models. Row 𝑎 column 𝑏
is: Conf(𝑎 → 𝑏) for association rules; 𝜇𝑎P̂(𝑏|𝑎) for the ML-constrained model; and
𝜆𝑎,𝑏 for the one-stage model. Abbreviated symptoms are Nutritional support (Nutr.
supp.), Hypercholesterolaemia (HCL), Vitamin supplementation (Vit. suppl.), Gas-
troeophageal reflux disease (GERD), Hormone replacement therapy (HRT), and Hy-
pothyroidism (Hypothyr.).

42

both models, the variables along the top row show that Hypertension most strongly

predicts Hypercholesterolaemia, Prophylaxis, and Headache. Hypercholesterolaemia

(high cholesterol) is correlated with obesity, as is Hypertension, so they often occur

together. Prophylaxis is preventative medicine which in this context almost always

means taking medications, such as aspirin, to preempt heart problems. Hypertension

is a risk factor for heart problems, and so the connection with Prophylaxis is also

relevant. Finally, the frequency of Headaches is also known to increase with obesity

(Bigal et al, 2006). In our dataset, the reasons for Nutritional support are more varied

so it is difficult to interpret the relation between Nutritional support and Prophylaxis,

Headache, and Hypertension.

To evaluate the performance of the ERM-based algorithms, we performed ten

iterations of random sub-sampling with training and test sets each of 500 patients.

We applied the cosine similarity algorithm with varying neighborhood sizes (20, 40,

and all items), the max-confidence association rule algorithm, the one-stage model,

and the ML-constrained model. To set the amount of ℓ2-norm regularization in the

loss function, 𝛽, we did 10-fold cross validation on each training set separately with

𝛽 = 0.001, 0.005, 0.01, 0.05, and 0.1. We then set 𝛽 to the value that minimized

the mean error over the validation sets. With one-stage minimization, chosen values

of 𝛽 ranged from 0.001 to 0.05, with 𝛽 = 0.005 chosen most frequently. with ML-

constrained minimization 𝛽 = 0.01 was always chosen. The error on the training and

test sets was evaluated using (2.9), and boxplots of the results across all 10 iterations

are in Figure 2-6. When evaluating the test error in Figure 2-6, we excluded conditions

that were not encountered in the training set because these conditions were impossible

to predict and resulted in a constant error for all methods.

Our method, using both models, performed very well compared to the baselines,

which seem to have had an overfitting problem judging from the difference between

training and test results. The ML-constrained model used far fewer variables than

the one-stage model (about 3000 compared to about 3.5 million) and generalized well.

43

Train Test Train Test Train Test Train Test Train Test Train Test
0.0

0.1

0.2

0.3

0.4

0.5

Tr
ai

ni
ng

 a
nd

 T
es

t E
rro

rs

Cosine
similarity, 20

Cosine
similarity, 40

Cosine
similarity, all

Max-conf.
assoc. rules

One-stage
model

ML-constrained
model

Figure 2-6: Training and test errors for patient condition prediction.

2.5 Application 3: An Online Grocery Store Recom-

mender System

In this application a customer comes to the online grocery store with a shopping list,

and sequentially adds the items from his or her shopping list into a shopping basket.

The goal is to, at each time step, make predictions about the other items the customer

wishes to purchase. For the purpose of this paper, the recommender system is designed

to be a tool to assist the customer, i.e., there is no motive to recommend higher priced

items, promote sale items, etc., although these could be incorporated in an extended

version of our formulation. Similar to the email recipient recommendation application,

the sequence is of single, non-repeated items. The sequence is initialized as an empty

basket: 𝑧𝑖,0 = ∅. In this application we assume that the customer’s shopping list (the

collection of items that form the sequence) has no inherent order. Rather, we assume

that the order in which the customer adds items to the basket depends directly on

the recommendations made to the customer.

44

2.5.1 Fitting a Sequential Prediction Model to an Unordered

Set

Although the shopping list is unordered, the predictions at each time step depend

on the set of items that have already been added to the basket, and thus depend

indirectly on the order in which items are added to the basket. To fit the model

variables to the training data, we must impose an order for the items to be added

to the basket. Here we allow the predictions to influence the ordering of the items.

Specifically, we assume that the customer prefers convenience, in that the next item

added to the basket is the most highly recommended item on their shopping list. For

convenience, denote the contents of the basket at time 𝑡 as 𝑍𝑖,𝑡 :=
⋃︀𝑡

𝑗=1 𝑧𝑖,𝑗 and the

contents of the shopping list as 𝑍𝑖 :=
⋃︀𝑇𝑖

𝑗=1 𝑧𝑖,𝑗. We then order the items according

to:

𝑧𝑖,𝑡+1 ∈ argmax
𝑏∈𝑍𝑖∖𝑍𝑖,𝑡

𝑓(𝑥𝑖,𝑡, 𝑏; �⃗�). (2.11)

It may be that the argmax is not unique, i.e., there is a tie. Here we break ties

randomly to choose the next item. The order in which items are added to the basket

is a function of the model variables �⃗�. When fitting the model variables, we do

not order the items a priori, rather we allow the ordering to change during fitting,

together with the model variables. Our assumption in (2.11) could be replaced by

an application-specific model of user behavior; (2.11) is not an accurate assumption

for all applications. On the other hand, a recommender system trained using this

assumption has properties that are useful in real situations, as we discuss below.

We will train the machine learning model to minimize the loss function (2.4) with

respect to variables �⃗�, using (2.11). The qualitative effect of (2.11) is to put the items

that are (conditionally) more likely to be purchased into the basket sooner, while

leaving unlikely items for later. Once these items are in the basket, they will be used

for making the subsequent predictions. Thus the model variables that generally play

the largest role in the learning, and that are most accurately estimated, correspond

to items that are more likely to be purchased.

One could imagine training the model using all permutations of each shopping list

45

in the training set as an alternative to (2.11). As another alternative, one could ran-

domly permute the shopping lists and include only that ordering. Even though these

approaches potentially capture some realistic situations that our ordering assumption

does not, we argue that it is not a good idea to do either of these. First, the number

of possible permutations on even a moderately sized training set makes it computa-

tionally intractable to train using all possible permutations. Second, if the users do

adhere, even loosely, to a behavioral strategy such as our assumption in (2.11), the

model would be forced to fit many permutations that would rarely occur, and would

treat those rare situations as equally important to the ones more likely to occur. For

example, a randomly permuted shopping list could place conditionally unlikely items

at the beginning of the ordering. This could actually create bias against the correct

recommendations.

2.5.2 Specifying the Loss Function

In this application we use two loss functions. First, we use the list loss that was

defined in (2.7) and (2.8) for the email recipient recommendation. This loss function

has the goal of placing all of the items that remain on the shopping list at the top

of the recommendations. In some situations, however, we may not need the entire

shopping list near the top of the recommendations, rather we might need only that

one item from the shopping list is highly ranked. In this way, the loss associated with

a particular basket will depend only on the highest ranked item that is still on the

shopping list. We call this formulation the item loss. Under the item loss, a perfect

prediction would have at least one item on the shopping list ranked higher than all

items that are not on the shopping list:

max
𝑏∈𝑍𝑖∖𝑍𝑖,𝑡

𝑓(𝑥𝑖,𝑡, 𝑏; �⃗�) > 𝑓(𝑥𝑖,𝑡, 𝑘; �⃗�), for all 𝑘 ∈ 𝒵 ∖ 𝑍𝑖 and for all 𝑖 and 𝑡.

46

This can be realized using by taking 𝐿𝑖,𝑡 = arg max𝑙∈𝑍𝑖∖𝑍𝑖,𝑡
𝑓(𝑥𝑖,𝑡, 𝑙; �⃗�) and 𝐾𝑖,𝑡 =

𝒵 ∖ 𝑍𝑖. The general loss function in (2.3) then becomes

𝑅item
0-1 (𝑓,𝑋𝑚

1 ; �⃗�) :=
1

𝑚

𝑚∑︁
𝑖=1

𝑇𝑖−1∑︁
𝑡=0

1

𝑇𝑖(𝑁 − 𝑇𝑖)

∑︁
𝑘∈𝒵∖𝑍𝑖

1[𝑓(𝑥𝑖,𝑡,𝑘;�⃗�)≥max𝑙∈𝑍𝑖∖𝑍𝑖,𝑡
𝑓(𝑥𝑖,𝑡,𝑙;�⃗�)]

(2.12)

and (2.4) becomes

𝑅item
exp (𝑓,𝑋𝑚

1 ; �⃗�) :=
1

𝑚

𝑚∑︁
𝑖=1

𝑇𝑖−1∑︁
𝑡=0

1

𝑇𝑖(𝑁 − 𝑇𝑖)

∑︁
𝑘∈𝒵∖𝑍𝑖

𝑒
𝑓(𝑥𝑖,𝑡,𝑘;�⃗�)−max𝑙∈𝑍𝑖∖𝑍𝑖,𝑡

𝑓(𝑥𝑖,𝑡,𝑙;�⃗�) + 𝛽||�⃗�||22.

(2.13)

As an extreme example, suppose the recommendation list has a single item from

the shopping list at the top, and the rest of the shopping list at the bottom. The list

loss would be large, while the item loss would be small or zero. Qualitatively, item

loss forces a form of rank diversity which we will now discuss.

At the first time step 𝑡 = 0, there is no knowledge of the event sequence so the

same recommendation list will be used for all shopping lists. Let us consider how this

recommendation list might be constructed in order to achieve a low item loss for the

following collection of example shopping lists:

Shopping list 1: onion, garlic, beef, peppers

Shopping list 2: onion, garlic, chicken

Shopping list 3: onion, garlic, fish

Shopping list 4: onion, lemon

Shopping list 5: flour, oil, baking powder

Shopping list 6: flour, sugar, vanilla

In these shopping lists, the three most frequent items are onion, garlic, and flour. Us-

ing item loss, we incur loss for every shopping list that does not contain the highest

ranked item. A greedy strategy to minimize item loss places the most common item,

onion, first on the recommendation list, thus incurring 0 loss for shopping lists 1-4.

The second place in the recommendation list will not be given to the second most fre-

47

quent item (garlic), rather it will be given to the most frequent item among shopping

lists that do not contain onion. This means the second item on the recommendation

list will be flour. With onion ranked first and flour ranked second, we incur 0 loss on

shopping lists 1-4, and the loss is one for each of shopping lists 5 and 6. The ranks of

the remaining items do not matter for this time step, as these two ingredients have

satisfied every shopping list. This greedy strategy is the same as the greedy strategy

for the maximum coverage problem, in which we are given a collection of sets with

some elements in common and choose 𝑘 sets to cover as many elements as possible.

This algorithm has been used for rank diversification (Radlinski et al, 2008). This

greedy strategy would be an efficient strategy to minimize item loss if we made a

prediction only at 𝑡 = 0, however, it might not truly minimize loss, and even if it does

happen to minimize loss at time 𝑡 = 0, it might not minimize loss over all time steps.

In our experiments, we found that minimizing item loss produced a diverse ranked

list at each time step: It attempts to ensure that an item from each shopping list is

ranked highly, as opposed to simply ranking items based on popularity.

2.5.3 ERM for the Online Grocery Store Recommender Sys-

tem

The model variables �⃗� are chosen to minimize the loss on the training set by min-

imizing the list loss (2.8) or item loss (2.13). Using the assumption in (2.11), the

basket at any time step 𝑍𝑖,𝑡 is itself a function of the recommender system, i.e., of

�⃗�. Small changes in �⃗� can change which item has the highest score, thus changing

𝑧𝑖,𝑡+1. Because the predictions at 𝑡+ 1 and all future time steps depend on 𝑧𝑖,𝑡+1, this

can significantly alter the value of the loss. Depending on �⃗�, different possibilities

for 𝑧𝑖,𝑡+1 could change 𝑓(𝑥𝑖,𝑡+1, 𝑏; �⃗�) by arbitrarily large amounts. This is why the

loss functions in (2.8) and (2.13) are, subject to the assumption in (2.11), generally

discontinuous.

The discontinuities occur at values of �⃗� where there are ties in the ranked list,

that is, where the model is capable of producing multiple orderings. It is when there

48

bread, lettuce, turkey

bread, lettuce, ham

ham and turkey
are tied

Figure 2-7: An illustration of how the model variables can be partitioned into regions
that lead to different orderings of the items in each shopping basket. The borders
between regions correspond to selections of model variables for which the argmax in
(2.11) is not unique, i.e., there is a tie. The regions are polyhedral, and the objective
function is convex over each region but discontinuous at the borders.

are ties that epsilon changes in �⃗� can alter 𝑧𝑖,𝑡+1 and thus significantly change all

future predictions. These discontinuities partition the variable space into regions

that correspond to different orderings. Figure 2-7 is an illustration of how the space

of �⃗� is partitioned by different orderings, with ties between items on the borders.

The loss function is convex over each region and discontinuities occur only at the

region borders. We now show that these regions are convex, which will lead to an

optimization strategy.

Proposition 1. Let Λ𝑧* be the set of �⃗� ∈ R|𝒜|𝑁 in the one-stage model or (�⃗�∅, �⃗�) ∈

R
|𝒜|+𝑁 in the ML-constrained model that can produce the specific ordering {𝑧*𝑖,𝑡}𝑖,𝑡

under the assumption of (2.11). Then, Λ𝑧* is a polyhedron.

Proof. A particular ordering 𝑧* is produced when, for each training list 𝑖 and at each

time step 𝑡, the next item in the ordering 𝑧*𝑖,𝑡+1 has the highest score of all of the

items remaining on the shopping list. In other words, to choose 𝑧*𝑖,𝑡+1 before 𝑧*𝑖,𝑘 for

all 𝑘 > 𝑡 + 1, it must be true that the score of 𝑧*𝑖,𝑡+1 is greater than or equal to the

score of 𝑧*𝑖,𝑘:

𝑓(𝑥*𝑖,𝑡, 𝑧
*
𝑖,𝑡+1; �⃗�) ≥ 𝑓(𝑥*𝑖,𝑡, 𝑧

*
𝑖,𝑘; �⃗�),∀𝑘 > 𝑡+ 1.

49

These constraints in fact define Λ𝑧* :

Λ𝑧* :=

{︃
�⃗� : 𝜆∅,𝑧*𝑖,𝑡+1

+
𝑡∑︁

𝑗=1

∑︁
𝑎⊆𝑧*𝑖,𝑗
𝑎∈𝒜∖∅

𝜆𝑎,𝑧*𝑖,𝑡+1
≥ 𝜆∅,𝑧*𝑖,𝑘 +

𝑡∑︁
𝑗=1

∑︁
𝑎⊆𝑧*𝑖,𝑗
𝑎∈𝒜∖∅

𝜆𝑎,𝑧*𝑖,𝑘 , (2.14)

𝑖 = 1, . . . ,𝑚, 𝑡 = 0, . . . , 𝑇𝑖 − 2, 𝑘 = 𝑡+ 2, . . . , 𝑇𝑖

}︃
.

Thus Λ𝑧* can be defined by a set of
∑︀𝑚

𝑖=1
1
2
(𝑇𝑖 − 1)𝑇𝑖 linear inequalities and is a

polyhedron. The result holds for the ML-constrained model by replacing 𝜆𝑎,𝑏 with

𝜇𝑎P̂(𝑏|𝑎).

The proposition is true for each ordering 𝑧* that can be realized, and thus the

whole space can be partitioned into polyhedral regions. When the variables �⃗� (or

equivalently, �⃗�∅ and �⃗�) are constrained to a particular ordering Λ𝑧* , the list loss in

(2.8) and the item loss in (2.13) are convex. We will now describe two optimization

strategies for minimizing (2.8) and (2.13) subject to the assumption in (2.11). For no-

tational convenience we will describe the algorithms in terms of �⃗�, but the algorithms

can be directly applied to the ML-constrained model.

Convex optimization within regions, simulated annealing between regions

Because Λ𝑧* is convex for each 𝑧*, it is possible to find the optimal �⃗� within Λ𝑧* using

convex programming. Our goal is to minimize the loss across all possible orderings

𝑧*, so we need also to explore the space of possible orderings. Our first approach is

to use simulated annealing, as detailed in Algorithm 1, to hop between the different

regions, using convex optimization within each region.

Simulated annealing is an iterative procedure where �⃗� is updated step by step.

Steps that increase the loss are allowed with a probability that depends on a “tem-

perature" variable. The temperature is decreased throughout the procedure so that

steps that increase the loss become increasingly improbable. The algorithm begins

with an initial ordering, then the minimizer within that region is found by convex

optimization. Then we use a simulated annealing step to move to a neighboring or-

50

dering, and the process is repeated. There are many “unrealizable" orderings that

can be achieved only by a trivial model in which all of the variables 𝜆 equal the same

constant so that the items are tied at every prediction. Thus, randomly permuting

the ordering as is usually done in simulated annealing will often yield only trivial

neighbors. An alternative strategy is to choose a direction in the variable space (for

example, the direction of gradient descent) and to step in that direction from the

current position of �⃗� until the ordering changes. This new ordering is a realizable

neighbor and can be used to continue the simulated annealing. Additional neighbors

can be discovered by stepping in the variable space in different directions, for instance

orthogonal to the gradient. The move to the new ordering is accepted with a proba-

bility that depends on the change in loss between the optimal solutions for the two

orderings, and the temperature variable. This is done for a fixed number of steps,

and finally the output is the best solution that was encountered during the search.

Algorithm 1: A combination of convex optimization and simulated annealing
for fitting �⃗� under the assumption of (2.11).
Data: Training set 𝑋𝑚

1 , number of simulated annealing steps 𝑇𝑆, annealing
schedule 𝑇𝑒𝑚𝑝

Result: �⃗�best
Begin with an initial ordering {𝑧𝑖,𝑡}𝑖,𝑡
Form the constraints Λ𝑧 associated with this ordering (Equation 2.14)
Solve the convex program �⃗�* ∈ argmin�⃗�∈Λ𝑧

𝑅exp(𝑓,𝑋𝑚
1 ; �⃗�) (Equation 2.8 or

2.13)
Set �⃗�best = �⃗�*

for 𝑡 = 1 to 𝑇𝑆 do
Find a neighboring ordering {𝑧′𝑖,𝑡}𝑖,𝑡
Form the constraints Λ𝑧′ associated with the new ordering
Solve the convex program �⃗�′* ∈ argmin�⃗�∈Λ𝑧′

𝑅exp(𝑓,𝑋𝑚
1 ; �⃗�)

Sample a number 𝑞 uniformly at random from [0, 1]

if exp((𝑅exp(𝑓,𝑋𝑚
1 ; �⃗�*) −𝑅exp(𝑓,𝑋𝑚

1 ; �⃗�′*))/Temp(𝑡)) > 𝑞 then
Accept this move: �⃗�* = �⃗�′*

if 𝑅exp(𝑓,𝑋𝑚
1 ; �⃗�*) < 𝑅exp(𝑓,𝑋𝑚

1 ; �⃗�best) then
�⃗�best = �⃗�*

51

Gradient descent

When 𝑁 is large, it can be expensive to solve the convex program at each step of

simulated annealing in Algorithm 1, particularly using the one-stage model which

requires |𝒜|𝑁 variables. It may be more efficient to use an unconstrained first-order

method such as pure gradient descent. It is likely that a gradient descent algorithm

will cross the discontinuities, and there are no convergence guarantees. In Algorithm

2, we ensure that the gradient descent terminates by imposing a limit on the number of

steps that increase the loss. We take as our result the best value that was encountered

during the search.

Algorithm 2: A gradient descent algorithm to fit �⃗� under assumption (2.11).
Data: Training set 𝑋𝑚

1 , maximum number of steps that increase loss 𝑇𝐺, step
size 𝛾

Result: �⃗�best
Begin with some initial �⃗�0 and the associated 𝑅exp(𝑓,𝑋𝑚

1 ; �⃗�0) (Equation 2.8 or
2.13)
Set: �⃗�best = �⃗�0
𝑡 = 0 (an index for all steps)
𝑙 = 0 (an index for steps that increase loss)
while 𝑙 < 𝑇𝐺 do

Take a step of gradient descent:
�⃗�𝑡+1 = �⃗�𝑡 − 𝛾 ▽𝑅exp(𝑓,𝑋𝑚

1 ; �⃗�𝑡)

if 𝑅exp(𝑓,𝑋𝑚
1 ; �⃗�𝑡+1) < 𝑅exp(𝑓,𝑋𝑚

1 ; �⃗�best) then
�⃗�best = �⃗�𝑡+1

if 𝑅exp(𝑓,𝑋𝑚
1 ; �⃗�𝑡+1) > 𝑅exp(𝑓,𝑋𝑚

1 ; �⃗�𝑡) then
𝑙 = 𝑙 + 1

𝑡 = 𝑡+ 1

2.5.4 Experimental Results

Our online grocery store recommender system dataset is derived from the publicly

available ICCBR Computer Cooking Contest recipe book (ICCBR, 2011). The orig-

inal dataset is 1490 recipes, each of which, among other things, contains a list of

ingredients. We treated the ingredients in each recipe as unordered items on a shop-

ping list. We limited our experiments to the 250 most frequently occurring ingredi-

52

ents. This excluded only very rare ingredients that appeared in less than 5 recipes

in the dataset, for instance “alligator." We took the allowed itemsets 𝒜 as individual

items, plus the empty set. The ML-constrained model thus required an optimiza-

tion problem on 500 variables (2𝑁) whereas the one-stage model required solving an

optimization problem on 62,500 variables (𝑁2 +𝑁).

We fit the one-stage model and the ML-constrained model, using both list loss

in (2.8) and item loss in (2.13). Training and test sets each of 100 shopping lists

were selected using random sub-sampling without replacement. The models were

evaluated using the zero-one loss in (2.7) or (2.12). Training and test sets were

sampled independently for 20 trials to provide a distribution of training and test

losses. The results for Algorithm 1 (convex programming / simulated annealing) and

Algorithm 2 (gradient descent) were very similar. We found that Algorithm 2 scaled

better with the dimensionality of the dataset, so we report the results of Algorithm 2

here. The amount of ℓ2-norm regularization in the loss function, 𝛽, was set using 3-fold

cross validation on each training set, separately with 𝛽 = 0.0001, 0.001, 0.01, 0.1, 1,

and 10. We then set 𝛽 to the value that minimized the mean error over the validation

sets. With list loss and the one-stage model, chosen values of 𝛽 ranged from 0.001 to

0.1, with 0.001 chosen most frequently. With list loss and the ML-constrained model,

chosen values of 𝛽 ranged from 0.01 to 1, with 0.1 chosen most frequently. With item

loss and the one-stage model, chosen values of 𝛽 ranged from 0.0001 to 0.01, with

0.001 chosen most frequently. With item loss and the ML-constrained model, chosen

values of 𝛽 ranged from 0.01 to 1, with 0.01 chosen most frequently. The training

and test errors across the 20 trials are shown as boxplots in Figures 2-8 and 2-9 for

list loss and item loss respectively. As before, the test errors in Figures 2-8 and 2-9

exclude items that were not present in the training set, as these items necessarily

cannot be well predicted and provided a constant bias.

The large difference between training and test errors suggests that that there is

some overfitting despite the ℓ2-norm regularization. This is not surprising given the

number of possible items (250) and the number of shopping lists used for training

(100). A larger training set would lead to better generalization (and less of an ob-

53

Train Test Train Test Train Test Train Test Train Test Train Test
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Tr
ai

ni
ng

 a
nd

 T
es

t E
rro

rs

Cosine
similarity, 20

Cosine
similarity, 40

Cosine
similarity, all

Max-conf.
assoc. rules

One-stage
minimization

ML-constrained
minimization

Figure 2-8: List loss training and test errors for the online grocery store recommender
system.

Train Test Train Test Train Test Train Test Train Test Train Test
0.00

0.05

0.10

0.15

0.20

0.25

Tr
ai

ni
ng

 a
nd

 T
es

t E
rro

rs

Cosine
similarity, 20

Cosine
similarity, 40

Cosine
similarity, all

Max-conf.
assoc. rules

One-stage
minimization

ML-constrained
minimization

Figure 2-9: Item loss training and test errors for the online grocery store recommender
system.

54

servable difference between the methods), although if it were desirable to fit a model

individually to each customer the training data may truly be very limited. This is

related to the “cold start" problem in recommender systems, when predictions need

to be made when data are scarce.

For both loss functions, our method performed well compared to the cosine simi-

larity and association rule baselines. The one-stage model performed slightly better

than the ML-constrained model, although it does so at a much higher computational

cost. This is consistent with the results of the other experiments in this paper, which

have shown that the ML-constrained model is able to provide close to the same per-

formance as the one-stage model.

2.6 Related Work

This work is related to previous work on recommender systems, medical condition

prediction, time-series modeling and supervised ranking.

There are many different approaches to recommender systems. Adomavicius and

Tuzhilin (2005) give a review of current methods. Shani et al (2005) work with se-

quential recommendations using Markov decision processes, which differs from our

approach in that our approach does not assume the Markov property. Collaborative

filtering methods have been especially common in recommender systems (see Sarwar

et al, 2001, for a review). Some collaborative filtering methods rely on additional user

information such as demographics and are not appropriate for our setting. Item-based

collaborative filtering methods, cosine similarity in particular, are an extremely popu-

lar type of recommender system that are related to our approach as they consider only

relations between various items in the sequence database (Sarwar et al, 2001; Linden

et al, 2003). However, item-based collaborative filtering is generally not appropriate

for these sequential prediction problems. Collaborative filtering algorithms are gener-

ally evaluated according to regression criteria (measuring accuracy in ratings) rather

than ranking criteria, and is thus designed for a completely different type of learning

framework. Also, when applying item-based collaborative filtering using the weighted

55

sum method (Section 3.2.1 in Sarwar et al, 2001), we needed to compute an inner

product of the similarities with the “ratings" for all co-rated items. However, for an

incomplete basket, we do not have the ratings for all co-rated items, since there is no

natural way to differentiate between items that have not yet been purchased in this

transaction and items that will not be purchased in this transaction, as both have a

“rating" of 0 at time t. Thus, the only ratings that are available are ratings of “1"

indicating that an item is in the basket. In other words, our approach is intrinsically

sequential, whereas it is unnatural to force item-based collaborative filtering into a

sequential framework. Additionally, cosine similarity in particular is a symmetric

measure (𝑠𝑖𝑚(𝑎, 𝑏) = 𝑠𝑖𝑚(𝑏, 𝑎)) and thus not related to the conditional probability

of 𝑏 given 𝑎. These differences help explain why in our experiments, particularly

email recipient recommendation and patient condition prediction, cosine similarity

item-based collaborative filtering was outperformed by our methods, both in terms

of our loss function and average precision.

Medical recommender systems are discussed by Davis et al (2010). The output of

their system is a ranked list of conditions that are likely to be subsequently experi-

enced by a patient, similar to the ranked recommendation lists that we produce. Their

system is based on collaborative filtering rather than bipartite ranking loss which is

the core of our method. Duan et al (2011) develop a clinical recommender system

which uses patient conditions to predict suitable treatment plans. Much of the work

in medical data mining uses explanatory modeling (e.g., finding links between con-

ditions), which is fundamentally different from predictive modeling (Shmueli, 2010).

Most work in medical condition prediction focuses on specific diseases or data sets (see

Davis et al, 2010, for a literature review). Email recipient recommendation has been

studied with several approaches, often incorporating the email content using language

models, or finding clusters in the network of corresponding individuals (Dom et al,

2003; Pal and McCallum, 2006; Carvalho and Cohen, 2008; Roth et al, 2010).

A large body of research on time series modeling dates back at least to the 1960’s

and provides many approaches for sequential prediction problems. Recent applica-

tions to medicine in general and patient level prediction in particular include Enright

56

et al (2011), Stahl and Johansson (2009), and Hu et al (2010). Our ML-constrained

model was motivated by the mixture transition distribution developed by (Berchtold

and Raftery, 2002) to model high-order Markov chains. However, as we discussed

earlier, typical time-series approaches focus specifically on the order of past events

whereas in our applications the historical order seems of peripheral importance.

Our model and fitting procedure derive from previous work on supervised ranking.

Many approaches to ranking have been proposed, including methods based on classi-

fication algorithms (Herbrich et al, 1999; Chapelle and Keerthi, 2010; Joachims, 2002;

Freund et al, 2003; Burges et al, 2005), margin maximization (Yan and Hauptmann,

2006), order statistics (Lebanon and Lafferty, 2002; Clémençon and Vayatis, 2008),

and others (Cao et al, 2007; Rudin, 2009). The loss functions that we use derive

from the bipartite misranking error, and the exponential upper bound is that used

in boosting. Our list loss is in fact exactly the misranking error; thus minimizing list

loss corresponds to maximizing the area under the ROC curve (Freund et al, 2003).

Other loss functions can be substituted as is appropriate for the problem at hand, for

example our item loss is a good fit for problems where only one relevant item needs

to be at the top. Minimizing misranking error does not imply optimizing other evalu-

ation metrics, such as average precision and discounted cumulative gain as illustrated

in Yue et al (2007) and Chang et al (2012). Our formulation could potentially be

adapted to optimize other evaluation metrics, as is done in Yue et al (2007) and Chang

et al (2012), if these metrics are the quantity of interest. The theoretical framework

underpinning ranking includes work in statistics, learning theory, and computational

complexity (Cohen et al, 1999; Freund et al, 2003; Clémençon et al, 2008; Cossock

and Zhang, 2008; Rudin and Schapire, 2009). Our work is also related to the grow-

ing fields of preference learning and label ranking (Fürnkranz and Hüllermeier, 2003;

Hüllermeier et al, 2008; Dekel et al, 2004; Shalev-Shwartz and Singer, 2006).

57

2.7 Conclusions

We have presented a supervised ranking framework for sequential event prediction

that can be adapted to fit a wide range of applications. We proposed two ranking

models, and showed how to specify our general loss function to applications in email

recipient recommendation, patient condition prediction, and an online grocery store

recommender system. In the online grocery store recommender system application,

we allowed the predictions to alter the sequence of events resulting in a discontin-

uous loss function. Using the fact that the variable space can be partitioned into

convex sets over which the loss function is convex, we presented two algorithms for

approximately minimizing the loss. In all of our experiments, our ERM-based algo-

rithms performed well, better than the max-confidence and cosine similarity baselines.

Our ML-constrained model in particular provided good performance while keeping

the dimensionality of the optimization problem small. This model combines associ-

ation rules by learning a weighting for each antecedents, and weighting consequents

according to their confidence.

The models built from weighted linear combinations of association rules can be

quite powerful, while maintaining the interpretability inherent in having association

rules as the fundamental unit of the model. We used a simple linear association

rule model in a recommender system competition as part of the ECML PKDD 2013

conference. We came in third place for the offline challenge and second place in an

online challenge, making predictions to real users of a baby name site (Letham, 2013).

The online portion of the competition revealed another benefit for using association

rules for predictions: The model can make predictions very quickly, in the milliseconds

that it takes the page to load.

There are many other applications where the set of past events matters for pre-

dicting the future, rather than the order of past events. Our ERM-based methodology

is a direct and practical approach for using association rules to solve these prediction

tasks.

58

Chapter 3

Bayesian Association Rules and

Decision Lists

An alternative approach for forming an interpretable predictive model from associ-

ation rules is to construct a sparse decision list. A decision list is an ordered series

of rules, each an if... then... statement, where the if defines a partition of a set of

features and the then a predicted outcome. Because of this form, a decision list model

naturally provides a reason for each prediction that it makes. Figure 3-1 presents an

example decision list that we created using the Titanic dataset available in R. This

dataset provides details about each passenger on the Titanic, including whether the

passenger was an adult or child, male or female, and their class (1st, 2nd, 3rd, or

crew). The goal is to predict whether the passenger survived based on his or her

features. The list provides an explanation for each prediction that is made. For ex-

ample, we predict that a passenger is less likely to survive than not because he or she

was in the 3rd class. The list in Fig. 3-1 is one accurate and interpretable decision

list for predicting survival on the Titanic, possibly one of many such lists. Our goal

is to learn these lists from data.

Our model, called Bayesian Rule Lists (BRL), produces a posterior distribution

over permutations of if... then... rules, starting from a large, pre-mined set of possible

rules. The decision lists with high posterior probability tend to be both accurate

and interpretable, where the interpretability comes from a hierarchical prior over

59

if male and adult then survival probability 21% (19% - 23%)
else if 3rd class then survival probability 44% (38% - 51%)
else if 1st class then survival probability 96% (92% - 99%)
else survival probability 88% (82% - 94%)

Figure 3-1: Decision list for Titanic. In parentheses is the 95% credible interval for
the survival probability.

permutations of rules. The prior favors concise decision lists that have a small number

of total rules, where the rules have few terms in the left-hand side.

BRL provides a new type of balance between accuracy, interpretability and com-

putation. Consider the challenge of constructing a predictive model that discretizes

the input space in the same way as decision trees (Breiman et al, 1984; Quinlan,

1993), decision lists (Rivest, 1987) or associative classifiers (Liu et al, 1998). Greedy

construction methods like classification and regression trees (CART) or C5.0 are not

particularly computationally demanding, but in practice the greediness heavily af-

fects the quality of the solution, both in terms of accuracy and interpretability. At

the same time, optimizing a decision tree over the full space of all possible splits is

not a tractable problem. BRL strikes a balance between these extremes, in that its

solutions are not constructed in a greedy way involving splitting and pruning, yet it

can solve problems at the scale required to have an impact in real problems in science

or society, including modern healthcare.

A major source of BRL’s practical feasibility is the fact that it uses pre-mined

rules, which reduces the model space to that of permutations of rules as opposed

to all possible sets of splits. The complexity of the problem then depends on the

number of pre-mined rules rather than on the full space of feature combinations;

in a sense, this algorithm scales with the sparsity of the dataset rather than the

number of features. As long as the pre-mined set of rules is sufficiently expressive,

an accurate decision list can be found, and in fact the smaller model space might

improve generalization (through the lens of statistical learning theory, Vapnik, 1995).

An additional advantage to using pre-mined rules is that each rule is independently

60

both interpretable and informative about the data.

BRL’s prior structure encourages decision lists that are sparse. Sparse decision

lists serve not only the purpose of producing a more interpretable model, but also

reduce computation, as most of the sampling iterations take place within a small set

of permutations corresponding to the sparse decision lists. In practice, BRL is able

to compute predictive models with accuracy comparable to state-of-the-art machine

learning methods, yet maintain the same level of interpretability as medical scoring

systems.

The motivation for our work lies in developing interpretable patient-level predic-

tive models using massive observational medical data. To this end, we use BRL to

construct an alternative to the CHADS2 score of Gage et al (2001). CHADS2 is

widely-used in medical practice to predict stroke in patients with atrial fibrillation. A

patient’s CHADS2 score is computed by assigning one “point” each for the presence of

congestive heart failure (C), hypertension (H), age 75 years or older (A), and diabetes

mellitus (D), and by assigning 2 points for history of stroke, transient ischemic at-

tack, or thromoembolism (S2). The CHADS2 score considers only 5 factors, whereas

the updated CHA2DS2-VASc score (Lip et al, 2010a) includes three additional risk

factors: vascular disease (V), age 65 to 74 years old (A), and female gender (Sc).

Higher scores correspond to increased risk. In the study defining the CHADS2 score

(Gage et al, 2001), the scores was calibrated with stroke risks using a database of

1,733 Medicare beneficiaries followed for, on average, about a year.

Our alternative to the CHADS2 was constructed using 12,586 patients and 4,148

factors. Because we are using statistical learning, we are able to consider significantly

more features; this constitutes over 6000 times the amount of data used for the original

CHADS2 study. In our experiments we compared the stroke prediction performance

of BRL to CHADS2 and CHA2DS2-VASc, as well as to a collection of state-of-the-art

machine learning algorithms: C5.0 (Quinlan, 1993), CART (Breiman et al, 1984),

ℓ1-regularized logistic regression, support vector machines (Vapnik, 1995), random

forests (Breiman, 2001a), and Bayesian CART (Dension et al, 1998; Chipman et al,

1998). The balance of accuracy and interpretability obtained by BRL is not easy to

61

obtain through other means: None of the machine learning methods we tried could

obtain both the same level of accuracy and the same level of interpretability.

3.1 Bayesian Rule Lists

The setting for BRL is multi-class classification, where the set of possible labels is

1, . . . , 𝐿. In the case of predicting stroke risk, there are two labels: stroke or no stroke.

The training data are pairs {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1, where 𝑥𝑖 ∈ R𝑑 are the features of observation

𝑖, and 𝑦𝑖 are the labels, 𝑦𝑖 ∈ {1, . . . , 𝐿}. We let x = (𝑥1, . . . , 𝑥𝑛) and y = (𝑦1, . . . , 𝑦𝑛).

In Sections 3.1.1 and 3.1.2 we provide the association rule concepts and notation

upon which the method is built. Section 3.1.3 introduces BRL by outlining the

generative model. Sections 3.1.4 and 3.1.5 provide detailed descriptions of the prior

and likelihood, and then Sections 3.1.6 and 3.1.7 describe sampling and posterior

predictive distributions.

3.1.1 Bayesian Association Rules and Bayesian Decision Lists

An association rule 𝑎 → 𝑏 is an implication with an antecedent 𝑎 and a consequent

𝑏. For the purposes of classification, the antecedent is an assertion about the feature

vector 𝑥𝑖 that is either true or false, for example, “𝑥𝑖,1 = 1 and 𝑥𝑖,2 = 0." This

antecedent contains two conditions, which we call the cardinality of the antecedent.

The consequent 𝑏 would typically be a predicted label 𝑦. A Bayesian association rule

has a multinomial distribution over labels as its consequent rather than a single label:

𝑎→ 𝑦 ∼ Multinomial(𝜃).

The multinomial probability is then given a prior, leading to a prior consequent dis-

tribution:

𝜃|𝛼 ∼ Dirichlet(𝛼)

Given observations (x,y) classified by this rule, we let 𝑁·,𝑙 be the number of ob-

servations with label 𝑦𝑖 = 𝑙, and 𝑁 = (𝑁·,1, . . . , 𝑁·,𝐿). We then obtain a posterior

62

consequent distribution:

𝜃|x,y, 𝛼 ∼ Dirichlet(𝛼 +𝑁).

The core of a Bayesian decision list is an ordered antecedent list 𝑑 = (𝑎1, . . . , 𝑎𝑚).

Let 𝑁𝑗,𝑙 be the number of observations 𝑥𝑖 that satisfy 𝑎𝑗 but not any of 𝑎1, . . . , 𝑎𝑗−1,

and that have label 𝑦𝑖 = 𝑙. This is the number of observations to be classified by

antecedent 𝑎𝑗 that have label 𝑙. Let 𝑁0,𝑙 be the number of observations that do

not satisfy any of 𝑎1, . . . , 𝑎𝑚, and that have label 𝑙. Let N𝑗 = (𝑁𝑗,1, . . . , 𝑁𝑗,𝐿) and

N = (N0, . . . ,N𝑚).

A Bayesian decision list 𝐷 = (𝑑, 𝛼,N) is an ordered list of antecedents together

with their posterior consequent distributions. The posterior consequent distributions

are obtained by excluding data that have satisfied an earlier antecedent in the list. A

Bayesian decision list then takes the form

if 𝑎1 then 𝑦 ∼ Multinomial(𝜃1), 𝜃1 ∼ Dirichlet(𝛼 + N1)

else if 𝑎2 then 𝑦 ∼ Multinomial(𝜃2), 𝜃2 ∼ Dirichlet(𝛼 + N2)
...

else if 𝑎𝑚 then 𝑦 ∼ Multinomial(𝜃𝑚), 𝜃𝑚 ∼ Dirichlet(𝛼 + N𝑚)

else 𝑦 ∼ Multinomial(𝜃0), 𝜃0 ∼ Dirichlet(𝛼 + N0).

Any observations that do not satisfy any of the antecedents in 𝑑 are classified using

the parameter 𝜃0, which we call the default rule parameter.

3.1.2 Antecedent Mining

We are interested in forming Bayesian decision lists whose antecedents are a sub-

set of a pre-selected collection of antecedents. For data with binary or categorical

features this can be done using frequent itemset mining, where itemsets are used

as antecedents. In our experiments, the features were binary and we used the FP-

Growth algorithm (Borgelt, 2005) for antecedent mining, which finds all itemsets that

satisfy constraints on minimum support and maximum cardinality. This means each

63

antecedent applies to a sufficiently large amount of data and does not have too many

conditions. For binary or categorical features the particular choice of the itemset

mining algorithm is unimportant as the output is an exhaustive list of all itemsets

satisfying the constraints. Other algorithms, such as Apriori or Eclat (Agrawal and

Srikant, 1994; Zaki, 2000), would return an identical set of antecedents as FP-Growth

if given the same minimum support and maximum cardinality constraints. Because

the goal is to obtain decision lists with few rules and few conditions per rule, we need

not include any itemsets that apply only to a small number of observations or have a

large number of conditions. Thus frequent itemset mining allows us to significantly

reduce the size of the feature space, compared to considering all possible combinations

of features.

The frequent itemset mining that we do in our experiments produces only an-

tecedents with sets of features, such as “diabetes and heart disease." Other techniques

could be used for mining antecedents with negation, such as “not diabetes" (Wu et al,

2004). For data with continuous features, a variety of procedures exist for antecedent

mining (Fayyad and Irani, 1993; Dougherty et al, 1995; Srikant and Agrawal, 1996).

Alternatively, one can create categorical features using interpretable thresholds (e.g,

ages 40-49, 50-59, etc.) or interpretable quantiles (e.g., quartiles) - we took this

approach in our experiments.

We let 𝒜 represent the complete, pre-mined collection of antecedents, and suppose

that 𝒜 contains |𝒜| antecedents with up to 𝐶 conditions in each antecedent.

3.1.3 Generative Model

We now sketch the generative model for the labels y from the observations x and

antecedents 𝒜. Define 𝑎<𝑗 as the antecedents before 𝑗 in the rule list if there are any,

e.g. 𝑎<3 = {𝑎1, 𝑎2}. Similarly, let 𝑐𝑗 be the cardinality of antecedent 𝑎𝑗, and 𝑐<𝑗 the

cardinalities of the antecedents before 𝑗 in the rule list. The generative model is then:

– Sample a decision list length 𝑚 ∼ 𝑝(𝑚|𝜆).

– Sample the default rule parameter 𝜃0 ∼ Dirichlet(𝛼).

64

– For decision list rule 𝑗 = 1, . . . ,𝑚:

Sample the cardinality of antecedent 𝑎𝑗 in 𝑑 as 𝑐𝑗 ∼ 𝑝(𝑐𝑗|𝑐<𝑗,𝒜, 𝜂).

Sample 𝑎𝑗 of cardinality 𝑐𝑗 from 𝑝(𝑎𝑗|𝑎<𝑗, 𝑐𝑗,𝒜).

Sample rule consequent parameter 𝜃𝑗 ∼ Dirichlet(𝛼).

– For observation 𝑖 = 1, . . . , 𝑛:

Find the antecedent 𝑎𝑗 in 𝑑 that is the first that applies to 𝑥𝑖.

If no antecedents in 𝑑 apply, set 𝑗 = 0.

Sample 𝑦𝑖 ∼ Multinomial(𝜃𝑗).

Our goal is to sample from the posterior distribution over antecedent lists:

𝑝(𝑑|x,y,𝒜, 𝛼, 𝜆, 𝜂) ∝ 𝑝(y|x, 𝑑, 𝛼)𝑝(𝑑|𝒜, 𝜆, 𝜂).

Given 𝑑, we can compute the posterior consequent distributions required to construct

a Bayesian decision list as in Section 3.1.1. Three prior hyperparameters must be

specified by the user: 𝛼, 𝜆, and 𝜂. We will see in Sections 3.1.4 and 3.1.5 that these

hyperparameters have natural interpretations that suggest the values to which they

should be set.

3.1.4 The Hierarchical Prior for Antecedent Lists

Suppose the list of antecedents 𝑑 has length 𝑚 and antecedent cardinalities 𝑐1, . . . , 𝑐𝑚.

The prior probability of 𝑑 is defined hierarchically as

𝑝(𝑑|𝒜, 𝜆, 𝜂) = 𝑝(𝑚|𝒜, 𝜆)
𝑚∏︁
𝑗=1

𝑝(𝑐𝑗|𝑐<𝑗,𝒜, 𝜂)𝑝(𝑎𝑗|𝑎<𝑗, 𝑐𝑗,𝒜). (3.1)

We take the distributions for list length 𝑚 and antecedent cardinality 𝑐𝑗 to be Poisson

with parameters 𝜆 and 𝜂 respectively, with proper truncation to account for the finite

number of antecedents in 𝒜. Specifically, the distribution of 𝑚 is Poisson truncated

65

at the total number of pre-selected antecedents:

𝑝(𝑚|𝒜, 𝜆) =
(𝜆𝑚/𝑚!)∑︀|𝒜|
𝑗=0(𝜆

𝑗/𝑗!)
, 𝑚 = 0, . . . , |𝒜|.

This truncated Poisson is a proper prior, and is a natural choice because of its simple

parameterization. Specifically, this prior has the desirable property that when |𝒜| is

large compared to the desired size of the decision list, as will generally be the case

when seeking an interpretable decision list, the prior expected decision list length

E[𝑚|𝒜, 𝜆] is approximately equal to 𝜆. The prior hyperparameter 𝜆 can then be set

to the prior belief of the list length required to model the data. A Poisson distribution

is used in a similar way in the hierarchical prior of Wu et al (2007).

The distribution of 𝑐𝑗 must be truncated at zero and at the maximum antecedent

cardinality 𝐶. Additionally, any cardinalities that have been exhausted by point 𝑗

in the decision list sampling must be excluded. Let 𝑅𝑗(𝑐1, . . . , 𝑐𝑗,𝒜) be the set of

antecedent cardinalities that are available after drawing antecedent 𝑗. For example,

if 𝒜 contains antecedents of size 1, 2, and 4, then we begin with 𝑅0(𝒜) = {1, 2, 4}.

If 𝒜 contains only 2 rules of size 4 and 𝑐1 = 𝑐2 = 4, then 𝑅2(𝑐1, 𝑐2,𝒜) = {1, 2} as

antecedents of size 4 have been exhausted. We now take 𝑝(𝑐𝑗|𝑐<𝑗,𝒜, 𝜂) as Poisson

truncated to remove values for which no rules are available with that cardinality:

𝑝(𝑐𝑗|𝑐<𝑗,𝒜, 𝜂) =
(𝜂𝑐𝑗/𝑐𝑗!)∑︀

𝑘∈𝑅𝑗−1(𝑐<𝑗 ,𝒜)(𝜂
𝑘/𝑘!)

, 𝑐𝑗 ∈ 𝑅𝑗−1(𝑐<𝑗,𝒜).

If the number of rules of different sizes is large compared to 𝜆, and 𝜂 is small compared

to 𝐶, the prior expected average antecedent cardinality is close to 𝜂. Thus 𝜂 can be

set to the prior belief of the antecedent cardinality required to model the data.

Once the antecedent cardinality 𝑐𝑗 has been selected, the antecedent 𝑎𝑗 must

be sampled from all available antecedents in 𝒜 of size 𝑐𝑗. Here, we use a uniform

distribution over antecedents in 𝒜 of size 𝑐𝑗, excluding those in 𝑎<𝑗:

𝑝(𝑎𝑗|𝑎<𝑗, 𝑐𝑗,𝒜) ∝ 1, 𝑎𝑗 ∈ {𝑎 ∈ 𝒜 ∖ 𝑎<𝑗 : |𝑎| = 𝑐𝑗}. (3.2)

66

It is straightforward to sample an ordered antecedent list 𝑑 from the prior by following

the generative model, using the provided distributions.

3.1.5 The Likelihood Function

The likelihood function follows from the generative model. Let 𝜃 = (𝜃0, . . . , 𝜃𝑚) be

the consequent parameters corresponding to each antecedent in 𝑑, together with the

default rule parameter 𝜃0. Then, the likelihood is the product of the multinomial

probability mass functions for the observed label counts at each rule:

𝑝(y|x, 𝑑, 𝜃) =
∏︁

𝑗:
∑︀

𝑙 𝑁𝑗,𝑙>0

Multinomial(N𝑗|𝜃𝑗),

with

𝜃𝑗 ∼ Dirichlet(𝛼).

We can marginalize over 𝜃𝑗 in each multinomial distribution in the above product,

obtaining, through the standard derivation of the Dirichlet-multinomial distribution,

𝑝(y|x, 𝑑, 𝛼) =
𝑚∏︁
𝑗=0

Γ(
∑︀𝐿

𝑙=1 𝛼𝑙)

Γ(
∑︀𝐿

𝑙=1𝑁𝑗,𝑙 + 𝛼𝑙)
×

𝐿∏︁
𝑙=1

Γ(𝑁𝑗,𝑙 + 𝛼𝑙)

Γ(𝛼𝑙)

∝
𝑚∏︁
𝑗=0

∏︀𝐿
𝑙=1 Γ(𝑁𝑗,𝑙 + 𝛼𝑙)

Γ(
∑︀𝐿

𝑙=1𝑁𝑗,𝑙 + 𝛼𝑙)
.

The prior hyperparameter 𝛼 has the usual Bayesian interpretation of pseudo-

counts. In our experiments, we set 𝛼𝑙 = 1 for all 𝑙, producing a uniform prior.

Other approaches for setting prior hyperparameters such as empirical Bayes are also

applicable.

3.1.6 Markov Chain Monte Carlo Sampling

We do Metropolis-Hastings sampling of 𝑑, generating the proposed 𝑑* from the current

𝑑𝑡 using one of three options: 1) Move an antecedent in 𝑑𝑡 to a different position in

the list. 2) Add an antecedent from 𝒜 that is not currently in 𝑑𝑡 into the list. 3)

67

Remove an antecedent from 𝑑𝑡. Which antecedents to adjust and their new positions

are chosen uniformly at random at each step. The option to move, add, or remove is

also chosen uniformly. The probabilities for the proposal distribution 𝑄(𝑑*|𝑑𝑡) depend

on the size of the antecedent list, the number of pre-mined antecedents, and whether

the proposal is a move, addition, or removal. For the uniform distribution that we

used, the proposal probabilities for a 𝑑* produced by one of the three proposal types

is:

𝑄(𝑑*|𝑑𝑡,𝒜) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

(|𝑑𝑡|)(|𝑑𝑡|−1)
if move proposal,

1
(|𝒜|−|𝑑𝑡|)(|𝑑𝑡|+1)

if add proposal,

1
|𝑑𝑡| if remove proposal.

To explain these probabilities, if there is a move proposal, we consider the number of

possible antecedents to move and the number of possible positions for it; if there is an

add proposal, we consider the number of possible antecedents to add to the list and

the number of positions to place a new antecedent; for remove proposals we consider

the number of possible antecedents to remove. This sampling algorithm is related to

those used for Bayesian Decision Tree models (Chipman et al, 2002, 1998; Wu et al,

2007) and to methods for exploring tree spaces (Madigan et al, 2011).

For every MCMC run, we ran 3 chains, each initialized independently from a

random sample from the prior. We discarded the first half of simulations as burn-in,

and then assessed chain convergence using the Gelman-Rubin convergence diagnostic

applied to the log posterior density (Gelman and Rubin, 1992). We considered chains

to have converged when the diagnostic �̂� < 1.05.

3.1.7 The Posterior Predictive Distribution and Point Esti-

mates

Given the posterior 𝑝(𝑑|x,y,𝒜, 𝛼, 𝜆, 𝜂), we consider estimating the label 𝑦 of a new

observation �̃� using either a point estimate (a single Bayesian decision list) or the

posterior predictive distribution. Given a point estimate of the antecedent list 𝑑, we

68

have that

𝑝(𝑦 = 𝑙|�̃�, 𝑑,x,y, 𝛼) =

∫︁
𝜃

𝜃𝑙𝑝(𝜃|�̃�, 𝑑,x,y, 𝛼)𝑑𝜃

= E[𝜃𝑙|�̃�, 𝑑,x,y, 𝛼].

Let 𝑗(𝑑, �̃�) be the index of the first antecedent in 𝑑 that applies to �̃�. The posterior

consequent distribution is

𝜃|�̃�, 𝑑,x,y, 𝛼 ∼ Dirichlet
(︀
𝛼 + N𝑗(𝑑,�̃�)

)︀
. (3.3)

Thus,

𝑝(𝑦 = 𝑙|�̃�, 𝑑,x,y, 𝛼) =
𝛼𝑙 +𝑁𝑗(𝑑,�̃�),𝑙∑︀𝐿

𝑘=1

(︀
𝛼𝑘 +𝑁𝑗(𝑑,�̃�),𝑘

)︀ .
Additionally, (3.3) allows for the estimation of 95% credible intervals using the Dirich-

let distribution function.

The posterior mean is often a good choice for a point estimate, but the interpre-

tation of “mean" here is not clear since the posterior is a distribution over antecedent

lists. We thus look for an antecedent list whose statistics are similar to the posterior

mean statistics. Specifically, we are interested in finding a point estimate 𝑑 whose

length 𝑚 and whose average antecedent cardinality 𝑐 = 1
𝑚

∑︀𝑚
𝑗=1 𝑐𝑗 are close to the

posterior mean list length and average cardinality. Let �̄� be the posterior mean

decision list length and ¯̄𝑐 the posterior mean average antecedent cardinality, as esti-

mated from the MCMC samples. Then, we choose our point estimate 𝑑 as the list

with the highest posterior probability among all samples with 𝑚 ∈ {⌊�̄�⌋ , ⌈�̄�⌉} and

𝑐 ∈ [⌊¯̄𝑐⌋ , ⌈¯̄𝑐⌉]. We call this point estimate BRL-point.

Another possible point estimate is the decision list with the highest posterior

probability - the maximum a posteriori estimate. Given two list lengths there are

many more possible lists of the longer length than of the shorter length, so prior

probabilities in (3.1) are generally higher for shorter lists. The maximum a posteriori

estimate might yield a list that is much shorter than the posterior mean decision list

length, so we prefer the BRL-point.

69

In addition to point estimates, we can use the entire posterior 𝑝(𝑑|x,y,𝒜, 𝛼, 𝜆, 𝜂)

to estimate 𝑦. The posterior predictive distribution for 𝑦 is

𝑝(𝑦 = 𝑙|𝑥,x,y,𝒜, 𝛼, 𝜆, 𝜂) =
∑︁
𝑑∈D

𝑝(𝑦 = 𝑙|𝑥, 𝑑,x,y,𝒜, 𝛼)𝑝(𝑑|x,y,𝒜, 𝛼, 𝜆, 𝜂)

=
∑︁
𝑑∈D

𝛼𝑙 +𝑁𝑗(𝑑,𝑥),𝑙∑︀𝐿
𝑘=1

(︀
𝛼𝑘 +𝑁𝑗(𝑑,𝑥),𝑘

)︀𝑝(𝑑|x,y,𝒜, 𝛼, 𝜆, 𝜂)

where D is the set of all ordered subsets of 𝒜. The posterior samples obtained by

MCMC simulation, after burn-in, can be used to approximate this sum. We call

the classifier that uses the full collection of posterior samples BRL-post. Using the

entire posterior distribution to make a prediction means the classifier is no longer

interpretable. One could, however, use the posterior predictive distribution to classify,

and then provide several point estimates from the posterior to the user as example

explanations for the prediction.

3.2 Simulation Studies

We use simulation studies and a deterministic dataset to show that when data are

generated by a decision list model, the BRL method is able to recover the true decision

list.

3.2.1 Simulated Data Sets

Given observations with arbitrary features and a collection of rules on those features,

we can construct a binary matrix where the rows represent observations and the

columns represent rules, and the entry is 1 if the rule applies to that observation and

0 otherwise. We need only simulate this binary matrix to represent the observations

without losing generality. For our simulations, we generated independent binary rule

sets with 100 rules by setting each feature value to 1 independently with probability

1/2.

We generated a random decision list of size 5 by selecting 5 rules at random, and

70

0 1 2 3 4 5
Number of observations

0

1

2

3

4

5

Po
st

er
io

r
m

ea
n

di
st

an
ce

to
th

e
tr

ue
de

ci
si

on
lis

t

(a)

×103
0 1 2 3 4 5

Distance to the true decision list

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

lp
os

te
ri

or
pr

ob
ab

ili
ty

(b)

n = 100

n = 5000

Figure 3-2: (a) Average Levenshtein distance from posterior samples to the true
decision list, for differing numbers of observations. The black solid line indicates the
median value across the 100 simulated datasets of each size, and the gray dashed lines
indicate the first and third quartiles. (b) The proportion of posterior samples with
the specified distance to the true decision list, for a randomly selected simulation with
𝑛 = 100 observations and a randomly selected simulation with 𝑛 = 5000.

adding the default rule. Each rule in the decision list was assigned a consequent

distribution over labels using a random draw from the Beta(1/2, 1/2) distribution,

which ensures that the rules are informative about labels. Labels were then assigned

to each observation using the decision list: For each observation, the label was taken

as a draw from the label distribution corresponding to the first rule that applied to

that observation.

For each number of observations 𝑁 ∈ {100, 250, 500, 1000, 2500, 5000}, we gener-

ated 100 independent data sets (x,y), for a total of 600 simulated datasets. We did

MCMC sampling with three chains as described in Section 3.1 for each dataset. For

all datasets, 20,000 samples were sufficient for the chains to converge.

To appropriately visualize the posterior distribution, we binned the posterior an-

tecedent lists according to their distance from the true antecedent list, using the

Levenshtein string edit distance (Levenshtein, 1966) to measure the distance between

two antecedent lists. This metric measures the minimum number of antecedent sub-

stitutions, additions, or removals to transform one decision list into the other. The

results of the simulations are given in Fig. 3-2. Figure 3-2(a) shows that as the num-

ber of observations increases, the posterior mass concentrates on the true decision

list. Figure 3-2(b) illustrates this concentration with two choices of the distribution

71

of posterior distances to the true decision list, for 𝑛 small and for 𝑛 large.

3.2.2 A Deterministic Problem

We fit BRL to the Tic-Tac-Toe Endgame dataset from the UCI Machine Learning

Repository (Bache and Lichman, 2013) of benchmark datasets. The Tic-Tac-Toe

Endgame dataset provides all possible end board configurations for the game Tic-

Tac-Toe, with the task of determining if player “X" won or not. The dataset is

deterministic, with exactly 8 ways that player “X" can win, each one of the 8 ways to

get 3 “X"’s in a row on a 3x3 grid. We split the dataset into 5 folds and did cross-

validation to estimate test accuracy. For each fold of cross-validation, we fit BRL with

prior hyperparameters 𝜆 = 8 and 𝜂 = 3, and the point estimate decision list contained

the 8 ways to win and thus achieved perfect accuracy. In Table 3.1, we compare accu-

racy on the test set with C5.0, CART, ℓ1-regularized logistic regression (ℓ1-LR), RBF

kernel support vector machines (SVM), random forests (RF), and Bayesian CART

(BCART). For SVM, we used the LIBSVM (Chang and Lin, 2011) implementation

with a radial basis function kernel. We selected the slack parameter 𝐶SVM and the

kernel parameter 𝛾 using a grid search over the ranges 𝐶SVM ∈ {2−2, 20, . . . , 26} and

𝛾 ∈ {2−6, 2−4, . . . , 22}. We chose the set of parameters with the best 3-fold cross-

validation performance using LIBSVM’s built-in cross-validation routine. For C5.0

we used the R library “C50" with default settings. For CART we used the R library

“rpart" with default parameters and pruned using the complexity parameter that min-

imized cross-validation error. For logistic regression we used the LIBLINEAR (Fan

et al, 2008) implementation of logistic regression with ℓ1 regularization. We selected

the regularization parameter 𝐶LR from {2−6, 2−4, . . . , 26} as that with the best 3-fold

cross-validation performance, using LIBLINEAR’s built-in cross-validation routine.

Random forests was done using the R library “randomForest." The optimal value

for the parameter “mtry" was found using “tuneRF," with its default 50 trees. The

optimal “mtry" was then used to fit a random forests model with 500 trees, the li-

brary default. Bayesian CART was run using the R library “tgp," function “bcart"

with default settings. None of these other methods were able to achieve perfect accu-

72

Table 3.1: Mean classification accuracy in the top row, with standard deviation in
the second row, for machine learning algorithms using 5 folds of cross-validation on
the Tic-Tac-Toe Endgame dataset.

BRL C5.0 CART ℓ1-LR SVM RF BCART
Mean accuracy 1.00 0.94 0.90 0.98 0.99 0.99 0.71
Standard deviation 0.00 0.01 0.04 0.01 0.01 0.01 0.04

racy. Decision trees in particular are capable of providing a perfect classifier for this

problem, but the greedy learning done by C5.0 and CART did not find the perfect

classifier.

3.3 Stroke Prediction

We used Bayesian Rule Lists to derive a stroke prediction model using the MarketScan

Medicaid Multi-State Database (MDCD). MDCD contains administrative claims data

for 11.1 million Medicaid enrollees from multiple states. This database forms part

of the suite of databases from the Innovation in Medical Evidence Development and

Surveillance (IMEDS, http://imeds.reaganudall.org/) program that have been

mapped to a common data model (Stang et al, 2010).

We extracted every patient in the MDCD database with a diagnosis of atrial fibril-

lation, one year of observation time prior to the diagnosis, and one year of observation

time following the diagnosis (n=12,586). Of these, 1,786 (14%) had a stroke within

a year of the atrial fibrillation diagnosis.

As candidate predictors, we considered all drugs and all conditions. Specifically,

for every drug and condition, we created a binary predictor variable indicating the

presence or absence of the drug or condition in the full longitudinal record prior to the

atrial fibrillation diagnosis. These totaled 4,146 unique medications and conditions.

We included features for age and gender. Specifically, we used the natural values of

50, 60, 70, and 80 years of age as split points, and for each split point introduced a

pair of binary variables indicating if age was less than or greater than the split point.

Considering both patients and features, here we apply our method to a dataset that is

over 6000 times larger than that originally used to develop the CHADS2 score (which

73

http://imeds.reaganudall.org/

had n=1,733 and considered 5 features).

We did five folds of cross-validation. For each fold, we pre-mined the collection of

possible antecedents using frequent itemset mining with a minimum support threshold

of 10% and a maximum cardinality of 2. The total number of antecedents used ranged

from 2162 to 2240 across the folds. We set the antecedent list prior hyperparameters 𝜆

and 𝜂 to 3 and 1 respectively, to obtain a Bayesian decision list of similar complexity

to the CHADS2 score. For each fold, we evaluated the performance of the BRL

point estimate by constructing a receiver operating characteristic (ROC) curve and

measuring area under the curve (AUC) for each fold.

In Fig. 3-3 we show the BRL point estimate recovered from one of the folds.

The list indicates that past history of stroke reveals a lot about the vulnerability

toward future stroke. In particular, the first half of the decision list focuses on a

history of stroke, in order of severity. Hemiplegia, the paralysis of an entire side of

the body, is often a result of a severe stroke or brain injury. Cerebrovascular disorder

indicates a prior stroke, and transient ischaemic attacks are generally referred to as

“mini-strokes." The second half of the decision list includes age factors and vascular

disease, which are known risk factors and are included in the CHA2DS2-VASc score.

The BRL-point lists that we obtained in the 5 folds of cross-validation were all of

length 7, a similar complexity to the CHADS2 and CHA2DS2-VASc scores which use

5 and 8 features respectively.

We found that there was significant overlap in the antecedents in the point es-

timates across the five folds. This suggests that the model may be more stable in

practice than decision trees, which are notorious for producing entirely different mod-

els after small changes to the training set (Breiman, 1996a,b).

In Fig. 3-4 we give ROC curves for all 5 folds for BRL-point, CHADS2, and

CHA2DS2-VASc, and in Table 3.2 we report mean AUC across the folds. These re-

sults show that with complexity and interpretability similar to CHADS2, the BRL

point estimate decision lists performed significantly better at stroke prediction than

both CHADS2 and CHA2DS2-VASc. Interestingly, we also found that CHADS2 out-

performed CHA2DS2-VASc despite CHA2DS2-VASc being an extension of CHADS2.

74

if hemiplegia and age>60 then stroke risk 58.9% (53.8% - 63.8%)
else if cerebrovascular disorder then stroke risk 47.8% (44.8% - 50.7%)
else if transient ischaemic attack then stroke risk 23.8% (19.5% - 28.4%)
else if occlusion and stenosis of carotid artery without infarction then stroke risk
15.8% (12.2% - 19.6%)
else if altered state of consciousness and age>60 then stroke risk 16.0% (12.2% -
20.2%)
else if age≤70 then stroke risk 4.6% (3.9% - 5.4%)
else stroke risk 8.7% (7.9% - 9.6%)

Figure 3-3: Decision list for determining 1-year stroke risk following diagnosis of atrial
fibrillation from patient medical history. The risk given is the mean of the posterior
consequent distribution, and in parentheses is the 95% credible interval.

This is likely because the model for the CHA2DS2-VASc score, in which risk factors

are added linearly, is a poor model of actual stroke risk. For instance, the stroke

risks estimated by CHA2DS2-VASc are not a monotonic function of score. Within

the original CHA2DS2-VASc calibration study, (Lip et al, 2010b) estimate a stroke

risk of 9.6% with a CHA2DS2-VASc score of 7, and a 6.7% risk with a score of 8. The

indication that more stroke risk factors can correspond to a lower stroke risk suggests

that the CHA2DS2-VASc model may be misspecified, and highlights the difficulty in

constructing these interpretable models manually.

The results in Table 3.2 give the AUC for BRL, CHADS2, CHA2DS2-VASc, along

with the same collection of machine learning algorithms used in Section 3.2.2. The

decision tree algorithms CART and C5.0, the only other interpretable classifiers, were

outperformed even by CHADS2. The BRL-point performance was comparable to that

of SVM, and not substantially worse than ℓ1 logistic regression and random forests.

Using the full posterior, BRL-post matched random forests for the best performing

method.

All of the methods were applied to the data on the same, single Amazon Web

Services virtual core with a processor speed of approximately 2.5Ghz and 4GB of

memory. Bayesian CART was unable to fit the data since it ran out of memory, and

so it is not included in Table 3.2.

75

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
po

si
ti

ve
ra

te

BRL-point
CHADS2

CHA2DS2-VASc

Figure 3-4: ROC curves for stroke prediction on the MDCD database for each of 5
folds of cross-validation, for the BRL point estimate, CHADS2, and CHA2DS2-VASc.

Table 3.2: Mean, and in parentheses standard deviation, of AUC and training time
across 5 folds of cross-validation for stroke prediction. Note that the CHADS2 and
CHA2DS2-VASc models are fixed, so no training time is reported.

AUC Training time (mins)
BRL-point 0.756 (0.007) 21.48 (6.78)
CHADS2 0.721 (0.014) no training
CHA2DS2-VASc 0.677 (0.007) no training
CART 0.704 (0.010) 12.62 (0.09)
C5.0 0.704 (0.011) 2.56 (0.27)
ℓ1 logistic regression 0.767 (0.010) 0.05 (0.00)
SVM 0.753 (0.014) 302.89 (8.28)
Random forests 0.774 (0.013) 698.56 (59.66)
BRL-post 0.775 (0.015) 21.48 (6.78)

76

The BRL MCMC chains were simulated until convergence, which required 50,000

iterations for 4 of the 5 folds, and 100,000 for the fifth. The three chains for each fold

were simulated in serial, and the total CPU time required per fold is given in Table

3.2, together with the CPU times required for training the comparison algorithms on

the same processor. Table 3.2 shows that the BRL MCMC simulation was more than

ten times faster than training SVM, and more than thirty times faster than training

random forests, using standard implementations of these methods.

3.3.1 Additional Experiments

We further investigated the properties and performance of the BRL by applying it

to two subsets of the data, female patients only and male patients only. The female

dataset contained 8368 observations, and the number of pre-mined antecedents in each

of 5 folds ranged from 1982 to 2197. The male dataset contained 4218 observations,

and the number of pre-mined antecedents in each of 5 folds ranged from 1629 to 1709.

BRL MCMC simulations and comparison algorithm training were done on the same

processor as the full experiment. The AUC and training time across five folds for

each of the datasets is given in Table 3.3.

The BRL point estimate again outperformed the other interpretable models,

namely CHADS2, CHA2DS2-VASc, CART, and C5.0. Furthermore, the BRL-post

performance matched that of random forests for the best performing method. As

before, BRL MCMC simulation required significantly less time than SVM or random

forests training.

3.4 Related Work and Discussion

Most widely used medical scoring systems are designed to be interpretable, but are not

necessarily optimized for accuracy, and generally are derived from few factors. The

Thrombolysis In Myocardial Infarction (TIMI) Score (Antman et al, 2000), Apache

II score for infant mortality in the ICU (Knaus et al, 1985), the CURB-65 score

for predicting mortality in community-acquired pneumonia (Lim et al, 2003), and the

77

Table 3.3: Mean, and in parentheses standard deviation, of AUC and training time
(mins) across 5 folds of cross-validation for stroke prediction

Female patients Male patients
AUC Training time AUC Training time

BRL-point 0.747 (0.028) 9.12 (4.70) 0.738 (0.027) 6.25 (3.70)
CHADS2 0.717 (0.018) no training 0.730 (0.035) no training
CHA2DS2-VASc 0.671 (0.021) no training 0.701 (0.030) no training
CART 0.704 (0.024) 7.41 (0.14) 0.581 (0.111) 2.69 (0.04)
C5.0 0.707 (0.023) 1.30 (0.09) 0.539 (0.086) 0.55 (0.01)
ℓ1 LR 0.755 (0.025) 0.04 (0.00) 0.739 (0.036) 0.01 (0.00)
SVM 0.739 (0.021) 56.00 (0.73) 0.753 (0.035) 11.05 (0.18)
Random forests 0.764 (0.022) 389.28 (33.07) 0.773 (0.029) 116.98 (12.12)
BRL-post 0.765 (0.025) 9.12 (4.70) 0.778 (0.018) 6.25 (3.70)

CHADS2 score (Gage et al, 2001) are examples of interpretable predictive models that

are very widely used. Each of these scoring systems involves very few calculations,

and could be computed by hand during a doctor’s visit. In the construction of each

of these models, heuristics were used to design the features and coefficients for the

model; none of these models was fully learned from data.

In contrast with these hand-designed interpretable medical scoring systems, re-

cent advances in the collection and storing of medical data present unprecedented

opportunities to develop powerful models that can predict a wide variety of outcomes

(Shmueli, 2010). The front-end user interface of medical risk assessment tools are

increasingly available online (e.g., http://www.r-calc.com). At the end of the as-

sessment, a patient may be told he or she has a high risk for a particular outcome

but without understanding why the predicted risk is high, particularly if many pieces

of information were used to make the prediction.

In general, humans can handle only a handful of cognitive entities at once (Miller,

1956; Jennings et al, 1982). It has long since been hypothesized that simple mod-

els predict well, both in the machine learning literature (Holte, 1993), and in the

psychology literature (Dawes, 1979). The related concepts of explanation and com-

prehensibility in statistical modeling have been explored in many past works (Bratko,

1997; Madigan et al, 1997; Giraud-Carrier, 1998; Rüping, 2006; Nowozin et al, 2007;

Huysmans et al, 2011; Vellido et al, 2012; Freitas, 2014, for example).

78

http://www.r-calc.com

Decision lists have the same form as models used in the expert systems literature

from the 1970’s and 1980’s (Leondes, 2002), which were among the first successful

types of artificial intelligence. The knowledge base of an expert system is composed

of natural language statements that are if... then... rules. Decision lists are a type

of associative classifier, meaning that the list is formed from association rules. In

the past, associative classifiers have been constructed from heuristic greedy sorting

mechanisms (Rivest, 1987; Liu et al, 1998; Li et al, 2001; Yin and Han, 2003; Marc-

hand and Sokolova, 2005; Yi and Hüllermeier, 2005; Rudin et al, 2013). Some of

these sorting mechanisms work provably well in special cases, for instance when the

decision problem is easy and the classes are easy to separate, but are not optimized to

handle more general problems. Sometimes associative classifiers are formed by aver-

aging several rules together, but the resulting classifier is not generally interpretable

(Friedman and Popescu, 2008; Meinshausen, 2010).

Decision trees are closely related to decision lists, and are in some sense equivalent:

any decision tree can be expressed as a decision list, and any decision list is a one-

sided decision tree. Decision trees are almost always constructed greedily from the top

down, and then pruned heuristically upwards and cross-validated to ensure accuracy.

Because the trees are not fully optimized, if the top of the decision tree happened to

have been chosen badly at the start of the procedure, it could cause problems with

both accuracy and interpretability. Bayesian decision trees (Chipman et al, 1998;

Dension et al, 1998; Chipman et al, 2002) use Markov chain Monte Carlo (MCMC)

to sample from a posterior distribution over trees. Since they were first proposed,

several improvements and extensions have been made in both sampling methods and

model structure (Wu et al, 2007; Chipman et al, 2010; Taddy et al, 2011). The space

of decision lists using pre-mined rules is significantly smaller than the space of decision

trees, making it substantially easier to obtain MCMC convergence, and to avoid the

pitfalls of local optima. Moreover, rule mining allows for the rules to be individually

powerful. Constructing a single decision tree is extremely fast, but sampling over

the space of decision trees is extremely difficult (unless one is satisfied with local

maxima). To contrast this with our approach: the rule mining step is extremely fast,

79

yet sampling over the space of decision lists is very practical.

Interpretable models are generally not unique (stable), in the sense that there

many be many equally good models, and it is not clear in advance which one will be

returned by the algorithm. For most problems, the space of high quality predictive

models is fairly large (called the “Rashomon Effect" Breiman, 2001b), so we cannot

expect uniqueness. In practice, as we showed, the rule lists across test folds were very

similar, but if one desires stability to small perturbations in the data generally, we

recommend using the full posterior rather than a point estimate.

This work is related to the Hierarchical Association Rule Model (HARM), a

Bayesian model that uses rules (McCormick et al, 2012). HARM estimates the con-

ditional probabilities of each rule jointly in a conservative way. Each rule acts as a

separate predictive model, so HARM does not explicitly aim to learn an ordering of

rules. The work of Wang and Rudin (2015) provides an extension to BRL whereby

the probabilities for the rules are monotonically decreasing down the list. Another

possible extension is to give preference to particular antecedents, such as known risk

factors. This sort of preference could be expressed in the antecedent prior distribution

in (3.2).

3.5 Conclusion

We are working under the hypothesis that many real datasets permit predictive mod-

els that can be surprisingly small. This was hypothesized over a decade ago (Holte,

1993), however, we now are starting to have the computational tools to truly test this

hypothesis. The BRL method introduced in this work aims to hit the “sweet spot"

between predictive accuracy, interpretability, and tractability.

Interpretable models have the benefits of being both concise and convincing. A

small set of trustworthy rules can be the key to communicating with domain ex-

perts and to allow machine learning algorithms to be more widely implemented and

trusted. In practice, a preliminary interpretable model can help domain experts to

troubleshoot the inner workings of a complex model, in order to make it more ac-

80

curate and tailored to the domain. We demonstrated that interpretable models lend

themselves to the domain of predictive medicine, and there is a much wider variety of

domains in science, engineering, and industry, where these models would be a natural

choice.

81

82

Chapter 4

Statistical Learning Theory and

Association Rules

A strength of modern machine learning techniques is that they come with theoretical

guarantees, often obtained through the framework of statistical learning theory. We

now provide a theoretical guarantee of generalization for decision lists used for binary

classification, as was done in the previous chapter.

In the binary classification problem, each data example 𝑥 ∈ 𝒳 receives a single

label 𝑦 that is one of two possible labels {+1,−1}. Suppose that we sample labeled

examples 𝑧 = (𝑥, 𝑦). Each labeled example 𝑧 is chosen randomly (iid) from a fixed

but unknown probability distribution 𝒟 over examples and labels. Given a training

set 𝑆 of 𝑚 labeled examples, we wish to construct a classifier that can assign the

correct label to new, unlabeled examples.

Suppose we have a collection of rule antecedents 𝒜. Each rule antecedent 𝑎 is an

assertion about the feature vector 𝑥 that is either true or false. We do not need to

concern ourselves with the nature of the feature space 𝒳 as the classifier will only

interact with the features through the rule antecedents in 𝒜. We begin by defining

a scoring function 𝑔 : 𝒜× {−1, 1} → R that assigns score 𝑔(𝑎, 𝑦) to the rule 𝑎 → 𝑦.

The set of antecedents 𝒜 can be any collection so long as every 𝑥 ∈ 𝒳 satisfies at least

one 𝑎 ∈ 𝒜. This condition can be satisfied by including in 𝒜 a “default" antecedent

that is by definition satisfied by every feature vector. We define a valid scoring

83

function as one that produces no ties: ∀𝑎 ∈ 𝒜, 𝑔(𝑎, 1) ̸= 𝑔(𝑎,−1) and ∀𝑎1, 𝑎2 ∈ 𝒜,

max𝑦∈{−1,1} 𝑔(𝑎1, 𝑦) ̸= max𝑦∈{−1,1} 𝑔(𝑎2, 𝑦). The validity requirement will be discussed

later. Define 𝐺 to be the class of all valid scoring functions. We now define a class

of decision functions that use a valid scoring function 𝑔 ∈ 𝐺 to provide a label to

example 𝑥, 𝑓𝑔 : 𝒳 → {−1, 1}. The decision function assigns the label corresponding

to the highest scoring rule whose antecedent is satisfied by 𝑥. We denote the event

that 𝑎 is satisfied by 𝑥 as 𝑎(𝑥) = 1. Then, the decision function is

𝑓𝑔(𝑥) = argmax
𝑦∈{−1,1}

max
𝑎∈𝒜:𝑎(𝑥)=1

𝑔(𝑎, 𝑦). (4.1)

We call this classifier a “max-score association rule classifier" because it uses the

association rule with the maximum score to perform the classification.

Decision lists are max-score association rule classifiers: 𝑔 orders the association

rules, and we make a classification with the first association rule in the list whose

antecedent is satisfied by 𝑥. A short decision list is obtained by including a default

rule 𝑎0 such that 𝑎0(𝑥) = 1 for all 𝑥, and allowing 𝑔(𝑎0, 𝑦) to be higher than any rules

that should not be on the list.

Let ℱmaxscore be the class of all max-score association rule classifiers: ℱmaxscore :=

{𝑓𝑔 : 𝑔 ∈ 𝐺}. We will calculate the VC dimension of the class ℱmaxscore. The VC

dimension is defined as the size of the largest set of examples to which arbitrary labels

can be assigned using some 𝑓𝑔 ∈ ℱmaxscore, a process known as “shattering."

The argmax in (4.1) is unique because 𝑔 is valid, thus there are no ties. If ties are

allowed but broken randomly, arbitrary labels can be realized with some probability,

for example by taking 𝑔(𝑎, 𝑦) = 0 for all 𝑎 and 𝑦. In this case the VC dimension can

be considered to be infinite, which motivates our definition of a valid scoring function.

This problem actually happens with any classification problem where function 𝑓(𝑥) =

0 ∀𝑥 is within the hypothesis space, thereby allowing all points to sit on the decision

boundary. Our definition of validity is equivalent to one in which ties are allowed but

are broken deterministically using a pre-determined ordering on the rules. In practice,

ties are generally broken in a deterministic way by the computer, so the inclusion of

84

the function 𝑓 = 0 is not problematic.

The true risk of the max-score association rule classifier is the expected misclas-

sification error, which we denote as

𝑅(𝑓𝑔) := E(𝑥,𝑦)∼𝒟1[𝑓𝑔(𝑥)̸=𝑦].

The empirical risk is the average misclassification error over a training set of 𝑚

examples:

�̂�(𝑓𝑔) :=
1

𝑚

𝑚∑︁
𝑖=1

1[𝑓𝑔(𝑥𝑖) ̸=𝑦𝑖].

The main result of this chapter is the following theorem, which indicates that gener-

alization depends on the number of association rules.

Theorem 1. The VC dimension ℎ of the set of max-score classifiers is bounded by

the number of antecedents:

ℎ ≤ |𝒜|.

If 𝒳 ⊆ 2𝒵 for some finite set 𝒵 and 𝒜 is a collection of unique itemsets 𝑎 ⊆ 𝒵 then

ℎ = |𝒜|.

Proof. First we show that ℎ ≤ |𝒜|. To do this, we must show that for any collection

of examples 𝑥1, . . . , 𝑥𝑁 , 𝑁 > |𝒜|, there exists a corresponding set of labels 𝑦1, . . . , 𝑦𝑁

that cannot be realized by any max-score association rule classifier. For each 𝑥𝑖,

we introduce a binary vector �̄�𝑖 of length |𝒜|, where each element corresponds to an

𝑎 ∈ 𝒜. The element of �̄�𝑖 corresponding to 𝑎 is 1 if 𝑎 is satisfied by 𝑥𝑖 and 0 otherwise.

Each vector �̄�𝑖 is an element of R|𝒜|, so the collection of vectors �̄�1, . . . , �̄�𝑁 must be

linearly dependent if 𝑁 > |𝒜|. By linear dependence and the fact that every �̄�𝑖 is

non-zero and non-negative, there must exist coefficients 𝑐𝑖 and disjoint, non-empty

sets 𝑀0 and 𝑀1 such that 𝑀0 ∪𝑀1 = {1, . . . , 𝑁} and

∑︁
𝑖∈𝑀0

𝑐𝑖�̄�𝑖 =
∑︁
𝑖∈𝑀1

𝑐𝑖�̄�𝑖, 𝑐𝑖 > 0. (4.2)

85

Define 𝒜0 = {𝑎 ∈ 𝒜 : 𝑎(𝑥𝑖) = 1 for some 𝑖 ∈ 𝑀0} and similarly 𝒜1 = {𝑎 ∈ 𝒜 :

𝑎(𝑥𝑖) for some 𝑖 ∈ 𝑀1}. If 𝑎(𝑥𝑖) = 1 for some 𝑎 and some 𝑖 ∈ 𝑀0, then the corre-

sponding element of �̄�𝑖 will be 1 and the same element in the left part of (4.2) will be

strictly positive. Then, (4.2) implies that 𝑎(𝑥𝑗) = 1 for some 𝑗 ∈𝑀1. Thus, 𝒜0 ⊆ 𝒜1.

The reverse argument shows 𝒜1 ⊆ 𝒜0, so 𝒜0 = 𝒜1. However, for any valid 𝑔 there

exists a satisfied rule with maximum score, whose antecedent is

𝑎* = arg max
𝑎∈𝒜0

max
𝑦∈{−1,1}

𝑔(𝑎, 𝑦)

= arg max
𝑎∈𝒜1

max
𝑦∈{−1,1}

𝑔(𝑎, 𝑦).

Any 𝑥𝑖 that satisfies 𝑎* will get label 𝑦* = arg max𝑦∈{−1,1} 𝑔(𝑎*, 𝑦). Thus for at least

one 𝑖 ∈𝑀0 and at least one 𝑗 ∈𝑀1, 𝑓𝑔(𝑥𝑖) = 𝑦* = 𝑓𝑔(𝑥𝑗). Set 𝑦𝑖 = −1 for all 𝑖 ∈𝑀0

and 𝑦𝑗 = 1 for all 𝑗 ∈𝑀1 and this set of labels cannot be realized, which shows that

ℎ ≤ |𝒜|.

For the second part of the theorem, we now show that this upper bound can be

achieved by providing a set of |𝒜| examples and finding elements of ℱmaxscore that can

assign them arbitrary labels. We list the elements of 𝒜 as 𝑎1, . . . , 𝑎|𝒜| - for this part

of the proof, each of these is an itemset (a subset of a ground set 𝒵). We construct

our set of examples by taking 𝑥𝑖 = 𝑎𝑖, for 𝑖 = 1, . . . , |𝒜|. Thus each example is one

of the itemsets from 𝒜. Some of the itemsets in 𝒜 might be larger than others, and

in fact some itemsets might contain others. We will place the elements of 𝒜 in order

of increasing size. The possible sizes of itemsets in 𝒜 are 0, . . . , |𝒵|. We arrange the

elements of 𝒜 into sets based on their sizes: 𝑆𝑘 = {𝑖 : |𝑎𝑖| = 𝑙𝑘}, 𝑘 = 0, 1, . . . , |𝒵|.

We are now ready to construct a classifier 𝑓𝑔 that can produce arbitrary labels {𝑦𝑖}𝑖
for these examples {𝑥𝑖}.

If ∅ ∈ 𝒜, then there will be some 𝑖 such that 𝑥𝑖 = ∅. For this 𝑖, we set 𝑔(𝑎𝑖, 𝑦𝑖) =

𝑐0, any positive number, and 𝑔(𝑎𝑖,−𝑦𝑖) = 0, thereby ensuring that that example will

be correctly labeled. Then, for all 𝑖 ∈ 𝑆1, we set 𝑔(𝑎𝑖, 𝑦𝑖) = 𝑐1, any positive number,

and 𝑔(𝑎𝑖,−𝑦𝑖) = 0. Thus, for the corresponding 𝑥𝑖, 𝑓𝑔(𝑥𝑖) = 𝑦𝑖. Similarly, for all

𝑖 ∈ 𝑆2, we set 𝑔(𝑎𝑖, 𝑦𝑖) = 𝑐2, 𝑐2 > 𝑐1, and 𝑔(𝑎𝑖,−𝑦𝑖) = 0. For any 𝑖 ∈ 𝑆2, it may be

86

that there exists some 𝑗 ∈ 𝑆1 such that 𝑎𝑗 ⊂ 𝑥𝑖. However, because 𝑐2 > 𝑐1, the rule

with the maximum score will be “𝑎𝑖 → 𝑦𝑖” and 𝑥𝑖 is labeled as desired. In general,

for any 𝑖 ∈ 𝑆𝑘, we set 𝑔(𝑎𝑖, 𝑦𝑖) = 𝑐𝑘, where 𝑐𝑘−1 < 𝑐𝑘 < 𝑐𝑘+1 and 𝑔(𝑎𝑖,−𝑦𝑖) = 0 to get

𝑓𝑔(𝑥𝑖) = 𝑦𝑖. Because this set of |𝒜| examples can be arbitrarily labeled using elements

of ℱmaxscore, we have ℎ ≥ |𝒜|, which combined with the previous result shows that in

this case ℎ = |𝒜|.

From this theorem, classical results such as those of Vapnik (1999, Equations 20

and 21) can be directly applied to obtain a generalization bound:

Corollary 1. (Uniform Generalization Bound for Classification)

With probability at least 1−𝛿 the following holds simultaneously for all 𝑓𝑔 ∈ ℱmaxscore:

𝑅(𝑓𝑔) ≤ �̂�(𝑓𝑔) +
𝜖

2

⎛⎝1 +

√︃
1 +

4�̂�(𝑓𝑔)

𝜖

⎞⎠ , where 𝜖 = 4
|𝒜|
(︁

ln 2𝑚
|𝒜| + 1

)︁
− ln 𝛿

𝑚
.

The result of Theorem 1, and the corresponding generalization bound, holds gen-

erally, regardless of the details of the scoring function. The ranking could be done

using a simple confidence-based algorithm, such as by Rudin et al (2011, 2013), or it

could be done using more sophisticated methods such as in Chapter 3.

We can also use a standard argument involving Hoeffding’s inequality and the

union bound over elements of ℱmaxscore to obtain that with probability at least 1− 𝛿,

the following holds for all 𝑓𝑔 ∈ ℱmaxscore:

𝑅(𝑓𝑔) ≤ �̂�(𝑓𝑔) +

√︃
1

2𝑚

(︂
ln(2|ℱmaxscore|) + ln

1

𝛿

)︂
.

The value of |ℱmaxscore| is at most 2|𝒜|. This is because there are |𝒜| ways to determine

max
𝑎∈𝒜,𝑎⊆𝑥

𝑔(𝑎, 𝑦), and there are 2 ways to determine the arg max over 𝑦. The bound

then depends on
√︀

|𝒜|, but not log |𝒜|.

Theorem 1 provides the VC dimension for the decision lists that we learned in

Chapter 3. For a linear classifier, the VC dimension equals the number of variables in

the model. Thus the result ℎ = |𝒜| is exactly the VC dimension of a classifier created

87

using a linear combination of association rules, as was done in Chapter 2. Although

these were two very different approaches to using association rules to make predic-

tions, we have the same prediction guarantees. We then expect similar generalization

behavior for the two different approaches.

88

Chapter 5

Decision Making from Sales

Transaction Data: Bundle Pricing

Sales transaction data are immediately available for most retailers, but it is not always

straightforward to use these data to make better decisions. In this chapter we look

at how sales transaction data can be used for optimal bundle pricing.

Item bundles, when a collection of items are sold together at a discount, are

used across many industries, especially in retail. Both theoretical and empirical work

has shown that introducing an appropriately priced bundle can significantly increase

profits, with low risk to the retailer (Eppen et al, 1991). Even if a bundle has not been

previously offered, useful information about how to price the bundle can be obtained

from the sales history of the individual items included in the bundle. Choosing the

optimal bundle price relies critically on a knowledge of the price consumers are willing

to pay for each item in the bundle, called their valuations, as well as the interplay

between the valuations of items in the bundle. A retailer generally does not know the

full, joint distribution of valuations. However, the retailer likely does have historical

sales transaction data for the individual items. We introduce a procedure for learning

the joint distribution of valuations from individual item sales transaction data, thus

allowing for optimal bundle pricing.

The economics literature on bundling has extensively examined the economic ef-

ficiency of bundling and how bundling can be used for price discrimination (Adams

89

and Yellen, 1976; Schmalensee, 1982; McAfee et al, 1989). These foundational studies

have been extended in many directions. Several papers have focused on analytical

solutions for the optimal bundle price and other quantities of interest (Venkatesh and

Kamakura, 2003; McCardle et al, 2007; Eckalbar, 2010). These analytical results were

obtained for the special case of uniformly distributed valuations, with the distribu-

tions for items in the bundle either independent or perfectly correlated. Schmalensee

(1984) obtained some analytical results and insights by assuming the joint distribu-

tion to be bivariate normal. Other results have been obtained for a finite collection

of deterministic valuations (Hanson and Martin, 1990).

A number of useful insights can be gained from these simplified models (see, for

example, Stremersch and Tellis, 2002). However, our main interest is in learning the

consumer response to bundling from data. When working with data, such strong

assumptions about the joint distribution, particularly independence, are no longer

appropriate. Jedidi et al (2003) eschew independence assumptions and use method-

ology based in utility theory to measure valuations. Their measurement procedure

requires offering the bundle at various prices to elicit the demand function for the

bundle. Based on their empirical results, they report that “models that assume sta-

tistical independence are likely to be misspecified." Venkatesh and Mahajan (1993)

also study bundle pricing without distributional assumptions for valuations, by mail-

ing out questionnaires that directly asked consumers for their valuations. Conjoint

analysis has also been used to estimate the valuation distribution from questionnaire

data in the context of bundling (Goldberg et al, 1984; Wuebeker and Mahajan, 1999).

Our contribution in this chapter is an inference procedure for predicting the ex-

pected change in profits when a bundle is offered at a particular price. The procedure

is developed for sales transaction data, and does not require collecting sales data for

the bundle a priori, nor does it require direct elicitation of valuations via question-

naires. The procedure is based on inference of a copula model over latent consumer

valuations, which allows for arbitrary marginal distributions and does not assume in-

dependence. Because the valuations are unobserved, the likelihood function involves

integrating over the latent valuations, and standard formulas for copula fitting can-

90

not be directly applied. We show how these computationally intractable integrals

can be transformed into distribution function evaluations, thus allowing for efficient

estimation. Our simulation studies and data experiments suggest that the inference

procedure allows for data-based bundling decisions which can help retailers increase

profits.

5.1 Copula Inference and Bundle Pricing

We suppose that a collection of 𝑛 items have been selected as a candidate bundle, and

our goal is to determine the optimal price and its associated profit if the bundle were

to be introduced1. We consider the situation where the items have not previously

been offered as a bundle, but historical sales transaction data are available for the

individual items.

The transaction data that we consider consist of two components: purchase data

𝑦𝑡 and price data 𝑥𝑡. Specifically, we let 𝑦𝑡 = [𝑦𝑡1, . . . , 𝑦
𝑡
𝑛] denote the sales data for

transaction 𝑡, with 𝑦𝑡𝑖 = 1 if item 𝑖 was purchased in transaction 𝑡, and 0 otherwise.

We assume that the price of each item at the time of each transaction is known, and

denote the price of item 𝑖 at the time of transaction 𝑡 as 𝑥𝑡𝑖. Let 𝑇 denote the total

number of transactions.

5.1.1 Valuations and Consumer Rationality

We suppose that each consumer has a valuation for each item, with 𝑣𝑡𝑖 representing

the (unobserved) valuation for item 𝑖 by the consumer in transaction 𝑡. As is done

throughout the bundling literature and much of the economics literature, we assume

that consumers are rational. Specifically, we model consumers as having infinite

budget, and as purchasing the assortment of items that maximizes the total difference

1The type of bundle that we consider here is called mixed bundling, in which consumers are
offered both the bundle and the individual items, with the bundle discounted relative to the sum of
the item prices.

91

between their valuation and the price:

𝑦𝑡 ∈ argmax
𝑦∈{0,1}𝑛

𝑛∑︁
𝑖=1

(𝑣𝑡𝑖 − 𝑥𝑡𝑖)𝑦𝑖. (5.1)

The rationality assumption implies that 𝑦𝑡𝑖 = 1 if and only if 𝑣𝑡𝑖 > 𝑥𝑡𝑖. 2

The rationality assumption provides a model for the relationship between valua-

tions 𝑣𝑡𝑖 and transaction data 𝑦𝑡𝑖 and 𝑥𝑡𝑖. Using this model, we now derive likelihood

formulas for inferring a joint distribution of valuations from sales transaction data.

Then we show how the valuation distribution can be used to find the optimal bundle

price.

5.1.2 Joint Distribution Models and Copula Inference

The most straightforward approach to model a joint distribution is to assume indepen-

dence. This type of joint model allows for arbitrary margins, however independence

is a potentially unreasonable assumption, especially because correlations are quite

important for bundling, as we show in Section 5.2. Modeling the joint distribution

as a multivariate normal allows for correlations via a covariance matrix, however it

requires the margins to be normally distributed, which can also be a strong assump-

tion when learning from data. Here we model the joint distribution using a copula

model, which is a class of joint distributions that allows for both correlation structures

and arbitrary margins. Copula models are widely used in statistics and finance, and

are becoming increasingly utilized for machine learning due to their flexibility and

computational properties (see, for example, Elidan, 2010, 2013).

We assume consumers are homogeneous, and model the consumer valuations 𝑣𝑡 as

independent draws from a joint distribution with distribution function 𝐹 (𝑣1, . . . , 𝑣𝑛).

Our goal is to infer this joint distribution. Let 𝐹𝑖(𝑣𝑖) be the marginal distribution

function for item 𝑖. Then, a copula C(·) for 𝐹 (·) is a distribution function over [0, 1]𝑛

2We model 𝑣𝑡𝑖 as a continuous random variable, and thus do not need to devote attention to the
case 𝑣𝑡𝑖 = 𝑥𝑡

𝑖.

92

with uniform margins such that

𝐹 (𝑣1, . . . , 𝑣𝑛) = C(𝐹1(𝑣1), . . . , 𝐹𝑛(𝑣𝑛)).

The copula combines the margins in such a way as to return the joint distribution. A

copula allows for the correlation structure to be modeled separately from the marginal

distributions, in a specific way which we show below. The field of copula modeling is

based on a representation theorem by Sklar (1973) which shows that every distribution

has a copula, and if the margins are continuous, the copula is unique. The copula

representation for a joint distribution has a number of interesting properties that are

helpful for efficient inference - see Trivedi and Zimmer (2005) for a more detailed

exposition.

Our approach to estimating 𝐹 (·) will be to choose parametric forms for the margins

𝐹𝑖(·) and the copula C(·), and then find the parameters for which C(𝐹1(𝑣1), . . . , 𝐹𝑛(𝑣𝑛))

is closest to 𝐹 (𝑣1, . . . , 𝑣𝑛), in a likelihood sense. Specifically, suppose each margin is

a distribution function with parameters 𝜃𝑖, and the copula distribution belongs to a

family with parameters 𝜑. We denote the parameterized margins as 𝐹𝑖(𝑣𝑖;𝜃𝑖) and

the parameterized joint distribution as 𝐹 (𝑣;𝜃,𝜑) = C(𝐹1(𝑣1;𝜃1), . . . , 𝐹𝑛(𝑣𝑛;𝜃𝑛);𝜑).

We are interested in the maximum likelihood problem

(︁
�̂�ML, �̂�ML

)︁
∈ argmax

𝜃,𝜑
ℓ(𝜃,𝜑),

where ℓ(𝜃,𝜑) is the appropriate log-likelihood function. The main advantage in using

a copula model is that the parameters can be separated into those that are specific

to one margin (𝜃𝑖) and those that are common to all margins (𝜑). Using a procedure

called inference functions for margins (IFM) (Joe and Xu, 1996), the optimization

can be performed in two steps. First each margin is fit independently, and then the

margin estimates are used to fit the correlation structure:

�̂�𝑖 ∈ argmax
𝜃𝑖

ℓ𝑖(𝜃𝑖), 𝑖 = 1, . . . , 𝑛 (5.2)

93

�̂� ∈ argmax
𝜑

ℓ(�̂�,𝜑). (5.3)

This gives computational tractability by significantly reducing the dimensionality

of the optimization problem that must be solved. In general, IFM does not yield

exactly the maximum likelihood estimate: (�̂�ML, �̂�ML) ̸= (�̂�, �̂�). However, the IFM

estimates (�̂�, �̂�), like the maximum likelihood estimates, are statistically consistent

and asymptotically normal (Joe and Xu, 1996; Xu, 1996).

The inference problem that we face here differs from a typical copula modeling

problem because the distribution of interest is that over valuations, which are unob-

served, latent variables. In the next two sections, we use the rationality assumption

of (5.1) to derive tractable likelihood formulas to be used in (5.2) and (5.3).

5.1.3 Margin Likelihood and Demand Models

We first consider the margin maximum likelihood problem in (5.2). Let 𝑝𝑖(𝑥𝑡𝑖) be the

probability of purchase for item 𝑖 at price 𝑥𝑡𝑖, that is, the demand model for item

𝑖. The following proposition shows an equivalence between the marginal valuation

distribution function and demand models.

Proposition 2. The demand function and the inverse marginal valuation distribution

function are identical, i.e.,

𝑝𝑖(𝑥
𝑡
𝑖) = 1 − 𝐹𝑖(𝑥

𝑡
𝑖;𝜃𝑖).

Proof. By the rationality assumption of (5.1), item 𝑖 is purchased if and only if 𝑣𝑡𝑖 > 𝑥𝑡𝑖:

𝑝𝑖(𝑥
𝑡
𝑖) = P(𝑣𝑡𝑖 > 𝑥𝑡𝑖) = 1 − 𝐹𝑖(𝑥

𝑡
𝑖;𝜃𝑖).

We thus choose the following likelihood model for the observed purchase data:

𝑦𝑡𝑖 ∼ Bernoulli(1 − 𝐹𝑖(𝑥
𝑡
𝑖;𝜃𝑖)).

94

Given data {𝑥𝑡𝑖, 𝑦𝑡𝑖}𝑇𝑡=1, the log-likelihood function for each margin is:

ℓ𝑖(𝜃𝑖) =
𝑇∑︁
𝑡=1

(︀
𝑦𝑡𝑖 log(1 − 𝐹𝑖(𝑥

𝑡
𝑖;𝜃𝑖)) + (1 − 𝑦𝑡𝑖) log(𝐹𝑖(𝑥

𝑡
𝑖;𝜃𝑖))

)︀
. (5.4)

If 𝐹𝑖(·;𝜃𝑖) is linear in 𝜃𝑖, for example when using a linear demand model, then

the maximum likelihood problem is a concave maximization. For general demand

models, a local maximum can easily be found using standard optimization techniques.

In Section 5.1.7 we discuss some possible choices for the family of 𝐹𝑖(·;𝜃𝑖).

5.1.4 Copula Inference over Latent Variables

Once the margin parameters �̂�𝑖 have been estimated by maximizing (5.4), these esti-

mates are used, together with the data, to obtain an estimate of the copula parameters

𝜑. We now derive an expression for the log-likelihood of 𝜑.

ℓ(�̂�,𝜑) =
𝑇∑︁
𝑡=1

log 𝑝(𝑦𝑡|𝑥𝑡, �̂�,𝜑)

=
𝑇∑︁
𝑡=1

log

∫︁
𝑝(𝑦𝑡|𝑣𝑡,𝑥𝑡, �̂�,𝜑)𝑝(𝑣𝑡|𝑥𝑡, �̂�,𝜑)𝑑𝑣𝑡. (5.5)

Given 𝑣𝑡 and 𝑥𝑡, 𝑦𝑡 is deterministic, with 𝑦𝑡𝑖 = 1 if 𝑣𝑡𝑖 > 𝑥𝑡𝑖 and 0 otherwise. Thus the

integral over 𝑣𝑡 can be limited to all 𝑣𝑡 that are consistent with 𝑦𝑡 and 𝑥𝑡, meaning

the integral is over 𝑣𝑡𝑖 > 𝑥𝑡𝑖 for 𝑖 such that 𝑦𝑡𝑖 = 1, and over 𝑣𝑡𝑖 ≤ 𝑥𝑡𝑖 for 𝑖 such that

𝑦𝑡𝑖 = 0. We then define the lower and upper limits of integration as,

𝑣𝑡,ℓ𝑖 =

⎧⎪⎨⎪⎩−∞ if 𝑦𝑡𝑖 = 0,

𝑥𝑡𝑖 if 𝑦𝑡𝑖 = 1,

and 𝑣𝑡,𝑢𝑖 =

⎧⎪⎨⎪⎩𝑥
𝑡
𝑖 if 𝑦𝑡𝑖 = 0,

+∞ if 𝑦𝑡𝑖 = 1.

95

The quantity 𝑝(𝑣𝑡|𝑥𝑡, �̂�,𝜑) = 𝑝(𝑣𝑡|�̂�,𝜑) is exactly the copula density function, which

we denote as 𝑓(·; �̂�,𝜑). Continuing the likelihood expression from (5.5), we have,

ℓ(�̂�,𝜑) =
𝑇∑︁
𝑡=1

log

∫︁ 𝑣𝑡,𝑢𝑛

𝑣𝑡,ℓ𝑛

. . .

∫︁ 𝑣𝑡,𝑢1

𝑣𝑡,ℓ1

𝑓(𝑣𝑡1, . . . , 𝑣
𝑡
𝑛; �̂�,𝜑)𝑑𝑣𝑡1 . . . 𝑑𝑣

𝑡
𝑛. (5.6)

The integral in (5.6) renders the likelihood formula intractable. To allow for efficient

inference, we will use the following formula for a rectangular integral of a probability

density function. This formula is critical to the scalability of our inference procedure

as it allows us to replace the multidimensional integral in (5.6) with distribution

function evaluations.

Lemma 1. Let 𝑓(·) be a joint probability density function over continuous random

variables 𝑧1, . . . , 𝑧𝑛 with the corresponding joint distribution function 𝐹 (·). Then,

∫︁ 𝑧𝑢𝑛

𝑧ℓ𝑛

. . .

∫︁ 𝑧𝑢1

𝑧ℓ1

𝑓(𝑧1, . . . , 𝑧𝑛)𝑑𝑧1 . . . 𝑑𝑧𝑛 =
𝑛∑︁

𝑘=0

(−1)𝑘
∑︁

𝐼⊆{1,...,𝑛}
|𝐼|=𝑘

𝐹 (�̃�(𝐼)),

where

𝑧𝑖(𝐼) =

⎧⎪⎨⎪⎩𝑧
ℓ
𝑖 if 𝑖 ∈ 𝐼,

𝑧𝑢𝑖 otherwise.

Proof. Define the probability events 𝐴𝑖 = {𝑧𝑖 ≤ 𝑧ℓ𝑖} for each 𝑖. Let 𝐵 = ∩𝑛
𝑖=1{𝑧𝑖 ≤

𝑧𝑢𝑖 }. Then,

∫︁ 𝑧𝑢𝑛

𝑧ℓ𝑛

. . .

∫︁ 𝑧𝑢1

𝑧ℓ1

𝑓(𝑧1, . . . , 𝑧𝑛)𝑑𝑧1 . . . 𝑑𝑧𝑛 = P (𝐵 ∩ (∩𝑛
𝑖=1𝐴

c
𝑖))

= P (𝐵 ∩ (∪𝑛
𝑖=1𝐴𝑖)

c)

= P(𝐵) − P (𝐵 ∩ (∪𝑛
𝑖=1𝐴𝑖))

= P(𝐵) − P (∪𝑛
𝑖=1 (𝐵 ∩ 𝐴𝑖))

= P(𝐵) −
𝑛∑︁

𝑘=1

(−1)𝑘−1
∑︁

𝐼⊆{1,...,𝑛}
|𝐼|=𝑘

P(𝐵 ∩ 𝐴𝐼)

by the inclusion-exclusion formula, with 𝐴𝐼 = ∩𝑖∈𝐼𝐴𝑖. We then substitute P(𝐵) =

96

𝐹 (𝑧𝑢1 , . . . , 𝑧
𝑢
𝑛) and P(𝐵 ∩ 𝐴𝐼) = 𝐹 (�̃�(𝐼)) as defined above to obtain the statement of

the lemma.

With Lemma 1, we are now equipped to evaluate the log-likelihood expression in

(5.6):

ℓ(�̂�,𝜑) =
𝑇∑︁
𝑡=1

log
𝑛∑︁

𝑘=0

(−1)𝑘
∑︁

𝐼⊆{1,...,𝑛}
|𝐼|=𝑘

𝐹 (�̃�𝑡(𝐼); �̂�,𝜑), (5.7)

where as before

𝑣𝑡𝑖(𝐼) =

⎧⎪⎨⎪⎩𝑣
𝑡,ℓ
𝑖 if 𝑖 ∈ 𝐼,

𝑣𝑡,𝑢𝑖 otherwise.

For the most simple case of two items in a bundle, the inner expression in (5.7)

evaluates to

2∑︁
𝑘=0

(−1)𝑘
∑︁

𝐼⊆{1,2}
|𝐼|=𝑘

𝐹 (𝑣𝑡1(𝐼), 𝑣𝑡2(𝐼)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐹 (𝑥𝑡1, 𝑥
𝑡
2) if 𝑦 = (0, 0),

𝐹1(𝑥
𝑡
1) − 𝐹 (𝑥𝑡1, 𝑥

𝑡
2) if 𝑦 = (0, 1),

𝐹2(𝑥
𝑡
2) − 𝐹 (𝑥𝑡1, 𝑥

𝑡
2) if 𝑦 = (1, 0),

1 − 𝐹1(𝑥
𝑡
1) − 𝐹2(𝑥

𝑡
2) + 𝐹 (𝑥𝑡1, 𝑥

𝑡
2) if 𝑦 = (1, 1).

5.1.5 Consistency and Scalability

Combining (5.4) and (5.7) yields the complete inference procedure, which we give in

the following proposition.

Proposition 3. The inference procedure

�̂�𝑖 ∈ argmax
𝜃𝑖

𝑇∑︁
𝑡=1

(︀
𝑦𝑡𝑖 log(1 − 𝐹𝑖(𝑥

𝑡
𝑖;𝜃𝑖)) + (1 − 𝑦𝑡𝑖) log(𝐹𝑖(𝑥

𝑡
𝑖;𝜃𝑖))

)︀
�̂� ∈ argmax

𝜑

𝑇∑︁
𝑡=1

log
𝑛∑︁

𝑘=0

(−1)𝑘
∑︁

𝐼⊆{1,...,𝑛}
|𝐼|=𝑘

𝐹 (�̃�𝑡(𝐼); �̂�,𝜑)

is statistically consistent.

97

Because the inference is exactly the IFM procedure, it follows from Joe and Xu

(1996) that it is statistically consistent.

The computation is exponential in the size of the bundle 𝑛, however in retail

practice bundle offers generally do not contain a large number of items. Importantly,

the computation is linear in the number of transactions 𝑇 , which allows inference

to be performed even on very large transaction databases. The main computational

step is evaluating the copula distribution function in (5.7). For many copula models,

such as the Gaussian copula which we describe in Section 5.1.7, efficient techniques

are available for distribution function evaluation.

5.1.6 Computing the Optimal Bundle Price

Given the joint valuation distribution, the expected profit per consumer as a function

of item and bundle prices can be computed. For notational convenience, here we give

the result for 𝑛 = 2. Consumers are rational, in that they choose the option (item 1

only, item 2 only, bundle, or no purchase) that maximizes their surplus 𝑣𝑖 − 𝑥𝑖. For

this result, we assume that the valuation for the bundle is the sum of the component

valuations 𝑣𝐵 = 𝑣1+𝑣2, although this could easily be relaxed to other bundle valuation

models such as those in Venkatesh and Kamakura (2003). Note that inferring the joint

valuation distribution does not require any assumption on how valuations combine,

rather this assumption is only used to compute the expected profit of bundling. We

denote the cost of item 𝑖 as 𝑐𝑖 and assume that the bundle cost is the sum of the

component costs.

Proposition 4. For joint valuation density function 𝑓(·) and joint valuation distri-

bution function 𝐹 (·), the expected profit per consumer obtained when items 1, 2, and

the bundle are priced at 𝑥1, 𝑥2, and 𝑥𝐵 respectively is

E [profit] = (𝑥1 − 𝑐1)(𝐹2(𝑥𝐵 − 𝑥1) − 𝐹 (𝑥1, 𝑥𝐵 − 𝑥1))

+ (𝑥2 − 𝑐2)(𝐹1(𝑥𝐵 − 𝑥2) − 𝐹 (𝑥𝐵 − 𝑥2, 𝑥2))

+ (𝑥𝐵 − 𝑐1 − 𝑐2)

(︂
1 − 𝐹1(𝑥𝐵 − 𝑥2) − 𝐹2(𝑥𝐵 − 𝑥1)

98

+ 𝐹 (𝑥𝐵 − 𝑥2, 𝑥𝐵 − 𝑥1) −
∫︁ 𝑥1

𝑥𝐵−𝑥2

∫︁ 𝑥𝐵−𝑣1

𝑥𝐵−𝑥1

𝑓(𝑣1, 𝑣2)𝑑𝑣2𝑑𝑣1

)︂
.

Proof. The profit can be decomposed into that obtained from each of the purchase

options.

E [profit] = (𝑥1 − 𝑐1)P(Purchase item 1 only)

+ (𝑥2 − 𝑐2)P(Purchase item 2 only)

+ (𝑥𝐵 − 𝑐1 − 𝑐2)P(Purchase the bundle).

The options no purchase, purchasing item 1 only, purchasing item 2 only, and

purchasing the bundle give the consumer surplus 0, 𝑣1−𝑥1, 𝑣2−𝑥2, and 𝑣1 + 𝑣2−𝑥𝐵

respectively. Let us consider the consumers that purchase only item 1. By the

rationality assumption, 𝑣1 − 𝑥1 ≥ 0, 𝑣1 − 𝑥1 ≥ 𝑣2 − 𝑥2, and 𝑣1 − 𝑥1 ≥ 𝑣1 + 𝑣2 − 𝑥𝐵.

Thus,

P(Purchase item 1 only) = P ({𝑣1 ≥ 𝑥1} ∩ {𝑣2 ≤ 𝑥𝐵 − 𝑥1})

= 𝐹2(𝑥𝐵 − 𝑥1) − 𝐹 (𝑥1, 𝑥𝐵 − 𝑥1),

by Lemma 1. A similar derivation applies to item 2. For the bundle,

P(Purchase the bundle)

= P ({𝑣1 ≥ 𝑥𝐵 − 𝑥2} ∩ {𝑣2 ≥ 𝑥𝐵 − 𝑥1} ∩ {𝑣1 + 𝑣2 ≥ 𝑥𝐵})

= P ({𝑣1 ≥ 𝑥𝐵 − 𝑥2} ∩ {𝑣2 ≥ 𝑥𝐵 − 𝑥1})

− P ({𝑣1 ≥ 𝑥𝐵 − 𝑥2} ∩ {𝑣2 ≥ 𝑥𝐵 − 𝑥1} ∩ {𝑣1 + 𝑣2 ≤ 𝑥𝐵})

= 1 − 𝐹1(𝑥𝐵 − 𝑥2) − 𝐹2(𝑥𝐵 − 𝑥1) + 𝐹 (𝑥𝐵 − 𝑥2, 𝑥𝐵 − 𝑥1)

−
∫︁ 𝑥1

𝑥𝐵−𝑥2

∫︁ 𝑥𝐵−𝑣1

𝑥𝐵−𝑥1

𝑓(𝑣1, 𝑣2)𝑑𝑣2𝑑𝑣1,

using Lemma 1.

Similar results, albeit notationally complex, can be obtained for 𝑛 > 2. The

99

inference procedure from Proposition 3 is used to estimate the valuation distribution

function, which allows the expression in Proposition 4 to be evaluated. Maximizing

the expected profit with respect to 𝑥𝐵 yields the optimal bundle price, or maximizing

over 𝑥𝐵 and the item prices simultaneously yields a complete pricing strategy. The

formula in Proposition 4 is not concave in general, but a local maximum can be found

using standard numerical optimization techniques.

5.1.7 Distributional Assumptions

The likelihood formulas in (5.4) and (5.7) hold for arbitrary margins 𝐹𝑖(·;𝜃𝑖) and an

arbitrary copula model C(·;𝜑). To apply these formulas to data requires choosing

the distributional form of the margins and the copula family.

The connection between marginal valuation distributions and demand models

given in Proposition 2 shows that the margin distribution can naturally be selected by

choosing an appropriate demand model. Many retailers already use demand models

for sales forecasting, and these existing models could be directly converted to marginal

valuation distributions. For example, two common choices for demand models are the

linear demand model and the normal-cdf demand model. The linear demand model

is

𝑝(𝑥𝑖; 𝛽𝑖, 𝜂𝑖) = min(1,max(0, 𝛽𝑖 − 𝜂𝑖𝑥𝑖)),

and the corresponding valuation distribution is uniform:

𝑣𝑖 ∼ Unif
(︂
𝛽𝑖 − 1

𝜂𝑖
,
𝛽𝑖
𝜂𝑖

)︂
.

When the demand model is the normal distribution function

𝑝(𝑥𝑖;𝜇𝑖, 𝜎
2
𝑖) = 1 − Φ(𝑥𝑖;𝜇𝑖, 𝜎

2
𝑖),

the corresponding marginal valuation distribution is the normal distribution:

𝑣𝑖 ∼ 𝒩 (𝜇𝑖, 𝜎
2
𝑖).

100

Additional covariates like competitors’ prices or the prices of substitutable and

complimentary products are sometimes used in demand modeling, for instance in a

choice model. Seasonality effects are also often handled using covariates. Models with

covariates can also be transformed into valuation distributions using Proposition 2.

There is a large selection of copula models, which differ primarily in the types of

correlation they can express. One of the most popular copula models, and that which

we use in our simulations and data experiments here, is the Gaussian copula:

C(𝑢1, . . . , 𝑢𝑛;𝜑) = Φ(Φ−1(𝑢1), . . . ,Φ
−1(𝑢𝑛);𝜑),

where Φ(·;𝜑) is the multivariate normal with correlation matrix 𝜑, and Φ(·) the

standard normal. The Gaussian copula is in essence an extension of the multivariate

normal distribution, in that it extends the multivariate normal correlation structure to

arbitrary margins, as opposed to constraining the margins to be normally distributed.

If a correlation matrix structure is not appropriate to model the dependencies in a

particular application, then alternative copula models are available - see Trivedi and

Zimmer (2005).

5.2 Simulation Studies

We demonstrate the inference procedure using a series of simulation studies. We first

use simulations to show empirically how the estimated parameters converge to their

true values as 𝑇 grows. We then use a simulated dataset to illustrate the importance

of including correlations in the model.

We generated purchase data for a pair of items using uniform marginal valua-

tion distributions and a Gaussian copula, which for two items is characterized by

the correlation coefficient 𝜑. The correlation coefficient 𝜑 was taken to be each of

{−0.9,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 0.9} and the number of transactions 𝑇 was

taken from {100, 250, 500, 750, 1000, 1500, 2000}. For each combination of 𝜑 and 𝑇 ,

500 datasets were generated, for a total of 31,500 simulated datasets. For each dataset,

101

0 500 1000 1500 2000

Number of transactions T

−15

−10

−5

0

5

10

15

M
ar

gi
n

pa
ra

m
et

er
er

ro
r

A

−1.0 −0.5 0.0 0.5 1.0

True φ

−1.0

−0.5

0.0

0.5

1.0

E
st

im
at

ed
φ̂

B

T = 100

T = 1000

Figure 5-1: Convergence of both (A) margin parameters and (B) the correlation
coefficient to their true values as the number of simulated transactions 𝑇 is increased.
In (A), the lines indicate the first and third quartiles of the margin parameter errors
across all simulations with the same number of transactions 𝑇 . In (B), each pair
of lines shows the first and third quartiles of the estimated correlation coefficient 𝜑
across all simulations with the corresponding values of 𝜑 and 𝑇 .

50 60 70 80 90 100

Price

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

of
pu

rc
ha

se

Item 1
Item 2

Figure 5-2: Demand models for each of the two items for one of the simulated datasets.
The circles give the empirical purchase probabilities measured from the data, and the
lines show the fitted margin distribution function.

102

0 5 10 15 20 25 30
Bundle discount (%)

0.8

0.9

1.0

1.1

1.2

P
ro

fit
re

la
ti

ve
to

no
bu

nd
lin

g

True
Fitted copula
Independence

Figure 5-3: Change in relative profits from introducing the bundle at a particular
discount relative to the sum of item prices, as estimated from the true distribution,
the fitted copula model, and a distribution using the fit margins but assuming inde-
pendence.

the margin parameters 𝑣min and 𝑣max for each of the two uniform valuation distribu-

tions were chosen independently at random, to allow the simulations to capture a

large range of margin distributions. The parameter 𝑣min was chosen from a uniform

distribution over [−25, 75] and 𝑣max chosen from a uniform distribution over [100, 200].

For all simulations, the transactions were spread uniformly across three price points,

with the prices of the two items taken to be 100 for one third of transactions, 75 for

one third, and 50 for the remaining third. In each simulation, the copula defined by

the combination of the correlation coefficient and the margin parameters was used to

generate 𝑇 sets of valuations for the items. These valuations were combined with the

prices under the rationality assumption of (5.1) to produce binary purchase data.

We applied the inference procedure in Proposition 3 to the transaction data, with

the goal of recovering the true, generating copula model. Figure 5-1 shows that as

the number of transactions grows, both the margin estimates and the correlation

coefficient estimates converge to their true values. This holds for the full range of

possible values of the correlation coefficient. In these simulations, only a few thousand

samples were required to recover the true distribution with high accuracy, suggesting

that these techniques are not limited to retailers with very large datasets.

To further illustrate the simulation results, we selected at random a simulated

dataset with 𝑇 = 2000 transactions and 𝜑 = 0.5. We show in Figure 5-2 the fit-

103

0.0

0.1

0.2

0.3

P
ro

b.
of

pu
rc

ha
se

A

15 20 25

Price

0

25000

50000

C
ou

nt

0.00

0.04

0.08

0.12

0.16

P
ro

b.
of

pu
rc

ha
se

B

6 8 10 12 14 16

Price

0

25000

50000

C
ou

nt

0.00

0.01

0.02

0.03

0.04

P
ro

b.
of

pu
rc

ha
se

C

18 20 22 24 26 28 30

Price

0

25000

50000

C
ou

nt

Figure 5-4: Fitted marginal distributions for items (A) 38, (B) 14, and (C) 08 from
the Ta-Feng retail transaction dataset. The underset histogram shows the number
of transactions for which the item was offered at each price. For each price at which
the item was offered, the circles indicate the purchase probability at that price as
measured from the data. The line gives the model fit.

ted margins for this particular simulated dataset. The estimated correlation coeffi-

cient, found by maximizing (5.7), was 0.48. To illustrate the potential profitability of

bundling, in Figure 5-3 we held the item prices at 100 and set the cost per item to the

retailer to a 50% markup, meaning, sales price 50% higher than the retailer’s cost. We

show for a range of bundle discounts the profit relative to the profit obtained in the

absence of a bundle discount. The estimated distribution is very close to the true dis-

tribution, and both reveal that offering a bundle discount of about 12% will increase

profits by about 10%. Using the same estimated margins but assuming independence

to obtain a joint distribution yields very different results. This example highlights the

importance of accounting for correlations in valuations when estimating the response

to bundle discounts.

5.3 Data Experiments

We provide further evaluation and illustration of the inference procedure by applying

it to actual retail transaction data. We use the publicly available Ta-Feng dataset,

which contains four months of transaction level data from a Taiwanese warehouse club,

totaling about 120,000 transactions and 24,000 items (Hsu et al, 2004). Each entry

in the Ta-Feng dataset corresponds to the sale of a single item within a transaction.

104

To form the complete transaction of (potentially) multiple items, we grouped all sales

that occurred on the same day with the same user ID. For simplicity, we assumed

that for each day there was a single price for each item. If there were multiple prices

at which an item was sold on a given day, we took that day’s price as the median of

the observed prices. If an item was not sold on a particular day, then we took that

day’s price as the price of the preceding day. To further smooth the prices, we allowed

only prices that covered at least 5% of transactions, and any price that did not meet

that support threshold was rounded to the nearest price that did. After removing

items that did not have at least three prices in the data, we selected the three items

with the highest support, which were (EAN-13) 4714981010038, 4711271000014, and

4710583996008. We considered the four possible bundles that could be obtained from

these three items (three pairs and one bundle of three). Throughout this section

we refer to the three items as item 38, item 14, and item 08. Note that in these

experiments the inference procedure scales to a much larger dataset than those used

in the simulation studies.

As in Section 5.2, we model the joint valuation distribution using linear demand

models (uniform marginal valuation distributions) and a Gaussian copula. In Figure

5-4 we show the demand models fit by maximizing (5.4) for each item. The off-

diagonal elements of the correlation matrix 𝜑 corresponding to pairs 38-14, 38-08,

and 14-08 were jointly estimated as 0.085, 0.133, and 0.172 respectively.

We evaluated the predictive performance of the copula model using 10-fold cross

validation, by fitting the model to 9 folds of the data and then evaluating the (predic-

tive) log-likelihood on the remaining fold. This was done separately for each pair of

items (38-14, 38-08, and 14-08) and for the collection of all three items (38-14-08), and

the results are compared to the model using the same fitted margins but assuming

independence. Figure 5-5 shows that for all 10 folds and for all bundles, the copula

model had higher predictive likelihoods than the corresponding independence model.

To illustrate the results, we report the relative expected profit under various bun-

dle scenarios in Figure 5-6. For these results we took the item prices as the mode

of the price distribution in the data, and since the item costs are unknown, we set

105

38-14 38-08 14-08 38-14-08
Bundle

0

5

10

15

20

25

D
if

fe
re

nc
e

in
lo

g-
lik

el
ih

oo
d

Figure 5-5: Copula predictive log-likelihood minus the independence model log-
likelihood, across 10 folds of cross-validation for each of the four bundles.

0 10 20 30
Bundle discount (%)

0.85

0.90

0.95

1.00

1.05

P
ro

fit
re

la
ti

ve
to

no
bu

nd
lin

g

A

Copula
Indep.

0 10 20 30
Bundle discount (%)

0.94

0.96

0.98

1.00

1.02

B

0 10 20 30
Bundle discount (%)

0.90

0.95

1.00

1.05

C

0 10 20 30
Bundle discount (%)

0.97

0.98

0.99

1.00

1.01
D

Figure 5-6: Change in relative profits by introducing bundles (A) 38-14, (B) 38-08,
(C) 14-08, and (D) 38-14-08 as a function of the level of bundle discount, estimated
from the Ta-Feng dataset. In red is the prediction obtained from the fitted copula
model, and in blue is the prediction obtained using the same fitted margins, but
assuming independence.

them to a 35% markup. In a similar way as Figure 5-3, Figure 5-6 shows that intro-

ducing a discounted bundle can increase profits, and that assuming independence can

lead to very different predictions. This further highlights the importance of including

correlations in the valuation distribution model.

5.4 Discussion and Conclusions

We used copula modeling in the context of an important business analytics problem,

and in the process have developed new methodological results on learning a copula

distribution over latent variables. Our work provides foundational results for inferring

consumer valuations. The ability to predict the effect of introducing a bundle at a

particular price using only historical sales data is a major advancement in data-driven

106

pricing, and the copula model at the core of the inference here is flexible enough to

be useful in real applications. Because the copula allows for arbitrary margins, if a

retailer has already developed demand models for a particular item, the demand model

can be used directly to obtain the marginal valuation distribution. The likelihood

formulas that we derived in this paper provide a theoretically and computationally

sound framework for copula learning over latent valuations.

107

108

Chapter 6

Decision Making from Sales

Transaction Data: Stockouts and

Demand Estimation

An important common challenge facing retailers is to understand customer preferences

in the presence of stockouts. When an item is out of stock, some customers will leave,

while others will substitute a different product. From the transaction data collected

by retailers, it is challenging to determine exactly what the customer’s original intent

was, or, because of no-purchase arrivals, even how many customers there actually

were.

The task that we consider here is to infer both the arrival rate, including those

that left without a purchase, and the substitution model from sales transaction and

stock level data. These quantities are a necessary input for inventory management

and assortment planning problems. In this paper we apply the model and inference

procedure to bakery data to estimate lost sales due to stock unavailability. We will

see that for some items there are substantial lost sales, while for others, due to

substitution, there are not. Knowing which items are being substituted and which

are not will help the retailer to better focus resources.

There are several contributions made by our model. First, we allow the model

for the arrival rate to be nonhomogeneous in time. For example, in our experiments

109

with bakery data we treat each day as a time period and model the arrival rate with

a function that peaks at the busiest time for the bakery and then tapers off towards

the end of the day. Nonhomogeneous arrival rates are likely to be present in many

retail settings where stockouts are common. For example, in our experiments we use

transaction data from a bakery, where many of the items are intended to stockout

every day as they must be baked fresh the next morning. As we will see in Section

6.4, the daily arrival rate at the bakery is far from constant. As another example,

Johnson et al (2014) describe a relatively new industry of retailers that operate flash

sales in which the most popular items quickly stockout. Using data from one of these

retailers they show that the purchase rate has a peak near the start of the sale and

then decreases.

The second major contribution is that our model can incorporate practically any

choice model, including nonparametric models. The third is that the model allows for

multiple customer segments, each with their own substitution models. We show how

this can be used to borrow strength across data from multiple stores. Finally, our

inference is fully Bayesian. In many cases the model parameters are not of interest

per se, but are to be used for making predictions and decisions. In Section 6.0.2 we

discuss how Bayesian inference provides a natural framework for incorporating the

uncertainty in the inference into the decisions that are based on the inference.

In this paper we describe the model and the Bayesian inference procedure. We

then use a series of simulations to illustrate the inference, and to show that we can

recover the true, generating values. Finally, we demonstrate how the model can be fit

to real transaction data obtained from a local bakery. We use the results to estimate

the bakery’s lost sales due to stock unavailability.

6.0.1 Prior Work

The primary work on estimating demand and choice from sales transaction data with

stockouts was done by Vulcano et al (2012). They model customer arrivals using a

homogeneous Poisson process within each time period, meaning the arrival rate is

constant throughout each time period. Customers then choose an item, or an unob-

110

served no-purchase, according to the multinomial logit (MNL) choice model. They

show that when the no-purchase customers are not observed, the MNL choice model

parameters are not all identifiable. Rather, the retailer must conjecture the propor-

tion of arrivals that do not purchase anything even when all items are in stock. They

derive an EM algorithm to solve the corresponding maximum likelihood problem.

Our model uses a nonhomogeneous Poisson process for customer arrivals that al-

lows the arrival rate to vary throughout each time period. The nonhomogeneity will

prove important when we work with real data in Section 6.4, which are nonhomoge-

neous throughout the day. Our model also does not require using the MNL model and

can be used with models that are entirely identifiable, thus no longer requiring the

retailer to know beforehand the unobserved proportion of no-purchases. The exoge-

nous model that we describe in Section 6.1.3 is one such model that we use. Finally,

we take a Bayesian approach to inference which comes with advantages over maxi-

mum likelihood estimation in using the model to make predictions, as we describe in

Section 6.0.2.

Anupindi et al (1998) also present a method for estimating demand and choice

probabilities from transaction data with stockouts. Customer arrivals are modeled

with a homogeneous Poisson process and purchase probabilities are modeled explicitly

for each stock combination, as opposed to using a choice model. They find the

maximum likelihood estimates for the arrival rate and purchase probabilities. Their

model does not scale well to a large number of items as the likelihood expression

includes all stock combinations found in the data.

Vulcano and van Ryzin (2014) extend the work of Vulcano et al (2012) to in-

corporate nonparametric choice models, for which maximum likelihood estimation

becomes a large-scale concave program that must be solved via a mixed integer pro-

gram subproblem. Our model naturally incorporates nonparametric models from a

pre-specified subset of relevant types. Their approach generates relevant types, but

requires a constant arrival rate over time periods and involves a computationally

intensive optimization.

There is work on estimating demand and choice in settings different from that

111

which we consider here, such as discrete time (Talluri and van Ryzin, 2001; Vulcano

et al, 2010), panel or aggregate sales data (Campoa et al, 2003; Kalyanam et al, 2007;

Musalem et al, 2010), negligible no purchases (Kök and Fisher, 2007), and online

learning with simultaneous ordering decisions (Jain et al, 2015). Jain et al (2015)

provide an excellent review of the various threads of research in demand and choice

estimation.

6.0.2 The Bayesian Approach

Suppose we have data 𝑡 and latent model parameters 𝑧. A common estimation

approach is the maximum likelihood estimate: 𝑧* ∈ arg max𝑧 𝑝(𝑡 | 𝑧). Suppose

now that there is another quantity 𝑄 that we wish to predict, which depends on the

model parameters according to the probability model 𝑝(𝑄 | 𝑧). For instance, the lost

sales due to stockouts is one such quantity that we estimate. Using the maximum

likelihood estimate, the estimate of 𝑄 given 𝑡 is 𝑄 ∼ 𝑝(𝑄 | 𝑧*), from which samples

can be drawn with Monte Carlo sampling.

In Bayesian inference, the objective is not a single point estimate, rather it is to

draw samples from the posterior distribution 𝑝(𝑧 | 𝑡). Given these samples, we can

estimate the actual posterior distribution of 𝑄:

𝑝(𝑄 | 𝑡) =

∫︁
𝑝(𝑄 | 𝑧)𝑝(𝑧 | 𝑡)𝑑𝑧.

The posterior distribution of 𝑄 incorporates all of the uncertainty in 𝑧 directly into

the estimate of 𝑄. Suppose that there is a range of values of 𝑧 with similar likelihood

to 𝑧*, but that produce very different values of 𝑄. The uncertainty in 𝑧 that remains

after observing 𝑡 will be translated to the corresponding uncertainty in 𝑄.

112

6.1 A Generative Model for Transaction Data with

Stockouts

We begin by introducing the notation that we use to describe the observed data.

We then introduce the nonhomogeneous model for customer arrivals, followed by a

discussion of various possible choice models. Section 6.1.4 discusses how multiple

customer segments are modeled. We then in Section 6.1.5 introduce the likelihood

model: the probabilistic model for how the data are generated. Finally, Section 6.1.6

discusses the prior distributions, at which point the model is ready for inference.

6.1.1 The Data

We suppose that we have data from a collection of stores 𝜎 = 1, . . . , 𝑆. For each

store, data come from a number of time periods 𝑙 = 1, . . . , 𝐿𝜎, throughout each of

which time varies from 0 to 𝑇 . For example, in our experiments a time period was

one day. We consider a collection of items 𝑖 = 1, . . . , 𝑛. We suppose that we have two

types of data: purchase times and stock levels. We denote the number of purchases

of item 𝑖 in time period 𝑙 at store 𝜎 as 𝑚𝜎,𝑙
𝑖 . Then, we let 𝑡𝜎,𝑙𝑖 =

{︁
𝑡𝜎,𝑙𝑖,1, . . . , 𝑡

𝜎,𝑙

𝑖,𝑚𝜎,𝑙
𝑖

}︁
be the observed purchase times of item 𝑖 in time period 𝑙 at store 𝜎. For notational

convenience, we let 𝑡𝜎,𝑙 =
{︁
𝑡𝜎,𝑙𝑖

}︁𝑛

𝑖=1
be the collection of all purchase times for that

store and time period, and let 𝑡 =
{︀
𝑡𝜎,𝑙
}︀

𝑙=1,...,𝐿𝜎

𝜎=1,...,𝑆
be the complete set of arrival time

data.

In addition to purchase times, we suppose that we know the stock levels. We

denote the known initial stock level as 𝑁𝜎,𝑙
𝑖 and assume that stocks are not replenished

throughout the time period. That is, 𝑚𝜎,𝑙
𝑖 ≤ 𝑁𝜎,𝑙

𝑖 and equality implies a stockout. As

before, we let 𝑁𝜎,𝑙 and 𝑁 represent respectively the collection of initial stock data

for store 𝜎 and time period 𝑙, and for all stores and all time periods.

Given 𝑡𝜎,𝑙𝑖 and 𝑁𝜎,𝑙
𝑖 , we can compute a stock indicator as a function of time. We

113

define this indicator function as

𝑠𝑖(𝑡 | 𝑡𝜎,𝑙,𝑁𝜎,𝑙) =

⎧⎪⎨⎪⎩0 if item 𝑖 is out of stock at time 𝑡

1 if item 𝑖 is in stock at time 𝑡.

6.1.2 Modeling Customer Arrivals

We model the times of customer arrivals using a nonhomogeneous Poisson process

(NHPP). An NHPP is a generalization of the Poisson process that allows for the

intensity to be described by a function 𝜆(𝑡) ≥ 0 as opposed to being constant. We

assume that the intensity function has been parameterized, with parameters 𝜂𝜎 po-

tentially different for each store 𝜎. For example, if we set 𝜆(𝑡 | 𝜂𝜎) = 𝜂𝜎1 we obtain

a homogeneous Poisson process of rate 𝜂𝜎1 . As another example, we can produce an

intensity function that rises to a peak and then decays by letting

𝜆(𝑡 | 𝜂𝜎) = 𝜂𝜎1

(︁
𝜂𝜎2
𝜂𝜎3

)︁(︁
𝑡
𝜂𝜎3

)︁𝜂𝜎2−1

(︂
1 +

(︁
𝑡
𝜂𝜎3

)︁𝜂𝜎2)︂2 , (6.1)

which is the derivative of the Hill equation (Goutelle et al, 2008). This is the param-

eterization that we use in our bakery data experiments.

The modeler chooses a parameterization for the rate function that is appropriate

for their data source, but does not choose the actual values of 𝜂𝜎. The posterior

distribution of 𝜂𝜎 will be inferred. To do this we use the conditional density function

for NHPP arrivals, which we provide now.

Lemma 2. Consider arrival times 𝑡1, 𝑡2, . . . generated by an NHPP with intensity

function 𝜆(𝑡 | 𝜂𝜎). Then,

𝑝(𝑡𝑗 | 𝑡𝑗−1,𝜂
𝜎) = exp(−Λ(𝑡𝑗−1, 𝑡𝑗 | 𝜂𝜎))𝜆(𝑡𝑗 | 𝜂𝜎),

where Λ(𝑡𝑗−1, 𝑡𝑗 | 𝜂𝜎) =
∫︀ 𝑡𝑗
𝑡𝑗−1

𝜆(𝑡 | 𝜂𝜎)𝑑𝑡.

114

Proof. The NHPP can be defined by its counting process:

P(𝑚 arrivals in the interval (𝜏1, 𝜏2]) =
(Λ(𝜏1, 𝜏2))

𝑚 exp(−Λ(𝜏1, 𝜏2))

𝑚!
,

where

Λ(𝜏1, 𝜏2) =

∫︁ 𝜏2

𝜏1

𝜆(𝑢)d𝑢.

Let random variables 𝑆1, 𝑆2, . . . be the arrival process for the NHPP. Consider a pair

of times 𝑡𝑗 and 𝑡𝑗−1, with 𝑡𝑗 > 𝑡𝑗−1. The conditional distribution function for the

arrival times is

𝐹𝑆𝑗
(𝑡𝑗 | 𝑆𝑗−1 = 𝑡𝑗−1) = 1 − P(𝑆𝑗 > 𝑡𝑗 | 𝑆𝑗−1 = 𝑡𝑗−1)

= 1 − P (no arrivals in the interval (𝑡𝑗−1, 𝑡𝑗])

= 1 − exp(−Λ(𝑡𝑗−1, 𝑡𝑗)). (6.2)

Differentiating (6.2) yields the corresponding density function.

We now provide the density function for a collection of arrivals, which will be

important for the likelihood function.

Lemma 3. For 𝑡1, . . . , 𝑡𝑚 ∼ NHPP(𝜆(𝑡), 𝑇),

𝑝(𝑡1, . . . , 𝑡𝑚) = exp(−Λ(0, 𝑇))
𝑚∏︁
𝑗=1

𝜆(𝑡𝑗).

Proof. Let random variables 𝑆1, 𝑆2, . . . be the NHPP arrival process.

𝑝(𝑡1, . . . , 𝑡𝑚) = 𝑓𝑆1(𝑡1)

(︃
𝑚∏︁
𝑗=2

𝑓𝑆𝑗
(𝑡𝑗 | 𝑆𝑗−1 = 𝑡𝑗−1)

)︃
P(𝑆𝑚+1 > 𝑇 | 𝑆𝑚 = 𝑡𝑚)

=

(︃
𝑚∏︁
𝑗=2

𝜆(𝑡𝑗) exp (−Λ(𝑡𝑗−1, 𝑡𝑗))

)︃
(𝜆(𝑡1) exp(−Λ(0, 𝑡1))) exp(−Λ(𝑡𝑚, 𝑇))

=

(︃
𝑚∏︁
𝑗=1

𝜆(𝑡𝑗)

)︃
exp

(︃
−

(︃
Λ(𝑡1) +

𝑚∑︁
𝑗=2

Λ(𝑡𝑗−1, 𝑡𝑗) + Λ(𝑡𝑚, 𝑇)

)︃)︃

115

= exp(−Λ(0, 𝑇))
𝑚∏︁
𝑗=1

𝜆(𝑡𝑗).

We let 𝜂 = {𝜂𝜎}𝑆𝜎=1 represent the complete collection of rate function parameters

to be inferred.

6.1.3 Models for Substitution Behavior

We have modeled customers arriving according to an NHPP described by parameters

𝜂. In the next piece of the model, each of those customers will either purchase an

item or will choose the “no-purchase" option. If they purchase an item and which

item they purchase will depend on the stock availability as well as some choice model

parameters which we will describe below. We define 𝑓𝑖(𝑠(𝑡),𝜑𝑘, 𝜏 𝑘) to be the prob-

ability that a customer purchases product 𝑖 given the current stock 𝑠(𝑡) and choice

model parameters 𝜑𝑘 and 𝜏 𝑘. The index 𝑘 indicates the parameters for a particular

customer segment, which we will discuss in Section 6.1.4. The modeler is free to

choose whatever form for the choice function 𝑓𝑖 he or she finds to be most appropri-

ate. Posterior distributions for the parameters 𝜑𝑘 and 𝜏 𝑘 are then inferred. We now

discuss how several common choice models fit into this framework, and we use these

choice models in our simulation and data experiments.

Choice with no substitution

Here we let the parameters 𝜑𝑘
1, . . . , 𝜑

𝑘
𝑛 specify a preference distribution over products,

that is, 𝜑𝑘
𝑖 ≥ 0 and

∑︀𝑛
𝑖=1 𝜑

𝑘
𝑖 = 1. Each customer selects a product according to that

distribution. If they select a product that is out of stock then there is no substitution,

they leave as a no-purchase:

𝑓ns
𝑖 (𝑠(𝑡),𝜑𝑘) = 𝑠𝑖(𝑡)𝜑

𝑘
𝑖 .

116

The distribution 𝜑𝑘 describes exactly the primary demand, and the parameter 𝜏 𝑘 is

not used.

Multinomial logit choice

The MNL is a popular choice model that derives from a random utility model. As

in the previous model, 𝜑𝑘 specifies a preference distribution over products. When an

item goes out of stock, substitution takes place by transferring purchase probability

to the other items proportionally to their original probability, including to the no-

purchase option. In order to have positive probability of customers substituting to

the no-purchase option, a proportion of arrivals must be no-purchases even when

all items are in stock. We let 𝜏 𝑘/(1 + 𝜏 𝑘) be the no-purchase probability when all

items are in stock, and obtain the MNL choice probabilities by normalizing with the

preference vector 𝜑𝑘 accordingly:

𝑓mnl
𝑖 (𝑠(𝑡),𝜑𝑘) =

𝑠𝑖(𝑡)𝜑
𝑘
𝑖

𝜏 𝑘 +
∑︀𝑛

𝑣=1 𝑠𝑣(𝑡)𝜑
𝑘
𝑣

.

Vulcano et al (2012) show that the MNL model parameter 𝜏 𝑘 is not identifiable when

the arrival function is also unknown, and so they assume it to be a known, fixed

parameter.

Single-substitution exogenous model

The exogenous model overcomes some shortcomings of the MNL choice model, and

allows for the no-purchase option to be chosen only if there is a stock unavailability.

According to the exogenous proportional substitution model (Kök and Fisher, 2007),

a customer samples a first choice from the preference distribution 𝜑𝑘. If that item is

available, he or she purchases the item. If the first choice is not available, with prob-

ability 1− 𝜏 𝑘 the customer leaves as no-purchase. With the remaining 𝜏 𝑘 probability,

the customer picks a second choice according to a preference vector that has been

re-weighted to exclude the first choice. Specifically, if the first choice was 𝑗 then the

probability of choosing 𝑖 as the second choice is 𝜑𝑘
𝑖 /
∑︀

𝑣 ̸=𝑗 𝜑
𝑘
𝑣 . If the second choice is

117

in stock it is purchased, otherwise the customer leaves as no-purchase. The formula

for the purchase probability follows directly:

𝑓 exo
𝑖 (𝑠(𝑡),𝜑𝑘, 𝜏 𝑘) = 𝑠𝑖(𝑡)𝜑

𝑘
𝑖 + 𝑠𝑖(𝑡)𝜏

𝑘

𝑛∑︁
𝑗=1

(1 − 𝑠𝑗(𝑡))𝜑
𝑘
𝑗

𝜑𝑘
𝑖∑︀

𝑣 ̸=𝑗 𝜑
𝑘
𝑣

. (6.3)

For this model, posterior distributions for both 𝜑𝑘 and 𝜏 𝑘 are inferred.

Nonparametric choice model

Nonparametric models often offer a lucid description of substitution behavior. Rather

than being a probability vector as in the parametric models, here the parameter 𝜑𝑘 is

an ordered subset of the items {1, . . . , 𝑛}. Customers purchase 𝜑𝑘
1 if it is in stock. If

not, they purchase 𝜑𝑘
2 if it is in stock. If not, they continue substituting down 𝜑𝑘 until

they reach the first item that is available. If none of the items in 𝜑𝑘 are available,

they leave as a no-purchase. The purchase probability for this model is then

𝑓np
𝑖 (𝑠(𝑡),𝜑𝑘) =

⎧⎪⎨⎪⎩1 if 𝑖 = min{𝑗 ∈ {1, . . . , |𝜑𝑘|} : 𝑠𝜑𝑘
𝑗
(𝑡) = 1}

0 otherwise.
(6.4)

Because this model requires all customers to behave exactly the same, it is most useful

when customers are modeled as coming from a number of different segments 𝑘, each

with its own preference ranking 𝜑𝑘. This is precisely what we do in our model, as we

describe in the next section. For the nonparametric model the rank orders for each

segment 𝜑𝑘 are fixed and it is the distribution of customers across segments that is

inferred.

6.1.4 Segments and Mixtures of Choice Models

We model customers as each coming from one of 𝐾 segments 𝑘 = 1, . . . , 𝐾, each

with its own choice model parameters 𝜑𝑘 and 𝜏 𝑘. Let 𝜃𝜎 be the customer segment

distribution for store 𝜎, with 𝜃𝜎𝑘 the probability that an arrival at store 𝜎 belongs

to segment 𝑘, 𝜃𝜎𝑘 ≥ 0, and
∑︀𝐾

𝑘=1 𝜃
𝜎
𝑘 = 1. As with other variables, we denote the

118

collection of segment distributions across all stores as 𝜃. Similarly, we denote the

collections of choice model parameters across all segments as 𝜑 and 𝜏 .

For the nonparametric choice model, each of these segments would have a different

rank ordering of items and multiple segments are required in order to have a diverse

set of preferences. For the MNL and exogenous choice models, customer segments

can be used to borrow strength across multiple stores. All stores share the same

underlying segment parameters 𝜑 and 𝜏 , but each store’s arrivals are represented by

a different mixing of these segments, 𝜃𝜎. This model allows us to use data from all

of the stores for inferring the choice model parameters, while still allowing stores to

differ from each other by having a different mixture of segments.

6.1.5 The Likelihood Model

We now describe the underlying model for how customer segments, choice models,

stock levels, and the arrival function all interact to create transaction data. Consider

store 𝜎 and time period 𝑙. Customers arrive according to the NHPP for this store.

Let 𝑡𝜎,𝑙1 , . . . , 𝑡
𝜎,𝑙
�̃�𝜎,𝑙 represent all of the arrival times; these are unobserved, as they may

include no-purchases. Each arrival has probability 𝜃𝜎𝑘 of belonging to segment 𝑘. They

then purchase an item or leave as no-purchase according to the choice model 𝑓𝑖. If

the 𝑗’th arrival purchases an item then we observe that purchase at time 𝑡𝜎,𝑙𝑗 ; if they

leave as no-purchase we do not observe that arrival at all. The generative model for

the observed data 𝑡 is thus:

∙ For store 𝜎 = 1, . . . , 𝑆:

– For time period 𝑙 = 1, . . . , 𝐿𝜎 :

* Sample customer arrival times 𝑡𝜎,𝑙1 , . . . , 𝑡
𝜎,𝑙
�̃�𝜎,𝑙 ∼ NHPP(𝜆(𝑡 | 𝜂𝜎), 𝑇).

* For customer arrival 𝑗 = 1, . . . , �̃�𝜎,𝑙:

· Sample this customer’s segment as 𝑘 ∼ Multinomial(𝜃𝜎).

· Customer purchases item 𝑖, with probability

𝑓𝑖(𝑠(𝑡
𝜎,𝑙
𝑗 | 𝑡𝜎,𝑙,𝑁𝜎,𝑙),𝜑𝑘, 𝜏 𝑘), or the no-purchase option with prob-

ability 1 −
∑︀𝑛

𝑖=1 𝑓𝑖(𝑠(𝑡
𝜎,𝑙
𝑗 | 𝑡𝜎,𝑙,𝑁𝜎,𝑙),𝜑𝑘, 𝜏 𝑘).

119

· If item 𝑖 purchased, add the time to 𝑡𝜎,𝑙𝑖 .

We now provide the likelihood function corresponding to this generative model.

Theorem 2. The log-likelihood function of 𝑡 is:

log 𝑝(𝑡 | 𝜂,𝜃,𝜑, 𝜏 ,𝑁 , 𝑇) =
𝑆∑︁

𝜎=1

𝐿𝜎∑︁
𝑙=1

𝑛∑︁
𝑖=1

⎛⎝𝑚𝜎,𝑙
𝑖∑︁

𝑗=1

log
(︁
�̃�𝜎,𝑙𝑖 (𝑡𝜎,𝑙𝑖,𝑗)

)︁
− Λ̃𝜎,𝑙

𝑖 (0, 𝑇)

⎞⎠ ,

where

�̃�𝜎,𝑙𝑖 (𝑡) = 𝜆(𝑡 | 𝜂𝜎)
𝐾∑︁
𝑘=1

𝜃𝜎𝑘𝑓𝑖(𝑠(𝑡 | 𝑡𝜎,𝑙,𝑁𝜎,𝑙),𝜑𝑘, 𝜏 𝑘) and Λ̃𝜎,𝑙
𝑖 (0, 𝑇) =

∫︁ 𝑇

0

�̃�𝜎,𝑙𝑖 (𝑡)𝑑𝑡.

The result is actually that which would be obtained if we treated the purchases

for each item as independent NHPPs with rate �̃�𝜎,𝑙𝑖 (𝑡), which is the purchase rate for

item 𝑖 incorporating stock availability and customer choice. In reality, however, they

are not independent NHPPs inasmuch as they depend on each other via the stock

function 𝑠(𝑡 | 𝑡𝜎,𝑙,𝑁𝜎,𝑙). The key element of the proof is that while the purchase

processes depend on each other, they do not depend on the no-purchase arrivals.

We now provide an important lemma, and follow its proof with the proof of

Theorem 2.

Lemma 4.

Λ(0, 𝑇 | 𝜂𝜎) =
𝑛∑︁

𝑖=0

Λ̃𝜎,𝑙
𝑖 (0, 𝑇).

Proof.

Λ(0, 𝑇 | 𝜂𝜎) =

∫︁ 𝑇

0

𝜆(𝑡 | 𝜂𝜎)𝑑𝑡

=

∫︁ 𝑇

0

𝑛∑︁
𝑖=0

𝜆(𝑡 | 𝜂𝜎)𝜋𝑖(𝑠(𝑡 | 𝑡𝜎,𝑙,𝑁𝜎,𝑙),𝜑, 𝜏 ,𝜃𝜎)𝑑𝑡

=

∫︁ 𝑇

0

𝑛∑︁
𝑖=0

�̃�𝜎,𝑙𝑖 (𝑡)𝑑𝑡

=
𝑛∑︁

𝑖=0

∫︁ 𝑇

0

�̃�𝜎,𝑙𝑖 (𝑡)𝑑𝑡

120

=
𝑛∑︁

𝑖=0

Λ̃𝜎,𝑙
𝑖 (0, 𝑇),

where the second line uses
∑︀𝑛

𝑖=1 𝜋𝑖(𝑠(𝑡 | 𝑡𝜎,𝑙,𝑁
𝜎,𝑙),𝜑, 𝜏 ,𝜃𝜎) = 1.

Proof of Theorem 2. We consider the density function for the complete arrivals �̃�
𝜎,𝑙,

which include both the observed arrivals 𝑡𝜎,𝑙 as well as the unobserved arrivals that left

as no-purchase, which we here denote 𝑡𝜎,𝑙0 =
{︁
𝑡𝜎,𝑙0,𝑗

}︁𝑚𝜎,𝑙
0

𝑗=1
. Let 𝑓0(𝑠(𝑡 | 𝑡𝜎,𝑙,𝑁𝜎,𝑙),𝜑𝑘, 𝜏 𝑘) =

1 −
∑︀𝑛

𝑖=1 𝑓𝑖(𝑠(𝑡 | 𝑡𝜎,𝑙,𝑁
𝜎,𝑙),𝜑𝑘, 𝜏 𝑘) be the probability that a customer of segment 𝑘

chooses the no-purchase option. Also, let 𝜋𝑖(𝑠(𝑡 | 𝑡𝜎,𝑙,𝑁𝜎,𝑙),𝜑, 𝜏 ,𝜃𝜎) =
∑︀𝐾

𝑘=1 𝜃
𝜎
𝑘𝑓𝑖(𝑠(𝑡 |

𝑡𝜎,𝑙,𝑁𝜎,𝑙),𝜑𝑘, 𝜏 𝑘) be the probability that a randomly chosen arrival purchases prod-

uct 𝑖, or the no-purchase 𝑖 = 0. Finally, we set 𝐼𝜎,𝑙𝑗 equal to 𝑖 if the customer at time

𝑡𝜎,𝑙𝑗 purchased item 𝑖, or 0 if this customer left as no-purchase. For store 𝜎 and time

period 𝑙,

𝑝(𝑡𝜎,𝑙0 , 𝑡
𝜎,𝑙 | 𝜂𝜎,𝜃𝜎,𝜑, 𝜏 ,𝑁 , 𝑇)

= P
(︁
no arrivals in

(︁
𝑡𝜎,𝑙
�̃�𝜎,𝑙 , 𝑇

]︁
| 𝑡𝜎,𝑙,𝜂𝜎

)︁
𝑝(𝑡𝜎,𝑙1 | 𝜂𝜎)𝑝(𝐼𝜎,𝑙1 | 𝜃𝜎,𝜑, 𝜏 ,𝑁)

×
�̃�𝜎,𝑙∏︁
𝑗=2

𝑝(𝑡𝜎,𝑙𝑗 | 𝑡𝜎,𝑙1 , . . . , 𝑡
𝜎,𝑙
𝑗−1,𝜂

𝜎)𝑝(𝐼𝜎,𝑙𝑗 | 𝑡𝜎,𝑙1 , . . . , 𝑡
𝜎,𝑙
𝑗−1,𝜃

𝜎,𝜑, 𝜏 ,𝑁)

= exp(−Λ(𝑡�̃�𝜎,𝑙 , 𝑇 | 𝜂𝜎))𝜆(𝑡𝜎,𝑙1 | 𝜂𝜎) exp(−Λ(0, 𝑡𝜎,𝑙1 | 𝜂𝜎))

× 𝜋𝐼𝜎,𝑙1
(𝑠(𝑡𝜎,𝑙1 | 𝑡𝜎,𝑙,𝑁𝜎,𝑙),𝜑, 𝜏 ,𝜃𝜎)

×
�̃�𝜎,𝑙∏︁
𝑗=2

𝜆(𝑡𝜎,𝑙𝑗 | 𝜂𝜎) exp(−Λ(𝑡𝜎,𝑙𝑗−1, 𝑡
𝜎,𝑙
𝑗 | 𝜂𝜎))𝜋𝐼𝜎,𝑙𝑗

(𝑠(𝑡𝜎,𝑙𝑗 | 𝑡𝜎,𝑙,𝑁𝜎,𝑙),𝜑, 𝜏 ,𝜃𝜎)

= exp(−Λ(0, 𝑇 | 𝜂𝜎))
𝑛∏︁

𝑖=0

∏︁
𝑗:𝐼𝜎,𝑙𝑗 =𝑖

𝜆(𝑡𝜎,𝑙𝑗 | 𝜂𝜎)𝜋𝑖(𝑠(𝑡
𝜎,𝑙
𝑗 | 𝑡𝜎,𝑙,𝑁𝜎,𝑙),𝜑, 𝜏 ,𝜃𝜎)

= exp(−Λ(0, 𝑇 | 𝜂𝜎))
𝑛∏︁

𝑖=0

𝑚𝜎,𝑙
𝑖∏︁

𝑗=1

𝜆(𝑡𝜎,𝑙𝑖,𝑗 | 𝜂𝜎)𝜋𝑖(𝑠(𝑡
𝜎,𝑙
𝑖,𝑗 | 𝑡𝜎,𝑙,𝑁𝜎,𝑙),𝜑, 𝜏 ,𝜃)

=

⎛⎝exp(−Λ̃𝜎,𝑙
0 (0, 𝑇))

𝑚𝜎,𝑙
0∏︁

𝑗=1

�̃�𝜎,𝑙0 (𝑡𝜎,𝑙0,𝑗)

⎞⎠⎛⎝ 𝑛∏︁
𝑖=1

exp(−Λ̃𝜎,𝑙
𝑖 (0, 𝑇))

𝑚𝜎,𝑙
𝑖∏︁

𝑗=1

�̃�𝜎,𝑙𝑖 (𝑡𝜎,𝑙𝑖,𝑗)

⎞⎠ .

121

The second equality uses Lemma 2, and the final uses Lemma 4. We have then that

𝑝(𝑡𝜎,𝑙 | 𝜂𝜎,𝜃𝜎,𝜑, 𝜏 ,𝑁 , 𝑇) =

∫︁
𝑝(𝑡𝜎,𝑙0 , 𝑡

𝜎,𝑙 | 𝜂𝜎,𝜃𝜎,𝜑, 𝜏 ,𝑁 , 𝑇)𝑑𝑡𝜎,𝑙0

=

⎛⎝∫︁ exp(−Λ̃𝜎,𝑙
0 (0, 𝑇))

𝑚𝜎,𝑙
0∏︁

𝑗=1

�̃�𝜎,𝑙0 (𝑡𝜎,𝑙0,𝑗)𝑑𝑡
𝜎,𝑙
0

⎞⎠
×

⎛⎝ 𝑛∏︁
𝑖=1

exp(−Λ̃𝜎,𝑙
𝑖 (0, 𝑇))

𝑚𝜎,𝑙
𝑖∏︁

𝑗=1

�̃�𝜎,𝑙𝑖 (𝑡𝜎,𝑙𝑖,𝑗)

⎞⎠
=

𝑛∏︁
𝑖=1

exp(−Λ̃𝜎,𝑙
𝑖 (0, 𝑇))

𝑚𝜎,𝑙
𝑖∏︁

𝑗=1

�̃�𝜎,𝑙𝑖 (𝑡𝜎,𝑙𝑖,𝑗),

as the quantity being integrated is exactly the density function for 𝑚𝜎,𝑙
0 arrivals from

an NHPP with rate �̃�𝜎,𝑙0 (𝑡) over interval [0, 𝑇], as seen in Lemma 3. Thus,

log 𝑝(𝑡 | 𝜂,𝜃,𝜑, 𝜏 ,𝑁 , 𝑇) =
𝑆∑︁

𝜎=1

𝐿𝜎∑︁
𝑙=1

log 𝑝(𝑡𝜎,𝑙 | 𝜂𝜎,𝜃𝜎,𝜑, 𝜏 ,𝑁 , 𝑇)

=
𝑆∑︁

𝜎=1

𝐿𝜎∑︁
𝑙=1

𝑛∑︁
𝑖=1

⎛⎝𝑚𝜎,𝑙
𝑖∑︁

𝑗=1

log
(︁
�̃�𝜎,𝑙𝑖 (𝑡𝜎,𝑙𝑖,𝑗)

)︁
− Λ̃𝜎,𝑙

𝑖 (0, 𝑇)

⎞⎠ .

The quantity Λ̃𝜎,𝑙
𝑖 (0, 𝑇) can be expressed analytically in terms of Λ(0, 𝑇 | 𝜂𝜎)

and thus computed efficiently. This is done by looking at each of the time intervals

where the stock 𝑠(𝑡 | 𝑡𝜎,𝑙,𝑁𝜎,𝑙) is constant. Let the sequence of times 𝑞𝜎,𝑙1 , . . . , 𝑞𝜎,𝑙
𝑄𝜎,𝑙

demarcate the intervals of constant stock. That is, [0, 𝑇] =
⋃︀𝑄𝜎,𝑙−1

𝑟=1 [𝑞𝜎,𝑙𝑟 , 𝑞𝜎,𝑙𝑟+1] and

𝑠(𝑡 | 𝑡𝜎,𝑙,𝑁𝜎,𝑙) is constant for 𝑡 ∈ [𝑞𝜎,𝑙𝑟 , 𝑞𝜎,𝑙𝑟+1) for 𝑟 = 1, . . . , 𝑄𝜎,𝑙 − 1. Then,

Λ̃𝜎,𝑙
𝑖 (0, 𝑇) =

∫︁ 𝑇

0

�̃�𝜎,𝑙𝑖 (𝑡)𝑑𝑡

=

∫︁ 𝑇

0

𝜆(𝑡 | 𝜂𝜎)
𝐾∑︁
𝑘=1

𝜃𝜎𝑘𝑓𝑖(𝑠(𝑡 | 𝑡𝜎,𝑙,𝑁𝜎,𝑙),𝜑𝑘, 𝜏 𝑘)𝑑𝑡

=

𝑄𝜎,𝑙−1∑︁
𝑟=1

(︃∫︁ 𝑞𝜎,𝑙𝑟+1

𝑞𝜎,𝑙𝑟

𝜆(𝑡 | 𝜂𝜎)
𝐾∑︁
𝑘=1

𝜃𝜎𝑘𝑓𝑖(𝑠(𝑞
𝜎,𝑙
𝑟 | 𝑡𝜎,𝑙,𝑁𝜎,𝑙),𝜑𝑘, 𝜏 𝑘)𝑑𝑡

)︃

122

=

𝑄𝜎,𝑙−1∑︁
𝑟=1

(︃
𝐾∑︁
𝑘=1

𝜃𝜎𝑘𝑓𝑖(𝑠(𝑞
𝜎,𝑙
𝑟 | 𝑡𝜎,𝑙,𝑁𝜎,𝑙),𝜑𝑘, 𝜏 𝑘)

)︃
Λ(𝑞𝜎,𝑙𝑟 , 𝑞𝜎,𝑙𝑟+1 | 𝜂𝜎).

With this formula, the likelihood function can be computed for any parameterization

𝜆(𝑡 | 𝜂𝜎) desired so long as it is integrable.

6.1.6 Prior Distributions and the Log-Posterior

To do Bayesian inference we must specify a prior distribution for each of the latent

variables: 𝜂, 𝜃, and 𝜑 and 𝜏 as required by the choice model. The variables 𝜃, 𝜑,

and 𝜏 are all probability vectors, so the natural choice is to assign them a Dirichlet

or Beta prior:

𝜃 ∼ Dirichlet(𝛼)

𝜑𝑘 ∼ Dirichlet(𝛽), 𝑘 = 1, . . . , 𝐾

𝜏 𝑘 ∼ Beta(𝛾), 𝑘 = 1, . . . , 𝐾.

Here 𝛼, 𝛽, and 𝛾 are prior hyperparameters chosen by the modeler. If there is actually

some expert knowledge about the choice models and segment distributions then it can

be encoded in these hyperparameters. Otherwise, a natural choice is to use a uniform

prior distribution by setting each of these hyperparameters to be a vector of ones. In

our experiments, we used uniform priors. Similarly, for 𝜂, a natural choice for the

prior distribution is a uniform distribution for each element:

𝜂𝜎𝑣 ∼ Uniform(𝛿𝑣), 𝑣 = 1, . . . , |𝜂𝜎|, 𝜎 = 1, . . . , 𝑆.

In our experiments we chose the interval 𝛿𝑣 large enough to not be restrictive. For

the Hill rate that we use in our data experiments, |𝜂𝜎| = 3.

We can then compute the prior probability as

𝑝(𝜂,𝜃,𝜑, 𝜏 | 𝛼,𝛽,𝛾, 𝛿) = 𝑝(𝜃 | 𝛼)

(︃
𝐾∏︁
𝑘=1

𝑝(𝜑𝑘 | 𝛽)𝑝(𝜏 𝑘 | 𝛾)

)︃⎛⎝ 𝑆∏︁
𝜎=1

|𝜂𝜎 |∏︁
𝑣=1

𝑝(𝜂𝜎𝑣 | 𝛿𝑣)

⎞⎠
123

∝

(︃
𝐾∏︁
𝑘=1

(︃
(𝜃𝑘)𝛼𝑘−1 (︀𝜏 𝑘)︀𝛾1−1 (︀

1 − 𝜏 𝑘
)︀𝛾2−1

𝑛∏︁
𝑖=1

(︀
𝜑𝑘
𝑖

)︀𝛽𝑖−1

)︃)︃

×

⎛⎝ 𝑆∏︁
𝜎=1

|𝜂𝜎 |∏︁
𝑣=1

1{𝜂𝜎𝑣∈[𝛿𝑣1 ,𝛿𝑣2]}

⎞⎠ . (6.5)

Bayes’ theorem yields:

log 𝑝(𝜂,𝜃,𝜑, 𝜏 | 𝑡,𝛼,𝛽,𝛾, 𝛿,𝑁 , 𝑇)

∝ log 𝑝(𝑡 | 𝜂,𝜃,𝜑, 𝜏 ,𝑁 , 𝑇) + log 𝑝(𝜂,𝜃,𝜑, 𝜏 | 𝛼,𝛽,𝛾, 𝛿), (6.6)

and these two quantities are available in Theorem 2 and in (6.5). With this result we

are now equipped to do posterior inference.

6.2 Stochastic Gradient MCMC Inference

We use Markov chain Monte Carlo (MCMC) techniques to simulate posterior sam-

ples, specifically the stochastic gradient Riemannian Langevin dynamics (SGRLD)

algorithm of Patterson and Teh (2013). This algorithm uses a stochastic gradient

that does not require the full likelihood function to be evaluated in every MCMC

iteration, thus allowing posterior inference to be done even on very large transaction

databases. Also, the SGRLD algorithm is well suited for variables on the probability

simplex, as are 𝜃, 𝜑𝑘, and 𝜏 𝑘. Metropolis-Hastings sampling is difficult in this setting

because it requires evaluating the full likelihood as well as dealing with the simplex

constraints in the proposal distribution.

6.2.1 The Expanded-Mean Parameterization

We first transform each of the probability variables using the expanded-mean pa-

rameterization (Patterson and Teh, 2013). The latent variable 𝜃 has as constraints

𝜃𝑘 ≥ 0 and
∑︀𝐾

𝑘=1 𝜃𝑘 = 1. Take 𝜃 a random variable with support on R𝐾
+ . We

give 𝜃 a prior distribution consisting of a product of Gamma(𝛼𝑘, 1) distributions:

124

𝑝(𝜃 | 𝛼) ∝
∏︀𝐾

𝑘=1 𝜃
𝛼𝑘−1
𝑘 exp(−𝜃𝑘). The posterior sampling is done over variables 𝜃 by

mirroring any negative proposal values about 0. We then compute 𝜃𝑘 = 𝜃𝑘/
∑︀𝐾

𝑟=1 𝜃𝑟.

This parameterization is equivalent to sampling on 𝜃 with a Dirichlet(𝛼) prior, but

does not require the probability simplex constraint. The same transformation is done

to 𝜑𝑘 and 𝜏 𝑘.

6.2.2 Riemannian Langevin Dynamics

Let 𝑧 = {𝜂,𝜃,𝜑, 𝜏} represent the complete collection of transformed latent variables

whose posterior we are inferring. From state 𝑧𝑤 on MCMC iteration 𝑤, the next

iteration moves to the state 𝑧𝑤+1 according to

𝑧𝑤+1 = 𝑧𝑤 +
𝜖𝑤
2

(diag(𝑧𝑤)∇ log 𝑝(𝑧𝑤 | 𝑡,𝛼,𝛽,𝛾, 𝛿,𝑁 , 𝑇) + 1) + diag(𝑧𝑤)
1
2𝜓,

where 𝜓 ∼ 𝒩 (0, 𝜖𝑤𝐼). The iteration performs a gradient step plus normally dis-

tributed noise, using the natural gradient of the log posterior, which is the manifold

direction of steepest descent using the metric 𝐺(𝑧) = diag(𝑧)−1. From (6.6),

∇ log 𝑝(𝑧𝑤 | 𝑡,𝛼,𝛽,𝛾, 𝛿,𝑁 , 𝑇) = ∇ log 𝑝(𝑡 | 𝑧𝑤,𝑁 , 𝑇) + ∇ log 𝑝(𝑧𝑤 | 𝛼,𝛽,𝛾, 𝛿).

We use a stochastic gradient approximation for the likelihood gradient. On MCMC

iteration 𝑤, rather than use all 𝐿𝜎 time periods to compute the gradient we use a

uniformly sampled collection of time periods ℒ𝜎
𝑤. The gradient approximation is then

∇ log 𝑝(𝑡 | 𝑧𝑤,𝑁 , 𝑇) ≈
𝑆∑︁

𝜎=1

𝐿𝜎

|ℒ𝜎
𝑤|
∑︁
𝑙∈ℒ𝜎

𝑤

𝑛∑︁
𝑖=1

∇

⎛⎝𝑚𝜎,𝑙
𝑖∑︁

𝑗=1

log
(︁
�̃�𝜎,𝑙𝑖 (𝑡𝜎,𝑙𝑖,𝑗)

)︁
− Λ̃𝜎,𝑙

𝑖 (0, 𝑇)

⎞⎠ .

The iterations will converge to the posterior samples if the step size schedule is cho-

sen such that
∑︀∞

𝑤=1 𝜖𝑤 = ∞ and
∑︀∞

𝑤=1 𝜖
2
𝑤 < ∞ (Welling and Teh, 2011). In our

simulations and experiments we used three time periods for the stochastic gradient

approximations. We followed Patterson and Teh (2013) and took 𝜖𝑤 = 𝑎((1 + 𝑞/𝑏)−𝑐)

with step size parameters chosen using cross-validation to minimize out-of-sample

125

perplexity. We drew 10,000 samples from each of three chains initialized at a local

maximum a posteriori solution found from a random sample from the prior. We

verified convergence using the Gelman-Rubin diagnostic after discarding the first half

of the samples as burn-in (Gelman and Rubin, 1992), and then merged samples from

all three chains to estimate the posterior.

6.3 Simulation Study

We use a collection of simulations to illustrate and analyze the model and the inference

procedure. The simulation results show that, for a variety of rate functions and

choice models, the posterior samples concentrate around the true, generating values.

Furthermore, the posterior becomes more concentrated around the true values as the

amount of data increases.

6.3.1 Homogeneous Rate and Exogenous Choice

The first set of simulations used the homogeneous rate function 𝜆(𝑡 | 𝜂𝜎) = 𝜂𝜎1 and

the exogenous choice model given in (6.3). We set the number of segments 𝐾 = 2,

the number of items 𝑛 = 3, and set the choice model parameters to 𝜏 1 = 𝜏 2 = 0.75,

𝜑1 = [0.75, 0.2, 0.05], and 𝜑2 = [0.33, 0.33, 0.34]. We simulated data from three stores

𝑆 = 3, for each of which the segment distribution 𝜃𝜎 was chosen independently at

random from a uniform Dirichlet distribution and the arrival rate 𝜂𝜎1 was chosen

independently at random from a uniform distribution on [2, 4]. For each store, we

simulated 25 time periods, each of length 𝑇 = 1000 and with the initial stock for each

item chosen uniformly between 0 and 500, independently at random for each item,

time period, and store. Purchase data were then generated according to the generative

model in Section 6.1.5. This simulation was repeated 10 times, each with different

random initializations of 𝜂 and 𝜃. Inference was done with the prior hyperparameter

for 𝜂𝜎1 , 𝛿1, set to [2, 4].

To illustrate the result of the inference, Figure 6-1 shows the posterior density for

𝜃 for one of the simulations, as estimated by MCMC sampling. The figure shows that

126

0.0 0.2 0.4 0.6 0.8 1.0

θ1
1

0

2

4

6

8

10

12

14

Po
st

er
io

r
de

ns
it

y

0.0 0.2 0.4 0.6 0.8 1.0

θ2
1

0.0 0.2 0.4 0.6 0.8 1.0

θ3
1

Figure 6-1: Normalized histograms of posterior samples of 𝜃𝜎1 for each of the three
stores used in the simulation. The vertical line indicates the true value.

2.0 2.5 3.0 3.5 4.0

True value of ησ1

2.0

2.5

3.0

3.5

4.0

Po
st

er
io

r
m

ea
n

of
η
σ 1

0.0 0.2 0.4 0.6 0.8 1.0

True value of θσk

0.0

0.2

0.4

0.6

0.8

1.0

Po
st

er
io

r
m

ea
n

of
θ
σ k

Figure 6-2: Markers in the top panel show, for each randomly chosen value of 𝜂𝜎1 used
in the set of simulations (3 stores × 10 simulations), the corresponding estimate of
the posterior mean. The bottom panel shows the same result for each value of 𝜃𝜎𝑘
used (3 stores × 2 segments × 10 simulations).

127

0 200 400 600 800 1000

t

0

2

4

6

8

10

A
rr

iv
al

ra
te
λ

(t
|η

1
)

Figure 6-3: Each gray line is the rate function evaluated using a 𝜂1 randomly sampled
from the posterior, with a total of 20 such samples. The blue line is the true rate
function for this simulation.

the posterior samples are concentrated around the true values. Figure 6-2 shows the

posterior means estimated from the MCMC samples across all of the 10 repeats of

the simulation, showing that across the full range of parameter values used in these

simulations the posterior mean was close to the true value.

6.3.2 Hill Rate and Exogenous Choice

In a second set of simulations, we used the same design as the first set but replaced

the homogeneous arrival rate with the Hill arrival rate, given in (6.1). We did only

one simulation, with the rate function parameters 𝜂𝜎 = [3000, 3, 300] to obtain a

mean rate similar to that of the simulations in the previous section. In the inference,

we used prior hyperparameters 𝛿1 = [2000, 4000], 𝛿2 = [2, 4], and 𝛿3 = [200, 400].

Figure 6-3 shows posterior samples of the rate function 𝜆(𝑡 | 𝜂1). The posterior

estimates of the rate function closely match the rate function used to generate the

data.

6.3.3 Hill Rate and Nonparametric Choice

In the final set of simulations we use the Hill rate function with the nonparametric

choice function from (6.4), with 3 items. We used all sets of preference rankings of

size 1 and 2, which for 3 items requires a total of 9 segments. We simulated data for

128

0.0 0.1 0.2 0.3 0.4 0.5

θ1
1 , {1}

0

10

20

30

40

50

60

Po
st

er
io

r
de

ns
it

y

0.0 0.1 0.2 0.3 0.4 0.5

θ1
4 , {1, 2}

0.0 0.1 0.2 0.3 0.4 0.5

θ1
9 , {3, 2}

Figure 6-4: Posterior density for the non-zero segment proportions from a simulation
with nonparametric choice. The corresponding ordering 𝜑𝑘 is given below each panel.

a single store, with the segment proportion 𝜃1𝑘 set to 0.33 for preference rankings {1},

{1, 2}, and {3, 2}. The segment proportions for the remaining 6 preference rankings

were set to zero. With this simulation we also study the effect of the number of time

periods used in the inference, 𝐿1. 𝐿1 was taken from {5, 10, 25, 50, 100}, and for each

of these values 10 simulations were done.

Figure 6-4 shows the posterior densities for the non-zero segment proportions 𝜃1𝑘,

for one of the simulations with 𝐿1 = 25. The posterior densities for the other six

segment proportions were all concentrated near zero. Figure 6-5 describes how the

posterior depends on the number of time periods. The top panel shows that the

posterior mean tends closer to the true value as more data are made available. The

bottom panel shows the actual concentration of the posterior, where the interquar-

tile range of the posterior decreases with the number of time periods. Because we

use a stochastic gradient approximation, using more time periods came at no addi-

tional computational cost: We used 3 time periods for each gradient approximation

regardless of the available number.

6.4 Data Experiments

We now provide the results of the model applied to real transaction data. We used the

real data to evaluate the predictive power of the model, and to compute a posterior

distribution of lost sales due to stockouts.

129

0.15

0.25

0.35

0.45

Po
st

er
io

r
m

ea
n

of
θ

1 k

0 20 40 60 80 100

Number of simulated time periods L1

0.00

0.02

0.04

0.06

0.08

IQ
R

of
θ

1 k
po

st
er

io
r

Figure 6-5: Each marker corresponds to the posterior distribution for 𝜃1𝑘 from a
simulation with the corresponding number of time periods, across the 3 values of 𝑘
where the true value equaled 0.33. The top panel shows the posterior mean for each
of the simulations across the different number of time periods. The bottom panel
shows the interquartile range (IQR) of the posterior.

130

We obtained one semester of sales data from the bakery at 100 Main Marketplace,

a cafe located at MIT. The data were for a collection of breakfast pastries (bagel,

scone, and croissant) and for a collection of cookies (oatmeal, double chocolate, and

chocolate chip). The data set included all purchase times for 151 days; we treated

each day as a time period. For the breakfast pastries the time period was from 7:00

a.m. to 2:00 p.m., and for the cookies the time period was from 11:00 a.m. to 7:00

p.m. The breakfast pastries comprised a total of 3869 purchases, and the cookies

comprised 4084 purchases. Stock data were not available, only purchase times, so for

the purpose of these experiments we set the initial stock for each time period equal to

the number of purchases for the time period - thus every item was treated as stocked

out after its last recorded purchase. This is a reasonable assumption given that these

are perishable baked goods, whose stock levels are designed to stock out by the end

of the day.

The empirical purchase rates for the two sets of items, shown in Figures 6-6 and

6-9, were markedly nonhomogeneous, so we used the Hill rate function from (6.1). For

all of the data experiments we took the rate prior hyperparameters to be 𝛿1 = [0, 200],

𝛿2 = [1, 10], and 𝛿3 = [0, 1000], which we found to be a large enough range so as to

be unrestrictive. For each set of items we fit the model using both the exogenous and

nonparametric choice models.

6.4.1 Inferring Demand for Breakfast Pastries

We began by fitting the breakfast pastry data using the nonparametric choice model.

Figure 6-6 shows the actual purchase times in the data set across all three items,

along with 20 random posterior samples from the model’s predicted average purchase

rate over all time periods, which equals

1

151

151∑︁
𝑙=1

3∑︁
𝑖=1

�̃�1,𝑙𝑖 . (6.7)

The purchase rate shows a significant morning rush, as is expected for these types of

items at a bakery.

131

8:00a 10:00a 12:00p 2:00p
Time

0.00

0.05

0.10

0.15

0.20

P
ur

ch
as

e
ra

te
(m

in
−

1
)

Figure 6-6: In black is a normalized histogram of the purchase times for the breakfast
pastries, across all 151 days. Each blue line is a posterior sample for the model fit of
this quantity, given in (6.7).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Po
st

er
io

r
de

ns
it

y

θ1
1 , {bagel}

0

4

8

12

16

θ1
2 , {scone}

0

4

8

12

16

θ1
3 , {croissant}

0

2

4

6

8

θ1
4 , {bagel, scone}

0

2

4

6

8

10

θ1
5 , {bagel, croissant}

0

2

4

6

8

10

θ1
6 , {scone, bagel}

0

20

40

60

80

0.0 0.2 0.4 0.6 0.8 1.0

θ1
7 , {scone, croissant}

0

10

20

30

40

50

0.0 0.2 0.4 0.6 0.8 1.0

θ1
8 , {croissant, bagel}

0

10

20

30

40

50

0.0 0.2 0.4 0.6 0.8 1.0

θ1
9 , {croissant, scone}

0

4

8

12

16

Figure 6-7: Normalized histograms of posterior samples for each segment proportion,
for the breakfast pastries with the nonparametric choice model. The corresponding
ordered list for each segment is indicated.

132

0.0 0.2 0.4 0.6 0.8 1.0

τ

0

1

2

3

4

5

Po
st

er
io

r
de

ns
it

y

Figure 6-8: Normalized histogram of posterior samples of the exogenous choice model
substitution rate, for the breakfast pastry data.

11:00a 1:00p 3:00p 5:00p 7:00p
Time

0.00

0.03

0.06

0.09

0.12

0.15

P
ur

ch
as

e
ra

te
(m

in
−

1
)

Figure 6-9: A normalized histogram of purchase times for the cookies, across time pe-
riods, along with posterior samples for the model’s corresponding predicted purchase
rate.

Figure 6-7 shows the posterior densities for the segment probabilities 𝜃. The

densities indicate that customers whose first choice is bagel are generally willing to

substitute, those whose first choice is croissant less so, and customers seeking a scone

are generally unwilling to substitute.

The model was also fit using the exogenous choice model, with 𝐾 = 1 customer

segment. The posterior density for the substitution rate 𝜏 1 is given in Figure 6-8.

6.4.2 Inferring Demand for Cookies

We then fit the model to the cookie dataset using the nonparametric choice model.

The empirical average purchase rate is given in Figure 6-9, along with 20 posterior

133

0.0 0.2 0.4 0.6 0.8 1.0

τ

0

2

4

6

8

10

Po
st

er
io

r
de

ns
it

y

Figure 6-10: Normalized histogram of posterior samples of the exogenous choice model
substitution rate, for the cookie data.

samples for the model’s predicted average purchase rate from (6.7). The purchase rate

shows a lunch time rush, followed by a sustained afternoon rate that finally tapers off

in the evening. There are also significant rushes during the periods between afternoon

classes. The Hill rate function that we use is not able to capture these afternoon

peaks, however the model can incorporate any integrable rate function. Given a rate

function that can produce three peaks, the inference would proceed in the same way.

The uncertainty in the posterior is clear from the variance in the samples in

Figure 6-9. This uncertainty is the motivation for using the full posterior in making

predictions, as described in Section 6.0.2.

The model was also fit using the exogenous choice model, and the density for 𝜏

is given in Figure 6-10.

6.4.3 An Evaluation of Predictive Performance

Now that we have fit the model to data, it is important to establish that it has

predictive power. We evaluated the predictive power of the model by predicting out-

of-sample purchase counts during periods of varying stock availability. We took 80%

of the time periods (120 time periods) as training data and did posterior inference.

The remaining 31 time periods were held out as test data. We considered each possible

level of stock unavailability, i.e., 𝑠 = [1, 0, 0], 𝑠 = [0, 1, 0], etc. For each stock level,

we found all of the time intervals in the test periods with that stock. The prediction

134

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Po
st

er
io

r
de

ns
it

y

0 5 10 15 20

Purchases, s = [0,1,1]

0.0

0.1

0.2

0.3

0 10 20 30 40 50

Purchases, s = [0,0,1]

0.00

0.04

0.08

0.12

150 200 250 300

Purchases, s = [1,0,1]

0.00

0.01

0.02

25 50 75 100 125 150

Purchases, s = [1,0,0]

0.00

0.01

0.02

0.03

0.04

0.05

25 50 75 100 125 150

Purchases, s = [1,1,0]

0.00

0.01

0.02

0.03

0.04

0.05

0 10 20 30 40 50 60 70

Purchases, s = [0,1,0]

0.00

0.05

0.10

0.15

Figure 6-11: Posterior densities for the number of purchases during test set intervals
with the indicated stock availability for items [bagel, scone, croissant]. The density
in blue is for the nonparametric choice, red is for the exogenous choice, and gray is
for a homogeneous arrival rate with MNL choice. The vertical line indicates the true
value.

task was, given only the time intervals and the corresponding stock level, to predict

the total number of purchases that took place during those time intervals in the test

periods. The actual number of purchases is known and thus predictive performance

can be evaluated.

This is a meaningful prediction task because good performance requires being able

to accurately model exactly the two main components of our model: the arrival rate

as a function of time, and how the actual purchases then depend on the stock. We did

this task using the nonparametric and exogenous choice models as done in Sections

6.4.1 and 6.4.2. We also did the prediction task using the maximum likelihood model

with a homogeneous arrival rate and the MNL choice model, which is similar to the

model used by Vulcano et al (2012). For the MNL model we set 𝜏 1 = 0.1, as it cannot

be inferred.

Posterior densities for the predicted counts for the breakfast pastries are given in

Figure 6-11. These were obtained as described in Section 6.0.2. Despite their very

135

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Po
st

er
io

r
de

ns
it

y

100 200 300 400

Purchases, s = [1,1,1]

0.00

0.01

0.02

200 300 400

Purchases, s = [0,1,1]

0.00

0.01

0.02

100 200 300 400

Purchases, s = [0,0,1]

0.00

0.01

0.02

20 40 60 80 100 120

Purchases, s = [1,0,1]

0.00

0.02

0.04

0.06

0 2 4 6 8 10

Purchases, s = [1,0,0]

0.0

0.2

0.4

0.6

0.8

0 10 20 30

Purchases, s = [0,1,0]

0.00

0.05

0.10

0.15

0.20

Figure 6-12: Posterior densities for the number of purchases during test set intervals
with the indicated stock availability for cookies [oatmeal, double chocolate, chocolate
chip]. The density in blue is for the nonparametric choice, red is for the exogenous
choice, and gray is for a homogeneous arrival rate with MNL choice. The vertical line
indicates the true value.

different natures, the predictions made by the exogenous and nonparametric models

are quite similar, and are both consistent with the true values for all stock levels.

The model with a homogeneous arrival rate and MNL choice is unable to accurately

predict the purchase rates, most likely because of the poor model for the arrival rate.

Figure 6-12 shows the same results for the cookies data.

6.4.4 Lost Sales Due to Stockouts

Once the model parameters have been inferred, we can estimate what the sales would

have been had there not been any stockouts. We estimated posterior densities for the

number of purchases of each item across 151 time periods, with full stock. In Figures

6-13 and 6-14 we compare those densities to the actual number of purchases in the

data, for the cookies and breakfast pastry data respectively.

For each of the three cookies, the actual number of purchases was significantly less

136

0 1000 2000 3000 4000

Purchases, oatmeal

0

4

8

12

16

Po
st

er
io

r
de

ns
it

y

×10−3

0 1000 2000 3000

Purchases, double chocolate
1000 3000 5000 7000

Purchases, chocolate chip

Figure 6-13: For the cookie data, posterior densities for the number of purchases
during all periods, if there had been no stockouts. The blue density is the result with
the nonparametric choice model, and the red with the exogenous. The vertical line
indicates the number of purchases in the data.

than the posterior density for purchases with full stock, indicating that there were

substantial lost sales due to stock unavailability. With the nonparametric model,

the difference between the full-stock posterior mean and the actual number of pur-

chases was 791 oatmeal cookies, 707 double chocolate cookies, and 1535 chocolate

chip cookies.

Figure 6-14 shows the results for the breakfast pastries. Here the results do not

support substantial lost sales due to stockouts. For the nonparametric model, the 95%

credible interval for the full-stock number of bagel purchases is 1945 − 2951, which

contains the actual value of 2126 and so is not indicative of lost sales. The number

of scone purchases also lies within the full-stock 95% credible interval. Only for

croissants does the actual number of purchases fall outside the 95% credible interval,

with a difference of 531 croissants between the full-stock posterior mean and the

observed purchases.

Figures 6-8 and 6-10 give some insight into the different impact of stockouts on

sales for the two sets of items. These figures show the posterior densities for the

exogenous model substitution rate 𝜏 1, for the breakfast pastries and cookies respec-

tively. The posterior mean of 𝜏 1 for the breakfast pastries was 0.27, whereas for the

cookies it was 0.08. These results indicate that customers are much less willing to

substitute cookies, hence the lost sales.

137

0 1000 2000 3000 4000

Purchases, bagel

0

4

8

12

16
Po

st
er

io
r

de
ns

it
y

×10−3

0 400 800 1200 1600

Purchases, scone

0

1

2

3

×10−3

0 1000 2000 3000 4000

Purchases, croissant

0

4

8

12

16×10−3

Figure 6-14: For the breakfast pastry data, posterior densities for the number of
purchases during all periods, if there had been no stockouts. The blue density is the
result with the nonparametric choice model, and the red with the exogenous. The
vertical line indicates the number of purchases in the data.

6.5 Discussion

We have developed a Bayesian model for inferring primary demand and consumer

choice in the presence of stockouts. The model can incorporate a realistic model of

the customer arrival rate, and is flexible enough to handle a variety of different choice

models. Our model is closely related to models like latent Dirichlet allocation, used

in the machine learning community for topic modeling (Blei et al, 2003). Variants of

topic models are regularly applied to very large text corpora, with a large body of

research on how to effectively infer these models. That research was the source of the

stochastic gradient MCMC algorithm that we used, which allows inference from even

very large transaction databases. In our data experiments, sampling took just a few

minutes on a standard laptop computer.

The simulation study showed that when data are actually generated from the

model, we are able to recover the true, generating values. They further showed that

the posterior bias and variance decrease as more data are made available, an improve-

ment without any additional computational cost due to the stochastic gradient. We

applied the model and inference to real sales transaction data from a local bakery. The

daily purchase rate in the data was clearly nonhomogeneous, with a rush of purchases.

The rush of purchases illustrates the importance of modeling nonhomogeneous arrival

rates in many retail settings. In a prediction task that required accurate modeling

138

of both the arrival rate and the choice model, we showed that the model was able to

make accurate predictions and significantly outperformed the baseline approach.

Finally, we showed how the model can be used to estimate a specific quantity of

interest: lost sales due to stockouts. For bagels and scones there was no indication

of lost sales due to stockouts, whereas for cookies the posterior provided evidence of

substantial lost sales. The model and inference procedure we have developed provide

a new level of power and flexibility that will aid decision makers in using transaction

data to make smarter decisions.

139

140

Chapter 7

Bayesian Sets and Information

Retrieval

Informed decision making requires information. There are many cases where im-

portant information is freely available on the Internet, but is fragmented over many

different sites. Consider, for example, the task of open-ended list aggregation, inspired

by the collective intelligence problem of finding all planned events in a city. There are

many online “experts" that list Boston events, such as Boston.com or Yelp, however

these lists are incomplete. As an example of the difficulties caused by information

fragmentation, traffic in parts of greater Boston can be particularly bad when there

is a large public event such as a street festival or fundraising walk. Even though these

events are planned well in advance, the lack of a central list of events makes it hard

to avoid traffic jams, and the number of online sources makes it difficult to compile a

complete list manually.

As the amount of information on the Internet continues to grow, it becomes in-

creasingly important to be able to compile information automatically in a fairly com-

plete way, for any given domain. The development of general methods that automat-

ically aggregate this kind of collective knowledge is a vital area of current research,

with the potential to positively impact the spread of useful information to users across

the Internet.

Our contribution in this chapter is a real system for growing lists of relevant items

141

from a small “seed" of examples by aggregating information across many internet

experts. We provide an objective evaluation of our method to show that it performs

well on a wide variety of list growing tasks, and significantly outperforms existing

methods. We provide some theoretical motivation by giving bounds for the Bayesian

Sets method used within our algorithm. None of the components of our method

are particularly complicated; the value of our work lies in combining these simple

ingredients in the right way to solve a real problem.

There are two existing, publicly available methods for growing a list of items

related to a user-specified seed. The first was introduced ten years ago on a large

scale by Google Sets, which is accessible via Google Spreadsheet. The second is a more

recent online system called Boo!Wa! (http://boowa.com), which is similar in concept

to Google Sets. In our experiments, we found that Boo!Wa! is a substantial advance

above Google Sets, and the algorithm introduced here is a similarly sized leap in

technology above Boo!Wa!. In a set of 50 experiments shown in Section 7.4, the lower

25th percentile of our performance was better than the median performance of both

Google Sets and Boo!Wa! in Precision@10 and average precision. More generally,

our work builds on “search” and other work in information retrieval. Search engines

locate documents containing relevant information, but to produce a list one would

generally need to look through the webpages and aggregate the information manually.

We build on the speed of search, but do the aggregation automatically and in a much

more complete way than a single search.

7.1 Algorithm for Retrieval and Aggregation

Algorithm 3 gives an outline of the list growing algorithm, which we now discuss in

detail.

Source discovery: We begin by using the seed items to locate sites on the Internet

that serve as expert sources for other relevant items. We use a combinatorial search

strategy that relies on the assumption that a site containing at least two of the seed

items likely contains other items of interest. Specifically, for every pair of seed items,

142

Algorithm 3: Outline of the list growing algorithm
Input: A list of seed items
Output: A ranked list of new items related to the seed items
for as many iterations as desired do

for each pair of seed items do
Source discovery : Find all sites containing both items
for each source site do

List extraction: Find all items on the site that are represented similarly
to the seed items

end for
end for
for each discovered item do

Feature space: Using a search with the item as the query, construct a
binary feature vector of domains where the item is found
Ranking : Score the item according to the seed using Bayesian Sets

end for
Implicit feedback : Add the highest-ranked non-seed item to the seed

end for

we search for all websites that contain both of the items; this step takes advantage of

the speed of “search.”

In some cases, seed items may appear together in several contexts. For example,

suppose one were to grow a list of Category 5 Atlantic hurricanes with “Hurricane Ka-

trina" and “Hurricane Emily" in the seed. In addition to being Category 5 hurricanes,

both of these hurricanes were in the 2005 hurricane season, and are found together

on lists of 2005 Atlantic hurricanes. A search for sites containing both of these seed

items would then recover both relevant sources on Category 5 hurricanes, as well as

irrelevant sources on 2005 hurricanes. When more than two seed items are available,

the context can be constrained by requiring source sites to contain all seed items,

as opposed to just pairs. While this can potentially reduce the number of incorrect

items, it could also miss relevant items that are found only on fragmented lists with

little overlap. With our pairwise search strategy, our primary goal is complete cover-

age of relevant items, and we use the later ranking step to push the incorrect items

to the bottom of the list. In Section 7.4.2 we explore experimentally how additional

seed items constrain the context when ranking, and experimental results in Section

7.4.3 provide additional motivation for source discovery with pairs.

143

This step requires submitting the query “term1" “term2" to a search engine. In

our experiments we used Google as the search engine, but any index would suffice.

We retrieved the top 100 results.

List extraction: The output of the combinatorial search is a collection of source

sites, each of which contains at least two seed items. We then extract all of the new

items from each of these sites. Here our strategy relies on the assumption that human

experts organize information on the Internet using HTML tags. For each site found

with the combinatorial search, we look for HTML tags around the seed items. We

then find the largest set of HTML tags that are common to both seed items (for

this site) and extract all items on the page that use the same HTML tags. In some

situations, this strategy can result in noisy lists because it allows any HTML tags,

including generic ones like and <a>. An alternative strategy is to limit item

extraction to list-specific HTML tags like , and we explore this and related

strategies experimentally in Section 7.4.2. As before, our goal at this step is complete

coverage of relevant items, so we allow all HTML tags and use the later ranking step

to ensure that the noise is pushed to the bottom of the list.

The following lines of HTML illustrate the extraction process:

<h2> Boston Harborfest</h2>

 Jimmy fund scooper bowl

 the Boston Arts Festival 2012

<h3>Boston bacon takedown</h3>

 Just a url

For each of the two seed items used to discover this source, we search the HTML for

the pattern:

<largest set of tags>(≤ 5 words) seed item (≤ 5 words)<matching end tags>.

In the above example, if the first seed item is “Boston arts festival,” then it matches

the pattern with the HTML tags: <a>. If the second seed item is “Boston

harborfest,” it matches the pattern with HTML tags: <h2><a>. We then find

144

the largest set of HTML tags that are common to both seed items, for this site. In

this example, “Boston arts festival” does not have the <h2> tag, so the largest set of

common tags is: <a>. If there are no HTML tags common to both seed items,

we discard the site. Otherwise, we extract all items on the page that use the same

HTML tags. In this example, we extract everything with both a and an <a>

tag, which means “Jimmy fund scooper bowl” and “Boston bacon takedown,” but not

“Just a url.”

In our experiments, to avoid search spam sites with extremely long lists of unre-

lated keywords, we reject sources that return more than 300 items. We additionally

applied a basic filter rejecting items of more than 60 characters or items consisting of

only numbers and punctuation. No other processing was done.

Feature Space: At this point the algorithm has discovered a collection of lists,

each from a different source. We now combine these lists so that the most relevant

information is at the top of the final, merged list. To determine which of the discovered

items are relevant, we construct a feature space in which to compare them to the seed

items. Specifically, for each discovered item 𝑥, we construct a binary feature vector

where each feature 𝑗 corresponds to an internet domain (like boston.com or mit.edu),

and 𝑥𝑗 = 1 if item 𝑥 can be found on internet domain 𝑗. This set of internet domains

is found using a search engine with the item as the query.

The assumption behind this strategy is that related items should be found on a set

of mainly overlapping domains, so we determine relevance by looking for items that

cluster well with the seed items in the feature space. Constructing this feature space

requires an additional search query for each discovered item. An alternative strategy

that does not require additional search queries is to construct the feature space using

only the source sites, that is, sites containing at least two seed items. This strategy,

however, does not provide a way to distinguish between items that are found often in

general, both with or without seed items, and items that are found often specifically

with seed items. We compare these two approaches empirically in Section 7.4.2.

We do separate Google searches for each item we have extracted to find the set

of webpages containing it. We use quotes around the query term, discard results

145

when Google’s spelling correction system modifies the query, and retrieve the top 300

search results.

Ranking: The Bayesian Sets algorithm (Ghahramani and Heller, 2005) ranks items

according to the likelihood that they form a cluster with the seed, based on a proba-

bilistic model for the feature space. Specifically, we suppose that each feature (in gen-

eral, 𝑥𝑗) is a Bernoulli random variable with probability 𝜃𝑗 of success: 𝑥𝑗 ∼ Bern(𝜃𝑗).

Following the typical Bayesian practice, we assign a Beta prior to the probability of

success: 𝜃𝑗 ∼ Beta(𝛼𝑗, 𝛽𝑗). Bayesian Sets assigns a score 𝑓(𝑥) to each item 𝑥 by

comparing the likelihood that 𝑥 and the seed 𝑆 = {𝑥1, . . . , 𝑥𝑚} were generated by

the same distribution to the likelihood they are independent:

𝑓(𝑥) := log
𝑝(𝑥, 𝑆)

𝑝(𝑥)𝑝(𝑆)
. (7.1)

Suppose there are 𝑁 features: 𝑥 ∈ {0, 1}𝑁 . Because of the Bernoulli-Beta conjugacy,

Ghahramani and Heller (2005) show that (7.1) has an analytical form under the

assumption of independent features. However, the score given in Ghahramani and

Heller (2005) can be arbitrarily large as 𝑚 (the number of seed examples) increases.

We prefer a normalized score because it leads to guarantees that the results are

stable, or not too sensitive to any one seed item, as we show in Section 7.2. We

use the following scoring function which differs from that in Ghahramani and Heller

(2005) only by constant factors and normalization:

𝑓𝑆(𝑥) :=
1

𝑍(𝑚)

𝑁∑︁
𝑗=1

𝑥𝑗 log
𝛼𝑗 +

∑︀𝑚
𝑠=1 𝑥

𝑠
𝑗

𝛼𝑗

+ (1 − 𝑥𝑗) log
𝛽𝑗 +𝑚−

∑︀𝑚
𝑠=1 𝑥

𝑠
𝑗

𝛽𝑗
, (7.2)

where

𝑍(𝑚) := 𝑁 log

(︂
𝛾min +𝑚

𝛾min

)︂
and 𝛾min := min

𝑗
min{𝛼𝑗, 𝛽𝑗} is the weakest prior hyperparameter. The normalization

ensures that 𝑓𝑆(𝑥) ∈ [0, 1], as we now show.

Lemma 5. 0 ≤ 𝑓𝑆(𝑥) ≤ 1.

146

Proof. It is easy to see that 𝑓𝑆(𝑥) ≥ 0. To see that 𝑓𝑆(𝑥) ≤ 1,

max𝑆,𝑥𝑓𝑆(𝑥)

=
1

𝑍(𝑚)
max
𝑆,𝑥

𝑁∑︁
𝑗=1

(︂
𝑥𝑗 log

𝛼𝑗 +
∑︀𝑚

𝑠=1 𝑥
𝑠
𝑗

𝛼𝑗

+ (1 − 𝑥𝑗) log
𝛽𝑗 +𝑚−

∑︀𝑚
𝑠=1 𝑥

𝑠
𝑗

𝛽𝑗

)︂

≤ 1

𝑍(𝑚)

𝑁∑︁
𝑗=1

max
𝑥𝑗 ,𝑥1

𝑗 ,...,𝑥
𝑚
𝑗

(︂
𝑥𝑗 log

𝛼𝑗 +
∑︀𝑚

𝑠=1 𝑥
𝑠
𝑗

𝛼𝑗

+ (1 − 𝑥𝑗) log
𝛽𝑗 +𝑚−

∑︀𝑚
𝑠=1 𝑥

𝑠
𝑗

𝛽𝑗

)︂

=
1

𝑍(𝑚)

𝑁∑︁
𝑗=1

max

{︃
max

𝑥1
𝑗 ,...,𝑥

𝑚
𝑗

log
𝛼𝑗 +

∑︀𝑚
𝑠=1 𝑥

𝑠
𝑗

𝛼𝑗

, max
𝑥1
𝑗 ,...,𝑥

𝑚
𝑗

log
𝛽𝑗 +𝑚−

∑︀𝑚
𝑠=1 𝑥

𝑠
𝑗

𝛽𝑗

}︃

=
1

𝑍(𝑚)

𝑁∑︁
𝑗=1

max

{︂
log

𝛼𝑗 +𝑚

𝛼𝑗

, log
𝛽𝑗 +𝑚

𝛽𝑗

}︂

=
1

𝑍(𝑚)

𝑁∑︁
𝑗=1

log
min{𝛼𝑗, 𝛽𝑗} +𝑚

min{𝛼𝑗, 𝛽𝑗}

≤ 1

𝑍(𝑚)

𝑁∑︁
𝑗=1

log
𝛾min +𝑚

𝛾min

= 1.

Given the seed and the prior, (7.2) is linear in 𝑥, and can be formulated as a single

matrix multiplication. When items are scored and then ranked using Bayesian Sets,

the items that were most likely to have been generated by the same distribution as

the seed items are put high on the list.

As is typically the case in Bayesian analysis, there are several options for selecting

the prior hyperparameters 𝛼𝑗 and 𝛽𝑗, including the non-informative prior 𝛼𝑗 = 𝛽𝑗 = 1.

Heller and Ghahramani (2006) recommend using the empirical distribution. Given 𝑛

items to score 𝑥(1), . . . , 𝑥(𝑛), we let

𝛼𝑗 = 𝜅1

(︃
1

𝑛

𝑛∑︁
𝑖=1

𝑥
(𝑖)
𝑗

)︃
, 𝛽𝑗 = 𝜅2

(︃
1 − 1

𝑛

𝑛∑︁
𝑖=1

𝑥
(𝑖)
𝑗

)︃
. (7.3)

The first term in the sum in (7.2) corresponds to the amount of score obtained by

147

𝑥 for the co-occurrence of feature 𝑗 with the seed, and the second term corresponds to

the amount of score obtained for the non-occurrence of feature 𝑗 with the seed. When

𝛼𝑗 = 𝛽𝑗, the amount of score obtained when 𝑥𝑗 and the seed both occur is equivalent

to the amount of score obtained when 𝑥𝑗 and the seed both do not occur. Increasing

𝛽𝑗 relative to 𝛼𝑗 gives higher emphasis to co-occurring features. This is useful when

the feature vectors are very sparse, as they are here; thus we take 𝜅2 > 𝜅1. In all

of our experiments we took 𝜅2 = 5 and 𝜅1 = 2, similarly to that done in Heller and

Ghahramani (2006).

There are a number of alternative ranking algorithms that could be considered

within this same framework, including non-probabilistic metrics. Stand-alone com-

parisons of Bayesian Sets and several alternatives done in Heller and Ghahramani

(2006) provide empirical motivation for its use. The generalization bounds provided in

Section 7.2 provide theoretical motivation for using Bayesian Sets in high-dimensional

settings with correlated features.

Feedback: Once the lists have been combined, we continue the discovery process

by expanding the seed. A natural, unsupervised way of expanding the seed is to add

the highest ranked non-seed item into the seed. Though not done here, one could

also use a domain expert or even crowdsourcing to quickly scan the top ranked items

and manually expand the seed from the discovered items. Then the process starts

again; we do a combinatorial search for websites containing all pairs with the new seed

item(s), extract possible new items from the websites, etc. We continue this process

for as many iterations as we desire. In practice, there is no need to repeat searches for

pairs of seed items that have already been explored in previous iterations. Also, we

track which sites have been visited during source discovery and do not revisit these

sites in later iterations. To avoid filling the seed with duplicate items like “Boston

arts festival" and “The boston arts festival 2012," in our implicit feedback we do not

add items to the seed if they are a sub- or super-string of a current seed item.

All of the components of our approach scale well to work fast on large problems:

Item discovery is done with a regular expression, ranking is done with a single matrix

multiplication, and all of the remaining steps require simple web queries. We used

148

Google as the search engine for our experiments, however, Google creates an artificial

restriction on the number of queries one can make per minute. This, and the speed of

downloading webpages for item extraction, are the only two slow steps in our method

- with the webpages already downloaded, the whole process took on average 1.9

seconds in our experiments in Section 7.4.1 (on a laptop with a 2.6GHz i5 processor).

Both issues would be fixed if we had our own web index and search engine, for

instance, if we had direct access to Google’s resources. Google or another search

engine could implement this method and it would work in real time, and would

give a substantial advantage over the state-of-the-art. In the meantime, companies

or researchers wanting to curate master lists on specific topics can implement our

method using one of the available search engines, as we do in our experiments in

Section 7.4.

7.2 Generalization Bounds for Bayesian Sets

The derivation for Bayesian Sets assumes independent features. In this applica-

tion, features are internet domains, which are almost certainly correlated. Because

Bayesian sets is the core of our method, we motivate its use in this application by

showing that even in the presence of arbitrary dependence among features, predic-

tion ability can be guaranteed as the sample size increases. We consider an arbitrary

distribution from which the seed 𝑆 is drawn, and prove that as long as there are a

sufficient number of items, 𝑥 will on expectation score highly if it is from the same

distribution as the seed 𝑆. Specifically, we provide a lower bound for E𝑥 [𝑓𝑆(𝑥)] that

shows that the expected score of 𝑥 is close to the score of 𝑆 with high probability. We

provide two results that use different proof techniques. This is a case where statistical

learning theory provides theoretical backing for a Bayesian method.

Theorem 3. Suppose 𝑥1, . . . , 𝑥𝑚 are sampled independently from the same distribu-

tion 𝒟 over {0, 1}𝑁 . For all 𝑚 ≥ 2, with probability at least 1 − 𝛿 on the draw of the

149

training set 𝑆 = {𝑥1, . . . , 𝑥𝑚},

E𝑥 [𝑓𝑆(𝑥)] ≥ 1

𝑚

𝑚∑︁
𝑠=1

𝑓𝑆(𝑥𝑠) −

√︃
1

2𝑚
log

(︂
2𝑁

𝛿

)︂
.

Proof. The proof is an application of Hoeffding’s inequality and the union bound. For

convenience, denote the seed sample average as 𝜇𝑗 := 1
𝑚

∑︀𝑚
𝑠=1 𝑥

𝑠
𝑗 , and the probability

that 𝑥𝑗 = 1 as 𝑝𝑗 := E𝑥[𝑥𝑗]. Then,

1

𝑚

𝑚∑︁
𝑠=1

𝑓𝑆(𝑥𝑠) − E𝑥 [𝑓𝑆(𝑥)]

=
1

𝑁 log
(︁

𝛾min+𝑚
𝛾min

)︁ 𝑁∑︁
𝑗=1

(︂
(𝜇𝑗 − 𝑝𝑗) log

𝛼𝑗 +𝑚𝜇𝑗

𝛼𝑗

+ (𝑝𝑗 − 𝜇𝑗) log
𝛽𝑗 +𝑚(1 − 𝜇𝑗)

𝛽𝑗

)︂

≤ 1

𝑁

𝑁∑︁
𝑗=1

|𝜇𝑗 − 𝑝𝑗|. (7.4)

For any particular feature 𝑗, Hoeffding’s inequality (Hoeffding, 1963) bounds the

difference between the empirical average and the expected value:

P(|𝜇𝑗 − 𝑝𝑗| > 𝜖) ≤ 2 exp
(︀
−2𝑚𝜖2

)︀
. (7.5)

We then apply the union bound to bound the average over features:

P

(︃
1

𝑁

𝑁∑︁
𝑗=1

|𝜇𝑗 − 𝑝𝑗| > 𝜖

)︃
≤ P

(︃
𝑁⋃︁
𝑗=1

{|𝜇𝑗 − 𝑝𝑗| > 𝜖}

)︃

≤
𝑁∑︁
𝑗=1

P (|𝜇𝑗 − 𝑝𝑗| > 𝜖)

≤ 2𝑁 exp
(︀
−2𝑚𝜖2

)︀
. (7.6)

Thus,

P

(︃
1

𝑚

𝑚∑︁
𝑠=1

𝑓𝑆(𝑥𝑠) − E𝑥 [𝑓𝑆(𝑥)] > 𝜖

)︃
≤ 2𝑁 exp

(︀
−2𝑚𝜖2

)︀
, (7.7)

and the theorem follows directly.

150

Theorem 4 provides an additional result that has a weaker dependence on 𝛿, but

has no dependence on the number of features 𝑁 , which in this application is the

number of internet domains and is thus extremely large. Theorem 4 also gives insight

into the dependence of generalization on the problem parameters.

Theorem 4. Suppose 𝑥1, . . . , 𝑥𝑚 are sampled independently from the same distri-

bution 𝒟. Define 𝑝𝑗 to be the probability that feature 𝑗 takes value 1. Let 𝑝min =

min
𝑗

min{𝑝𝑗, 1 − 𝑝𝑗} be the probability of the rarest feature. For all 𝑝min > 0, 𝛾min > 0

and 𝑚 ≥ 2, with probability at least 1 − 𝛿 on the draw of the training set 𝑆 =

{𝑥1, . . . , 𝑥𝑚},

E𝑥∼𝒟 [𝑓𝑆(𝑥)] ≥ 1

𝑚

𝑚∑︁
𝑠=1

𝑓𝑆(𝑥𝑠) −

√︃
1

2𝑚𝛿
+

6

𝑔(𝑚)𝛿
+𝑂

(︂
1

𝑚2 log𝑚

)︂
,

where

𝑔(𝑚) := (𝛾min + (𝑚− 1)𝑝min) log

(︂
𝛾min +𝑚− 1

𝛾min

)︂
The proof of Theorem 4 involves showing that Bayesian Sets is a “stable” algo-

rithm, in the sense of “pointwise hypothesis stability” (Bousquet and Elisseeff, 2002).

We show that the Bayesian Sets score is not too sensitive to perturbations in the seed

set. Specifically, when an item is removed from the seed, the average change in score

is bounded by a quantity that decays as 1
𝑚 log𝑚

. This stability allows us to apply

a generalization bound from Bousquet and Elisseeff (2002). The proof of pointwise

hypothesis stability is given in the next section.

The two quantities with the most direct influence on the bound are 𝛾min and 𝑝min.

We show in the next section that for 𝑝min small relative to 𝛾min, the bound improves as

𝛾min increases (a stronger prior). This suggests that a strong prior improves stability

when learning data with rare features. As 𝑝min decreases, the bound becomes looser,

suggesting that datasets with rare features will be harder to learn and will be more

prone to errors.

The fact that the bound in Theorem 4 is independent of 𝑁 provides motivation for

using Bayesian Sets on very large scale problems, even when the feature independence

151

assumption does not hold. It indicates that Bayesian Set’s performance may not

degrade when faced with high dimensional data.

The gap between the expected score of 𝑥 and the empirical score of the seed goes

to zero as 1√
𝑚

. Thus when the seed is sufficiently large, regardless of the distribution

over relevant items, we can be assured that the relevant items generally have high

scores.

7.3 Algorithmic Stability and Bayesian Sets

We now present the proof of Theorem 1. The result uses the algorithmic stability

bounds of Bousquet and Elisseeff (2002), specifically the bound for pointwise hypoth-

esis stability. We begin by defining an appropriate loss function. Suppose 𝑥 and 𝑆

were drawn from the same distribution 𝒟. Then, we wish for 𝑓𝑆(𝑥) to be as large

as possible. Because 𝑓𝑆(𝑥) ∈ [0, 1], an appropriate metric for the loss in using 𝑓𝑆 to

score 𝑥 is:

ℓ(𝑓𝑆, 𝑥) = 1 − 𝑓𝑆(𝑥). (7.8)

Further, ℓ(𝑓𝑆, 𝑥) ∈ [0, 1].

For algorithmic stability analysis, we will consider how the algorithm’s perfor-

mance changes when an element is removed from the training set. To analyze

this, we define a modified training set in which the 𝑖’th element has been removed:

𝑆∖𝑖 := {𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖+1, . . . , 𝑥𝑚}. We then define the score of 𝑥 according to the

modified training set:

𝑓𝑆∖𝑖(𝑥) =
1

𝑍(𝑚− 1)

𝑁∑︁
𝑗=1

𝑥𝑗 log
𝛼𝑗 +

∑︀
𝑠 ̸=𝑖 𝑥

𝑠
𝑗

𝛼𝑗

+ (1 − 𝑥𝑗) log
𝛽𝑗 + (𝑚− 1) −

∑︀
𝑠 ̸=𝑖 𝑥

𝑠
𝑗

𝛽𝑗
,

(7.9)

where

𝑍(𝑚− 1) = 𝑁 log

(︂
𝛾min +𝑚− 1

𝛾min

)︂
. (7.10)

152

We further define the loss using the modified training set:

ℓ(𝑓𝑆∖𝑖 , 𝑥) = 1 − 𝑓𝑆∖𝑖(𝑥). (7.11)

The general idea of algorithmic stability is that if the results of an algorithm do

not depend too heavily on any one element of the training set, the algorithm will

be able to generalize. One way to quantify the dependence of an algorithm on the

training set is to examine how the results change when the training set is perturbed,

for example by removing an element from the training set. The following definition of

pointwise hypothesis stability, taken from Bousquet and Elisseeff (2002), states that

an algorithm has pointwise hypothesis stability if, on expectation, the results of the

algorithm do not change too much when an element of the training set is removed.

Definition 1 (Bousquet and Elisseeff, 2002). An algorithm has pointwise hypothesis

stability 𝜂 with respect to the loss function ℓ if the following holds

∀𝑖 ∈ {1, . . . ,𝑚}, E𝑆

[︀
|ℓ(𝑓𝑆, 𝑥𝑖) − ℓ(𝑓𝑆∖𝑖 , 𝑥𝑖)|

]︀
≤ 𝜂. (7.12)

The algorithm is said to be stable if 𝜂 scales with 1
𝑚

.

In our theorem, we suppose that all of the data belong to the same class of “rele-

vant" items. The framework of Bousquet and Elisseeff (2002) can easily be adapted

to the single-class setting, for example by framing it as a regression problem where

all of the data points have the identical “true" output value 1. The following theorem

comes from Bousquet and Elisseeff (2002), with the notation adapted to our setting.

Theorem 5 (Bousquet and Elisseeff, 2002). If an algorithm has pointwise hypothesis

stability 𝜂 with respect to a loss function ℓ such that 0 ≤ ℓ(·, ·) ≤ 1, we have with

probability at least 1 − 𝛿,

E𝑥 [ℓ(𝑓𝑆, 𝑥)] ≤ 1

𝑚

𝑚∑︁
𝑖=1

ℓ(𝑓𝑆, 𝑥
𝑖) +

√︂
1 + 12𝑚𝜂

2𝑚𝛿
. (7.13)

We now show that Bayesian Sets satisfies the conditions of Definition 1, and

153

determine the corresponding 𝜂. The proof of Theorem 4 comes from inserting our

findings for 𝜂 into Theorem 5. We begin with a lemma providing a bound on the

central moments of a Binomial random variable.

Lemma 6. Let 𝑡 ∼ Binomial(m,p) and let 𝜇𝑘 = E
[︀
(𝑡− E[𝑡])𝑘

]︀
be the 𝑘th central

moment. For integer 𝑘 ≥ 1, 𝜇2𝑘 and 𝜇2𝑘+1 are 𝑂
(︀
𝑚𝑘
)︀
.

Proof. We will use induction. For 𝑘 = 1, the central moments are well known (e.g.,

Johnson et al, 2005): 𝜇2 = 𝑚𝑝(1 − 𝑝) and 𝜇3 = 𝑚𝑝(1 − 𝑝)(1 − 2𝑝), which are both

𝑂(𝑚). We rely on the following recursion formula (Johnson et al, 2005; Romanovsky,

1923):

𝜇𝑠+1 = 𝑝(1 − 𝑝)

(︂
𝑑𝜇𝑠

𝑑𝑝
+𝑚𝑠𝜇𝑠−1

)︂
. (7.14)

Because 𝜇2 and 𝜇3 are polynomials in 𝑝, their derivatives will also be polynomials in 𝑝.

This recursion makes it clear that for all 𝑠, 𝜇𝑠 is a polynomial in 𝑝 whose coefficients

include terms involving 𝑚.

For the inductive step, suppose that the result holds for 𝑘 = 𝑠. That is, 𝜇2𝑠 and

𝜇2𝑠+1 are 𝑂(𝑚𝑠). Then, by (7.14),

𝜇2(𝑠+1) = 𝑝(1 − 𝑝)

(︂
𝑑𝜇2𝑠+1

𝑑𝑝
+ (2𝑠+ 1)𝑚𝜇2𝑠

)︂
. (7.15)

Differentiating 𝜇2𝑠+1 with respect to 𝑝 yields a term that is 𝑂(𝑚𝑠). The term (2𝑠 +

1)𝑚𝜇2𝑠 is 𝑂(𝑚𝑠+1), and thus 𝜇2(𝑠+1) is 𝑂(𝑚𝑠+1). Also,

𝜇2(𝑠+1)+1 = 𝑝(1 − 𝑝)

(︂
𝑑𝜇2(𝑠+1)

𝑑𝑝
+ 2(𝑠+ 1)𝑚𝜇2𝑠+1

)︂
. (7.16)

Here 𝑑𝜇2(𝑠+1)

𝑑𝑝
is 𝑂(𝑚𝑠+1) and 2(𝑠+1)𝑚𝜇2𝑠+1 is 𝑂(𝑚𝑠+1), and thus 𝜇2(𝑠+1)+1 is 𝑂(𝑚𝑠+1).

This shows that if the result holds for 𝑘 = 𝑠 then it must also hold for 𝑘 = 𝑠 + 1

which completes the proof.

The next lemma provides a stable, 𝑂
(︀

1
𝑚

)︀
, bound on the expected value of an

important function of a binomial random variable.

154

Lemma 7. For 𝑡 ∼ Binomial(𝑚, 𝑝) and 𝛼 > 0,

E
[︂

1

𝛼 + 𝑡

]︂
=

1

𝛼 +𝑚𝑝
+𝑂

(︂
1

𝑚2

)︂
. (7.17)

Proof. We expand 1
𝛼+𝑡

at 𝑡 = 𝑚𝑝:

E
[︂

1

𝛼 + 𝑡

]︂
= E

[︃ ∞∑︁
𝑖=0

(−1)𝑖
(𝑡−𝑚𝑝)𝑖

(𝛼 +𝑚𝑝)𝑖+1

]︃

=
∞∑︁
𝑖=0

(−1)𝑖
E [(𝑡−𝑚𝑝)𝑖]

(𝛼 +𝑚𝑝)𝑖+1

=
1

𝛼 +𝑚𝑝
+

∞∑︁
𝑖=2

(−1)𝑖
𝜇𝑖

(𝛼 +𝑚𝑝)𝑖+1
(7.18)

where 𝜇𝑖 is the 𝑖th central moment and we recognize that 𝜇1 = 0. By Lemma 6,

𝜇𝑖

(𝛼 +𝑚𝑝)𝑖+1
=
𝑂
(︁
𝑚⌊ 𝑖

2
⌋
)︁

𝑂 (𝑚𝑖+1)
= 𝑂

(︁
𝑚⌊ 𝑖

2
⌋−𝑖−1

)︁
. (7.19)

The alternating sum in (7.18) can be split into two sums:

∞∑︁
𝑖=2

(−1)𝑖
𝜇𝑖

(𝛼 +𝑚𝑝)𝑖+1
=

∞∑︁
𝑖=2

𝑂
(︁
𝑚⌊ 𝑖

2
⌋−𝑖−1

)︁
=

∞∑︁
𝑖=2

𝑂

(︂
1

𝑚𝑖

)︂
+

∞∑︁
𝑖=3

𝑂

(︂
1

𝑚𝑖

)︂
. (7.20)

These are, for 𝑚 large enough, bounded by a geometric series that converges to

𝑂
(︀

1
𝑚2

)︀
.

The following three lemmas provide results that will be useful for proving the

main lemma, Lemma 11.

Lemma 8. For all 𝛼 > 0,

𝑔(𝛼,𝑚) :=
log
(︀
𝛼+𝑚
𝛼

)︀
log
(︀
𝛼+𝑚−1

𝛼

)︀ (7.21)

is monotonically non-decreasing in 𝛼 for any fixed 𝑚 ≥ 2.

Proof. Define 𝑎 = 𝑚−1
𝛼

and 𝑏 = 𝑚
𝑚−1

. Observe that 𝑎 ≥ 0 and 𝑏 ≥ 1, and that for

155

fixed 𝑚, 𝑎 is inversely proportional to 𝛼. We reparameterize (7.21) to

𝑔(𝑎, 𝑏) :=
log (𝑎𝑏+ 1)

log (𝑎+ 1)
. (7.22)

To prove the lemma, it is sufficient to show that 𝑔(𝑎, 𝑏) is monotonically non-increasing

in 𝑎 for any fixed 𝑏 ≥ 1. Well,

𝜕𝑔(𝑎, 𝑏)

𝜕𝑎
=

𝑏
𝑎𝑏+1

log (𝑎+ 1) − 1
𝑎+1

log (𝑎𝑏+ 1)

(log (𝑎+ 1))2
,

so 𝜕𝑔(𝑎,𝑏)
𝜕𝑎

≤ 0 if and only if

ℎ(𝑎, 𝑏) := (𝑎𝑏+ 1) log (𝑎𝑏+ 1) − 𝑏(𝑎+ 1) log (𝑎+ 1) ≥ 0. (7.23)

ℎ(𝑎, 1) = (𝑎+ 1) log (𝑎+ 1) − (𝑎+ 1) log (𝑎+ 1) = 0, and,

𝜕ℎ(𝑎, 𝑏)

𝜕𝑏
= 𝑎 log (𝑎𝑏+ 1) + 𝑎− (𝑎+ 1) log (𝑎+ 1)

= 𝑎 (log (𝑎𝑏+ 1) − log (𝑎+ 1)) + (𝑎− log (𝑎+ 1))

≥ 0 ∀𝑎 ≥ 0,

because 𝑏 ≥ 1 and 𝑎 ≥ log(1 + 𝑎) ∀𝑎 ≥ 0. This shows that (7.23) holds ∀𝑎 ≥ 0, 𝑏 ≥ 1,

which proves the lemma.

Lemma 9. For any 𝑚 ≥ 2, 𝑡 ∈ [0,𝑚− 1], 𝛼 > 0, and 𝛾min ∈ (0, 𝛼],

1

𝑍(𝑚)
log

𝛼 + 𝑡+ 1

𝛼
≥ 1

𝑍(𝑚− 1)
log

𝛼 + 𝑡

𝛼
. (7.24)

Proof. Denote

𝑔(𝑡;𝑚,𝛼) :=
1

𝑍(𝑚)
log

𝛼 + 𝑡+ 1

𝛼
− 1

𝑍(𝑚− 1)
log

𝛼 + 𝑡

𝛼
. (7.25)

156

By Lemma 8 and 𝛾min ≤ 𝛼, for any 𝛼 > 0 and for any 𝑚 ≥ 2,

log
(︀
𝛼+𝑚
𝛼

)︀
log
(︀
𝛼+𝑚−1

𝛼

)︀ ≥
log
(︁

𝛾min+𝑚
𝛾min

)︁
log
(︁

𝛾min+𝑚−1
𝛾min

)︁ =
𝑍(𝑚)

𝑍(𝑚− 1)
.

Thus,
log
(︀
𝛼+𝑚
𝛼

)︀
𝑍(𝑚)

≥
log
(︀
𝛼+𝑚−1

𝛼

)︀
𝑍(𝑚− 1)

, (7.26)

which shows

𝑔(𝑚− 1;𝑚,𝛼) =
1

𝑍(𝑚)
log

𝛼 +𝑚

𝛼
− 1

𝑍(𝑚− 1)
log

𝛼 +𝑚− 1

𝛼
≥ 0. (7.27)

Furthermore, because 𝑍(𝑚) > 𝑍(𝑚− 1),

𝜕𝑔(𝑡;𝑚,𝛼)

𝜕𝑡
=

1

𝑍(𝑚)

1

𝛼 + 𝑡+ 1
− 1

𝑍(𝑚− 1)

1

𝛼 + 𝑡
< 0, (7.28)

for all 𝑡 ≥ 0. Equations 7.27 and 7.28 together show that 𝑔(𝑡;𝑚,𝛼) ≥ 0 for all

𝑡 ∈ [0,𝑚− 1],𝑚 ≥ 2, proving the lemma.

Lemma 10. For any 𝑚 ≥ 2, 𝑡 ∈ [0,𝑚− 1], 𝛽 > 0, and 𝛾min ∈ (0, 𝛽],

1

𝑍(𝑚)
log

𝛽 +𝑚− 𝑡

𝛽
≥ 1

𝑍(𝑚− 1)
log

𝛽 +𝑚− 1 − 𝑡

𝛽
. (7.29)

Proof. Let 𝑡 = 𝑚− 𝑡− 1. Then, 𝑡 ∈ [0,𝑚− 1] and by Lemma 9, replacing 𝛼 with 𝛽,

1

𝑍(𝑚)
log

𝛽 + 𝑡+ 1

𝛽
≥ 1

𝑍(𝑚− 1)
log

𝛽 + 𝑡

𝛽
. (7.30)

The next lemma is the key lemma that shows Bayesian Sets satisfies pointwise

hypothesis stability, allowing us to apply Theorem 5.

Lemma 11. The Bayesian Sets algorithm satisfies the conditions for pointwise hy-

157

pothesis stability with

𝜂 =
1

log
(︁

𝛾min+𝑚−1
𝛾min

)︁
(𝛾min + (𝑚− 1)𝑝min)

+𝑂

(︂
1

𝑚2 log𝑚

)︂
. (7.31)

Proof.

E𝑆|ℓ(𝑓𝑆, 𝑥𝑖) − ℓ(𝑓𝑆∖𝑖 , 𝑥𝑖)|

= E𝑆

⃒⃒
𝑓𝑆∖𝑖(𝑥𝑖) − 𝑓𝑆(𝑥𝑖)

⃒⃒
= E𝑆

⃒⃒⃒⃒
⃒ 1

𝑍(𝑚− 1)

𝑁∑︁
𝑗=1

[︂
𝑥𝑖𝑗 log

𝛼𝑗 +
∑︀

𝑠 ̸=𝑖 𝑥
𝑠
𝑗

𝛼𝑗

+ (1 − 𝑥𝑖𝑗) log
𝛽𝑗 + (𝑚− 1) −

∑︀
𝑠 ̸=𝑖 𝑥

𝑠
𝑗

𝛽𝑗

]︂

− 1

𝑍(𝑚)

𝑁∑︁
𝑗=1

[︂
𝑥𝑖𝑗 log

𝛼𝑗 +
∑︀𝑚

𝑠=1 𝑥
𝑠
𝑗

𝛼𝑗

+ (1 − 𝑥𝑖𝑗) log
𝛽𝑗 +𝑚−

∑︀𝑚
𝑠=1 𝑥

𝑠
𝑗

𝛽𝑗

]︂⃒⃒⃒⃒
⃒

≤ E𝑆

𝑁∑︁
𝑗=1

𝑥𝑖𝑗

⃒⃒⃒⃒
1

𝑍(𝑚− 1)
log

𝛼𝑗 +
∑︀

𝑠 ̸=𝑖 𝑥
𝑠
𝑗

𝛼𝑗

− 1

𝑍(𝑚)
log

𝛼𝑗 +
∑︀𝑚

𝑠=1 𝑥
𝑠
𝑗

𝛼𝑗

⃒⃒⃒⃒

+ (1 − 𝑥𝑖𝑗)

⃒⃒⃒⃒
1

𝑍(𝑚− 1)
log

𝛽𝑗 + (𝑚− 1) −
∑︀

�̸�=𝑖 𝑥
𝑠
𝑗

𝛽𝑗
− 1

𝑍(𝑚)
log

𝛽𝑗 +𝑚−
∑︀𝑚

𝑠=1 𝑥
𝑠
𝑗

𝛽𝑗

⃒⃒⃒⃒
(7.32)

:= E𝑆

𝑁∑︁
𝑗=1

𝑥𝑖𝑗term1
𝑗 + (1 − 𝑥𝑖𝑗)term2

𝑗 (7.33)

=
𝑁∑︁
𝑗=1

E𝑥1
𝑗 ,...,𝑥

𝑚
𝑗

[︀
𝑥𝑖𝑗term1

𝑗 + (1 − 𝑥𝑖𝑗)term2
𝑗

]︀
=

𝑁∑︁
𝑗=1

E𝑥𝑖
𝑗

[︁
E𝑥𝑠 ̸=𝑖

𝑗 |𝑥𝑖
𝑗

[︀
𝑥𝑖𝑗term1

𝑗

]︀]︁
+ E𝑥𝑖

𝑗

[︁
E𝑥𝑠 ̸=𝑖

𝑗 |𝑥𝑖
𝑗

[︀
(1 − 𝑥𝑖𝑗)term2

𝑗

]︀]︁
=

𝑁∑︁
𝑗=1

E𝑥𝑖
𝑗

[︁
𝑥𝑖𝑗E𝑥𝑠 ̸=𝑖

𝑗 |𝑥𝑖
𝑗

[︀
term1

𝑗

]︀]︁
+ E𝑥𝑖

𝑗

[︁
(1 − 𝑥𝑖𝑗)E𝑥𝑠 ̸=𝑖

𝑗 |𝑥𝑖
𝑗

[︀
term2

𝑗

]︀]︁
=

𝑁∑︁
𝑗=1

E𝑥𝑠 ̸=𝑖
𝑗

[︀
term1

𝑗 |𝑥𝑖𝑗 = 1
]︀
P
(︀
𝑥𝑖𝑗 = 1

)︀
+ E𝑥𝑠 ̸=𝑖

𝑗

[︀
term2

𝑗 |𝑥𝑖𝑗 = 0
]︀
P
(︀
𝑥𝑖𝑗 = 0

)︀
≤

𝑁∑︁
𝑗=1

max
{︁
E𝑥�̸�=𝑖

𝑗

[︀
term1

𝑗 |𝑥𝑖𝑗 = 1
]︀
,E𝑥𝑠 ̸=𝑖

𝑗

[︀
term2

𝑗 |𝑥𝑖𝑗 = 0
]︀}︁
, (7.34)

where (7.32) uses the triangle inequality, and in (7.33) we define term1
𝑗 and term2

𝑗 for

158

notational convenience. Now consider each term in (7.34) separately,

E𝑥�̸�=𝑖
𝑗

[︀
term1

𝑗 |𝑥𝑖𝑗 = 1
]︀

= E𝑥𝑠 ̸=𝑖
𝑗

⃒⃒⃒⃒
1

𝑍(𝑚− 1)
log

𝛼𝑗 +
∑︀

�̸�=𝑖 𝑥
𝑠
𝑗

𝛼𝑗

− 1

𝑍(𝑚)
log

𝛼𝑗 +
∑︀

𝑠 ̸=𝑖 𝑥
𝑠
𝑗 + 1

𝛼𝑗

⃒⃒⃒⃒
= E𝑥𝑠 ̸=𝑖

𝑗

[︂
1

𝑍(𝑚)
log

𝛼𝑗 +
∑︀

𝑠 ̸=𝑖 𝑥
𝑠
𝑗 + 1

𝛼𝑗

− 1

𝑍(𝑚− 1)
log

𝛼𝑗 +
∑︀

𝑠 ̸=𝑖 𝑥
𝑠
𝑗

𝛼𝑗

]︂
, (7.35)

where we have shown in Lemma 9 that this quantity is non-negative. Because {𝑥𝑠}

are independent, {𝑥𝑠𝑗} are independent for fixed 𝑗. We can consider {𝑥𝑠𝑗}𝑠 ̸=𝑖 to be

a collection of 𝑚 − 1 independent Bernoulli random variables with probability of

success 𝑝𝑗 = P𝑥∼𝒟(𝑥𝑗 = 1), the marginal distribution. Let 𝑡 =
∑︀

𝑠 ̸=𝑖 𝑥
𝑠
𝑗 , then 𝑡 ∼

Binomial(𝑚− 1, 𝑝𝑗). Continuing (7.35),

E𝑥𝑠 ̸=𝑖
𝑗

[︀
term1

𝑗 |𝑥𝑖𝑗 = 1
]︀

= E𝑡∼Bin(𝑚−1,𝑝𝑗)

[︂
1

𝑍(𝑚)
log

𝛼𝑗 + 𝑡+ 1

𝛼𝑗

− 1

𝑍(𝑚− 1)
log

𝛼𝑗 + 𝑡

𝛼𝑗

]︂
≤ 1

𝑍(𝑚− 1)
E𝑡∼Bin(𝑚−1,𝑝𝑗)

[︂
log

𝛼𝑗 + 𝑡+ 1

𝛼𝑗 + 𝑡

]︂
=

1

𝑍(𝑚− 1)
E𝑡∼Bin(𝑚−1,𝑝𝑗)

[︂
log

(︂
1 +

1

𝛼𝑗 + 𝑡

)︂]︂
≤ 1

𝑍(𝑚− 1)
log

(︂
1 + E𝑡∼Bin(𝑚−1,𝑝𝑗)

[︂
1

𝛼𝑗 + 𝑡

]︂)︂
=

1

𝑍(𝑚− 1)
log

(︂
1 +

1

𝛼𝑗 + (𝑚− 1)𝑝𝑗
+𝑂

(︂
1

𝑚2

)︂)︂
. (7.36)

The second line uses 𝑍(𝑚) ≥ 𝑍(𝑚− 1), the fourth line uses Jensen’s inequality, and

the fifth line uses Lemma 7. Now we turn to the other term.

E𝑥𝑠 ̸=𝑖
𝑗

[︀
term2

𝑗 |𝑥𝑖𝑗 = 0
]︀

= E𝑥𝑠 ̸=𝑖
𝑗

⃒⃒⃒⃒
1

𝑍(𝑚− 1)
log

𝛽𝑗 + (𝑚− 1) −
∑︀

�̸�=𝑖 𝑥
𝑠
𝑗

𝛽𝑗
− 1

𝑍(𝑚)
log

𝛽𝑗 +𝑚−
∑︀

𝑠 ̸=𝑖 𝑥
𝑠
𝑗

𝛽𝑗

⃒⃒⃒⃒
= E𝑥𝑠 ̸=𝑖

𝑗

[︂
1

𝑍(𝑚)
log

𝛽𝑗 +𝑚−
∑︀

𝑠 ̸=𝑖 𝑥
𝑠
𝑗

𝛽𝑗
− 1

𝑍(𝑚− 1)
log

𝛽𝑗 + (𝑚− 1) −
∑︀

𝑠 ̸=𝑖 𝑥
𝑠
𝑗

𝛽𝑗

]︂
.

(7.37)

We have shown in Lemma 10 that this quantity is non-negative. Let 𝑞𝑗 = 1− 𝑝𝑗. Let

159

𝑡 = 𝑚− 1 −
∑︀

𝑠 ̸=𝑖 𝑥
𝑠
𝑗 , then 𝑡 ∼ Binomial(𝑚− 1, 𝑞𝑗). Continuing (7.37):

E𝑥�̸�=𝑖
𝑗

[︀
term2

𝑗 |𝑥𝑖𝑗 = 0
]︀
≤ 1

𝑍(𝑚− 1)
E𝑡∼Bin(𝑚−1,𝑞𝑗)

[︂
log

𝛽𝑗 + 𝑡+ 1

𝛽𝑗 + 𝑡

]︂
≤ 1

𝑍(𝑚− 1)
log

(︂
1 +

1

𝛽𝑗 + (𝑚− 1)𝑞𝑗
+𝑂

(︂
1

𝑚2

)︂)︂
, (7.38)

where the steps are as with (7.36). We now take (7.36) and (7.38) and use them to

continue (7.34):

E𝑆|ℓ(𝑓𝑆, 𝑥𝑖) − ℓ(𝑓𝑆∖𝑖 , 𝑥𝑖)|

≤
𝑁∑︁
𝑗=1

max

{︂
1

𝑍(𝑚− 1)
log

(︂
1 +

1

𝛼𝑗 + (𝑚− 1)𝑝𝑗
+𝑂

(︂
1

𝑚2

)︂)︂
,

1

𝑍(𝑚− 1)
log

(︂
1 +

1

𝛽𝑗 + (𝑚− 1)𝑞𝑗
+𝑂

(︂
1

𝑚2

)︂)︂}︂
≤

𝑁∑︁
𝑗=1

1

𝑍(𝑚− 1)
log

(︂
1 +

1

min{𝛼𝑗, 𝛽𝑗} + (𝑚− 1) min{𝑝𝑗, 𝑞𝑗}
+𝑂

(︂
1

𝑚2

)︂)︂
≤ 𝑁

𝑍(𝑚− 1)
log

(︂
1 +

1

𝛾min + (𝑚− 1)𝑝min

+𝑂

(︂
1

𝑚2

)︂)︂
:= 𝜂. (7.39)

Using the Taylor expansion of log(1 + 𝑥),

𝜂 =
𝑁

𝑍(𝑚− 1)

(︂
1

𝛾min + (𝑚− 1)𝑝min

+𝑂

(︂
1

𝑚2

)︂
−1

2

(︂
1

𝛾min + (𝑚− 1)𝑝min

+𝑂

(︂
1

𝑚2

)︂)︂2
)︃

=
𝑁

𝑍(𝑚− 1)

(︂
1

𝛾min + (𝑚− 1)𝑝min

+𝑂

(︂
1

𝑚2

)︂)︂
=

1

log
(︁

𝛾min+𝑚−1
𝛾min

)︁
(𝛾min + (𝑚− 1)𝑝min)

+𝑂

(︂
1

𝑚2 log𝑚

)︂
. (7.40)

The proof of Theorem 4 is now a straightforward application of Theorem 5 using

the result of Lemma 11.

160

Proof of Theorem 4. By Lemma 11, we can apply Theorem 5 to see that with prob-

ability at least 1 − 𝛿 on the draw of 𝑆,

E𝑥 [ℓ(𝑓𝑆, 𝑥)] ≤ 1

𝑚

𝑚∑︁
𝑖=1

ℓ(𝑓𝑆, 𝑥
𝑖) +

√︂
1 + 12𝑚𝜂

2𝑚𝛿

E𝑥 [1 − 𝑓𝑆(𝑥)] ≤ 1

𝑚

𝑚∑︁
𝑠=1

(1 − 𝑓𝑆(𝑥𝑠)) +

√︂
1 + 12𝑚𝜂

2𝑚𝛿

E𝑥 [𝑓𝑆(𝑥)] ≥ 1

𝑚

𝑚∑︁
𝑠=1

𝑓𝑆(𝑥𝑠) −
√︂

1 + 12𝑚𝜂

2𝑚𝛿

=
1

𝑚

𝑚∑︁
𝑠=1

𝑓𝑆(𝑥𝑠) −

√︃
1

2𝑚𝛿
+

6

𝑔(𝑚)𝛿
+𝑂

(︂
1

𝛿𝑚2 log𝑚

)︂
,

where

𝑔(𝑚) := (𝛾min + (𝑚− 1)𝑝min) log

(︂
𝛾min +𝑚− 1

𝛾min

)︂
.

7.3.1 The Effect of the Prior on Generalization.

The prior influences the generalization bound via the quantity

ℎ(𝛾min,𝑚, 𝑝min) := log

(︂
𝛾min +𝑚− 1

𝛾min

)︂
(𝛾min + (𝑚− 1)𝑝min) . (7.41)

As this quantity increases, the bound becomes tighter. We can thus study the in-

fluence of the prior on generalization by studying the behavior of this quantity as

𝛾min varies. The second term, (𝛾min + (𝑚− 1)𝑝min), is similar to many results from

Bayesian analysis in which the prior plays the same role as additional data. This

term is increasing with 𝛾min, meaning it yields a tighter bound with a stronger prior.

The first term, log
(︁

𝛾min+𝑚−1
𝛾min

)︁
, is inherited from the normalization 𝑍(𝑚). This term

is decreasing with 𝛾min, that is, it gives a tighter bound with a weaker prior. The

overall effect of 𝛾min on generalization depends on how these two terms balance each

other, which in turn depends primarily on 𝑝min.

Exact analysis of the behavior of ℎ(𝛾min,𝑚, 𝑝min) as a function of 𝛾min does not

161

Figure 7-1: The stability bound 𝜂 as a function of the prior 𝛾min, for fixed 𝑚 = 100
and 𝑝min = 0.001. For 𝛾min large enough relative to 𝑝min, stronger priors yield tighter
bounds.

yield interpretable results, however we gain some insight by considering the case where

𝛾min scales with 𝑚: 𝛾min := 𝛾(𝑚 − 1). Then we can consider (7.41) as a function of

𝛾 and 𝑝min alone:

ℎ(𝛾, 𝑝min) := log

(︂
𝛾 + 1

𝛾

)︂
(𝛾 + 𝑝min) . (7.42)

The bound becomes tighter as 𝛾 increases, as long as we have 𝜕ℎ(𝛾,𝑝min)
𝜕𝛾

> 0. This is

the case when

𝑝min < 𝛾(𝛾 + 1) log

(︂
𝛾 + 1

𝛾

)︂
− 𝛾. (7.43)

The quantity on the right-hand side is increasing with 𝛾. Thus, for 𝑝min small enough

relative to 𝛾, stronger priors lead to a tighter bound. To illustrate this behavior, in

Figure S1 we plot the stability bound 𝜂 (excluding 𝑂
(︁

1
𝑚2 log𝑚

)︁
terms) as a function

of 𝛾min, for 𝑚 = 100 and 𝑝min = 0.001. For 𝛾min larger than about 0.01, the bound

tightens as the prior is increased.

162

7.3.2 Bayesian Sets and Uniform Stability.

In addition to pointwise hypothesis stability, Bousquet and Elisseeff (2002) define a

stronger notion of stability called “uniform stability."

Definition 2 (Bousquet and Elisseeff, 2002). An algorithm has uniform stability 𝜅

with respect to the loss function ℓ if the following holds

∀𝑆, ∀𝑖 ∈ {1, . . . ,𝑚}, ||ℓ(𝑓𝑆, ·) − ℓ(𝑓𝑆∖𝑖 , ·)||∞ ≤ 𝜅. (7.44)

The algorithm is said to be stable if 𝜅 scales with 1
𝑚

.

Uniform stability requires a 𝑂
(︀

1
𝑚

)︀
bound for all training sets, rather than the

average training set as with pointwise hypothesis stability. The bound must also

hold for all possible test points, rather than testing on the perturbed point. Uniform

stability is actually a very strong condition that is difficult to meet, since if (7.44) can

be violated by any possible combination of training set and test point, then uniform

stability does not hold. Bayesian Sets does not have this form of stability, as we now

show with an example.

Choose the training set of 𝑚 data points to satisfy:

𝑥𝑖𝑗 = 0 ∀𝑗, 𝑖 = 1, . . . ,𝑚− 1

𝑥𝑚𝑗 = 1 ∀𝑗,

and as a test point 𝑥, take 𝑥𝑗 = 1 ∀𝑗. Let 𝑥𝑚 be the point removed from the training

set. Then,

𝜅 = |ℓ(𝑓𝑆, 𝑥) − ℓ(𝑓𝑆∖𝑚 , 𝑥)|

= |𝑓𝑆∖𝑚(𝑥) − 𝑓𝑆(𝑥)|

=

⃒⃒⃒⃒
⃒ 1

𝑍(𝑚− 1)

𝑁∑︁
𝑗=1

𝑥𝑗 log
𝛼𝑗 +

∑︀𝑚
𝑠=1 𝑥

𝑠
𝑗 − 𝑥𝑚𝑗

𝛼𝑗

− 1

𝑍(𝑚)

𝑁∑︁
𝑗=1

𝑥𝑗 log
𝛼𝑗 +

∑︀𝑚
𝑠=1 𝑥

𝑠
𝑗

𝛼𝑗

⃒⃒⃒⃒
⃒

=

⃒⃒⃒⃒
⃒ 1

𝑍(𝑚− 1)

𝑁∑︁
𝑗=1

log
𝛼𝑗

𝛼𝑗

− 1

𝑍(𝑚)

𝑁∑︁
𝑗=1

log
𝛼𝑗 + 1

𝛼𝑗

⃒⃒⃒⃒
⃒

163

=
1

𝑍(𝑚)

𝑁∑︁
𝑗=1

log
𝛼𝑗 + 1

𝛼𝑗

≥
log

max𝑗 𝛼𝑗+1

max𝑗 𝛼𝑗

log
(︁

𝛾min+𝑚
𝛾min

)︁ , (7.45)

which scales with 𝑚 as 1
log𝑚

, not the 1
𝑚

required for stability.

7.4 Experiments

We demonstrate and evaluate the algorithm with two sets of experiments. In the first

set of experiments, we provide an objective comparison between our method, Google

Sets, and Boo!Wa! using a randomly selected collection of list growing problems for

which there exist gold standard lists. The true value of our work lies in the ability

to construct lists for which there are not gold standards, so in a second set of ex-

periments we demonstrate the algorithm’s performance on more realistic, open-ended

list growing problems. For all experiments, the steps and parameter settings of the

algorithm were exactly the same and completely unsupervised other than specifying

two seed items. Boo!Wa! and Google Sets are online tools and we used them as

provided by http://boowa.com and Google Spreadsheet, respectively. The results for

Boo!Wa! and Google Sets used in Section 7.4.1 were retrieved from their respective

online tools on November 14, 2012, and those used in Section 7.4.3 were retrieved

on December 13, 2012. Results for our algorithm, which depend on Google search

results and the content of the source webpages, were obtained in the period March

14-21, 2013 for the Wikipedia gold-standard experiments in Sections 7.4.1, and in the

period May 28-30, 2012 for the open-ended experiments in Section 7.4.3.

7.4.1 Wikipedia Gold Standard Lists

Many of the experiments in past work on set completion, such as those used to

develop the technology behind Boo!Wa! of Wang and Cohen (2008), involve manually

164

constructed gold standards on arbitrarily selected topics. Manually constructed lists

are inherently subjective, and experiments on a small set of arbitrarily selected topics

do not demonstrate that the method will perform well in general. We thus use

Wikipedia lists on randomly selected topics as gold standards, which is the same

experimental design used by Sarmento et al (2007) and Pantel et al (2009).

The “List of ..." articles on Wikipedia form a large corpus of potential gold stan-

dard lists that cover a wide variety of topics. We limited our experiments to the “fea-

tured lists," which are a collection of over 2,000 Wikipedia lists selected by Wikipedia

editors due to their high quality. We required the lists used in our experiments to

have at least 20 items, and excluded any lists of numbers (such as dates or sports

scores). We created a random sample of list growing problems by randomly selecting

50 Wikipedia lists that met the above requirements. The selected lists covered a wide

range of topics, including, for example, “storms in the 2005 Atlantic hurricane sea-

son," “current sovereign monarchs," “tallest buildings in New Orleans," “X-Men video

games," and “Pittsburgh Steelers first-round draft picks." We treated the Wikipedia

list as the gold standard for the associated list growing problem.

For each of the 50 list growing problems, we randomly selected two list items from

the gold standard to form a seed. We used the seed as an input to our algorithm, and

ran one iteration. We used the same seed as an input to Google Sets and Boo!Wa!.

We compared the lists returned by our method, Google Sets, and Boo!Wa! to the

gold standard list by computing two ranking measures: Precision@10 and average

precision. Precision@10 measures the fraction of the top 10 items in the list that are

found on the gold standard list:

Precision@10 =
1

10

10∑︁
𝑖=1

1[item 𝑖 in ranked list is correct]. (7.46)

Precision@10 is an intuitive measure that corresponds directly to the number of accu-

rate results at the top of the list. Average precision is a commonly used measure that

combines precision and recall, to ensure that lists are both accurate and complete.

The average precision of a ranked list is defined as the average of the precision recall

165

Our method Boo!Wa! Google Sets
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n@
10

(a)

Our method Boo!Wa! Google Sets
0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

pr
ec

is
io

n

(b)

Figure 7-2: (a) Precision@10 and (b) average precision across all 50 list growing
problems sampled from Wikipedia. The median is indicated in red.

curve. Before computing these measures, the seed items were removed from each list,

as it is trivial to return the seed.

In Figure 7-2 we show boxplots of the results across all 50 gold standard ex-

periments. For both Google Sets and Boo!Wa!, the median precision at 10 was 0,

indicating no correct results in the top 10. Our method performed significantly bet-

ter (𝑝 < 0.001, signed-rank test), with median precision of 0.4, indicating 4 correct

results in the top 10. Our method returned at least one relevant result in the top

10 for 80% of the experiments, whereas Google Sets and Boo!Wa! returned at least

one relevant result in the top 10 for only 24% and 34% of experiments, respectively.

Our method performed well also in terms of recall, as measured in average precision,

with a median average precision of 0.19, compared to 0 for Google Sets and 0.05 for

Boo!Wa!. Boo!Wa! is a significant improvement over Google Sets, and our method is

a large improvement over Boo!Wa!.

There are some flaws with using Wikipedia lists as gold standards in these exper-

iments. First, the gold standards are available online and could potentially be pulled

directly without requiring any aggregation of experts across different sites. However,

all three methods had access to the gold standards and the experiments did not fa-

vor any particular method, thus the comparison is informative. A more interesting

experiment is one that necessitates aggregation of experts across different sites; these

experiments are given in Section 7.4.3. Second, these results are only accurate insofar

as the Wikipedia gold standard lists are complete. We limited our experiments to

“featured lists" to have the best possible gold standards. A truly objective compar-

166

ison of methods requires both randomly selected list problems and gold standards,

and the Wikipedia lists, while imperfect, provide a useful evaluation.

7.4.2 Experimental Analysis of Algorithm Steps

We performed several experiments modifying individual steps of the algorithm to

explore the effect of design choices on performance, and to gather further insight into

how each step contributes to the performance gain seen in Section 7.4.1 relative to the

baseline methods. We use the Wikipedia gold standard lists to explore experimentally

the impact of which HTML tags are used for item extraction, the size of the seed when

scoring, and the set of domains used in constructing the feature space.

In the item extraction step of our algorithm, we find the largest collection of

HTML tags common to both seed items and extract all other items on the page that

use that same collection of HTML tags. An alternative choice would be to look for a

specific type of HTML tag, for example, list tags , which could possibly reduce

the number of incorrect items extracted. In Figure 7-3(a) we repeated the Wikipedia

gold standard experiments from Section 7.4.1, with a modified item extraction step in

which we searched only for a specific type of tag: list tags in one experiment,

and hyperlink tags <a> in a second. Restricting to list tags significantly reduced

average precision, while restricting to hyperlink tags produced results comparable

to those obtained using all tags. Figure 7-3(b) provides insight into this difference

by showing the proportion of all of the correct items extracted in the Wikipedia

gold standard experiments that were extracted using a particular HTML tag, for

the six most common tags. An item may be extracted using multiple HTML tags,

either in a collection of tags or by discovering the same item on multiple pages, thus

these proportions do not sum to 1. The value of 0.21 for indicates that when

extraction was limited to only tags, we only obtained 21% of the correct items

that were obtained using all tags, which resulted in the significant performance drop

seen in Figure 7-3(a). Limiting to <a> tags recovered 81% of the correct items,

which was enough to yield average precision comparable to that obtained using all

tags. These results suggest that item extraction could be limited to link extraction,

167

All tags only <a> only
HTML tags used for item extraction

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

pr
ec

is
io

n (a)

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of correct items with tag

<i>

<td>
<a> (b)

Figure 7-3: (a) Average precision across the Wikipedia gold standard problems when
extracting items using all tags (original implementation), tags only, and <a>
tags only. (b) The proportion of correct items extracted during the Wikipedia gold
standard experiments that were found using a specific tag, for the six most commonly
found tags.

a problem for which many efficient software packages are widely available, without

much loss.

In the gold standard experiments in Section 7.4.1 we used a seed of 2 items, the

smallest possible seed size. When seed items are related in multiple contexts, as

discussed for the case of Atlantic hurricanes, two seed items may not be enough to

produce an accurate ranked list. In Figure 7-4(a), for each Wikipedia gold standard

experiment we randomly selected additional seed items from the gold standard and

used the larger seed to compute a new ranked list. Increasing the seed size, which

further constrained the context of the relation between the seed items, produced a

modest increase in performance. These results indicate that for many of the lists used

in these experiments, two items were sufficient to specify the context. However, there

is some gain to be had with a larger seed, and in general it is best for the user to

specify as large a seed as possible.

We construct the binary feature space for each item using the domains of all of

the sites where the item can be found. An alternative approach is to restrict the

search to sites containing at least two seed items, that is, the sites found during the

source discovery step. In Figure 7-4(b) we repeated the Wikipedia gold standard

experiments using this feature space strategy, and found that it significantly reduced

average precision. In fact, Boo!Wa! uses a strategy similar to this one to construct a

feature space, as we discuss in Section 7.5.

168

2 3 4
Number of seed items used in scoring

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

pr
ec

is
io

n (a)

All sites Sites with seed items
Sites used to construct feature space

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

pr
ec

is
io

n (b)

Figure 7-4: Average precision across the Wikipedia gold standard problems when (a)
expanding the number of seed items used in scoring, and (b) restricting the feature
space construction to sites containing at least two seed items, that is, sites found in
source discovery.

7.4.3 Open-Ended Experiments

In this set of experiments we demonstrate our method’s performance on more realistic,

open-ended list growing problems. For these problems gold standard lists are not

available, and it is essential for the algorithm to aggregate results across many experts.

We focus on four open-ended list growing problems: Boston events, Jewish foods,

smartphone apps, and U.S. politicians. These are the sort of problems that our

algorithm was designed to solve, and it performs very well, especially compared to

the baselines.

Boston events

In this experiment, the seed items were two Boston events: “Boston arts festival”

and “Boston harborfest.” We ran the algorithm for 5 iterations, yielding 3,090 items.

Table 7.1 shows the top 50 ranked items, together with the domain of the source site

where they were discovered. There is no gold standard list to compare to directly,

but the results are overwhelmingly actual Boston events. The events were aggregated

across a variety of expert sources, including event sites, blogs, travel guides, and hotel

pages. Table 7.2 shows the full set of results returned from Google Sets with the same

two events as the seed, and the top 25 results returned by Boo!Wa!. Not only is the

Google Sets list very short, but it does not contain any actual Boston events. Boo!Wa!

was able to return some Boston events, but with a substantial amount of noise.

169

Item Source
0Boston arts festival (original seed)
3Cambridge river festival bizbash.com
0Boston harborfest (original seed)

harborfest
1Boston chowderfest celebrateboston.com
4Berklee beantown jazz festival pbase.com

the berklee beantown jazz festival,
berklee bean town jazz festival

2Chinatown main street festival blog.charlesgaterealty.com
www.chinatownmainstreet.org

4th of july boston pops concert & fireworks display travel2boston.us
boston 4th of july fireworks & concert

Boston common frog pond bostonmamas.com
ice skating on boston common frog pond

First night boston what-is-there-to-do.com
Boston dragon boat festival pbase.com

hong kong dragon boat festival of boston
dragon boat festival of boston

Boston tea party re enactment ef.com
Christopher columbus waterfront park bostonmamas.com
Jimmy fund scooper bowl bizbash.com
Opening our doors day ef.com
Oktoberfest harvard square & harpoon brewery sheratonbostonhotel.com
August moon festival ef.com
Annual boston wine festival worldtravelguide.net
Cambridge carnival soulofamerica.com
Regattabar berklee.edu
Arts on the arcade berklee.edu
Franklin park zoo hotels-rates.com
Faneuil hall annual tree lighting ceremony ef.com
Annual oktoberfest and honk festival ef.com

honk! festival
Boston jazz week telegraph.co.uk
Boston ballet celebrateboston.com
Fourth of july reading of the declaration of independence ef.com
Isabella stewart gardner museum hotels-rates.com
Revere beach sand sculpting festival bizbash.com
Shakespeare on the common boston-discovery-guide.com
Boston bacon takedown [...]bostonevents.blogspot.com
Jazz at the fort berklee.edu
Cambridge dance party [...]thrillsboston.blogspot.com
Boston celtic music festival ef.com
Taste of the south end bizbash.com
Greenway open market travel2boston.us
Boston winter jubilee ef.com
Urban ag fair bostonmamas.com
Figment boston festivaltrek.com
Boston kite festival bostoneventsinsider.com
Chefs in shorts bizbash.com
Old south meeting house hotels-rates.com

Table 7.1: Items and the domain of their source sites from the top of the ranked
list for the Boston events experiment. Superscript numbers indicate the iteration
at which the item was added to the seed via implicit feedback. “[...]” indicates the
URL was truncated to fit in the figure. To improve readability, duplicate items were
grouped and placed in italics.

Jewish foods

In this experiment, the seed items were two Jewish foods: “Challah” and “Knishes.”

Although there are lists of foods that are typically found in Jewish cuisine, there
170

Google Sets Boo!Wa!
Boston arts festival Boston arts festival
Boston harborfest Boston harborfest
Whats going this month Boston Fall Foliage
Interview with ann scott Boston Wine Expo
Studio view with dannyo Boston Flower and Garden Show
Tony savarino Boston Vegetarian Food Festival
Artwalk 2011 The Boston Wine Expo
Greater boston convention The Jazz Festival

visitors bureau First Night Celebration
Cambridge chamber of Thumbboston-vegetarian-food-festival

commerce Boston College Eagles
Boston tours Boston Vacation Rentals
3 county fairground Best Boston Restaurants
Boston massacre Boston Red Sox

Boston Bruins
Attractions in Boston:North End
Attractions in Boston:Freedom Trail
Attractions in Boston:Museum of Science
Attractions in Boston:Prudential Center
Attractions in Boston:New England Aquarium
Attractions in Boston: Boston Public Garden
Attractions in Boston:St. Patrick’s Cathedral
Attractions in Boston:South Beach - Ocean Drive
Vacation-rentals-boston
Boston-restaurants
Parking-in-boston
Shopping-boston

Table 7.2: Complete Google Sets results and top 25 Boo!Wa! results for the Boston
events experiment (seed italicized). Google Sets and our implementation of our
method return results all lower case, and in these tables we have capitalized the
first letter for aesthetics. Boo!Wa! returns capitalized results, and we use here the
capitalization that was returned.

171

is variety across lists and no authoritative definition of what is or is not a Jewish

food. We completed 5 iterations of the algorithm, yielding 8,748 items. Table 7.3

shows the top 50 ranked items, together with their source domains. Almost all of the

items are closely related to Jewish cuisine. The items on our list came from a wide

variety of expert sources that include blogs, informational sites, bakery sites, recipe

sites, dictionaries, and restaurant menus. In fact, the top 100 most highly ranked

items came from a total of 52 unique sites. This diversity in source sites shows that

the relevant items are found in many small lists, which provides motivation for using

pairs of seed items for source discovery, as opposed to requiring all seed items to be on

every source. In Table 7.4, we show the complete set of results returned from Google

Sets for the same seed of Jewish foods, and the top 25 results returned by Boo!Wa!.

Although the Google Sets results are foods, they are not closely related to Jewish

cuisine. Boo!Wa! was able to return some Jewish foods, but also a lot of irrelevant

results like “Shop Online," “Lipkin’s Bakery," and “Apple."

Smartphone apps

In this experiment, we began with two popular smartphone apps as the seed items:

“Word lens” and “Aroundme.” We ran the algorithm for 5 iterations, throughout

which 7,630 items were extracted. Table 7.5 shows the top 50 most highly ranked

items, together with the source domain where they were discovered. Not only are

the results almost exclusively apps, but they come from a wide variety of sources

including personal sites, review sites, blogs, and news sites. In Table 7.6, we show

the lists returned by Google Sets and Boo!Wa! for the same seed, which are also

predominantly apps.

U.S. politicians

In this experiment, we began with two prominent U.S. politicians as the seed items:

“Barack obama” and “Scott brown.” We ran the algorithm for 5 iterations, yielding

8,384 items. Table 7.7 shows the top 50 most highly ranked items, together with

the source site where they were discovered. All of the items in our list are names

172

Item Source
0Challah (original seed)

braided challah
3Potato latkes jewishveg.com

latkes; sweet potato latkes; potato latke
1Blintzes jewfaq.org

cheese blintzes; blintz
0Knishes (original seed)

potato knishes; knish
2Noodle kugel pinterest.com

noodle kugel recipe; kugel; sweet noodle kugel
4Tzimmes jewfaq.org

carrot tzimmes
Matzo balls jewishveg.com

matzo ball soup; matzo; matzoh balls
Potato kugel challahconnection.com
Passover recipes lynnescountrykitchen.net

hanukkah recipes
Gefilte fish jewfaq.org
Honey cake kveller.com
Soups, kugels & liver allfreshkosher.com
Charoset jewishveg.com

haroset
Hamantaschen butterfloureggs.com
Matzo meal glattmart.net
Rugelach pinterest.com

rugelach recipe
Matzo brei ilovekatzs.com
Cholent jewfaq.org
Sufganiyot kosheronabudget.com
Potato pancakes jewishveg.com
Noodle pudding epicurious.com
Kreplach allmenus.com
Barley soup ecampus.com
Mushroom barley zagat.com

mushroom barley soup
Chopped liver ryedeli.com
Garlic mashed potatoes tovascatering.com
Caponata lynnescountrykitchen.net
Compote kveller.com
Farfel & mushrooms hungariankosher.com

farfel
Kasha varnishkes jinsider.com

Table 7.3: Items and their source domains from the top of the ranked list for the
Jewish foods experiment.

of politicians or politically influential individuals. In Table 7.8, we show the results

returned from Google Sets and Boo!Wa! for the same seed. Google Sets managed to

return only a few people related to politics. Boo!Wa! performed better than Google

Sets, but the list still contains some noise, like “U.S. Senate 2014," “President 2016,"

and “Secret-service."

173

Google Sets Boo!Wa!
Knishes Knishes
Challah Challah
Crackers Applestrudel
Dinner rolls Holishkes
Focaccie Blintzes
Pains sucres Gefilte
Pains plats Apple
Biscotti integral de algarroba Kasha
Souffle de zanahorias Soup
Tarta de esparragos Knishes.pdf
Leftover meat casserole Knishes recipe PDF
Pan de canela Shop Online
Focaccia Hamantashen
Sweet hobz Kamish Bread
Pranzu rolls Apple Strudel
Focacce Location
Chicken quesadillas Danishes
Baked chicken chimichangas Lipkin’s Bakery
Honey mustard salad dressing Flax Seed Bread
Dixxijiet hobz Babka
Roast partridge Pumpernickel Loaf
Fanny farmer brownies Schnitzel
Pan pratos Latke
Pan doce Cole slaw
Cea rolls Chopped Liver
Flat paes Mini Potato Knish
Hobz dixxijiet Oven Roasted Chicken

Table 7.4: Complete Google Sets results and top 25 Boo!Wa! results for the Jewish
foods experiment (seed italicized).

7.5 Related Work

There is a substantial body of work in areas or tasks related to the one which we have

presented, which we can only briefly review here. There are a number of papers on

various aspects of “set expansion," often for completing lists of entities from structured

lists, like those extracted from Wikipedia (Sarmento et al, 2007), using rules from

natural language processing or topic models (Tran et al, 2010; Sadamitsu et al, 2011),

or from opinion corpora (Zhang and Liu, 2011). The task we explore here is web-based

set expansion and methods developed for other set expansion tasks are not directly

applicable. See, for example, Jindal and Roth (2011), for a review of different set

expansion problems.

There is good deal of work in the machine learning community on aggregating

ranked lists (e.g., Dwork et al, 2001). These are lists that are typically already

cleaned, fixed in scope, and ranked by individual experts, unlike our case. There is

also a body of work on aggregated search (Lalmas, 2011; Renda and Straccia, 2003;

174

Item Source
0Word lens (original seed)
2Read it later iapps.scenebeta.com

read later
0Aroundme (original seed)
3Instapaper time.com

instapaper app
4Evernote crosswa.lk

evernote app
1Flipboard crosswa.lk
Dolphin browser 1mobile.com
Skitch worldwidelearn.com
Facebook messenger crosswa.lk
Zite adriandavis.com
Tweetbot duckduckgo.com
Google currents secure.crosswa.lk
Springpad time.com
Imessage iphoneae.com
Retina display twicpic.blogspot.com
Ibooks crosswa.lk
Dropbox mobileappreviews.craveonline.com

dropbox (app); dropbox app
Marco arment wired.com
Doubletwist appolicious.com
Google latitude iapps.scenebeta.com
Gowalla mobileappreviews.craveonline.com
Skype for ipad secure.crosswa.lk
Hulu plus appadvice.com
Icloud thetechcheck.com
Qik video 1mobile.com

qik
Find my friends oradba.ch
Skydrive crosswa.lk
Google shopper mobileappreviews.craveonline.com
Swype techcrunch.com
Pulse news reader techcrunch.com
Spotify crosswa.lk
Readability tips.flipboard.com
Apple app store socialmediaclub.org
Tweetdeck iapps.scenebeta.com
Angry birds space appys.com
Smartwatch theverge.com
Vlingo mobileappreviews.craveonline.com
Rdio techcrunch.com
Google goggles sofialys.com
Xmarks 40tech.com
Ios 6 zomobo.net
Ibooks author duckduckgo.com
Google drive geekandgirliestuff.blogspot.com
Facetime bgpublishers.com.au

Table 7.5: Items and their source domains from the top of the ranked list for the
smartphone apps experiment.

Hsu and Taksa, 2005; Beg and Ahmad, 2003), which typically uses a text query to

aggregate results from multiple search engines, or of multiple formats or domains

(e.g. image and news), and returns links to the full source. Our goal is not to rank

URLs but to scrape out and rank information gleaned from them. There are many

resources for performing a search or query by example. They often involve using

175

Google Sets Boo!Wa!
Word lens Word lens
Aroundme Aroundme
Lifestyle Plants v. Zombies
View in itunes Amazon
Itunes Bloom
Jcpenney weekly deals AIM
Coolibah digital scrapbooking Plants vs. Zombies
Epicurious recipes shopping list Layar
170000 recipes bigoven Bjrk: Biophilia
Cf iviewer Wikipedia Mobile
Txtcrypt Web Source Viewer
Speak4it WhatTheFont
Off remote free The Weather Channel
Catholic calendar EDITION29 STRUCTURES
Gucci Dexigner
Board Google
Ziprealty real estate Zipcar
Allsaints spitalfields Thrutu
Lancome make up Google Earth
Pottery barn catalog viewer Four-Square
Amazon mobile Wikipedia
Gravity clock Facebook
Dace Kindle
Zara Skype
Style com Mint
Iridiumhd Wi-Fi Finder App
Ebanner lite Green Gas Saver

Table 7.6: Complete Google Sets results and top 25 Boo!Wa! results for the smart-
phone apps experiment (seed italicized).

a single example of a full document or image in order to retrieve more documents,

structures within documents, or images (Chang and Lui, 2001; Liu et al, 2003; Wang

and Lochovsky, 2003; Zhai and Liu, 2005).

Methods such as that of Gupta and Sarawagi (2009) and Pantel et al (2009)

learn semantic classes, which could be used to grow a list, but require preprocessing

which crawls the web and creates an index of HTML lists in an unsupervised manner.

Kozareva et al (2008) present a method for using a semantic class name and a seed of

example instances to discover other instances from the same class on the web, using

search queries. They limit the search to instances that match a very specific pattern of

words (“class name such as seed item and *"), thus requiring the semantic class to have

enough instances and web coverage that all instances match the pattern somewhere

on the Internet. We found that this was not the case for more realistic open-ended

problems, like Boston events and the others in Section 4.3. Paşca (2007a,b) also

discovers semantic class attributes and instances, but using web query logs rather

176

Item Source
0Barack obama (original seed)

obama
0Scott brown (original seed)
1John kerry publicpolicypolling.com
3Barney frank masslive.com
4John mccain publicpolicypolling.com

mccain
2Nancy pelosi theladypatriot.com

pelosi
Mitch mcconnell publicpolicypolling.com
Joe lieberman publicpolicypolling.com
Mike huckabee publicpolicypolling.com
Mitt romney masslive.com
Bill clinton mediaite.com
John boehner audio.wrko.com

boehner
Hillary clinton blogs.wsj.com
Jon kyl tpmdc.talkingpointsmemo.com
Joe biden publicpolicypolling.com
Rudy giuliani publicpolicypolling.com
Harry reid theladypatriot.com
Olympia snowe publicpolicypolling.com
Lindsey graham politico.com
Newt gingrich masspoliticsprofs.com
Jim demint theladypatriot.com
Arlen specter theladypatriot.com
Dick cheney blogs.wsj.com
George w bush wellgroomedmanscape.com

george w. bush
Eric holder disruptthenarrative.com
Dennis kucinich publicpolicypolling.com
Timothy geithner tpmdc.talkingpointsmemo.com
Barbara boxer publicpolicypolling.com
Tom coburn itmakessenseblog.com
Orrin hatch publicpolicypolling.com
Michael bloomberg masspoliticsprofs.com
Elena kagan audio.wrko.com
Maxine waters polination.wordpress.com
Al sharpton porkbarrel.tv
Rick santorum audio.wrko.com
Ted kennedy newomenforchange.org
Janet napolitano disruptthenarrative.com
Jeff sessions tpmdc.talkingpointsmemo.com
Jon huntsman publicpolicypolling.com
Michele bachmann publicpolicypolling.com
Al gore publicpolicypolling.com
Rick perry publicpolicypolling.com
Eric cantor publicpolicypolling.com
Ben nelson publicpolicypolling.com
Karl rove politico.com

Table 7.7: Items and their source domains from the top of the ranked list for the U.S.
politicians experiment.

than actual internet sites.

Systems for learning categories and relations of entities on the web, like the Never-

Ending Language Learner (NELL) system (Carlson et al, 2010a,b; Verma and Hr-

uschka, 2012), or KnowItAll (Etzioni et al, 2005) can be used to construct lists but

177

Google Sets Boo!Wa!
Barack obama Barack obama
Scott brown Scott brown
Our picks movies William Galvin
Sex Secret-service
Department of justice Sheldon Whitehouse
Viral video Debbie Stabenow
Africa Dennis Kucinich
One persons trash Susana Martinez
Donald trump Stephen Colbert
New mom confessions Martin O’Malley
Nonfiction Claire McCaskill
Libya U.S. Senate 2012
Sarah palin Brian Schweitzer
Mtv Michele Bachmann
Alan greenspan Condoleezza Rice
Great recession U.S. Senate 2014
Life stories Lisa Murkowski
Jon hamm Lindsey Graham
Islam Maria Cantwell
The killing Jeanne Shaheen
American idol South Carolina
Middle east North Carolina
Celebrity Terry Branstad
Tea parties President 2016
Budget showdown Tommy Thompson

Brian Sandoval
Offshore drilling

Table 7.8: Complete Google Sets results and top 25 Boo!Wa! results for the U.S.
politicians experiment (seed italicized).

require extensive preprocessing. We do not preprocess, instead we perform informa-

tion extraction online, deterministically, and virtually instantaneously given access

to a search engine. There is no restriction to HTML list structures or need for more

time consuming learning methods (Freitag, 1998; Soderland et al, 1999). We also do

not require human-labeled web pages like wrapper induction methods (Kushmerick,

1997).

The Set Expander for Any Language (SEAL) of Wang and Cohen (2007, 2008),

implemented in Boo!Wa!, at first appears similar to our work but differs in significant

ways. Wang and Cohen (2008) describe four strategies for source discovery, of which

“unsupervised increasing seed size (ISS)" is most similar to ours. Unsupervised ISS

begins with two seed items and iteratively expands the seed in the same way as our

implicit feedback, by adding the most highly ranked non-seed item to the seed at

each iteration. Within each iteration, unsupervised ISS uses only a subset of the seed

items to try to further expand the set. Specifically, it uses the most recently added

178

seed item together with three additional randomly-selected seed items, and searches

for source sites containing all four of these items. Our source discovery differs in

two major ways. First, our combinatorial search strategy uses all seed items in every

iteration, rather than a randomly-selected subset of four seed items. Second, we use

only pairs of seed items to find source sites, rather than requiring the source sites to

contain four seed items. With this strategy we find all of the sites discovered by ISS,

as well as additional sites that have less than four seed items. Once the source sites

have been found, SEAL extracts new items by learning a character-based wrapper

that finds patterns of characters that are common to the seed items. This is similar

in concept to the way that we extract new items, although SEAL allows arbitrary

patterns of characters whereas we look specifically for patterns in the HTML tree

structure. Possibly the most significant differences between SEAL and our approach

lie in ranking the extracted items. When the initial number of seed items is small,

as in the list growing problems that we considered here, Wang and Cohen (2008)

recommend a ranking algorithm that uses a random walk over a graph that contains

nodes for the extracted items, the wrappers learned for each source site, and the

source sites themselves. Wang and Cohen (2008) also considered using Bayesian Sets

to rank, and in fact recommended its use when the number of initial seed items was

large. However, the way in which SEAL constructs the feature space to be used by

Bayesian Sets is critically different. SEAL uses two sets of features: the sources sites

on which the extracted item was found during list extraction, and the wrappers that

extracted it. We use the complete set of domains (not sites) where the extracted item

can be found, and do not limit ourselves to the domains of source sites. Using all

domains as features rather than just those containing seed items is very important for

reducing the rank of items that happened to show up on the same site as a few seed

items but in general are found on very different types of domains, as shown in our

experiments in Section 7.4.2. Finding this full set of domains requires an additional

set of queries, one for each item to be ranked, however these types of queries can

be done efficiently when one has access to a web index. These differences between

our method and Boo!Wa! translate into the order of magnitude improvement in the

179

quality of the returned lists shown throughout Section 7.4.

7.6 Conclusions

The next generation of search engines should not simply retrieve URLs, but should

aim at retrieving information. We designed a system that leads into this next gen-

eration, leveraging information from across the Internet to grow an authoritative list

on almost any topic.

The gold standard experiments showed that our method performs well on a wide

range of list growing problems, and provided insight into the effect of design choices

on performance. There are several conclusions that can be drawn from the empirical

results. First, we showed how increasing the number of seed items can improve

performance by constraining the relationship between seed items, suggesting that

users should be encouraged to provide as many seed items as possible. Second, even

when a large seed is available, our results in Section 4.3 demonstrate the importance

of using small groups of seed items for source site discovery (we used pairs). There we

showed that in real problems, relevant items must be aggregated from many websites

and are often only found together with a small collection of other relevant items.

Of all of the design choices, we found that the construction of the feature space

for ranking discovered items had the largest impact on performance. Items that

are likely to be correct, and should thus be highly ranked, are those that are found

frequently on websites where seed items are found and, equally importantly, are not

found frequently where seed items are not found. A feature space that considers only

the sites on which seed items are found is not able to distinguish between items that

are highly correlated with the seed and items that are just generally common. Our

solution was to construct the feature space using an individual search query for each

discovered item, allowing us to verify that the item was not frequently found without

seed items. This led to substantially improved results compared to a feature space

using only sites containing seed items, though at a cost of more search queries.

This feature space construction is a major source of improvement, but can be time

180

consuming given the restrictions that Google and other search engines place on the

number of queries per minute. Without this restriction, our results can be obtained

in real-time on almost any computer. One major challenge that needs to be overcome

to have a real-time implementation for public use is either to embed code like ours

within a search engine infrastructure, or to find ways to use fewer search queries,

chosen in an intelligent way, to construct a similar feature space that incorporates

information about sites without seed items. Another challenge not handled here is to

build in knowledge of language. Our results are not English-specific, but with some

knowledge of natural language, higher quality results could potentially be obtained.

The Wikipedia gold-standard experiments provided a framework for quantifying

performance on a range of list topics, but the open-ended experiments showed, qual-

itatively, the true strength of the developed method. For real problems for which

complete lists were not available online, we found that the algorithm produced mean-

ingful lists, with information extracted from a wide variety of sources. Moreover, the

lists compared favorably with those from existing related technology.

In addition to these empirical results, we presented a theoretical bound that justi-

fies the use of Bayesian Sets in a setting where its feature independence assumptions

are not met. This bound will help to motivate its continued use in set expansion

problems.

The list growing algorithm we presented was implemented on a laptop, with min-

imal heuristics and hand-tuning, and no language-specific processing or handling of

special cases. Yet, the results are good enough to be directly useful to users in many

cases. These encouraging results are an indication of the power of high-quality algo-

rithms to gather crowdsourced information.

181

182

Bibliography

Adams WJ, Yellen JL (1976) Commodity bundling and the burden of monopoly. The
Quarterly Journal of Economics 90(3):475–498

Adomavicius G, Tuzhilin A (2005) Toward the next generation of recommender sys-
tems: A survey of the state-of-the-art and possible extensions. IEEE Transactions
on Knowledge and Data Engineering 17(6):734–749

Agichtein E, Brill E, Dumais S (2006a) Improving web search ranking by incorporating
user behavior information. In: Proceedings of the 29th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR
’06, pp 19–26

Agichtein E, Brill E, Dumais S, Ragno R (2006b) Learning user interaction models
for predicting web search result preferences. In: Proceedings of the 29th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’06, pp 3–10

Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Pro-
ceedings of the 20th International Conference on Very Large Databases, VLDB ’94,
pp 487–499

Antman EM, Cohen M, Bernink PJ, McCabe CH, Horacek T, Papuchis G, Mautner
B, Corbalan R, Radley D, Braunwald E (2000) The TIMI risk score for unstable
angina/non-ST elevation MI: a method for prognostication and therapeutic decision
making. The Journal of the American Medical Association 284(7):835–842

Anupindi R, Dada M, Gupta S (1998) Estimation of consumer demand with stock-
out based substitution: An application to vending machine products. Marketing
Science 17(4):406–423

Bache K, Lichman M (2013) UCI machine learning repository. http://archive.ics.
uci.edu/ml

Beg MMS, Ahmad N (2003) Soft computing techniques for rank aggregation on the
world wide web. World Wide Web 6(1):5–22

Berchtold A, Raftery AE (2002) The mixture transition distribution model for high-
order Markov chains and non-Gaussian time series. Statistical Science 17(3):328–
356

183

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Bertsekas DP (1995) Nonlinear Programming. Athena Scientific, Belmont, Mas-
sachusetts

Bigal ME, Liberman JN, Lipton RB (2006) Obesity and migraine. Neurology
66(4):545–550

Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. Journal of Machine
Learning Research 3:993–1022

Borgelt C (2005) An implementation of the FP-growth algorithm. In: Proceedings of
the 1st International Workshop on Open Source Data Mining: Frequent Pattern
Mining Implementations, OSDM ’05, pp 1–5

Bottou L (2010) Large-scale machine learning with stochastic gradient descent. In:
Proceedings of the 19th International Conference on Computational Statistics,
COMPSTAT ’10, pp 177–187

Bousquet O, Elisseeff A (2002) Stability and generalization. Journal of Machine Learn-
ing Research 2:499–526

Bratko I (1997) Machine learning: between accuracy and interpretability. In:
Della Riccia G, Lenz HJ, Kruse R (eds) Learning, Networks and Statistics, In-
ternational Centre for Mechanical Sciences, vol 382, Springer Vienna, pp 163–177

Breiman L (1996a) Bagging predictors. Machine Learning 24:123–140

Breiman L (1996b) Heuristics of instability and stabilization in model selection. An-
nals of Statistics 24:2350–2383

Breiman L (2001a) Random forests. Machine Learning 45:5–32

Breiman L (2001b) Statistical modeling: the two cultures. Statistical Science
16(3):199–231

Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and Regression
Trees. Wadsworth

Burges C, Shaked T, Renshaw E, Lazier A, Deeds M, Hamilton N, Hullender G (2005)
Learning to rank using gradient descent. In: Proceedings of the 22nd International
Conference on Machine Learning, ICML ’05, pp 89–96

Byrd RH, Lu P, Nocedal J, Zhu C (1995) A limited memory algorithm for bound
constrained optimization. SIAM Journal on Scientific Computing 16(5):1190–1208

Campoa K, Gijsbrechtsb E, Nisol P (2003) The impact of retailer stockouts on
whether, how much, and what to buy. International Journal of Research in Mar-
keting 20:273–286

184

Cao Z, Qin T, Liu TY, Tsai MF, Li H (2007) Learning to rank: from pairwise ap-
proach to listwise approach. In: Proceedings of the 24th International Conference
on Machine Learning, ICML ’07, pp 129–136

Carlson A, Betteridge J, Kisiel B, Settles B, Hruschka ER, Mitchell TM (2010a)
Toward an architecture for never-ending language learning. In: Proceedings of the
24th Conference on Artificial Intelligence, AAAI ’10

Carlson A, Betteridge J, Wang RC, Hruschka ER, Mitchell TM (2010b) Coupled
semi-supervised learning for information extraction. In: Proceedings of the 3rd
ACM International Conference on Web Search and Data Mining, WSDM ’10, pp
101–110

Carvalho VR, Cohen WW (2008) Ranking users for intelligent message addressing.
In: Proceedings of the 30th European conference on IR Research, ECIR ’08, pp
321–333

Chang A, Rudin C, Cavaretta M, Thomas R, Chou G (2012) How to reverse-engineer
quality rankings. Machine Learning 88(3):369–398

Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology 2:27:1–27:27, software available
at http://www.csie.ntu.edu.tw/~cjlin/libsvm

Chang CH, Lui SC (2001) IEPAD: Information extraction based on pattern discovery.
In: Proceedings of the 10th International Conference on World Wide Web, WWW
’01, pp 681–688

Chapelle O, Keerthi SS (2010) Efficient algorithms for ranking with SVMs. Informa-
tion Retrieval 13(3):201–215

Chipman HA, George EI, McCulloch RE (1998) Bayesian CART model search. Jour-
nal of the American Statistical Association 93(443):935–948

Chipman HA, George EI, McCulloch RE (2002) Bayesian treed models. Machine
Learning 48(1/3):299–320

Chipman HA, George EI, McCulloch RE (2010) BART: Bayesian additive regression
trees. Annals of Applied Statistics 4(1):266–298

Clémençon S, Vayatis N (2008) Empirical performance maximization for linear rank
statistics. In: Advances in Neural Information Processing Systems 22, pp 305–312

Clémençon S, Lugosi G, Vayatis N (2008) Ranking and empirical minimization of
U-statistics. Annals of Statistics 36(2):844–874

Cohen WW, Schapire RE, Singer Y (1999) Learning to order things. Journal of Ar-
tificial Intelligence 10:243–270

185

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Cossock D, Zhang T (2008) Statistical analysis of Bayes optimal subset ranking. IEEE
Transactions on Information Theory 54(11):5140–5154

Davis DA, Chawla NV, Christakis NA, Barabasi AL (2010) Time to CARE: A col-
laborative engine for practical disease prediction. Data Mining and Knowledge Dis-
covery 20:388–415

Dawes RM (1979) The robust beauty of improper linear models in decision making.
American Psychologist 34(7):571–582

Dekel O, Manning CD, Singer Y (2004) Log-linear models for label ranking. In: Ad-
vances in Neural Information Processing Systems 16, pp 497–504

Dension D, Mallick B, Smith A (1998) A Bayesian CART algorithm. Biometrika
85(2):363–377

Dom B, Eiron I, Cozzi A, Zhang Y (2003) Graph-based ranking algorithms for e-
mail expertise analysis. In: Proceedings of the 8th ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery, DMKD ’03, pp 42–48

Dougherty J, Kohavi R, Sahami M (1995) Supervised and unsupervised discretization
of continuous features. In: Proceedings of the 12th International Conference on
Machine Learning, ICML ’95, pp 194–202

Duan L, Street W, Xu E (2011) Healthcare information systems: data mining methods
in the creation of a clinical recommender system. Enterprise Information Systems
5(2):169–181

Dwork C, Kumar R, Naor M, Sivakumar D (2001) Rank aggregation methods for the
web. In: Proceedings of the 10th International Conference on World Wide Web,
WWW ’01, pp 613–622

Eckalbar JC (2010) Closed-form solutions to bundling problems. Journal of Economics
and Management Strategy 19(2):513–544

Elidan G (2010) Copula Bayesian networks. In: Advances in Neural Information
Processing Systems 23, NIPS ’10, pp 559–567

Elidan G (2013) Copulas in machine learning. In: Copulae in Mathematical and
Quantitative Finance, Lecture Notes in Statistics, pp 39–60

Enright C, Madden M, Madden N, Laffey J (2011) Clinical time series data analysis
using mathematical models and DBNs. In: Peleg M, Lavrac N, Combi C (eds)
Artificial Intelligence in Medicine, Lecture Notes in Computer Science, vol 6747,
Springer Berlin / Heidelberg, pp 159–168

Eppen GD, Hanson WA, Kipp MR (1991) Bundling - new products, new markets,
low risk. Sloan Management Review 32(4):7–14

186

Etzioni O, Cafarella M, Downey D, Popescu AM, Shaked T, Soderland S, Weld DS,
Yates A (2005) Unsupervised named-entity extraction from the web: an experi-
mental study. Artificial Intelligence 165(1):91–134

Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ (2008) LIBLINEAR: a library for
large linear classification. Journal of Machine Learning Research 9:1871–1874

Fayyad UM, Irani KB (1993) Multi-interval discretization of continuous-valued at-
tributes for classification learning. In: Proceedings of the 1993 International Joint
Conference on Artificial Intelligence, IJCAI ’93, vol 2, pp 1022–1027

Freitag D (1998) Information extraction from HTML: application of a general machine
learning approach. In: Proceedings of the 15th National Conference on Artificial
Intelligence, AAAI ’98, pp 517–523

Freitas AA (2014) Comprehensible classification models: a position paper. ACM
SIGKDD Explorations Newsletter 15(1):1–10

Freund Y, Iyer R, Schapire RE, Singer Y (2003) An efficient boosting algorithm for
combining preferences. Journal of Machine Learning Research 4:933–969

Friedman JH, Popescu BE (2008) Predictive learning via rule ensembles. Annals of
Applied Statistics 2(3):916–954

Fürnkranz J, Hüllermeier E (2003) Pairwise preference learning and ranking. In: Pro-
ceedings of the 14th European Conference on Machine Learning, ECML ’03, pp
145–156

Gage BF, Waterman AD, Shannon W, Boechler M, Rich MW, Radford MJ (2001)
Validation of clinical classification schemes for predicting stroke. Journal of the
American Medical Association 285(22):2864–2870

Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple se-
quences. Statistical Science 7:457–511

Ghahramani Z, Heller KA (2005) Bayesian sets. In: Advances in Neural Information
Processing Systems 18, NIPS ’05, pp 435–442

Giraud-Carrier C (1998) Beyond predictive accuracy: what? In: Proceedings of the
ECML-98 Workshop on Upgrading Learning to Meta-Level: Model Selection and
Data Transformation, pp 78–85

Goldberg SM, Green PE, Wind Y (1984) Conjoint analysis of price premiums for
hotel amenities. Journal of Business 57:S111–S132

Goutelle S, Maurin M, Rougier F, Barbaut X, Bourguignon L, Ducher M, Maire P
(2008) The Hill equation: a review of its capabilities in pharmacological modelling.
Fundamental & Clinical Pharmacology 22:633–648

187

Gupta R, Sarawagi S (2009) Answering table augmentation queries from unstructured
lists on the web. Proceedings of the VLDB Endowment 2:289–300

Hanson W, Martin RK (1990) Optimal bundle pricing. Management Science
36(2):155–174

Heller KA, Ghahramani Z (2006) A simple Bayesian framework for content-based
image retrieval. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, CVPR ’06, pp 2110–2117

Herbrich R, Graepel T, Obermayer K (1999) Support vector learning for ordinal
regression. In: Proceedings of the 9th International Conference on Artificial Neural
Networks, ICANN ’99, pp 97–102

Herlocker JL, Konstan JA, Borchers A, Riedl J (1999) An algorithmic framework for
performing collaborative filtering. In: Proceedings of the 22nd Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’99, pp 230–237

Hoeffding W (1963) Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association 58(301):13–30

Holte RC (1993) Very simple classification rules perform well on most commonly used
datasets. Machine Learning 11(1):63–91

Hsu CN, Chung HH, Huang HS (2004) Mining skewed and sparse transaction data
for personalized shopping recommendation. Machine Learning 57(1-2):35–59

Hsu DF, Taksa I (2005) Comparing rank and score combination methods for data
fusion in information retrieval. Information Retrieval 8(3):449–480

Hu Q, Huang X, Melek W, Kurian C (2010) A time series based method for analyzing
and predicting personalized medical data. In: Yao Y, Sun R, Poggio T, Liu J, Zhong
N, Huang J (eds) Brain Informatics, Lecture Notes in Computer Science, vol 6334,
Springer Berlin / Heidelberg, pp 288–298

Hüllermeier E, Fürnkranz J, Cheng W, Brinker K (2008) Label ranking by learning
pairwise preferences. Artificial Intelligence 172(16–17):1897–1916

Huysmans J, Dejaeger K, Mues C, Vanthienen J, Baesens B (2011) An empirical
evaluation of the comprehensibility of decision table, tree and rule based predictive
models. Decision Support Systems 51(1):141–154

ICCBR (2011) International Conference on Case-Based Reasoning (ICCBR) Com-
puter cooking contest recipe book. URL http://liris.cnrs.fr/ccc/ccc2011/

Jain A, Rudi N, Wang T (2015) Demand estimation and ordering under censoring:
Stock-out timing is (almost) all you need. Operations Research 63(1):134–150

188

http://liris.cnrs.fr/ccc/ccc2011/

Järvelin K, Kekäläinen J (2000) IR evaluation methods for retrieving highly rele-
vant documents. In: Proceedings of the 23rd Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’00, pp
41–48

Jedidi K, Jagpal S, Manchanda P (2003) Measuring heterogeneous reservation prices
for product bundles. Marketing Science 22(1):107–130

Jennings DL, Amabile TM, Ross L (1982) Informal covariation assessments: data-
based versus theory-based judgements. In: Kahneman D, Slovic P, Tversky A (eds)
Judgment Under Uncertainty: Heuristics and Biases„ Cambridge Press, Cambridge,
MA, pp 211–230

Jindal P, Roth D (2011) Learning from negative examples in set-expansion. In: Pro-
ceedings of the 2011 11th IEEE International Conference on Data Mining, ICDM
’11, pp 1110–1115

Joachims T (2002) Optimizing search engines using clickthrough data. In: Proceed-
ings of the 8th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’02, pp 133–142

Joe H, Xu JJ (1996) The estimation method of inference functions for margins for
multivariate models. Tech. Rep. 166, Department of Statistics, University of British
Columbia

Johnson K, Lee BHA, Simchi-Levi D (2014) Analytics for an online retailer: Demand
forecasting and price optimization, working paper

Johnson NL, Kemp AW, Kotz S (2005) Univariate Discrete Distributions. John Wiley
& Sons

Kalyanam K, Borle S, Boatwright P (2007) Deconstructing each item’s category con-
tribution. Marketing Science 26(3):327–341

Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) APACHE II: a severity
of disease classification system. Critical Care Medicine 13:818–829

Kök AG, Fisher ML (2007) Demand estimation and assortment optimization under
substitution: Methodology and application. Operations Research 55(6):1001–1021

Kozareva Z, Riloff E, Hovy E (2008) Semantic class learning from the web with
hyponym pattern linkage graphs. In: Proceedings of the 46th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies,
ACL ’08, pp 1048–1056

Kushmerick N (1997) Wrapper induction for information extraction. PhD thesis, Uni-
versity of Washington

189

Lalmas M (2011) Aggregated search. In: Melucci M, Baeza-Yates R (eds) Advanced
Topics on Information Retrieval, Springer

Lebanon G, Lafferty J (2002) Cranking: Combining rankings using conditional proba-
bility models on permutations. In: Proceedings of the 19th International Conference
on Machine Learning, ICML ’02, pp 363–370

Leondes CT (2002) Expert systems: the technology of knowledge management and
decision making for the 21st century. Academic Press

Letham B (2013) Similarity-weighted association rules for a name recommender sys-
tem. In: Proceedings of the 15th ECML PKDD Discovery Challenge, pp 73–80

Letham B, Heller K, Rudin C (2013a) Growing a list. Data Mining and Knowledge
Discovery 27:372–395

Letham B, Rudin C, Madigan D (2013b) Sequential event prediction. Machine Learn-
ing 93:357–380

Letham B, Sun W, Sheopuri A (2014) Latent variable copula inference for bundle
pricing from retail transaction data. In: Proceedings of the 31st International Con-
ference on Machine Learning, ICML’14

Letham B, Letham LM, Rudin C (2015a) Bayesian inference of arrival rate and
substitution behavior from sales transaction data with stockouts arXiv:1502.
04243[stat.AP]

Letham B, Rudin C, McCormick TH, Madigan D (2015b) Interpretable classifiers us-
ing rules and Bayesian analysis: Building a better stroke prediction model. Annals
of Applied Statistics to appear

Levenshtein VI (1966) Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady 10(8):707–710

Li W, Han J, Pei J (2001) CMAR: accurate and efficient classification based on
multiple class-association rules. IEEE International Conference on Data Mining pp
369–376

Lim W, van der Eerden M, Laing R, Boersma W, Karalus N, Town G, Lewis S, Mac-
farlane J (2003) Defining community acquired pneumonia severity on presentation
to hospital: an international derivation and validation study. Thorax 58(5):377–382

Linden G, Smith B, York J (2003) Amazon.com recommendations: Item-to-item col-
laborative filtering. IEEE Internet Computing 7(1):76–80

Lip G, Nieuwlaat R, Pisters R, Lane D, Crijns H (2010a) Refining clinical risk strat-
ification for predicting stroke and thromboembolism in atrial fibrillation using a
novel risk factor-based approach: the Euro heart survey on atrial fibrillation. Chest
137:263–272

190

arXiv:1502.04243 [stat.AP]
arXiv:1502.04243 [stat.AP]

Lip GY, Frison L, Halperin JL, Lane DA (2010b) Identifying patients at high risk for
stroke despite anticoagulation: a comparison of contemporary stroke risk stratifi-
cation schemes in an anticoagulated atrial fibrillation cohort. Stroke 41:2731–2738

Liu B, Hsu W, Ma Y (1998) Integrating classification and association rule mining.
In: Proceedings of the 4th International Conference on Knowledge Discovery and
Data Mining, KDD ’98, pp 80–96

Liu B, Grossman R, Zhai Y (2003) Mining data records in web pages. In: Proceedings
of the 9th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’03, pp 601–606

Madigan D, Mosurski K, Almond R (1997) Explanation in belief networks. Journal
of Computational and Graphical Statistics 6:160–181

Madigan D, Mittal S, Roberts F (2011) Efficient sequential decision making algo-
rithms for container inspection operations. Naval Research Logistics 58:637–654

Marchand M, Sokolova M (2005) Learning with decision lists of data-dependent fea-
tures. Journal of Machine Learning Research 6:427–451

McAfee PR, McMillan J, Whinston MD (1989) Multiproduct monopoly, commod-
ity bundling, and correlation of values. The Quarterly Journal of Economics
104(2):371–383

McCardle KF, Rajaram K, Tang CS (2007) Bundling retail products: models and
analysis. European Journal of Operational Research 177:1197–1217

McCormick TH, Rudin C, Madigan D (2012) Bayesian hierarchical rule modeling for
predicting medical conditions. Annals of Applied Statistics 6(2):652–668

McSherry F, Najork M (2008) Computing information retrieval performance measures
efficiently in the presence of tied scores. In: Proceedings of the 30th European
conference on IR Research, ECIR ’08, pp 414–421

Meinshausen N (2010) Node harvest. Annals of Applied Statistics 4(4):2049–2072

Miller GA (1956) The magical number seven, plus or minus two: some limits to our
capacity for processing information. The Psychological Review 63(2):81–97

Musalem A, Olivares M, Bradlow ET, Terwiesch C, Corsten D (2010) Structural
estimation of the effect of out-of-stocks. Management Science 56(7):1180–1197

Nowozin S, Tsuda K, Uno T, Kudo T, Bakir G (2007) Weighted substructure mining
for image analysis. In: Proceedings of the 2007 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, CVPR ’07

Paşca M (2007a) Organizing and searching the world wide web of facts – step two:
harnessing the wisdom of the crowds. In: Proceedings of the 16th International
Conference on World Wide Web, WWW ’07, pp 101–110

191

Paşca M (2007b) Weakly-supervised discovery of named entities using web search
queries. In: Proceedings of the 16th ACM Conference on Information and Knowl-
edge Management, CIKM ’07, pp 683–690

Pal C, McCallum A (2006) Cc prediction with graphical models. In: Proceedings of
the 3rd Conference on Email and Anti-Spam, CEAS ’06

Pantel P, Crestan E, Borkovsky A, Popescu AM, Vyas V (2009) Web-scale distribu-
tional similarity and entity set expansion. In: Proceedings of the 2009 Conference
on Empirical Methods in Natural Language Processing, EMNLP ’09, pp 938–947

Patterson S, Teh YW (2013) Stochastic gradient Riemannian Langevin dynamics on
the probability simplex. In: Advances in Neural Information Processing Systems
26, NIPS ’13, pp 3102–3110

Quinlan JR (1993) C4.5: Programs for Machine Learning. Morgan Kaufmann

Radlinski F, Kleinberg R, Joachims T (2008) Learning diverse rankings with multi-
armed bandits. In: Proceedings of the 25th International Conference on Machine
Learning, ICML ’08, pp 784–791

Renda ME, Straccia U (2003) Web metasearch: rank vs. score based rank aggregation
methods. In: Proceedings of the 2003 ACM Symposium on Applied Computing,
SAC ’03, pp 841–846

Rivest RL (1987) Learning decision lists. Machine Learning 2(3):229–246

Romanovsky V (1923) Note on the moments of a binomial (𝑝 + 𝑞)𝑛 about its mean.
Biometrika 15:410–412

Roth M, Ben-David A, Deutscher D, Flysher G, Horn I, Leichtberg A, Leiser N,
Matias Y, Merom R (2010) Suggesting friends using the implicit social graph. In:
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’10, pp 233–242

Rudin C (2009) The P-norm Push: A simple convex ranking algorithm that concen-
trates at the top of the list. Journal of Machine Learning Research 10:2233–2271

Rudin C, Schapire RE (2009) Margin-based ranking and an equivalence between
AdaBoost and RankBoost. Journal of Machine Learning Research 10:2193–2232

Rudin C, Letham B, Salleb-Aouissi A, Kogan E, Madigan D (2011) Sequential event
prediction with association rules. In: Proceedings of the 24th Annual Conference
on Learning Theory, COLT ’11, pp 615–634

Rudin C, Letham B, Madigan D (2013) Learning theory analysis for association rules
and sequential event prediction. Journal of Machine Learning Research 14:3384–
3436

192

Rüping S (2006) Learning interpretable models. PhD thesis, Universität Dortmund

Sadamitsu K, Saito K, Imamura K, Kikui G (2011) Entity set expansion using topic
information. In: Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, ACL ’11, vol 2, pp
726–731

Sarmento L, Jijkoun V, de Rijke M, Oliveira E (2007) “More like these" : growing en-
tity classes from seeds. In: Proceedings of the 16th ACM Conference on Information
and Knowledge Management, CIKM ’07, pp 959–962

Sarwar B, Karypis G, Konstan J, Riedl J (2001) Item-based collaborative filtering
recommendation algorithms. In: Proceedings of the 10th International Conference
on World Wide Web, WWW ’01, pp 285–295

Schmalensee R (1982) Commodity bundling by single-product monopolies. Journal
of Law and Economics 25(1):67–71

Schmalensee R (1984) Gaussian demand and commodity bundling. Journal of Busi-
ness 57(1):S211–S230

Senecal S, Nantel J (2004) The influence of online product recommendations on con-
sumers’ online choices. Journal of Retailing 80:159–169

Shalev-Shwartz S, Singer Y (2006) Efficient learning of label ranking by soft projec-
tions onto polyhedra. Journal of Machine Learning Research 7:1567–1599

Shani G, Heckerman D, Brafman RI (2005) An MDP-based recommender system.
Journal of Machine Learning Research 6:1265–1295

Shmueli G (2010) To explain or to predict? Statistical Science 25(3):289–310

Sklar A (1973) Random variables, joint distributions, and copulas. Kybernetica
9(6):449–460

Soderland S, Cardie C, Mooney R (1999) Learning information extraction rules for
semi-structured and free text. Machine Learning 34(1-3):233–272

Srikant R, Agrawal R (1996) Mining quantitative association rules in large relational
tables. In: Proceedings of the 1996 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’96, pp 1–12

Stahl F, Johansson R (2009) Diabetes mellitus modeling and short-term prediction
based on blood glucose measurements. Mathematical Biosciences 217(2):101–117

Stang P, Ryan P, Racoosin J, Overhage J, Hartzema A, Reich C, Welebob E, Scarnec-
chia T, Woodcock J (2010) Advancing the science for active surveillance: rationale
and design for the observational medical outcomes partnership. Annals of Internal
Medicine 153:600–606

193

Stremersch S, Tellis GJ (2002) Strategic bundling of products and prices: a new
synthesis for marketing. Journal of Marketing 66(1):55–72

Taddy MA, Gramacy RB, Polson NG (2011) Dynamic trees for learning and design.
Journal of the American Statistical Association 106(493):109–123

Talluri K, van Ryzin G (2001) Revenue management under a general discrete choice
model of consumer behavior. Management Science 50(1):15–33

Tran MV, Nguyen TT, Nguyen TS, Le HQ (2010) Automatic named entity set ex-
pansion using semantic rules and wrappers for unary relations. In: Proceedings of
the 2010 International Conference on Asian Language Processing, IALP ’10, pp
170–173

Trivedi PK, Zimmer DM (2005) Copula modeling: an introduction for practitioners.
Foundations and Trends in Econometrics 1(1):1–111

Vapnik VN (1995) The Nature of Statistical Learning Theory. Springer-Verlag, New
York

Vapnik VN (1999) An overview of statistical learning theory. IEEE Transactions on
Neural Networks 10(5):988–999

Vellido A, Martín-Guerrero JD, Lisboa PJ (2012) Making machine learning models
interpretable. In: Proceedings of the European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning

Venkatesh R, Kamakura W (2003) Optimal bundling and pricing under a monopoly:
constrasting complements and substitutes from independently valued products.
Journal of Business 76(2):211–231

Venkatesh R, Mahajan V (1993) A probabilistic approach to pricing a bundle of
products or services. Journal of Marketing Research 30:494–508

Verma S, Hruschka ER (2012) Coupled Bayesian sets algorithm for semi-supervised
learning and information extraction. In: Proceedings of the 2012 European Confer-
ence on Machine Learning and Knowledge Discovery in Databases, ECML PKDD
’12, pp 307–322

Vulcano G, van Ryzin G (2014) A market discovery algorithm to estimate a general
class of nonparametric choice models. Management Science 61(2):281–300

Vulcano G, van Ryzin G, Chaar W (2010) Choice-based revenue management: An
empirical study of estimation and optimization. Manufacturing & Service Opera-
tions Management 12(3):371–392

Vulcano G, van Ryzin G, Ratliff R (2012) Estimating primary demand for substi-
tutable products from sales transaction data. Operations Research 60(2):313–334

194

Wang F, Rudin C (2015) Falling rule lists. In: Proceedings of the 18th International
Conference on Artificial Intelligence and Statistics, AISTATS ’15, pp 1013–1022

Wang J, Lochovsky FH (2003) Data extraction and label assignment for web
databases. In: Proceedings of the 12th International Conference on World Wide
Web, WWW ’03, pp 187–196

Wang RC, Cohen WW (2007) Language-independent set expansion of named entities
using the web. In: Proceedings of the 2007 7th IEEE International Conference on
Data Mining, ICDM ’07, pp 342–350

Wang RC, Cohen WW (2008) Iterative set expansion of named entities using the web.
In: Proceedings of the 2008 8th IEEE International Conference on Data Mining,
ICDM ’08, pp 1091–1096

Welling M, Teh YW (2011) Bayesian learning via stochastic gradient Langevin dy-
namics. In: Proceedings of the 28th International Conference on Machine Learning,
ICML’11

Wu X, Zhang C, Zhang S (2004) Efficient mining of both positive and negative asso-
ciation rules. ACM Transactions on Information Systems 22(3):381–405

Wu Y, Tjelmeland H, West M (2007) Bayesian CART: prior specification and poste-
rior simulation. Journal of Computational and Graphical Statistics 16(1):44–66

Wuebeker G, Mahajan V (1999) A conjoint analysis-based procedure to measure reser-
vation price and to optimally price product bundles. In: Fuerderer R, Hermann A,
Wuebeker G (eds) Optimal Bundling: Marketing Strategies for Improving Eco-
nomic Performance, Springer-Verlag, pp 157–174

Xu JJ (1996) Statistical modelling and inference for multivariate and longitudinal dis-
crete response. PhD thesis, Department of Statistics, University of British Columbia

Yan R, Hauptmann AG (2006) Efficient margin-based rank learning algorithms for
information retrieval. In: Proceedings of the 5th International Conference on Image
and Video Retrieval, CIVR ’06, pp 113–122

Yi Y, Hüllermeier E (2005) Learning complexity-bounded rule-based classifiers by
combining association analysis and genetic algorithms. In: Proceedings of the Joint
4th International Conference in Fuzzy Logic and Technology, EUSFLAT ’05, pp
47–52

Yin X, Han J (2003) Cpar: classification based on predictive association rules. In:
Proceedings of the 2003 SIAM International Conference on Data Mining, ICDM
’03, pp 331–335

Yue Y, Finley T, Radlinski F, Joachims T (2007) A support vector method for opti-
mizing average precision. In: Proceedings of the 30th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR
’07, pp 271–278

195

Zaki MJ (2000) Scalable algorithms for association mining. IEEE Transactions on
Knowledge and Data Engineering 12(3):372–390

Zhai Y, Liu B (2005) Web data extraction based on partial tree alignment. In: Pro-
ceedings of the 14th International Conference on World Wide Web, WWW ’05, pp
76–85

Zhang L, Liu B (2011) Entity set expansion in opinion documents. In: Proceedings
of the 22nd ACM Conference on Hypertext and Hypermedia, HT ’11, pp 281–290

Zhu C, Byrd RH, Lu P, Nocedal J (1997) Algorithm 778: L-BFGS-B: Fortran subrou-
tines for large-scale bound-constrained optimization. ACM Transactions on Math-
ematical Software 23(4):550–560

196

	Introduction and Contributions
	Weighted Association Rules and Sequential Events
	Sequential Event Prediction
	Empirical Risk Minimization
	The One-Stage Model
	The ML-Constrained Model
	The General Loss Function
	Scalability
	Baseline Algorithms

	Application 1: Email Recipient Recommendation
	Application 2: Patient Condition Prediction
	Application 3: An Online Grocery Store Recommender System
	Fitting a Sequential Prediction Model to an Unordered Set
	Specifying the Loss Function
	ERM for the Online Grocery Store Recommender System
	Experimental Results

	Related Work
	Conclusions

	Bayesian Association Rules and Decision Lists
	Bayesian Rule Lists
	Bayesian Association Rules and Bayesian Decision Lists
	Antecedent Mining
	Generative Model
	The Hierarchical Prior for Antecedent Lists
	The Likelihood Function
	Markov Chain Monte Carlo Sampling
	The Posterior Predictive Distribution and Point Estimates

	Simulation Studies
	Simulated Data Sets
	A Deterministic Problem

	Stroke Prediction
	Additional Experiments

	Related Work and Discussion
	Conclusion

	Statistical Learning Theory and Association Rules
	Decision Making from Sales Transaction Data: Bundle Pricing
	Copula Inference and Bundle Pricing
	Valuations and Consumer Rationality
	Joint Distribution Models and Copula Inference
	Margin Likelihood and Demand Models
	Copula Inference over Latent Variables
	Consistency and Scalability
	Computing the Optimal Bundle Price
	Distributional Assumptions

	Simulation Studies
	Data Experiments
	Discussion and Conclusions

	Decision Making from Sales Transaction Data: Stockouts and Demand Estimation
	Prior Work
	The Bayesian Approach

	A Generative Model for Transaction Data with Stockouts
	The Data
	Modeling Customer Arrivals
	Models for Substitution Behavior
	Segments and Mixtures of Choice Models
	The Likelihood Model
	Prior Distributions and the Log-Posterior

	Stochastic Gradient MCMC Inference
	The Expanded-Mean Parameterization
	Riemannian Langevin Dynamics

	Simulation Study
	Homogeneous Rate and Exogenous Choice
	Hill Rate and Exogenous Choice
	Hill Rate and Nonparametric Choice

	Data Experiments
	Inferring Demand for Breakfast Pastries
	Inferring Demand for Cookies
	An Evaluation of Predictive Performance
	Lost Sales Due to Stockouts

	Discussion

	Bayesian Sets and Information Retrieval
	Algorithm for Retrieval and Aggregation
	Generalization Bounds for Bayesian Sets
	Algorithmic Stability and Bayesian Sets
	The Effect of the Prior on Generalization.
	Bayesian Sets and Uniform Stability.

	Experiments
	Wikipedia Gold Standard Lists
	Experimental Analysis of Algorithm Steps
	Open-Ended Experiments

	Related Work
	Conclusions

