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Abstract

Virtually all robotic and autonomous systems rely on navigation and mapping algo-
rithms (e.g. the Kalman filter or simultaneous localization and mapping (SLAM))
to determine their location in the world. Unfortunately, these algorithms are not
robust to outliers and even a single faulty measurement can cause a catastrophic
failure of the navigation system. This thesis proposes several novel robust naviga-
tion and SLAM algorithms that produce accurate results when outliers and faulty
measurements occur.

The new algorithms address the robustness problem by augmenting the standard
models used by filtering and SLAM algorithms with additional latent variables that
can be used to infer when outliers have occurred. Solving the augmented problems
leads to algorithms that are naturally robust to outliers and are nearly as efficient as
their non-robust counterparts. The first major contribution of this thesis is a novel
robust filtering algorithm that can compensate for both measurement outliers and
state prediction errors using a set of sparse latent variables that can be inferred using
an efficient convex optimization.

Next the thesis proposes a batch robust SLAM algorithm that uses the Expectation-
Maximization algorithm to infer both the navigation solution and the measurement
information matrices. Inferring the information matrices allows the algorithm to re-
duce the impact of outliers on the SLAM solution while the Expectation-Maximization
procedure produces computationally efficient calculations of the information matrix
estimates.

While several SLAM algorithms have been proposed that are robust to loop closure
errors, to date no SLAM algorithms have been developed that are robust to landmark
errors. The final contribution of this thesis is the first SLAM algorithm that is ro-
bust to both loop closure and landmark errors (incremental SLAM with consistency
checking (ISCC)). ISCC adds integer variables to the SLAM optimization that in-
dicate whether each measurement should be included in the SLAM solution. ISCC
then uses an incremental greedy strategy to efficiently determine which measurements
should be used to compute the SLAM solution. Evaluation on standard benchmark
datasets as well as visual SLAM experiments demonstrate that ISCC is robust to a



large number of loop closure and landmark outliers and that it can provide signifi-
cantly more accurate solutions than state-of-the-art robust SLAM algorithms when
landmark errors occur.
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Chapter 1

Introduction

Navigation and mapping systems are integral components of virtually any autonomous
or robotic system. Some examples include fusing global positioning system (GPS)
and inertial measurement unit (IMU) data to produce a location estimate for an
unmanned aerial vehicle, localization and mapping for an autonomous car [4], or cre-
ating detailed 3D maps of an environment using camera data [5-7]. In each of these
cases, the navigation and mapping solution is typically then passed to a higher-level
planning and control algorithm that can determine how to follow a desired trajectory,
plan a path through a cluttered environment, or perform higher-level task planning
and coordination with other agents.

One of the major challenges for navigation and mapping algorithms arises when
the models of the system or the sensor data are incorrect. Given faulty data, standard
algorithms for navigation and mapping (i.e., the Kalman filter [8] or graph-based
simultaneous localization and mapping [9-11]) will produce inaccurate results and
may even fail catastrophically. Moreover if the navigation solutions are invalid, the
higher-level planning and control algorithms that use the navigation solutions can fail

and cause damage to the system (e.g., colliding with obstacles, crashing the vehicle).
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1.1 Motivation: Robust Visual Navigation and Map-
ping

Vision-aided navigation and mapping systems that merge camera images with other
sensor data to form a navigation solution are becoming increasingly common. Com-
puter vision algorithms for navigation are becoming fast and light-weight enough to
run on small embedded processors [12]. In addition, sensors such as the Microsoft
Kinect [13, 14] have made it possible to compute high accuracy mapping solutions
for a fraction of the cost of a comparable laser scan based mapping system. This
confluence of improving software and revolutionary hardware has made it possible to
design vision-based navigation and mapping systems that would have been impossible
only 10 years ago.

One of the major challenges of visual navigation is that a significant number of pro-
cessing steps must be performed to distill the raw image data into a measurement that
can be ingested by a navigation or mapping algorithm. If any of these pre-processing
steps fail, the impact on the navigation solution can be severe. For instance, many
filter-based vision-aided navigation algorithms rely on visual odometry [15] measure-
ments to estimate relative changes in position and orientation in between periodic
updates from absolute positioning sensors such as GPS. But changes in lighting con-
ditions and motion blur can cause the feature tracking that underlies visual odometry
to produce erroneous measurements and in turn cause significant estimation errors.
Moreover, this thesis demonstrates that standard robust filtering algorithms will of-
ten misinterpret the large estimation errors as measurement outliers and as a result
discard absolute positioning measurements that could have improved the navigation
solution.

Visual simultaneous localization and mapping (SLAM) systems typically depend
on visual place recognition [16, 17] to determine when the system has returned to
a previously visited location (in SLAM this is referred to as a loop closure [1, 18]).
But in many man-made areas such as cities and buildings, repeated structures and

visual features can cause place recognition systems to return incorrect loop closure
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Figure 1-1: Example false loop closure detection caused by visual aliasing [1]

detections (see Figure 1-1). This type of error is known as wvisual aliasing and is a
common problem in large-scale visual SLAM datasets [1, 19].

Once an incorrect loop closure has been generated by the place recognition sys-
tem it can have a disastrous impact on the SLAM solution because standard SLAM
algorithms are not robust to outliers [20-22]. Moreover, there is often no way to
automatically determine that an incorrect loop closure detection has occurred based
solely on the camera data.

A standard approach [1, 17] for preventing false loop closure detections is to set
the place recognition detection thresholds to a large value to decrease the chance
of false positives. But this approach has two major downsides. First, setting the
thresholds to a large value does not guarantee that false loop closure detections will
not occur. In fact, the visual aliasing example shown in Figure 1-1 was declared a loop
closure with probability 0.969 [1]. Second, by setting the threshold so high, a large
number of correct loop closures are potentially being ignored when they could be used
to improve the accuracy of the SLAM solution. A receiver operating characteristic
(ROC) curve [23], which shows the probability of detection and probability of false
alarm for a detection algorithm as a function of the detector threshold (see Figure 1-
2), is one way to visualize this loss of detections. Given a standard SLAM solver,
current place recognition systems can only operate in the part of the ROC curve that

lies close to the y-axis (i.e., the section of the curve that produces very few false
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Figure 1-2: Notional ROC Curve for a loop closure detector. The red e shows the
operating point for standard SLAM algorithms and the green e shows an operating
point for a robust SLAM algorithm. The robust SLAM operating point is more
desirable because it can significantly improve the accuracy of the solution using the
additional loop closure measurements while rejecting the false loop closures.

alarms). But usually those regions also have a low probability of detection meaning
that numerous correct loop closures are missed. Developing a SLAM algorithm that
is robust to false loop closures would allow a place recognition system to operate in
a regime of the ROC curve (for example the green dot on the curve in Figure 1-2)
where significantly more true detections would occur and as a result lead to a more

accurate mapping solution.

1.2 Solution Approach

State estimation and mapping algorithms typically assume that the system dynamics
and measurements are accurately modeled and that any sources of noise or uncertainty
are characterized correctly. In addition, many algorithms assume that the noise in
the system is Gaussian. However, in practice the system models are often only known
approximately and the noise in the system can be non-Gaussian. When the modeling
assumptions are violated, standard state estimation and mapping algorithms have

no means to correct for the modeling errors and often the result is a significant
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degradation in accuracy and ultimately failure of the navigation system.

One reason the algorithms fail is because the models are inflexible and can not be
changed online. The standard algorithms also lack the ability to determine whether
the current estimates are consistent with each other and with the current set of
measurements.

To address these issues this thesis proposes two approaches for robust state es-
timation and mapping. The first approach involves adding extra variables to the
estimation problems that are used to characterize uncertainty in the dynamics and
measurement models of the system (model augmentation). By estimating these aux-
iliary and state variables simultaneously, the new algorithms can compensate for
outliers and modeling errors and provide robust estimates across a wide range of
operating conditions.

The second approach is focused specifically on developing robust SLAM solu-
tions. One major challenge for SLAM solvers is determining what measurements are
incorrect when the solution is not consistent. This thesis develops an online SLAM
algorithm that can efficiently search the measurements and determine which are most

likely to be incorrect and remove them from the solution.

1.3 Literature Review

This section provides an overview of related work in the robust state estimation and

robust SLAM literature.

1.3.1 Robust State Estimation

Initial efforts in robust state estimation focused on making modifications to the
Kalman filter to make it more robust to heavy-tailed noise [24-28]. Often these
approaches use influence functions (also known as robust kernels) [29], a concept
from robust statistics [30], to modify the Kalman gain for measurements with large
residuals (i.e., those that were most likely to be corrupted with outliers from the

heavy-tailed noise). The influence function approach works by reducing the gain ap-
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plied to measurements with large residuals so that the impact of outliers on the state
estimates is reduced. These methods generally assume that the heavy-tailed noise
only impacts the measurements or the state predictions, but not both. Recently,
Gandhi and Mili have developed a robust statistics based filtering algorithm that
relaxes these assumptions and can provide robust state estimates when heavy-tailed
noise is present in both the state dynamics and measurements [31].

The main issue with these methods is the selection of the influence function used
to modify the Kalman gain. Although there are some basic properties that the in-
fluence functions must satisfy in order to ensure that the state estimates are robust,
in practice there are an infinite number of candidate influence functions and it is
unclear how to choose between them. Additionally for any practical application, the
parameters of the influence function must be tuned to the data being considered and
this often leads to ad-hoc filter implementations.

Some robust filtering algorithms have been developed specifically to handle errors
in the system dynamics models. The most prominent approach is James-Stein filter-
ing [32]. These filters use a variant of the James-Stein estimator [33] to calculate state
estimates that are not sensitive to errors in the state dynamics models. However, to
guarantee robustness, the James-Stein filter requires that the measurements are not
corrupted by outliers and thus it trades off robustness to measurement outliers for
robustness to system modeling errors.

Another method for robust state estimation that was an outgrowth of robust
control research is the H, filter [34-37]. These algorithms assume that the state
predictions and measurements are subject to unknown but bounded errors and then
seek to minimize the worst-case estimation error given the unknown errors. Although
the H filter does guarantee bounded state estimation error, often the state estimates
are overly conservative. In fact, under nominal noise conditions (i.e., white, zero-mean
and Gaussian), the H,, filter estimation error can in fact be significantly worse (in a
least-squares sense) than the Kalman filter estimation error [37]. Additionally, the H,,

filter estimates are sensitive to noise that is generated from heavy-tailed distributions

31].
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Robust particle filters have also been developed to address the impact of measure-
ment outliers [38—40]. While particle filters are often well suited to state estimation
for nonlinear and non-Gaussian systems, they are susceptible [38—40] to modeling er-
rors and outliers in the measurements. When an outlier corrupts the measurements,
the measurement likelihood for any given particle will often be zero or very near zero
and, as a result, the approximate posterior distribution will be represented by only
a few particles. This situation is called “sample impoverishment” and can lead to
divergence in the particle filter estimates [41]. Robust particle filters usually address
this issues by trying to identify and reject measurements corrupted by outliers be-
fore they can impact the state estimates [38-40]. The outliers are detected using
hypothesis tests based on statistics calculated from the current set of particles and
measurements. In a sense these approaches are extensions of the classical failure de-
tection tests for linear filtering (such as x? residual tests [42]) to particle filters. So
far these methods have not tried to address the issue of unmodeled uncertainty in the
state propagation models for particle filters.

Recently several robust filtering approaches have been developed that try to ex-
plicitly estimate unknown errors by solving a convex optimization problem [43-46).
Mattingley and Boyd developed a filter that assumes that a subset of the measure-
ments being processed are corrupted by errors that do not follow the nominal noise
distribution [43]. By representing the errors as sparse, the errors can be estimated us-
ing a constrained l;-norm minimization which is convex and can be solved efficiently
[47, 48]. Farahmand and Giannakis independently developed a filtering algorithm
that uses a similar approach to solve robust filtering problems when the sparse errors
are time correlated [49]. Recently, Farahmand et al. have developed a set of con-
vex optimization based algorithms for solving the smoothing problem for dynamics
systems with uncertain errors in the state dynamics models and the measurements
[50].

Finally, a number of robust state estimation algorithms have been developed that
use variational Bayesian techniques. The basic approach for the variational Bayesian

filtering algorithms is to introduce extra uncertainty into the system model by mod-
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eling the noise parameters (typically the covariances) as random variables. The algo-
rithms then form a variational approximation of the joint log-likelihood of the noise
parameters and states and use the Expectation-Maximization algorithm [51] to iter-
atively solve for the state and noise parameter values.

All of the current variational Bayesian approaches have focused on calculating
robust state estimates in the presence of uncertainty in the measurement noise while
ignoring uncertainty in the process noise. Initial work by Ting et al. [52-54], as well
as Sarkkd and Nummenmaa [55], assumed that the measurement noise terms were
independent of each other. More recently, Agamennoni et al. [56, 57] have devel-
oped robust variational Bayesian filters and smoothers that relax the assumption of

independent noise terms by using a structured mean-field variational approximation.

1.3.2 Gaps in Robust Filtering Literature

In general, there is one major gap in the current robust filtering literature. While
algorithms exist that are robust to state dynamics modeling errors (e.g., James-
Stein filters) or to measurement outliers, none can guarantee accurate solutions when
both types of errors occur. The first major contribution of this thesis is a novel
robust filtering algorithm, the {;-norm filter, that is robust to both state prediction
errors and measurement outliers. It extends prior work by Mohiuddin et al. [45]
that augmented the standard state dynamics and measurement models to include
sparse errors in both the state predictions and measurements. These sparse error
terms can be jointly estimated with the states to calculate robust estimates when
outliers occur in the state predictions and measurements. While Mohiuddin et al. [45]
proposed the extended model, the [;-norm filter was never evaluated with data that
contained both state prediction and measurement outliers. This thesis provides both
theoretical and empirical analysis of the [;-norm filter that demonstrates that it can
provide significantly more accurate solutions than any other type of robust filtering

3 3 - ad 13 A
algorithm in the prescnce of both types of outliers.
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1.3.3 Robust SLAM

Robust SLAM algorithms can be divided into three main categories. The first type of
algorithms apply robust kernels to the optimization problem to reduce the impact of
outliers on the SLAM solution. The second category approach the problem by adding
additional latent variables to the SLAM problem formulation to account for outliers
in the measurements (augmented model approaches). The third set of algorithms

focus on choosing sets of measurements that lead to a consistent SLAM solution.

Robust Kernel Approaches

In recent years there have been a number of approaches that have been proposed
to improve the robustness of SLAM solvers to outliers and incorrect loop closures.
The simplest technique involves substituting a Huber cost function [30] for the least
squares cost function in the SLAM problem. Huber cost functions are quadratic
functions of the error near zero and then transition to a linear function of the error
past a given threshold. Including the linear region reduces the impact of incorrect
measurements (which would likely have a large error associated with them) on the
least-squares solution. The major drawback of using Huber cost functions is that they
only reduce the impact of erroneous measurements instead of excising them from the
solution completely. In practice, this means that SLAM algorithms using Huber cost
functions are still prone to converging to a poor solution when measurement outliers

are present in the data [20].

Augmented Model Approaches

Siinderhauf et al. [20, 58, 59] introduced additional variables into the SLAM problem
formulation, called switch variables, that can take any value in the interval [0 1]
and are used as weights for each of the loop closure measurements. The switch
variables provide robustness by determining whether to accept or reject a potential
loop closure measurement. When a switch variable is equal to zero its corresponding

loop closure measurement will not have any impact on the SLAM solution. Agarwal
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et al. presented a generalization of switch variables called dynamic covariance scaling
(DCS) that provides a closed form update for the switch variables and results in faster
convergence [60].

Another approach developed by Olson and Agarwal [21, 61], maz-miztures, mod-
ifies the conditional probability distribution of the measurements so that the noise
is represented by a Gaussian mixture instead of a single Gaussian. The algorithm
then selects the most likely mixture component before each pose update. Finally,
several robust algorithms have been proposed that add additional variables to the ro-
bust SLAM problem and solve the augmented problem by applying the Expectation-
Maximization (EM) algorithm [62, 63)].

Consistency-Based Approaches

An alternative set of robust SLAM algorithms attempt to remove incorrect measure-
ments from the SLAM solution by performing consistency checks on subsets of the
measurements.

The RRR algorithm applies a series of x? tests to determine whether loop closure
measurements are correct and if they are consistent with each other [22, 64, 65].
Initially loop closures are clustered with other loop closures “near” them spatially.
For each cluster, the subset of poses are optimized and a x? test is applied to determine
if any loop closures are incorrect. After removing any loop closures that fail the initial
test, a x? test is applied to the entire cluster to determine if the solution is consistent.
Finally, groups of clusters are jointly optimized and evaluated again using x? tests.
Those clusters that pass the final x? test are then used to generate the final SLAM
solution. Omne of the main drawbacks of this approach is that once loop closures fail
a x? test, they can not be added back into the solution later, which means that in
many cases good loop closure measurements that could improve the solution quality
are left out.

Recently, Carlone et al. [66] posed the robust SLAM problem as an optimization
with the goal of selecting the largest subset of measurements that produces a consis-

tent SLAM solution. The authors focus on 2D SLAM scenarios where an approximate
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solution to the optimization can be calculated using linear programming. While their
algorithm is fast and effective, it relies heavily on assumptions that only apply to 2D
SLAM problems and currently there is no clear way to extend the algorithm to 3D
SLAM datasets.

1.3.4 Gaps in Robust SLAM Literature

One of the major drawbacks of augmented model approaches for robust SLAM is their
reliance on tuning parameters that are sensitive to the measurement noise. Often it is
difficult to accurately characterize the noise and as a result these tuning parameters
can be difficult to select a priori. This thesis addresses these issues by developing
an augmented model approach to robust SLAM that explicitly estimates the noise
parameters of the measurements concurrently with the map estimates. As a result,
the algorithm is both robust to outliers and requires no tuning parameters.

To date, most robust SLAM algorithms have focused exclusively on problems
with loop closure errors. But many SLAM systems rely on landmark measurements
to correct for odometry drift. In addition, previous results [60] have shown that
augmented model approaches while robust to loop closure errors are only robust to
a small number of incorrect landmark measurements. This indicates that there is
something fundamentally different about landmark measurements that needs to be
addressed in order to calculate a robust solution. We will discuss some of those
differences and how they can be addressed later in this thesis.

A problem with augmented model approaches is that they only focus on local
consistency (by determining whether each measurement is correct independently of
the others) rather than global consistency. This strategy works well for loop closures
because typically only one loop closure measurement exists between any two robot
poses. Thus, if the measurement is not locally consistent with its associated pose
estimates, the loop closure is likely incorrect and can be ignored.

In contrast, a single landmark will typically have a number of measurements as-
sociated with it. By myopically evaluating each landmark measurement, augmented

model algorithms miss the opportunity to exploit the additional information avail-
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able from the other measurements. For instance, an incorrect landmark measurement
could appear consistent given only the landmark and pose estimates associated with
it, but not agree with the other landmark measurements.

To address these gaps, this thesis proposes a new robust SLAM cost function that
explicitly requires that the SLAM solution is both locally and globally consistent and
includes as many measurements as possible. An obvious approach to solving this
formulation of the robust SLAM problem is to search over every possible combina-
tion of measurements to find the largest set that produces a consistent solution. But
performing that search would require searching over a combinatorial set of potential
measurements which would cause an exponential increase in computational complex-
ity as the number of measurements increased. Therefore this thesis also proposes a
novel robust SLAM algorithm that approximately solves the new robust SLAM cost
function using an efficient greedy measurement selection strategy. The new algorithm
is a consistency-based approach that has several key innovations over previous algo-
rithms. First, it can be applied to datasets with both landmark and loop closure
errors, which was not possible with previous robust SLAM algorithms. In addition,
the new algorithm uses a more general set of consistency constraints than the ap-
proach proposed by Carlone et al. [66] and as a result it can be applied to both 2D
and 3D datasets.

1.4 Thesis Contributions

Overall, this thesis focuses on improving existing techniques for navigation and map-
ping either by augmenting the underlying system models to capture structure in the
problem that can account for outliers and errors in the data or by proposing new cost
functions that promote solutions that are more robust to outliers.

The first contribution of this thesis is a novel filtering algorithm that is robust to
simultaneous outliers in both the state predictions and measurements. The key com-
ponent of the algorithm is an augmented state-space model that includes additional

variables to account for large deviations from the assumed system models. Given
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estimates of the additional variables, which can be found using an efficient convex
optimization, their effect can easily be removed to provide robust state estimates.

The major contributions are:

e A new model for state estimation that can account for large deviations from
the state dynamics and measurement models using a set of sparse variables.
The sparsity assumption is a key component of the model because it provides a
means of distinguishing between measurement errors and state prediction errors,

which is not possible with existing robust filtering methods.

e A robust filtering algorithm, the /;-norm filter, for the proposed state space
model. The algorithm has two major components. First, an efficient convex
optimization that estimates the sparse variables to identify when outliers have
occurred. Second, an update procedure similar to the Kalman filter update
equations that mitigates the impact of the outliers on the state estimates. As a
result of these two components, the {;-norm filter produces solutions for datasets
with outliers that are significantly more accurate than non-robust filtering so-

lutions while maintaining computational efficiency.

e Theoretical analysis of the l;-norm filter that provides additional insight into
the filter performance. This analysis shows that unlike other convex optimiza-
tion based robust filtering algorithms the /;-norm filter estimates are unbiased.
In addition, the analysis shows that the [;-norm filter performance is not sig-
nificantly affected when outliers are not correctly detected by the convex opti-

mization step.

e Experimental validation of the [;-norm filter using both Monte Carlo simulations
and vision-aided navigation data collected in urban areas. In the vision-aided
navigation data, measurement outliers occur frequently due to GPS multipath
while state prediction outliers occur due to the build-up of visual odometric drift
during GPS outages. The Monte Carlo trials demonstrated that the l;-norm

filter provided at least an order of magnitude improvement in error performance
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relative to other robust filtering algorithms when state prediction and measure-
ment outliers occur simultaneously. For the experimental results, the [;-norm
filter provided a 20% improvement over non-robust filtering algorithms and also

outperformed all other robust filtering algorithms.

To date, most robust SLAM algorithms have addressed outliers by adding ad-

ditional variables to the SLAM optimization. This thesis takes a similar approach

with one major difference, instead of using an auxiliary variable that has no relation-

ship to the original underlying problem, a robust SLAM algorithm is proposed that

estimates both the measurement information matrices and the map estimates simul-

taneously. By estimating the information matrices, not only can the new algorithm

provide robust estimates, it can also adapt the measurement information matrices to

better match the true noise if the assumed noise models are incorrect. The major

contributions are:

A novel robust SLAM algorithm, information matrix SLAM (IM-SLAM), that
simultaneously estimates the measurement information matrices and poses us-
ing the Expectation-Maximization (EM) algorithm. By estimating the infor-
mation matrices, the algorithm can dynamically modify the weights for each
measurement in the SLAM solution and in the process reduces the impact of
outliers on the mapping solution. Moreover, the information matrix updates
can be expressed in closed form meaning that IM-SLAM can provide signifi-
cantly more robust estimates for virtually the same computational cost as a

non-robust SLAM algorithm.

Analysis that proves that IM-SLAM will converge. These proofs leverage the
convergence properties of the EM algorithm to show that IM-SLAM will con-
verge to at least a local minimum. This work provides the first convergence

proof for an augmented model based robust SLAM algorithm.

t provides an alternative interpretation of IM-SLAM as a robust
kernel. Robust kernels are often used in maximum likelihood estimation prob-

lems because they have desirable robustness characteristics. This interpretation

30



provides additional insight into why IM-SLAM is able to provide robust solu-

tions.

e Simulated and experimental results are presented that demonstrate that IM-
SLAM provides significantly more robust solutions than standard SLAM algo-

rithms for a negligible increase in computational cost.

Although IM-SLAM demonstrates robust performance for a number of robust
SLAM datasets, it can only be applied in batch to datasets that contain loop closure
measurements. A general purpose robust SLAM solver should be able to be applied
to datasets with either loop closure or landmark measurements. Moreover, for many
applications it is desirable to provide an online SLAM solution that can be used while
collecting data rather than post-processing. Given these limitations for robust SLAM,

the final set of thesis contributions are:

e A new formulation of the robust SLAM problem that seeks to optimize the num-
ber of measurements included in the solution while ensuring that the solution
is consistent (i.e., all of the measurements agree). The consistency constraint
ensures that the solution does not include gross outliers, while maximizing the

number of measurements produces the solution with the least uncertainty.

e A novel online robust SLAM algorithm, incremental SLAM with consistency
checking (ISCC), that is robust to both landmark and loop closure errors.
ISCC approximately solves the new robust SLAM problem using an incremental
greedy optimization approach that removes as few measurements as possible to
produce a consistent solution. The incremental greedy approach is also much
more efficient than a brute force approach to the robust SLAM problem which

would require searching over a combinatorial set of potential measurements.

e Simulated and experimental results demonstrating that ISCC can significantly
outperform state-of-the-art robust SLAM algorithms on datasets with landmark
errors and can match the performance of the state-of-the-art algorithms when

loop closure errors occur.
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1.5 Thesis Outline

The thesis proceeds as follows. Chapter 2 provides background material on state
estimation and robotic mapping techniques as well as a brief discussion of robust
estimation techniques. Chapter 3 presents a novel Bayesian filtering technique (the [;-
norm filter) that is robust to simultaneous errors in both the state dynamics model and
the measurements. In Chapter 4, an augmented formulation of the SLAM problem is
proposed and solved leading to a new robust SLAM algorithm, IM-SLAM. Chapter 5
develops a new formulation of the robust SLAM problem and then proposes an online
algorithm, ISCC, to solve it. Finally, Chapter 6 summarizes the main results in the

thesis and discusses potential areas of future work.
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Chapter 2

Background Material

This chapter will provide a review of relevant background material in state estimation,
simultaneous localization and mapping (SLAM) and common techniques for robust

estimation.

2.1 Bayesian State Estimation

Stochastic state space models are often used in estimation problems for dynamical
systems because they provide compact representations of the system that are con-
venient for analysis and algorithm development [67-69]. The models consist of a
dynamics model for the latent state, xi, that is driven by random process noise, wy,
and a model of the measurements of the state vector, yy, that are corrupted with

noise, vi. A nonlinear discrete-time stochastic state space model can be expressed as

Xeq1 = f(Xk, Wi) (2.1)

Yi = h(xx, Vi) (2.2)

It is typically assumed that the process and measurement noise are white and mutually
uncorrelated, the state sequence is a Markov process, and that each measurement is
conditionally independent of the other measurements given the current state.

Given these assumptions, the state estimation problem can be cast as a Bayesian
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inference problem. The goal is to calculate the posterior distribution of the state at

time k given a set of measurements from time 1 to T. In other words

Find: p(xkly1,- - ,y7)

Given: Xpp1= f(xg, wi) (2.3)

Yie = h(Xg, Vi)

Note that if T' = &, this problem statement corresponds to a Bayesian filtering prob-
lem, while if 7" > k then the problem statement corresponds to a Bayesian smoothing

problem.

2.2 Bayesian Filtering Algorithms

For Bayesian filtering problems, the calculation of the posterior state distribution can

be broken down into two steps that are repeated recursively [41]

1. State Propagation
p(Xely1a-1) = /P(Xk|xk—1)P(Xk~1|Y1;k—1)dxk—1

2. Measurement Update (Bayes Rule)

(Y&|xk)p(%k|y1:6-1)
J p(xk, yr)dxp

P
p(xk|YI:k) =

Given the posterior distribution, the state estimate at time k, X;, can be calculated in
several ways. A mazimum a posteriori (MAP) estimate of the state can be obtained
using

Xy 47 = argmax p(Xk|y1, - , Y1) (2.4)

Xk
Alternatively, the st ate can be calculating by solving for the mean value

of x; given the posterior distribution. Both of these approaches work best when

the posterior distribution is unimodal and greater care should be taken in generating
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state estimates when the posterior distribution is multimodal [41]. If the measurement
noise is Gaussian and the system is linear, then these two solutions coincide.
Several different classes of filtering algorithms have been developed and are typi-
cally specialized for the properties of the underlying dynamical system (e.g., linearity,
Gaussian noise). The following subsections will cover the major Bayesian filtering al-

gorithms that are relevant for the thesis.

2.2.1 Linear Gaussian Systems: Kalman Filter

The Kalman filter is a Bayesian filter for linear dynamical systems with additive,

white, Gaussian noise [8]. In other words, systems that take the form

Xk+1 = Fka —+ Wy, (25)
Vi+1 = Hgp1Xp41 + Vi (2.6)
xo ~ N(0, Po) (2.7)

where F} is the state transition matrix, Hy., is the measurement matrix, w; ~
N(0,Qr) and v ~ N(0,R;)'. Given the linearity and Gaussian assumptions,
both p(xk|xk—1) and p(yk|xk) are Gaussian distributions. Moreover this implies that
p(Xkly1,- - ,¥x) is a Gaussian distribution as well.

Since the posterior state distribution is Gaussian, it can be completely charac-
terized in terms of its mean, Xy, and covariance, Py. In addition, the mean and
covariance can be calculated in closed form for both the state propagation and mea-
surement update steps. These closed form expressions are the Kalman filter state
propagation and update equations. Given Xy, Pir the Kalman filter propagation

equations are [70]

i1k = FeXeje (2.8)

P = kak|kF1;T + Qx (2.9)

!Throughout the thesis the notation, N'(u, ¥) indicates a multivariate Gaussian random variable
with mean p and covariance 3.
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The Kalman filter measurement update equations are

R+t = Rea 1k + K1 (Vo1 — HerRerje) (2.10)

Petipprr = (I = Kip1 Hip1) Pesgi (2.11)

where Kiy1 = PepipHL (Hio1 PoypHE + Rkﬂ)-l is the Kalman gain.
The Kalman filter update equations can also be interpreted as a weighted least-

squares update. To see this consider the following linear least-squares problem

.1 _ 1 . _ .
min §(Yk+1 — Hi1x) R} (Y1 — He1x) + E(X—Xk+1|k)TPkf”k(X~ Xerk) (2.12)

which can be interpreted as a weighted least-squares problem with a prior estimate
Xr+1)x that must be factored into the solution along with the measurements y 1.

The optimal solution can be found by solving the corresponding normal equations
(H’?“R_IH’““ + Pk_+11|k) x = H'Ryp + Pk_—l-11|k&k+1|k (2.13)
the solution of which is

-1
Xetilk+1 = (HEHR_lHkH + P,;rl”k) H 'R 'y

-1
+ (HEHR_lHkH + Pk—+11|k) ijukikﬂlk
After applying a Schur identity to the first term, the solution can be rewritten as

T T T -1
Rir1pker1 = Prr1p iy (Her1 P Hi + Ber) Y

_1 . ~
+ (Hit1 Py HE L + Rigr) Pk+11|kxk+1|k

Finally applying the matrix inversion lemma to the second term and combining terms

leads to
: =% P HE  (Hyor Poyp HE ., + Riya) HipX
Xpt+1lk+1 = Xpt1lk T Lpr1je il ( kt1d k1)l + k+1) (Yk-l—l - k+1xk+l|k)
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= Xpq1k + K1 (Vi1 — HreprXpg1p)

which is the Kalman filter update equation. In Section 2.4.1 it will be shown that
least-squares estimators are not robust to outliers which in turn means that the

Kalman filter is also not robust to outliers.

2.2.2 Nonlinear Gaussian Systems: Extended Kalman Filter

For systems with nonlinear state transition and measurement functions such as

Xp41 = f(Xk,) + Wy (214)
Yi+1 = R(Xgt1) + Vit (2.15)
Xg ~ N(O, P()) (216)

where f(x) is the state transition function, h(x) is the measurement function, wy ~
N(0,Q:) and vi ~ N(0, R;); one of the standard estimation algorithms is the ex-
tended Kalman filter (EKF) [71]. The EKF approaches the nonlinear filtering prob-
lem by approximating the posterior distribution using a linearization of the nonlinear
state transition and measurement functions.

In general, the transformation of a Gaussian random variable (x ~ A(0, P))

through a nonlinear function (g(x)) can be expressed using a Taylor series expansion:
1 1
z = g(x) = g(X) + Vg(X)ox + QVgZ()‘()(SX2 + §Vg3(i)5x3 +-- (2.17)

where X = F[x] and éx ~ N(0, P). Given, Eq. 2.17 the mean (z) and covariance

(P,) of z can be expressed as:

NI
Il

g(X) + %VgQ()_{)P + %Vg“(i)E [6x*] + - - (2.18)

P,=E[(z—2)(z—2)]
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= VgP(Vg(x)) + 5=V (%) (B [0x'] ~ B [5x°P] — B [Pox?] + P) + -

x 4!
(2.19)

After truncating the series to first-order the mean and covariance of the transformed

variables can be approximated as

z~ g(X) (2.20)
P, =~ VgP(Vg(x))" (2.21)

Q

The EKF uses the linear approximations in Egs. 2.20 and 2.21 to approximate both
p(Xk|y1:k—1) and p(Yr41|Xes1) during the state propagation and measurement update
steps. After applying the approximations, the EKF state propagation equations are
given by [70]

Xer1lk = f(Reje) (2.22)
Pesape = PPy + Qi (2.23)
where
df (x)
F, = 2.24
= 220

Similarly the EKF measurement update equations are [70)

Kt 1k+1 = Kes 1k + Kier1 (Vo1 — M(Regpr)) (2.25)
Pepipyr = (I — K1 Hi1) Posge (2.26)
where K1 = Pk+llng+1 (HHIPHWQHZ;I + Rk+1)-l is the Kalman gain and

dh(x)
dx

Hioy = (2.27)

X=Xk 1|k

38



2.3 Simultaneous Localization and Mapping

Virtually any autonomous robotic system must have an accurate map of its surround-
ings in order to perform its tasks. In the absence of a pre-defined map, a robotic
system must be able to form a map of its environment as well as determine where
it is within the map. The task of constructing the map and localizing the robot is
called simultaneous localization and mapping (SLAM) and is a fundamental problem
in robotics [72, 73].

This section provides an overview of the mathematics underlying SLAM as well

as a discussion of optimization approaches for solving the SLAM problem.

2.3.1 Problem Formulation and Solution

Typically SLAM systems rely on two types of external measurements to calculate
the solution: odometry measurements and loop closure measurements. Odometry
measurements provide a measurement of the relative change in position and orien-
tation (pose) of the robot between measurement intervals. Odometry measurements
can be generated using wheel encoders, IMUs or can be derived from images of the
environment using visual odometry [15]. Odometry alone is not sufficient to pro-
vide a solution to the SLAM problem because random errors accumulated from each
measurement will cause the solution to drift over time. Loop closure measurements,
which are generated when the robot returns to a previously visited location, provide
a means of correcting for odometric drift.

Loop closures are modeled in two different ways depending on the form that the
SLAM problem takes. In pose-based SLAM, loop closures represent relative con-
straints between non-consecutive poses. Alternatively, in landmark-based SLAM,
loop closures occur when a landmark is re-observed and is represented by a pose to
landmark constraint. Pose-to-pose loop closure constraints can be generated from
landmark to pose constraints by marginalizing the landmarks from the SLAM solu-
tion. To avoid confusion between the pose-based and landmark-based SLAM prob-

lems, this thesis will only refer to pose-to-pose constraints as loop closures and will
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refer to pose-to-landmark constraints as landmark measurements.

The SLAM problem is generally posed as a Bayesian inference problem. In the
Bayesian formulation, the goal is to solve for the maximum likelihood estimates of
the robot poses (x = {xg,- - ,X,}) and landmark positions ((1 = {lg,--- ,1,}) given
a set of odometry ({y%,---,y% }), landmark ({y!,--- ,¥4,}) and loop closure mea-

surements ({y'°,--- ,y% }):

(5(, i) = argmax p(x, l|y?, ylc, yl)
x,1

0 e 1 1
— argmax POV Y )

2.28
x,1 p(y07 ylca yl) ( )

Typically, it is assumed that the measurements are conditionally independent so that

p(y°, ¥, ¥'|x,1) can be factored as

Py, v,y 1) = [ oy T eyt [ oyl D) (2.29)
i=1 j=1 k=1

It should be noted that this formulation of the problem can be interpreted as a non-
linear Bayesian smoothing problem. The major distinction between this formulation
and the filtering problems discussed earlier is that none of the latent variables are
marginalized from the problem in the smoothing problem whereas prior state variables
are marginalized at each time step in a filtering problem.

Additionally it is typically assumed that the measurements are corrupted by ad-

ditive zero-mean Gaussian noise so that the conditional probability distributions are

given by
) (2:30)
p(y[x) oc e~ H0 AR AT 00 (231)
p()’ﬂx, 1) e~ 3 (Vi —hr (D) T AL (yi—hi (D) (2.32)

where A7, A’f and Al are the information matrices for the odometry, loop closure

and landmark measurements respectively.
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After applying these assumptions the SLAM solution can be expressed as

(f{,i) = argmax p(X, l]y",ylc, yl)

x,1

To ny
= argmax » _ logp(y?|x) + Y _ logp(y}[x,1)

* i=1 j=1
ny
= argmin — Z log p(y?|x) — > logp(y'lx,1)
i=1 7=1
= argmmz (y7 — hi(x))" A (3¢ — ha(x))
Myc

+ Z (x))T Al (yh — hy(x)) (2.33)
+ Z — hi(x,1))T AL (yh — hy(x,1))

which is a nonlinear least-squares (NLS) problem.

One standard approach to solving NLS problems is the Gauss-Newton method
[74]. The Gauss-Newton method can be applied to SLAM problems by choosing an
initial estimate for the poses and landmark positions, (5(0’ iO), and then updating the
pose and landmark estimates (f{k ,ik> until they have converged using the following

update rule
ckt1 ok
o= e A (2.34)
1

e+l
where J is a matrix that contains the Jacobians of the measurement functions h;(x),
h;(x) and hi(x,1), A is a block diagonal matrix containing the corresponding mea-
surement information matrices, and r is a vector containing the measurement resid-
uals y? — hy(x), y! — h;(x), and y}, — hi(x,1). In the context of the nonlinear least
squares problem, the information matrices act as weights for each measurement so
that “larger” information matrices correspond to those measurements having more
impact on the nonlinear least squares solution.

Along with the Gauss-Newton method, there are several related optimization

techniques that are often applied to solve the SLAM problem including Levenberg-
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Marquardt [75, 76] and Powell’s Dog-Leg [77-79]. The main difference between these
approaches and the Gauss-Newton method is the computation of the step size and
direction for each update (i.e., , the (JTAJ) 1JTAr term in Eq. 2.34). However, the
updates for these methods still contain the posterior information matrix (J7AJ) and
as a result the interpretation of the information matrix as a weighting term for each

measurement still applies.

2.3.2 Graphical Representations of the SLAM Problem

In the last ten years, factor graph representations of the SLAM problem have led to
significant advances in the efficiency and scalability of SLAM solvers [9-11]. Factor
graphs are a general framework for modeling functions that can be represented as
products of factors (i.e., f(x) = [[; fi(x:)) [80].

Factor graphs arise in SLAM as a means of modeling the posterior pdf of the
poses and landmarks (Eq. 2.29). The posterior is clearly a product of measurement
likelihoods and thus can be modeled by a factor graph. An example of a SLAM factor
graph is shown in Figure 2-1. In this context each factor, f; in the graph corresponds
to a measurement likelihood while each node in the graph corresponds to a latent
variable in the model (either a pose or landmark).

Beyond providing a compact visual representation of the SLAM problem, factor
graphs also provide additional insight into the structure of the SLAM problem that
can be exploited to produce faster and more scalable algorithms. The major benefit
of factor graph models for SLAM is that they expose the underlying sparsity that
is inherent in SLAM problems [81, 82]. Specifically, it has been shown that SLAM
tactor graphs have only a sparse set of edges connecting nodes in the graph. Moreover,
the sparsity pattern of the edges coincides with the sparsity pattern of the posterior
information matrix, (JTAJ), that appears in the NLS SLAM update. In practice,
this means that the matrix inversion operation in each NLS step can be replaced
by a significantly more efficient sparse matrix inverse. Thus, factor graphs provide
a significant and important connection between the Bayesian model of the SLAM

problem and the linear algebra tools that are used to solve it [9-11].
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Figure 2-1: Example of a SLAM factor graph. x; are poses, 1; are landmarks and f;
are the factors corresponding to odometry, landmark and loop closure measurements.

2.4 Robustness Issues in State Estimation and SLAM

Although Bayesian filtering and SLAM algorithms provide a powerful set of tools,
they are also subject to significant robustness challenges. These robustness issues
arise because often the underlying model of the state dynamics and measurements are
approximate or incorrect or because the assumptions about the noise (i.e., zero-mean,
Gaussian) are incorrect. When these errors occur they can cause catastrophic failures
in the standard filtering and SLAM algorithms. The reason these algorithms fail is
because they are based on least-squares estimation techniques that are inherently not
robust to outliers and gross errors [29, 30.

The rest of this section will provide a brief discussion of the underlying causes of
robustness issues in least-squares estimation as well as a discussion of some existing

techniques for outlier rejection in least-squares estimation.

2.4.1 Non-Robustness of Least-Squares Estimators

It is a well known fact that least-squares estimators are not robust to outliers [29, 30].
To see this consider that in general a weighted linear least-squares estimator can be
expressed as

n
x* = argmin Z(yz — Hx)"Wi(y; — Hx) (2.35)

x i=1
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where y; are measurement vectors and W; >~ 0 is a matrix of weights for each mea-

surement. The least-squares estimate x* is given by

X' = (H'WH) " H"W(y — Hx) (2.36)
where _ ;
W, 0 --- O
H,
0 W, --- 0
W — H —
H,
I o --- W,

Note from Eq. 2.36 that the major influences on the least-squares estimate are 1) the
weights W; and 2) the magnitude of the residuals (y — Hx).

Least-squares estimates are not robust because a measurement with a large resid-
ual will have an outsized influence on the resulting solution. Therefore, even a single
outlier can cause a significant error in the least-squares estimate. Formally, this sen-
sitivity to gross outliers can be captured by the breakdown point of an estimator [30].
The breakdown point is a measure of the fraction of arbitrarily incorrect measure-
ments that can be processed by an estimator before the estimates become arbitrarily
large. Given the least-squares estimate in Eq. 2.36, it is straight-forward to prove

that the least-squares estimator has a breakdown point of 0.

Lemma 1. The least-squares estimator x* = (HTWH) ' HT"W (y — Hx) has a break-
down point of 0.

Proof. Let the magnitude of the i* measurement, ||y;|| — oo. After examining
Eq. 2.36 it is clear that as |ly;|| — oo, ||x*|| = oo. Therefore, the least-squares
estimator can not process any arbitrarily large measurements, and thus has a break-

down point of 0. 0

Since the Kalman filter, extended Kalman filter and SLAM solvers all involve
computations that are mathematically related to least-squares estimation this result

also establishes that they are not robust to outliers and gross errors and have a
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breakdown point of zero. The rest of this section discusses some common techniques

for outlier mitigation in least-squares estimation.

2.4.2 Outlier Mitigation in Least-Squares Problems

There are two major outlier mitigation methods that are applied to least-squares
problems: outlier detection and robust cost functions [42, 83]. Outlier detection
techniques attempt to identify measurement outliers using statistical tests and then
remove the measurements from the solution. Robust cost function approaches mod-
ify the standard least-squares cost function to reduce the impact of outliers on the
estimates (in other words increase the breakdown point of the estimator). While this
discussion will focus on least-squares estimation, the techniques can be extended and

applied to state estimation and SLAM as well.

x? Tests for Outlier Detection

Weighted least-squares problems can often be interpreted as maximum likelihood
estimation using measurements with Gaussian noise. Given this interpretation, the
weights correspond to the inverse covariance matrices, or information matrices, of the
measurement noise.

Many outlier detection techniques for least-squares estimation rely on x? tests
because of the connection between Gaussian maximum likelihood estimation and
least-squares. The reason x? tests are often used has to do with the connection
between normally distributed random variables and the x? distribution. Given a set
of m i.i.d. samples, {21, - , 2z} from a standard normal distribution, it can be shown

that

m

D 2~ (2.37)

i
where x2, denotes the x? distribution with m degrees of freedom.

Given the relationship between Gaussian random variables and the x? distribution,
a simple residual test can be applied to identify potential outliers in the measurements.

Assume there is a prior estimate, X, with covariance P and a measurement vector y

45



with an additive measurement noise covariance, R. Then the measurement residuals
(y — HX) ~ N (0, HPHT + R). Moreover, using Eq. 2.37 the standardized residuals
should be distributed as

(y — H®)"(HPHT + R)™\(y — HX) ~ X}, (2.38)
where n, is the dimension of y. Given the relationship between the residuals and the

x? distribution, a hypothesis test can be applied to determine whether the residuals

are consistent with the expected Gaussian noise:
(y - Hi)T(HPHT + R)_l(y - Hi) < X?nv(pa ndof) (239)

where x2,,(p,ny) is the inverse x-squared cdf with n, degrees of freedom evaluated
at p. If the inequality is satisfied, then the noise models are correct with probability
p. If not, then there are likely outliers in y and the measurements should not be
used to update X. Typically, p is set to a value close to 1 (e.g., 0.95 or 0.99) to avoid
erroneously discarding measurement due to false positive outlier detections.

The one drawback of x? tests and other hypothesis testing approaches to outlier
detection is that they do not account for other potential sources of error that could
explain the residuals. Other causes of large deviations in the residuals could be a
poor initial estimate, incorrect measurement models or overly optimistic measurement
noise models. While tests could be applied to detect those errors in isolation, it is
difficult to design a hypothesis test that can weigh all of those factors and determine
which are most likely. In essence, a x? test can indicate that something has gone

wrong, but can not necessarily determine what went wrong.

Robust Cost Functions

Another common method for addressing outliers in maximum likelihood estimation
problemus is to substitute an alternative cost function for the standard least-squares

cost function. In most cases, these alternative cost functions are designed so that
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outliers have minimal impact on the final solution. Typically these cost functions
are applied as kernels in the standard least-squares cost function so that the robust

function can be expressed as:

n

Fromst(x) = > K ((yi — Hx)"W;(y; — Hx)) (2.40)

1=1

where K (-) is the robust kernel function. Robust kernel functions are designed so that
as the residuals for a specific measurement (y; — Hx) become larger (i.e., in cases
where outliers are more likely to be present) the contribution of that measurement
to the solution decreases. In other words, the robust kernels reduce the weights of
measurements corrupted by outliers in the least-squares solution.

Some of the most common kernel functions are the Huber kernel [30]

52 |6] < b
KHuber (5) = (241)
2b16] — b*
the Cauchy kernel
52
KCauchy((s) = b2 log (1 + ﬁ) (242)
and the Blake-Zisserman kernel [83, 84]
Kpz(8) = — log (e—“’ n e‘bz) (2.43)

where b is a positive constant. The attenuation factor of a robust kernel provides
a means of visualizing how each kernel reduces the weights of measurements as the
residuals increase. The attenuation factor of a robust kernel K(-) is defined as [83]

K(9)
52

AF(8) = (2.44)

and represents the ratio of the robust kernel and the standard least-squares cost as
function of the magnitude of the residuals (4). The attenuation factors for the Huber,

Cauchy and Blake-Zisserman kernels are shown in Figure 2-2. For each kernel, it is
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Figure 2-2: Attenuation factors of common robust kernels

clear that as the residuals become larger, the weight of the measurement relative to
the least-squares weight decreases and asymptotically the weights converge to zero.
By decreasing the weights, each of these robust kernels achieves a break-down point
larger than zero and in fact, the Huber kernel can be shown to have a break-down

point of 0.5 [30].

2.5 Summary

This chapter provided background for Bayesian state estimation algorithms and the
mathematics and solution of the SLAM problem. It also provided an overview of
robustness issues associated with least-squares estimation and how those issues relate
to the poor performance of standard filtering and SLAM algorithms when outliers
occur. The next chapter will develop and analyze a robust filtering algorithm that
addresses the robustness issues for state estimation algorithms by augmenting the
standard dynamical system models with additional latent variables that capture the

impact of outliers on both the state dynamics and measurements.
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Chapter 3

Robust Filtering with Sparse

Outliers

In state estimation problems, it is often assumed that the process and measurement
noise in the system are Gaussian distributed [69, 70]. However, for many practical
problems the Gaussian assumption is violated by difficult to model errors (i.e. mul-
tipath [85], state prediction errors in target tracking [69]) that can be interpreted as
outliers relative to the nominal Gaussian noise distribution. Moreover, algorithms
such as the Kalman filter (KF) and extended Kalman filter (EKF) are not robust
to outliers and the accuracy of their state estimates significantly degrades when the
Gaussian noise assumption does not hold [24].

A number of robust state estimation algorithms have been developed to miti-
gate the impact of outliers. Typically these algorithms focus on determining when
measurements are corrupted with outliers and either ignoring them entirely [42] or re-
ducing their effect on the updated state estimates [24, 27, 52, 55, 57]. Unfortunately,
by focusing solely on measurement errors, these algorithms can not guarantee good
performance when there are also large errors in the state predictions. In those cases,
the algorithms incorrectly detect outliers in the measurements and end up ignoring
information that could help correct the erroneous state estimates [46].

Furthermore, state propagation outliers are a significant problem. Many naviga-

tion systems rely on IMU dead-reckoning in lieu of a state prediction model. If there
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are any IMU faults in these systems, standard robust filtering algorithms can not
detect them. Similarly in SLAM systems where odometry is often used as a proxy for
state prediction, the issue of faulty wheel odometry and the “slip or grip” problem
[61] has proven to be difficult to address using standard outlier rejection techniques.
Finally, target tracking algorithms often have coarse prediction models that are not
accurate. Thus, if state prediction errors occur due to model mismatch, there is no
means for standard robust filtering algorithms to correct the errors.

The main contribution of this chapter is a robust recursive filtering algorithm,
the [;-norm filter, that can provide accurate state estimates in the presence of both
state prediction and measurement outliers. The [;-norm filter detects the presence
of outliers using the solution of a convex program. Given that information, the filter
updates the state estimates by jointly estimating the detected errors and the states
using the information filter [86]. The algorithm is computationally efficient as it

combines a convex optimization with standard recursive filtering steps.

3.1 Robust State Estimation Using the [;-norm Fil-
ter

This section develops the [;-norm filter algorithm which consists of two parts:

1. Identification of outliers in the state propagation and measurements by solving

a convex optimization problem

2. Updating the state estimates given the results of the error identification step

3.1.1 System Models and Problem Statement

It will be assumed that the state dynamics and measurements are linear and corrupted
by both additive white Gaussian noise as well as additive sparse errors. Sparse in this
context means that at least some components of the errors are equal to zero. Given

these assumptions, the state propagation and measurement models are assumed to

o0



take the form:

Xpr1 = Fpxp + Wi + €f (3.1)

Vi1 = Hpp1Xpp1 + Vi1 + €74 (3.2)

where F}, is the state transition matrix, Hj.; is the measurement matrix, w, and
Vi41 are the Gaussian process and measurement noise, respectively, and e}, and e},
represent the sparse errors. Note that without the errors, €], and e}, ;, these equations
are in the standard form of the KF state propagation and measurement equations.
The rest of the assumptions for the state prediction and measurement models are as

follows:
1. wy and v are white and zero-mean with covariances Q) and Ry respectively
2. wy, and vg4; are mutually uncorrelated (i.e. E[vy,wi] =0,V k)

3. The number of combined non-zero components of €} and ey, is less than or

equal to the number of measurements

The first two assumptions are standard for the KF. The final assumption about the
sparse errors is required to ensure a valid state estimate using the /;-norm filter. The
third assumption is discussed in more detail during the state-update portion of this
section.

The objective of the state estimation problem is to calculate a state estimate,
Xi+1jk+1, that minimizes the mean squared state estimation error, E[(xk+1|k+1 —
Kir1jk+1)T (Xe+1jk+1 — Xk41jk+1)) given an estimate of the state at time k, X, and a
set of measurements up to time k+ 1. It will be assumed that the estimation error at
time K, Xy)x = X — X, is zero-mean and Gaussian distributed with covariance Pyj.

For a system with state dynamics and measurements governed by Eqs. 3.1 and
3.2, solving for Xj11x+1 also entails solving for éﬁl Kt and é;cn+1| k+1- 1t should be noted
that without the sparsity assumption, this estimation problem is potentially ill-posed

and could have multiple solutions. The sparsity assumption acts as a regularizer for
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the estimation problem that favors “simpler” explanations of the measurement data

when outliers occur.

3.1.2 Error Detection

This section formulates an optimization problem that can approximately solve for
the sparse errors. The output of the optimization will be used to determine which
components of €} and e}, ; are non-zero. Discussion of how the states and errors are
estimated given this information will be covered in the next subsection.

Before the optimization problem can be defined, the measurement residuals need
to be expressed in terms of the sparse errors, €} and e, ,, and the a priori state

estimate. The a priori measurement residuals at time k + 1 can be expressed as:

Vi1 = Vi1 — Hip1 FeXep
= Hp,y (Fka + Wi + ef; - ﬁk+1|k) + Vi1 + EZL_H (33)

= Hy (Fkiklk + Wi -+ 62) + Vi + GZL_H (34)
After rearranging terms in Eq. 3.4 and defining

€}
€rt1 =
m
€11

and

W1 = Hir (FiXupe + Wi) + Vi,

the residuals can be related to the error terms by

Y41 = [Hk+1 I] €k+1 t Ugti (3.5)

The errors could be estimated from the under-determined system of equations in Eq.
3.5 by solving for the minimum ly-norm vector that corresponds to the measurement

residuals (using a pseudo-inverse least squares solution [86]). However, this approach
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is not suitable for estimating sparse vectors such as ex; because it tends to allocate
signal energy to all of the components of the vector being estimated instead of con-
centrating it on a few components, thus returning a non-sparse estimate of a sparse
vector.

Based on the sparsity assumption, the estimates for er,; should have as few
non-zero entries as possible. Additionally, if the error estimates are equal to the
true error values (i.e. &1 = ex;1) then the corrected measurement residuals, y =
Vi1 — [HkH I] €r11, will be equal to ug,;. Note that ugy; is a zero-mean normally

distributed random variable with covariance
Y = Hyp1 (Fe Py + Qr) Hiq + Rt

For a normally distributed random variable p € R"™ with covariance, W, the
weighted inner product p? W ~!p is x? distributed with n degrees of freedom. Given
these observations, one way to obtain a good estimate of eg,; is to minimize the
number of non-zero entries while ensuring that y7X 7'y < 7, where 7 is set based on

the x? c.d.f. [87]. Mathematically this optimization can be expressed as

min ||l (3.6)
€L41

subject to LTy <7

where ||-||, is a shorthand expression for the number of non-zero components of a
vector [88]. Because this optimization involves searching over a combinatorial set
of sparse vectors, it is computationally intractable in general [88]. Fortunately, a
tractable approximate solution to Eq. 3.6, can be found by solving the convex opti-

mization [87]

min (&l (3.7)
€k+1
subject to §TL7l§y <7
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The optimization in Eq. 3.7 can be recast as a second-order cone program for which
a number of efficient algorithms have been developed [47, 48].

In practice, the optimization posed in Eq. 3.7 is acting as a consistency check
between the measurements and the a priori state estimate generated by the nomi-
nal state propagation model, X;4+1 = FpX,. If there is an inconsistency, then the [,
minimization can both detect and attribute it to specific error sources in the mea-
surements and state propagation in one computationally efficient step. If there are no
errors present, then the residuals should satisfy the inequality constraint with high
probability and the error estimates will be equal to zero.

Although the l;-minimization step tends to return a sparse estimate of the er-
rors, the estimate often has small spurious non-zero components that are a result of
measurement noise. To ensure that the error estimates are sufficiently sparse, the
solution returned by the [;-minimization is thresholded based on the expected noise
level. Any elements of the [;-optimal error estimates that are smaller than the ex-
pected noise level (as determined by a x?-test) are set to zero. This step ensures that
only errors that are inconsistent with the Gaussian process and measurement noise
are considered in the state update update portion of the algorithm. Sparse estimates
of the errors could also be obtained by applying the reweighted {;-norm minimization
(RWL1) approach proposed by Candes et al. [89]. However, since RWL1 requires
iteratively solving an /;-minimization multiple times, it remains to be seen, if the
solution can be generated at the high rate needed for navigation systems.

It should also be noted that, while there is extensive evidence in the compressed
sensing literature that /;-norm minimization encourages sparse solutions [89, 90], the
solution to Equation 3.7 is not guaranteed to coincide with the solution to Equation
3.6. The impact of missed detections and false alarms in the error detection procedure

will be discussed in more detail in Section 3.1.5.

3.1.3 State and Error Estimation

After performing the error detection, the state estimates are updated by augmenting

the state vector with the non-zero error terms and then jointly estimating the errors
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and states using the information filter. The combination of thresholding the /;-optimal
solution followed by re-estimation is a common procedure in sparse signal estimation
usually referred to as debiasing [87, 91], because in practice the [;-optimal solutions
are biased [87].

The information filter is a recursive filter that is algebraically equivalent to the KF
[92], but performs operations on the information matrix, Ay, and information state,
&k!k instead of the state and covariance. Given a state estimate, X, and covariance,

Pk, the information matrix and state are defined as:

Aue = (Bs) ™ (3.8)
dige = ApXik (3.9)

The information filter is particularly useful for situations where some of the states
have uninformative prior estimates (such as the non-zero terms of €}, and e}, ;).
The a priori measurement residuals in Eq. 3.3 will be used to derive the informa-
tion filter update for the state and error estimates. First, define the augmented state
vector zg41 as
Xk+1
Zpy1 = | P (3.10)

mynz
Crr1

where X;1 = FiX; + Wy and the superscript nz denotes only the non-zero compo-
nents (as determined by the /;-norm minimization) of the respective errors. After

substituting in the definition of z;,;, the measurements can be expressed as

Ye+1 = [sz+1 H, Im] Zi+1 + Vil

= ﬁk+1zk+1 + V41 (311)

where H, is equal to the columns of Hy,, corresponding to the non-zero terms in
&, and I, is equal to the columns of the identity matrix corresponding to non-zero

entries in é;cn+1-
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The prior estimate of X;1x can be expressed as
Xer1k = FiXpk

and the associated covariance is Py = FkPk|kF,;‘r + Q. Since the prior estimates of

the errors are assumed to be uninformative, the information matrix Zyx will be

P71 oo
Agyik=10 0 O (3.12)
0 00

with the information state, ak+1,k given by Eq. 3.9. After calculating the information

matrix and state, they can be updated as follows [86]

disiers = derap + Hiy Byl e (3.13)
Apsije+r = Apyap + EZ+1R;-|1-II:I7€+1 (3.14)
After updating &kH,kH and Agjik+1, the covariance P,fH'k +1 and state estimate

Zi+1jk+1 can be calculated from Eqs. 3.8 and 3.9, respectively.

Recall that the total number of non-zero entries in €}, and e}, was assumed to
be less than or equal to the number of measurements. The update procedure in Egs.
3.13 and 3.14 sets the upper bound on the allowable sparsity of the unmodeled errors.
Note that the number of combined non-zero components of e}, ; and e} must be less
than or equal to the number of measurements in order to ensure that Agiijx4; is full
rank and can be inverted. If Ajii41 is singular then it can not be inverted and
Zg+1)k+1 can not be calculated.

In practice, the upper bound on the sparsity of e}, and €} could be relaxed by
assuming a diffuse prior (i.e. a prior with a large covariance) instead of an uninfor-

mative prior for the sparse errors. In this case the a priori information matrix from
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Algorithm 1 /;-norm Filter

Require: X, Pik, Yit1
1. Solve [; minimization problem in Eq. 3.7 for &,
2. Apply x2-test to determine non-zero components of &,
3. Form information state (Elk+1| ») and matrix (Agy1p,) for augmented state vector

Zet1k )
4. Update dg41jk, Ag+1x with Egs. 3.13-3.14
5. Calculate P,lekH, Zi+1k+1 with Eqgs. 3.8-3.9

6. Calculate Xx 1541, Prtijk+1 using Eqgs. 3.15-3.16
return Xz, k41, Peyijpra

Eq. 3.12 will be

P 0o o0
A= 0 e O
0 O el

where € is a small (i.e., < 1) positive constant. Using the diffuse prior, Agiijpq1 will
be positive definite and thus invertible regardless of the number of non-zero elements
in e, ; and €}.

After calculating Zy11x+1, the posterior state estimate, Xy 1jx+1, corrected for the

sparse errors, is

Rep1fks1 = Xkp1jer1 + &l (3.15)
with covariance
Peiapprt = Pl + P:il|k+1 + Pze + Pz (3.16)

574 . . o ep . . AD
where PHII,CJrl is the covariance of X 1|k+1, Pk+1}lc+l is the covariance of €ikr1 and
. . =~ Ap .
Pz, and P,z are the cross covariance matrices of X 1,41 and CATIRE all of which can

be obtained from sz+l|k+1:

X
k+1)k+1 Py
Piyun=| Ps P
k+1]k+1 ez k+1]k+1
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3.1.4 Algorithm Summary

The [;-norm filter is summarized in Algorithm 1. There are two main components of
the algorithm: outlier detection and a state update based on the outlier detection.
Steps 1 and 2 encompass the outlier detection portion of the algorithm, where a
constrained l1-norm optimization is used to estimate the sparse vectors e} and e}’,.
A x*-test is applied to the error estimates calculated by the [;-norm optimization to
determine which non-zero components of &} or &}, are too large to be explained by
the Gaussian process and measurement noise. The large non-zero components of €,
and €7, are then re-estimated in the state update step to calculate the robust state
estimates.

The state update phase of the algorithm occurs in steps 3—6. The states and
non-zero components of the errors are solved for by augmenting the state vector
and then processing the measurements using the information filter. This portion of
the algorithm is closely related to the KF. Calculating the information state and
information matrix (step 3) requires applying the KF state propagation equations,

while the state update equations for the KF are analogous to steps 4—6.

3.1.5 Algorithm Analysis

This section will derive closed form expressions for the posterior state estimates and
covariance using the [;-norm filter. These expressions will provide additional insight
into the [y-norm filter and allow analysis of the [;-norm filter when the errors detected
by the [;-norm minimization are incorrect.

To simplify the derivations that follow, it will be assumed without loss of gen-
erality that the states and measurements have been ordered so that they can be
partitioned into subsets that are impacted by €} and e, ,. After ordering the states

and measurements, Xz;1, Ye+1, Hgp1 and Ry can be partitioned as

[ o ] ] [ ;] flo ol
X5 Yu Hy, Hpy, R, 0O
Xk+1 = ’ v Yk+1 = ) HIH—I = P ? , Rpy =
Ye Hﬁc Hpc Rc
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where the subscripts u and ¢ denoted corrupted and uncorrupted measurements re-
spectively, and the subscripts p and p indicate state variables that are uncorrupted
and corrupted by €% respectively. Similarly, the a priori state information matrix
and covariance matrix can be partitioned as

A; A P B
Appip = P and Py = P

5 Dy Fp B
The posterior covariance of the states and errors can be calculated by inverting

the posterior information matrix in Eq. 3.14:

Pl +HTR'H HTR'H, HTRI,
Peien = HIR'H H'R'H, HTR'I,
ITR'H IYR™'H, ILR',

Note that the general form for a blockwise inverse of a matrix is

~1

A B (A— BD-1C)™! —(A— BD-'C)"'BD"!

C D —D'C(A- BD™'C)™' D'+ D 'C(A- BD'C)"'BD"?
(3.17)

The derivation of the update formulas will proceed by applying blockwise inversion

using A = P, Jrlllk + HTRYH. After selecting A, D™! can also be calculated by

blockwise inversion:

D_l _ (HELREIHPU)_I _(H;LRJIHpu)_ng; (3.18)
Hpc(1’-[;;’1;}%!;1Hl,m)_1 R, + Hpc(HZ;R;lltlm)_ll-lgc
Given these definitions, it can be shown that the covariance term P,lek 41 10

Eq. 3.16 can be described using an update formula similar to a KF update:

Lemma 2. P, ., = (I — KH)P, ), where

— KH; 0

KH = ' , K =P,HL (R, + Hp BHL) ™
~ A, K Hy, O nr e
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RU = (R'z:I - RIZIHPU( puRJIH ) IHZ;LRu )
Proof. Note that P’?EHI k41 1S equivalent to the the top left entry in P} 11 Therefore

it can be expressed as

Peiajper = (Ply, + H'RT'H — BD™'C)™
-1

As+ HLR7'Hy, Ay

puu

Apﬁ Ap

B¢ 1k, can now be calculated using blockwise inversion, but first note that P, =

Ap — AppAJ App)~1. Using this fact, the upper left hand term of Pf is
pp b k-+1)k+1

P,? = (Ap APPA lA + Hg;Rualu)
= (P + HL,R;'Hyz,) ™
= Py + PHL, (Ry + HpuBHE) ' By

= (I - KHp) Py

where the third equality follows from the matrix inversion lemma [93].

Applying the rest of the blockwise inverse formula leads to

pr (I — KHy,)P; —(I — K Hpu) PsAgp A
k+1lk+1 =
e A YApp(I = R Hp )Py A1+ A5 (T — K Hy) ByA gy

| Pop + Ay App K Hpu By Py + A" Ay K Hy Py

= (I = KH)P{ 1

O

Given Eq. 3.18 and Lemma, 2 the final form of the state estimates and covariance

in the /;-norm filter are given by the following theorem.
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Theorem 3. The l;-norm filter state estimates in Eq. 3.15 can be expressed as:

K + K(yu — HuX )

Re+1lk+1 = L . (3.19)
Hyw (yu = Hﬁuxk+1|k+1)
In addition, the posterior covariance matrixz in Eq. 3.16 is given by:
P P (Hyl Hp)
Petagr = _Lp - P _lp p_L i sl r I T (3.20)
—H,"Hp, Py (Hp R, Hy) ™ + Hp Hpu Py (Hp," Hpy )
where
-L T p-1 =1 7T 1
H.'=(H,R,'Hy,) H,R,
Proof. Using Eqgs. 3.9 and 3.13 and the blockwise inversion formula for P} 1je+10 the

updated state and error estimates are

Kir1lkt1 = Pk (P];_lukik+lllc + H'R 'y — BD_lie)
& = —D'CPL <P1;L11|k5<k+1tk +H"R 'y — BD_lie) + D7,

~1 42 —1s
= —D" CXpy1p1 + D7 ke

where

HIR™'y

ITR 1y

The matrices BD~! and D~!C arise from the blockwise inversion of Agy1jx+1 and can

be shown to be

— T —L T —L
BD__1 — (HpuLHﬁu)T Hﬁc - (Hpu Hﬁu)THpc 7 D_lc, _ Hp Hﬁ I
I 0 Hye — HpeHy Hy, 0

Note that only &P appears in Eq. 3.15, thus it is only necessary to calculate &%,
After substituting the values of BD™!, D71C and i, the estimates of the non-zero e?

terms are:

e = Hp_uL(Yu - Hﬁu§k+1|k+1) - §i+11k+1 (3.21)
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After substituting BD™! and the value for P¥ kel from Lemma 2 into the update

equation for Xjyqx41 the result is

3 | Ry || U= KHp)X 0y + (I - KHy, ) BHE Ry,
k1 = f = p
Xk+1|k+1 Xk+1|k+1
(3.22)

The second term in the X7, ., can be simplified using a Schur identity [93] as
k+-1]k+1

(I - KHyp)FHL Ry = (P + HL Ry Hy,) 7 HL Ry,

= PI—,Hg;(Ru + HﬁuPﬁHg;)—l

Thus the estimate of X? is
Xpi1ksr = Xnpak + K(Yu — HouXppy 1) (3.23)

Combining the results in Eqs. 3.21 and 3.23 leads to the final form of the /;-norm

filter state estimates given in Eq. 3.15:

2p
N _ | Rkt1kt1 0
Xet1le+1 = |, T
Xk+1]k+1 e

ap = 2
Xir1p + K (Yu — HpuXpyy1)

—_ _1 bt P
] (HpuR Hpu) Hp RN (Yu — HpuRY )

pu”tu pu-tu

This proves the state estimate portion of the theorem.

The matrices P,fillk +1: Pre, and Pz in Eq. 3.16 can be extracted from Py, .,

using the blockwise inversion formula. After substituting in the values of BD™!,

D=1C and D! the sum of P , P, and P.; is
ke 1lk+1

Dz Z(rr—L \T
0 _lpp_Pﬁ\“pulﬁu}

Pt ki1t PretPes =
putty

(3.24)
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Substituting Eq. 3.24 into Eq. 3.16 gives the expression for Py ;41 in the theorem:

Py P
Peiijgsr = . . + Py it 1k+1 T Pre T FPez
_Ppﬁ 1
z % 17—L
_ P — PP(HE Hy,)T
—H;uLH;—mPg” (Hg;Rualu) +H LH PI(H ﬁu)T

O

There are several conclusions about the behavior and performance of the l;-norm
filter that can be drawn from Theorem 3. First, notice that the estimate of x,
in Eq. 3.19 is in fact a least-squares estimate given f(i +1jk+1 and the uncorrupted
measurements, y,. In other words, the [;-norm filter is re-initializing the estimate of
X, using the current set of uncorrupted measurements. Additionally, note that the
estimates and covariance do not depend on the measurements corrupted by e}, ,. This
can be seen by observing that the updates do not include any terms that involve y,,
H., and R.. Thus, the same estimates can be reached by discarding the measurements
that correspond to non-zero €7, ; detections before the joint state and error estimation
step. These observations also indicate that the performance of the [;-norm filter, for
the case when only measurement outliers are present, should be comparable to a KF
that discards measurements with residuals that exceed a x? threshold. This behavior
is verified using Monte Carlo simulations in Section 3.3.

In addition, when all sparse errors are correctly detected, the [;-norm filter esti-

mates are unbiased. The proof of this result will require the following lemma.
Lemma 4. KH,, =0

Proof. First note that

qualu = R;alu - RJIHpu(HT 1Hpu) lHT 1Hpu
=R;'H,, — R,;'Hp, = 0
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Applying the matrix inversion lemma [93] shows that

(Ru+ HpuPHL) ™ = Ry' — R;\Hpu(Py ' + Hp RV HE) 'HE R,

pu”tu

Combining these results shows that
_ T = 73\ —1
KH,, = B;H,, (R, + Hp PsHL,) Hp,

— ppHg;(R;alu — R;le(P];l + HpuRng;)—lH;Rgl H,)=0

O

Theorem 5. If Step 2 of Algorithm 1 detects all non-zero components of €}, and e},

then Xp k41 %8 unbiased.

Proof. Using Eq. 3.19, the posterior state estimation error is

[ &2
~ k+1{k+1
Xe41lk+1 =

iZ+1]k+1
Xpp1 — ﬁimk + K(yu — Hﬁuﬁiﬂlk)
Xp41 ~ (HT RJIHpu)_l H) R (y.— H,

5D
pu putlu ﬁuxk+1|k+1)

(I = KHp)X}, 1 + K (HpuX}yy + Vi)

- T p-1 1 o7 p-1 <P (3.25)
L~ (Hp Ry Hpu) — H, Ry (HpuXig k1 + Vips)
After applying Lemma 4, iz H1fk+1 BN be shown to be
i2+1|k+1 = - KHﬁu)iiﬂw + Kviy,
and thus £ [iz+1|k+1] = 0. Moreover this implies that F [iiJr”kH} =0. 1

In the case where the error detection works perfectly, these results indicate that
the [;-norm filter performs as desired: it ignores faulty measurements that could
negatively impact the state estimates and it corrects erroneous state estimates. But

since the [;-norm solution is not guaranteed to correctly detect €}, ; and €}, it is also
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important to evaluate the impact of incorrect error detection, either false alarms or
missed detections.

Mathematically, both false alarms and missed detections can be defined in terms of
the support, supp(-), of €} and e}, where supp(x) is the set of non-zero components
of x. If supp(éy) D supp(e}) or supp(éF.,) D supp(e}’,,), then false alarms have
occurred and if supp(€}) C supp(e}) or supp(éy,) C supp(e},,), then there are
missed detections.

In the case of false alarms (i.e. incorrectly detecting an error when it is not present),
the l;-norm estimates will still be unbiased, with the only penalty for the incorrect

detection being a potential increase in the posterior state covariance.

Theorem 6 (False Alarm Case). If supp(€}) D supp(e}) or supp(€7.,) D supp(e},)
then Xy 1je+1 will be unbiased. If supp(€}) = supp(el) and supp(&],,) O supp(e},,),
it can also be shown that Pyiipky1 > P,?ﬁlk 1, where P! J{‘f'k 1 18 the posterior covari-
ance if no false alarms had occurred. In general however, the relative size of the

posterior covariance can not be established, i.e., whether Piijpi1 S Pgﬁl 1

Proof. If there are only false alarms, the state estimates will take the same form as
Eq. 3.19. Moreover this also means that the residuals will take the same form as
Eq. 3.25 and thus the estimates will remain unbiased. In other words, because the
true errors were also detected, they can not have any impact on the state estimates
in the form of a bias.

To simplify the covariance portion of the proof, e, and e} false alarms will be
handled separately. If supp(é7',) D supp(e}’,,), the information matrix without false

alarms and the [;-norm filter information matrix will take the following forms:

AT i1 = My + Ho RV H, + HI RV H,
A§:+1|k+1 = Ak+1|k + H’Z,—’R'lleu

Taking the difference of the two shows that

nfa l —
Ak—{l|k+1 - Ak1+1|k+1 = HZRC 'H.>0 (3.26)
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Which implies that AZﬁm o > A?ﬂ‘k ., Which in turn implies that P _{‘ll’k g <
P

ket 1|k+1°
If supp(€}) D supp(e}), the information matrix without false alarms and the

l;-norm filter information matrix will take the following forms:

Anfa As+HIR'H, Ay + HIR'H,
k+1lk+1 — _ _
| App + Hy R Hy  Ap+ HJR™'H,
Al At HIR'H; HIR'H,
k+1lk+1 — T 1 T H_1
HIR'H; HIR'H,

Taking the difference of the two shows that

nfa 1 0 Aﬁp
AN = Ak—{—llk+1 - A§c+1|k‘+1 = (3.27)
App Ay

The matrix in Eq. 3.27 is indefinite (unless Az, = A,; = 0, then it is positive semi-

definite) and thus it can not be established whether AZﬁlk 1 S A k1. Moreover
this implies that it can not be determined whether Pg‘f‘ 1 S P,ilﬂ‘ 1 O

Another interpretation of this theorem is that e}, | false alarms in the error detec-
tion step cause a loss of information, in an information theoretic sense. Since Eq. 3.26
shows that AA = AZ_{% kb1 —A? '\ 1jk41 1S positive definite, this demonstrates that, when
false alarms occur, the /;-norm filter loses some information about the states. Specif-
ically, the loss of information is given by HX R;'H,, the state information from the
measurements that the /;-norm filter determined were incorrect.

If there are missed error detections, the following theorem demonstrates that the

l;-norm filter estimates will be biased.

Theorem 7 (Missed Detection Case). If supp(€}) C supp(e}) or supp(é},,) C

supp(e,,), then R*H1lk+1

will be biased. When no outliers are detected (i.e. supp(&}) =
supp(€.,) = ), the bias will be equal to bX¥ | which is the bias of the Kalman filter

estimates.
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Proof. Let e) and €]} be the undetected state prediction and measurement outliers

respectively. Then the posterior state estimation error will be

(- KHﬁu)(i£+1|k +ep) + K(vi, +ef)

Xkt 1|k+1 = B . B - ~ (3.28)
— (Hp R 'Hypu)  Hy, R, N HpuXp p1jkr + Vi + €l
Taking the expected value of X 1541 shows that
. (I - KHy,)eh + Ke™
FE [Xk+1|k+1] = S R pup B » o #0
(HpuRu HPU) HpuRu (Hﬁu)(l - KHZ_?u)eﬁ + (I + HﬁuK)eu
(3.29)

thus the estimates are biased. If no outliers are detected, then
= <P - -1
Xk+1lk+1 = x?, Hpy = Hipa and K = Pk+l]ka+1 (Hk+1Pk+1]ng+1 + Rk—H) = Kkr

where Kk is the Kalman gain. Substituting these values into Eq. 3.29 shows that
the bias is:

b, = (I — KxrpHyi1)eh + Kxrep' (3.30)

When €} or €}, are non-zero the Kalman filter residuals are
Xxr = (I — KxrHp1) i1 + €4) + K p(Vier +€041) (3.31)
Taking the expected value of Eq. 3.31 shows that the Kalman filter bias is
bixr = (I — KxpHpi1)el + Kxrepy, = by (3.32)

This result indicates that in the worst case scenario for missed detections, the [;-norm

filter bias will be no worse than the Kalman filter bias. O

It should be noted that if missed detections occur the estimation bias can be
absorbed into the e} term and detected and corrected by the I;-norm filter at the

next measurement update. The state estimation error from Eq. 3.28 can be rewritten
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as

. (I — KHp)XP ., + Kvi (I — KHp,)eh + Ke™ .
Xk+1k+1 = . ’ ~_k+1|k . e p_L pm = XL k1T
—H,; (Hﬁuxk+1|k+1 + Vi) —H,, e,
(3.33)

At the next measurement update, the measurement residuals will be given by

ad _ oy p m

Yitz = Hevo (Fres1Resiperr + Wi + €0, 1) + Vi + €y
— snom Y4 m
= Hpyo (Fk+1xk+l|k+1 + by, + Wi + ek+1) + Vi + €5

= Hio (Fe1 XSl + Waan +8011) + Viga + €1 (3.34)

where €}, = e}, + b,. Note that the residuals in Eq. 3.34 are in the same form as
Eq. 3.4 and that the residual covariance will be given by Hji 9Py o1 H r 4o+ Bryo.
Given these facts, this means that the sum of the bias and €}, 41 can be detected with
the constrained l;-norm optimization in Steps 1 and 2 of Algorithm 1.

These results also indicate that it is preferable to set the x? threshold 7 to a smaller
value (i.e. choosing a value that corresponds to a 95% confidence interval rather than
a 99% confidence interval) because it will increase the probability of detecting €} and
ey, thus reducing the likelihood of biasing the state estimates. The only potential
downside of setting the threshold this way is that more false alarms will occur and
therefore the covariance may be larger than necessary (by Theorem 6). The Monte
Carlo results in the next section demonstrate that even when missed detections and
false alarms occur, the [;-norm filter still provides superior estimation performance

over state-of-art robust filtering algorithms.

3.2 Extended /;-norm filter for Nonlinear Systems

The l;-norm filter can also be extended and applied to nonlinear systems. Since a
significant portion of the extended [;-norm filter derivation mirrors the derivation of

the [;-norm filter only the major differences will be highlighted in this section.
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3.2.1 System Models

As with the [;-norm filter, it will be assumed that the state dynamics and mea-
surements are corrupted by both additive white Gaussian noise and additive sparse

errors:

Xe1 = [ (Xp) + Wi + € (3.35)

Yitr = b (Xp41) + Ve + €54 (3.36)

where f (x;) is the nonlinear state propagation function and h (Xx) is the nonlinear
function mapping the states to the measurements, wy and v, are the process and

measurement noise, respectively, and ei and ey’ 1 represent the sparse errors.

3.2.2 Error Detection

A linear approximation of the measurement residuals can be expressed in terms of the
sparse errors, €, and e}, ;, and the a priori state estimate. Using the Taylor expan-
sions of the state propagation and measurement functions, the a priori measurement

residuals at time k£ + 1 can be approximated to first-order as:

Vit = Yra1 — h(f (Ree))

~ Hjq (f (Xk) + wg + eﬁ — )A(k.;,.llk) + Vi1 + e}?ﬂ (3.37)
~ Hyp (Fkikﬂc —+ Wi + GZ) + Vig1 + eZﬁH (338)
where Fj, = 2| and Hy,, = 2% After rearranging t in Eq. 3.38
k ox 1 Xk|k k+1 Ox | Xktijk® glng erms 1n q .
€}
and defining ey, = and gy = Hiyq (Fk}”(k}k + wk) + Vg1, the linearized
€r

residuals can be related to the error terms by

Fior ® [Hepr 1] enen + gy (3.39)
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Next, the optimization to detect the sparse errors can be expressed as

min  {[&a ), (3.40)
€k+1

subject to yILTly <7

As with Eq. 3.7, the optimization in Eq. 3.40 can be recast as a second-order cone
program for which a number of efficient algorithms have been developed [91, 94-96].

Although the /;-minimization step tends to return a sparse estimate of the errors,
the estimate often has small spurious non-zero components that are a result of mea-
surement noise. In order to ensure that the error estimates are sufficiently sparse,
the solution returned by the l;-minimization is thresholded based on the expected
noise level. Any elements of the [;-optimal error estimates that are smaller than the
expected noise level (as determined by a x2-test) are set to zero. This step ensures
that only errors that are inconsistent with the Gaussian process and measurement

noise are considered in the state update portion of the algorithm.

3.2.3 State and Error Estimation

In lieu of an information filter update, the extended /;-norm filter uses an extended
information filter update to estimate the sparse errors and states.

The a priori measurement residuals in Eq. 3.37 will be used to derive the extended
information filter update for the state and error estimates. First, define the augmented
state vector zx,; as

Xk+1
Zpi1 = | )™ (3.41)

m,nz

€11
where X1 = f(Xx) + Wi and the superscript nz denotes only the non-zero com-
ponents (as determined by the [;-norm minimization) of the respective errors. After

moving Hy1Xg41)x to the left hand side of Eq. 3.37 and substituting in the definition
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of Zg41,

Vi1 + HepXppie = (Hesr Hp Inm) Zkin + Vi

= H11Zk41 + Vg1 (3.42)

where H, is equal to the columns of Hy,, corresponding to the non-zero terms in
&% and I, is equal to the columns of the identity matrix corresponding to non-zero
entries in €}, .

The prior estimate of Xi11)x can be expressed as

X1k = f (Ruge)

and the associated covariance is Px = Fj, Py F) T+ Q. Since the prior estimates of

the errors are assumed to be uninformative, the information matrix Z,x will be

P71 oo
Akpip=1]10 0 O (3.43)
0 00

with the information state, &k+1|k given by Eq. 3.9. After calculating the information

matrix and state, they can be updated as follows [86]

disppest = disap + B Rt e (3.44)
Apsrjprr = Mg + FI131+1R1:.;{1HI¢+1 (3.45)

where
Vi+1 = Y1 + Hep1 X p1e (3.46)

After updating Elk+1|k+1 and Agyik+1, the covariance P,f+1|k +1 and state estimate
Zr+1)k+1 can be calculated from Eqs. 3.8 and 3.9, respectively.

After calculating Zj1jx41, the posterior state estimate, Xy k41, corrected for the
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Algorithm 2 Extended /;-norm Filter
Require: Xpx, Pyrs Y1
1. Solve /; minimization problem in Eq. 3.40 for &,
2. Apply x*-test to determine non-zero components of &,
3. Form information state (dy41x) and matrix (Agi1px) for augmented state vector

2k+1|k .
4. Update dk+1|k7 Ak+1|k with Eqs. 3.44-3.45
5. Calculate Plj+1|k+1’ Zk41/k+1 With Eqs. 3.8-3.9

6. Calculate Xyq1jk+1, Pit1jet1 using Eqgs. 3.47-3.48
return X k41, Prgajes1

non-Gaussian errors, is

~ _ a3 AD
Xt 1)k+1 = Xep1je+1 T g (3.47)
with covariance
_ pX e?
Pyrik+1 = Perapesr + Peyijesr T Pre + FPez (3.48)
% ; : 2 eP . . ~p
where P} k1 1S the covariance of Xpyijkt1, Pf k1 1S the covariance of €Lkt and

p

Kkt 1> all of which can

P;. and F,; are the cross covariance matrices of Xy 141 and &

be obtained from P,j+1|k+1:

3
k+1]k+1 Pz

2z _ oP
Peogenn = | Pa Pllipn

3.2.4 Summary and Algorithm Description

The extended [/;-norm filter algorithm is shown in Algorithm 2.

It should also be noted that, as with the EKF, the theoretical guarantees for
the extended {1-norm filter are not as strong. For instance, it can not be guaranteed
that the state estimates will be unbiased because of the impact of linearization errors.
However, the vision-aided navigation experimental results in this chapter demonstrate
that the extended /;-norm filter can provide superior state estimation performance

relative to other state-of-the-art robust filtering algorithms.
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3.3 Monte Carlo Simulation Results

A simulated target tracking scenario is used in this section to evaluate the perfor-
mance of the /;-norm filter in the presence of unmodeled measurement and state pre-
diction errors. Monte Carlo trials were run for three different cases: scenarios with
measurement errors only, scenarios with state prediction errors and finally scenarios
with simultaneous measurement and state prediction errors. Several other filtering
algorithms were also evaluated in order to demonstrate the improved performance
of the l[;-norm filter, especially in cases where both unmodeled state prediction and

measurement errors occur.

3.3.1 Simulation Setup

The Monte Carlo trials simulate a 2D single target tracking scenario with position
and velocity measurements. The estimated states were the target position and veloc-
ity. Four independent sets of position and velocity measurements of the target were
simulated with an update rate of 1 Hz. The target dynamics were simulated using
a constant velocity model [69] and the total length of each Monte Carlo trial was 30

seconds. The nominal process and measurement noise covariances were

(At1/4 0 AB/2 0

0 At'/4 0 A2
At3/2 0 At? 0

0 A#/2 0 At?

L -

=0.1m/s

0_2

. 2
position ~— 1 m, o

velocity

where At = 1s is the propagation time between sets of measurements.

Measurement errors were simulated by sampling the measurement noise for the
position (velocity) measurements from a Gaussian distribution with a mean of 30
meters (1 meters/sec.) instead of the nominal zero mean distribution. State predic-

tion errors were induced by sampling the process noise from a Gaussian distribution
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with a larger covariance (Q = 10 - (x) than the nominal process noise model while
generating the target trajectory. For the simulations with both state prediction and
measurement outliers, the number of measurement outliers at any time step was cho-
sen to ensure that the error sparsity requirements for the /;-norm filter were met (i.e.
the dimension of the non-zero state prediction and measurement errors were less than
or equal to the number of measurements).

For each set of Monte Carlo trials, the performance of the l;-norm filter (L1KF)
was compared against the Kalman Filter (KF), unscented Kalman filter (UKF) [97],
a robust statistics based Kalman filter (RKF) [24, 27], and a variational Bayes robust
filter (VBAKF) [55]. The x? threshold parameter 7 for the l;-norm filter was set
to 15.5073, which corresponds to a 95% confidence interval for the x? test. The
robust cost function for the RKF was chosen so that it was equivalent to a KF that
discards measurements with residuals that fail a y?-test. The threshold for the RKF
x2-test was set to match the x? thresholds used in the /;-norm filter so that if only
measurement, errors are present the RKF and [;-norm filter will identify the same set

of corrupted measurements.

3.3.2 Measurement Error Only Results

The first set of simulations focused on assessing the performance of the /;-norm filter
when errors were present in the measurements only. The percentage of measurements
that were corrupted with the off-nominal noise was varied from 0 to 100% in incre-
ments of 10%. For each percentage level, 100 Monte Carlo trials were performed with
the corrupted measurements chosen uniformly at random.

The average position error as a function of the percentage of corrupted measure-
ments is shown in Figure 3-1. Error bars were left off of the UKF and KF results
to preserve the clarity of the plot. As the number of measurement outliers increases,
the performance of the non-robust filters (KF and UKF) degrades significantly. In
contrast, the robust approaches are able to maintain reasonable average positioning
errors even as all of the measurements are corrupted with errors. Additionally, these

plots empirically verify that the /;-norm filter and the RKF performance are similar
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Figure 3-1: Average position error vs. fraction of corrupted measurements

when only measurement outliers are present.

Finally, the average probability of detection (py) and probability of false alarm
(psa) for €}, ; were 0.9996 and 0.0 respectively. The average py, for €] was 0.008 and
the majority of the false alarms can be attributed to correcting biases introduced by

missed ekm+1 detections.

3.3.3 Process Error Only Results

The next set of simulations focused on assessing the performance of the [;-norm
filter when errors were present in the state predictions only. The percentage of state
updates that were corrupted with the off nominal noise was varied from 0 to 100% in
increments of 10%. For each percentage level, 100 Monte Carlo trials were performed
with the corrupted state updates chosen uniformly at random.

The average position error as a function of the percentage of process errors is
shown in Figure 3-2. Error bars were left off of the RKF and VBAKF results to

preserve the clarity of the plot. The [,-norm filter results and KF results are nearly
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identical in this case and correspond to the line at the bottom of the plot. In contrast
to the measurement error only results, the KF and UKF outperform all of the robust
filters (with the exception of the l;-norm filter) even when only a small fraction of
the state updates are corrupted with additional noise. In this case, the error models
for the RKF and VBAKF are not adequate to compensate for the additional noise
because neither algorithm accounts for additional errors in the process model beyond
the nominal process noise. The [;-norm filter explicitly models for both process and
measurement errors and thus is able to correct for the additional process noise when
it is present.

For this example, p; and pg, for e} were 0.12 and 0.0 respectively. There were
no ey, ; false alarms. The low py values can in part be attributed to the distribution
chosen for €%, which was zero-mean but had a larger covariance than the nominal
process noise. At least some of the samples drawn from that distribution would be
consistent with the nominal process noise and thus difficult to detect. These results
indicate that correcting for the largest state prediction errors (i.e. the ones most
likely to be detected) provides a significant performance gain. In addition, these
results indicate that when there are missed detections in the /;-norm filter they often
correspond to errors that are small relative to the measurement and process noise

and thus will have limited impact on the state estimates.

3.3.4 Combined Measurement and Process Error Results

The final set of simulations focused on assessing the performance of the {;-norm filter
when errors were present in both the state predictions and measurements. In this
case, the percentage of state updates that were subject to the off nominal noise and
the percentage of measurement errors were varied together (i.e. 10% of measurements
were corrupted and 10% of state updates were corrupted for the same set of Monte
Carlo trials). For each percentage level, 100 Monte Carlo trials were performed with
the corrupted mcasurement and state updates chosen uniformly at random. The

simulations were only run up to 80% error corruption because after that the error

sparsity assumption could not be satisfied.
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The average position error as a function of the percentage of process errors is
shown in Figure 3-3. This set of trials represents a worst case scenario that only
the [;-norm filter can handle. The KF and UKF estimates are not robust to the
measurement errors and thus have large state estimation errors while the RKF and
VBAKF can not correctly compensate for the process errors. Only the /;-norm filter
is able to correctly compensate for both the state prediction and measurement errors
when they occur simultaneously and is able to maintain reasonable performance even
when the majority of the state predictions and measurements are incorrect.

For this example, pg and py, for e}, ; were 0.9996 and 0.0 respectively. pg and pg,
for e}, were 0.15 and 0.005 respectively. As with the measurement error only case, the
majority of the e} false alarms can be attributed to correcting biases introduced by
missed e}, | detections.

Overall these Monte Carlo simulations show that the /;-norm filter can provide
robust state estimates over a broader range of conditions than other robust filtering al-
gorithms. In situations where only measurement errors are present, the {;-norm filter
can match the performance of state-of-the-art robust filtering algorithms. For situa-
tions with state prediction outliers the /;-norm filter can provide superior performance
to other robust filtering approaches because it explicitly models state predictions er-

rors while the other algorithms do not.

3.4 Vision-Aided Navigation Experimental Results

This section presents experimental results demonstrating the performance of the ex-
tended /;-norm filter applied to vision-aided navigation in an urban area. In the data
collected, GPS measurements were corrupted intermittently with multipath, while
the state predictions were corrupted by drift from visual odometry measurements.
Three other filtering approaches (the EKF, and two robust filtering techniques) are
compared to the performance of the [;-norm filter. This experiment demonstrates
that the /;-norm filter is able to outperform the other algorithms because it can com-

pensate for both the GPS measurement errors and the accumulated state prediction
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errors from the visual odometry measurements.

3.4.1 Vision-aided Navigation Background

Vision-aided navigation focuses on how to fuse visual information captured from a
camera with other sensors to localize a vehicle in a global coordinate system.

In recent years, vision-aided navigation has been demonstrated on a number of
platforms. Often these systems fuse visual odometry with other sensors (IMU, GPS,
LiDAR) to generate a global state estimate. Visual odometry has several error sources
that can impact the accuracy of these state estimates. Most notably, a bias is in-
troduced by long range features in stereo visual odometry [98, 99]. Scale factor and
misalignment errors in the visual odometry data can also occur and cause the navi-
gation solution to drift over time [15].

Although recursive filtering approaches to vision-aided navigation have been de-
veloped [100], many current approaches use optimization-based pose graph estimation
techniques to generate the navigation solutions [98, 101]. Recent research has shown
that optimization based approaches to vision-aided navigation can outperform recur-
sive filtering algorithms for a number of applications [102]. One reason that pose
graph optimization tends to perform better than filtering is that previous poses can
be updated each time the optimization is solved, thus allowing errors in previous
pose estimates to be corrected, leading to a more accurate positioning solution at the
current time. In contrast, filtering algorithms can not retroactively change previous
state estimates in an efficient way because the estimates are marginalized out at each
measurement update. Thus, any state estimation errors made earlier in the filter will
propagate forward to future state estimates.

The l;-norm filter tackles this problem by detecting situations when the current
state estimate is inconsistent with the current set of measurements. After detecting
these situations, the filter adjusts the state estimates to account for the impact of
state estimation error that has been propagated to the current time step. In this way,
the [;-norm filter can adjust its state estimates when drift errors accumulate without

having to resolve for any of its previous estimates.
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3.4.2 Vision-aided Navigation with the [;-norm Filter

There were several challenges associated with using both vision and GPS measure-
ments in the /;-norm filter. First, the GPS and visual odometry data were not being
generated at the same rate (10 Hz for the vision vs. 1 Hz for the GPS). In practice,
large errors in the visual odometry are not observable unless there is additional in-
formation from another measurement such as GPS. Thus, the majority of the visual
odometry measurements could not be checked for errors directly by the [;-norm filter.
Additionally, it was found that the errors in the visual odometry data were often
below the detection threshold of the [;-norm filter for any given measurement even
when GPS measurements were available. Fortunately, it was determined that the
cumulative effects of the visual odometry errors (over several sets of measurements)
were large enough and could be detected by the [;-norm filter as state propagation

errors, €}, when GPS measurements were available.

3.4.3 Experimental Setup

The data used for this experiment was collected while driving along roads in the
Boston area. Environments driven through varied between dense urban canyons and
areas of good GPS coverage along the Charles River. The total time for the ex-
periment took approximately 25 minutes from start to finish and the total distance
covered was 7.32 km. Vehicle speeds varied between 0 and 72 km/h. The estimated
states were the car’s position and velocity in Earth-Centered Earth-Fixed coordinates.

The sensors used for the experiment were a dashboard-mounted stereo vision cam-
era (Point Grey BumbleBee2 with a resolution of 512 x 384 and 43° field of view)
and a consumer grade GPS receiver (uBlox EVK-6T). Visual odometry measure-
ments (measuring the change in position of the car between camera frames) and GPS
pseudoranges were processed in the navigation filter. Visual odometry measurements
were provided at 10 Hz while the GPS receiver reported pseudoranges at 1 Hz when
they were available. More details about the system used for the experimental data

collection can be found in {103]. A high accuracy GPS positioning solution that was
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generated by the receiver was used as ground-truth for the experiment.

The pseudoranges and state predictions were compared against the truth data to
verify that the error sparsity assumptions were satisfied. These comparisons indicate
that, during the experiment, at most 2 pseudorange measurements were corrupted
with multipath at each time step and that, when multipath errors occurred, there
were at least 6 total pseudorange measurements available. When large state pre-
diction errors occurred (i.e., €® # 0), at least 6 pseudorange measurements were
available. Additionally, the results showed that simultaneous state prediction and
multipath errors never occurred. Therefore, during the experiment, the error spar-
sity requirements of the [;-norm filter were satisfied because the number of available
measurements was always larger than the number of non-zero entries of the sparse

eIrors.

3.4.4 Experimental Results

The experimental data was processed using the /;-norm filter as well as three other
algorithms to compare the performance of each in an urban navigation scenario. The
visual odometry measurements were modeled using the stochastic cloning technique
proposed by Roumeliotis et al. [104]. The vehicle dynamics were modeled using a
constant velocity model [69].

The three other algorithms were an EKF, a VB robust filter called the outlier
robust Kalman filter (ORKF) [56, 57], and an EKF that uses robust statistics to
reduce the impact of measurement outliers. In the experimental results, the last filter
will be referred to as the robust Kalman filter (RKF) and is similar to algorithms
presented by Masreliez and Martin [24] and Schick and Mitter [27]. Since the EKF
is not a robust estimator and the experimental dataset contains both GPS multipath
errors and visual odometry drift and bias errors, the robust filtering algorithms should
produce better results than the EKF.

A comparison of the positioning error of the navigation solutions for the four
algorithms is shown in Figure 3-4. The RKF solution has a number of instances

where the positioning error exceeds all of the other algorithms by a significant amount.
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Figure 3-4: Positioning error vs. time for each of the filtering algorithms

These large errors are primarily caused by the fact that the RKF can not distinguish
between a priori state estimation errors (in this case caused by errors accumulated
from the visual odometry measurements) and GPS measurement errors. For instance,
the large deviation from truth shown in Figure 3-5 is the result of accumulated visual
odometry errors that occurred, when the vehicle turned at the intersection. In this
case, the turning motion of the car induced errors in the visual odometry solution
because most of the features that were being tracked left the field of view of the
camera. The GPS measurement residuals became large and as a result, the RKF
significantly downweighted GPS measurements that could have been used to correct
for the accumulated visual odometry errors in the state estimates. In the case shown in
Figure 3-5, the ORKF also takes more time than the EKF and /;-norm filter to recover
from the visual odometry errors because it can not differentiate between the state
propagation errors and GPS measurement errors and also ends up downweighting
GPS measurements that could help the filter converge to the correct solution.

In contrast, the [;-norm filter was able to determine that the large measurement
residuals were the results of a priori state errors instead of GPS measurement errors

and as a result, was able to use the GPS measurements to recover from the visual
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Figure 3-5: Impact of visual odometry errors on the RKF (shown in red) and ORKF
(shown in magenta) solutions. In this case, the turning motion of the car at the inter-
section induced errors in the visual odometry solution because most of the features
that were being tracked left the field of view of the camera. The EKF and [/;-norm
filter solutions are shown in blue and green respectively. GPS truth in this figure is
shown in orange.

Table 3.1: Comparison of Positioning Error Results

Algorithm Mean Error (m) | ¢ Error (m) | Max Error (m) | Error Relative to EKF (m)
EKF 15.10 10.16 70.45 0.0
RKF [24, 27] 15.53 9.66 61.47 0.43
ORKF [56, 57] 12.38 7.51 53.10 2.72
[;-norm Filter 12.00 6.87 39.76 -3.10

odometry errors. The EKF was not significantly affected in these situations because
even though visual odometry errors have accumulated in the state estimates, process-
ing the GPS measurements quickly corrects for the impact of the error because the
measurement residuals are so large.

Upon examining the EKF results, there are several large positioning errors around
11 minutes into the experiment. These are the result of multipath errors in the GPS
pseudorange measurements caused by a large building (see Figure 3-6 for a more
detailed view). In this case, all of the robust filters were able to detect and eliminate
the impact of the multipath on the navigation solution as expected.

Summary statistics for all of the algorithms are shown in Table 3.1. Based on

this dataset, the [;-norm filter is able to provide the best solution out of the four
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Figure 3-6: Impact of multipath on the EKF navigation solution (shown in blue).
The multipath errors are caused by reflections off of the tall buildings near the road.
The ORKF (shown in magenta), RKF (shown in red) and {;-norm filter (shown in
green) were able to detect and compensate for the impact of the multipath in this
case.

algorithms. It is able to provide accurate state estimates when the GPS measurements
are corrupted with multipath and avoids incorrectly ignoring GPS as the ORKF and
RKF do when significant visual odometry errors accumulate. Additionally, the {;-
norm filter has the ability to perform state estimation reliably when both of these
situations occur simultaneously, which none of the other algorithms can guarantee.
The absolute position errors shown in Table 3.1 are larger than one might expect
from a navigation solution based in part on GPS data. In this experiment, additional
corrections for errors in the pseudoranges due to ionospheric effects (i.e. corrections
generated by the Wide-Area Augmentation System (WAAS)) were unavailable and
as a result the pseudoranges were biased. Although errors due to ionospheric delays
could have been corrected using WAAS data, localized errors in the pseudoranges
such as GPS multipath could not have been compensated for and would still have
been present. Additionally, the WAAS corrections would not have had an impact
on the visual odometry errors that occurred. Thus, while using WAAS corrections
would have reduced the absolute error for all of the algorithms, the reductions in error

relative to the EKF (the final column of Table 3.1) would still have occurred because
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they are related to the compensation of multipath and visual odometry errors that

the WAAS corrections could not fix.

3.5 Summary

This chapter presented a recursive state estimation algorithm, the /;-norm filter, that
is robust to both unmodeled state prediction and measurement errors. The [;-norm
filter detects the presence of unmodeled errors using a convex optimization. Given
that information, the filter can then adjust the a priori state estimates and measure-
ments accordingly to compensate for the errors. The algorithm is also computation-
ally efficient as it combines a convex optimization with standard recursive filtering
steps.

A simulated target tracking scenario was used to evaluate the performance of
the [;-norm filter and compare it to existing state of the art robust state estimation
algorithms. The [;-norm filter was also evaluated on a dataset consisting of visual
odometry and GPS data collected in urban areas around Boston. In both cases, the [;-
norm filter was able to outperform state-of-the-art robust state estimation algorithms,
because it could compensate for both state prediction and measurement outliers that

occurred in the data.
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Chapter 4

Robust SLAM via Information

Matrix Estimation

One of the major challenges associated with SLAM systems arises because the Gaus-
sian assumption is often a poor approximation of the actual measurement noise. For
instance, loop closure measurements can be generated incorrectly because of visual
aliasing which can lead to measurement residuals that are much larger than the ex-
pected Gaussian noise. Additionally, the measurement noise statistics could be a
function of time or location of the robot (i.e. due to multipath effects for sonar or
radar) which is difficult to capture with a single Gaussian model. If the measurement
noise is assumed to be a fixed Gaussian and these types of errors occur, the SLAM
solution can dramatically degrade [20, 61]. In the case of incorrect loop closures, even
a single instance can lead to divergence in the estimates of the robot poses [61]. A
comparison of the impact of incorrect loop closures on a SLAM algorithm and the
algorithm proposed in this chapter, Information Matrix SLAM (IM-SLAM), is shown
in Figure 4-1.

The major contribution of this chapter is a SLAM algorithm that retains the effi-
ciency of nonlinear least-squares SLAM algorithms while compensating for incorrect
loop closure measurements. An additional set of variables, corresponding to the infor-
mation matrix (equivalent to the inverse of the measurement noise covariance matrix)

of the loop closure measurements,; are introduced to the SLAM inference problem and
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(a) SLAM (b) IM-SLAM

Figure 4-1: Comparison solutions for the Sphere2500 dataset [105] with 500 incorrect
loop closures. Non-robust SLAM algorithms (left) are unable to reject the false loop
closures and the map quality suffers as a result. The method proposed in this chapter,
IM-SLAM, can accurately reject false loop closures and produces the correct solution
(right). Truth is shown in gray in both plots.

estimated along with the robot poses. An expectation-maximization (EM) procedure
is used to iteratively estimate the robot poses and the information matrices. By
estimating and adapting the information matrices, the impact of incorrect measure-
ments on the pose estimates is significantly reduced. Additionally, the EM procedure
only involves a closed form update rule for the information matrices and a standard
nonlinear least-squares update step for the pose estimates. In practice, this leads
to a computationally efficient SLAM algorithm that is significantly more robust to

measurement errors than traditional SLAM techniques.

4.1 IM-SLAM

A major component of IM-SLAM is an augmented SLAM factor graph (see Figure 4-
2) with an additional set of latent variables (A). The extra latent variables, A;,
correspond to the information matrices (or equivalently the inverse noise covariance
matrices) of each of the loop closure measurements in the factor graph. By inferring
these variables, incorrect loop closure measurements can be accounted for in the
SLAM solution by increasing their corresponding covariances. In effect, by adapting

the covariances the weight of those measurements will be reduced in the SLAM cost
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Figure 4-2: Augmented SLAM factor graph model used for IM-SLAM

function.

As with the SLAM problem, it will be assumed that the conditional probability
of a loop closure measurement given the poses (x) and its information matrix (A;) is
Gaussian:

p(y;-|x,Aj) . %We—%(yfi—hg{X)}TAj(ﬁ—hj(XJ) (4.1)

4]
It will also be assumed that each loop closure measurement has a nominal covariance
matrix, X7 that is known a priori. Given these assumptions, the posterior distri-
bution of the poses can be solved for by marginalizing over the joint posterior of the

loop closure information matrices and the poses

plxly) o« [[ pv2l) ] p(y![x, A)p(A)dA (4.2)

i=1

The objective of the modified SLAM problem is to solve for the ML estimate of x

given Eq. 4.2:
FSLAM _ gromax / [[pe100p(y![x, A)p(A)dA (4.3)
X A =1

Unfortunately, this calculation is computationally intractable in general, so an alter-

native approximate approach must be used to ensure that an efficient estimate for
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%SLAM can be found.

One method for approximately solving this type of estimation problem is to apply
the classification expectation maximization (EM) algorithm [51, 106, 107] to itera-
tively solve for the best estimates of both A and x. Each iteration of the algorithm
involves updating the current estimates of the poses and the information matrix pa-

rameters (%% and A¥) as follows:

AR — argmax p(A|XF, y°, y')
A
= argmax p(A|%*, y') (4.4)
A
%41 = argmax log p(x|A* y°, y!) (4.5)

Equations 4.4 and 4.5 are referred to as the E-step and the M-step, respectively.
These two update steps are repeated until the pose estimates have converged. This

optimization can also be interpreted as a form of block-wise coordinate descent.

4.1.1 E-Step Derivation

In order to derive the E-Step, the cost function in Eq. 4.4 must be investigated in

more detail. The probability distribution in the E-step can be rewritten as

p(Al)"ck,yl) — p(yllA,f(k)p(A) (46)

Then the optimization in the E-step can be expressed as

ok oy PyHA R )p(A)
mﬁxxp(AIX ay ) - m/ex p(yl|5~(k)

= maxlog p(y'|A, X*) + logp(A)

l1sk
= maxlog qu(yjlx ,A;) +logp(A)
J€

= n{gnglogp(yélik, A;) +logp(A)
NS
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1 r 1 -
= max o ; —r; Ajr; — §log |Aj | + logp(A)
J

= min % Z r Ajr; + % log |A;'| — log p(A)
j€s
where r; =y’ — h;(%*) are the residuals for the jth loop closure measurement.
At this point, the prior distribution for the information matrix parameters, p(A),
still needs to be selected in order to have an explicit update formula. For IM-SLAM,
the prior was chosen such that each A; is independent of all other A;, when ¢ # 7,

and that each information matrix is Wishart distributed:
v—ny—1 _
p(Ay) o JA;] T2 en i (V) (4.7)

where n, is the dimension of A;, and v and V' are the parameters of the Wishart
prior specified so that v > n, and V is a n, X n, symmetric positive definite ma-
trix. The notation ¢r (-) denotes the matrix trace. The Wishart prior is often used in
information matrix estimation problems because it is the conjugate prior for a Gaus-
sian distribution with an unknown information matrix and with the proper choice of
hyperparameters is the least informative prior as well [108]. Additionally, using the
Wishart prior produces an E-step cost function that is convex with respect to A.

After substituting Eq. 4.7 into Eq. 4.6 the E-step optimization can be expressed
as

A 1y _
mimxp(A|xk, y) = min Zr?./\jrj — (v — ny) log(|As]) + tr (VT'A)
j=1

Since the optimization problem is a sum of independent terms, each A; can be solved
for individually. Moreover, the optimization function is convex in each A; so the

optimal solution can be found by solving for the values of A; such that

I A = = m)TogA]) + 17 (V724,)) =0 (45)

91



Note that the derivatives of the terms in Eq. 4.8 can be calculated as:

orTA;r
3/\; S=rr
Dlog(lA) _ ,
oA, J
ot (VIA)
an,

After substituting in the derivative values and solving Eq. 4.8 the information matrix

update formula for the E-step is
, _ -1
A;?“ = (v —n,) (V Ly rjr;‘»r) (4.9)

This update rule is intuitive in the sense that as the residuals become larger for
a given loop closure measurement the corresponding information matrix terms will
decrease meaning that the loop closure will have less weight in the SLAM solution.
Moreover if the modeled noise covariance was overly optimistic (i.e. smaller than the
true covariance) for a given measurement, the residuals should reflect that and as a
result cause an adjustment to the information matrix. Thus, by adapting the informa-
tion matrix parameters using the update rule in Eq. 4.9 both incorrect loop closures
(which should have large residuals associated with them) as well as measurements
with incorrect noise covariances can be accounted for. Moreover, the following theo-
rem proves that as ||r;|] — oo the contribution of the measurement y; to the SLAM
cost function (rJTAf“rj) will converge to a constant and thus the measurement will

have a small effect on the solution.

Theorem 8. In the limit as ||r;|| — oo, r]TAé?"“rj converges to a constant.

Proof. Without loss of generality, let r; = ad where @ > 0 and ||d|| = 1. Then

AR = () — ) (V7! 4 a2dd")

=V - Vd(% +d'vd)~ld"V (4.10)
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where the second equality follows from the matrix inversion lemma.

Using Eq. 4.10, the product of Af“ and r; is given by:
1
A;?“rj = (v —mny)aVd - an(E +d’vd)~'d"vd

Note that taking the limit as ||r;|| — oo is equivalent to taking the limit as o = oo

thus

lim r] A¥'r; = lim (v —ny) [ o’d"Vd - anTVd(% + dTVd)_ldTVd)

a—00 J

T
= hm (l/ b ny) OészVd (1 - T%:_d‘{Tilﬁ))

(
( 1

= lim (v —n,) (a2dTVd (}Z_ﬁﬁ/_d))
(

dTvd 0‘—2
14 a2d?Vvd

= lim (v —ny)

which is a constant and concludes the proof. O

This result demonstrates that IM-SLAM improves the breakdown point of the
SLAM optimization. Recall that the breakdown point of an estimator is the fraction
of measurements that can be arbitrarily large while the estimates remain bounded.
In addition, recall that least-squares estimators and by extension SLAM optimizers
have a breakdown point of 0, meaning that even a single unbounded measurement
can cause the estimator to return an arbitrarily large estimate. Theorem 8 shows
that IM-SLAM has a breakdown point higher than zero because for an unbounded
measurement, the cost and thus the estimate will remain finite. This also indicates
that the E-step in IM-SLAM could alternatively be interpreted as a robust kernel
function similar to the Huber and Cauchy kernels in robust statistics. Plotting the
attenuation factor for IM-SLAM (shown in Figure 4-3) shows that IM-SLAM is similar
to the Cauchy and Huber kernels because it reduces the weights of measurements

relative to the least squares weights as the residuals increase. Next, we will see that
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Figure 4-3: Attenuation factor for IM-SLAM. This plot demonstrates that as the
residual errors (§) increase, the ratio of the IM-SLAM cost to the least-squares cost
decreases significantly. Thus, if the measurement is corrupted with outliers, the IM-
SLAM kernel reduces the impact of the outliers on the solution.

an advantage IM-SLAM has over those kernel functions is the intuitive way that the
hyperparameters v and V' can be selected.

The update rule for A;-‘“ also gives some insight into how to choose the parame-
ters v and V' of the Wishart distribution. Typically, each measurement should have
a nominal covariance, ¥yom ;, associated with it that represents the best a priori es-
timate of the noise covariance. If ¥, ; is chosen optimistically (i.e. it represents

the best case noise covariance) then reasonable choices for the hyperparameters are,

—1

nom.j- Given these choices for the parameters, the largest value

v=ny+l,andV =%
that A?“ can take is £ the best case information matrix, while as the residuals

nom,j?

grow larger, A?"’i will decrease as desired.

4.1.2 M-Step Derivation

For the M-step the development of the update formula is straight-forward. In this
case, the solution of the optimization problem in Eq. 4.5 is equivalent to a nonlinear
least-squares problem with the weighting matrix given by the block diagonal matrix
Whtl = diag(A°, A¥+1) where A? is a block diagonal matrix composed of the odome-
try measurement information matrices and A*+1 g a block diagonal matrix composed

of the estimate loop closure information matrices, A;c*l, from the E-step. Thus, the
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M-step can be carried out by solving the SLAM optimization problem with the loop
closure information matrices given by A¥+1,

In practice, solving the nonlinear least-squares problem at each iteration of the
EM algorithm significantly increases the computation time and can cause the EM
algorithm to get stuck in poor local optima of Eq. 4.3. A better approach is to apply
a single nonlinear least-squares update of the poses at each iteration. Thus, the M-
step can be carried out by applying the nonlinear least-squares update in Eq. 2.34 to

the poses with W#+! substituted for W:
gL = gk (JTWEH )T TRy (4.11)

This type of incremental update is commonly used in implementations of the EM
algorithm to avoid convergence to poor local optima and to improve runtime effi-

ciency [109].

4.1.3 Algorithm Summary

In summary, the IM-SLAM starts with an initial guess for the poses, X°, and then
proceeds to iteratively apply updates to the poses and the information matrices using
Eq. 4.9 and Eq. 4.11 until the pose estimates converge. Since the information matrix
and pose updates correspond to the EM algorithm, this procedure is guaranteed to
converge to a local optimum of the cost function in Eq. 4.3 [106]. The next section
will show that in practice this algorithm provides good performance even with large
numbers of incorrect loop closure measurements. Moreover, because the information
matrix updates can be calculated in closed form, the difference in computation time
between the robust SLAM algorithm and a traditional SLAM algorithm is relatively

small. The full algorithm description is shown in Algorithm 3.

4.1.4 Convergence Analysis

For iterative algorithms such as IM-SLAM, one major question is whether the iter-

ations will converge to a fixed point. The following theorem proves that indeed the
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Algorithm 3 IM-SLAM

Require: Initial pose estimate X°, measurements y

k=0

while not converged do
// Expectation Step
for j =1ton; do

Compute A¥*" using Eq. 4.9

end for
// Maximization Step
Compute £**! using Eq. 4.11
k=k+1

end while

return XSLAM — gk+1

IM-SLAM iterations will converge.

Theorem 9. Assume that x € X and A € S where X and S are compact sets. Then

the following statements are true
1. logp(x*¥+1, A**y) is monotonically non-decreasing with k
2. log p(x**1, Ak*1|y) converges to a local mazimum as k — oo

Proof. To begin, note that

logp(x, Aly) = log p(x|A, y) + log p(Aly) (4.12)

= log p(Alx,y) + log p(x]y) (4.13)

The E-step in Algorithm 3 solves the optimization

1 AlRF
max ogp(AIX",y)

and therefore

log p(A**[x*, y) > log p(A*|x*, y)

Moreover, using Equation 4.13 shows that

log p(x*, A |y) = log p(AFH|x*, y) + log p(x*]y)
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> log p(A*[x*, y) + log p(x*|y) = log p(x", A"y)
The M-step in Algorithm 3 solves the optimization
k+1
max log p(x|A™"", y)

and therefore

log p(x* 1AM y) > log p(x*|A* ! y)

Moreover, using Equation 4.12 shows that

log p(x**1, A" y) = log p(x* A1, y) + log p(A*]y)
> log p(x*|A¥, y) + log p(A*]y)

= log p(x*, A**!|y) > log p(x*, A¥|y)

Therefore log p(x**+1, AF+1|y) > log p(x*, A¥|y) which implies that log p(x*+1, A¥+1]y)
is monotonically non-decreasing with k.

Because both x and A belong to compact sets and the cost function is non-
decreasing with increasing k, this implies that log p(x**!, A¥*1|y) converges to a local

maximum as k — oo. O

4.1.5 Practical Implementation Details

While IM-SLAM is guaranteed to converge, sometimes it converges relatively slowly.
To address this issue in practice, an additional test can be applied before each E-step
to detect and discard likely incorrect loop closure measurements. Let rj; be the ith
component of the loop closure residual vector r; and o2, ;; be the it" component of
the diagonal of ¥, j, then the following comparison is applied to each loop closure

measurement

S — <n? Vi (4.14)
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where 1 > 0, is a user-specified threshold. If the test fails for any component ¢, then
the loop closure information matrix is set to zero.

This test is based on the fact that the E-step update provides an empirical estimate
of the measurement covariance. Since the inverse of the information matrix is the

covariance matrix, the empirical covariance estimate generated by the E-step is:

14 p.pT
_ V7 +ryr;

2k+1= Ak+1 -1
()t =

(4.15)

Ifv=n,+1,and V =%, then the i diagonal element of X**+! can be written

as

o = o2 2 (4.16)

nom.ji T Tji

Incorrect loop closure measurements will typically have large residuals, thus o7 for an

2

incorrect loop closure should be significantly larger than o, ..

One way to quantify

this change is to consider the ratio of 7 and 02, ;;:

2 2
0; T
3 =1 -+
o o2
nom,ji nom,ji

Note that the main driver of the ratio between the expected covariance and the
2
empirical covariance will be the ratio %

nom,ji

Intuitively, the test in Eq. 4.14 is evaluating how unlikely the residuals are given

the nominal covariance. For instance, a three standard deviation residual (i.e. 3 =

902 ) would occur less than 0.3% of the time assuming that the measurement

2

noise was Gaussian with covariance a;,,,, ;.

Thus, selecting a value of 1 corresponds

to selecting a minimum probability that the residuals were generated from a correct

2
nom,ji*

The modified version of IM-SLAM is shown in Algorithm 4. Unlike the initial

loop closurc with measurement covariance o

version of IM-SLAM, Algorithm 4 is not guaranteed to converge, however in practice
the algorithm converged and often did so much faster than the basic version of IM-
SLAM. In addition, IM-SLAM with thresholding’s sensitivity to the parameter n

(evaluated in Section 4.2) is small and there is a large basin of convergence with
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Algorithm 4 IM-SLAM with Thresholding

Require: Initial pose estimate %°, measurements y, nominal covariance matrices
¥mom threshold parameter n
k=0
while not converged do
// Expectation Step
for j =1 ton;do
if (3| 75/0%m i > n°) then
A?“ = 0 // Likely an incorrect loop closure
else
Compute A5*! using Eq. 4.9
end if
end for
// Maximization Step

Compute %**1 using Eq. 4.11
k=k+1

end while

return x5LAM — gk+1

respect to 7 across all of the datasets that were evaluated.

4.2 Algorithm Evaluation

In order to evaluate IM-SLAM several sets of evaluations were performed. The run-
time and accuracy performance of IM-SLAM were compared to a non-robust SLAM
algorithm (g%0 [11]) as well as several state-of-the-art robust SLAM algorithms (RRR
[22, 64, 65], max-mixtures [61] and DCS [60]). Additionally, the sensitivity of the
proposed algorithm to the incorrect loop closure detection threshold was evaluated.
All of the algorithms were implemented using the g?o software package [11] to ensure

that there was a consistent baseline for comparing runtime and accuracy performance.

4.2.1 Datasets and Evaluation Set-Up

Several simulated benchmark SLAM datasets were used for the algorithm evaluations
and are listed in Table 4.1. Since the simulated datasets considered do not contain

incorrect loop closures, additional incorrect loop closures were added to the datasets
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Table 4.1: Simulated SLAM Datasets Used For Evaluation

Dataset Nodes | Edges | Max. Incorrect Loop Closures
Manhattan3500 [11, 105] | 3500 | 5598 500
Intel [111] 943 1776 500
City10000 [9] 10000 | 20687 500
Sphere2500 [9] 2500 | 4949 500

artificially. Additional outliers were generated using the random, local, grouped and
local grouped approaches proposed in [110]. The random outlier generation strategy
chooses two poses uniformly at random and generates a false loop closure measure-
ment between them. Local outliers produce loop closure measurements between nodes
that are in close proximity to each other in the graph. The grouped outlier strategy
creates clusters of mutually consistent false loop closures. The local grouped strategy
combines the local and grouped outlier generation approaches. The number of out-
liers added to each dataset was varied between 100 and 500 in 100 outlier increments.
30 Monte Carlo trials were performed for each dataset, number of outliers and outlier
selection strategy for a total of 600 trials for each dataset.

Along with the simulated data, IM-SLAM and the other algorithms were evalu-
ated using the experimentally collected Bicocca dataset [2, 3]. The Bicocca dataset
used stereo cameras for loop closure detection and laser scan matching to calculate
odometry measurements. There were numerous opportunities for visual aliasing to
occur in the dataset as a number of the hallways were visually similar (see Figure
4-4).

The metrics of performance used for the evaluations were root mean-squared po-
sition error (RMSE) of the poses and runtime. RMSE was calculated by aligning the
SLAM solution with truth and calculating the position error for each node in the
graph.

Four different robust SLAM algorithms were compared: DCS [60], max-mixtures
[61], RRR [64, 65], and IM-SLAM. All of the algorithms were implemented using the
g2o0 package [11]. The robust kernel implementation of DCS that is included with g2o

was used for all evaluations. The nominal value of ® = 1 was used for all of the DCS
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Figure 4-4: Many of the hallways in the Bicocca dataset look similar and cause visual
aliasing errors (2, 3]

evaluations except for the Bicocca dataset where ® = 5 as specified by the authors
in their original evaluation [60]. An open source version of max-mixtures was used
for the experiments [112]. Two mixture components were used for max-mixtures.
The first mixture corresponds to a nominal measurement and had a weight equal
to 1. The second mixture corresponds to an outlier and had a weight equal to 0.01
with an information matrix equal to the nominal information matrix scaled by 107°.
Finally, the parameter n = 3 for IM-SLAM on all of the simulated datasets. Since the
measurement noise was not well characterized for the Bicocca dataset, the original

version of IM-SLAM without thresholding (Algorithm 3) was applied instead.

4.2.2 Simulation Results

Representative results for the non-robust SLAM solver and IM-SLAM for each sim-
ulated dataset are shown in Figure 4-5. Clearly, even for a large number of loop
closures IM-SLAM is able to converge to the correct solution and reject the false
loop closures. In addition the average runtime per iteration results in Table 4.2 show
that IM-SLAM is able to achieve robustness for virtually the same computational

cost as a non-robust SLAM algorithm. This also shows that the information matrix
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Figure 4-5: Representative results for a non-robust SLAM algorithm and IM-SLAM
on the simulated datasets with 500 false loop closures.

Table 4.2: Average Runtime per Iteration

Dataset SLAM | IM-SLAM
Manhattan3500 | 0.019 s 0.021 s
Intel 0.012s 0.012s

Cityl0000 | 0.165s | 0.165 s
Sphere2500 | 0.685 s | 0.688 s

update incurs relatively little computational cost relative to the cost of the nonlinear
least-squares update for each iteration of IM-SLAM.

Table 4.3 shows the average root mean squared error (RMSE) for each of the robust
algorithms on the simulated datasets. In addition, Table 4.4 average runtimes for
each algorithm, respectively. For all of the datasets, the non-robust SLAM algorithm
failed to converge so its average runtime results are not shown. The robust SLAM
algorithms, with the exception of RRR, achieve comparable error performance. In
addition, IM-SLAM was the best performing algorithm on all of the datasets except
for Sphere2500. But even for the sphere dataset, IM-SLAM’s error performance was

comparable to the best performing algorithm.
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Table 4.3: Mean RMSE Results for Simulated Datasets

Dataset DCS [60] | Max-Mixtures [61] | RRR [64] | IM-SLAM
Manhattan3500 0.80 0.81 b2l 0.80
Intel 0.006 0.001 0.716 0.001
City10000 1.00 1.08 2.75 1.00
Sphere2500 0.34 0.33 27.97 0.35

Table 4.4: Average Runtime

Best results shown in green. Bolded results indicate IM-SLAM results that are com-
parable to the best performing algorithm.

Dataset DCS [60] | Max-Mixtures [61] | RRR [64] | IM-SLAM
Manhattan3500 0.38 s 0.28 s 3.16 s 0.25s
Intel 0.14 s 0.05 s 0.36s 0.29s
City10000 3.80 s 4.23 s 101.19s 3.76 s
Sphere2500 14.85 s 14.48 s 214.54s 14.66 s

Best results shown in green. Bolded results indicate IM-SLAM results that are com-
parable to the best performing algorithm.

These experiments have shown that IM-SLAM can match the performance of
existing robust SLAM approaches in both runtime performance and accuracy of the
solution. In addition, the new algorithm has nearly the same run-time per iteration
as a non-robust SLAM algorithm and thus can provide significantly more robust

solutions for virtually the same computational cost.

4.2.3 Parameter Sensitivity

Another series of Monte Carlo trials was conducted to evaluate the IM-SLAM'’s sensi-
tivity to the threshold parameter 7. The threshold parameter was varied between 0.1
and 10 and 30 Monte Carlo trials were run for each parameter value. These tests were
run on the Manhattan3500, City10000 and Sphere2500 datasets with 500 incorrect
loop closures added.

Figure 4-6 shows the average MSE for the simulated datasets as a function of
the threshold parameter n. For all of the datasets the performance suffers for small

values of 1 (i.e. 7 < 1). In those cases, the incorrect loop closure detection is correctly
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Figure 4-6: Plots of the average MSE for the Manhattan3500, Cityl0000, and
Sphere2500 datasets as a function of the threshold parameter 5. These results show
that IM-SLAM’s performance is stable and insensitive to the value of n over a large
range of values.

discarding the incorrect loop closures but also ignoring a large number of correct loop
closures. In the limit as  — 0, all of the loop closure measurements would be
ignored and the final solution would be based only on the odometry solution which
would contain a substantial amount of drift and cause the MSE to increase as a result.
Once 7 is greater than 3 all of the datasets converge to the correct solution and as
a result the MSE is relatively low. Moreover, even as the threshold is increased to
much larger values, the solution still converges. This result shows that there is a wide
basin of convergence for the parameter 7 and that in practice values of n € [3 5] will

provide robust solutions for a wide range of problems.

4.2.4 Experimental Results (Bicocca Dataset)

To evaluate the impact of false loop closures in real datasets, the algorithms were
also evaluated on the 41 processed Bicocca data files that were released with the
RRR package [113]. Each file was generated from the original Bicocca data, using a
different loop closure detection threshold «. The threshold a was varied between 0
and 1, and the number of false loop closure detections increased as the threshold was
decreased. Figures 4-7-4-9 show the solutions for each algorithm for several different
values of a.

Figure 4-10 shows the error performance of each algorithm on the Bicocca dataset

as funcion of the threshold parameter a. There are several key takeaways from these
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Figure 4-7: Robust SLAM solutions for the Bicocca dataset with a = 1.0. Truth is
shown in gray.
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Figure 4-8: Robust SLAM solutions for the Bicocca dataset with o = 0.5. Truth is
shown in gray.
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Figure 4-9: Robust SLAM solutions for the Bicocca dataset with a = 0. Truth is
shown in gray.

results. First, IM-SLAM and RRR are the best performing algorithms and have
virtually identical performance for each threshold level. It should be noted that while
IM-SLAM and RRR have comparable performance for the Bicocca dataset, IM-SLAM
significantly outperformed RRR on the Monte Carlo trials in Section 4.2.2. Second,
as the loop closure detection threshold decreases, the RMSE decreases as well for IM-
SLAM. This might at first seem like a counterintuitive result because as the threshold
decreases more false loop closures are detected. But, as the threshold decreases more
correct loop closures that can reduce the RMSE are also detected, meaning that if a
robust SLAM algorithm can filter out the incorrect loop closures, it can produce a

more accurate solution! This result shows that by using a robust SLAM algorithm the
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Figure 4-10: Comparison of RMSE for Bicocca dataset as a function of the loop
closure detection threshold a. (b) shows the same plot with the non-robust SLAM
algorithm removed.

loop closure detection threshold can be set less conservatively because the impact of
false loop closures can be mitigated and because the solution can actually be improved

by the additional correct loop closures that are detected.

4.3 Summary

One of the major challenges associated with SLAM systems arises because the Gaus-
sian assumption is often a poor approximation of the actual measurement noise. For
instance, loop closure measurements can be generated incorrectly because of visual
aliasing which can lead to measurement residuals that are much larger than the ex-
pected Gaussian noise. Additionally, the measurement noise statistics could be a
function of time or location of the robot (i.e. due to multipath effects for sonar or
radar) which is difficult to capture with a single Gaussian model. If the measurement
noise is assumed to be a fixed Gaussian and these types of errors occur, the SLAM
solution can dramatically degrade [20, 61]. In the case of incorrect loop closures, even
a single instance can lead to divergence in the estimates of the robot poses [61].
This chapter presented a novel robust SLAM algorithm, IM-SLAM, that retains
the efficiency of nonlinear least-squares SLAM algorithms while compensating for

both incorrect loop closure measurements and measurements with noise covariances
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that do not match the modeled noise. An additional set of variables, corresponding
to the information matrices of each measurement, are introduced to the SLAM infer-
ence problem and estimated along with the robot poses. An EM procedure is used
to iteratively estimate the robot poses and the information matrices. By estimating
the information matrices, the impact of incorrect measurements and noise covariances
on the pose estimates is significantly reduced. Additionally, the EM procedure only
involves a closed form update rule for the noise parameters and a standard nonlinear
least-squares update step for the pose estimates. In practice, this leads to a compu-
tationally efficient SLAM algorithm that is significantly more robust to measurement
errors than traditional SLAM techniques.

Monte Carlo simulations and experimental results demonstrated that IM-SLAM
provides significantly more accurate estimates than non-robust SLAM solvers when
incorrect loop closures are present and can match the performance of state-of-the-
art robust SLAM algorithms. Moreover, the computation time for IM-SLAM is on
par with non-robust SLAM techniques because the update rule for the information
matrix parameters can be calculated in closed form. In addition, IM-SLAM was
shown to match the error and run-time performance of alternative state-of-the-art
robust SLAM techniques. Finally, a sensitivity study demonstrated that IM-SLAM
has a wide basin of convergence with respect to its tuning parameter and moreover

the tuning parameter can easily be specified in terms of the measurement covariances.
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Chapter 5

Robust Incremental SLAM with
Consistency Checking

5.1 Introduction

While several robust SLAM algorithms have been proposed in the literature [20, 60—
64, 66], most have focused on robustness to loop closure outliers rather than the
problem of landmark measurement outliers. Previously [60], it has been demonstrated
that robust SLAM algorithms can fail when applied to problems with landmark mea-
surement outliers (see Figure 5-1). This failure occurs because most current robust
algorithms only focus on ensuring local map consistency by evaluating whether each
measurement, independent of the others, is an outlier. Ideally, a robust SLAM algo-
rithm should verify that the map is both locally and globally consistent.

In addition, most robust SLAM algorithms are designed for batch processing
rather than incremental (online) processing (with the notable exceptions of max-
mixtures [21] and iRRR [65]). Online SLAM is a case where robust algorithms are
needed most because a robotic system applying online SLAM will typically use the
mapping solution for planning and control. Given an inconsistent map corrupted by
measurement outliers the planning and control systems will likely provide suboptimal
results because the estimates do not reflect the true structure of the environment.

The contributions of this chapter are (1) a new formulation of the robust SLAM
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Figure 5-1: Typical optimization results for CityTrees10000 (top row) and Victoria
Park (bottom row) with 1000 incorrect landmark measurements. Root mean-squared
error values for each solution are shown below each figure. Both max-mixtures and
dynamic covariance scaling fail to correctly identify the incorrect measurements and
the SLAM solution suffers as a result. New ISCC method can correctly detect the
incorrect measurements and provides substantially better results. Truth in each figure
is shown in gray.

problem and (2) a novel incremental SLAM algorithm called incremental SLAM with
consistency-checking (ISCC) that approximately solves the robust SLAM problem.
ISCC solves the robust SLAM problem by removing as few measurements as possible
from the SLAM solution to make it locally and globally consistent. We demonstrate
in the chapter that ISCC significantly outperforms existing robust SLAM algorithms
when landmark measurement outliers occur and can match the performance of state-
of-the-art algorithms when loop closure errors occur.

The outline of the rest of the chapter is as follows. Section 5.2 presents the new
formulation of the robust SLAM problem. Section 5.3 develops ISCC. Section 5.4
presents simulated and experimental results that compares the performance of I[SCC
to state-of-the-art robust SLAM algorithms. Finally, Section 5.6 provides a brief

summary.
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5.2 Robust SLAM Problem Formulation

There are two primary criteria for robust SLAM:
1. Generate a solution that is consistent both locally and globally,
2. Generate a solution that is as accurate as possible.

In this context, consistent means that the solution generated by the SLAM algorithm
agrees with the measurements used in the solution. Consistency is defined more
formally in the next section.

The approach taken in this chapter is to decide which measurements should be in-
cluded in the factor graph and then solve the SLAM problem on that graph. However,
it should be noted that the two criteria do not necessarily align. For instance, a con-
sistent solution could be generated by only processing the odometry measurements,
but it would not be metrically accurate due to the accumulation of odometry drift.
Therefore consistency is not sufficient to guarantee an accurate solution. To generate
the most accurate solution, ideally the SLAM solution would include as many of the
measurements as possible so long as the solution remained consistent.

The rest of this section defines a set of consistency tests and then poses the robust

SLAM problem based on the criteria described above.

5.2.1 Consistency Tests

If the factor graph were composed entirely of odometry measurements, a consistent
solution could be calculated by setting the pose estimates such that they satisfy the
odometry exactly. However, when landmark and loop closure measurements are added
to the graph, the SLAM solution will not be able to satisfy all of the measurements
exactly because of measurement noise. If all of the measurements are correct, the re-
sulting measurement residuals should still be small. But, if any of the measurements
are outliers, we would expect the measurement residuals to be larger because some
pose estimates will be set to values that are inconsistent with their respective con-

straints. Therefore, the sum of measurement residuals provides a tool for determining
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whether the graph is consistent.

A straight-forward means of testing whether the graph is globally consistent is to
apply a x? test to the weighted sum of measurement residuals. Given pose and land-
mark estimates, odometry, landmark and loop closure measurements, the weighted

sum of measurement residuals of the graph can be expressed as

Xo = Z Xg,i + Z X%,ij + Z X%C,ik (5.1)
i

yi;€L yifeLc

2,2 2 ;
where X3 ;, x1.; and X7c;, are given by

Xoi = (i B ¥P) ©xi1) " Ao((x: @ ¥7) © Xi41) (5.2)
X%,ij =((x; @ Yiljj) © 1j)TAL((Xi @ y:i[:j) S lj) (5.3)
X%C,ik =((x: @ YILE) © X/C)TALC((Xi S5 YILE) O Xp,) (5.4)

Ao, Ap and Apc are the information matrices of the odometry, landmark and loop
closure measurements respectively, and @ and © are standard pose composition op-
erators [72].! If the solution is consistent we would expect x2 to satisfy the following
inequality with probability p:

X& < X°(py dor) (5.5)

where x2(p, naos) 1s the inverse x-squared cdf with ng,; degrees of freedom evaluated
at p. By setting p to a value close to 1 (i.e. 0.95) we can verify that the graph is
consistent with high probability as long as it satisfies Eq. 5.5.

In addition to being globally consistent, ideally each measurement included in
the factor graph should be locally consistent with its associated pose and landmark
estimates. Thus, we also define local consistency tests for each landmark and loop

closure measurement

2 2 \S A (= 2\
XL,ij < x“(p, '”doj,L) V] {0.6)

Tn general, Eqs. 5.2 and 5.4 should also include a logarithmic map that maps the residuals in
SE(2) or SE(3) to their respective tangent spaces. For more details see [114, 115].
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X%C,ik < x*(p, Nios.Lc) Vk (5.7)

where ngof, 1, and nges 1 are the number degrees of freedom of the landmark and loop
closure measurements. If a graph satisfies Eqs. 5.5-5.7 then we declare the graph to

be consistent.

5.2.2 Robust SLAM Problem Formulation

With the consistency tests defined, the final step is to formulate a cost function for
robust SLAM. We make the standard assumptions that the measurement noise is
Gaussian and that the odometry measurements are not corrupted with outliers. We
also define a set of binary variables s} and sy that indicate whether the jth landmark
measurement and kth loop closure measurement are included (s} = 1,55 = 1) in
the graph. Given the intuition that a robust SLAM solution should include as many

measurements as possible while remaining consistent, we define the robust SLAM

problem as:
nL nLc
max Z SJL + Z skC (5.8)
e j=1 k=1

nrc

No nr,
5.t Z Xoit Z SJLX?J + Z sk Xica < X2 (P, Naoy)
=1 j=1 k=1

SJLX%,ij < X3 (p, nao,r) Vi
st X G o < XC(P, naog,Le) Yk

sk €{0,1} V5, s€e€{0,1} Vk

where 14,5 is the number of degrees of freedom in the factor graph. This cost func-
tion ensures that any solution will meet the criteria for a robust SLAM solution.
Maximizing the sum of the indicator variables encourages a solution that includes as
many measurements as possible, which will lead to an accurate solution, and the x?
constraints ensure that the solution will be consistent.

While the problem formulation in Eq. 5.8 meets the criteria for a robust SLAM
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cost function, it is not practical to optimize it directly. In particular, Eq. 5.8 is a
mixed integer nonlinear program and is NP-hard to solve [116]. The remainder of

this chapter proposes and evaluates an algorithm that approximately solves Eq. 5.8.

5.3 Robust Incremental SLAM with Consistency
Checking

This section proposes an incremental greedy solution to the robust SLAM problem in
5.8 called ISCC. By processing the data incrementally and verifying that the current
graph satisfies Eqs. 5.5-5.7 we ensure that a consistent graph is maintained through-
out the solution process. Additionally, as new measurements are added to the graph
they can be identified as outliers by evaluating whether the updated graph is in-
consistent or not. If the graph is inconsistent after adding a new measurement, a
greedy search is performed to find the minimum number of measurements that can
be removed from the graph in order to make the graph consistent again.
Pseudocode for ISCC is shown in Algorithm 5. Measurements are processed as
they are generated by the SLAM front-end. Odometry measurements are assumed
to be outlier free and are automatically added to the factor graph. Landmark and
loop closure measurement are added to graph and then the graph is checked for
consistency using Eqgs. 5.5-5.7. If the graph is found to be inconsistent, ISCC performs
a greedy search (lines 7-8 of Algorithm 5) that seeks to remove the fewest number of
measurements from the graph such that it becomes consistent. This process removes
outliers from the graph and ensures that the graph is always consistent after each
measurement is processed. The rest of this section describes in detail the greedy

search procedure for removing outliers from the graph.

5.3.1 Outlier Identification

If the graph becomes inconsistent after adding a new measurement, y;, there are two

possible explanations: 1) y; is an outlier or 2) a previously processed measurement
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Algorithm 5 ISCC

Require: Measurement queue Y
: Initial graph G = 0
: for (each y; € Y) do
Add y; to G and update
if (y; is not odometry) then
Check if (G is consistent using Eqs. 5.5-5.7
if (G is not consistent) then
Yot ¢ findCandidateOutliers(y;,G)
G « findConsistentMeasurementSet(y;, Yiest,G)
end if
end if
: end for
: return Optimized graph G

P

is an outlier and was erroneously accepted. To make the graph consistent, ISCC first
determines which previously accepted measurements are most likely to be outliers
(using Algorithm 6) and then removes as few measurements as possible from the
graph while ensuring that the resulting graph is consistent (using Algorithm 7).

ISCC applies two different strategies for determining which measurements are po-
tential outliers depending on the measurement type. If y; is a landmark measurement,
then logically the other measurements of that landmark are the most likely candi-
dates to be outliers. Therefore, if y; is a landmark measurement Algorithm 6 simply
returns the set of measurements of that landmark (Step 3).

In the case of loop closures, note that if the graph has become inconsistent after
adding y;, any loop closure measurements that are locally inconsistent (i.e. they
fail the test in Eq. 5.7) must contain information which is not consistent with y;.
This means that if y; is not an outlier, then at least one of the measurements that
failed the local consistency tests is an outlier. Using this information, if y; is a loop
closure measurement, Algorithm 6 returns the set of loop closures in the graph that

are locally inconsistent (Step 5).
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Algorithm 6 findCandidateOutliers

Require: current measurement y, factor graph G
1. if (y € L) then

2 7% < Index of landmark associated with y
3 )/test<_{yz{/j€L|j:j*}

4: else
5 C
6
7

i Yaew — {¥iX € LC | Xicu > X2 (0snaopL0) }
. end if
: return Set of potential outliers Y.

5.3.2 Greedy Outlier Removal

Given a set of candidate outliers Yies, the next step (Algorithm 7) is to determine
which measurements should be removed from the graph. Since ISCC is optimizing Eq.
5.8, it should remove as few measurements as possible to make the graph consistent.
Note that since the graph was consistent before adding y;, an admissible solution to
the outlier removal problem is to remove y;. However that solution may not be unique
because y; could, in fact, be correct, in which case there should be at least one other
measurement that could be removed from the graph to generate a consistent solution.
Therefore, in order to remove any potential outliers from the graph, ISCC tests each
measurement in Y.y to determine if any of them can be removed from the graph to
make it consistent (Steps 2-8 of Algorithm 7). If any potential outliers are found
in Yiess, ISCC removes them from the graph along with y; because there is no clear
way to decide which of the measurements are the outliers (Step 9 of Algorithm 7).
However, if no other measurements can be removed, only y; is removed from the
graph.

While it is difficult to establish exact complexity bounds for ISCC, we can at least
establish bounds on the total number of optimizations required for a given dataset.
If there are k& non-odometry edges in the current graph, the worst-case number of
optimizations for one iteration of ISCC is k+ 1. This case would occur if every single
loop closure measurement failed the local consistency test (or all of the landmark
measurements were associated with one landmark) and thus all had to be checked

by Algorithm 7. Following this logic, the maximum number of optimizations can be
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Algorithm 7 findConsistentMeasurementSet

Require: Current Measurement y, test set Y., factor graph G
outliers <y
: for (each y; € Yiess ) do
Remove y; from G, Update G
if (G is consistent) then
outliers < outliers Uy;
end if
Add y; to G
end for
: Remove outliers from G, Update G
return Updated factor graph G

© P DT

—
=4

upper bounded by 3"V i = (N? 4+ N)/2, where N is the number of loop closure and
landmark cdges in the graph. So the total number of optimizations is Q(N?). In
practice however, often only a few candidate outliers are found using Algorithm 6
and the actual number of optimizations required to run ISCC tends to be much
closer to N. The runtime performance of ISCC will be examined in more detail in

the experimental results.

5.4 Simulation Results

Simulated and real-world datasets were used to evaluate ISCC and compare it to
state-of-the-art robust SLAM algorithms. The evaluations focused on the accuracy
of the solutions, as well as, how accurately the robust SLAM methods identified

outliers in the datasets.

5.4.1 Datasets Used for Evaluation

Several standard benchmark SLAM datasets (Manhattan3500, Intel, City10000, Sphere2500,
CityTrees10000, Victoria Park, and Torus2000Points) were used for the algorithm
evaluations. Manhattan3500, Intel, City10000, and Sphere2500 contain loop clo-
sure measurements while CityTrees10000, Victoria Park and Torus2000Points con-

tain landmark measurements. Sphere2500, City10000, CityTrees10000, Victoria Park
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and Torus2000Points are available as part of the iSAM package [10]. The Manhat-
tan3500 and Intel datasets are available as part of the g2o distribution [117]. We
also compared the algorithms on the real-world Bicocca dataset using the processed
data files released with the RRR package [113]. Table 5.1 provides a summary of the

benchmark datasets used for the evaluations.

Table 5.1: Benchmark SLAM Datasets Used For Evaluation

Dataset Nodes | Edges | Measurement Type | Data Type
Manhattan3500 [11, 105] | 3500 | 5598 Loop Closures Simulated
Intel [111] 943 | 1776 Loop Closures Experimental
City10000 [9] 10000 | 20687 Loop Closures Simulated
Sphere2500 [9] 2500 | 4949 Loop Closures Simulated
Bicocca [113] 8358 | 8803 Loop Closures Experimental
CityTrees1000 [10] 10100 | 14442 Landmarks Simulated
Victoria Park [10] 7120 | 10608 Landmarks Experimental
Torus2000 [10] 1093 | 2034 Landmarks Simulated

5.4.2 FEvaluation Procedure

Since the simulated datasets do not contain incorrect measurements, additional out-
liers were added artificially. For the datasets containing loop closures, additional out-
liers were generated using the random, local, grouped and local grouped approaches
proposed in [110]. The random outlier generation strategy chooses two poses uni-
formly at random and generates a false loop closure measurement between them.
Local outliers produce loop closure measurements between nodes that are in close
proximity to each other in the graph. The grouped outlier strategy creates clusters
of mutually consistent false loop closures. The local grouped strategy combines the
local and grouped outlier generation approaches. Landmark measurement outliers
were generated by choosing landmarks and poses at random and generating measure-
ments between them as in the comparisons from [60]. The number of outliers added
to each dataset was varied between 200 and 1000 in 200 outlier increments. 30 Monte
Carlo trials were performed for each dataset, number of outliers and outlier selection

strategy for a total of 600 trials.
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The Bicocca dataset was collected experimentally and contains loop closures that
were generated by a visual bag-of-words based place recognition system. The false
loop closures in the dataset were caused by visual aliasing,.

Five different robust SLAM algorithms were compared: DCS [60], max-mixtures
[61], RRR [64, 65], Carlone et al.’s linear programming approach ({;-SLAM)[66], and
ISCC. All of the algorithms (with the exception of I;-SLAM) were implemented using
the g20 package [11]. The robust kernel implementation of DCS that is included with
g20 was used for all evaluations. The nominal value of ® = 1 was used for all of
the DCS evaluations except for the Bicocca dataset where ® = 5 as specified by the
authors in their original evaluation [60]. An open source version of max-mixtures
was used for the experiments [112]. Two mixture components were used for max-
mixtures. The first mixture corresponds to a nominal measurement and had a weight
equal to 1. The second mixture corresponds to an outlier and had a weight equal to
0.01 with an information matrix equal to the nominal information matrix scaled by
1075, Finally, the x2 probability threshold for ISCC was p = 0.95.

The metrics of performance used for the evaluations were root mean-squared posi-
tion error (RMSE) of the poses and precision and recall of the measurements. RMSE
was calculated by aligning the SLAM solution with truth and calculating the position
error for each node in the graph. Precision in this context measures the fraction of
measurements included in the final graph that were correct, while recall measures
the fraction of the total correct measurements that were included in the graph. Note
that an ideal robust SLAM algorithm would achieve precision and recall values of
1. Precision and recall could not be used to evaluate DCS because it does not make

binary decisions about whether each measurement in the graph is an outlier.

5.4.3 Landmark Dataset Results

Results for the landmark datasets are shown in Figures 5-2-5-4. Representative ex-
amples of typical results are also shown in Figure 5-1. Results for {;-SLAM and RRR
are not shown because they are not designed for landmark-based SLAM datasets

and could not be applied. Overall, ISCC significantly outperforms the other robust
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SLAM algorithms. ISCC achieved the lowest average RMSE performance across every
dataset by a significant margin. Moreover, in the case of the Torus2000 dataset, DCS
and max-mixtures diverged for nearly every Monte Carlo trial while ISCC consistently
converged to a good solution. These results indicate that searching for solutions that
are both globally and locally consistent leads to significantly more robust solutions
when landmark errors occur.

Figure 5-5 shows the precision and recall values for max-mixtures and ISCC ap-
plied to the Victoria Park dataset with 1000 incorrect landmark measurements. The
precision values indicate that most of the measurements included in the graph by
both algorithms are correct, but the recall values indicate that max-mixtures ignores
a significant fraction of the correct landmark measurements. Ignoring so many correct
measurements can cause the SLAM solution to be more heavily impacted by incorrect
measurements and allows for the local build-up of substantial odometry drift errors.
Also, note that the optimal solution to Eq. 5.8 should have precision and recall val-
ues of 1, so ISCC is near-optimal for most of the Victoria Park Monte Carlo trials.

Results for the CityTrees10000 dataset were similar and are shown in Figure 5-6.
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Figure 5-2: Comparison of Monte Carlo Results for the CityTrees10000 dataset.
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Figure 5-3: Comparison of Monte Carlo Results for the Victoria Park dataset.
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5.4.4 Runtime Performance of ISCC

Figure 5-7 shows the runtime performance of ISCC as a function of the number
of outliers. It does not make sense to make a direct runtime comparison between
ISCC and the other robust SLAM algorithms because the robust algorithms solve the
batch SLAM problem. Batch solvers will inherently have faster total runtimes because
they only need to solve a single SLAM problem instance, while incremental methods
must solve a SLAM problem at each iteration. Thus, instead of measuring total
runtime, average runtime per node is shown to provide insight into how much latency
would be required on average between measurements to allow ISCC to run online.
Unsurprisingly, the computation time increases as the number of outliers increases
because ISCC must perform more optimizations and more consistency checks in order
to remove the outliers. However, note that the average runtime per node is still small
for each dataset even when there are 1000 outliers in the data.
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Figure 5-7: Runtime performance for ISCC as a function of the number of outliers.

5.4.5 Loop Closure Dataset Results

Figures 5-8 and 5-9 show the error performance for ISCC as a function of the number
of outliers and the outlier generation strategy, respectively. Overall, ISCC is relatively
insensitive to both the number of outliers and the outlier generation strategy used
and consistently achieves accurate performance for each dataset.

Average RMSE and precision and recall results for each of the robust SLAM
algorithms on the loop closure datasets are shown in Tables 5.2 and 5.3. Results for

[;-SLAM were omitted for Sphere2500 because [;-SLAM can only be applied to 2D
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Figure 5-8: RMSE performance for ISCC on each simulated dataset as a function of
the number of outliers.

datasets. Additionally, while processing the City10000 dataset with [;-SLAM, the
computer ran out of memory and as a result a solution could not be generated.
There are several notable findings in the results. First, ISCC’s performance is com-
parable to the best results from the other robust SLAM algorithms on each dataset.
Moreover, ISCC significantly outperforms RRR on every dataset except for Bicocca
where the results are comparable. The low recall scores for RRR indicate that the
difference in RMSE performance between ISCC and RRR can be attributed to RRR
rejecting a larger number of correct loop closures. In effect, RRR is finding a consis-
tent solution that is not metrically accurate because it does not explicitly attempt to
maximize the number of measurements included in the factor graph. Overall, these
results demonstrate that ISCC’s outlier rejection strategy can provide comparable

performance to existing robust SLAM techniques when loop closure errors occur.
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Figure 5-9: RMSE performance for ISCC on each simulated dataset as a function of
the outlier generation strategy.

Table 5.2: Average RMSE Results for Loop Closure Datasets

Dataset DCS [60] | Max-Mixtures [61] | RRR [64] | {;-SLAM [66] | ISCC
Manhattan3500 | 0.80 0.81 6.21 1.70 0.85
Intel 0.006 0.001 0.716 0.010 0.009
Bicocca 1.83 4.17 1.59 1.73 1.56
City10000 1.00 1.08 2.75 N/A 1.00
Sphere2500 0.34 0.33 27.97 N/A 0.35

Best results shown in green. Bolded results indicate ISCC results that are comparable
to the best performing algorithm. Results for [;-SLAM were omitted for Sphere2500
because the algorithm can not be applied to 3D datasets. Results for [,-SLAM were
omitted for City10000 because the algorithm ran out of memory while attempting to
perform the optimization.
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Table 5.3: Average Precision/Recall Results for Loop Closure Datasets

Dataset Max-Mixtures [61) | RRR [64] | [;-SLAM [66] ISCC
Prec./Rec. Prec./Rec. | Prec./Rec. | Avg. Prec./Rec.
Manhattan3500 0.999/1.00 0.997/0.894 | 0.999/0.994 0.999/0.984
Intel 1.00/0.991 1.00/0.770 1.00/0.994 1.00/0.988
City10000 1.00/0.997 0.998/0.994 N/A 1.00/0.999
Sphere2500 0.958/1.00 1.00/0.505 N/A 1.00/0.993

Note: Results for {;-SLAM were omitted for Sphere2500 because the algorithm can not
be applied to 3D datasets. Results for I;-SLAM were omitted for City10000 because
the algorithm ran out of memory while attempting to perform the optimization.
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5.5 Experimental Results

To evaluate the algorithms in a more realistic scenario, two experimental datasets were
collected. The first dataset (ACL-landmarks) is a landmark-based SLAM dataset
that includes repeated landmarks which induce visual aliasing and data association
problems. The second dataset (ACL-loops) uses both landmarks and visual loop
closure detection to generate the SLAM solution, and contains a number of visual
aliasing events that cause false loop closure and landmark detections.

The ACL-landmarks dataset was collected using an Asus Xtion Live Pro RGB-D
camera mounted on a cart. Visual odometry measurements were calculated using
FOVIS [118]. Twenty-five unique AprilTags [119] were used as visual landmarks
in the dataset and detecting using the AprilTags C++ library [120]. In addition,
seven duplicate AprilTags were placed in the test area to generate incorrect landmark
measurements similar to ones caused by visual aliasing. Placing duplicate tags in the
dataset created a more realistic scenario than the Monte Carlo simulations because
incorrect landmark detections are clustered spatially rather than randomly distributed
throughout the dataset. Approximately 13% of the landmark measurements were
generated from the duplicate tags and acted as outliers. Truth was generated using
a Vicon motion capture system [121].

The ACL-loops dataset was collected in a laboratory and office space using a Mi-
crosoft Kinect RGB-D camera mounted on an Adept Pioneer 3DX robot. Odometry
measurements were generated from wheel odometry and IMU measurements. Loop
closure detections were generated using the DBoW2 library [17]. Finally, the land-
marks used in the dataset were chairs located in the test area. Several of the chairs are
identical and thus could produce incorrect data associations and landmark measure-
ments. AprilTags were placed on the chairs to simplify the detection of the objects,
however in practice it could be possible to detect the objects directly [122]. Truth
data was generated by removing the false loop closures and landmark detections from
the data and optimizing the cleaned data using g%o.

Results for the landmark experimental dataset are shown in Figure 5-10. As
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with the Monte Carlo trials, DCS and max-mixtures were unable to converge to the
correct solution. In contrast, ISCC was able to recover the correct solution with a

small amount of reconstruction error.

DCS Max-mixtures ISCC

RMSE=4.34m RMSE=9.96x10°m RMSE=0.54m

Figure 5-10: Experimental results for the ACL-landmarks dataset. Truth is shown in
gray in each figure. DCS fails to converge to the correct solution and max-mixtures
diverges. In contrast ISCC is able to accurately reconstruct the solution.

Figure 5-11 shows the DCS, ISCC and Max-mixtures solutions for the dataset
with both landmark and loop closure errors. There are several significant deviations
from the truth in both the DCS and Max-mixtures solutions. These deviations were
caused by visual aliasing between landmarks. In contrast, ISCC was able to generate
a solution with a small amount of reconstruction error and is not impacted by the

landmark aliasing.

DCS Max-mixtures ISCC

RMSE=1.1149m RMSE=1.5225m RMSE=0.5797Tm

Figure 5-11: Experimental results for the ACL-loops dataset. Truth is shown in gray
in each figure.
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5.6 Conclusions

This chapter demonstrated that state-of-the-art robust SLAM algorithms can not
provide robust solutions for datasets with incorrect landmark measurements. The
root cause of these issues is that current robust algorithms focus on ensuring that
the SLAM solution is locally consistent but do not require the solution to be globally
consistent.

To address this issue, we developed a new formulation of the robust SLAM problem
that requires both a globally and locally consistent solution. We also presented a novel
incremental SLAM algorithm, ISCC, that can provide robust solutions when errors
occur in landmark and loop closures measurements. Simulated and experimental
results demonstrated that the new algorithm provides significantly better solutions
than current robust SLAM algorithms when incorrect landmark measurements occur
and can match the error performance of state-of-the-art algorithms when loop closure

€errors occur.
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Chapter 6

Conclusion

This thesis has presented several novel algorithms for robust state estimation and
mapping. These algorithms have demonstrated that robustness can be achieved by
augmenting the state dynamics and measurement models with additional variables to
model the impact of outliers and uncertainty in the model parameters. In addition,
this thesis developed a formulation of the robust SLAM problem that has led to the
first robust SLAM algorithm that can be applied to datasets with either loop closure
or landmark data association errors.

Chapter 3 presented a novel filtering algorithm, the [;-norm filter, that is robust to
simultaneous outliers in both the state predictions and measurements. The key com-
ponent of the algorithm is an augmented state-space model that includes additional
variables to account for large deviations from the assumed system models. Given
estimates of the additional variables, which can be found using an efficient convex
optimization, their effect can easily be removed to provide robust state estimates.

Next, chapter 4 developed a robust SLAM algorithm, IM-SLAM, that estimates
both the measurement information matrices and the map estimates simultaneously.
By estimating the information matrices, not only can IM-SLAM provide robust esti-
mates, it can also adapt the measurement information matrices to better match the
true noise if the assumed noise models are incorrect.

Finally, Chapter 5 introduced a new formulation of the robust SLAM cost function

and developed an incremental robust SLAM algorithm, ISCC, to solve new problem.
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Simulated and experimental results demonstrated that ISCC can provide significantly
more robust solutions that existing robust SLAM algorithms when landmark errors

occur.

6.1 Future Work

There are still numerous interesting open problems to be addressed in robust naviga-
tion and mapping. This section provides a brief overview of some potential application

areas and extensions of the work presented in the thesis.

6.1.1 Parameter Estimation for SLAM with non-Gaussian

Noise Models

To date, most graph-based SLAM algorithms have exclusively considered Gaussian
measurement noise models. However, in real-world applications the noise may not
be well modeled by a Gaussian distribution and could be better represented using a,
different distribution. Recently, Rosen et al. have proposed an extension of standard
graph-based SLAM algorithms for non-Gaussian distributions [123]. One challenge
that could arise in these problems is parameter uncertainty in the non-Gaussian
noise models. Applying the extended factor graph model that underlies IM-SLAM
to these problems could provide a principled method of estimating the noise model
parameters along with the poses. Moreover, if the non-Gaussian distributions are in
the exponential family, selecting a conjugate prior factor for the parameters could

lead to an efficient EM solution similar to IM-SLAM.

6.1.2 Global Convergence Guarantees and Verification for

Robust SLAM

While a number of robust SLAM algorithms have been proposed, there is still a major
research question to be addressed: given the output of a robust SLAM algorithm how

can we verify that the solution is correct and optimal? Currently, this question can
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only be addressed empirically by evaluating the algorithms on simulated datasets or
datasets with known truth as was done in this thesis. But for datasets without truth
information, usually a human operator must inspect the resulting SLAM solution to
verify that it is correct. To fully enable autonomous SLAM systems, there must be a
way to automatically verify that a solution is correct without human intervention.
One potential approach to the verification problem is to apply duality theory from
nonlinear optimization [74, 124] to the robust SLAM cost function to calculate lower
bounds for the robust SLAM problem. The dual solutions could also be used to
calculate feasible solutions to calculate upper bounds on the global optimum of the
robust SLAM cost function. If a solution from a robust SLAM algorithm fell outside of
the bracket formed by the upper and lower bounds, it would indicate that the robust
SLAM algorithm had converged to a local optimum rather than the global optimum.
Duality theory has recently been applied to the 2D pose graph optimization, and it
has been shown that the upper and lower bounds can be computed efficiently[125].
Additionally, in many cases the bounds are tight meaning that the bounds coincide

with the global minimum of the problem.

6.1.3 Text-Spotting for SLAM

Recently researchers have considered how to use text in scenes as landmarks for the
SLAM problem [126]. Repeated text (i.e. from exit signs, stop signs, etc.) could
cause false positive data associations and ultimately lead to incorrect loop closure
and landmark measurements. ISCC could be applied to this problem directly and
could also be used as a means of determining when new landmarks that share text
with existing landmarks should be declared. In this way, ISCC could be used to
improve and augment the data association capabilities of a SLAM system that relies
on text-spotting, providing a feedback loop between the SLAM front-end detecting
the text and the SLAM back-end optimizing the solution.
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