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Abstract

This thesis presents Client-side TCP (CTCP), a new transport protocol that supports network
level caching of data packets. By doing so, CTCP enables the retransmission of lost packets
from network nodes closer to the client instcad of only from the server. Curtendy, TCP
cxhibits inefficiencies in terms of bandwidth consumption, retransmission latency, and server
processing. CTCP attempts to reduce TCP's transmission incfficiencies by both caching
individual data packets in the nodes of the network and by shifting the reliability burden from
the server to the client. Network level caching, enabled by CTCP, reduces network traffic near
the server as well as packet latency. Specific design and implementation details of CTCP ate
presented, and an extensive probabilistic analysis of both TCP and CTCP shows CTCP’s
advantages. Analysis shows that network level caching using CTCP leads to a reduction of up
1o 88% in redundant bandwidth consumed and redundant packet latency.
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CHAPTER 1: INTRODUCTION

The Transmission Control Protocol (TCP) was developed in the late 1970's to transmit data
reliably in the presence of Internet packet loss due primarily to network congestion. This
protocol later became the standard transport protocol for the Internet. TCP and other reliable
transport protocols handle lost packets by having the sender detect the loss and then
retransmit the lost packet. TCP also uses a congestion control algorithm to dynamically react

to changing bandwidth limits of the Internet.

While TCP’s sender-based packet retransmission and congestion control guarantee reliable
transfer of data, they exhibit three inefficiencies. First, since packets can be lost at any point
between the server and the client, packets that are retransmitted end up traversing at least
some parts of the network twice. This extra traffic is typically in the form of large data packets
and consumes cxtra bandwidth. Since TCP connections must share the bandwidth available
on the Internet, this extraneous bandwidth consumption degrades the througiiput on all data
transfers. Second, TCP adds to the latency of lost packets by requiring the server to detect the
packet loss and retransmit the packet over a portion of the network that the packet has already
traversed. High latency of a single packet is affects the quality of interactive sessions more
than the high throughput of a bulk data transfer. Lastly, the server must spend processing
time to both detect and retransmit lost packets and to perform congestion control. This extra

processing burdens the server and limits the number of clients that the server can handle.

This thesis explotes the idea of using network-level caching to combat these inefficiencies of
TCP. Network level caching is the process of caving individual data packets in the nodes of
the network. This allows data retransmission to originate from a network node instead of
from the server. The node that is closest to the client that has the packet in its cache is chosen
as the source of the retransmission. Consequently, network level caching reduces the amount
of network traffic ncar the server. In addition, the overall retransmission latency may be
reduced, as the packet does not need to travel the entire path from the server to the client.
Existing protocols such as Snoop TCP [2] have used network level caching to improve

throughput over wireless networks. This thesis expands the node caching idea to standard



wired netwotks. Our analysis shows a reduction of up to 88% in redundant bandwidth and

redundant packet latency with network node caching.

To support the concept of network level caching over standard networks, a new transport
protocol is needed. This thesis describes the development of a new protocol, Client-side TCP
(CTCP), that supports and uses network level caching. Under CTCP, the burden of ensusing
reliable transmission is shifted from the server to the client. To do so, CTCP replaces TCP’s
Data-Acknowledgment network communication scheme with a Request-Data scheme.
Instead of the server sending another data packet to the client if the client's acknowledgment is
not received, the client sends another request to the server if the data is not received. Specific
design and implementation details are discussed, and an analysis of both TCP and CTCP
shows CTCP’s advantages. CTCP is shown to support network level caching and to reduce

the load on the server by requiring less processing per packet received by the server.

Chapter 2 presents the design of CTCP, including network requirements such as appropriate
cache sizes and motivations behind particular design choices. The prototype implementation
of CTCP is covered in Chapter 3, which discusses the underlying netwotk platform and the
packet processing performed. Chapter 4 evaluates and compates the performance of TCP and

CTCP. Lastly, Chapter 5 concludes with a summary and discusses future research directions.



CHAPTER 2: DESIGN

In order to incorporate network-level caching into reliable data transfer, netwotk nodes need
to have the ability to cache and retransmit data packets. This new network functionality
requires the node to examine all packets, a unique name identifying each packet, and the ability
to retransmit independent from the server. Other design considerations that are discussed
include connection establishment and termination, reliable data transfer, and server buffer

state.

2.1  Routers and Packets

The most fundamental requirecment of netwotk node caching is the existence of caches on
network nodes (or routers) and new packet processing routines that access the cache.
Currently, routers are designed simply to route packets from their source to their destination.
In particular, traditional routers do not contain caches and do not allow additional packet

processing to be specified.

There are two solutions to the problem of limited existing router functionality. One choice is
to build new routers that incorporate the requirements for network level caching.
Alternatively, a programmable netwotk, such as an active network, could be used. The choice
between these two options is an implementation issue discussed in Chapter 3. Regardless of
the implementation chosen, the design solutions presented below assume the presence of a

cache in the router and an ability to specify packet processing actions.

2.1.1 Packet Types

In general, there are two types of packets used by reliable transport protocols: data packets and
control packets. Data packets contain the user data being transferred from the sender to the
recciver. In addition to the data, data packets contain a name, usually represented as a large
integer, to identify the data contained within the packet. This name is located in the header of

the data packet and is intended to be unique for each data packet.



Control packets tiansmit protocol information between the sender and the receiver. This
information is used to handle things such as connection management, network reliability, and
congestion control. Depending on the transport protocol, control packets used for reliability
can be one of two types: Requests or Acknowledgments. Request packets request more data
to be sent. Acknowledgment packets verify the receipt of data while implicitly requesting
more data to be sent. Both Requests and Acknowledgments also contain the identifier of the

data packet to which they refer.

2.12 Packet Interception and Processing

Given that we can specify additional packet processing for routers to perform as mentioned
above, we modified the nodes to be able to cache data packets and to retrieve them when a
control packet is received. We decided to cache all data packets that are transmitted through
them. Caching every data packet means that our routers will take slightly longer to forward
cvery packet than traditional routers because even those that are unlikely to need
retransmission are still cached. A more efficient alternative (discussed in more depth in

Section 5.1.3) might be to cache packets only when data loss is relatively frequent.

When a packet is received by a router, the router identfies the packet as either a data or a
control packet. Once the packet type is identified, the router chooses an action based on what
type of packet was received. If a data packet is received, the router extracts the name from the
packet and stores the data in the cache using the name as a lookup key for later retrieval. For
control packets such as Requests, the node again retricves the name from the packet. This
name is then used as a key to lookup in the cache. If the key is present, a new data packet is
constructed using the data from the cache that was associated with that key. This data packet
is then retransmitted to the client. If the name was not present in the cache, then the router
simply forwards the control packet onto the next node towards the server using the routing

tables.

2.1.3 Unique Packet Naming

In order to successfully cache data as a key-value pair, unique names are needed for cach
packet that is transmitted through the network. Without a naming scheme, the nodes in the
middle of the network would be unable to distinguish between packets containing data from

different documents.
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TCP uses a single name, called a sequence number. This sequence number uniquely names a
packet within a connection. Each consecutive data packet 1eceives a consecutive number.
CTCP also uses unique sequence numbers to refer to the data packets of a particular

connection.

In a network level caching scheme, however, it is not sufficient to use only sequence numbers
to uniquely identify data packets. Since data packets are present in the node’s cache, they may
be accessed by any connection that is routed through that node. Without further
identification, a packet from the wrong document may be retrieved from the cache because of

a collision of sequence numbers.

Because of the need for a name unique for each data transfer, CTCP requites the server to
assign an identifier to the document when the connection is established. The server generates
this document identifier by calculating a hash of the document’s contents. While a hash
function does not guarantee uniqueness, it reduces the probability of collision to 1 in 2°, where
n is the size in bits of the hash. The hash size used for CTCP is 64 bits resulting in a 1 in 2%
probability of collision. Hashing the document’s contents allows the server to assign the same
name to a document until the contents of the document change. This dynamic naming
scheme reduces the likelihood of receiving stale data from a cache. In additon, using an
identifier based on the contents of the document allows for the possibility of using cached data
for subsequent connections. However, the probability of this occurring depends on the size of

the cache and is expected to be small, as described in Section 2.1.4.

CTCP uses the combination of the document identifier and the sequence number as the
packet’s unique name. Every packet that is transmitted by CTCP contains both of these
names thus allowing the routers to uniquely cache data packets using the names as a unique

lookup key.

2.14 Cache Size

An important design parameter is the size of cach node's cache. The size of the cache
determines the length of time that packets will stay in the cache before being replaced by new
packets. The cache should be small for a cheaper implementation, but must be large enough

to hold packets long enough for lost packets to be retransmitted. If packets are overwritten in
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the cache before they are nceded, then the cache is not being used efficiently. The optimal size
of a node cache in terms of price and performance is one in which packets stay in the cache
just long enough for retransmission to occur if necessary. If retransmission is not necessary,

then the packet will be replaced by newly arriving packets.

The optimal cache size can be calculated by multiplying the bandwidth of the router by the
time that it takes the transport protocol to detect and retransmit a lost packet. This represents
the number of packets that will be routed by the node before it is safe to assume that the
packet was successfully delivered. For both TCP and CTCP, this length of time is
approximately the round-trip time. While the optimal cache size depends on the specific
router's bandwidth capabilides, several "back of the envelope" calculations can be made.
High-end Cisco routers currently range from speeds of 155 Megabits per second to 2.4
Gigabits per second [3]. Round-trip times for typical Internet paths range from a few
milliseconds to hundreds of milliseconds depending on traffic levels. Multplication of these
parameters leads to cache sizes of 1MB-200MB. The same Cisco routers currently have
64MB-256MB of memory for routing tables and 32MB-128MB of memory for buffering

incoming packets. These numbers indicate that caches are already feasible on today's routers.

2.2 Client-side Transmission Control Protocol (CTCP)

A transport protocol that supports network level caching needs to have the ability to
retransmit data packets from network nodes instead of solely from the server. TCP, the
transport protocol currently used on the Internet, was found to be inappropriate for this node
retransmission task. Therefore, in order to take advantage of the new network caching service

described in Section 2.1, a new transport protocol was developed.

2.2.1 Server Independence

CTCP uses a packet retransmission scheme that is independent of the scrver. This is a
significant departure from TCP's communicadon scheme. TCP guarantces reliable data
transfer using a Data-Acknowledgment (or Data-Ack) model. TCP requires the client to
acknowledge all data received from the server by transmitting an Ack packet. The server, in
turn, is in charge of making sure the data (via Data packets) arrives at the client. A simplified

picture showing these Data-Ack operations is presented in Figure 1. The server (§) sends Data
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packet #1 and #2 to the client (C) via nodes 1, 2, and 3. The client acknowledges cach of the
data packets as they are received. If Data Packet #2 is lost, the scrver must retransmit the
packet once its loss is detected. TCP's operations are therefore directly tied to the server's

actions as the server is responsible for reliable transmission to the client.

Intermediate Nodes
s] o @ o |c
[} (] (] [] )
) ) [] [} ]
| Data Pkt #1 | 5 i ‘
) [ ] T [ ]
E i i >
i : "~ Ack Pkt #1 !
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e i | : ' ]
| Data Pkt #2 ’ 3 ‘
E ala E E Pkt Lost E
ERetransmittcd ' é ; —> ;
(] (] ] |
1 } 1 Ack Pkt#2 |
| s P 5
v

Figure 1: TCP Reliable Transfer Model

Although TCP is dependent on the server, it could be used in a network node caching
scenario. Since the server is responsible for detecting packet loss under TCP, the server would
have to tell the intermediate node with the cached data that the data had been lost. This loss
information would then cause the intermediate router to retransmit the packet in order to use
the cached data. However, to inform the router, the server would have to send some sott of
control packet to the node. This would reduce network traffic, since control packets are
typically much smaller than data packets. However, the retransmission problems of increased
latency and server ovetloading problems are not addtessed by this scheme. CTCP addresses

these problems by removing the server from the retransmission process entisely.

In otrder to make retransmit lost packets without server intervention, CTCP transfers the
burden of rcliable transmission from the server to the client. CTCP uses a Request-Data

model to iransmit data across a network. The client sends Request packets to the server and
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the server replies with Data packets. Figure 2 shows an example of CTCP's explicit request

mechanism. Data Packet #1 is requested by the client and the server responds.

Intermediate Nod=s
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Figure 2: CTCP Request-Data Model

The advantage of having an explicit Request-Data model is that intermediate nodes are allowed
to short-circuit the round-trip client-to-server loop and satisfy the requests with data located in
their cache. Figure 3 shows the client sending Request #1 asking the server for Data packet
#1. Data packet #1 is successfully sent to the client in response. The client then asks for the
next data packet via Request #2. Data packet #2 is lost before it is received by the server.
The client detects the lost packet (described below in Section 2.2.2) and requests the data
again. This second request is simply routed by node 3 since it does not have a copy of the
correct data packet in its cachc. Node 2 is able to intercept the request and retrieve Data
packet #1 from its cache to be retransmitted to the client. For this retransmission procedure
to work effectively, it is assumed that the Request packets are routed along the same network
path as the Data packets. If the routing is asymmetric, then the Requests will be retransmitted
back to the server without finding the cached data. Assuming a symmetric network path,
under CTCP, cach node cffectively acts as a setver for the data packets contained within their

cache and independence from the original server is achieved
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Figure 3: CTCP Retransmission Example

2.2.2 Connection Establishment and Termination

CTCP's client-server connection establishment is similar to that of TCP. To initiatc a
connection between the client and the server, several packets are exchanged pdor to any
transmission of data. CTCP uses a three-way handshake to establish a connection between the
client and scrver. The pdmary difference between CTCP's and TCP's conncction
establishmen: is that in CICP, the client is required to send the filename of the document
being requested as protocol information. This information is contained in the header fields of
the initial packet sent from the client to the server. The filename is part of the protocol so that
a document identifier can be generated by the server as discussed in Section 2.1.3. The fact
that a filename is requited to initiate a connection means that CTCP is dependent on the
existence of a name for the data to be transmitted. TCP, on the other hand, does not include a

filename as part of the connection establishment and therefore does not have this dependence.

As with connection establishment, a few packers are exchanged to terminate a connection
once the data is reliably received. In CTCP, since the client is in charge of retrieving the data

from the server, the client is also responsible for terminating the connection from the server.
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TCP allows the client and server to terminate its half of the connection independently of each
other. In practice, however, a TCP server initiates the connection termination by closing its
half of the connection and then, upon receiving the server's termination packets, the client
docs the same. Further details on connection establishment and terminadon can be found in
Appendix A. CTCP terminates a connection by having the client send a termination packet to
the server. The server then replies by sending an acknowledgment back to the client. The

connection is closed once the client receives the acknowledgment from the server.

2.2.3 Reliable Data Transfer
As a transport protocol, CTCP must provide reliable data transfer between two end-points of
a connection. CTCP guarantees this reliability in the same fashion as TCP: by detecting a lost

packet and then retransmitting it.

In order for TCP to discover packet loss, the server maintains a timer based on an estimaton
of how long it takes a packet to travel from the server to the client and back again. This
estimation is dynamically obtained by monitoring the time between sending a data packet and
receiving an acknowledgment for the data. The server uses this round-trip time estimation to
set a conservative timer cach time a packet is sent. The timer is reset whenever any packets are
received. If this retransmission timer ever goes off, then the server assumes that the packet

was lost and responds by retransmitting the data.

In addidon to simple dmeouts, TCP also incorporates the Fast Retransmit algorithm
developed by Jacobson [5] to avoid idle timeout delays. TCP's Fast Retransmit algorithm is
show schematically in the left-hand side of Figure 4. Data Packet #2 is lost creating a hole in
the data received by the client. Given that TCP allows only a single cumulative Ack, the client
continues to acknowledge Data Packet #1 upon receiving Data Packets #3, #4, and #5.
Once the server receives the third duplicate Ack #1, the Fast Retransmit algorithm takes
cffect. The server assumes that Data packet #2 was lost and retransmits it. The Iast
Retransmit algorithm under TCP states that if the server teceives three duplicate Acks in a
row, then the server should assume that the packet was lost and not simply delayed and

retransmit the packet.
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Figuse 4: Fast Retransmit Algorithm Under TCP and CTCP

Like TCP, CTCP also keeps track of round-ttip time estimators as a way to discover packet
loss. The CTCP client monitors the amount of time between sending a request and receiving
the data for the request and uses this data as an estimation of round-trip times. Timers are set
based on these estimations in order to detect lost packets. As a second detection mechanism,
CTCP also has a Fast Retransmit algorithm. Since there are no acknowledgments, the client
assumes a packet has been lost if it receives three or more Data packets that are out of order.
The right hand side of Figure 4 shows this Fast Retransmis<ion scenario. Data packet #2 is
lost on its way from the server to the client. The client, unknowingly, continues to request
more data. Once the client receives Data packets 3, 4, and 5, without receiving Data packet
#2, the client assumes that it was lost. Once a lost packet is detected, retransmission is
straightforward—the client simply retransmits the Request to the server asking for the lost

data.

2.2.4 Flow Control

Flow control prevents a slow client from being overrun by a fast server. Since the client only
has a fixed amount of buffer space for incoming packets, the client must restrict the rate at
which the setver can send data. In TCP, the client advertises the amount of buffer space that
it has available in every acknowledgment sent to the server. This advertisement is called the

flow control window.

17




In CTCP, the client manages the flow control and the transmission of the packets. Therefore,
the client is not required to inform the setver of its flow control window. Instead, the client
simply limits the number of requests sent to the server. Therefore, to implement flow control,
the CTCP client only requests the number of data packets that can be saved in its internal
buffer.

2.2.5 Server Buffer State

A TCP server only needs to maintain enough buffer space to hold the portion of the
document it is trying to send. This buffer can then be reused for the next portion of the
document after all the data that has been sent is acknowledged. The initial design of CTCP,
however, requires a CTCP server to maintain a larger buffer. CTCP doesn't currently allow
the client to inform the server about the receipt of data. The client can only request more
data. Since the server can't tell if the client has received any of the data, it cannot get rid of the
buffer containing the document data. Thercfore, the server must hold onto the entre
document until the client closes the connection. The solution to this problem is to have the
client acknowledge received data to the server in addition to requesting new data. This would

allow the server to manage its buffer state more intelligently similar to TCP.
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CHAPTER 3: IMPLEMENTATION

This section describes the current prototype implementation of CTCP. It is written in Java
and runs on an ANTS-based active netwotk. The network prozrammability provided by
ANTS was crucial for implementing the packet caching and retrieval that CTCP requires to be
performed at the netwotk nodes. Java provided a high-level language thereby aiding in
development, testing, and debugging.

3.1 Active Network Platform
The purpose of designing and implementing CTCP is to take advantage of caching at the

network level. As mentioned in 2.1, in order to cache packets in routers, it is necessary to have
the ability to specify additional processing for the router to perform. In addition, routers need
to dedic.ate memory as a cache for data packets. The routers in the Internet do not contain
cither of these capabilities. In fact, the role of computation within traditional packet networks,
such as the Internet, is extremely limited. Although routers in traditional networks may
modify a packet's header, such as the time-to-live ficld, they transfer the user data opaquely

without examination or modification.

One solution to limited functionality within current router technology is to build new routers
that contain all of the new capabilities desired. This opticn was discarded as being impractical

and prohibitively expensive for experimentation.

Current research in active networks presents a more flexible alternative. In an active network,
the routers of the network are programmable and perform customized computations on the
packets travelling through them. These networks are active in the sense that nodes can
perform computations on, and modify, the packet contents. While active networks do not
petform caching at the network level by default, their programmable nature allows the desired
functionality to be added. The active network solution was chosen because of its inherent
flexibility and because of its availability in our lab. As such, CTCP was implemented on an

active network prototype called ANTS (Active Network Transfer System) [13].
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ANTS provides two important functions with respect to network level caching. First, ANTS
allows the protocol to define a packet processing (or forwarding) routine for each packet type
in the protocol. This combination of packet data and packet processing routine is called a
capsule in ANTS terminology. Specifically, when a capsule arrives at an active node, the node

exccutes the processing routine that is associated with the type of capsule received.

The second major feature of ANTS is the existence of node storage organized as a soft-state
cache. The cache is available from the nodes as a NodeCache object. Two methods exist in
order to operate on the cache: get () and put (). The put () method allows objects to be
inserted into the cache as a key-value pair, while the get () method retrieves the objects
associated with the specified key. These methods were used by the capsule processing routines

to cache and retrieve data.

3.2 Capsule Processing
Implementing CTCP required the definidon of two types of capsules: Request capsules
(CTcpReqCapsule objects) and Data capsules (CTcpDataCapsule objects). Both of these

capsule objects implements a processing routine, called evaluate().

Whenever a node receives a capsule, it calls the evaluate () method on whichever type of
capsule is received. Calling evaluate() allows CTCP to respond to the receipt of both

Request and Data capsules by each active node.

Data capsules contain the user data to be transferred and are sent from the server to the client.
When a Data capsule is received by an active node, it calls the forwarding routine for
CTcpDataCapsule. Instcad of simply routing the capsule toward its destination, the
evaluate() method saves a copy of the Data capsule in the node's cache. As an
optimization, the capsule is not cached at the client or server nodes since these two nodes

represent cither the source or the destination of the data.

Request capsules contain the control information used to manage the reliable transfer of data.
The client sends Request capsules to the server to ask for data. The setver is in charge of
responding to the client's requests. The forwarding routine for a Request capsule performs the

other half of the caching procedure. The evaluate () method for a Request capsule looks in
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the node's cache for the requested Data capsule. If an entry is found, then the
CTcpDataCapsule is retrieved from the cache. This new Data capsule's source and
destination addresses and ports are set according to the received request.  The
CTcpDataCapsule object is then routed by the node. If no corresponding entry is found in

the cache, then the request capsule is simply routed onto the next node.

3.3 Client-side Transmission Control Protocol

While the caching performed at network nodes serves to improve the protocol's performance,
it is the endpoint processing at the client and server that ensures the correctness and reliability
of CTCP. In the current CTCP implementation, only onc-way data transfers from the server
to the client are implemented. In this model, the client asks for a document and the server
sends it to the client. This is in contrast to 2 more general two-way model that allows data to
be sent in either direction. In a full implementation, however, the server and client modules

would be integrated to support the two-way data transfer model.

The server needs to take requests from the client, obtain the requested data, and respond by
sending out 2 Data capsule. This functionality was implemented as a single module, called

CTcpServerApplication, shown in the rght side of Figure 5.

A CTCP client has many more dutes than the server. The client generates requests and sends
them to the server, while setting a imeout timer when a capsule is sent. The client also has to
reorder any data that is received out of order and drop any duplicate data that is received. To
maintain independent application and protocol functionality, the client implementation was

divided into an application level and a protocol level, shown in the left side of Figure 5.
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Figure 5: Module Diagram

3.3.1 CTCP Server Module

The pamary responsibility of the server is to respond to a client's requests. When the server
receives a2 Request capsule from the client, it responds with a Data capsule. The server also
handles connzction establishment and termination (described in general in Section 2.2.2 and in
more detail in Appendix A). The single object implementing these duties, called
CTcpServerApplication, is a small and simple object since most of CTCP's functionality is

performed by the client.

The server was implemented using a single thread of control. This was possible because the
server only requites a request-response type of action. For every Request capsule received by

the server, the server replies with a Data capsule containing the requested data.

In order to be capable of serving many clients simultaneously, the server maintains a list of
connections that are open. The server keeps track of connections by using a Java obiect called
CTcpServerConnection. Each connection object is uniquely identified by three fields: the
client address, the client port, and a connection identifier chosen by the client. Every packet
sent from the client to the server contains these three fields allowing the server to uniquely

identify the connection for a given capsule.
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In order to receive capsules from the undetlying network, ANTS requires the server to
implement the receive () method. In the CTCP server, the receive () method determines
which connection the capsule is for by searching through the connection list. Once
receive() determines the connection, it determines the type of incoming capsule. If the
capsule is 2 Request capsule, the functon recvRequest () is called. Exceot for capsules
required to initiate and terminate connections, the server should only receive Request capsules.

Any other capsules received generate an error.

The recvRequest () procedure performs the protocol portion of the server. First, it verifies
that the data requested by the capsule is within the range of the actual data. This verification is
accomplished by comparing the requested sequence number to the size of the buffer of user
data stored in the connection object. After verifying that the data requested is valid, 2 new
Daua capsule is created by the server. The data is then copied into the capsule and is sent back

to the client.

The CTCP server module is therefore seen to accept requests and generate valid data packets

by using only two primary functions: receive () and recvRequest ().

332 CTCP Client Application Module
The client half of the CTCP implementation was written as two scparate modules. A protocol
level object (CTcpClientService) provides the reliable transfer capability to the application

object (CTcpClientApplication).

In the prototype implementaton of CTCP, we have written a simple application that allows
the user to retrieve a file from the server. The user is allowed to specify both the name of the

file to retrieve from the server and the name under which to save it on the local system.

3.33 CTCP Client Protocol Module
The CTCP client protocol module performs multiple functons. First, the protocol object is
responsible for reliably transferring data from the server. Second, it provides an interface to

this reliable transfer mechanism to applications.
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The client application is provided access to the client protocol object using two methods:
connect () and recv(). These methods allow the application to create a connection to a

server and to transfer the data.

The connect () procedure initiates a connection from the client to the server. The
application specifies the IP address and port number of the server as well as the path name of
the file to be retricved, as arguments to the procedure connect (). The connect () method
connects to the server using the connection establishment sequence discussed in Section 2.2.2
and Appendix A. A connection identifier is returned to the application in order to distinguish

between distinct connections.

The client service object was designed to support use by many clients having many
simultaneous connections open. Each connection's information is stored as a client-side
object called CTcpClientConnection. These connection objects contain many fields
including the server address and port number, a buffer containing received data, round-trip

time estimators, and congestion control information.

Cnce the client is connected to the server, the application begins the retrieval data from the
server by calling the protocol object's recv() method. The connection identifier returned
from the connect () call and a user buffer in which to reccive the data are passed as
arguments to the recv() method. Once recv() is called, the client begins to request data
from the server and does not return from the recv() method until either all data is received

from the server or the user buffer is filled.

During the call to recv() the client's tasks can be broken down into three main categories:

packet flow control, retransmission timers, and congestion control.

3.3.3.1 Flow Control

Flow control restricts the number of outstanding requests that can be sent to the setver, as
limited by the client's buffer space. Unlike TCP, flow control is implemented entirely within
the client in CTCP. The flow control window is simply the amount of unallocated buffer
space in the client. Each outgoing request allocates enough space in the CTCP client's internal

buffer to hold the requested data thereby reducing the flow control window. When a Data
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capsule is received by the client, it copies the data from the capsule into the buffer space
allocated by the corresponding Request capsule. Later the data is copied from the client's
internal buffer to the user buffer supplied by the application in the call to recv(). At this
point, the buffer space previously containing the data is matked as unallocated in order to be
reused by more incoming data capsules. Since more buffer space is now available, the client's

flow control window is increased allowing more requests to be sent to the server.

3.3.3.2 Retransmission Timers

In the CTCP implementation, retransmission timers are implemented using a counter for each
connection. Each counter represents the number of half-seconds that has elapsed since a
packet was sent or received by the client. Every 500ms, the client increments each
connection's counter and compares their values to the connection's timeout threshold. If a
counter is larger than the connection's timeout value, the CTCP client determines that a

capsule was lost somewhere and retransmits the appropriate request.

To set the timeout value for each connection, the client needs an estimate of how long it takes
a data packet to travel from the client to the server and then for a response to travel back from
the server. This estimate, called a round-trip time estimate, is calculated by the client using a
method similar to TCP's timestamp option [11, 12]. Each Requert capsule the client sends to
the server is stamped with the current time before transmission. The setver is then responsible
for echoing this timestamp on the Data capsule sent in reply. When this capsule is received,
the client uses the difference from the current time and the capsule's timestamp to maintain an
estimate of the maximum round-trip time necessary. The estimate is recorded in two patts: the
smoothed average and the mean deviation. The first step to maintaining these statistics is to
calculate the error by subtracting the newly measured round-trip time from the previous value
for the average. The smoothed average is then calculated by taking the previous average and
adding one cighth of the etror. The mean deviation is updated by adding in one fourth of the
difference between the absolute value of the error and the previous value for the mean
deviation. The retransmission timer is then set for a conservative value according to these
statistics. The new timcout value is set to the average plus four times the mean deviation. By
setting the timer for this conservative value, the client reduces the probability of performing an

unnecessary retransmission due to the network delaying packets.
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3.3.3.3 Congestion Control

The CTCP client implements congestion control using the same algorithm used by TCP [11,
12]. The client maintains a congestion window (cwnd) and a slow start threshold (ssthresh)
for each connection. The congestion window limits the number of requests sent to the server

in the same fashion as the flow control window.

Whenever the cwnd is less than ssthresh, the client performs slow start. During slow start,
the cwnd is incremented by one for every data capsule received by the client. This causes the
client to increase its requesting rate exponentially. If cwnd is greater than ssthresh, the client
performs congestion avoidance during which cwnd is incremented by 1/cwnd for each data

capsule.

When congestion occurs (indicated by either a timeout or the reception of out of order data),
one-half of the current window size (with a minimum of two) is saved in ssthresh. In
addition, if the congestion is indicated by a timeout, cwnd is reset to one capsule thereby

forcing slow start.

3.3.3.4 Threads

Because of the necessity of monitoring timeouts, the CTCP client was not implemented using
a single thread. ANTS was designed to give control to the protocol whenever a capsule was
received by calling the protocol's receive () method. In order to implement functionality
that occurs independently of receipt of capsules, it is necessary to use a separate thread of
control. The CTCP client protocol object nceds a second thread since it may be required to
retransmit capsules even while capsule aren’t being received. Figure 6 summarizes the
thrr *ding model used in implementing the CTCP client. The node thread calls receive()
evu.y time a capsule is received. ANTS imposes the constraint that while a capsule is being
processed by a protocol's receive() method, no other capsules can be received. This
constraint necessitates a quick return from receive(). Therefore, the receive () method
simply copies the data from the Data capsule and updates the connection’s sequence numbers.
In particular, no capsules are sent from within the call to receive(). Instead, a second
thread, the protocol thread, executes a loop of nionitoring the timeouts and sending any data

necessary. This thread originates from the application’s call to recv ().
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CHAPTER 4: EVALUATION

Clieni-side TCP and network node caching were evaluated in three areas. First, a theoretical
analysis was made of the effectiveness of network node caching in typical data transfers
regarding bandwidth consumption. This type of analysis was then repeated for end-to-end
packet latency improvements. Lastly, the packet processing routines of both CTCP and TCP

were compared.

41 Bandwidth Analysis

One of the goals of network node caching is to reduce the traffic in the network links nearest
the server. This reduction results from the fact that when data packets are cached at cach
node along the path between the client and the server, they do not need to be retransmitted
from the server if they are lost. In order to analyze the effectiveness of network nodc caching
on bandwidth, a probabilistic model of packet loss in both CTCP and TCP data transfers was
made. This model was used to determine, for both TCP and CTCP, the expected number of
hops taken by each packet. Our analysis shows that CTCP transmits packets over fewer hops
than TCP thereby reducing the bandwidth consumed by each packet's transmission.

In order to compare the bandwidth utlized by TCP and CTCP, a simple model of network
packet loss was developed. The model is pictured in Figure 7. It shows a sezver (S) connected
to a client (C) via n-1 intermediate routers. These routers form the path of n links traversed by
packets sent from the client to the server and vice versa. It is assumed that for a given TCP or
CTCP connection, the netwotk path would stay the same for the duration of the connection.
At each link, there is a probability that a packet is lost due to a congested router. It is assumed
that this probability of loss (P) is the same for each lirk as well as for each packet traversing
the link. In addition, it is assumed that packet losses are independent of each other. In reality,
packet losses tend to occur in bursts causing many packets to be lost in a row. However,
bursts of packet losses are accounted for by using the average packet loss over an entire

connecton.
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Figure 7: Model of an N-link Network Path

This model represents a Bemoulli process of n trials of losing a packet with probability P. As
such, the relationship between P and P, the probability that a packet is lost somewhere along
the path, is:

P,y =P+(1-P)-P+(1-P)'-P+..+(-Py.P

n-1

=P} (1-P) O
i=0

=1-(1-P)"

Data from Internet traffic studies done by Paxson [7, 8] was used to determine realistic values
of P and P, These studies analyze traffic of TCP transfers along various paths through the
Internet, including the Trans-Adantic link between the U.S. and Europe. They indicate that
approximately 50% of all connections do not experience any packet loss at all while the other
half lose at least one packet. The patterns of packet loss demonstrated an unsurprising diumal
behavior of periods of high packet loss during working hours and little or no loss during
periods late at night, especially eatly moming hours. The 50% of connections that exhibited
packet loss averaged 4-17% packet loss. The higher packet losses tended to occur on the
Trans-Atantic link between the U.S. and Europe. Purely domestic U.S. connections exhibited

a 4.4% packet loss rate.

Bounds for the network path length (n) were determined by measuring some common
Internet paths of various geographic lengths. For example, the average path length between a
computer in MIT's Laboratory of Computer Science and MIT's web server is 5 links while the
distance between MIT's web server and Berkeley's web server is 14 links. Trans-Atlantic
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network paths tend to be only a little longer in terms of hops since the ocean is bridged by a
single link. For this analysis, however, attendon is focused on U.S. domestic connections.
Given Equation 1 and Paxson's results of 4.4% packet loss over a domestic U.S. network path
(cqual to P_,,), the probability of losing a packet over a single link (or P) is 0.89% for short
network paths (n=5) and 0.30% for longer paths (n=15).

The goal of this bandwidth analysis is to compare the total number of redundant hops (TRH)
of a packet transmitted using TCP to that of a packet transmitted using CTCP. Total
redundant hops is defined as the number of links a packet traverses more than once. In the
normal casc where a packet is not lost, the TRH is equal to zero. However, the expected value
for TRH is greater than zero due to packet loss. We also define and calculate total hops (TH),
or the total number of hops a packet must take to reach the client, for both TCP and CTCP.
TH is larger than TRH by the length of the network path (TH=TRH +n) because TRH
disregards the n non-redundant hops that arc necessary to get the packet to the client and only
counts the redundant ones. While TH is 2 measure of the overall benefits of network level
caching, we focus on TRH since redundant hops represent the inefficient use of bandwidth

that can actually be eliminated.

We calculate the expected TRH by counting the number of times a packet must be
retransmitted over cach link due to packet loss. In addition, the number of times a packet
must be retransmitted over the links necarest the scrver is calculated as it shows the greatest
discrepancy between TCP and CTCP for a single link. Therefore, the link closest to the server

is the link that would receive the most benefit by using network level caching,

To calculate the total number of redundant hops for a packet, a summation of the number of
times the packet is retransmitted over each link is computed. Since a probabilistic model is
being used, the actual number of retransmissions is unknown, so the expected number is used

instead. The formula for total hops is:

TRH =S EDdi=iy) @

=0
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where TRH is the total number of redundant hops a packet must make to reach the client, r is
the number of retransmissions, i is the number of the link, and E[rli =i,] is the expected

number of times a packet must be retransmitted over the i* link due to the packet being lost
further down the path.

The definition of expected value leads to the following equation for E[rli =i,):
Elri =iy]= X %0 - Pucins (Fprio) o)
=0

where r is the number of retransmissions and P, ., (r,i) is the probability of retransmitting a

packet r times over the i link and is given in Equation 4.
Poim (ri)=F - Py @

where P, is the probability of losing a packet r times over links past the i* link (e.g. i+1, i+2,
..., n), and P, is the probability that the packet is then successfully transmitted through the rest

of the network to the client.

Because of their differing retransmission strategics, P, and P, take on different values for TCP
and CTCP. TCP must retransmit a packet from the server regardless of where the packet is

lost in the netwotk. This leads to the links nearest the server seeing more retransmitted
packets than links close to the client. Thus P’ equals the probability that r packets are lost
in the portion of the network after the current (or i*) link. P equals the probability that the

packet is transmitted successfully over the rest of the network (e.g. the links from the i to the
(n-1)* link).

e -G-r)

P’ =(1-P)~ ©)
P (r)=(-0-Py") -1-PY"
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CTCP, on the other hand, was designed to retransmit a lost packet from the last node it
successfully reached. Since cach packet is cached for possible retransmission at cach node,
once a packet is sent successfully across a link, it never needs to be sent over the link again.
For this analysis of CTCP, it was assumed that the cache was large enough that a lost packet
would still be present in the cache if it nceded to be retransmitted. In other words, a sending
node is only responsible for getting a packet to the next node. After that, the next node caches
the packet and responsibility shifts to that node. This lock-step process of moving a packet
toward the client one link at a2 ime means that the number of retransmissions over a specific
link is independent of the link's distance from the scever. B s equal to the probability

that a packet is lost over the next link r dmes. Py"" is the probability that the packet is then

transmitted successfully over that single link.

P|CTCP = Pr
F)2CTCP = l_P (6)
P (r,iy=P" -(1-P)

nix link

Evaluating Equation 3 for TCP, we find that the cxpected number of retransmissions for a

given link is:
L _1-(1=-P)""
E™[rli]=— -

[ I ] (I_P)’l—' (-7)

Similarly, for CTCP:

P

ECTCP |+ = 8
[ -p ©)

For the link next to the server, the expected number of times a packet must be retransmitted

using TCP over a 10-link path is ETCP[rIi =0]=0.046. For a link halfway from the scrver
(i=5), the expected number of retransmissions is given as ETCP[.*Ii =5]=0.023. For CTCP, a

packet is expected to be retransmitted E“ [rli] =0.0045 times, independent of the network

path length or location of the link. These numbers were computed using P=0.45% as
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determined from Equation 1 and Paxson's analysis. This scenario shows that a CTCP server is
expected to retransmit a packet 90.2% less times across the link connected to the server than a
TCP server thereby saving bandwidth for non-redundant data. In the middle of the network,

CTCP sl results in an 80.4% reduction in retransmissions.

Using E Tcp [r!i] and E mp[rli] , Equation 2 may be solved to find the total hops taken by a

packet using TCP and CTCP, respectively

1-(1-P)"—nP-(1-P)"

TRH™ = — )
P-(1-P)

TRH =2 (10)
1-P

The difference between TRH™ and TRH " gives the expected benefit of CTCP over TCP

in terms of links traversed. Continuing the example above, using TCP over a 10-link nctwork

path with P=0.45% results in TRH™™" =0.252 total redundant hops required for a packet to

be transmitted from the server to the client. CTCP, on the other hand, is only expected to

take TRH™®" =0.0452 total redundant hops. This represents an 82% saving in the number

of redundant hops a packet is expected to traverse before reaching the client.

Since it was assumed that each packet transmission was independent of successive
transmissions, the bandwidth consumption scales 1-for-1 with the number of packets
transmitted. For instance, in order to transfer a 200KB file using 400 packets of 512 bytes
each, TCP is expected to transmit a total of 101 redundant packets over the 10 links. CTCP,
on the other hand, is only expected to transmit a tota! of 19. Thercfore, caching packets at the
network level and using CTCP would give at least a 67% and up to an 88% saving of
redundant bandwidth over using TCP for network path lengths ranging from 5 to 15 links.

While TRH represents the amount of bandwidth that can be eliminated and therefore
potendally affected by network level caching, it is also important to examine the difference
between the total bandwidth consumed by TCP and CTCP. The metric for comparing total
bandwidth was defined above as TH or total hops. TH is similar to TRH except that it
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includes the n hops that are necessary in order to reach the client. The equation for TH is

given as:

TH =) (1+E[ri =i,])
ig=0

=TRH+n

(11)

Over a 10-link network path with packet loss probability P=0.45%, TH'®" =10.252 and
TH" =10.0452. This represents a 2.0% reduction in number of hops for cvery packet that

is transmitted.

For internal U.S. connections, the expected reduction in the number of hops for every packet
is 2.0%. This percentage may scem low, but that is because packet loss rates in the U.S. are
some of the lowest on the Internct. However, Paxson’s results [8] show that the packet loss
rates are rising. Over 1995, U.S. packet loss rates increased 21% from 3.6% to 4.4%. Other
countrics outside of the U.S. already facc higher loss rates. For instance, connections between
Furope and the U.S. experience as much as 16.9% packet loss. This packet loss rate over
paths ranging from 12 to 20 hops leads to a reduction of between 8.3% and 8.6% in total hops
taken by packets when using CTCP.

4.2 Latency Analysis

The second goal of CTCP is to lower the latency of data packets being sent from the server to
the client. TCP must retransmit lost packets from the server regardless of the point at which
they are lost. This results in lost packets traversing the portions of the network multiple times
delaying receipt by the client. CTCP, by caching in the network nodes, retransmits lost packets
from the point where they were lost. This reduces the number of links that lost packets must
traverse compared to TCP. To analyze the cffectiveness of caching at the network level on
packet latency, the probabilistic model mentioned above was used again. This time, the
expected number of links that a packet must traverse in the face of packet loss was calculated
for both TCP and CTCP. CTCP was shown to transmit packets over fewer links on average
than TCP.
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While lower latency does cause an increase in data throughput, its effect is limited in a bulk
data transfer. Lower latency tends to benefit interactive sessions more than bulk transfers like
those for which CTCP was designed. This is because in a bulk data transfer, packets arc
transmitted in rapid succession to achieve a high throughput. This means that several packets
arc in transit at any point in time and latency only affects the time to receive the first packet.
Successive packets are received at the rate they are transmitted independent of the latency.
Therefore, latency is an important metric to analyze for interactive sessions rather than bulk

data flow.

In order to analyze the improvements with respect to latency, the N-link Network Path model
presented in Figure 7 was used again to represent a typical network path used in a TCP or
CTCP connection. Instcad of attempting to determine the number of packets transmitted on
a given link, the goal is to determine the expected redundant latency required for a packet to
reach the clicat. Again, it is assumed that each link has an equal and constant probability (P) of
dropping packets duc to congestion and that packet losses are independent of cach other.
Most importantly, cach link is assumed to requirc an equal and constant amount of time for a

packet to traverse (t;,,)-

In order to compare the latency of TCP and CTCP packets, total latency (TL) and total
redundant latency (TRL) are defined similar to TH and TRH from the previous section. Total
latency is the total amount time it takes for a packet to travel from the server to the client.
Total redundant latency, on the other hand, discounts the time to traverse the path once, as it
is necessary in order to transfer the packet. Again, TRL would be zero except for packet loss.
As with the bandwidth study, TRL is the focus of this analysis, but TL is also be detived.

TRL is related to the number of hops it takes for the packet's location to go from the server to
the client defined as TH in the previous section. TRL is equal to the number of redundant
hops multiplied by the length of time cach hop takes. Specifically, the expected total
redundant latency is given as:

TRL =TRH-E[t] (12)
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where | is the latency, TRH is the number of total redundant hops that a packet must take to
rcach the client, and Eft] is the expected length of time for each hop.

The time each hop takes depends on whether or not the packet is lost. If the packet is
transmitted successfully, the traversal time is simply t,,, the time to traverse a link. If the
packet is lost, however, additional time (ty,..,) is spent detecting the loss. Given that a loss

occurs with probability P, the expected length of time for cach hop is:

E[t] = (l - P) ’ tlt'nk +P- ('Iinl +td¢m:v)
= tlink +P. tdelecl

(13)

Before TCP can retransmit a lost packet from the server, the server needs to detect the
packet's loss. TCP has two methods for detecting lost packets: timeouts and Fast Retransmit.
During bulk data transfer, Fast Retransmit is used almost exclusively to detect lost packets.
Timeouts are used more often in interactive sessions where TCP has a limited amount of data
to send. The time for the Fast Retransmit algorithm to take effect is approximately the round-
trip time of the network path. Therefore, the round-trip time is used as the length of time to

detect a lost packet for TCP as shown in Equation 14.

CTCP also must detect a packet's loss before it can retransmit it. Like TCP, during bulk data
transfer, CTCP detects lost packets by using its version of the Fast Retransmit algorithm.
Therefore, the length of time for CTCP to detect lost packets using Fast Retransmit (t,.,) is
also approximately the round-trip time. )

Lgerecs = 2N By (14)

Using the formula for total redundant hops using TCP (TRH™") and substituting in for
E[t], the expected end-to-end for TCP is:

e _1=(=P) -nP-(1-P) _
TRL™ = XS] @nP+1)-1,,, (15)

where TRL™" is the expected total redundant latency for TCP.
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Similarly for CTCP:

TRLT® =" __.2nP+1)1,, (16)

@-p)

where TRL™" is the expected the latency from a CTCP server to the client.

Using Equations 15 and 16, the expected redundant latency of a 10-link network path with the
probability of losing a packet P=0.45% is TRL™ =0.275-t,,. CTCP, under the same
conditions, has a lower redundant latency at TRL™* =0.0493-1,,. Thus using CTCP in

this scenario results in an expected reduction of end-to-end packet latency of 82.1%. For

nctworks with between 5 and 15 links, the latency reduction vary between 67.1% and 87.7%.

While TRL is the latency that can be affected by network level caching, it is also important to

examinc the reduction in total latency. The equation for total latency is given as:
TL = TH-E[r] an

Solving Equation 17, the expected total latency of a 10-link network path with the probability
of losing a packet P=0.45% using TCP is TL=11.17-t,, while using CTCP is

TL =10.95-¢,,, . Thus using CTCP instead of TCP in this scenatio results in a 2.0% expected

reduction of end-to-end packet latency.

Just like the bandwidth analysis above, latency savings are much more dramatic outside of the
U.S. This is because of the higher packet loss rates over Internet connections in other
countries. For example, connections between Europe and the U.S., which face packet loss
rates of up to 16.9%, can expect to experience up to a 8.6% reduction in overall latency. This

percentage was calculated using a network path length of 20 hops and P=0.92%.

43 Reducing Server Load

In addition to the bandwidth and latency benefits of CTCP associated with network node

caching, CTCP also has the potential to rcduce the load on network servers such as web
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servers.  CTCP reduces the load on servers by distributing some of the work previously
performed by the server to the clients. Instead of requiring the server to manage the reliability
of a data transfer, the client is required to do so. This shift in responsibility lightens the
server's load substantially. This can be seen comparing a TCP and 2 CTCP sctver's duties.
Figure 8 lists the processing that must occur for cach packet that is received by both TCP and
CTCP.

TCP CTCP

Determine type of packet (SYN, ACK, etc) Determine type of packet (SYN, REQ, etc)
Determine connection for packet Determine connection for packet
Verify sequence numbers in valid range Verify sequence numbers in valid range
Update flow control window Allocate new data packet, set fields, copy
Check for duplicate ACK data
Clear retransmission buffer of all data Send packet

acknowledged

Update flow control window, round-trip
time estimators, congestion window

For each slot available in the send window:
Allocate new data packet, set fields,
copy data
Start (or reset) retransmission timer
Save data in retransmission buffer
Update sequence numbers
Send packet

Figure 8: Server Packet Proceseing

The time required to perform each of the tasks listed in Figure 8 is dependent on not only the
implementation of the software but also on the underlying hardware running the software. It
is typically assumed that the most time consuming task is copying data from the user-supplied
buffer to the new packet. However, the data copy task cannot be eliminated from the data
transfer. Instead, the discussion is limited to control processing instead of memory copies, as
the amount of control processing can actually be reduced as a result of the transport protocol.
TCP's most significant tasks are recalculating the round-trip time estimators and managing
congestion control every time a packet is received. CTCP also petforms these tasks, but does
so on the client instead of the server. In addition to the processing shown in Figure 8, TCP
must also update and check timers periodically for every connection in order to detect packet

loss.
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TCP clearly has more processing to perform than CTCP for every packet that is received. All
of the extra processing that the TCP server has to do has becn relocated to the client in CTCP.

The result is that a CTCP server can both serve more cl s simultaneously as well as server

each client faster than a TCP server.
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CHAPTER 5: CONCLUSION

This thesis presented network node caching as a solution to combat the overhead associated
with retransmissions of lost packets. Retransmissions cause increased bandwidth utilization,
higher packet latency, and increased server load. To alleviate these problems, individual
packets within a connection were cached in the nodes of the network. These cached packets

were then used in the case that the packet was lost and needed to be retransmitted.

TCP was determined to be inappropriate to support network node caching because of the
server's involvement with retransmitting lost packets. Client-side TCP was designed as an
alternative to TCP to take advantage of network level caching functionality. CTCP put the
data transfer reliability burden on the client instead of on the server. Since the client
maintained the reliability state associated with the connection, CTCP was free to remove the

server from the retransmission process if requested data was found at an intermediate node.

A probabilistic analysis of TCP and CTCP was made with respect to bandwidth consumption
and end-to-end packet latency. CTCP was found to consume up to 88% less redundant
bandwidth than TCP under typical Internet data transfers. CTCP was also shown to reduce an
individual packet’s redundant latency up to 88%. This reduction in bandwidth utilization
allows more "useful" traffic to traverse the Internet while the reduction in latency improves

response time as seen by the user.

The packet processing routines for TCP and CTCP servers were also compared. A CTCP
server was found to do less computation for each packet that was received than a TCP server.

This reduction in processing will allow CTCP servers to server more clients simultaneously.

CTCP was therefore shown to successfully utilize neiwork level caching, having benefits over
TCP that include lower bandwidth consumption, smaller packet latencies, and a decreased

server load.



51 Future Work

There are several interesting future research opportunities regarding CTCP and network node
caching. These areas are related to adding additional functionality to CTCP’s design and
implementing a higher performance version of CTCP.

5.1.1 CTCP Functionality

CTCP was designed for bulk data flow such as file transfers. Several modifications would
nced to be made to CTCP's design in order to support interactive data flow such as telnet
sessions. When a user presses a key in a telnet session using TCP, the sender (the user's
machine) transmits 2 packet specifying the key pressed to the receiver (the machine running
the telnet daemon). The receiver then sends an acknowledgment back to the sender verifying
that the data was received correctly. In CTCP, the sender does not transmit the data unless the
receiver requests it. In an interactive mode, however, the receiver does not know when the
next data (generated by the user pressing a key) will be available. In short, CTCP does not

have a mechanism by which the sender can tell the receiver to begin requesting data.

There are two potential solutions to CTCP interactive data sessions. First, operating systems
could support both CTCP and TCP. Whenever an interactive session was requested, TCP
could be used. However, due to the benefits of CTCP over TCP in bulk data transfer, CTCP
would be used whenever a file transfer session was requested. This has the benefit that CTCP
could remain a relatively simple protocol thus aiding in the development of bug-free

implementations.

The other option would be to add interactive support to CTCP's design.‘ For instance, a
control packet could be added to CTCP that the sender could use to tell the receiver to begin
requesting a certain amount of data. The problem with this plan is that it increases traffic in
the form of these extra control packets. However, control packets are usually fairly small and

are typically "piggybacked" on a data packet, so that the increased traffic would be minimal.

5.12 Operating System Support for CTCP
The current implementation of CTCP was written in Java at the application level. Java, as a
high level language, made the implementation easy to design and debug. These benefits were

at the cost of performance. Operating system protocols such as TCP are normally

41



implemented at the kernel level to achieve high networking performance. In order to compare
CTCP to current industry TCP implementations, CTCP would need to be written at the

operating system level.

5.1.3 Limited Caching

The initial design for network level caching states that routers are to cache all data packets that
they receive. This means that even packets that are not lost and therefore do not need to be
retransmitted must spend rime being cached at each router. Since packet loss rates are typically
small (on the order of 5%), the cost of caching every packet is likely to be greater than the
benefit that is gained. Instead of caching every data packet that is routed, it might be possible
to construct 2 more complicated algorithm that only caches packets that are more likely to be
lost. This kind of algorithm would have to dynamically recalibrate itself to changing network

conditons.

5.1.4 CTCP Acknowledgments

A CTCP server must hold onto the data for the entire file being transferred. This is because
the server does not receive information regarding what data the client has actually received.
The server only receives the currently requested data packet’s sequence number. Instead,
CTCP could be modified such that the requests double as acknowledgments. Each time the
client sends a request to the server, it could also inform the server about how much data has
actually been received. This would allow the server to incrementally free up data buffer space,

thereby allowing the server to handle more connections.

Therefore, future improvements on CTCP would address it current limitations regarding

interactive sessions and operating system level support.

52 Conclusion

Client-side TCP and network level caching represent two techniques that attempt to reduce
both the amount of bandwidth consumed by data transfers and the end-to-end packet latency.
In addition, Client-side TCP attempts to reduce the load placed on servers. In the future, as
Internet packet loss rates rise due to increased usage and congestion, the benefits of caching

techniques such as network level caching will continue grow.
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TRH™
TRH CTCP

E™"[ri]

E[ri]
P (1)
P ()

TH TCP
TH CTCP

TRLTCP
TRLCT CcP
tlink

t detect
TLTCP
TLCT cP

NOMENCLATURE

Probability of losing a packet over a single link

Probability of losing a packet over an entire network path

Number of retransmissions

Link pumber. Links are numbered starting with link 0 connecting the server to
the first intermediate node.

Expected number of total redundant hops a packet must take from the server
to the client using TCP

Expected number of total redundant hops a packet must take from the setver
to the client using CTCP

Expected number of times a packet is transmitted over the i* link using TCP
Expected number of times a packet is transmitted over the i" link using CTCP
Probability of a packet being retransmitted r times over the i* link using TCP
Probability of a packet being retransmitted r times over the i* link using CTCP

Expected number of total hops a packet must take from the server to the
client using TCP

Expected number of total hops a packet must take from the server to the
client using CTCP

Expected total redundant latency for a single packet transmitted using TCP
Expected total redundant latency for a single packet transmitted using CTCP

Time for a packet to be transmitted across a single link

Time for a transport protocol to detect and retransmit a lost packet

Expected total latency for a single packet transmitted using TCP

Expected total latency for a single packet transmitted using CTCP
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APPENDIX A: CONNECTION ESTABLISHMENT AND TERMINATION

TCP and CTCP are connection-based protocols. Before data can be transmitted from the
server to the client, a connection must be established between them. In addition, once the
data transfer is complete, the connection must be closed to free up resources for future
connections. CTCP's connection management is similar in design to TCP and is described in
detail here.

A.l1 TCP Connection Management

The connection establishment procedure using TCP is as follows:

1. The client initiates the connection by sending 2 SYN packet to the server. The SYN
packet specifies the port number of the server that the client wants to connect to and the
client's initial sequence number.

2. The server responds with its own SYN packet containing the server's initial sequence
number. In addition, the server marks the SYN packet as an ACK in order to
acknowledge the client's initial SYN.

3. The client then acknowledges the receipt of the server's SYN-ACK by transmitting an
ACK back to the server.

These three packets complete the connection establishment. This process is typically called

the three-way handshake and is illustrated in Figure 9.

S c
) []
[] []
| SYN-ACK E
] [}
] [)
i ACK E
t ]
] ]

Figure 9: TCP Connection Establishment

While connection establishment requires three packets, terminating a connection requires four.
This is because each direction of the data transfer is closed independently from the other. One
side of the connection indicates that it is finished traiasferring data by sending a FIN packet to
the other endpoint. The receiver of the FIN packet responds with an acknowledgment. At
this point, data transfer in that direction is finished and the connection is considered only
“half-open.” In order to completely close the connection, the same procedure occurs again in
the reverse direction. This is illustrated in Figure 10.

For more information regarding TCP’s connection establishment and termination procedures,
refer to [11, 12].
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Figure 10: TCP Connection Termination

A2 CTCP Connection Management

CTCP’s connection mechanisms are almost identical to TCP’s. The three-way handshake is
used for connection establishment. However, CTCP requires the client to send the name of
the document as part of the initial SYN packet sent from the client to the server. This allows
the server to respond with the unique document identifier in the SYN-ACK that is sent back
to the client. In addition, the server is also required to tell the client the size of the requested
file. This is because the client is in charge of requesting portions of the data and must
therefore know the size of the data.
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