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SCHUR DYNAMICS OF THE SCHUR PROCESSES

Alexei Borodin

Abstract. We construct discrete time Markov chains that preserve the class of
Schur processes on partitions and signatures.

One application is a simple exact sampling algorithm for qvolume-distributed skew
plane partitions with an arbitrary back wall. Another application is a construction of
Markov chains on infinite Gelfand-Tsetlin schemes that represent deterministic flows
on the space of extreme characters of the infinite-dimensional unitary group.
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Introduction

The Schur processes were introduced in [OR1] as a class of measures on sequences
of partitions in order to study large random plane partitions with weights propor-
tional to qvolume, 0 < q < 1. The concept generalized that of the Schur measures

introduced earlier in [Ok]. The asymptotic techniques of [OR1] were developed
further in [OR2] to study the asymptotics of large skew plane partitions, see also
[BMRT].

The range of applications of the Schur measures and Schur processes expanded
quickly; apart from random plane partitions they have been applied to harmonic
analysis on the infinite symmetric group [Ok], Szegö-type formulas for Toeplitz de-
terminants [BO], relative Gromov-Witten theory of C∗ [OP], random domino tilings
of the Aztec diamond [J2], discrete and continuous polynuclear growth processes in
1+1 dimensions [PS], [J1], topological string theory [ORV], and so forth.

The goal of this paper is to define discrete time Markov chains that map Schur
processes to themselves, possibly modifying the parameters. We also define Markov
chains on the two-sided Schur processes introduced below; the principal difference
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2 ALEXEI BORODIN

of those from the Schur processes is that they live on sequences of signatures that,
unlike partitions, may have negative parts.

The dynamics we construct is also ‘Schur like’; for example, an evolution of a
partition or a signature that represents a fixed slice of the (possibly two-sided)
Schur process is also a (possibly two-sided) Schur process.

We present two applications of the construction.
First, we give an exact sampling algorithm for measures of type qvolume on skew

plane partitions. Other sampling algorithms for such measures are known, see
[BFP] and references therein. However, it seems that the algorithm we suggest is
simpler; for skew plane partitions with support fitting in A×B box, the algorithm
consists in sampling no more that AB(B + 1)/2 independent one-dimensional geo-
metric distributions. A short ‘code’ for the algorithm can be found in Section 7.
Exact sampling algorithms for boxed plane partitions based on similar ideas were
constructed in [BG], [BGR].

The second application is a construction of Markov chains on infinite Gelfand-
Tsetlin schemes that preserve the class of Fourier transforms of the extreme charac-
ters of the infinite-dimensional unitary group, see Section 4 for details. For similar
developments on the infinite-dimensional orthogonal group see [BK].

A special case of the Markov dynamics that we construct has been studied in
detail in [BF]. One of the goals of this paper is to provide a more general setup (a
broad class of initial conditions and a multi-parameter family of update rules) for
large time asymptotic analysis of the dynamics.

The construction below is based on a formalism developed in [BF], which in its
turn was based on an idea from [DF]. However, our exposition is self-contained.

Acknowledgements. This work was supported in part by the NSF grant DMS-
0707163.

1. Nonnegative specializations of the Schur functions

In what follows we use the notation of [M].
Let Λ be the algebra of symmetric functions. A specialization ρ of Λ is an algebra

homomorphism of Λ to C; we denote the application of ρ to f ∈ Λ as f(ρ). The
trivial specialization ∅ takes value 1 at the constant function 1 ∈ Λ and takes value
0 at any homogeneous f ∈ Λ of degree ≥ 1.

For two specializations ρ1 and ρ2 we define their union ρ = (ρ1, ρ2) as the
specialization defined on Newton power sums via

pn(ρ1, ρ2) = pn(ρ1) + pn(ρ2), n ≥ 1.

Definition 1. We say that a specialization ρ of Λ is nonnegative if it takes non-
negative values on the Schur functions: sλ(ρ) ≥ 0 for any partition λ.

The classification of all nonnegative specializations is a classical result proved
independently by Aissen, Edrei, Schoenberg, and Whitney [AESW] (see also [E])
and Thoma [T]. It says that a specialization ρ is nonnegative if and only if the
generating function of the images of complete homogeneous functions has the form

(1) H(ρ;u) :=

∞
∑

n=0

hn(ρ)u
n = eγu

∏

i≥1

1 + βiu

1− αiu
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for certain nonnegative {αi}, {βi}, and γ such that
∑

i(αi + βi) <∞.
It turns out that nonnegativity of sλ(ρ) for all λ is equivalent to nonnegativity

of the images of the skew Schur functions sλ/µ(ρ) for all λ and µ. Hence, via the
Jacobi-Trudi formula

sλ/µ = det[hλi−i−µj+j ]
r
i,j=1, r ≥ max{ℓ(λ), ℓ(µ)},

the classification of nonnegative specializations is equivalent to that of totally non-
negative triangular Toeplitz matrices with diagonal entries equal to 1. An excellent
exposition of deep relations of this classification result to representation theory of
the infinite symmetric group can be found in Kerov’s book [K].

For a single α or a single β specialization, the values of skew Schur functions are
easy to compute:

H(ρ;u) =
1

1− αu
implies sλ/µ(ρ) =

{

α|λ|−|µ|, λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ . . . ,

0, otherwise;

(2)

H(ρ;u) = 1 + βu implies sλ/µ(ρ) =

{

β|λ|−|µ|, λj − µj ∈ {0, 1} for all j ≥ 1,

0, otherwise.

(3)

We say that a nonnegative specialization ρ of Λ is admissible if the generating
function (1) is holomorphic in a disc Dr = {u ∈ C | |u| < r} with r > 1. In other
words, ρ is admissible iff αi < r−1 < 1 for all i.

Since H(ρ1, ρ2;u) = H(ρ1;u)H(ρ2;u), the union of admissible specializations is
admissible (unions of nonnegative specializations are also nonnegative).

For a nonnegative specialization ρ, denote by Y(ρ) the set of partitions (or Young
diagrams) λ such that sλ(ρ) > 0. We also call Y(ρ) the support of ρ. The set of all
partitions will be denoted as Y.

Using the combinatorial formula for the Schur functions [M, Sect. I.5 (5.12)] and
the involution ω [M, Sect. I.2], it is not hard to show that if, for a nonnegative
specialization ρ, in (1) γ = 0 and there are p <∞ nonzero αj ’s and q <∞ nonzero
βj ’s, then Y(ρ) consists of the Young diagrams that fit into the Γ-shaped figure
with p rows and q columns. Otherwise it is easy to see that Y(ρ) = Y.

In particular, if in (1) all βj ’s and γ vanish, and there are p nonzero αj ’s, then
Y(ρ) consists of Young diagrams with no more than p rows. Such a specialization
consists in assigning values αj to p of the symmetric variables used to define Λ, and
0’s to all the other symmetric variables.

We will also need minors of arbitrary (not necessarily triangular) doubly-infinite
totally nonnegative Toeplitz matrices. The classification of such matrices was ob-
tained by Edrei in [E], who proved an earlier conjecture of Schoenberg. The result
is as follows.

A matrix M = [Mi−j ]
+∞
i,j=−∞ is totally nonnegative if and only if, after a trans-

formation of the form Mn 7→ cRnMn with c > 0, R ≥ 0, the generating function of
its entries has the form

(4) H(M ;u) :=

+∞
∑

n=−∞

Mnu
n

= eγ
+(u−1)+γ−(u−1−1)

∞
∏

i=1

(

1 + β+
i (u− 1)

1− α+
i (u− 1)

1 + β−
i (u−1 − 1)

1− α−
i (u

−1 − 1)

)
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for certain nonnegative {α±
j }, {β

±
j }, and γ

± such that
∑

(α+
i +α−

i +β+
i +β−

i ) <∞

and βj ≤ 1 for all j. The parametrization of M by ({α±
j }, {β

±
j }, γ±) becomes

unique if one adds the condition maxj{β
+
j }+maxj{β

−
j } ≤ 1.

The generating function on the left is understood as the Laurent series of the
holomorphic function in a neighborhood of the unit circle |u| = 1 that stands on
the right. We call the largest annulus of the form {u ∈ C | 0 ≤ r1 < |u| < r2} where
H(M ;u) is holomorphic (the unit circle must be inside the annulus) the analyticity
annulus of H(M ;u).

Definition 2. We say that a totally nonnegative Toeplitz matrix M is admissible

if the generating function of its entries is given by (4) (i.e., no multiplication by
cRn is involved).

Note that since multiplying Toeplitz matrices corresponds to multiplying the
generating functions (4), the product of two admissible matrices is admissible.

It will be convenient for us to use a similar notation for the minors of general
Toeplitz matrices as in the triangular case (Jacobi-Trudi formula).

Define signatures of length n as n-tuples λ = (λ1 ≥ λ2 ≥ · · · ≥ λn) of nonin-
creasing integers. We will also write ℓ(λ) = n and |λ| = λ1 + λ2 + · · · + λn. By
convention, there is a unique signature ∅ of length 0 with |∅| = 0.

For any two signatures λ and µ of length n and an admissible M we set

sλ/µ(M) = det
[

Mλi−i−µj+j

]n

i,j=1
.

For totally nonnegative M with only one α± or β± parameter nonzero (and all
other parameters being zero), one obtains formulas analogous to (2), (3):

(5) H(ρ;u) =
1

1− α(u±1 − 1)
implies sλ/µ(ρ) =

1

(1 + α)n

(

α

1 + α

)±|λ|∓|µ|

if ±λj ∓ µj ≥ 0 for all 1 ≤ j ≤ n, and 0 otherwise;

(6) H(ρ;u) = 1 + β(u±1 − 1) implies sλ/µ(ρ) = (1− β)n
(

β

1− β

)±|λ|∓|µ|

if ±λj ∓ µj ∈ {0, 1} for all 1 ≤ j ≤ n, and 0 otherwise.
Also, mimicking the property of the Schur functions, for a constant c ∈ C, a

signature ν of length n+ 1, and a signature λ of length n, we set

(7) sλ/µ(c) :=

{

c|λ|−|µ|, λn+1 ≤ µn ≤ λn ≤ · · · ≤ λ2 ≤ µ1 ≤ λ1,

0, otherwise,

with the convention that 00 = 1.

2. The Schur processes

Pick a natural numberN and admissible specializations ρ+0 , . . . , ρ
+
N−1, ρ

−
1 , . . . , ρ

−
N

of Λ. For any sequences λ = (λ(1), . . . , λ(N)) and µ = (µ(1), . . . , µ(N−1)) of parti-
tions satisfying

(8) ∅ ⊂ λ(1) ⊃ µ(1) ⊂ λ(2) ⊃ µ(2) ⊂ · · · ⊃ µ(N−1) ⊂ λ(N) ⊃ ∅
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define their weight as
(9)
W(λ, µ) := sλ(1)(ρ+0 ) sλ(1)/µ(1)(ρ−1 )sλ(2)/µ(1)(ρ+1 ) · · · sλ(N)/µ(N−1)(ρ+N−1) sλ(N)(ρ−N ).

There is one Schur function factor for any two neighboring partitions in (8).
The fact that all the specializations are nonnegative implies that all the weights

are nonnegative. The admissibility of ρ’s implies that

(10) Z(ρ+0 , . . . , ρ
+
N−1; ρ

−
1 , . . . , ρ

−
N) :=

∑

λ,µ

W(λ, µ) =
∏

0≤i<j≤N

H(ρ+i ; ρ
−
j ) <∞,

where H(ρ1; ρ2) =
∑

λ∈Y
sλ(ρ1)sλ(ρ2) = exp

(

∑

n≥1 pn(ρ1)pn(ρ2)/n
)

, and pn’s are

the Newton power sums. Indeed, this follows from the repeated use of identities,
cf. [M, I(5.9) and Ex. I.5.26(1)],

∑

κ∈Y

sκ/ν(ρ1)sκ/ν̂(ρ2) = H(ρ1; ρ2)
∑

τ∈Y

sν/τ (ρ2)sν̂/τ (ρ1),(11)

∑

ν∈Y

sκ/ν(ρ1)sν/τ (ρ2) = sκ/τ (ρ1, ρ2),(12)

and from the fact that for an admissible specialization ρ with H(ρ;u) holomorphic
in a disc of radius r, we have pn(ρ) = O(r−n).

The same argument shows that the partition function (10) is finite under the
weaker assumption of finiteness of all H(ρ+i ; ρ

−
j ) for 0 ≤ i < j ≤ N .

Definition 3. The Schur process S(ρ+0 , . . . , ρ
+
N−1; ρ

−
1 , . . . , ρ

−
N ) is the probability

distribution on sequences (λ, µ) as in (8) with

S(ρ+0 , . . . , ρ
+
N−1; ρ

−
1 , . . . , ρ

−
N )(λ, µ) =

W(λ, µ)

Z(ρ+0 , . . . , ρ
+
N−1; ρ

−
1 , . . . , ρ

−
N )

.

The Schur process with N = 1 is called the Schur measure.

Using (11)-(12) it is not difficult to show that a projection of the Schur process
to any subsequences of (λ, µ) is a also a Schur process. In particular, the projection
of S(ρ+0 , . . . , ρ

+
N−1; ρ

−
1 , . . . , ρ

−
N ) to λ(j) is the Schur measure S(ρ+[0,j−1]; ρ

−
[j,N ]), and

its projection to µ(k) is a slightly different Schur measure S(ρ+[0,k−1]; ρ
−
[k+1,N ]). Here

we used the notation ρ±[a,b] to denote the union of specializations ρ±m, m = a, . . . , b.

We now aim at defining a Schur like process for signatures.
Pick a natural number N , real numbers a1, . . . , aN > 0, nonnegative integers

c(1), . . . , c(N), and c(1) + · · ·+ c(N) admissible Toeplitz matrices

M = {M (k,l) | 1 ≤ k ≤ N, 1 ≤ l ≤ c(k)}.

If all c(k) are zero then M is empty.
We will also need a totally nonnegative matrix of size Z×N , denote it as

Ψ = [Ψij ]i∈Z,−1≥j≥−N .
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For any sequences

(13) ~λ(1) = (λ(1,0), λ(1,1), . . . , λ(1,c(1))), . . . , ~λ(N) = (λ(N,0), λ(N,1), . . . , λ(N,c(N)))

of signatures of lengths ℓ(λ(k,∗)) = k, define their (nonnegative) weight as

(14) W(~λ(1), . . . , ~λ(N)) := det
[

Ψ
λ
(N,c(N))
i −i,−j

]N

i,j=1

×
N
∏

k=1



sλ(k,0)/λ(k−1,c(k−1)) (ak)

c(k)
∏

l=1

sλ(k,l)/λ(k,l−1)

(

M (k,l)
)





with λ(0,c(0)) = ∅.
We assume that the generating functions

(15) Ψj(u) :=

+∞
∑

n=−∞

Ψn,−j u
n+j

are holomorphic in an open set containing the unit circle. As we will see in
Section 10, if for any j ≤ N , aj lies in the common analyticity annulus for

{H(M (k,l);u−1)}k≥j , {Ψi(u)}
N
i=1, then the partition function of weights (14) is

finite and it has the form

(16) Z(a1, . . . , aN ;M; Ψ) :=
∑

~λ(1),...,~λ(N)

W(~λ(1), . . . , ~λ(N))

=
det

[

a−j
i Ψj(ai)

]N

i,j=1

det
[

a−j
i

]N

i,j=1

∏

1≤j≤k≤N

c(k)
∏

l=1

H
(

M (k,l); a−1
j

)

.

In the important special case when the matrix Ψ is actually Toeplitz, Ψi,−j =
ψi+j , (16) simplifies:

(17) Z(a1, . . . , aN ;M; Ψ) =

N
∏

i=1

ψ(ai)
∏

1≤j≤k≤N

c(k)
∏

l=1

H
(

M (k,l); a−1
j

)

,

where ψ(u) =
∑

n∈Z
ψnu

n.

Definition 4. The two-sided Schur process T(a1, . . . , aN ;M; Ψ) is the probability
distribution on sequences (λ(1), . . . , λ(N)) as in (13) with

T(a1, . . . , aN ;M; Ψ)(~λ(1), . . . , ~λ(N)) =
W(~λ(1), . . . , ~λ(N))

Z(a1, . . . , aN ;M; Ψ)
.

Remark 5. If in the Schur process of Definition 3 each of the specializations ρ+j is

a one-variable specialization with H(ρ+j ;u) = (1−aj+1u)
−1, j = 0, . . . , N − 1, then

the Schur process can be viewed as a special case of the two-sided Schur process
with c(1) = · · · = c(N − 1) = 1, c(N) = 0, and identification

λ(j) = λ(j,0), j = 1, . . . , N, µ(j) = λ(j,1), j = 1, . . . , N − 1,

H(ρ−k ;u) = H(M (k,1);u−1), k = 1, . . . , N − 1; H(ρ−N ;u) = ψ(u).

The corresponding two-sided Schur process lives on signatures with nonnegative
parts that can also be viewed as partitions.

Observe that under this identification the formulas (10) and (17) coincide.
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3. Example 1. Measures qvolume on skew plane partitions

Fix two natural numbers A and B. For a Young diagram π ⊂ BA, set π̄ = BA/π.
A (skew) plane partition Π with support π̄ is a filling of all boxes of π̄ by

nonnegative integers Πi,j (we assume that Πi,j is located in the ith row and jth
column of BA) such that Πi,j ≥ Πi,j+1 and Πi,j ≥ Πi+1,j for all values of i, j.

The volume of the plane partition Π is defined as

vol(Π) =
∑

i,j

Πi,j .

The goal of the section is to explain that the measure on plane partitions with
given support π̄ and weights proportional to qvol( · ), 0 < q < 1, is a Schur process.
This fact has been observed and used in [OR1], [OR2], [BMRT].

The Schur process will be such that for any two neighboring specializations
ρ−k , ρ

+
k at least one is trivial. This implies that each µ(j) coincides either with λ(j)

or with λ(j+1). Thus, we can restrict our attention to λ(j)’s only.
For a plane partition Π, we set (1 ≤ k ≤ A+B + 1)

λ(k)(Π) =
{

Πi,i+k−A−1 | (i, i+ k −A− 1) ∈ π̄
}

.

Note that λ(1) = λ(A+B+1) = ∅.
We need one more piece of notation. Define

L(π) = {A+ πi − i+ 1 | i = 1, . . . , A}.

This is an A-point subset in {1, 2, . . . , A+B}, and all such subsets are in bijection
with the partitions π contained in the box BA. The elements of L(π) mark the
“up-steps” in the boundary of π (=back wall of Π).

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

4 5
3

1
2

10
6

8

The figure above shows a plane partition Π and its plot with

A = 4, B = 3, π = (2, 1, 1, 0),

λ(2) = (4), λ(3) = 3, λ(4) = (5, 1), λ(5) = (10, 2), λ(6) = (6), λ(7) = (8),

vol(Π) =
A+B
∑

i=2

|λ(i)| = 39, L(π) = {1, 3, 4, 6}.
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Proposition 6. Let π be a partition contained in the box BA. The measure on the

plane partitions Π with support π̄ and weights proportional to qvol(Π), is the Schur

process with N = A+B+1 and nonnegative specializations {ρ+i }, {ρ
−
j } defined by

H(ρ+0 ;u) = H(ρ−N ;u) = 1,

H(ρ+j ;u) =







1

1− q−ju
, j ∈ L(π),

1, j /∈ L(π);

H(ρ−j ;u) =







1, j ∈ L(π),

1

1− qju
, j /∈ L(π).

Note that not all specializations are admissible, but the weaker assumption of
finiteness of H(ρ+i ; ρ

−
j ) for 0 ≤ i < j ≤ N guarantees that the partition function is

finite.

Proof. Observe that the set of all plane partitions supported by π̄, as well as the
support of the Schur process from the statement of the proposition, consists of
sequences (λ(1), λ(2), . . . , λ(N)) with

λ(1) = λ(N) = ∅,

λ(j) ≺ λ(j+1) if j ∈ L(λ), λ(j) ≻ λ(j+1) if j /∈ L(λ),

where we write µ ≺ ν or ν ≻ µ iff ν1 ≥ µ1 ≥ ν2 ≥ µ2 ≥ . . . .
On the other hand, (2) implies that the weight of (λ(1), λ(2), . . . , λ(N)) with

respect to the Schur process from the hypothesis is equal to q raised to the power

A+B
∑

j=2

|λ(j)|
(

−(j − 1)1j−1∈L(π) − (j − 1)1j−1/∈L(π) + j1j∈L(π) + j1j /∈L(π)

)

,

where the four terms are the contributions of ρ+j−1, ρ
−
j−1, ρ

+
j , ρ

−
j , respectively.

Clearly, the sum is equal to
∑A+B

j=2 |λ(j)| = vol(Π). �

Remark 7. A similar statement holds for any measure on plane partitions with

weights proportional to
∏

q
|λj |
j with possibly different positive parameters qj , as

long as the partition function is finite. The proof is very similar.

4. Example 2. Path measures for extreme characters of U(∞)

Let U(N) denote the group of N × N unitary matrices. It is a classical result
that the irreducible representations of U(N) can be paramterized by signatures
λ = (λ1 ≥ . . . ≥ λN ) of length N also called highest weights . Thus, there is a
natural bijection λ ↔ χλ between signatures of length N and the conventional
irreducible characters (=traces of irreducible representations) of U(N).

For each N , embed U(N) in U(N +1) as the subgroup fixing the (N +1)st basis
vector. Equivalently, each U ∈ U(N) can be thought of as an (N + 1) × (N + 1)
matrix by setting Ui,N+1 = UN+1,j = 0 for 1 ≤ i, j ≤ N and UN+1,N+1 = 1. The
union

⋃∞
N=1 U(N) is denoted U(∞) and called the infinite-dimensional unitary

group.
A character of U(∞) is a positive definite function χ : U(∞) → C which is

constant on conjugacy classes and normalized by χ(1) = 1. We further assume
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that χ is continuous on each U(N) ⊂ U(∞). The set of all characters of U(∞) is
convex, and the extreme points of this set are called extreme characters.

Remarkably, the extreme characters of U(∞) are in one-to-one correspondence
with admissible Toeplitz matrices M from Definition 2, see [Vo], [VK], [OO]. The
values of the character χM corresponding to M are given by

χM (U) =
∏

u∈Spectrum(U)

H(M ;u),

where H(M ;u) is given in (4).
Let GTN be the set of all signatures of length N ; set GT =

⋃

N GTN . Turn GT

into a graph by drawing an edge between signatures λ ∈ GTN and µ ∈ GTN+1 if
λ and µ satisfy the branching relation λ ≺ µ, where λ ≺ µ means that µ1 ≤ λ1 ≤
µ2 ≤ λ2 ≤ . . . ≤ λN ≤ µN+1. GT is known as the Gelfand-Tsetlin graph.

A path in GT, or an infinite Gelfand-Tsetlin scheme, is an infinite sequence
t = (t1, t2, . . . ) such that ti ∈ GTi and ti ≺ ti+1. Let T be the set of all such paths.

One can also look at finite paths, or finite Gelfand-Tsetlin schemes, which are
sequences τ = (τ1, τ2, . . . , τN ) such that τi ∈ GTi and τ1 ≺ τ2 ≺ . . . ≺ τN . Denote
the set of all paths of length N by TN .

5
5

14
3 0

−2−1
−5

−7

The figure above depicts a Gelfand-Tsetlin scheme τ ∈ T4 and its plot with

τ1 = (3), τ2 = (4,−1), τ3 = (5, 0,−5), τ4 = (5, 1,−2,−7).

Each character χ of U(∞) defines a probability measure Pχ
N on GTN : Restricting

the character to U(N), we have

χ
∣

∣

∣

U(N)
=

∑

λ∈GTN

Pχ
N (λ)

χλ

χλ(1N )
.

For each finite path τ ∈ TN , let Cτ ⊂ T be the set

Cτ = {t ∈ T : (t1, t2, . . . , tN ) = τ}.

A character χ of U(∞) also defines a probability measure Pχ on T (with a
suitably defined Borel structure), which can be uniquely specified by setting

Pχ(Cτ ) =
Pχ
N (λ)

χλ(1N )
,

where τ is an arbitrary finite path ending at λ, see [Ol, Section 10] for details. Note
that we assign the same weight to all finite paths with the same end.

We use the same formula to define a probability measure Pχ
[1,N ] on TN , which is

just the projection of Pχ from T to TN .



10 ALEXEI BORODIN

Proposition 8. For any admissible Toeplitz matrix M as in Definition 2, the

measure PχM

[1,N ] on TN coincides with the two-sided Schur process of Definition 4

with

a1 = · · · = aN = 1, c(1) = · · · = c(N) = 0, Ψ =M,

and with sequences (λ(1,0), . . . , λ(N,0)) viewed as elements of TN .

Proof. Directly follows from (7) and Lemma 6.5 of [Ol]. �

5. Markov chains on the Schur processes

Let us introduce some notation.
For two nonnegative specializations ρ1, ρ2 of Λ such that H(ρ1; ρ2) < ∞, and

λ, µ ∈ Y, set

Pρ1,ρ2(λ, µ ↑↑ ν) = const · sν/λ(ρ1)sν/µ(ρ2), ν ∈ Y,

where we assume that

(18) {ν ∈ Y | sν/λ(ρ1)sν/µ(ρ2) > 0} 6= ∅,

and the constant prefactor is chosen so that we obtain a probability measure in ν:

∑

ν∈Y

Pρ1,ρ2(λ, µ ↑↑ ν) = 1.

Given (18), the existence of such constant follows from (11).
Similarly, dropping the assumption H(ρ1; ρ2) <∞, we define

Pρ1,ρ2(λ, µ ↓↑ ν) = const · sλ/ν(ρ1)sν/µ(ρ2),

Pρ1,ρ2(λ, µ ↑↓ ν) = const · sν/λ(ρ1)sµ/ν(ρ2),

Pρ1,ρ2(λ, µ ↓↓ ν) = const · sλ/ν(ρ1)sµ/ν(ρ2),

where in all three cases we assume that the set of ν giving nonzero values on the
right-hand side is nonempty (it is finite in all three cases), and we choose constants
so that we obtain probability distributions in ν ∈ Y.

If both ρ1 and ρ2 are single-α or single-β specializations, relations (2), (3) show
that all four distributions Pρ1,ρ2 are products of geometric distributions conditioned
to stay in segments and Bernoulli measures.

Example 8. Assume that H(ρ1;u) = (1 − au)−1, H(ρ2;u) = (1 − bu)−1. Denote
by Gξ

m,n, m ≤ n, the probability distribution on the set {m,m+1, . . . , n} given by

Gξ
m,n({k}) =

ξk
∑n

j=m ξj
=

1− ξn−m+1

ξm(1 − ξ)
· ξk, m ≤ k ≤ n.

Then

Pρ1,ρ2(λ, µ ↑↑ ν) = Gab
max{λ1,µ1},+∞(ν1)

∏

j≥2

Gab
max{λj ,µj},min{λj−1,µj−1}

(νj),

Pρ1,ρ2(λ, µ ↓↑ ν) = G
b/a
max{λ2,µ1},λ1

(ν1)
∏

j≥2

G
b/a
max{λj+1,µj},min{λj ,µj−1}

(νj),
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where in the first case we need to additionally assume that ab < 1 (equivalently,
H(ρ1; ρ2) <∞).

Further, assume that H(ρ3;u) = (1+ cu). Denote by Bp
m,n, n ∈ {m,m+1}, the

probability distribution on {m,m+ 1} given by

Bp
m,m({k}) =

{

1, k = m,

0, k = m+ 1,
Bp

m,m+1({k}) =











1

1 + c
, k = m,

c

1 + c
, k = m+ 1.

Then

Pρ3,ρ2(λ, µ ↑↑ ν) = Bbc
max{λ1,µ1},λ1+1(ν1)

∏

j≥2

Bbc
max{λj ,µj},min{λj−1,λj+1,µj−1}

(νj),

Pρ3,ρ2(λ, µ ↓↑ ν) = B
b/c
max{λ1−1,λ2,µ1},λ1

(ν1)
∏

j≥2

B
b/c
max{λj−1,λj+1,µj},min{λj ,µj−1}

(νj).

Let (ρ+0 , . . . , ρ
+
N−1; ρ

−
1 , . . . , ρ

−
N ) be nonnegative specializations of Λ defining a

Schur process as in Definition 3. Let π be another nonnegative specialization of Λ
such that H(π, ρ+j ) <∞ for all 0 ≤ j < N .

Let X be the set of pairs of sequences (λ, µ) as in (8) with

sλ(1)(ρ+0 ) sλ(1)/µ(1)(ρ−1 )sλ(2)/µ(1)(ρ+1 ) · · · sλ(N)/µ(N−1)(ρ+N−1) > 0

The product above is the same as in (9) without the last factor. Thus, the support
of S(ρ+0 , . . . , ρ

+
N−1; ρ

−
1 , . . . , ρ

−
N ) is contained in X .

Define a matrix P↑
π with rows and columns parameterized by elements of X via

(19) P↑
π((λ, µ), (λ̃, µ̃)) = Pρ+

0 ,π

(

∅, λ(1) ↑↑ λ̃(1)
)

×

N−1
∏

j=1

Pρ−

j
,π

(

λ̃(j), µ(j) ↓↑ µ̃(j)
)

Pρ+
j
,π

(

µ̃(j), λ(j+1) ↑↑ λ̃(j+1)
)

.

In other words, starting from (λ, µ), one first finds λ̃(1) using λ(1), then µ̃(1)

using λ̃(1) and µ(1), then λ̃(2) using µ̃(1) and λ(2), and so on. One could say that
we perform sequential update.

Note that some of the entries of P↑
π might remain undefined if one of the con-

ditions of type (18) is not satisfied. Part of the theorem below is that this never
happens.

Theorem 10. In the above assumptions, the matrix P↑
π is well-defined and it is

stochastic. Moreover,

S(ρ+0 , . . . , ρ
+
N−1; ρ

−
1 , . . . , ρ

−
N )P↑

π = S(ρ+0 , . . . , ρ
+
N−1; ρ

−
1 , . . . ,

♯ρ−N ),

where ♯ρ−N = (ρ−N , π). In other words, P↑
π changes the last specialization of the

Schur process by adding π to it.

The proof of Theorem 10 will be given in Section 9.
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Matrices P↑
π describe a certain growth process. In a similar fashion, one obtains

a process of decay. Let us describe it.

Let σ be a nonnegative specialization of Λ that ‘divides’ ρ+0 , that is, there exists

a nonnegative specialization ♭ρ+0 such that ρ+0 = (♭ρ+0 , σ). For example, σ may

coincide with ρ+0 ; in that case ♭ρ+0 is trivial.

Let Y be the set of pairs of sequences (λ, µ) as in (8) with

sλ(1)(♭ρ+0 ) sλ(1)/µ(1)(ρ−1 )sλ(2)/µ(1)(ρ+1 ) · · · sλ(N)/µ(N−1)(ρ+N−1) > 0.

Note that if σ = ρ+0 then λ(1) and µ(1) must be empty in order for (λ, µ) to lie
in Y.

Define a matrix P↓
σ with rows parameterized by X and columns parameterized

by Y via

P↓
σ((λ, µ), (λ̃, µ̃)) = Pρ+

0 ,σ

(

∅, λ(1) ↑↓ λ̃(1)
)

×

N−1
∏

j=1

Pρ−

j
,σ

(

λ̃(j), µ(j) ↓↓ µ̃(j)
)

Pρ+
j
,σ

(

µ̃(j), λ(j+1) ↑↓ λ̃(j+1)
)

.

Notice that the only difference of this definition and that of P↑
π above, is switching

π and σ and changing the second arrows from ↑ to ↓.

Theorem 11. In the above assumptions, the matrix P↓
σ is well-defined and it is

stochastic. Moreover,

S(ρ+0 , . . . , ρ
+
N−1; ρ

−
1 , . . . , ρ

−
N )P↓

σ = S(♭ρ+0 , . . . , ρ
+
N−1; ρ

−
1 , . . . , ρ

−
N),

where (♭ρ+0 , σ) = ρ+0 . In other words, P↓
σ changes the first specialization of the

Schur process by removing σ from it.

The proof of Theorem 11 will also be given in Section 9.

Remark 12. Both Theorems 10 and 11 can be generalized as follows. Assume we
have an arbitrary sequence of Markov steps of types P↑ and P↓ applied to an initial
Schur process, and let us denote by (λ(t), µ(t)) the result of the application of t
first members of the sequence. One can show that any finite sequence of random
partitions of the form

(λ(1)(t1,1), λ
(1)(t1,2), . . . , µ

(1)(t′1,1), µ
(1)(t′1,2), . . . , . . .

. . . , µ(N−1)(t′N−1,1), µ
(N−1)(t′N−1,2), . . . , λ

(N)(tN,1), λ
(N)(tN,2), . . . )

forms a Schur process with an explicitly known specializations as long as

t1,1 ≥ t1,2 ≥ · · · ≥ t′1,1 ≥ t′1,2 ≥ · · · ≥ t′N−1,1 ≥ t′N−1,2 ≥ · · · ≥ tN,1 ≥ tN,2 ≥ . . . ,

cf. the last sentence of Section 8.
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6. Markov chains on the two-sided Schur processes

We now aim at formulating (and later proving) a statement for the two-sided
Schur processes that is analogous to Theorem 10.

For two admissible matrices M1 and M2 (‘admissible’ is explained in Definition
2), and two signatures λ and µ of length n ≥ 1, we define a probability distribution
on GTn (=the set of all signatures of length n) via

PM1,M2(λ, µ ‖ ν) = const · sν/λ(M1)sν/µ(M2), ν ∈ GTn.

For an admissible matrixM and a positive number a in the annulus of analyticity
ofH(M ;u), and for two signatures λ ∈ GTn−1 and µ ∈ GTn, we define a probability
distribution on GTn via

Pa,M (λ, µ ‖ ν) = const · sν/λ(a)sν/µ(M), ν ∈ GTn.

In both definitions, we suppose that the set of ν’s giving nonzero contributions
to the right-hand sides is nonempty. Then our assumptions imply the existence of
the normalizing constants.

Similarly to the one-sided Schur process, if M1 and M2 are both single-α± or
single-β± matrices, then PM1,M2 splits into a product of geometric/Bernoulli ran-
dom variables, cf. (5)-(6) and Example 8. For Pa,M the same holds if M is a
single-α± or single-β± matrix.

Consider the two-sided Schur process of Definition 4, and let

X =

{

(~λ(1), . . . , ~λ(N)) ∈ (GT1)
c(1)+1 × · · · × (GTN )c(N)+1

∣

∣

N
∏

k=1

(

sλ(k,0)/λ(k−1,c(k−1)) (ak)

c(k)
∏

l=1

sλ(k,l)/λ(k,l−1)

(

M (k,l)
)

> 0
)

}

,

where λ(0,c(0)) = ∅, cf. (14). Clearly, suppT(a1, . . . , aN ;M; Ψ) ⊂ X .
Let Q be an additional admissible matrix such that all the parameters aj lie in

the analyticity annulus of H(Q;u). Define a matrix PQ with rows and columns
parameterized by X via

PQ((~λ
(1), . . . , ~λ(N)), (~µ(1), . . . , ~µ(N))) =

N
∏

k=1



Pak,Q

(

λ(k−1,c(k−1)), λ(k,0) ‖µ(k,0)
)

c(k)
∏

l=1

PM(k,l),Q

(

λ(k,l−1), λ(k,l) ‖µ(k,l)
)





The structure of PQ is such that to compute its row indexed by (~λ(1), . . . , ~λ(N)),

one first finds µ(1,0) using λ(1,0), then µ(1,1) using λ(1,1) and µ(1,0), then µ(1,2) using
λ(1,2) and µ(1,1), and so on.

Theorem 13. In the above assumptions, the matrix PQ is well-defined and it is

stochastic. Moreover,

T(a1, . . . , aN ;M; Ψ)PQ = T(a1, . . . , aN ;M;QΨ).

The proof of Theorem 13 will be given in Section 10.
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Remark 14. Similarly to Remark 12, a more general statement can be proved.
Assume we have an arbitrary sequence of matrices PQ applied to a two-sided Schur

process T(a1, . . . , aN ;M; Ψ). Denote by (~λ(1)(t), . . . ~λ(N)(t)) the random sequence
obtained after the application of t first matrices. Then any sequence {λ(k,l)(tk,l)}
forms (a marginal of) an explicitly describable two-sided Schur process as long as
(k1, l1) ≤ (k2, l2) lexicographically implies tk1,l1 ≥ tk2,l2 .

Remark 15. The matrices PQ are similar to the growth process defined by P↑
π of

the previous section. One could also define a ‘decay process’ for the two-sided Schur
processes that would be similar to P↓

σ; the application of the corresponding matrix

to T(a1, . . . , aN ;M; Ψ) would reduce N by 1 and remove a1 and
{

M (1,l)
}c(1)

l=1
from

the set of parameters.

Remark 16. In the setting of Remark 5, one easily shows thatP↑
π andPQ coincide

if H(π;u) = H(Q;u).

7. Exact sampling algorithms

Let us start with (one-sided) Schur processes. Theorem 10 yields an exact sam-
pling algorithm that is inductive in N .

As the base one can take the empty sequence and N = 0. Let us explain the
induction step. Assume we already know how to sample from the Schur process
Pn−1 = S(ρ+0 , . . . , ρ

+
N−2; ρ

−
1 , . . . , ρ

−
N−1).

Consider the process P̃n = S(ρ+0 , . . . , ρ
+
N−2, ρ

+
N−1; ρ

−
1 , . . . , ρ

−
N−1,∅), where ∅

is the trivial specialization. The definition of the Schur process implies that for
this process λ(N) = µ(N−1) = ∅ with probability 1, and the distribution of the
remaining partitions (λ(1), µ(1), . . . , µ(N−2), λ(N−1)) is the same as for Pn−1 that
we already know how to sample from by the induction hypothesis.

In order to obtain a sample of Pn = S(ρ+0 , . . . , ρ
+
N−2, ρ

+
N−1; ρ

−
1 , . . . , ρ

−
N−1, ρ

−
N )

we apply the stochastic matrix P↑
π with π = ρ−N to P̃n, cf. Theorem 10. The

application of this matrix requires sequential update from λ(1) up, cf. (19).

We thus see that if each of (ρ+0 , . . . , ρ
+
N−2, ρ

+
N−1; ρ

−
1 , . . . , ρ

−
N−1, ρ

−
N) is a single-α

or a single-β specializations (or trivial), then exact sampling is reduced to sampling
a finite number of independent geometric/Bernoulli random variables. Noting that
in the algorithm for the Nth step one does not have to use a single P↑

π with
π = ρ−N , but can instead use a sequence of P↑

πk
with ρ−N = (π1, π2, . . . ), we see that

the a similar reduction holds for the Schur processes with all specializations having
finitely many nonzero α’s and β’s (and γ = 0).

For the measures qvolume on skew plane partitions considered in Section 3, the
algorithm can be implemented as follows (we use Section 3 and Example 8 below).

Initiate by assigning λ(1) = · · · = λ(A+B) = ∅.

For k running from 2 to (A+B)

If k /∈ L(π) then

For l running from 1 to (k − 1)

If l ∈ L(π) then λ(l+1) := ν with ν distributed as

Gqk−l

max{λ
(l)
1 ,λ

(l+1)
1 },+∞

(ν1)
∏

j≥2

Gqk−l

max{λ
(l)
j

,λ
(l+1)
j

},min{λ
(l)
j−1,λ

(l+1)
j−1 }

(νj)

If l /∈ L(π) then λ(l+1) := ν with ν distributed as
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Gqk−l

max{λ
(l)
2 ,λ

(l+1)
1 },λ

(l+1)
1

(ν1)
∏

j≥2

Gqk−l

max{λ
(l)
j+1,λ

(l+1)
j

},min{λ
(l)
j

,λ
(l+1)
j−1 }

(νj)

End of l-cycle

End of k-cycle

At the end of each k-step we see an exact sample of the measure qvolume on
plane partitions with a smaller support. The number of nontrivial one-dimensional
samples needed to go through the k-step with k /∈ L(π) is the number of boxes
in this support. It is not difficult to see that this number is at most A for the
smallest k /∈ L(π), it is at most 2A for the next one and so on, so that the total
number of one-dimensional samples needed is at most AB(B+1)/2. The maximum
is achieved at L(π) = {1, . . . , A}, i.e. when the plane partitions are supported by
the full A×B box.

The above figures show a sample for a specific back wall profile, and an average
over ten samples with the same back wall. A limit shape and its cusp are clearly
visible, cf. [OR2].

Finally, note that a very similar algorithm would sample skew plane partitions

with weights of the form
∏

q
|λ(j)|
j .

Let us now discuss the two-sided Schur process. First, let us restrict ourselves
to the case when Ψ is Toeplitz. Then if all H(M (k,l);u−1) and ψ(u) are analytic
in a disc of radius > 1 (not just in an annulus containing the unit circle), then
the two-sided Schur process lives on signatures with nonnegative coordinates and
it constitutes a special case of the (one-sided) Schur process, cf. Remark 5. Con-
sequently, if all M (k,l) and Ψ are admissible matrices with M (k,l) having finitely
many α− and β− nonzero parameters (all others are zero), and Ψ having finitely
many α+ and β+ nonzero parameters, the inductive algorithm for the Schur pro-
cess described above reduces sampling to a finite number of independent samples
of geometric/Bernoulli random variables.

On the other hand, Theorem 13 allows us to add finitely many α± and β±

parameters to Ψ by sampling from independent geometric/Bernoulli distributions.
Hence, we can relax the assumption on Ψ in the previous paragraph by requiring
that it has finitely many α± and β± parameters.
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The figure above shows a sample of the path measure and the average over ten
samples for the extreme character of U(∞) with

α+
1 = . . . α+

10 =
1

10
, β+

1 = . . . β+
5 =

1

2
, α−

1 = · · · = α−
10 =

1

10
,

and all other parameters being zero, cf. Section 4. The first order asymptotic
behavior of such measures as the path length goes to infinity and parameters remain
fixed is known, see [OO].

8. A general construction of multivariate Markov chains

The general construction of this section will be used in Sections 9 and 10 to
prove Theorems 10, 11, and 13.

Let (S1, . . . ,Sn) and (S̃1, . . . , S̃n) be two n-tuples of discrete countable sets,

P1, . . . , Pn be stochastic matrices defining Markov chains Sj → S̃j . Also let Λ2
1, . . . ,

Λn
n−1 and Λ̃2

1, . . . , Λ̃
n
n−1 be stochastic links between these sets:

Pk : Sk × S̃k → [0, 1],
∑

y∈S̃k

Pk(x, y) = 1, x ∈ Sk, k = 1, . . . , n;

Λk
k−1 : Sk × Sk−1 → [0, 1],

∑

y∈Sk−1

Λk
k−1(x, y) = 1, x ∈ Sk, k = 2, . . . , n;

Λ̃k
k−1 : S̃k × S̃k−1 → [0, 1],

∑

y∈S̃k−1

Λ̃k
k−1(x, y) = 1, x ∈ S̃k, k = 2, . . . , n.

Assume that these matrices satisfy the commutation relations

(20) ∆k
k−1 := Λk

k−1Pk−1 = PkΛ̃
k
k−1, k = 2, . . . , n.

We will define a multivariate Markov chain P (n) between the state spaces

S(n) =
{

(x1, . . . , xn) ∈ S1 × · · · × Sn |

n
∏

k=2

Λk
k−1(xk, xk−1) 6= 0

}



SCHUR DYNAMICS OF THE SCHUR PROCESSES 17

and

S̃(n) =
{

(x1, . . . , xn) ∈ S̃1 × · · · × S̃n |
n
∏

k=2

Λ̃k
k−1(xk, xk−1) 6= 0

}

.

The transition probabilities for the Markov chain P (n) are defined as (we use the
notation Xn = (x1, . . . , xn), Yn = (y1, . . . , yn))

(21) P (n)(Xn, Yn) = P1(x1, y1)

n
∏

k=2

Pk(xk, yk)Λ̃
k
k−1(yk, yk−1)

∆k
k−1(xk, yk−1)

if
∏n

k=2 ∆
k
k−1(xk, yk−1) > 0, and 0 otherwise.

One way to think of P (n) is as follows.

Starting from X = (x1, . . . , xn), we first choose y1 according to the transition

matrix P1(x1, y1), then choose y2 using
P2(x2,y2)Λ̃

2
1(y2,y1)

∆2
1(x2,y1)

, which is the conditional

distribution of the middle point in the successive application of P2 and Λ̃2
1 provided

that we start at x2 and finish at y1, after that we choose y3 using the conditional
distribution of the middle point in the successive application of P3 and Λ̃3

2 provided
that we start at x3 and finish at y2, and so on. Thus, one could say that Y is
obtained from X by the sequential update.

Proposition 17. Let mn be a probability measure on Sn. Let m
(n) be a probability

measure on S(n) defined by

m(n)(Xn) = mn(xn)Λ
n
n−1(xn, xn−1) · · ·Λ

2
1(x2, x1), Xn = (x1, . . . , xn) ∈ S(n).

Set m̃n = mnPn and

m̃(n)(Xn) = m̃n(xn)Λ̃
n
n−1(xn, xn−1) · · · Λ̃

2
1(x2, x1), Xn = (x1, . . . , xn) ∈ S̃(n).

Then m(n)P (n) = m̃(n).

Proof. The argument is straightforward. Indeed,

m(n)P (n)(Yn) =
∑

Xn∈S(n)

mn(xn)Λ
n
n−1(xn, xn−1) · · ·Λ

2
1(x2, x1)

× P1(x1, y1)
n
∏

k=2

Pk(xk, yk)Λ̃
k
k−1(yk, yk−1)

∆k
k−1(xk, yk−1)

.

Extending the sum to x1 ∈ S1 adds 0 to the right-hand side. Then we can use
relation (20) to compute the sum over x1, removing Λ2

1(x2, x1), P1(x1, y1) and
∆2

1(x2, y1) from the expression. Similarly, we sum consecutively over x2, . . . , xn,
and this gives the needed result. �

Proposition 17 will be used to prove Theorems 10, 11, and 13. A more general
[BF, Proposition 2.7] is needed to prove the statements mentioned in Remarks 12
and 14.
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9. Application to the Schur processes

In this section we prove Theorems 10 and 11.
Let us start by putting the Schur process S(ρ+0 , . . . , ρ

+
N−1; ρ

−
1 , . . . , ρ

−
N) of Defini-

tion 3 into the framework of the previous section.
We need some general definitions.
Let y, z, t be nonnegative specializations of Λ. Set

p↑λµ(y; z) =
1

H(y; z)

sµ(y)

sλ(y)
sµ/λ(z), λ, µ ∈ Y(y),

p↓λν(y; t) =
sν(y)

sλ(y, t)
sλ/ν(t), λ ∈ Y(y, t), ν ∈ Y(y),

where Y(ρ) = {κ ∈ Y | sκ(ρ) > 0}, and for the first definition we assume that
H(y; z) =

∑

κ∈Y
sκ(y)sκ(z) <∞.

Relations (11) and (12) imply that the matrices

p↑(y; z) =
[

p↑λµ(y; z)
]

λ,µ∈Y(y)
and p↓(y; t) =

[

p↓λν(y; t)
]

λ∈Y(y,t),ν∈Y(y)

are stochastic:
∑

µ∈Y(y)

p↑λµ(y; z) =
∑

ν∈Y(y)

p↓λν(y; t) = 1.

It is immediate to see that p↑ and p↓ act well on the Schur measures:

(22) S(x; y)p↑(y; z) = S(x, z; y), S(x; y, t)p↓(y; t) = S(x; y).

Observe that S(ρ1; ρ2) = S(ρ2; ρ1), so the parameters of the Schur measures in
these relations can also be permuted.

Proposition 18. Let y, z, z1, z2, t1, t2 be nonnegative specializations of Λ. Then

we have the commutativity relations

p↑(y; z1)p
↑(y; z2) = p↑(y; z2)p

↑(y; z1),

p↓(y, t2; t1)p
↓(y; t2) = p↓(y, t1; t2)p

↓(y; t1),

p↑(y, t; z)p↓(y; t) = p↓(y; t)p↑(y; z),

where for the first relation we assume H(y; z1, z2) < ∞, and for the third relation

we assume H(y, t; z) <∞.

Proof. The arguments for all three identities are similar; we only give the proof of
the third one which is in a way the hardest. We have

∑

µ

p↑λµ(y, t; z)p
↓
µν(y; t) =

1

H(y, t; z)

∑

µ∈Y(y,t)

sµ(y, t)

sλ(y, t)
sµ/λ(z)

sν(y)

sµ(y, t)
sµ/ν(t)

=
1

H(y, t; z)

sν(y)

sλ(y, t)

∑

µ∈Y

sµ/λ(z)sµ/ν(t) =
H(t; z)

H(y, t; z)

sν(y)

sλ(y, t)

∑

κ∈Y

sλ/κ(t)sν/κ(z)

=
1

H(y; z)

∑

κ∈Y(y)

sκ(y)

sλ(y, t)
sλ/κ(t)

sν(y)

sκ(y)
sν/κ(z) =

∑

κ∈Y(y)

p↓λκ(y; t)p
↑
κν(y; z),
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where along the way we extended the summation in µ from Y(y, t) to Y because
sν(y)sµ/ν(t) > 0 implies sµ(y, t) > 0 by (12); we used (11) to switch from µ to κ, and
finally we restricted the summation in κ from Y to Y(y) because sν(y)sν/κ(z) > 0
implies κ ⊂ ν and sκ(y) > 0. �

We are now ready to return to the Schur process S(ρ+0 , . . . , ρ
+
N−1; ρ

−
1 , . . . , ρ

−
N ).

Set n = 2N − 1 and

S2j−1 = Y
(

ρ+[0,j−1]

)

, j = 1, . . . , N ;

S2k = Y
(

ρ+[0,k−1]

)

, k = 1, . . . , N − 1.

Since λ(j) and µ(k) are distributed according to the Schur measures S(ρ+[0,j−1]; ρ
−
[j,N ])

and S(ρ+[0,k−1]; ρ
−
[k+1,N ]) respectively, the projections of the support of the Schur

process to these coordinates lie inside S2j−1 and S2k, respectively.
Define the stochastic links by

Λ2j+1
2j = p↓(ρ+[0,j−1]; ρ

+
j ), j = 1, . . . , N − 1;

Λ2j
2j−1 = p↑(ρ+[0,j−1]; ρ

−
j ), j = 1, . . . , N − 1.

One immediately verifies the formula

(23) S(ρ+0 , . . . , ρ
+
N−1; ρ

−
1 , . . . , ρ

−
N )(λ, µ)

= S
(

ρ+[0,N−1]; ρ
−
N

)

(λ(N))
N−1
∏

k=1

(

Λ2k+1
2k

(

λ(k+1), µ(k)
)

Λ2k
2k−1

(

µ(k), λ(k)
)

)

,

cf. the definition of m(n) in Proposition 17.

Proof of Theorem 10. We apply Proposition 17. Set S̃j = Sj for j = 1, . . . , n,

Λ̃j
j−1 = Λj

j−1 for j = 2, . . . , n, and also

mn = S(ρ+[0,N−1]; ρ
−
N ),

P2j−1 = p↑(ρ+[0,j−1];π), j = 1, . . . , N ;

P2j = p↑(ρ+[0,j−1];π), j = 1, . . . , N − 1.

The commutation relations (20) follow from Proposition 18, and the matrix of
transition probabilities P (n) from (21) is easily seen to coincide with P↑

π. The
claim now follows from (23), Proposition 17, and the relation (cf. (22))

S
(

ρ+[0,N−1]; ρ
−
N

)

Pn = S(ρ+[0,N−1]; ρ
−
N , π). �

Proof of Theorem 11. We also apply Proposition 17. This time we need to modify
the state spaces:

S̃2j−1 = Y
(

♭ρ+0 , ρ
+
[1,j−1]

)

, j = 1, . . . , N ;

S̃2k = Y
(

♭ρ+0 , ρ
+
[1,k−1]

)

, k = 1, . . . , N − 1.
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Also set

Λ̃2j+1
2j = p↓(♭ρ+0 , ρ

+
[1,j−1]; ρ

+
j ), j = 1, . . . , N − 1;

Λ̃2j
2j−1 = p↑(♭ρ+0 , ρ

+
[1,j−1]; ρ

−
j ), j = 1, . . . , N − 1;

and

mn = S(ρ+[0,N−1]; ρ
−
N ),

P2j−1 = p↓(♭ρ+0 , ρ
+
[1,j−1];σ), j = 1, . . . , N ;

P2j = p↓(♭ρ+0 , ρ
+
[1,j−1];σ), j = 1, . . . , N − 1,

Again, the commutation relations (20) follow from Proposition 18, and the matrix
of transition probabilities P (n) from (21) coincides with P↓

σ. The claim follows from
(23), Proposition 17, and the relation (cf. (22))

S
(

ρ+[0,N−1]; ρ
−
N

)

Pn = S(♭ρ+0 , ρ
+
[1,N−1]; ρ

−
N ). �

10. Application to the two-sided Schur processes

Let us put the two-sided Schur process of Definition 4 into the general framework.
We need some notation. For n ≥ 1, an admissible matrix M , cf. Definition 2,

and a1, . . . , an > 0 in the analyticity annulus of H(M ;u−1), define

Tλµ(a1, . . . , an;M) =
1

n
∏

j=1

H(M ; a−1
j )

det
[

a
µj−j
i

]n

i,j=1

det
[

a
λj−j
i

]n

i,j=1

sλ/µ(M), λ, µ ∈ GTn.

For arbitrary a1, . . . , an > 0 also set (λ ∈ GTn, µ ∈ GTn−1)

Tλµ(a1, . . . , an) =
1

an

n−1
∏

j=1

(

1

an
−

1

aj

)det
[

a
µj−j
i

]n−1

i,j=1

det
[

a
λj−j
i

]n

i,j=1

sλ/µ(an).

Thus, we have matrices T (a1, . . . , an;M) with rows and column parameterized by
GTn, and matrices T (a1, . . . , an) with rows parameterized by GTn and columns
parameterized by GTn−1.

Proposition 19. In the above assumptions, the matrices T (a1, . . . , an;M) and

T (a1, . . . , an) are stochastic, and the following commutation relation holds:

T (a1, . . . , an;M)T (a1, . . . , an) = T (a1, . . . , an)T (a1, . . . , an−1;M).

For admissible matrices M1,M2 and a1, . . . , an > 0 in the analyticity annuli of

H(Mi;u
−1), i = 1, 2, we also have the commutation relation

T (a1, . . . , an;M1)T (a1, . . . , an;M2) = T (a1, . . . , an;M2)T (a1, . . . , an;M1).

Proof. Follows from Propositions 2.8-2.10 and Lemma 2.13(ii) of [BF]. �
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Consider now the two-sided Schur process T(a1, . . . , aN ;M; Ψ) of Definition 4.
Set n = c(1) + · · ·+ c(N) +N , and (c(0) := 0)

Sj = GTk, c(k − 1) + k ≤ j ≤ c(k) + k, k = 1, . . . , N.

Define the stochastic links by

Λ
c(k−1)+k
c(k−1)+k−1 = T (a1, . . . , ak), k = 2, . . . , N ;

Λ
c(k−1)+k+l
c(k−1)+k+l−1 = T (a1, . . . , ak;M

(k,l)), k = 1, . . . , N, l = 1, . . . , c(k).

Also define a probability distribution mΨ
n on Sn = GTN via

mΨ
n (λ) =

det
[

a
λj−j
i

]N

i,j=1
det

[

Ψλi−i,−j

]N

i,j=1

det
[

a−j
i Ψj(ai)

]N

i,j=1

, λ ∈ GTN ,

where we used the notation (15).

These definitions imply that

T(a1, . . . , aN ;M; Ψ)(~λ(1), . . . , ~λ(N))

= mΨ
n

(

λ(N,c(N))
)

Λn
n−1

(

λ(N,c(N)), λ(N,c(N−1))
)

. . .Λ2
1

(

λ(1,1), λ(1,0)
)

.

Note that this proves formula (16) for the partition function since

det
[

a−j
i

]N

i,j=1
=

n
∏

k=1

1

ak

k−1
∏

j=1

(

1

ak
−

1

aj

)

.

Proof of Theorem 13. Once again we apply Proposition 17. We set S̃j = Sj for

j = 1, . . . , n; Λ̃j
j−1 = Λj

j−1 for j = 2, . . . , n; and mn = mΨ
n ,

Pj = T (a1, . . . , ak;Q
t), c(k − 1) + k ≤ j ≤ c(k) + k, k = 1, . . . , N.

Note that H(Qt;u) = H(Q;u−1) and sλ/µ(Q
t) = sµ/λ(Q) for signatures λ and µ

of the same length.

The claim now follows from Proposition 17 as the needed commutativity relations
are given in Proposition 19, and by the Cauchy-Binet identity

(mΨ
nPn)(µ) =

1

det
[

a−j
i Ψj(ai)

]N

i,j=1

1
∏n

j=1H(Q; aj)

×
∑

λ∈GTN

det
[

a
λj−j
i

]N

i,j=1
det

[

Ψλi−i,−j

]N

i,j=1

det
[

a
µj−j
i

]n

i,j=1

det
[

a
λj−j
i

]n

i,j=1

sµ/λ(Q) = mQΨ
n (µ).
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