
Invisible Ink: Blockchain for Data Privacy

by MASSACHUSETTS NSTUTUTE
OF TECHNOLOLGY

Amir Lazarovich JUN 12 2015
B.A., The Interdisciplinary Center (2010) LIBRARIES

Submitted to the Program in Media Arts and Sciences,
in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2015

@ Massachusetts Institute of Technology 2015. All rights reserved.

Signature redacted
A uthor

Program in Media Arts and Sciences,
May 8, 2015

Signature redacted
Certified by..

Andrew Lippman
Senior Research Scientist

MIT Program in Media Arts and Sciences
Thesis Supervisor

Accepted by ... Signature redacted
Pattie Maes

Academic Head
Program in Media Arts and Sciences

17 m y r .is +r-rr- N 3.---)- --rs~~n -..-gg,-,g m spn g gg g y yg -g::.ggg y , 4,-79 92.7533 :<,... , . .. 1,7,3 7 , ..,, , e .g og .-,,-.g g~. ,.gym. :..-..- .-e -pyV'am

Invisible Ink: Blockchain for Data Privacy

by

Amir Lazarovich

Submitted to the Program in Media Arts and Sciences,
on May 8, 2015, in partial fulfillment of the

requirements for the degree of
Master of Science in Media Arts and Sciences

Abstract

The problem of maintaining complete control over and transparency with regard to
our digital identity is growing more urgent as our lives become more dependent on
online and digital services. What once was rightfully ours and under our control is
now spread among uncountable entities across many locations.

We have built a platform that securely distributes encrypted user-sensitive data.
It uses the Bitcoin blockchain to keep a trust-less audit trail for data interactions and
to manage access to user data [49]. Our platform offers advantages to both users and
service providers. The user enjoys the heightened transparency, control, and secu-
rity of their personal data, while the service provider becomes much less vulnerable
to single point-of failures and breaches, which in turn decreases their exposure to
information-security liability, thereby saving them money and protecting their brand.

Our work extends an idea developed by the author and two collaborators, a peer-
to-peer network that uses blockchain technology and off-blockchain storage to securely
distribute sensitive data in a decentralized manner using a custom blockchain protocol
[40].

Our two main contributions are: 1. developing this platform and 2. analyzing
its feasibility in real-world applications. This includes designing a protocol for data
authentication that runs on an Internet scale peer-to-peer network, abstracting com-
plex interactions with encrypted data, building a dashboard for data auditing and
management, as well as building servers and sample services that use this platform
for testing and evaluation.

This work has been supported by the MIT Communication Futures Program and
the Digital Life Consortium.

Thesis Supervisor: Andrew Lippman
Title: Senior Research Scientist
MIT Program in Media Arts and Sciences

3

4

Invisible Ink: Blockchain for Data Privacy
by

Amir Lazarovich

I1/
Signature redacted

T hesis A dviso
Andrew Lippman

Senior Research Scientist
MIT Program in Media Arts and Sciences

Thesis Reader
Signature redacted

Sep Kamvar
Associate Professor of Media Arts and Sciences

MIT Program in Media Arts and Sciences

Signature redacted
Thesis Reader

David Clark
Senior Research Scientist

MIT CSAIL

Acknowledgments

This work would not have been possible without the help of my family, mentors,

colleagues and friends.

I would like to thank my advisor Prof. Andy Lippman for believing in me, and

for his guidance and support throughout this journey. I would also like to thank

my thesis readers, Prof. David Clark and Prof. Sep Kamvar, for their insightful

comments and suggestions.

Above all else, I am thankful for having such a wonderful, supportive and loving

wife, Michal. She recently gave birth to our first child, Eitan, which is a source of

inspiration for me. I would also like to thank my parents, siblings and the rest of my

family, for their love and care, and for pushing me to follow my dreams - no matter

what were the challenges.

I also want to thank Jeremy Rubin, Guy Satat and Yadid Ayzenberg for their

continuous support and helpful advice.

This work would not have been possible without the support of the Viral Com-

munication members and the one and only Deborah Widener.

I would like to thank the MIT Bitcoin Project and all of its founders: Jeremy

Rubin, Dan Elitzer and Richard Ni for inspiring us all at MIT to conduct research

related to Bitcoin. I'm very excited to see the research that will come from the MIT

Digital Currency Initiative.

Thank you Oded Golan for introducing me to the world of Bitcoin in 2011.

7

8

Contents

1 Introduction 17

1.1 Motivation . 17

1.2 Novelty and Main Contributions . 19

2 Background and Related Work 21

2.1 From Bitcoin to privacy . 21

2.1.1 Before Bitcoin . 21

2.1.2 The Bitcoin era . 23

2.1.3 Bitcoin, beyond digital currency 25

2.2 Related work . 27

3 System Design and Implementation 31

3.1 The challenge . 31

3.2 Our solution . 31

3.2.1 User perspective . 31

3.2.2 Service perspective . 32

3.3 Overview . 32

3.3.1 Create an account . 34

3.3.2 Add funds to your account . 35

3.3.3 Connect to a service . 36

3.3.4 Data and privacy . 36

3.4 Technical overview . 36

3.4.1 Write data . 36

9

3.4.2 Read data

3.4.3 Grant permissions

3.4.4 Revoke permissions

3.4.5 User-Escrow key exchange

3.5 Terminology, interfaces and actors

3.5.1 Blind escrow service

3.5.2

3.5.3

3.5.4

3.5.5

3.5.6

3.5.7

3.6 Failed

3.6.1

3.6.2

3.6.3

Storage

Blockchain

Transaction explorer . .

Dashboard

Server

Database

protocol

Introduction

Transactions

Log transaction: attempt 1 testnet only .

3.6.4 Log transaction: attempt 2 - erasing satoshis

3.6.5 Log transaction: attempt 3 - hacking multisig

3.6.6 Log transaction: attempt 4 - legally hacking multisig

3.6.7 Log transaction: attempt 5 - conservative multisig

3.6.8 Data transaction: attempt 1 - non-encrypted

3.6.9 Data transaction: attempt 2 - encrypted

3.6.10 Link transaction .

3.6.11 Unlink transaction .

3.7 T he protocol .

3.7.1 Transaction 1: OPRETURN

3.7.2 Transaction 2: OPRETURN + multisig

3.7.3 Transaction 3: OPRETURN + P2SH multisig

3.7.4 Selected transaction type .

3.7.5 Header transaction .

10

. 3 7

. 3 8

.. 3 9

.. 3 9

.. 4 0

.. 4 0

. 42

. 43

. 43

. 43

. 44

. 44

. 45

45

46

46

47

48

49

51

52

53

55

55

56

56

56

58

59

59

3.7.6 Audit transaction . 60

3.7.7 Connect transaction . 61

3.7.8 Disconnect transaction . 62

4 System Applications 65

4.1 Certified M ail . 65

4.1.1 The challenge . 65

4.1.2 O ur solution . 65

4.1.3 Application overview . 66

5 Conclusion 69

5.1 Implications and opportunities . 70

A A Trusted Code System Distribution On The Blockchain 71

A. 1 How to create functions with parameters inside the Bitcoin blockchain 71

A.2 Can we make this simpler? . 72

B Bitcoin Auditing Transaction Example 75

C Third-Party Libraries and Technologies 79

11

12

List of Figures

2-1 Bitcoin - the first decentralized peer-to-peer digital currency 23

2-2 From centralized to decentralized systems, which is better? 26

3-1 Register and create a new account . 34

3-2 Web and mobile interface to send money to your Invisible Ink account 35

3-3 Data manipulation history . 36

3-4 High level write data diagram . 37

3-5 High level read data diagram . 38

3-6 High level grant permissions diagram 39

3-7 High level revoke permissions diagram 40

3-8 High level user-escrow key exchange diagram 40

3-9 Invisible Ink dashboard . 43

4-1 Certified Mail - proof of communication 66

4-2 Certified Mail - send money to the service 67

13

14

List of Tables

3.2 Escrow common interface. 41

3.4 Invisible Ink database schema . 45

3.6 Escrow database schema . 45

15

16

Chapter 1

Introduction

In the following sections we describe the motivation and main contributions of our

work.

1.1 Motivation

Identity protection is becoming a more serious problem, since the world seems to

have abandoned anonymous transaction of almost any sort. You have to create an

account at any informative web site you visit whether you ultimately want to engage

in a transaction with them or not. This makes the system ripe for identity theft and

misuse. The former is a pervasive economic problem and the latter is a subtle social

problem that erodes our sense of privacy [29]. We can envision a day when singing in

the shower becomes public through the towels and faucet. This is widely recognized

among researchers and watchdog organizations but hasn't yet fully registered with

the public.

Technical solutions have been proposed, but they have not gained traction yet

[1] [151 [251. It is not clear why, but at least one explanation is that they are either

"utopian" or cumbersome. Utopian in this context means that they require a priori

agreement by a critical mass of organizations and users on an approach that may not

be in their interest until everyone else adopts it. Some are cumbersome in that they

merely move the problem from each commercial entity to a presumably trusted third

17

party-but no such party may be available or accessible in all circumstances. In other

words, they move rather than solve the problem. What is needed is a more "viral"

approach that can start small, scale without bound, and evolves as it does so. Such

approaches have proven useful at solving the matter of "diffuse benefits and acute

costs" associated with large-scale centralized efforts [71].

Bitcoin and other distributed technologies have been suggested for many situations

where legacy centralized approaches are failing to meet current needs to adapt to

modern technologies [49] [69]. Uber, for example, bypasses much of the baggage of

the organized taxi industry [721. Many of the restrictions of such regulated public

transport date from an era where the goal was to control and minimize the number

of vehicles on the road, whereas now the problem is that the public interest would be

better served by fewer private cars and more on-demand ones. The industry could not

evolve to suit this change in climate and is being supplanted in many circumstances.

The distributed version shows promise. Bitcoin itself has also been suggested for

audit functions, for exchanges, and for a host of other applications where an often-

monopolistic central organization has become inefficient or untrustworthy [2] [59] [12].

The main advantage of Bitcoin technology here is that it has shown that a decen-

tralized, durable, public and irreversible recording method can be created and work

in the real world.

There are a number of cases where researchers and entrepreneurs have proposed

applying Bitcoin technology to identity [40] [55]. There are many possible approaches;

no single solution has emerged as the obvious "best one".

Our work extends an existing idea of a framework for controlling access to files

and ensuring that ultimate access can be eliminated securely [56]. It involves a

cryptographic key system where the registration of the core keys is simple and can

be duplicated yet still be controlled. In essence, the basis for our extension is making

that key system public and decentralized.

The further advantage of our approach is that it can be extended to provide for

continuous control over who can access the files and data.

This work is demonstrated in a real world system and assessed for the thoroughness

18

1110119 1 gi'J'l.LJILM'4'luis"Upli'til[1'1111 il -IW D Ian 'I d t1'!''riiW''rl

of the solution.

1.2 Novelty and Main Contributions

This thesis makes an important contribution to the field of identity privacy by giving

people the ability to be in control of their personal data.

a) We developed a platform that securely distributes sensitive data while

keeping it available on-demand.

b) We created a certified mail service built on top of our platform. This

service allows one to communicate with others and keep their conversations "on

record". By building this service we were able to test our platform and evaluate

its feasibility.

c) We presented an alternative usage for the blockchain technology. Al-

most all other applications for this technology target the financial industry. We

hope to open up opportunities for future research and innovation using this

technology in many other fields.

19

20

Chapter 2

Background and Related Work

In the following sections we describe the history of Bitcoin, highlight innovations in

similar fields and discuss related work to our system.

2.1 From Bitcoin to privacy

2.1.1 Before Bitcoin

For many years people around the world have been attempting to create digital cur-

rencies. Two well known attempts were E-Gold and Liberty Reserve [26] [6]. Both

services allowed instantaneous transactions of digital tokens with minimal fees. E-

Gold tokens were backed by real gold and other precious metals, whereas Liberty

Reserve tied its tokens to the US dollar and euro. Both of these services were shut

down by the United States after many years of operation under the allegations of

fraud, money laundering and more.

Similar to Napster, the biggest technology crime all these digital currency inno-

vations had was of being centralized [221. That means they were orchestrated and

controlled by a single source of authority. One might be tempted to assume that if

these services were not operated by a single entity, then people wouldn't be allured to

tamper with the funds going through their service and therefore illegal consequences

would be prevented.

21

In 1999 Confinity launched a project called PayPal which allowed individuals

to send ("beam") money to anyone from their Palm Pilots, pagers and other smart

devices [41]. You could either upload your credit card or send money to your account

and be credited. PayPal bridged the gap between the financial world and emerging

smart devices, making it easy and immediate to transfer money from point A to point

B. However, these transactions came with costs related to handling the money, for

example by Merrill Lynch.

Opposite to centrality, there were also conceptual attempts to create decentralized

digital currencies. B-Money and Bit-Gold are great examples of this [14] [60]. One

might argue that the main reason these suggestions weren't implemented is due to

their flaw of being incomplete [61]. One example is how B-Money handled its token

creation and that Bit-Gold was prone to certain attacks, such as a Sybil attack'

[18]. Another noteworthy innovation is called Peppercoin [46] [35]. They created a

micro-payment scheme that significantly reduced bank processing costs.

Chaum's Blind Signatures in 1983 paved the way for many future attempts to make

digital currencies, such as OpenCoin and DigiCash [9] [63] [8]. Nicholas Negroponte,

the MIT Media Lab co-founder, was also the director of DigiCash [67] [10] [64].

In 1997, Adam Back introduced an innovation that was intended to solve a growing

problem: email spam. He called it Hashcash [3]. To simplify its complexity, for

Hashcash to work it requires emails to include a signature that could be easily verified

but hard to produce. Emails that weren't verified were considered spam. Therefore,

spammers were required to narrow down their mailing list in order to send all their

emails in a reasonable time. Back's invention is the foundation of all future attempts

and implementations of decentralized digital currencies [37] [44].

A lot of interesting suggestions and implementations can be found in the archive

of the cypherpunks mailing list [13]. Hal Finney's Reusable Proof of Work is one for

example [23]. But it was not until 2008 that there was one that was highly adopted.

In 2008, one attempt showed a huge potential for its technology and features. It

'A Sybil attack in computer science is when a malicious actor in (mostly) peer-to-peer networks
tries to subvert the reputation of the network by controlling a large percentage of nodes. The term
"Sybil Attack" was coined by Brian Zill at Microsoft Research in or before 2002 [16].

22

0 0

Figure 2-1: Bitcoin - the first decentralized peer-to-peer digital currency

presented a working peer-to-peer decentralized, Byzantine-fault-tolerant and Sybil-

attack-tolerant digital currency that is protected against double spending [38] [70].

That project was called Bitcoin [50] [51].

2.1.2 The Bitcoin era

Bitcoin was first introduced in 2008 in a private mailing list called cypherpunks [50].

It was announced by Satoshi Nakamoto. As of now, no one knows who Satoshi really

is or whether it is a group of people or an individual.

Bitcoin was created to solve mainly one problem: digital payments go through

financial institutions that are supposed to keep our transactions, funds and privacy

secure and therefore require us to trust them [51]. Trust is the key word here. Many

attempts have been made before Bitcoin, as mentioned in Section 2.1.1, but none

succeeded to remove entirely the need of trust. Bitcoin, to some extent, succeeded

for the first time in history in doing so.

At a high level, Bitcoin makes it possible for a peer-to-peer network to share a

database, organized by time, without having any single central source of management.

23

W - - ! . No 0 No 0 .I = - - - ...- .- .'I'm 11111111111!32!

Every node in the network can verify by itself the correctness of that shared database.

This database is called the blockchain. It is a specialized linked list such that each of

its items contain a list of transactions, a time-stamp and other important information

that are not mentioned for brevity [52]. Nodes in the network verify transactions based

on previous transactions that exist in previous blocks inside the blockchain. To add

a new block it is required to find a magic number that along with other data inside

the block itself, if processed by a specific function, will produce a string that follows

certain guidelines. This process is an implementation of Adam Back's Hashcash

algorithm, or in more common terms, the "proof-of-work" required to produce a new

block [3]. Bitcoin adjusts the difficulty of finding such string every two weeks to ensure

block creation takes on average 10 minutes. Nodes in the network choose blocks that

are attached to the longest chain. These characteristics protect against an important

attack called double spending [70]. In a nutshell, double spending is the ability to

use more than once the same input source by manipulating the network state. In

Bitcoin, input sources point to bitcoins and our network state is the blockchain.

Another key property is identity anonymization. Accounts in Bitcoin are pseudony-

ms and each person can have nearly any number of accounts they want. Although,

once a pseudonym is uncovered, it is trivial to link all of its past, present and fu-

ture transactions. In a later stage came different techniques that obfuscate linking

attempts, such as CoinJoin [43].

Bitcoin, with a capital B, usually refers to the protocol whereas bitcoin, with a

lowercase b, refers to the digital currency Bitcoin creates. In Bitcoin, coins are minted

every time a new block is created by solving a cryptographic puzzle. Cryptographic

signatures protect transactions in the Bitcoin network. Both of these are mostly

why bitcoin is also referred to as a crypto-currency: it is based almost entirely on

mathematical principles.

The first block was created in January 3rd, 2009 by Satoshi Nakamoto [52]. The

first real purchase with bitcoin was in 2010, 10,000 bitcoins for two pizzas [391.

Back then, 10,000 bitcoins were worth about $42. Today 10,000 bitcoins are worth

$2,234,100. See entry [33] in the Bibliography for the complete history.

24

2.1.3 Bitcoin, beyond digital currency

Bitcoin has been around for five years. In that time, what appears to have happened

is that we now have a working system for distributed trust. It may not be perfect,

but it has worked at least as well as alternatives that get hacked quite a lot [32]

[30] [5]. This has raised interest in both the financial impact of a currency that is

international, secure, and novel. The blockchain, which is the guts of Bitcoin, is now

also being explored for ideas not necessarily related to money, but to consider the

implications of a secure, time-stamped, unalterable public ledger. This can change

the notion of contracts and recording of data. MIT has just announced an initiative

to explore all of these dimensions [24]. To some this is an opportunity as big as the

Internet.

To list only a few innovations built on top of a blockchain architecture: Storj, a

decentralized peer-to-peer cloud storage network [73]. IBM's Adept, an Internet of

things architecture [31]. Onename, a distributed and secured identity platform [55].

ChangeTip, micro-payment platform for online tipping [7]. Coinbase, an online bank

for Bitcoin, platform for merchants and the first regulated Bitcoin exchange in the

U.S. [11].

It is hard to tell what all of the implications mean, and there is a lot of early

investment clouding the picture, but as the MIT effort will attempt to show, there is

room for experimentation and research to develop those key ideas [76]. In the Media

Lab fashion, the domain spans social and technical work: people keep Bitcoin running

and will define much of its use, but technology will determine which uses are possible

and reliable.

Our work began by considering centralized systems for things other than money

that might work better in a distributed fashion. Figure 2-2 presents a very high-level

view of the difference between centralized and decentralized systems. The banking

system is a good example of a completely centralized system. All of our transactions

go through their network and are stored in their ledgers. This creates a burden for

the banking system for the possibility of data breaches and therefore requires invest-

25

Centralized Quasi-decentralized Decentralized

Figure 2-2: From centralized to decentralized systems, which is better?

ment in information security and highly trained personnel. Also, we have high costs

of switching between the different alternatives which makes us more bound to their

services. A step forward on the curve of digital decentralization is for example Uber

[72]. We consider Uber to be "quasi-decentralized" because there is still an orchestrat-

ing server that maintains the network. However, individual nodes can interact with

one another directly and choose with almost no costs to use an alternative service.

At the very end of the curve, an example of a decentralized system is Bitcoin for the

reasons mentioned in previous sections.

We began with identity. Polychronis tried this in his thesis [75]. He moved identity

from being centralized to being user-distributed, where the identity migrated from

each user to owner-controlled banks. He was ahead of his time and lacked a platform

for it to gain critical mass in the real world. The initial idea of myself, Zyskind

and Nathan was to distribute it using an extended protocol to that of Bitcoin [40].

Our project was named Ethos. Our intentions were to create a new blockchain that

supports an additional data-layer to distribute user sensitive data across the nodes

in the network. Because we were on a tight schedule, we chose to fork an existing

blockchain, Ethereum, and handle the distribution of sensitive data by adding a layer

of a Distributed Hash Table [19] [66]. To test our system we built a web dashboard

and two mobile applications. The mobile applications gathered user sensitive data,

and the web dashboard allowed users to view the gathered data and revoke access to

it. Ethos also won first place at the MIT Bitcoin startup competition. There are lots

of cases where this can work: health care, Facebook, AirBnB, and other use cases

where our sensitive personal data is managed by other services that either occlude

26

its usage or fail to secure it [54]. There have also been lots of efforts in this area:

Onename, OpenPDS, Abine and more [55] [15] [1].

In the end, We developed a simple, yet useful application that is a potential test

bed for the development of more of these. We call it "Certified Mail". A detailed

description of this system is given in Section 4.1.

2.2 Related work

The field of decentralized applications and platforms is quite new due to its reliance

on the Bitcoin protocol, which was published only 5 years ago [51]. As of now, there

hasn't been any other solution that uses blockchain technology to solve data liabilities

and provide data auditing in a decentralized manner.

However, there have been a few attempts to address the privacy problem with re-

gard to personal and sensitive data. OpenPDS is one example [15]. They understand

the importance of keeping our digital identity safe but have chosen to solve it using

centralized and trusted data stores. Abine is another example of an attempt to keep

our data safe while browsing the Internet, smartly blocking exploits and masking our

email addresses by proxying it through their trusted servers [1]. While the former

were more real-world attempts to address privacy, Alternet is more a concept for an

ideal world where user-privacy protection is part of the Internet infrastructure [251.

MaidSafe is another example [42]. It first appeared in 2007 and strove to solve

personal data security. Their initial approach was to create a peer-to-peer network in

which data is sharded, encrypted and distributed across the network with additional

redundancies for backup and availability. Similar to torrent clients, the way Maid-

Safe incentivized its clients to share their disk space and have it available online is

by increasing their bandwidth and capacity. In 2014 MaidSafe entered into the Bit-

coin world and created their own blockchain and coin called Safecoin. Among other

benefits, this transition gives their users another incentive to join the SAFE network.

The difference between our platform and MaidSafe is twofold: our platform doesn't

require the creation and maintenance of a peer-to-peer network and the data stored

27

in our system is kept private within what we call blind escrows (see Section 3.5.1).

Related to data privacy, there is also the work of Perlman on assured deletion of

files in a specially designed file system and in third-party cloud storage services [56]

[34].

Ethos, A proof of concept system that was developed by myself and two collab-

orators, had a similar goal albeit a very different architectural approach [40]. Ethos

forked Ethereum and handled sensitive data using a Distributed Hash Table [19] [66].

To be adopted it required the creation of a complete peer-to-peer network and al-

though encrypted, the user sensitive data was distributed across the nodes in the

network and required handling similar to those of torrent files [69]. Our implemen-

tation uses Bitcoin's blockchain along with other sophisticated trusted blind escrow

services to handle sensitive data, which makes it immediately available for deployment

at scale without any prerequisites.

A few months after we published Ethos, a new service called Factom appeared

[21]. It is an additional layer on top of the Bitcoin blockchain that provides functions

and features beyond currency transactions. It aspires to solve three main drawbacks

related to the Bitcoin protocol: block speed, transaction costs and the blockchain size.

Compared with Invisible Ink, Factom introduces a new crypto-currency called Factoid.

To perform specific actions, such as adding a new entry into Factom, you need to pay

with their digital token. Also, while our data is securely stored in a distributed and

trusted manner, Factom uses a similar method to that of Ethos where the data is

stored in a Distributed Hash Table across their peer-to-peer network, which requires

creating such a network in order to secure the stored data.

A more radical approach to protect sensitive data is a recently introduced pro-

gramming language called Jeeves [74]. It builds from the ground up programs that

treat privacy as first-class citizens in code. That gives more control over sensitive

data and its flow across the program.

As for our implementation for certified mail, in which participants can prove

their conversation history to third parties, while keeping the conversations stored

in trusted locations, there has been prior work built using different technological

28

solutions. ReadNotify is one example of a service that allows its subscribers to track

their emails. However, the data itself is stored on both the email client servers and

ReadNotify's servers [58]. Bleep from BitTorrent is another example [4]. It is a peer-

to-peer messaging application. Messages are stored only locally and there are no

centralized servers that eavesdrop. The difference between our certified mail service

is that Bleep users can't prove to third parties any of their conversations.

29

30

Chapter 3

System Design and Implementation

In the following sections we outline an existing challenge and our suggested solution

and describe elaborately how the Invisible Ink system works.

3.1 The challenge

People lose control over their personal data as soon as they share it with third parties

online. This introduces three main challenges: information security, lack of control

and transparency. Information can be insecurely stored and therefore might leak.

People can't recall the information they have shared and have no transparency over

how their data is being used.

3.2 Our solution

A user-trusted distributed system that securely stores personal data, manages per-

missions with third parties and audits data interactions to provide a complete trans-

parency and proof-able event trail.

3.2.1 User perspective

The user enjoys the additional privacy it receives by managing their own sensitive

data. They benefit from the protection against single point-of failures that are usually

31

caused by centralized systems. By storing an audit trail inside the blockchain, users

can rest assured they will have proofs for data exchange and interaction in case they

need them. For example, let's assume you opened an account in a fictional service X.

Part of the registration process requires you to give your social security number. After

a while, you decide to stop using this service and therefore issue a new transaction

that indicates your intentions. Not long after, you see in the news that service X

was hacked and released a list of all leaked social security numbers. You notice that

your social security number is within that list and therefore file a lawsuit against X

indicating that you have a proof they shouldn't have your information after a certain

point in time, marked within your irreversible transaction.

3.2.2 Service perspective

Services benefit mainly from the way sensitive data is managed and stored. First,

they don't need to manage a large amount of user data. For instance, how to store the

data, to index, to distribute and more. Second, they are less liable to potential data

breaches. Because no sensitive data is stored on their machines, they are less prone

to attacks. Finally, similar to users, they benefit from the proof-able nature of all

data-related transactions. In case of a dispute, they can look up specific transactions

and prove to third parties contracts made with users.

Similar to tokenization in data security, authentication with escrows would require

meeting high security standards in order to protect user sensitive data [681.

3.3 Overview

You share your information with third parties and lose control and ownership imme-

diately. What happens when you decide to stop using a service? What happens to

all the data you previously shared with the service?

Right now your data is forever lost and kept inside the databases you have no

control over.

Invisible Ink shifts this paradigm and gives people what rightfully belongs to them.

32

User's data will be stored in user-trusted locations, and permission management and

data-interactions will be logged inside the Bitcoin blockchain.

For example, let's assume you live in Cambridge Massachusetts and your medical

insurance is from Anthem Blue Cross. You are a professor at MIT and from time

to time, like many, you go to see the doctor. After a couple of years doing what

you love the most, you receive an offer that looks like your dream job: going back

to Israel, and managing the Computer Science department at the Technion Institute

of Technology. Your wife and family couldn't be more happy and are all excited for

moving back to Israel. In Israel, you get a new medical insurance. Not long after

you're back, you read in the news about Anthem being hacked and that your medical

record leaked out. You fear now for your new position and status, because some of

that medical record shows of an unfortunate illness you have that might make people

look at you differently. What can you do?

Now let's assume Anthem Blue Cross have used the Invisible Ink system. When

you first got your medical insurance, you also opened an account in Invisible Ink.

Part of the process required you to provide a link to where your data will be stored

and managed. You're not very paranoid and tend to trust the people close to you,

especially the company or organization you work for. Therefore, you choose to store

and manage your sensitive medical information inside MIT's blind escrow service.

You understand that your data will never be stored in clear-text and that only you

and Anthem Blue Cross are capable of decrypting it. During the registration process

for Invisible Ink you see an option to log all the interactions done on your personal

data inside the Bitcoin blockchain. This gives you the ability to track changes in

your stored data, performed on your behalf by Anthem for example. To enjoy such a

service you are required to pay a relatively low fee each time there are changes on your

data. Because each change cost about $0.01, and the volume depends on the amount

of time you go to see a doctor, you accept this feature. After your first visit to the

doctor, you log in to Invisible Ink dashboard to see how and what information on you

have been stored and read. You feel in control of your personal health record. Before

leaving the United States, you log again to your Invisible Ink dashboard to revoke

33

............ all I---,.--

permissions to your data from Anthem Blue Cross. After reading about Anthem

being hacked, you breath freely knowing that your private data is secured. If for

some unfortunate reason you find out that your data leaked out as well, you can

file a lawsuit against Anthem for breaking a contract and storing an illegal copy of

your sensitive information. That contract is located inside the Bitcoin blockchain and

would never disappear.

By managing permissions to user-data and logging data-manipulation inside the

blockchain we ensure the validity of these actions, without the need to trust anyone

but yourself.

3.3.1 Create an account

The following int- tion will be witrypted and

Only you have the key to d" ypt it. You decide o

Figure 3-1: Register and create a new account

To enjoy the benefits of Invisible Ink, first you need to create an account (see

Figure 3-1). It is a very simple process in which you choose any username/password

combination and provide common user details that you may choose to share with

future online services in later stages.

Your username and password will never be sent to Invisible Ink's servers and

therefore must be stored in a safe place. Because these credentials are only known to

you, you are responsible for memorizing them. During the registration process, your

mouse movements and keyboard strokes are used as entropy in the process of creating

asymmetric elliptic curve keys [36]. These keys represent your Bitcoin initial address

34

and wallet.

An important part during registration is selecting your escrow (see Section 3.5.1).

Selection is simply made by providing a valid url address.

3.3.2 Add funds to your account

Figure 3-2: Web and mobile interface to send money to your Invisible Ink account

After you've registered, you first need to add bitcoins to your account. These

bitcoins are used to pay for tracking interactions performed on your personal data.

Each time a new transaction is sent to the Bitcoin network, it comes with a fee. These

transactions hold on record actions to read, write, update or delete data that belongs

to you. By storing these records inside the Bitcoin blockchain, you guarantee they

will be durable, irreversible and organized by time. You will be able to use these

public records to prove a third-party contracts made with a service you're using or

have used.

When using the testnet, you can quickly add funds to accounts using a testnet

bitcoin faucet (see 3-2) [65]. Otherwise, you can either scan the barcode or manually

send funds to your Bitcoin address.

In future implementations, paying for personal data tracking can be incorporated

inside an already incurring cost, therefore reducing the complexity further.

35

3.3.3 Connect to a service

Similar to existing identity authentication services, connecting with Invisible Ink is

fairly straightforward [20] [27]. The heavy lifting is performed behind the scene, giving

a smooth and fast user experience in the front-end. In Chapter 4.1, we will present a

sample service built on top of Invisible Ink and show how users authenticate with it.

3.3.4 Data and privacy

0 5.i... 0.000398240 + '9

0.0004S + :I,-

r d t d s

Figure 3-3: Data manipulation history

All user-sensitive data will be audited inside the blockchain (see 3.7) and stored

inside your selected escrow. All the interactions done on your data will be visible

only to you through your account in Invisible Ink dashboard (see Figure 3-3).

If you notice suspicious actions or decide to stop using a service, you can simply

disconnect. Disconnecting creates a new Bitcoin transaction that restricts access from

services within your escrow, where your data is stored.

3.4 Technical overview

3.4.1 Write data

Figure 3-4 shows the high-level flow of sensitive data between a user and a service.

The user types in sensitive information, such as an address, credit card, social security

36

- . i - I __ __ - _ffiEiZ5 -

I

data
User

db
3

Mind key, Encrypt~data, meta-da
Escrow

result 4 Check-Permission (User, Service)

ta, tx-id)
Service

tx-id 2 Hash(meta-data), signature

DDU Blockchain

Figure 3-4: High level write data diagram

number, etc. and sends it to a third party service. The service extract the meta-data,

hashes it, appends its signature for validation and broadcasts a transaction in the

Bitcoin network. In return, it receives a transaction Id. The service then encrypts

everything using a shared (with the user) symmetric key and sends the cipher-text to

the user's trusted blind escrow server (explained in Section 3.5.1).

Sensitive information is stored in a highly distributed manner; each user can have

its own trusted escrow. Escrows always check for permissions inside the blockchain

before responding to requests (see Figure 3-6).

3.4.2 Read data

The information stored in escrows is available on-demand to services without requiring

explicit action by the user, given that the user provided access rights and recorded

them inside the blockchain. Figure 3-5 shows a high-level diagram for an on-demand

read request issued by a service. First, the service is required to audit its intentions

inside the blockchain, for example "reading user address". Then it sends a request

to retrieve desired data from the user's escrow. The escrow checks that the service

indeed has access rights and responds with the stored encrypted data. The user and

the service, who share the encryption/decryption key, are the only ones who can

37

User

Getkey, Encryptmeta-data, r-id)

7Service 1-

Encrypted(data)

t:K-jd 1 Hash (meta-data), signature result

b
Blind

Escrow

3 Check-Permission(User, Service)

DDU Blockchain

Figure 3-5: High level read data diagram

decipher that response.

3.4.3 Grant permissions

To make these types of communications possible, first the user needs to give the

service permissions to handle its data. Figure 3-6 presents a high-level overview for

giving permissions to a service. It starts with the user generating asymmetric keys

P1, Pjr that are used to validate transaction signatures inside the blockchain, an

ID, a symmetric key to encrypt its sensitive information, an email address (or any

other validation method) and the address of the escrow. The service receives the

user ID, along with the shared encryption key and email address, then it generates

its own asymmetric keys P2, P2, and a unique ID and sends back to the user its

ID, public key and an email with a verification code. The user updates its escrow

with the received verification code and broadcasts a transaction with the permission,

two public keys P1 , P2 and verification code. These public keys will associate future

related transactions by their signatures.

38

db
Blind

Escrow

verification 4 Tst lDu, encryption-key, email, escrow-address

(Pi, PO User Service

IDs, P2, Send(email, verification)

tx-id permission, P1, P2, verification

Blockchain

Figure 3-6: High level grant permissions diagram

3.4.4 Revoke permissions

Figure 3-7 presents a high level overview of how a user revokes permissions from a

service to access their sensitive data. The key part in this diagram is the transaction

stored inside the blockchain that indicates the user's intentions to revoke access to its

data for that specific service. Later, the user's escrow will find this transaction and

deny access to sensitive data for the corresponding service. The user also triggers a

call to write an audit-log to keep it for its record.

3.4.5 User-Escrow key exchange

When creating an account, you also choose a blind escrow service (see Section 3.5.1).

Figure 3-8 presents a high level overview of how a user initially connects to its escrow.

It is a similar process to a Pretty Good Privacy (PGP) key exchange. First the user

generates a random 32 byte string that will be used to identify the user. Then it

generates asymmetric keys using an elliptic prime curve of 384-bit. Along with its

ID, the user sends also its public key to allow the escrow to securely communicate

with it. The escrow performs a similar process and responds with an encrypted value

39

db
authentication, Write: (key, Enerypt(meta-data, bi-id)) Blind

SEscrow

revoke-permissions, signature

Blockchain

Figure 3-7: High level revoke permissions

lu, P1

PUser(Pi .Pri) Ue

diagram

db

Blind is
Esrow (P21 Prt)

P1 (S P2)

Figure 3-8: High level user-escrow key exchange diagram

of its ID and public key.

3.5 Terminology, interfaces and actors

3.5.1 Blind escrow service

Each account has an escrow service that guards its sensitive data. They act as gate-

ways for services to your data. All requests to read/write are passed to escrows and

first checked for recorded permissions inside the blockchain. Escrows are considered

blind because they are not capable of decrypting the information they store. The data

is usually encrypted by services using a key they share with the user. The escrow's

server code is open source, therefore anyone can create an escrow for themselves,

otherwise, they can use whatever escrow server they trust. The only requirement is

that it will stay always connected such that the data it "guards" will be available on

demand.

Escrows are accountable for keeping the data they store safe, but are less prone to

40

.dL I T

User

Wrtx-

attacks compared with existing models, which suffer from single point-of failures and

are very attractive targets for hackers [53] [47] [62]. Security-conscious individuals

can run their own escrows easily with a Raspberry PI, for instance, on their home

network [57].

The common interface each escrow should implement is listed in Table 3.2.

Method Relative Path Parameters Response Description

Creates a new association
between the escrow and the

userId: user id See client issuing the request. The
POST /keyexchange pubkey: user public key Listing asymmetric keys exchanged will

3.1 be used in all future
communications to ensure

security and authentication.

userId: user id
userServiceId: SHA2 5 6 (Iu, Is)
proof Cipher: authentication See Update escrow for connected

POST /connectservice proof Tag: authentication KEM Listing U e rco
verificationCode: service 3.2 service

generated verification code
txid: Bitcoin transaction ID

id: user-service id
key: index key for stored data See

POST /write data: stored data Listing Store data in escrow

SHA2 56(verification + nonce.)
- used to authenticate the sender

id: user-service id
key: index key for stored data
data: read operation meta-data See

POST /read (see Listing 3.4) Listing Read stored data
proof: 3.5

SHA 2 5 6 (verification + nonces)
- used to authenticate the sender

userId: user id See

POST /history userServiceId user-service id Listing Read all stored dataproof Cipher: authentication Litn3Ra.llsoeddt
proof Tag: authentication KEM 3.6

Table 3.2: Escrow common interface

1 success: [true / false],

2 data:

3 tag: [Key Encapsulation Mechanism tag],

4 cipher: [encrypted output of : escrowId , escrowPubkey]

5 [,error: [error description]

Listing 3.1: Escrow keyexchange response

1 success: [true / false]

41

2 [,error: [error description]

Listing 3.2: Escrow connect service response

1 success: [true / false]

2 [,error: [error description]

Listing 3.3: Escrow write response

1 timestamp: [unix time],

2 title: [operation title. E.g. 'Reading messages'],

3 reason: [operation reason. E.g. 'User requested to read messages']

Listing 3.4: Escrow meta-data

1 success: [true / false],

2 data: [encrypted data]

3 [,error: [error description]

Listing 3.5: Escrow read response

1 success: [true / false],

2 data: [encrypted data]

3 [,error: [error description]

Listing 3.6: Escrow history response

3.5.2 Storage

There are two storage locations, each for a different purpose. First is the distributed

escrow servers. They guard encrypted sensitive data and potentially store information

for a single user. Second is the Bitcoin blockchain. There is only meta-data stored

in the format of hashes to keep a small memory footprint and avoid bloating the

blockchain. It's main purpose is to keep a durable, irreversible and transparent audit

trail of actions (see Appendix B).

42

* Nauseta 0.00246412* +

Certified Mail Service X

Figure 3-9: Invisible Ink dashboard

3.5.3 Blockchain

The blockchain we chose to use is Bitcoin's. Because the transactions stored inside

the blockchain are fairly simple and comply with Bitcoin's protocol it is unnecessary

to create a brand new blockchain. By using Bitcoin's blockchain we can enjoy its

existing network and underlying coin. Other blockchains are available as well, but

Bitcoin is by far the most common protocol.

3.5.4 Transaction explorer

To go through all the transactions and see how our data is being manipulated we have

created a web explorer that displays everything ordered by time and services (see

Figure 3-3). Our next steps will include a search tool that will allow easy navigation

between different transactions and events.

3.5.5 Dashboard

To provide the user with an easy-to-use interface for the information shared with

services and their corresponding audit events, we created a web dashboard. Here

users will be able to monitor their data, link and unlink accounts, define and manage

43

weloom Aair
4 U, -1

escrows, copy data between services and more (see Figure 3-9).

3.5.6 Server

The server doesn't keep any information in plain-text nor can it decrypt any sensitive

information it stores. The keys are generated in the client side and only the client

knows the credentials used to generate them. This is also dangerous in case clients

forget their credentials, because the server wouldn't be able to recover them.

The server has two important tasks:

" Stores encrypted credentials for its users. Providing a fluid user experience

while maintaining zero-knowledge about the data it stores. Besides logging-in

to the dashboard .(see Section 3.5.5) from multiple clients, users will have many

different keys shared with different services. Remembering a 32 character long

password is not easy.

" For each user, the server stores an encrypted list of all its linked services. The

server will never be able to know details about these services as they are en-

crypted and decrypted only by the client.

3.5.7 Database

There are two main actors: Invisible Ink server and the escrow server. Each actor

has its own database. See Table 3.4 for the Invisible Ink database schema and Table

3.6 for the escrow database schema.

Both of-these are subject to changes and optimization. For example, if you choose

to create your own escrow service - your only requirement is to implement its interface.

How you store, manage, index, etc. the data, that's for you to decide.

44

11PIMMOWWW"R"M

Key Type Default Description

id String User unique identifier

auth-token String API temporary authentication token

profile String Encrypted profile data

services Array List of encrypted service data

nonce Number 0 Anti replay-attack variable sent in each request.
Increments after each successful request

Table 3.4: Invisible Ink database schema

Key Type Default Description

clients

user-id String User unique identifier

user-pubkey String User public key

escrow-id String Escrow unique identifier

escrow-pubkey String Escrow public key

escrow-prvkey String Escrow private key

nonce Number 0 Anti replay-attack variable sent in each request.
Increments after each successful request

services

id String Service unique identifier

data Object Encrypted service data that belongs to the user

verification String Service generated verification code

nonce Number 0 Anti replay-attack variable sent in each request.
Increments after each successful request

Table 3.6: Escrow database schema

3.6 Failed protocol

In Bitcoin there are several ways to store arbitrary data inside the blockchain. Each

with its own pros and cons. In this section we describe our initial attempts to store

and manage arbitrary data in a decentralized network.

3.6.1 Introduction

Our first attempt at designing Invisible Ink didn't include escrow services. Instead,

the data was stored in existing third-party cloud storage, such as Dropbox and Google

Drive [171 [28]. The auditing process was by storing log-files inside these services. The

files were hashed periodically and the result was stored inside the blockchain. By

keeping the periodic hashes inside a durable, irreversible, time-based and distributed

database people could know at any point in time whether the log-file had been altered.

45

In most major cases, we have chosen to use the Bitcoin testnet compared with

mainnet and regtest. We made this decision based on two main factors: first to play

with fake bitcoins and second to enjoy existing block explorers and other bootstrap-

ping services.

3.6.2 Transactions

Bitcoin enables a special transaction that can hold 40 bytes of arbitrary information.

We will use this transaction to keep our meta-data inside the blockchain.

The generic format we will use is:

OPRETURN <ID, 5 bytes> <TYPE, 1 byte> <DATA, 34 bytes>

" ID will always be "PRVCY" (0x5052564359)

" TYPE can be:

- Ox01: log

- Ox02: link

- Ox03: unlink

- Ox04: data

3.6.3 Log transaction: attempt 1 - testnet only

Storing arbitrary data inside a transaction that uses multiple OPRETURN scripts.

This implementation is valid only in the testnet because it uses a transaction with

multiple OPRETURN outputs which is blocked in the mainnet.

Protocol

[output 0]

[output 11

OPRETURN <ID, 5 bytes> <TYPE, 1 byte> <SERVICE ID, 2 bytes>

<NUM OF ENTRIES, 5 bytes> <USER HASH, 20 bytes>

OPRETURN <FILE HASH, 32 bytes>

* SERVICE ID helps to identify the service. An encrypted name is associated with

this id inside our server.

46

" NUM OF ENTRIES represents the number of hashed log entries. This value is

used to authenticate the integrity of the log-file.

" USER HASH is the user's pseudonym that is randomly generated for each of

its services. The user uses this hash to find its link transactions. We get a

secure 20 byte hash by using a RIPEMD1 60 hash of the SHA 256 user id. I.e.

RIPEMD160(SHA25 6 (userld)).

" FILE HASH is a SHA 256 hash of the log file. The file itself will be stored in the

cloud storage. Its authenticity can be proved by hashing the file and comparing

it to this value.

Example

[output 0] OPRETURN 5052564359 01 0001 0000000002

51d75544b04a9471eec80d5c1b8f5e127b093582

[output 1] OPRETURN

f094ce936bdef34eld63109cf3fe8dd21801e4a470309da63dbf3a49...

Live example

http: //blockexplorer. com/testnet/tx/

4bfec6ed3067265e66900a3e621e83905eef 02e4d94ec217080aaffa646fe4dl

3.6.4 Log transaction: attempt 2 - erasing satoshis

Storing arbitrary data inside a Pay To Public Key Hash (P2PKH) script.

Although this implementation is valid in the mainnet, it is much worse than the

one above because it requires sending bitcoins to a fake address. There is a minimum

limit on the amount sent to an address, and it's called dust 148]. Currently it is set

to 5460 satoshis (0.0128856USD, when 1BTC = 236USD). Besides the extra cost,

the 5460 satoshis sent to the fake address are now lost forever because no one has

the private key for the fake address.

47

Protocol

[output 0]

[output 1]

Example

[output 0]

[output 1]

OPRETURN <ID, 5 bytes> <TYPE, 1 byte> <SERVICE ID, 2 bytes>

<NUM OF ENTRIES, 5 bytes> <USER HASH, 20 bytes>

<ID, 5 bytes> <TYPE, 1 byte> <FILE HASH, 32 bytes>

OPCHECKSIG

OPRETURN 5052564359 01 0001 0000000002

51d75544b04a9471eec80d5clb8f5e127b093582

5052564359 01

f094ce936bdef 34eld63109cf 3f e8dd21801e4a470309da63dbf 3a49 ...

OPCHECKSIG

Live example

https://blockchain.info/tx/

6067591b805ca0602l4777e5adl644bcdbd5af9393f3282332030172f0833a2f

3.6.5 Log transaction: attempt 3 - hacking multisig

Storing arbitrary data inside a multisig public key script.

M of N OPCHECKMULTISIG is standard (meaning, it will propagate and eventually

be inserted into the blockchain) if N <= 3. Each public key can be anywhere between

33 (compressed) to 65 (raw) bytes.

To go around the previous problem where we "burned" funds, here we use public

keys as placeholders for our random data. This gives us 130 bytes of data. The third

key is a real address that we own. Later, we can use these funds for any arbitrary

need. This raises one big problem, identity linkage. If we buy something with these

funds someone could link our identity with this log-transaction. One possible solution

is CoinJoin [431. In a nutshell, it combines several keys together as inputs and creates

"new keys" as outputs. This makes it hard to guess which key belongs to which output

and if repeated a couple of times makes it nearly impossible to identify the rightful

48

owner. Although, each such cycle requires paying transaction fees.

Protocol

[output 0]

[output 1]

OPRETURN <ID, 5 bytes> <TYPE, 1 byte> <USER HASH, 20 bytes>

OP_1

[key 0]

[key

[key

OP_3

Example

[output 0]

[output 1]

1]

2]

OP-

<ID, 5 bytes> <TYPE, 1 byte> <SERVICE ID, 2 bytes>

<NUM OF ENTRIES, 5 bytes> <USER HASH, 20 bytes>

<ID, 5 bytes> <TYPE, 1 byte> <FILE HASH, 32 bytes>

<real address>

CHECKMULTISIG

OPRETURN 5052564359 01

51d75544b04a9471eec80d5c1b8f5e127b093582

OP_1

5052564359010001000000000251d75544b04a9471eec80d5c1b8f5e

127b093582 505256435901f094ce936bdef34eld63109cf3fe8dd21

801e4a470309da63dbf3a49955d9579 03ab48e4ece8f1c7ffb4b59a

154e6ef88d3fed23dea6fcc166bb7b02f3e7232c63

OP_3 OPCHECKMULTISIG

Live example

http://blockexplorer.com/testnet/tx/

6b7e12f3cf813da5f2baaaa0c6223497a7e4fb3636cf94d3d451f229b01108f1

3.6.6 Log transaction: attempt 4 - legally hacking multisig

A similar attempt to the previous one with only public keys with exactly 33 or 65

byte length for compressed and uncompressed respectively. This attempt was later

proved to be somewhat useless compared with Attempt 3.

Although in the previous attempt the transaction was marked "standard" and

49

reached the pool of unconfirmed transactions, it took many days until it eventually

propagated and was added to a block. We tried a couple of transaction fees to

encourage miners to add it to a block but non prevail immediately. We believed

that the reason it didn't work was that the fake public keys weren't "standard". For a

public key to be standard it must be either 33 or 65 bytes exactly and have a prefix

of 0x02/0x03 and 0x04 respectively (as far as we knew while making this attempt).

That led us to this attempt.

Protocol

[output 0] OPRETURN <ID, 5 bytes> <TYPE, 1 byte> <USER HASH, 20 bytes>

[output 11 OP_1

Example

[output 01

[output 1]

[key 0] <compressed public key prefix, 1 byte>

<ID, 5 bytes> <TYPE, 1 byte> <SERVICE ID, 2 bytes>

<NUM OF ENTRIES, 4 bytes> <USER HASH, 20 bytes>

[key 1] <uncompressed public key prefix, 1 byte>

<ID, 5 bytes> <TYPE, 1 byte> <FILE HASH, 32 bytes>

<RESERVED, 26 bytes>

[key 2] <real address>

OP_3 OPCHECKMULTISIG

OPRETURN 5052564359 01

51d75544b04a9471eec80d5c1b8f5e127b09358

OP_1

5052564359010001000000000251d75544b04a9471eec80d5c1b8f5e

127b093582 04505256435901f094ce936bdef34eld63109cf3fe8dd

21801e4a470309da63dbf3a49955d957900000000000000000000000

00000000000000000000000000000 03613a80d61c79d4ba7e870413

3f63e53435add99275bfd894bab1f700e90dc8fd

OP_3 OPCHECKMULTISIG

50

Live example

https://blockchain.info/tx/

42409ab67cd856ecf648elc63eaff23bf99ad8a5e8793f31812bfa6eb3Oc6112

3.6.7 Log transaction: attempt 5 - conservative multisig

A similar attempt to the previous one with only one fake public key that stores

arbitrary data.

In the previous attempt we used three addresses in which only one is valid and the

first two are meta-data. Here we'll use only two output addresses, combining both

meta-data outputs into a single one. This reduces the amount of total bytes we're

using and reduces the risk of someone owning one of our fake addresses.

Protocol

[output 0] OPRETURN <ID, 5 bytes> <TYPE, 1 byte> <USER HASH, 20 bytes>

[output 1] OP_1

[key 0] <ID, 5 bytes> <TYPE, 1 byte> <SERVICE ID, 2 bytes>

<NUM OF ENTRIES, 5 bytes> <USER HASH, 20 bytes>

<FILE HASH, 32 bytes>

[key 1] <real address>

OP_2 OPCHECKMULTISIG

Example

[output 0]

[output 1]

OPRETURN 5052564359 01

51d75544b04a9471eec80d5clb8f5e127b09358

OP_1

5052564359010001000000000251d75544b04a9471eec80d5clb8f5e

127b093582f094ce936bdef34eld63109cf3fe8dd21801e4a470309d

a63dbf3a49955d9579 03613a80d61c79d4ba7e8704133f63e53435a

dd99275bfd894bab1f700e90dc8fd

OP_2 OPCHECKMULTISIG

51

--. , --- I I I w

Live example

https://blockchain.info/tx/

3cd32f8e095162596af58f9ef89833ce3926d4bd18b8faal8bceefd47c3a527c

3.6.8 Data transaction: attempt 1 - non-encrypted

Protocol to store arbitrary data inside the blockchain. Data stored in clear-text.

Protocol

[output 0] OPRETURN <ID, 5 bytes> <TYPE, 1 byte> <SERVICE ID, 2 bytes>

<CATEGORY, 12 bytes> <USER HASH, 20 bytes>

[output 1] OP_1

[key 01 <KEY LENGTH, 1 byte> <KEY, x bytes>

<VALUE LENGTH, 1 byte> <VALUE, y bytes>

[<SUFFIX, 63 - x - y bytes>]

[key 1] <real address>

OP_2 OP_CHECKMULTISIG

" SERVICE ID identifies the service. An encrypted name is associated with this

id inside our server.

" CATEGORY index for the type of data stored.

" USER HASH is the user's pseudonym that is randomly generated for each of

its services. The user uses this hash to find its link transactions. We get a

secure 20 byte hash by using a RIPEMD1 6 0 hash of the SHA 256 user id. I.e.

RIPEMD160 (SHA256 (userld)).

* KEY LENGTH the length of the following key.

" KEY variable length data-key.

" VALUE LENGTH the length of the following value.

" VALUE variable length data-value.

52

* SUFFIX variable length appended zeros to complete a 65 bytes length fake

public key.

Example

[output 0]

[output 1]

[output 2]

OPRETURN 5052564359 04 0001

000000000067656e65736973

51d75544b04a9471eec80d5clb8f5e127b093582

OP_1

06 746865736973 2b 5072697661746520426c6f636b202d20426c6

f636b636861696e20466f7220446174612050726976616379 000000

0000000000000000000000 f094ce936bdef34eld63109cf3fe8dd2I

801e4a470309da63dbf3a49955d9579

OP_2 OPCHECKMULTISIG

OP_1

04 676f616c 35 5468657369732050726f706f73616c20666f72200

dOa4d6173746572206f6620536369656e636520696e204d415320617

4204d4954 000000000000 f094ce936bdef34eld63109cf3fe8dd21

801e4a470309da63dbf 3a49955d9579

OP_2 OPCHECKMULTISIG

Live example

https://blockchain.info/tx/

2ecae24a049993142260861d32275d40461936679e9efa9c2504cacd4048914c

3.6.9 Data transaction: attempt 2 - encrypted

Protocol to store arbitrary data inside the blockchain. Data stored in encrypted

format.

Protocol

[output 0] OPRETURN <ID, 5 bytes> <TYPE, 1 byte>

53

ww.ww" ".. , -

<USER-SERVICE ID, 20 bytes>

[output 1] OP_1

[key 0] <CATEGORY OP CODE, 6 bytes> <CATEGORY HASH, 20 bytes>

<DATA LENGTH, 2 bytes> <SUFFIX, 5 bytes>

[key 1] <DATA(i), x bytes> [<SUFFIX, 33/65 - x bytes>]

[key 2] <real address>

OP_3 OP_CHECKMULTISIG

[output 2] OP_1

[key 0] <DATA(i+1), x bytes> [<SUFFIX, 33/65 - x bytes>]

[key 1] <DATA(i+2), x bytes> [<SUFFIX, 33/65 - x bytes>]

[key 2] <real address>

OP_3 OP_CHECKMULTISIG

" USER-SERVICE ID used to index the transactions so that both the user and the

service could easily find their corresponding transactions.

* CATEGORY OP CODE a hex representation of the word "catgry" (0x636174677279)

* CATEGORY HASH is the sub-index used by the user or service to search for the

data that is stored in this transaction. We get a secure 20 byte hash by using a

RIPEMD160 hash of the SHA 256 category key. I.e. RIPEMD6o(SHA 256 (key)).

* DATA LENGTH a 2 byte integer which represents the length of the data.

" SUFFIX appended zeros. Reserved for future implementations.

* DATA(i+x) a 65 byte maximum chunk of stored encrypted data.

Example

[output 0]

[output 1]

OPRETURN 5052564359 01

b7l92ee98abfc3ldb4afO3dd9O7l1d403e426ba6

OP_1

636174677279 2483cbf25e014c9c8ffdlcf1a309917c7ca87a18 00

21 0000000000 da5Oc92ld289bbO523Of5b761decb7f92caba2eb96

54

8e00972b107aaed24d379e f094ce936bdef34eld63109cf3fe8dd21

801e4a470309da63dbf 3a49955d9579

OP_3 OP_CHECKMULTISIG

3.6.10 Link transaction

Using a simple version of an OPRETURN script.

Protocol

[output 0] OPRETURN <ID, 5 bytes> <TYPE, 1 byte>

<USER-SERVICE ID, 20 bytes>

Example

[output 0] OPRETURN 5052564359 02

b7l92ee98abfc3ldb4afO3dd9O7l1d403e426ba6

3.6.11 Unlink transaction

Using a simple version of OPRETURN.

Protocol

[output 0] OPRETURN <ID, 5 bytes> <TYPE, 1 byte>

<USER-SERVICE ID, 20 bytes> <SECURITY BYTES, 12 bytes>

* SECURITY BYTES protects against replay attacks (user-service id is randomly

generated each time a user links to a service) and from malicious attempts to

create this transaction. It is the last 12 bytes of the SHA 25 6 of the user id.

Example

[output 0] OPRETURN 5052564359 03

b7l92ee98abfc3ldb4afO3dd9O7l1d403e426ba6

4cf6e11d89c7c4202b0acb39

55

3.7 The protocol

In this section we will describe Invisible Ink's protocol and provide real-world usages.

First we will present the top three choices of scripts we use to store arbitrary data

inside the Bitcoin blockchain.

3.7.1 Transaction 1: OPRETURN

Bitcoin protocol enables a special transaction that can hold up to 40 bytes of arbi-

trary information without needing to send any satoshis (value) to anywhere.

Protocol

OPRETURN <DATA, 40 bytes>

Live example

https://blockchain.info/tx/

dd66ea35f78e8d9fac170e30a64231ff4d9b680502bd05644d69fb17fa93cec2

3.7.2 Transaction 2: OP RETURN + multisig

It is illegal to have more than one OPRETURN output script in a single transaction,

therefore we can use a different script type. A multi-signature transaction is a very

important script format. One of its benefits is that it increases the security for bitcoin

capital. Instead of requiring a single key to unlock an Unspent Transaction Output

(UTXO), it allows the requirement of more than one.

For example, a company can ensure that at least X out of the total Y board

members are required to sign a transaction and pay for some service. It is similar

to a democratic voting procedure in which to win you would have to get at least X

votes. In our analogy, winning is the ability to create a valid transaction.

M of N OPCHECKMULTISIG is standard, meaning that it will propagate and even-

tually be inserted into the blockchain if N <= 3. Each public key can be anywhere

56

between 33 (compressed) to 65 (raw) bytes. Here we use public keys as place-

holders for arbitrary data. This gives us 130 bytes of data. The third key should

always be a real address that we own. Later, we can use these funds for any arbitrary

need. If we don't put a real address, then the funds we send are lost forever. This

has three major implications: reducing the supply of bitcoins, placing a permanent

memory footprint for each full-node and bloating the size of the blockchain which

effectively decreases its potential to scale. Full nodes that hold the blockchain also

store in RAM a table for all the UTXOs.

Using an address we own and later spend raises one big problem, identity linkage.

If we buy something with these funds someone could link our identity with this type

of transaction. One possible solution is CoinJoin [43]. In a nutshell, it combines

several keys together as inputs and creates "new keys" as outputs. This makes it hard

to guess which key belongs to which output and if repeated a couple of times makes

it nearly impossible to identify the rightful owner. However, each such cycle requires

paying transaction fees.

Protocol

[output 0] OPRETURN <DATA, 40 bytes>

[output 1] OP_1

[key 01 <DATA, 33/65 bytes>

[key 11 <DATA, 33/65 bytes>

[key 2] <real address>

OP_3 OPCHECKMULTISIG

Live example

https://blockchain.info/tx/

42409ab67cd856ecf648elc63eaff23bf99ad8a5e8793f31812bfa6eb30c6112

57

----------

3.7.3 Transaction 3: OPRETURN + P2SH multisig

One of the biggest drawbacks for almost any data-related transaction is that the

transaction, once accepted, is stored in RAM within all full-nodes in the network until

it is spent. It may turn out to be a problem when many such transactions will appear

and start filling the entire heap size for all wallets with non-currency based unspent

transaction outputs. However, there shouldn't be too much of these for each wallet,

because one could always spend such transactions first, leaving a maximum of a single

data-transaction. Clients can improve that by making sure that these transactions

are spent after a certain time-frame, thus leaving no memory footprint behind.

An alternative approach is a bit more complex but much more memory conserva-

tive. Instead of leaving a "heavy" transaction output, use a pay-to-script-hash (p2sh)

for multi signature and to store the data, and use the redeem script later. This makes

sure that a small footprint is stored in RAM for all full-nodes (because unspent trans-

action outputs are stored in memory), but on the other hand, to complete the data

transaction you would have to wait for your first transaction to be included inside

the blockchain and then submit another transaction with your data.

With respect to the blockchain size, if Satoshi's pruning approach will come into

effect, then this type of transaction would still leave a permanent footprint inside the

blockchain and increase its size until spent.

Protocol

[output 01 OPRETURN <DATA, 40 bytes>

[output 1] OPHASH160 <REDEEM SCRIPT HASH> OPEQUAL

* REDEEM SCRIPT HASH have more flexible restriction on the number of public

keys used. Here's an example of such script:

OP_1

[key 0] <DATA, 33/65 bytes>

[key 11 <DATA, 33/65 bytes>

[key 2] <DATA, 33/65 bytes>

58

[key 3] <DATA, 33/65 bytes>

[key 41 <real address>

OP_5 OP_CHECKMULTISIG

3.7.4 Selected transaction type

Our system will mainly use the second type of transaction (see Section 3.7.2) to store

the meta-data. The reason for our choice is that the memory footprint will stay low

due to the extensive use of compressed hashes instead of plain data. The wallets that

will create these transactions will set their priority to maximum, and therefore they

will always make sure they get spent first.

The following sections will elaborate on the transactions used in Invisible Ink.

3.7.5 Header transaction

All transactions will begin with a header transaction that uses an OPRETURN script

to store 40 bytes of information.

Protocol

OP_RETURN <ID, 5 bytes> <TYPE, 1 byte>

<USER-SERVICE ID, 20 bytes> <KEY, 14 bytes>

" ID will always be "PRVCY" (0x5052564359)

" TYPE can be:

- Ox01: connect

- Ox02: disconnect

- 0x03: audit

* USER-SERVICE ID is the pseudonym that is randomly generated each time a

user and a service connect. It is used to identify and index transactions. We

get a secure 20 byte hash by using a RIPEMD160 (SHA 256 (Hu,s)).

59

wa'b ' 11 1 1

* KEY is used to identify and index the type of audit stored in the transaction. It

uses the last 14 bytes of a RIPEMD160 over a SHA 256 hash of the key-index.

I.e. Last14Bytes (RIPEMDi6o (SHA 256 (key))).

3.7.6 Audit transaction

This type of transaction is used when the following actions are performed on user

data: read, write, update, revoke/grant permission, etc.

Protocol

[output 0] Header transaction (see Section 3.7.5)

[output 1] OP_1

[key 0] <ULB, 1 byte> <SIGNATURE-X, 64 bytes>

[key 11 <CLB, 1 byte> <VALUE, 20 bytes>

<SIGNATURE FIRST BYTE, 1 byte> <UNUSED, 11 bytes>

[key 21 <real address>

OP_3 OPCHECKMULTISIG

* ULB The Uncompressed Leading Byte equal to 0x04. In order to create an

uncompressed valid public key it is required that it will lead with a 0x04 value.

" CLB The Compressed Leading Byte equal to 0x03. This can be anything besides

0x04 in order to mark this public key as a compressed key.

* SIGNATURE-X The signature without the first byte. It is the proof that validates

this transaction to be a part of the user-service audit trail. It is the compressed

output of ECDSA.sign (value, Pr), where P, is a private key that belongs to

either the user or the service. In order to create a valid uncompressed public

key the first byte is replaced by a leading uncompressed byte equal to 0x03.

The replaced byte can be found in the second public key.

* VALUE is the 20 byte hash representing the value stored. This hash is ob-

tained by performing a RIPEMD160 over a SHA 25 6 hash of the value. I.e.

RIPEMD 160 (SHA 2 6 (value)).

60

* SIGNATURE FIRST BYTE the signature's leading byte.

o UNUSED appended O's padding to 33 bytes.

Live example

https://blocktrail.com/tBTC/tx/

527636fdd3a5d7c0339ade27143a1be1f0f579e71c73155e06801254d1a9df02

3.7.7 Connect transaction

Records the event of connecting an account to a service.

Protocol

[output 0] Header transaction (see Section 3.7.5)

[output 1] OP_1

[key 0] <ULB, 1 byte> <PUBKEY HASH, 20 bytes>

<PUBKEY2 HASH, 20 bytes> <VERIFICATION, 20 bytes>

<FREQUENCY TYPE, 1 byte> <FREQUENCY, 2 bytes>

<UNUSED, 1 bytes>

[key 1] <real address>

OP_2 OPCHECKMULTISIG

" ULB The Uncompressed Leading Byte equal to 0x04. In order to create an

uncompressed valid public key it is required that it will lead with a 0x04 value.

" PUBKEY11 2 HASH is the RIPEMD16 0 hash of the compressed public key used

to verify future audit transaction signatures.

" VERIFICATION is used to validate the authenticity of a connect-transaction. The

service, which issues the validation-code, can associate such transaction with its

user. It is the RIPEMD16 0 of a SHA 2 56 hash of the validation code sent to

the user. I.e. RIPEMD160 (SHA 256 (validation code)).

" FREQUENCY TYPE defines the type of frequency used in the following parameter:

61

OxO1: years

0x02: months

0x03: days

0x04: hours

0x05: minutes

0x06: seconds

Ox1O: number of transactions

* FREQUENCY defines the upper bound limit recurrence for future audit transac-

tions. I.e. if frequency type is days and frequency is 1, then every day the

service will broadcast one audit-transaction which contains all the operations it

had done during that day if at least one operation was performed.

Live example

https://blocktrail.com/tBTC/tx/

a3a2d10e0d72cbe37283476507fa4c8e3dbe1ae5ab1472173522c8cf38e11440

3.7.8 Disconnect transaction

Records the event of disconnecting an account from a service.

Protocol

[output 0] Header transaction (see Section 3.7.5)

[output 1] OP_1

[key 0] <ULB, 1 byte> <SIGNATURE-X, 64 bytes>

[key 1] <CLB, 1 byte> <SIGNATURE FIRST BYTE, 1 byte>

<UNUSED, 31 bytes>

[key 2] <real address>

OP_3 OP_CHECKMULTISIG

e ULB The Uncompressed Leading Byte equal to 0x04. In order to create an

uncompressed valid public key it is required that it will lead with a 0x04 value.

62

" CLB The Compressed Leading Byte equal to 0x03. This can be anything besides

0x04 in order to mark this public key as a compressed key.

* SIGNATURE-X The signature without the first byte. It is the proof that validates

this transaction to be a part of the user-service audit trail. It is the compressed

output of ECDSA.sign (0, Pr), where Pr is the private key that belongs to the

user and its corresponding public key is stored inside the connect-transaction.

In order to create a valid uncompressed public key the first byte is replaced by

a leading uncompressed byte equal to 0x03. The replaced byte can be found in

the second public key.

" SIGNATURE FIRST BYTE the signature's leading byte.

" UNUSED appended O's padding to 33 bytes.

63

64

Chapter 4

System Applications

In this chapter we describe an application we have built on top of the Invisible Ink

framework. We call it Certified Mail. It allowed us to test our platform and evaluate

its potential usage in real-world applications. We released and demonstrated Certified

Mail at the spring member's event at the Media Lab.

4.1 Certified Mail

4.1.1 The challenge

The postal service has a mechanism to ensure the sending, tracking and receiving of

a mail. That is called "Certified Mail". The value it brings is trivial; we can prove we

sent a mail and that our mail has been received by the recipient. The postal service

only operates as a proxy. It doesn't keep a copy of our mail nor does it open it and

read its content. What about its digital companion? How can we track a message

sent online while ensuring its privacy?

4.1.2 Our solution

We created a messaging service that allows people to send encrypted messages that

can only be decrypted by the recipients. The messages are stored in a trusted blind

escrow (see Section 3.5.1) and are audited inside the Bitcoin blockchain.

65

0.~~~ ~~ 004 1:. 0Hew thisead

Did he get

Vivianth ewe

40 dr12 01Apx.,, '05 gurantee that?

ravisea

Figure 4-1: Certified Mail - proof of communication

4.1.3 Application overview

After creating an account (see Section 3.3.1) in Invisible Ink, you authenticate your

profile in Certifed Mail application. The authentication (see Figure 3-6) process is

performed behind the scene and is transparent and smooth for the user.

Part of the authentication involves creating a contract between you and the ser-

vice that describes your relations with the service and the permissions to your data

that you provide. For example, how long can the service temporarily store sensitive

information (used to provide a good user experience). Another important part of the

authentication is generating asymmetric keys that will be used to encrypt messages.

To send someone a message, you would use their public key for encryption. This way,

Certified Mail will not be able to read its users conversations and only be used as a

transport medium and messaging interface.

Once authenticated, you can immediately start communicating with your family,

friends and colleagues. Figure 4-1 presents the interface used to send messages in the

Certified Mail application.

In addition to any other messaging application, Certified Mail provides an easy

way to add an audit-transaction (see Section 3.7.6) for each message sent. Every

transaction in the Bitcoin network has a cost. This cost is usually very low and will

be accepted by the network based on the miner's decision and optimization algorithm.

Miners in the network are incentivized to validate and propagate transactions based on

66

Figure 4-2: Certified Mail - send money to the service

the fees transactions leave for them. If for example, the miner has more transactions

waiting than it can include in the next block due to the size limit, it will choose the

top paying transactions to gain the maximum value. In Certified Mail we adjusted

the fee to be $0.01 based on the current value of Bitcoin, but we might have succeeded

with lower values as well.

Certified Mail pays for transactions on behalf of its users for each message they

send that requires auditing. Auditing a message is done by creating a Bitcoin trans-

action and sending it to the network so it will be stored inside the blockchain. Each

account in Certified Mail has a Bitcoin wallet. The funds in each wallet are only used

for auditing purposes. Figure 4-2 presents a web and mobile interface for sending

money to Certified Mail.

Because audited-messages are "expensive" (approximately $0.01), we included a

function that can temporary disable immediate transactions. However, these non-

audited messages can eventually become audited. Non-audited messages are hashed

and temporarily stored inside a Merkle tree data structure [45]. Once an audited-

message is sent, it includes with it the Merkle root that belongs to all the previously

hashed non-audited messages, if one exists. Later, if needed, all the non-audited mes-

sages between two given audited-messages can be proved for existence by providing

the entire trail of non-audited messages in the desired range.

67

68

Chapter 5

Conclusion

We have presented a system called Invisible Ink for managing sensitive data in a

distributed, scalable and secured manner. Our system is using the Bitcoin blockchain

as a trust-less distributed database that stores both the audit trail and permissions

granted to user-data.

The audit trail is used as an immutable, ordered by time, record for sensitive user-

data manipulation. Manipulation such as read, write, update and delete performed

by a registered service.

Registered services are granted permissions to interact on sensitive user-data by

the user. These permissions are stored as contracts inside the Bitcoin blockchain and

themselves provide proof of user-service relationship.

The way we chose to store sensitive user-data is by using something we call a

blind escrow service. The data stored in these services are encrypted with keys that

will never be present on the escrows' physical machines. That creates a two-factor

decryption step, where a malicious actor would need to control at least two machines

out of the service, the user and the user's blind escrow in order to decipher sensitive

data.

To evaluate our system we have built a service that uses Invisible Ink as its un-

derlying sensitive user-data management platform. We call our application Certified

Mail.

Certified Mail demonstrates the agility and flexibility of Invisible Ink by offering

69

a unique messaging service. It allows people to send contract-based messages where

each message is stored in a distributed user-trusted escrow machine and logged inside

the Bitcoin blockchain to provide a proof-of-communication.

5.1 Implications and opportunities

The need for data privacy will probably grow stronger as more devices and services

collect data on us. We are slowly transitioning into an era of the Internet of Things

where all electronic devices, appliances and even our clothes will be connected to the

Internet and enhance our interactions with them.

This new era brings with it many challenges, one of which is securely storing

sensitive and personal data. When your shower knows how many times you take a

shower, your house knows when you are usually home and your refrigerator knows

what you eat - you might want to consider who has access to such information.

Our platform can scale with the growing number of collected data while keeping

it secured and stored in a trusted location. Moreover, when people will be in control

over their personal data, when they could monitor its usages and revoke access to

services at their will, we believe it might introduce a new financial model for personal

data. If Facebook, for example, will want to perform experiments on its users, it will

need to give them an incentive to agree to share user sensitive information.

Another interesting application might be to use the blockchain as a trusted code

system distribution in which an application code is stored inside the blockchain and

an external machine runs it. Read more about it in Appendix A.

70

Appendix A

A Trusted Code System Distribution

On The Blockchain

Here we describe an application stored on the Bitcoin blockchain and a machine that

runs it and prints its result.

A.1 How to create functions with parameters inside

the Bitcoin blockchain

Create a transaction with two outputs:

" P2SH: encode your function inside the public keys and use one to store a real

address

* OPRETURN: store your function's signature, meaning which parameters it ac-

cepts and its return value

To run this function, create another transaction with two outputs:

" P2SH: include the function (all the public keys) and your real address's signature

" OPRETURN: send the parameters that will be delivered to the function

71

I

to add namespaces, project references, execution stack, etc. you can replace the

OPRETURN script with other P2SH or M of N MULTISIG and enjoy less size restriction.

Now you can create a virtual machine that goes through the blockchain, looks for

projects and their functions, follow the execution cycle and pass the parameters to

the functions.

A.2 Can we make this simpler?

Yes, by encoding the code inside a similar transaction to data-transaction (see Section

3.6.9). Later these transactions can be used as libraries and be referenced in later

transactions.

Protocol

[output 0]

[output 1]

OPRETURN <ID, 5 bytes> <TYPE, 1 byte> <NAMESPACE, 20 bytes>

OP_1

[[key 0] <IOC, 6 bytes> <IOM, 3 bytes>

<IMPORT, 32 bytes> <SUFFIX, 24 bytes>]

[key 11 <CODE LENGTH, 1 byte> <CODE, x bytes>

[<SUFFIX, 64 - x bytes>]

[key 2] <real address>

OP_3 OP_CHECKMULTISIG

[. . .]

* TYPE equals to OxCD.

" IOC Import OpCode is a 6 byte hex-encoded version of the word "import"

(0x696d706f 7274) which is used to recognize an import address.

* IOM Import Output Mask is a 3 byte bit-mask to flag which outputs to import

from the transaction.

Example

[transaction id:

72

ff85fffa85bdea8cc6cd3l965bl4fca77ae4ef7bc4 7bdb2d7eal 5cfdl bOf751 a]

[output 0] OPRETURN 5052564359 CD 00000000000000000000000000000

07574696c73

[output 1] OP_1

28 66756e6374696f6e207072696e74286d7367297b616c657274282

2676f743a20222b6d7367293b7d 0000000000000000000000000000

00000000000000000000 f094ce936bdef34eld63109cf3fe8dd2180

1e4a470309da63dbf3a49955d9579

OP_2 OPCHECKMULTISIG

[transaction id:

f258f5899a662a1053411ff6e5bf3d6lb66eO3bfl5cd9563f32f205995afaf85

[output 01 OPRETURN 5052564359 CD 00000000000000000000000000000

00074657374

[output 11

[output 2]

OP_1

696d706f7274 000001 ff85fffa85bdea8cc6cd3l965bl4fca77ae4

ef7bc47bdb2d7ea15cfd1b0f751a 000000000000000000000000000

000000000000000000000 f094ce936bdef34eld63109cf3fe8dd2l8

01e4a470309da63dbf3a49955d9579

OP_2 OPCHECKMULTISIG

OP_1

Of 7072696e74282268656c6c6f22293b 0000000000000000000000

00

00000000000000000000 f094ce936bdef34e1d63109cf3fe8dd2180

1e4a470309da63dbf3a49955d9579

OP_2 OPCHECKMULTISIG

A virtual machine that will try to run the second transaction will first import output

1 from the first transaction, load the code and then run the second code-transaction.

73

Here's how it will work:

Usage: run <tx id>

run f258f5899a662a1053411ff6e5bf3d6lb66eO3bf15cd9563f32f205995afaf85

1. read transaction id 7258f 5899a662a10534110f6e5b73d61b66e03bf 15cd956373272

05995acaf85

2. read output type OPRETURN

(a) verify type "CD"

(b) note namespace: 0000000000000000000000000000000074657374 ("test")

3. go over all other outputs in order:

(a) identify first transaction as import and load output 1 of transaction id

ff85fffa85bdea8cc6cd3l965bl4fca77ae4ef7bc47bdb2d7eal5cfdlbOf751a

(b) loaded: 66756e6374696f6e207072696e74286d7367297b616c65727

42822676f743a20222b6d7367293b7d (function print (msg){alert ("got:

"+msg) ;})

(c) run the code in output 2:

7072696e74282268656c6c6f22293b (print("hello");)

when running this code in a browser, a pop up will open with the message:

"got: hello"

74

Appendix B

Bitcoin Auditing Transaction

Example

{
"status": "success",

"data": {

"tx": {

"hex": "01000000019aeeb4086e518cc3d836fd848bd6f917...",

"txid": "84999b8d3606dalfOacbl8dfle4e94ed88lOb3lc0f ... ",

"version": 1,

"locktime": 0,

"vin" [

{

"txid": "5e317cbe178f29bb5cd40098ce68b84f ...

"vout": 2,

"scriptSig": {

" asm": "304402203a61c51dlb79f510a1604...",

"hex": "47304402203a61c51d1b79f510ab6..."

"sequence": 4294967295

}

],

"vout"

{

I

75

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

} ,

{

},

{

"value" : 0,

"n" : 0,

"scriptPubKey 11
: {

"asm" : "DP _RETURN 5052564359038b87e64 ... " ,

"he x " : "6a285052564359038b87e6d11def7 . .. " ,

"type" : "nulldata"

}

"value" : 0.0000546,

11 Il II : 1,

" s cr i ptPubKey" : {

}

"asm" : "1 0412891 a41d30cf c98be27b06b62a5 -

9cabe70d2aefd4d3cb236a503674a02 -

de7ce61e97fd8df5c6a62373ffb2678 -

bcbd170873ff19226dd74169ab7af82 -

de065ae 03ff6bb2e808dd23bf56fac ­

eae4e41fbf5105749291c0000000000 -

000000000000 03e9fecc155cdb8ba6 -

6e409b1c08bfada8286ac3fb38d9b5d

4558bd6f32685711a 3

OP_CHECKMULTISIG" ,

"hex" : "51410412891 a41d30cfc98be270d2 . .. " ,

"reqSigs" : 1,

"type" : "multis i g" ,

"addresses" : [

"mjDJLM1zVpxLfUSYnUHwxeJkiPM3pL9S1b" ,

"mhE1HkLACgHM2xxtHuvtqgBzML3QuMLnUL" ,

"mmWevFwY4e9AEiCRkxFKcY9HFV6uVcriJT"

"value" : 0.00059748,

11 Il II : 2,

" s cri p tP ubKe y " : {

76

58 "asm": "OP-DUP OPHASH160 41

c240084bd6fb24ea92eeedclc94d8f9fa8b86f

OPEQUALVERIFY OP-CHECKSIG",

59 "hex": "76a91441c240084bd6fb24eaf9fa8b ... ",

60 "reqSigs": 1,

61 "type": "pubkeyhash",

62 "addresses": [

63 "mmWevFwY4e9AEiCRkxFKcY9HFV6uVcriJT"

64 1

65 }

66 }

67 1,

68 "blockhash": "0000000000001729

cb8ce22c28c36da278elefebe5ecbb613a31406a1018988b",

69 "confirmations": 817,

70 "time": 1429123233,

71 "blocktime": 1429123233

72 }

73

74 "code": 200,

75 "message":

76 }

Listing B.1: Bitcoin auditing transaction example. Some long strings were cut for

brevity

77

78

Appendix C

Third-Party Libraries and

Technologies

We used the following libraries and technologies to build our platform:

" Common Libraries

- bitcoinjs-lib: https://github.com/bitcoinjs/bitcoinjs-lib

- cb-helloblock: https://github.com/dcousens/cb-helloblock

- sjcl: https://github.com/bitwiseshiftleft/sjcl

- royal fork (Bitcoin faucet): http://faucet.royalforkblog.com

" Web

- Polymer: https://www.polymer-project.org/

- Browserify: http://browserify.org/

- Grunt: http://gruntjs.com/

- Yo: http://yeoman.io/

- Libraries

* QR code: http://davidshimjs.github.io/qrcodejs/

* sockjs: https://github.com/sockjs/sockjs-client

79

* scrypt: https://github.com/tonyg/js-scrypt

* buffer: https://github.coin/feross/buffer

* paper: https://github.com/paperjs/paper.js

* Servers

- MongoDB: http://www.mongodb.org/

- NodeJS: http://nodejs.org/

* express: http://expressjs.com/

* mongoose: http://mongoosejs.com/

* node-uuid: https://github.com/broofa/node-uuid

* body-parser: https://github.com/expressjs/body-parser

* nconf: https://github.com/indexzero/nconf

* random-js: https://github.com/ckknight/random-js

* sockjs: https://github.com/sockjs/sockjs-node

* nodemailer: https://github.com/andris9/Nodemailer

- Python: https://www.python.org/

* M2Crypto

* cyclone

* twisted

* txmongo

* requests

80

Bibliography

[1] Abine. Protect your privacy with DoNotTrackMe from Abine.
http://www.abine.com/donottrackme.html, 2014.

[2] Manuel Araoz. Proof of Existence. http://proofofexistence.com/, 2013.

[3] Adam Back. HashCash. http://www.cypherspace.org/hashcash/, 1997.

[4] BitTorrent. BitTorrent Labs - BitTorrent Bleep. 2014.

[5] Kukil Bora. Dogecoin, A Digital Currency Similar To Bitcoin, Has Been Hacked,
Costing Its Owners Thousands Of Dollars. http://www.%ibtimes.com/dogecoin-
digital-currency-similar-bitcoin-has-been-hacked-costing-its-owners-thousands-
dollars, 2013.

[6] Arthur Budovsky. Liberty Reserve. http://en.wikipedia.org/wiki/Liberty_ Reserve,
2001.

[7] ChangeTip. A Love Button for the Internet. https://www.changetip.com/, 2013.

[8] David Chaum. DigiCash. http://en. wikipedia. org/wiki/DigiCash, 1990.

[91 David Chaum, Ronald L. Rivest, and Alan T. Sherman, editors. Advances in
Cryptology. Springer US, Boston, MA, 1983.

[10] Tim Clark. Digicash files Chapter 11 - CNET News. http://news.cnet.com/2100-
1001-217527.html, 1998.

[11] Coinbase. Bitcoin wallet, for merchants and an exchange.
https://www.coinbase.com/, 2012.

[12] CounterParty. A platform for free and open financial tools on the Bitcoin net-
work. http://counterparty.io/, 2014.

[13] Cypherpunks. Mailing List. https://www.cypherpunks.to/list/.

[14] Wei Dai. B-Money. http://www.weidai.com/bmoney.txt, 1998.

[15] Yves-Alexandre de Montjoye, Erez Shmueli, Samuel S Wang, and Alex Sandy
Pentland. openPDS: protecting the privacy of metadata through SafeAnswers.
PloS one, 9(7):e98790, January 2014.

81

[16] John R. Douceur. The Sybil Attack. pages 251-260, March 2002.

[17] Dropbox Inc. Dropbox. https://www.dropbox.com/.

[18] Peter Druschel, Frans Kaashoek, and Antony Rowstron, editors. Sybil Attack,
volume 2429 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,
Berlin, Heidelberg, October 2002.

[19] Ethereum. A platform for decentralized applications.
https://www. ethereum. org/, 2014.

[20] Facebook. Facebook Connect. https: /www.facebook. co m/notes/face book/
facebook-across-the-web/4 173564 7130, 2008.

[21] Factom. A Scalable Data Layer for the Blockchain. 2014.

[22] John Fanning, Shawn Fanning, and Sean Parker. Napster.
http://en. wikipedia. org/wiki/Napster, 1999.

[23] Hal Finney. RPOW - Reusable Proofs of Work. http://cryptome.org/rpow.htm,
2004.

[24] Brian Forde. Launching a Digital Currency Initiative AAT Medium.
https://medium. co m/gmedialab/launching-a-digital-currency-initiative-
238fc678aba2, 2015.

[25] Sarah Gold. The Alternet. http://www.alternet.cc/, 2014.

[26] Gold & Silver Reserve Inc. E-Gold. http://en.wikipedia.org/wiki/E-gold, 1996.

[27] Google. Google+ Connect. https://developers.google.com/+/features/sign-in.

[28] Google. Google Drive. https://www.google.com/drive/.

[29] Google Trends. Account Registration. http://www.google.com/trends/ ex-
plore#q=account registration, 2015.

[30] Alex Gorale. Ripple tfPartialPayment Causes Gox-Style Hack on Justcoin Ex-
change. https://www. cryptocoinsnews. com/ripple-tfpartialpayment-causes-gox-
style-hack-justcoin-exchange/, 2014.

[31] Stacey Higginbotham. Check out IBMaAZs proposal for an internet
of things architecture using BitcoinaA~s block chain tech Gigaom.
https://gigaom. com/2014/09/09/check-out-ibms-proposal-for-an-internet-of-
things-architecture-using-bitcoins-block-chain-tech/, 2014.

[32] Stan Higgins. 8 Million Vericoin Hack Prompts Hard Fork to Re-
cover Funds. http://www. coindesk. com/bitcoin-protected-vericoin-stolen-mintpal-
wallet-breach/, 2014.

82

[33] HistoryOfBitcoin. Bitcoin History: The Complete History of Bitcoin [Timeline].
http://historyofbitcoin. org/, 2013.

[34] Sushil Jajodia and Jianying Zhou, editors. FADE: Secure Overlay Cloud Stor-
age with File Assured Deletion, volume 50 of Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications Engineer-
ing. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[35] Ari Juels, editor. Financial Cryptography, volume 3110 of Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[36] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation - El-
liptic curve cryptosystems, 48(177):203-209, January 1987.

[37] Jae Kwon. Tendermint. http://tendermint.com/docs/tendermint.pdf, 2014.

[38] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Generals
Problem. A CM Transactions on Programming Languages and Systems, 4(3):382-
401, July 1982.

[39] Laszlo. Pizza for bitcoins? https://bitcointalk. org/index.php
?topic= 137.msg1195#msg1195, 2010.

[40 Amir Lazarovich, Guy Zyskind, and Oz Nathan. MIT Bitcoin Project - Ethos.
http://www.mitbitcoinproject.org/winners, 2014.

[41] Karlin Lillington. PayPal Puts Dough in Your Palm.
http://archive.wired.com/science/discoveries/news/1999/07/20958, 1999.

[42] MaidSafe. The New Decentralized Internet. http://maidsafe.net/.

[43] Gregory Maxwell. CoinJoin: Bitcoin privacy for the real world.
https://bitcointalk.org/index.php?topic=279249.0, 2013.

[44] David Mazieres. The Stellar Consensus Protocol.
https://www. stellar. org/papers/stellar-consensus-protocol.pdf, 2015.

[45] Ralph Merkle. Method of providing digital signatures, 1982.

[46] Silvio Micali and Ronald L. Rivest. Micropayments Revisited. pages 149-163,
February 2002.

[47] MSN. Data store 'attractive target for hackers'. http://www.msn.com/en-
au/news/other/data-store-attractive-target-for-hackers/ar-A A 8Hq15, 2015.

[48] Satoshi Nakamoto. Dust. https://github. com/bitcoin/bitcoin/blob/
b 78d1 cdf82fb12cc0c8eb9049074b359b9589b7c/src/core. h#L153.

[49] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.
https://bitcoin.org/bitcoin.pdf, 2008.

83

[50] Satoshi Nakamoto. Bitcoin P2P e-cash paper. https://www.mail-
archive.com/cryptography metzdowd.com/msg09959.html, 2008.

[51] Satoshi Nakamoto. Bitcoin open source implementation of P2P currency.
http://p2pfoundation.ning.com/forum/topics/bitcoin-open-source, 2009.

[521 Satoshi Nakamoto. Block 0 - The First Block Mined In Bit-
coin - Bitcoin Block Explorer. http://blockexplorer. com/block/
000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f, 2009.

[53] Ellen Nakashima. Chinese hackers who breached Google gained access to sen-
sitive data, U.S. officials say. http://www.washingtonpost.com/world/national-
security/chinese-hackers-who-breached-google-gained-access-to-
sensitive-data-us-officials-say/2013/05/20/513304 28-be34 -11 e2-89c9-
3be8095fe767 story_1.html, 2013.

[54] Alyssa Newcomb. Anthem Hack May Have Impacted Millions of Non-Customers
as Well - ABC News. http://abcnews.go. com/Technology/anthem-hack-impacted-
millions-customers/story?id=29212840, 2015.

[55] Onename. Decentralized identity system built on the blockchain.
https://onename. com/, 2013.

[56] R. Perlman. File System Design with Assured Delete. In Third IEEE Interna-
tional Security in Storage Workshop (SISW'05), pages 83-88. IEEE, 2005.

[57] Raspberry Pi Foundation. Raspberry Pi. https://www.raspberrypi .org/, 2012.

[58] ReadNotify. Certified email with delivery receipts, silent
tracking, proof-of-opening history, security and timestamps.
https://ssll.readnotify.com/readnotify/.

[59] Jon Russell. Coinbase Is Opening The First Regulated Bitcoin Exchange In The
U.S. http://techcrunch.com/2015/01/25/coinbase-us-bitcoin-exchange/, 2015.

[60] Nick Szabo. Bit gold. http://unenumerated.blogspot.com/2005/12/bit-gold.html,
2005.

[61] Nick Szabo. Bitcoin, what took ye so long?
http://unenumerated.blogspot.com/2011/05/bitcoin-what-took-ye-so-long.html,
2011.

[62] James Titcomb. Bank database 'presents target for hackers and hostile powers'.
http://www. telegraph. co. uk/finance/newsbysector/banksandfinance/11080609/
Bank-database-presents-target-for-hackers-and-hostile-powers. html, 2014.

[63] Nils Toedtmann, H Joerg Baach, and Ryden Mathew. OpenCoin
- open source electronic cash. https:/github. com/OpenCoin/opencoin-
historic/blob/master/standards/protocol.txt, 2008.

84

[641 Unknown. How DigiCash Blew Everything.
http://cryptome.org/jya/digicrash.htm, 1999.

165] Bitcoin Wiki. Testnet - Bitcoin. https://en.bitcoin.it/wiki/Testnet, 2011.

[66] Wikipedia. Distributed Hash Table. http://en.wikipedia.org/wiki/ Dis-
tributed_ hash_ table.

[67] Wikipedia. Nicholas Negroponte. http://en. wikipedia. org/wiki/
Nicholas_ Negroponte.

[68] Wikipedia. Tokenization. http://en.wikipedia.org/wiki/ Tokeniza-
tion_ %28data_ security%29.

[69] Wikipedia. BitTorrent. http://en.wikipedia.org/wiki/BitTorrent, 2015.

[70] Wikipedia. Double Spending. https://en.bitcoin.it/wiki/Double-spending, 2015.

[71] Wikipedia. Internet. http://en.wikipedia.org/wiki/Internet, 2015.

[72] Wikipedia. Uber. http://en.wikipedia.org/wiki/Uber_ (company), 2015.

[731 Shawn Wilkinson. Stoj - A Peer-to-Peer Cloud Storage Network.
http://stoirj.io torj.pdf, 2014.

(74] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. A language for auto-
matically enforcing privacy policies. A CM SIGPLAN Notices, 47(1):85, January
2012.

[75] Polychronis Panagiotis Ypodimatopoulos. Cerebro : forming parallel internets
and enabling ultra-local economies, 2008.

[76] David Zeiler. VC Investing in Bitcoin Rises to the Fastest Pace
Yet. http://moneymorning.com/2015/04/17/vc-investing-in-bitcoin-rises-to-
the-fastest-pace-yet/, 2015.

85

