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Abstract

Autonomously guided parafoil systems can deliver supplies and aid to remote, geo-

graphically diverse locations, while providing important safety and logistical advan-

tages over ground-based transportation methods. A key challenge facing modern
airborne delivery systems, such as parafoils, is the ability to accurately and consis-
tently deliver supplies into difficult, complex terrain. Parafoil guidance algorithms
must be able to generate feasible trajectory solutions to the target location within

highly constrained terrain environments and from a wide range of initial conditions.
Robustness is critical for successful payload delivery in the presence of uncertain
atmospheric wind disturbances.

This thesis presents two online trajectory planning algorithms for autonomous
parafoil guidance in complex terrain and wind environments. These -algorithms are

capable of operating from arbitrary initial conditions, including altitude, and are

robust to wind disturbances that may be highly dynamic throughout terminal de-

scent. The first algorithm, known as Analytic CC-RRT, builds upon the framework
of chance-constrained rapidly-exploring random trees (CC-RRT). This planner en-

ables fast incremental trajectory construction in cluttered, non-convex environments,
while using chance constraints to ensure probabilistic feasibility. The designed cost-

to-go function prioritizes target accuracy and upwind landings through the selection
of partial paths that intelligently consider current and reachable future states. A
trained multi-class wind uncertainty model is introduced to classify and anticipate

the effect of future wind disturbances online. Utilizing this model, robustness to wind
variations is achieved via a novel analytic uncertainty sampling technique, allowing
the probability of constraint violation to be efficiently evaluated against arbitrary and

aggressive terrain.
The second algorithm, known as CC-BLG, incorporates the Analytic CC-RRT

proactive wind model and uncertainty sampling technique into the optimized Band-
Limited Guidance (BLG) framework. Through the design of a novel risk-based ob-

jective function, CC-BLG trajectories efficiently balance the parafoil performance

metrics of landing accuracy and landing speed with the risk of off-nominal terrain
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collisions caused by future wind disturbances. Proposed extensions to the analytic

uncertainty sampling technique are shown to yield enhanced planning robustness by

refining the estimation of trajectory risk. Multi-phase CC-BLG path planning enables

initialization of parafoil terminal guidance from potentially high altitudes, while dis-

crete reachability set approximation is used to maintain robust obstacle avoidance

over disjoint planning horizons.
Extensive Monte Carlo simulation analysis demonstrates that the Analytic CC-

RRT and CC-BLG algorithms achieve significant improvements in mean and worst-

case landing accuracy within complex terrain scenarios relative to the state-of-the-art

Band-Limited Guidance (BLG) algorithm. Flight test experiments conducted with

a full-scale UltraFly parafoil system confirm that the more computationally efficient

CC-BLG algorithm is capable of robust parafoil guidance and precision landings sub-

ject to real-world testing conditions, hardware limitations, and challenging terrain

environments.

Thesis Supervisor: Jonathan P. How

Title: Richard C. Maclaurin Professor of Aeronautics and Astronautics

Thesis Supervisor: Louis S. Breger

Title: Member of the Technical Staff, Draper Laboratory
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Chapter 1

Introduction

Modern airborne delivery systems must be able to accurately and consistently deliver

supplies into difficult, complex terrain. For delivery systems such as parafoils, the ter-

minal guidance problem - guiding the parafoil from a potentially high initial altitude

to land precisely with a desired position and heading - presents significant techni-

cal challenges, particularly for large, heavy parafoils such as those considered in this

work. Parafoil dynamics are highly nonlinear and underactuated, with large turning

radii and severely limited or no vertical control, resulting in a descent rate which is

influenced primarily by atmospheric conditions and wind disturbances [1]. Parafoil

drop locations are often difficult to reach and may be surrounded by arbitrary, non-

convex terrain that can pose a significant problem for constraint satisfaction, even

if mapped in advance [2, 3]. Parafoils are also subject to uncertain and variable

wind environments, which, if uncompensated, can result in large deviations between

predicted and actual trajectories, and undesirable landing errors [4]. Finally, many

airborne delivery applications often have tight landing restrictions. Missing the target

location, even by a small distance, can lead to unintended collisions with natural or

man-made hazards, or even theft of cargo [5]. Precise delivery is essential in order to

avoid loss of supplies or unacceptably dangerous recovery efforts.

The parafoil was invented by Domina Jalbert and patented in 1966 as an inflat-

able, nonrigid canopy wing composed of several contiguous fabric cells [6]. Each cell

is shaped like an airfoil section, closed at the trailing edge and open at the leading
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Figure 1-1: Round unguided G-12 parachutes used for cargo delivery [7]

edge, such that inflation of the canopy is produced via incoming ram air pressure [8].

Since the late 1960s, autonomously guided parafoils have been considered a viable al-

ternative to round, unguided parachute systems, shown in Figure 1-1, which were first

introduced as a means of airborne cargo delivery during World War II [9]. Ram-air

parafoils offer several advantages over round parachutes for precision airdrop, where

perhaps the most important advantage is increased vehicle maneuverability [6, 9].

This is achieved via the parafoil control lines used to generate asynmetric deflec-

tion of the canopy trailing edge. In addition, parafoils are designed to fly at higher

airspeeds compared to conventional round canopies, allowing them to penetrate sig-

nificant atmospheric winds in order to reach the intended target location [10]. While

unguided airdrop systems have traditionally been constrained to low release altitudes

to maintain acceptable landing accuracy, parafoils can be released from much higher

altitudes and larger aircraft standoff distances with the potential for significantly

improved accuracy and precision [11]. This result is particularly beneficial for both

military resupply applications and airdrop scenarios involving challenging environ-

mental terrain, for which low release altitudes may be dangerous or inaccessible to

18



Figure 1-2: Autonomously guided UltraFly parafoil system (author photo)

cargo aircraft [2]. Although advancements in the calculation of the Computed Air

Release Point (CARP) have since enabled unguided/ballistic airdrop from altitudes

on the order of 18,000-25,000 feet, the average landing accuracy of these systems can

be more than 850 feet, and may not be acceptable for certain delivery situations [12].

Today, guided parafoil applications include disaster relief and humanitarian aid, sen-

sor delivery, battlefield support, resupply for remote, difficult to reach locations, and

spacecraft landing operations, among other uses [13].

Given the additional control authority of parafoil systems. significant research ef-

fort has been spent in the development of advanced guidance algorithms for precision

airdrop using onboard GPS receivers [14]. Two government funded programs spon-

sored by NASA and the U.S. Army began investigating guidance, navigation and

control (GN&C) architectures for parafoil systems in the 1990s [11, 15]. The applica-

tion of parafoils to military resupply helped to accelerate the design process, leading to

improvements in atmospheric wind prediction, high-fidelity parafoil simulation mod-

els, and extensive flight test experiments [10, 16, 17]. Many of these developments
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took place as part of a combined initiative between the U.S. Army and the Air Force

known as the Joint Precision Airdrop System (JPADS) [2, 18], along with predeces-

sor programs such as New World Vistas (NWV) and the Precision Guided Airdrop

System (PGAS) [16, 19]. The U.S. Army Natick Soldier Research, Development and

Engineering Center (NSRDEC) continues to oversee JPADS research to enhance the

capability of guided airdrop systems ranging from 10-42,000 pounds [20]. An exam-

ple of an autonomously guided UltraFly [21] parafoil is shown in Figure 1-2 from the

Ultra-Light Weight (JPADS-ULW) class of airdrop systems between 250-700 pounds.

The research conducted during these government programs has led to the de-

sign of a three phase flight profile for parafoil guidance that has since been adopted

throughout the airdrop community [22-24]. This profile consists of a homing phase

intended to steer the parafoil toward the target location, an energy management

phase designed to descend over the target region, and a terminal guidance phase for

performing the final approach maneuvers required for landing. Over the last decade,

work in the field of autonomous parafoil guidance has primarily focused on improved

strategies for the terminal phase, which is considered to be the most crucial for de-

termining final landing accuracy [22, 25]. This thesis presents the development of

robust. flexible planning algorithms for parafoil terminal guidance intended to extend

the performance envelope of current airdrop systems.

1.1 Literature Review

Research on terminal guidance for autonomous resupply can be largely subdivided

into two categories. The first category, glide-slope-based planning, utilizes the con-

cept of the glide-slope surface or cone: the set of all position and heading states which,

assuming constant velocity and disturbances, would guide the parafoil to the target

location. Calise and Preston [26] utilize a series of scripted maneuvers online to es-

timate glide-slope parameters, then execute turning maneuvers to drive the parafoil

to the glide-slope. This provides a useful approach trajectory, but the framework

heavily constrains the solution space and requires long-term glide-slope tracking be-
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ginning from a large initial distance. Additionally, the presence of terrain obstacles

is not considered during the path planning process. This makes the approach sensi-

tive to uncertainty in both the vehicle dynamics and environment, especially given

that the glide-slope surface shifts as a function of current wind conditions. Slegers

et al. [27] track the glide-slope using nonlinear model predictive control (MPC), im-

proving rejection of small-scale disturbances, but also requiring long-term glide-slope

tracking. Bergeron et al. [28] use feedback control, known as Glide-slope Surface

Guidance (GSG), to drive the approach to the goal based on the estimated glide-

slope and wind conditions. This minimizes the effect of coupled system uncertainity

and ensures a maximum heading deviation from the estimated wind direction. Re-

cent efforts by Ward and Costello [14, 29] have also demonstrated the potential for

improved glide-slope tracking through both online system identification, and by ex-

ploiting the longitudinal control coupling between incidence angle and symmetric

brake deflection. To summarize, while the above approaches [14, 27-29] take some

measures to account for the effect of wind uncertainty on the parafoil landing position,

they offer no robustness to interaction with terrain obstacles, and are subject to the

fundamental constraining of the solution space imposed by the glide-slope approach

paradigm.

Trajectory-based approaches, on the other hand, generate arbitrary reference tra-

jectories online to optimize a pre-specified cost function, utilizing various control

strategies to track these trajectories. Gimadieva [30] formulates parafoil terminal

guidance as an optimal control problem and establishes the necessary conditions for

optimality, but the resulting approach lacks the computational efficiency needed for

real-time implementation, thus making it unable to adjust for varying wind conditions

and model uncertainties during flight. Cleminson [31] introduces a Dynamic Pro-

gramming formulation for parafoil guidance by developing a lattice matrix of possible

position and heading states. Paths are designed recursively in 2D through a sequence

of state transitions between grid points using a finite set of available parafoil head-

ing commands. However, this formulation faces challenges in scalability due to the

multiplicative number of time steps, model dimensions, decision variables, and lattice
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points required for planning. The complexity associated with time-varying winds and

arbitrary 3-Dimensional terrain must also be addressed. As a result, this approach

cannot yet provide the computational efficiency required for online operation [31].

Rademacher et al. [13] presents a hybrid optimal control strategy involving both

modified Dubins and minimum-control-energy trajectories. Under the assumption

of deterministic wind, these planned trajectories are optimized to reach the target

location at the final time, and with the desired terminal heading, while a replanning

strategy is used to compensate for the effects of the wind uncertainty. Although this

approach is capable of operating online, terrain obstacles are not considered during the

trajectory optimization. For this reason, a feasible path to the target location cannot

be guaranteed without the addition of more complicated environmental constraints.

The Band-Limited Guidance (BLG) algorithm [32] uses direct optimization via

Nelder-Mead simplex search to minimize a cost function based on the predicted ter-

minal vehicle state. BLG guarantees that control bandwidth constraints are satisfied

to ensure accurate trajectory following, and its computational efficiency enables the

use of online replanning, making it effective for many nominal wind and terrain con-

ditions. However, BLG is limited in its starting altitude due to high dimensionality

and optimization scalability, thus constraining mission flexibility. BLG incorporates

no notion of wind variation in its planner, instead relying on reactive replanning

to address unexpected wind effects. Additionally, its direct optimization technique

does not consider the possibility of off-nominal, adverse terrain interactions caused

by changing wind conditions, particularly on complex terrain maps.

The Inverse Dynamics in the Virtual Domain (IDVD) algorithm developed by

Yakimenko and Slegers [4] utilizes inverse dynamics to connect the initial vehicle

state to the target terminal state, while guaranteeing the terminal conditions of the

nonlinear boundary value problem (BVP) are satisfied. While computationally effi-

cient, this approach cannot guarantee satisfaction of control bandwidth constraints,

requiring iteration in order to ensure the planned trajectory can be tracked by the

controller. This method also relies on rapid, reactive replanning to offset uncertain-

ties during execution, but assumes a constant wind during planning. Recent exten-
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sions to the IDVD algorithm [33] consider altitude-varying and/or higher-dimensional

wind profiles during terminal descent, accounting for both cross-track winds and up-

drafts/downdrafts. For each of these formulations, however, the BVP assumes a

known, deterministic wind profile and robustness to future wind variations is captured

only through replanning, rather than explicit modeling. Additionally, the effect of

terrain geometry is not considered during the design of feasible descent trajectories.

Subsequent work by Rogers and Slegers considers robustness to wind variations by

utilizing graphics processing units (GPUs) to parallelize a Monte Carlo simulation of

possible future winds, and the resulting parafoil trajectories, based on available mea-

surements [3, 34]. However, significant computational effort is required to run these

Monte Carlo simulations online, leading to issues of scalability for high-dimensional

systems [35, 36]. Within each set of simulations, the solution space is restricted to

a limited number of candidate solutions of the original BVP, where each candidate

assumes a constant-rate turn and terminal heading constraint, and is simulated over a

set of constant wind profiles. Based on these assumptions, online replanning is used to

correct for the effect of future wind disturbances. While such an approach effectively

incorporates the overall, trajectory-wide wind effect, each simulation assumes a de-

terministic wind. As a result, this method does not model the possibility of dynamic

wind changes during the planning process, potentially making it overly optimistic.

Although the work in [3, 34] considers the presence of environmental obstacles in the

vicinity of the target, terminal guidance is also assumed to begin in relative proximity

to the target location due to the selected parameterization of candidate trajectories

(i.e., using a single constant-rate turn and straight line segment). This approach

may therefore prove difficult to implement in constrained terrain geometries, such as

canyons and valleys, where robust planning and obstacle avoidance must begin from

high initial altitudes, and greater path flexibility is required.

Recent work by Fowler and Rogers considers the use of Bezier curves to perform

optimized path planning for a small parafoil in three-dimensional obstacle fields [37].

This method offers geometric flexibility to online trajectory planning by adjoining

multiple cubic Bezier curves, which are used to navigate constrained terrain envi-
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ronments. However, the computation of the proposed optimization is shown to scale

poorly with the number of degrees of freedom (i.e., the control points of the adjoined

Bezier curves) and convergence is sensitive to the initial guess solution. These factors

may limit the effectiveness of this approach for environments of increased complexity

and/or initial altitude. In addition, path feasibility and terrain collisions are only

assessed for the nominal planned trajectory under the assumption of mean wind,

with reactive replanning used to mitigate the effects of future wind disturbances.

Because some replanning iterations may require significant computation time in or-

der to converge, this approach can render the parafoil vulnerable to terrain collisions

due to uncompensated wind effects. In these situations, safety in complex terrain

environments cannot be guaranteed.

Due to the challenges induced by time-varying and uncertain wind conditions,

ongoing research efforts have focused on a variety of strategies to improve parafoil

guidance performance subject to dynamic wind environments. An overview of several

approaches is presented in the recent work by Ward et al. [38]. One particularly

effective technique is the implementation of ground-based wind measurements, which

can be recorded using LIDAR or an anemometer, and communicated in real-time

to the descending parafoil system [38-40]. The addition of wind knowledge in the

vicinity of the drop zone has been shown to produce enhanced landing accuracy and

parafoil survivability by improving the estimate of the future wind profile used during

planning [39].

Work by Chiel and Dever [41] explore methods for high wind parafoil guidance

beginning from high initial altitudes and large target offsets. This work results in

two homing style algorithms designed to maintain target attainability and landing

accuracy in both strong tailwinds and shifting wind conditions. Additionally, sev-

eral recent parafoil guidance strategies consider planning in a wind fixed reference

frame [13, 20, 24, 31, 38, 41] so as to decouple the trajectory design from the antici-

pated drift due to atmospheric winds. The wind fixed coordinate system provides a

convenient planning framework for the most commonly considered airdrop scenario

involving flat terrain, but may not be as effective for parafoil guidance in the presence
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of environmental obstacles. For complicated terrain scenarios, constraint checks are

most efficiently performed with respect to the inertial reference frame [3, 32, 37].

Lastly, advances in parafoil longitudinal control have recently been achieved us-

ing a variety of techniques such as symmetric brake deflection [28], incidence angle

control [27, 42], payload weight shifting [43], and bleed-air spoilers [44]. This addi-

tional degree of control authority can enable the parafoil to adjust both glide-slope

and airspeed so as to compensate for possible wind disturbances and modeling er-

rors during flight. While all of these developments in the field of parafoil terminal

guidance [27, 28, 38-44] have the potential to create valuable performance improve-

ments, none of these research topics have addressed the problem of wind uncertainty

modeling or robust parafoil guidance in complex terrain scenarios.

In summary, the general body of parafoil terminal guidance algorithms is subject

to some or all of the following limitations:

1. An artificially-constrained solution space, often based on preconceived notions

of the solution form;

2. Implicit or explicit constraints on the initial altitude, which require a prior

descent phase to bring the parafoil to initial conditions suitable for successful

terminal guidance;

3. An assumed obstacle free/unconstrained terrain environment; and/or

4. A reactive approach to handling the effect of wind uncertainty.

The purpose of this thesis is to address these limitations, leading to the develop-

ment of two robust parafoil terminal guidance strategies that directly consider the

effects of dynamic wind disturbances during the trajectory planning process. Robust-

ness is achieved through explicit modeling of the future wind uncertainty, while par-

ticular emphasis is placed on computational efficiency for online trajectory planning

using currently available flight hardware. The proposed terminal guidance algorithms

will be shown to operate successfully from high initial altitudes and large target off-

sets, and to scale favorably under such conditions. Finally, these algorithms provide

25



for the design of flexible trajectory shapes of near arbitrary complexity, enabling

successful parafoil guidance in challenging, highly constrained terrain environments.

1.2 Overview of the BLG Algorithm

Throughout this thesis, the Band-Limited Guidance (BLG) algorithm [32] is selected

as a baseline for comparison, representing one of several state-of-the-art approaches

for parafoil terminal guidance. This section provides a brief overview of the key BLG

algorithm components.

During parafoil terminal guidance, BLG determines an optimized control input

by choosing coefficients ~k for the heading rate profile,

N Z 7k - kAh)/Ah)
V(Z) = (1.1)(p -kh)A

k=0 O p a)s

based on simulating forward the simplified parafoil kinematics,

P -LD cOS(O) + wx/ui, and py = -LD sin(/) + wy/i,

(cos(,O))' = -O(pz)'sin(b), and (sin(4'))' = b(pz)'cos(V'), (1.2)

where (.)' denotes a derivative with respect to altitude pz [32]. BLG formulates

terminal guidance as an unconstrained optimization problem, designed to minimize

the cost function

JBLG 1 (p p) + w2(sin(A/2) (13)

via the propagation of (1.1)-(1.2), where Ap2 and Ap2 are squared miss distances,

and A4' is the difference between the final heading and desired heading at the terminal

trajectory state [4, 32]. The terms w, and w 2 in (1.3) denote user specified weights

selected to penalize the landing error for position and heading, respectively. By

penalizing the miss distance of the terminal trajectory state, BLG implicitly considers

the presence of terrain obstacles via the cost associated with prematurely terminating

the trajectory before reaching the target location.
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The BLG optimization is solved repeatedly online using the Nelder-Mead simplex

algorithm, while the integration of the kinematics is performed using fixed point

arithmetic for computational efficiency [32]. In addition, BLG periodically compares

the current optimization cost against a set of randomly generated trajectory solutions

to prevent possible convergence to local minima [20]. Lastly, through the selection

of appropriate values for N and Ah in (1.1), the BLG algorithm ensures accurate

trajectory tracking by considering only those heading rate profiles with frequencies

sufficiently less than the control bandwidth constraints. These parameters serve to

enforce the "Band-Limited" quality of the trajectory design so as to avoid excitation

of payload and canopy modes [32].

1.3 Contributions and Content Overview

This thesis presents contributions towards the design, development, and analysis of

two online trajectory planning algorithms for autonomous parafoil guidance in com-

plex terrain and wind environments. These contributions are outlined below.

Chapter 2: This chapter presents the parafoil terminal guidance algorithm

known as Analytic CC-RRT, which builds upon the framework of chance-

constrained rapidly-exploring random trees (CC-RRT) [45]. By extending prior

work [46, 47], a novel multi-class wind uncertainty model is presented using ob-

served wind data to classify and anticipate the future wind environment online.

From this wind model, the analytic a priori uncertainty distribution is derived

over future parafoil trajectories. A method of analytic uncertainty sampling

is then introduced to efficiently evaluate the probability of constraint violation

against mapped terrain. Additionally, prior work in [46] is extended to con-

sider parafoil landing speed penalties within the Analytic CC-RRT cost-to-go

function used for trajectory selection. Extensive analysis demonstrates the ef-

fectiveness of Analytic CC-RRT relative to the state-of-the-art BLG algorithm

over a series of Monte Carlo simulation experiments in challenging wind and

terrain scenarios.
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* Chapter 3: The design of a new parafoil terminal guidance algorithm is pre-

sented known as Chance-Constrained Band-Limited Guidance (CC-BLG). This

algorithm incorporates the wind uncertainty model and analytic sampling tech-

nique outlined in Chapter 2 into the optimized BLG trajectory planning frame-

work. Motivations are introduced for this alternative guidance strategy, fol-

lowed by a description of the three core algorithm components. First, a method

of weighted analytic uncertainty sampling is proposed to refine the estimated

probability of constraint violation using the wind uncertainty model. Next,

a novel risk-based objective function is developed for trajectory optimization.

This objective function enables the planner to efficiently balance the parafoil

performance metrics of landing accuracy and landing speed, with the risk of

off-nominal terrain collisions caused by future wind -disturbances. Finally, the

principles of discrete reachability set approximation presented in Chapter 2 are

applied to the CC-BLG algorithm for robust obstacle detection, and avoidance,

during fixed-horizon trajectory planning in constrained terrain environments.

* Chapter 4: A detailed design analysis is provided for each component of the

CC-BLG algorithm developed in Chapter 3. Analysis is conducted through

several Monte Carlo simulation experiments using realistic valley terrain, and

Draper Laboratory's high fidelity nonlinear parafoil simulator [48]. Specific

parameter settings for the CC-BLG objective function and reachability set ap-

proximation are evaluated, leading to the selection of a final configuration. The

reachability set approximation and cost-to-go function are demonstrated in sim-

ulation to maintain robust trajectory feasibility over future planning horizons.

This chapter also considers additional algorithm refinements and alternatives

for both the analytic chance constraints, and method of uncertainty sampling

developed in Chapter 2.

* Chapter 5: This chapter presents Monte Carlo simulation results demonstrat-

ing the effectiveness of the CC-BLG algorithm developed in Chapter 4 for robust

parafoil guidance and trajectory optimization. Simulations are used to compare
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the performance of CC-BLG alongside the nominal BLG algorithm in three dif-

ficult real-world terrain environments. This chapter also evaluates BLG and

CC-BLG performance in flat, obstacle free terrain, and demonstrates the abil-

ity of the CC-BLG algorithm to satisfy terminal heading constraints for reduced

landing speed.

Chapter 6: Flight test results are presented for the CC-BLG algorithm using

a full-scale parafoil system. Modifications are first introduced to the CC-BLG

algorithm in order to satisfy the computational limitations of available flight

hardware. These modifications are shown to retain CC-BLG robustness prop-

erties while significantly reducing online computation. Flight test results from 9

parafoil drop experiments demonstrate the successful operation of the CC-BLG

algorithm for robust planning in the presence of simulated environmental ob-

stacles. Analysis is presented from recorded CC-BLG test data and compared

against Monte Carlo simulations of BLG and CC-BLG performance subject to

recreated flight test conditions.

* Chapter 7: This chapter provides conclusions and recommendations for future

work.
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Chapter 2

Chance- Constrained

Rapidly-exploring Random Trees

(CC-RRT)

2.1 Introduction

This chapter presents a real-time trajectory planning algorithm known as Analytic

CC-RRT which enables a large, autonomous parafoil to robustly execute collision

avoidance and precision landing on mapped terrain, even in the presence of signif-

icant wind uncertainty. Analytic CC-RRT builds upon the framework of chance-

constrained rapidly-exploring random trees (CC-RRT) for robust motion planning

in cluttered, non-convex environments [45]. In this way, the proposed parafoil guid-

ance strategy incorporates the benefits of sampling-based planners and particularly

rapidly-exploring random trees (RRT) [49] (e.g. incremental construction, trajectory-

wise constraint checking, rapid exploration, dynamically feasible trajectories), while

using chance constraints to ensure probabilistic feasibility within guaranteed, user-

specified bounds. Through trajectory-wise constraint checking, Analytic CC-RRT

can efficiently evaluate the risk of constraint violation online due to multiple sources

of both internal and external uncertainty.
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In collaboration with Luders and Sugel [46, 47], three primary contributions of the

Analytic CC-RRT algorithm are introduced for robust parafoil guidance in complex

terrain and wind environments. First, a novel wind uncertainty model is presented,

using real-time observed wind data. The resulting model is shown to accurately repre-

sent true wind behavior, while adjusting the conservatism of the guidance algorithm

to reflect prevailing conditions. Second, this multi-class wind model is utilized to

derive the analytic a priori uncertainty distribution over future parafoil trajectories.

This is leveraged through a novel variation of the CC-RRT path planner, which per-

forms analytic sampling of the uncertainty distributions to ensure robust avoidance

of undesirable collisions with arbitrary, potentially aggressive terrain maps. Finally,

the relative value of paths is assessed via a novel terminal cost-to-go function, which

utilizes a fixed-horizon discrete approximation of the parafoil reachability set. This

enables selection of partial paths from any altitude that intelligently trade off between

current and reachable future states.

Simulation results in Section 2.7 reveal the effectiveness of each of these compo-

nents, and demonstrate that the full parafoil Analytic CC-RRT algorithm can achieve

superior landing accuracy in both average-case and worst-case performance relative

to state-of-the-art algorithms such as Band-Limited Guidance (BLG) [32]. In partic-

ular, this chapter demonstrates that the analytic-sampling approach achieves higher

robustness to wind uncertainty than replanning and/or mean-wind estimation alone.

The Analytic CC-RRT planner is also shown to be largely invariant to changes in

both altitude and terrain. Building on previous work [46], results in Section 2.7.2

indicate that Analytic CC-RRT is capable of operating in real-time while preserving

these robustness properties. Lastly, this work extends previous developments [46] to

consider terminal heading constraints, by incorporating landing speed penalties into

the cost-to-go function (Section 2.6) to encourage upwind landings.
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2.2 Problem Overview

The terminal guidance paradigm typically utilizes a combination of a homing phase,

designed to steer the parafoil directly toward the target, and an energy management

phase, designed to descend the parafoil above the target, until an appropriate altitude

is reached for terminal guidance [4, 32, 50]. Such algorithms generally assume that

terminal guidance will begin in relative proximity to the target location in both lateral

distance and altitude. Although the approach presented in this work will often operate

under similar conditions, such assumptions are not necessary.

The vehicle state is represented as x = [pT 0 sT] T, where p = (px, py, pz)

is the position in the inertial reference frame, 0 is the heading, and s represents a

vector of any additional states needed to characterize the parafoil's motion-in this

case, the lag dynamics. In the terminal guidance problem, the objective is to guide

the parafoil from some initial position p, and heading i/j (full state xi) to some target

location PG (full state XG). The parafoil dynamics are represented as the nonlinear

state-space system

x = f(x u, w), x(t1 ) = xI, (2.1)

where t, is the initial time, u are the control inputs and w = (wx, wy, w) are the

wind disturbances.

The wind disturbances are unknown at current and future times; denote the most

recent wind observation as w, (if none have been taken, a prior value from forecasting

data may be applied, or simply assume w, = 0). In this work, we choose to represent

the wind disturbances using the generalized model

w = f(w, Wv), w(ti) = w1 , (2.2)

where W is an estimate of the mean wind, assumed to be available to the planner,

and v is unknown model noise. The wind model developed for this work is derived

in Section 2.3.
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The parafoil terminal guidance problem is a specific case of a more general tra-

jectory planning problem. At each time step, the path planner attempts to solve the

optimal control problem

min (X(tf),XG) -- q(X, XG) (2.3)
U ftF

s.t. x = f(x, u, w), x(tI) =x, (2.4)

x = f(i. U, ), (t1 ) = x1, (2.5)

w f.(w, W, v), w(ti) = w 1 , (2.6)

= fW(W, W, 0), W(ti) = wI, (2.7)

u E U Vt, (2.8)

JPv (x E X) > Psafe. (2.9)

The parafoil state Ri and wind state W' evolve according to (2.1) and (2.2) respectively

assuming v = 0, representing deterministic, nominal propagation of the dynamics

under the assumption of constant wind W. This is utilized simply to ensure that

the objective (2.3) being optimized is deterministic, though stochastic forms may be

used. In practice, the optimization (2.3) is solved repeatedly during the descent, with

x, and w, being set to the most recent state and wind measurements, respectively,

at current time tI.

The sets U and X represent constraints on the input and state, respectively. The

state constraints X must be probabilistically satisfied, i.e. satisfied with probability

of at least Psafe over all possible v, as represented in (2.9) by Pv. These constraints

include the terrain map T(p2, py), which is assumed to be perfectly known; the ter-

minal time tF is the time at which P, ; T(po, py). Additional state constraints may

be included, such as internal state bounds or no-fly zones, though this is not explored

further in this work. The stochastic elements of this optimization manifest themselves

only in the final chance constraint (2.9); Section 2.4 details the implementation of

this chance constraint, yielding a deterministic optimization [511.
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2.2.1 Parafoil Model

The parafoil is modeled as a Dubins vehicle [52] descending at a rate governed by

atmospheric conditions subject to updrafts/downdrafts, with the input-to-heading-

rate mapping governed by complex lag dynamics. The lack of altitude control, coupled

with a large minimum turning radius and slow turning rate. necessitates significant

advance planning for precision guidance and landing. This is exacerbated by the

presence of heavy winds, which can lead to loss of goal reachability and/or premature

terrain collisions if not properly anticipated.

The parafoil velocity v(pz) is assumed to be a function of the vehicle altitude pz,

via [13, 53]

V(Pz) = voepz/ 2*T., (2.10)

where T = 104 m, and vo is the nominal vehicle velocity at sea level. In this chapter,

we adopt the 10,000-pound Dragonfly parafoil used by Carter et al. [22], with vo =

17.8 m/s and lift-to-drag ratio LD 2.8.

The heading rate of the parafoil is modeled as a second-order approximation of

the canopy Dutch roll lateral mode; our specific model selects time constant T = 11.5

s and damping ratio ( = 0.5 as suggested by Carter et al. [22]. A first-order lag

is used to model the differential toggle control input mechanism with T = 5 s [48],

while the controller is a PID with feedforward gains tuned to achieve comparable

performance [22]. In total, this yields a 5th order state s and dynamics (A, B, C, D),

augmented to the state vector x and dynamics (2.1), respectively. The control input is

a scalar, U = u = d, representing the desired heading rate, subject to the symmetric

input bounds U = {u I lul < Wmax}. The overall parafoil dynamics (2.1) thus take

the form

Px = v(pz) cos V) + w, (2.11)

fy = v(p) sin + wy, (2.12)

z V(Pz) + Wz, (2.13)
LD
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s As + Bu, (2.14)

V= sat(Cs + Du, Wmax, LJmax), (2.15)

where the saturation function sat(a, b, c) bounds a between b and c, and Wmax =

7r/15 = 0.2094 rad/s [48] (such that the vehicle's minimum turning radius Rmin equals

vo/wmax = 85 m). In this formulation, only the position states p are affected by the

wind disturbance uncertainty w, including possible effects on altitude Pz by updrafts

and downdrafts via 'w,. Within the planning framework, which operates in discrete

time, the optimization (2.3) is discretized with time step dt = 0.1 s.

2.3 Real-Time Wind Modeling

The wind model detailed in this section is utilized by the planner to improve prediction

accuracy and robustness for the parafoil terminal guidance problem. The development

of this wind model is based on satisfying three main objectives. First, the wind

model should improve predictability of future wind effects. Improved predictability,

especially in scenarios where there is significant prevailing wind, can mitigate the

amount of replanning needed and improve the quality of solutions provided by the

proposed algorithm. Second, the wind model should capture the uncertainty of future

wind effects, giving the planner knowledge of a distribution over possible outcomes of

a planned trajectory. Characterizing and utilizing such an uncertainty distribution

in a probabilistic framework (Section 2.4) strengthens planner robustness to terrain

obstacles. Finally, the wind model should be kept simple, to maintain real-time

planner operation and discourage data overfitting.

Given the importance of wind modeling in many engineering applications, there

has been considerable work on developing wind prediction and estimation models,

including the case of online estimation [54-57]. However, as described in [46], none of

these modeling approaches [54-57] address the wind prediction problem over the short

timescales and limited datasets inherent in parafoil precision guidance. This section

fits an uncertainty model to the wind which can be incorporated into the planner to
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enforce robustness. This approach includes online learning to determine, in real time,

the class of wind scenario being experienced by the parafoil and the corresponding

parameters of the variational estimate associated with each class. Each model is tuned

to capture the amount of uncertainty typical to wind profiles within its corresponding

class. In this manner, the level of conservatism in the planner can be adjusted online

to reflect the wind conditions being observed. Draper Laboratory has released 194

altitude-dependent wind profiles from parafoil drops [46], collected using the sensor

configuration and estimation procedure outlined in work by Carter et al. [32]. These

wind profiles are used as training data during the development of the wind model

presented in this work.

2.3.1 Model Form

The wind model is assumed to take the form (2.2), written in discrete time as

Wt+1 = fW(wtWvt), wo =w, (2.16)

where time step 0 occurs at system time t1. The 3-D wind estimate at time step t,

Wt, is assumed to take the form

Wt = W + 6wt, (2.17)

comprising the sum of a 3-D persistent estimate W and a 2-D variational estimate

6wt.

The persistent estimate W reflects the notion that there typically exists a prevailing

wind which acts on the parafoil throughout the entire mission, and must be accounted

for during the state prediction. It is represented using a finite impulse response filter,

t1
W = Wi, (2.18)

i=t1 -m-1

where m is the filter window width.
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The filter width m is chosen by optimizing a metric representing the filter pre-

dictive accuracy [47]. Consider propagating the parafoil dynamics from some initial

state p, to the ground, assuming zero input (U = 0), no lag dynamics (s = 0), and

flat terrain (T(p,, pY) = 0). Additionally, assume that previous observations of the

wind profile have been observed prior to the parafoil reaching pI, such that the filter

(2.18) can be applied in full. For each available 3D wind profile, the dynamics are

propagated from the same initial state and observations. For the wth wind profile,

three possible landing positions are of interest:

" The landing position under the true wind, p(w)
* PT

" The landing position under zero wind, po ; and

" The landing position under constant wind using (2.18) with width m., p.

Define the quantity

6d$=) - (W pW - p , (2.19)M O PT P

which takes the difference in accuracy between the zero-wind model and the impulse-

filter model in predicting the true landing position. For those wind profiles in which

prediction accuracy degrades with the impulse-filter model, 6ddw < 0, denote Dm =

{6w I 6d$, < 0}. The filter width is then chosen as

m = argmax {min(Dm) + 3 mean(Dm) - Am}, (2.20)
m>0

where 4, A > 0; in this work, 3 = 2 and A = 1. This cost function includes terms for

the worst-case and average-case accuracy in Dm, as well as a regularization term [47].

The variational estimate 3 wt is represented as multi-modal linear dynamics sub-

ject to Gaussian noise,

6 wt+i = (I + dtAc)Swt + dtBevt, c E {1,... , Nc}, (2.21)

where N0 is the number of modes/classifications used, Ac and B, are the tuned
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matrices used for the cth wind classification (Section 2.3.2), and vt E AF(O, 1), i.e.

zero-mean, unit-variance Gaussian noise. This colored noise process reflects the idea

that, while wind at lower altitudes is correlated with the wind measured at the current

altitude, this correlation tends to degrade with increasing separation.

By substituting (2.17) into (2.21), the wind model function (2.16) can be written

as

fW (Wt, W, Vt) = W + (I + dtAc) (wt - W) + d&Bevt, c E {1, . . . , Nc} (2.22)

The remaining questions, then, are (i) how to identify an appropriate number of clas-

sifications NC and the corresponding wind model dynamics (A,, Bc), c E {1, ... , Nc}

for each, and (ii) how to select the appropriate classification online. These topics are

discussed next.

2.3.2 Wind Model Training

The wind profiles used for training parameterize each component of the measured

wind velocity vector as a function of altitude, i.e. {Wx(pz), Wy(pz), Wz(Pz)}, over a

set of altitude data points. This can pose problems for clustering and classification

algorithms, which are typically designed to operate on observations, rather than func-

tions. By using feature selection, the dimension of the system model can be reduced,

allowing for the use of efficient clustering and classification schemes [58]. For each

data point, denote p = w + w2 + w2 and 0 = atan2(wy, wX); for this work, we use

the feature vector

= mean(p) max(p) mean (k-) max (s-) mean max (2.23)

For each wind profile, this feature vector takes the mean and maximum value over

all data points of three quantities: the wind magnitude, the rate of change of wind

magnitude, and the rate of change of wind direction. Collectively, these features were

chosen to represent the power and variability inherent in each profile.

39



The objective is then to use the feature-based representation of each wind profile

(2.23), denoted for the wth wind profile as x,, below, to classify the Nw wind profiles

into NC classes. We represent each possible disjoint partition of these profiles as

S = { S 2, .2,. ., SN, }. The partition is chosen so as to minimize the sum of squared

distances to the mean within each cluster, pi, such that

NC
= argmin (IxW - Pill2 Ak (2.24)

s (i=1 X"'Gsj

with the last term Ak being included for regularization. This optimization is solved

using the DP-means algorithm [59], which extends k-means clustering [60] such that

the appropriate number of clusters NC can be incrementally identified, rather than

assumed a priori. During the DP-means assignment step, if an observation is further

than A from the nearest cluster center, a new cluster is added with its center de-

fined as the observation x, which created it. Using the aforementioned Draper wind

profiles [46], three distinct classes were identified.

For each classification, the variational wind model dynamics (Ac, Bc) are con-

structed by matching the analytic uncertainty distribution to the empirical distribu-

tion identified from the wind profiles. To simplify uncertainty sampling (Section 2.4),

the variational wind model is constructed to be two-dimensional, i.e. Swz = 0; ob-

served updrafts and downdrafts are still incorporated via the mean wind W. We

further assume that 6wx and 6wy are independent and symmetric, such that the

variational wind model dynamics AcE R3x3 and B, C R 3x 2 can be written as

1 0 0 1 0

AC = ac o 1 0 Bc c 0 1 , (2.25)

0 00 0 0

where ac, c E R.

For each wind profile in the cluster, compute the miss distances 11 -- PT

used in (2.19). Over these wind profiles, let di denote the ith largest miss distance,

and ni the fraction of profiles with a miss distance less than or equal to di. These
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characteristics of the cumulative density function (CDF) will be compared against

the analytic wind model for tuning, as described next.

Represent the wind model (2.21) in continuous-time form as

6w = Ac6w + Bcv, (2.26)

-T

and define the position variation 6p = px - E[px] py - E[py] pz - E[pz] . We

can then construct the augmented dynamics

6p 03 13 6P 03x2[.I=LL + 0.2 (2.27)
6w 03 Ac' 6W B

Aaug Baug

The covariance at impact time tF, ZF E(tF), can be propagated forward using the

dynamics

AAaTgE + E A + BaugBTg, E(t1) = 0. (2.28)

For comparison with empirical data, the lateral position covariance is isolated via

E= CT3~,(2.29)
'F CT EF CTT

CT = I'2 02x4]. (2.30)

Given the independence and symmetry assumptions on 6w., and 6wy, E' can be

written as E'= 212, where a > 0 is a scalar. This represents a chi distribution

on landing miss distances with standard deviation a; denote its CDF for dynamics

(Ac, Bc) as x(x, Ac, Bc). This CDF can be matched directly to the empirical wind

profile CDF with characteristics (di, ni) as described above. For the cth wind clas-

sification, the dynamics (Ac, Bc) are identified by minimizing the root mean square
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error between the two CDFs,

(A c, Bc) =.argmin (ni - x(di, A, B))2 .(2.31)
( A,B) iS

Figure 2-1 compares the analytic and "true" (empirical) CDFs for each of the classes

identified from the Draper wind profiles.

2.3.3 Online Classification Selection

In order to utilize the varying levels of uncertainty associated with the NC classifica-

tions identified in Section 2.3.2, the planner uses support vector machines (SVM) [61]

to classify each wind estimate observed by the vehicle. For each of the NC classes, the

planner generates an SVM binary inclusion classifier, which can be used to identify

if the wind estimates being received are a member of a particular class. Online, the

trained SVM classifier compares the feature vector produced by the most recent wind

observations (2.23) against the NC - 1 hyperplanes separating the members of the

NC wind classes. Each hyperplane determines in sequence whether the vector <D does

or does not belong to Class X. In the case of Figure 2-1, any feature vector which

fails the binary inclusion after comparison against the dividing Class 1 and Class 2

hyperplanes is assigned to the remaining Class 3 cluster.

2.4 Analytic Uncertainty Sampling

This section presents a novel framework for modeling future uncertainty in trajec-

tory predictions, based on CC-RRT, such that robustness to possible future variation

in disturbances can be achieved. Recall that in the formulation of the parafoil ter-

minal guidance problem (Section 2.2), satisfaction of state constraints is specified

via the chance constraint (2.9). This represents a minimum likelihood that all state

constraints, here consisting of the terrain surface p, > T(po, py), be satisfied with a

minimum probability of Psafe along each trajectory. In the CC-RRT algorithm, the

chance constraint (2.9) must be satisfied at each time step and is converted to a tight-
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ened, deterministic constraint [45]. Under the assumptions of linear dynamics and

Gaussian noise, these tightened constraints are shown to guarantee probabilistic fea-

sibility to polyhedral constraints at each time step. Furthermore, due to CC-RRT's

trajectory-wise constraint checking, a risk bound can be explicitly computed at each

time step online against each uncertainty source.

It is shown here that, though the parafoil dynamics are nonlinear, the effect of

the wind uncertainty is linear-Gaussian. As a result, uncertainty distributions can

be derived analytically a priori at all future time steps, and theoretical guaran-

tees maintained-but subject to polyhedral state constraints. In subsequent devel-

opments, we choose to take equi-spaced samples of the uncertainty distributions,

such that they can be checked for collision against arbitrary (i.e., not necessarily

polyhedral), and potentially aggressive terrain map functions. Though probabilistic

guarantees are approximated statistically, uncertainty samples are obtained without

dynamic state propagation. As a result, this variant of CC-RRT is more efficient,

and better representative of uncertainty distributions, than previous particle-based

formulations [62]. Furthermore, the use of sampling allows for path-wise probabilistic

feasibility to be quickly evaluated.

2.4.1 Analytic Uncertainty Derivation

Consider the parafoil state dynamics (2.11)-(2.15), written in discrete-time form as

Px,t+1 Px,t +dt [l(Pz,t)cos't + w,)|t], (2.32)

Py,t+1 Py,t + dt [V(Pz,t) sin V't + wZ~t, (2.33)

Pz,t+1 = Pz,t + dt [v(pz,t) (LD- 1 ) + wz,t] , (2.34)

st+1 = st + dt [Ast + But] , (2.35)

t = Z$'t + di -sat(Cst + Dut, -Wmax, Wmax). (2.36)

The final two equations (2.35)-(2.36) are unaffected by the uncertainty vt, which

manifests itself only through wt. As in Section 2.3.2, take the variation 6p =
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px - E[px] py - E[py] pz - E[pz] . Recalling that 3wz = 0 (and thus pz

E[pz]), combining (2.32)-(2.34) with (2.26) in discrete-time form yields

6px,t+1 = p5 x,t + dt (&w2,t) (2.37)

6py,t+1 = Jpy,t + dt (3wy,t), (2.38)

6pzt+1 = 6pz.,t, (2.39)

wxt+1 (I + dtac,)w2,t + dtcvx., (2.40)

6 wyt+ = (I + dtac)6wy.t + dt,3v~yt; (2.41)

as a result, (2.39) has decoupled from the other variational dynamics. By defining the

2D variation state vector 6
xt [ p, 6 py,t 6 WXt 6Wmt the variation dynamics

(2.37)-(2.38), (2.40)-(2.41) can be written in the linear form

6xt+1 = A6xt + Ivt, (2.42)

1 0 dt 0 0 0

0 1 0 dt 0 0
A = , =(2.43)

0 0 1+diac 0 dt3e 0

0 0 0 1+dtac 0 dt3e

Because the linear system (2.42) is driven by Gaussian noise, all future state

distributions take the form xt E K(i2, Pt), i.e. Gaussian with mean 2, and covariance

Pt = E[6xtx T]. The mean can be computed using the disturbance-free dynamics

(2.50)-(2.51), while the covariance can be represented either implicitly as

Pt+j = APtAT + BBT (2.44)

or explicitly as

t-1

Pt = AtPo(AT)t + Al--l T(AT)t-k- 1, (2.45)
k=O

PO = % 0 ], (2.46)
10 El
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where Q, and E are the initial covariance for the position and wind, respectively.

Either quantity is zero if perfectly known, but may be non-zero if, for example, an

estimator is providing data to the system. As in the conventional CC-RRT framework,

(2.44)-(2.45) can be computed a priori, independently of any individual simulated

trajectory [45]. Finally, the covariance of the position states can be isolated via the

transformation

1 00 0o
Qt= CTI)fT CT = (2.47)

0 0 1 0

2.4.2 Covariance Sampling Generation

In order to efficiently check path-wise feasibility of the terrain constraint pz ;> T(px, pY),

the probability of terrain collision is approximated by generating equi-spaced samples

at specified levels of the uncertainty distribution at each prospective trajectory node.

Sampling the distribution in this way allows for coverage of the uncertainty space with

relatively few samples, as well as removing the need to dynamically propagate each

sample, significantly reducing computation. The discretization level of the samples

Ns, as well as the minimum probability of feasibility Psafe, can both be specified by

the user to allow for tunable levels of robustness.

The covariance samples are placed at a series of equi-spaced points along uncer-

tainty ellipses. The covariance matrix Qt describes a contour of equal probability

]Tpoints 6pt = [6p, 6Pyt I, relative to the nominally propagated trajectory xt, via

the conic relaxation 6p[Q-16pt = 1. Denote the elements of Qt as

Qt = xt xy,t (2.48)L o-~t17,t

with eigenvalues a and a (Ua > Cb). The principle axis of the uncertainty ellipse has

angle 0' = 1 tan-1  . The Ns samples are spaced at equal angular intervals

relative to this principle axis; the jth sample 6pt'j has angle 6, = Nsj, relative to

46



6'. The samples are thus placed at

6 U)cos(Oi - - ')
pt = JRQR(-O') s(Oj - 0') (2.49)[sin(03 - 0')J

RQ = ab

R (ab cos(O - 0'))2 - (Ca sin(93 - 9'))2

where a > 0 is the covariance scale factor and R(a) is the 2D rotation matrix for a

counterclockwise rotation of a.

The parameter a represents the number of standard deviations within the un-

certainty ellipse; samples may also be distributed across multiple values of a. In

subsequent results, two rings of covariance samples are used, one at 0.4a and another

at la for a = 1.75. These values were found to work well empirically.

2.5 Parafoil CC-RRT Path Planning

This section presents the parafoil Analytic CC-RRT algorithm, for robust motion

planning using the previously-developed wind model (Section 2.3) and covariance

sampling technique (Section 2.4). The core algorithm upon which the Analytic CC-

RRT framework builds is RRT, which incrementally constructs a tree of dynamically

feasible trajectories from the current state [49]. While many algorithms are avail-

able for motion planning problems of this nature [63, 64], an RRT-based approach is

particularly well-suited to this application. The lack of controllability in the altitude

state pz limits the utility of graph-based approaches. An RRT can quickly identify

and refine feasible solutions online within the 9-dimensional configuration space (3

for position, 1 for heading, 5 for lag dynamics) without the need for state space dis-

cretization. Additionally, RRT's incremental trajectory construction and constraint

checking allow is to scale favorably with both problem complexity and available com-

putational resources [46].

Let the current time step be t; the tree is rooted at the current vehicle state, xt,

and the most recent wind measurement is denoted as wt. Each simulated trajectory
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within the tree uses the nominal dynamics (2.5) and wind model (2.7), written as

Xt+k+llt (Xt+klt, Ut+klt, Wt+klt), Xti = Xt, (2.50)

Wt+k+llt = fW t+kltWt,), 'tit = Wt. (2.51)

where subscript (-),Ig denotes simulation time step a and execution time step 3 < a.

Whereas the nominal RRT algorithm grows a tree of states which are known to be

feasible, with any uncertainties assumed to maintain nominal values (here v - 0), CC-

RRT grows a tree of state distributions which are checked for feasibility by satisfying

an upper bound on the probability of collision at each time step [45]. The Analytic

CC-RRT algorithm similarly generates a tree of uncertainty distributions around

trajectories, but further performs analytic sampling via the approach introduced in

Section 2.4.1. This allows path-wise probabilistic feasibility checks to be enforced

against arbitrary terrain maps.

As shown in Section 2.4.1, the uncertainty at each prediction time step t + k,

relative to execution time step t, can be represented as a Gaussian state distribution

Xt+klt ~ A(Xit+klt, Pt+klt ). (2.52)

The mean state xt+klt, with position (px,t+kIt, Py,t+klt, Pz,t+klt), can be simulated us-

ing the disturbance-free dynamics (2.50)-(2.51), while the covariance Pt+klt can be

computed via (2.44). Using (2.49), the covariance samples are placed at offsets

6PUkt +k)t, )P k~t,) , j E {1,... , Ns}.

Probabilistic feasibility is checked statistically by determining whether the fraction

of covariance samples for a given trajectory state Xt+klt that have intersected the

terrain, at this or any previous simulation step, exceeds 1 - Psafe. Given the terrain

map T(px, py), the probability of terrain collision Pcollide at simulation time step t + k

is approximated as

Pcollide = Ns E R Apzt+ilt < T (pxlt+ilt -p 6P,+ilt , Py,t+ilt - ,p t+ilt , (2.53)
j=1 .i=0
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Algorithm 1 Analytic CC-RRT: Tree Growth [46]

1: Take a sample Xsamp from the environment
2: Identify the m nearest nodes using heuristics
3: for m < M sorted nearest nodes do
4: Nnea, <- current node, (It~klt, wt+klt) +- final vehicle and wind state of Nn,r
5: Pcollide < 0
6: while Pcollide < Psafe and (2.54) true and Rt+kit has not reached xsamp do
7: Select input Ut+kIt E U
8: Simulate (Rt+k+1It, t+k+1lt) using (2.50),(2.51)
9: Create intermediate nodes as appropriate

10: Compute/retrieve Pt+k+1|t using (2.44)
11: Compute Pcollide using (2.49),(2.53)
12: k <- k + 1
13: end while
14: for each identified node N do
15: Add N to tree
16: Try connecting N to XG

17: end for
18: end for

where I[] is the indicator function, i.e. 1 if the contained statement is true and 0

otherwise, and A represents a conjunction of the indexed constraints. If Pcollide >

1 - Psafe, then the trajectory is considered to have landed on the terrain.

In addition to the uncertainty-based feasibility check, a trajectory is also consid-

ered to have landed if the nominal trajectory intersects the terrain. In other words,

Pz,tPkt > T (x,t+kIt, Py,t+kIt) (2.54)

is added as an additional state constraint.

As with the conventional RRT algorithm, the Analytic CC-RRT algorithm con-

sists of two core components: a "tree growth" step (Algorithm 1) that incrementally

constructs the tree, and an "execution" step (Algorithm 2) that selects paths from

the tree for parafoil execution with some frequency [46]. Each time Algorithm 1

is called, a state is first sampled from the environment, and the nodes nearest to

this sample in terms of some heuristics are identified as candidates for tree expan-

sion. An attempt is made to form a connection from the nearest node(s) to the
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Algorithm 2 Analytic CC-RRT: Execution [46]

Input: Initial vehicle state x1 , initial wind measurement w1 , goal state XG

1: t +- 0, xt +- xI, wt <-- wI

2: Initialize tree with node at xt

3: while xt E X do
4: Update current vehicle state xt, wind measurement wt, and mean wind estimate

wt
5: Propagate mean state xt by the computation time -+ xt+At using (2.5),(2.7)

6: Update tree feasibility and costs using (2.55)

7: while time remaining for this time step do

8: Expand the tree by adding nodes (Algorithm 1)
9: end while

10: Use cost (2.55) to identify lowest-cost path {Nroot, ... , Narget}
11: if at least one path exists then

12: Apply best path
13: else
14: Apply "safe" action

15: end if
16: t <- t + At

17: end while
18: Mark vehicle as landed at xt

sample by generating a probabilistically feasible trajectory between them. Let the

vehicle state and wind state at the nearest node be denoted by ('t+kIt, wt+klt). This

trajectory is incrementally simulated by selecting some feasible input ut+klt C U,

then simulating the disturbance-free vehicle and wind dynamics via (2.50)-(2.51) to

yield (xt+k+1It, Wt+k+1lt). This input may be selected at the user's discretion, such as

through random sampling or a closed-loop controller [65], but should guide the state

distribution toward the sample. Intermediate nodes may be occasionally inserted

during the trajectory generation process, to encourage future expansion.

To check feasibility, the algorithm computes, or retrieves if previously computed

offline, the covariance Pt+k+llt at each simulation step using (2.44). It then computes

Pcollide (initialized to 0) based on the covariance samples that are feasible up to that

simulation step via (2.53), in order to check whether both Pcollide < 1 - Psafe and

(2.54) are satisfied. Trajectory simulation continues until either constraint is violated

or the state has reached the sample. Unlike conventional RRT algorithms, every

simulated node is added to the tree, even if it does not reach the intended sample
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before intersecting the terrain. As each node is added to the tree, an attempt is made

to connect it directly to the goal state XG-

After completing the "tree growth" step of the current iteration, the "execution"

step (Algorithm 2) executes some portion of the tree while continuing to grow and

update the tree in subsequent iterations. Algorithm 2 updates the current best path

to be executed by the system every At seconds, where in this work At = 1 s.

The execution step first retrieves the current vehicle state, wind measurement,

and mean wind estimate, then updates the tree via re-propagation. In this update,

all nodes are re-checked for probabilistic feasibility and any nodes which have become

infeasible are pruned, along with their descendants. Additionally, costs are updated

for each node using the cost function (2.3), written in discrete form as

tF

J(Ntarget) = OF (XtF t+At, XG) + At E O(Xilt+At, XG). (2.55)
i=t+At

After these updates, the tree is repeatedly expanded using Algorithm 1 for the dura-

tion of the time step. Following this tree growth, (2.55) is used to select the lowest-

cost path in the tree for execution. If no path exists in the tree, some "safe" motion

primitive can be applied to attempt to keep the vehicle in a safe state.

As described above, the entire tree is re-propagated for both feasibility and cost,

rather than simply re-checking the feasibility of the lowest-cost path via "lazy check" [65]

without updating costs. In the context of the parafoil terminal guidance problem,

where feasibility and cost are inextricably linked and highly dynamic as a function of

the uncertainty, it is useful to update all possible trajectories in order to achieve reli-

able performance. While additional computation is required to perform this update,

in practice this computation is balanced over time by the tree size, via the amount

of time spent in Algorithm 1. Section 2.7 demonstrates the effectiveness of the An-

alytic CC-RRT algorithm for improving worst-case performance of parafoil terminal

guidance, particularly subject to complex terrain and pathological wind conditions.

Figure 2-2 shows an example of an Analytic CC-RRT tree generated for the valley

terrain, described in Section 2.7.1, for a- = 1.5. The planner constructs a tree of
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Figure 2-2: Analytic CC-RRT simulation in progress, showing covariance samples

(black)

feasible trajectories (teal), which guides the parafoil (blue) to land on the terrain at

the goal location (green circle). In Figure 2-2, the terrain background changes from

green to red with increasing altitude, and the covariance samples (black) are shown

for the path currently selected for execution (orange).

2.5.1 Reference Model

A reference model is used in the Analytic CC-RRT algorithm to generate a sequence

of inputs u = <d for each trajectory. Each trajectory connects a nearest node, with

position p,, and heading 0,, to a sample with position p,. Since the altitude state p,

is uncontrollable, the proposed reference model generates the 2D circular arc which

connects the nearest node and the sample, and is tangent to the heading at the

nearest node, as shown in Figure 2-3. Such a circular arc can be followed by the ideal

(i.e., no lag dynamics) parafoil in 2D, by applying a constant input W for some time

duration t. Resulting trajectories are thus sequences of piecewise-constant-angular-

rate segments. The number of segments and the duration of each segment are not

fixed, such that complex trajectories can still be specified within this reference model.
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Figure 2-3: Reference generation model using 2D circular arcs

Defining 6, = Ys - yn, 6x = X- xn and 6 = lS + 62, the radius of this circle is

62
R = (2.56)

2 (6y cos 0, - 6x sin On)'

where the sign of R in (2.56) encodes the turn direction. This is used with the velocity

model (2.10) to yield the desired angular rate, U = v(pzn)/R. The duration of the

reference command is determined by computing the arc subtended angle -y:

- = 2 sin- (2RI, (2.57)

t= 7. (2.58)

Alternative reference generation models could be applied, such as Bezier curves [50],

B-splines, or piecewise linear (rather than piecewise constant) angular rate commands.

Closed-loop propagation may also be used to limit uncertainty growth over time.

2.6 Reachability-based Cost-to-go

One of the advantages of using RRTs, due to their incremental construction, is the

capability to select a path which has not yet terminated in planning, use it as the basis

for vehicle execution, and complete the path during later planning cycles. Critical
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to this capability is an informative cost-to-go function for assessing path quality. In

previous work, Luders et al. [46] proposed a cost-to-go formulation which combines

the cost at a point of interest - the end of a trajectory within the tree - with a discrete

approximation of the reachability set beyond that point. In this manner, the cost-to-

go function weighs the value of the system's present state against possible near-term

future states, which are heavily constrained by the present state and particularly the

parafoil heading [46]. This work extends the previous cost-to-go formulation with the

option to include an additional penalty term on the parafoil ground speed. Because

the planner can only affect its velocity by changing its heading relative to the wind

direction, such a penalty term encourages the selection of paths with upwind landings

to reduce landing speed.

The cost-to-go function is constructed by assigning costs Ji to each of a set of states

Xi, i E {, . . . , Au}, where xO is the vehicle's current state and xi, i C {1, . . . , Nu}

are drawn from the boundary of a finite-time reachability set for the parafoil [46].

The cost Ji is the Euclidean distance from the point xi to the goal XG at position

PG = (Px,G, Py,G, PzG), after accounting for drift due to the persistent wind estimate

W = (Ely, Te,2). This takes the form

=jpi - P P z, G -t W + (P y- P y, G - zG Wy + (P zi - Pz, G) (2.59)

where tz,G = (Pz - Pz,G)/Vz is the time to reach the goal altitude from the current

state. The full cost-to-go function takes the form

O>F(XO, XG) C max(Jo, min(Ji, J2 ,. ,JN)) + Jv(xo (2-60)

where C, > 0. The first term of (2.60) takes the maximum between the cost of

the initial point, Jo, and the minimum of the cost of points on the reachability set

approximation. The Jo portion encourages the planner to situate the vehicle directly

above the goal, after correcting for wind, to facilitate disturbance rejection, while the

min(Ji, J2 ,... , JN) portion represents the most favorable state the vehicle can reach

within the approximated finite-time reachability set [46], described in Section 2.6.1.
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The second term of (2.60) drives the desired heading at landing OG toward the

upwind direction by penalizing the node's terminal ground speed. Since the ground

speed is minimized when the parafoil heading and wind direction are opposing, and

maximized when they align, this induces the desired behavior. This cost term is

defined as

JV(xo,W) = (v(pzo) cos Vo +h2) 2 + (v(pzo) sin ipo +-w) 2 , (2.61)

incorporating both the parafoil air speed and estimated wind effect. The relative

importance of landing accuracy vs. landing speed is controlled by the weighting coef-

ficient C,; in this work, a weight of C, = 10 is used. Section 2.7.3 examines the effect

of this additional penalty term within the cost-to-go function on the parafoil landing

speed during terminal approach.

2.6.1 Reachability Set Approximation

The use of a reachability set addresses the intention to incorporate the effect of

approach direction on the cost of a particular node. For a given dynamical system,

the full reachability set can be defined as all possible future states that can be reached

from the current state by applying the appropriate sequence of input commands. In

the case of the parafoil system, this set can be computed by propagating the dynamics

forward in time through all possible input sequences until intersection with the terrain

occurs. Because such a set is intractable to construct, previous work in [46] developed

a reachability approximation which includes only a finite set of Nu constant control

sequences, propagated over the finite time horizon tp. To cover the largest possible

region, control sequences wi along the reachability horizon are spaced at equal intervals

within the limits of the input jul Wmax according to

i = -Wmax + 2 wmax l i E {0,..., Nu - 1}. (2.62)
Nu - 1
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Here only odd values of NA are considered in order to include the propagation of the

dynamics under zero angular rate, (wj = 0, for i = (N, - 1)/2). Assuming lag free

dynamics (A = B = C = 0, D = 1, and -= u), the states xi = (pxi, pyi, pzi) along the

reachability frontier can by calculated relative to the current state xO = (PXO, PyO, PzO)

and heading VbO using

't7(PZO)
Poi PXO + cos(V'o + sign(wi) ) + cos(Oo + (2 + sign(wi)) - + ir)2 2

V(PzO) 7T
Pyi PyO + sin(/)o + sign(w) ) + sin(Oo + (2 + sign(wi)) - + wij)

2o 2

Pzi = PzO - v(Pzo)T, (2.63)
LD

where the propagation time T = min{tzG, tP} is taken as the minimum between the

time to reach the goal altitude tzG, and the propagation upper bound tp. Figure 2-4

illustrates the result of the reachability set approximation using NA = 3 and T = tp

2m, representing a quarter-turn at maximum angular rate.

By formulating the reachability approximation in this way, increasing the value of

NA/ increases the density of states xi along the reachability frontier through the number

of control sequences wi considered by the planner. Likewise, extending the upper

bound on the propagation horizon tp allows the planner to look further forward in

time while holding each input constant for 'i= wi. From previous analysis conducted

in [46, 47], the values of ' - 3 and tp = 7.5 seconds are selected for use throughout

the remainder of this chapter.
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2.7 Simulation Results

This section presents simulation results demonstrating that Analytic CC-RRT achieves

superior landing accuracy relative to both nominal RRT and BLG [32] on challenging

terrain. In particular, Analytic CC-RRT demonstrates a significant improvement in

mean accuracy over BLG, and superior worst-case landing accuracy over both RRT

and BLG. Adding a penalty on landing speed to the cost-to-go function (Section 2.6)

reduces parafoil landing accuracy slightly, but significantly reduces typical landing

speeds by better orienting the parafoil upwind during final approach. Further analy-

sis shows that while BLG performance tends to degrade as the difficulty of the terrain

increases, Analytic CC-RRT performance is largely invariant to changes in terrain for

both the mean and worst-case. Analytic CC-RRT is also shown to be not only capable

of use at higher initial altitudes, but also invariant to initial drop altitude.

2.7.1 Implementation

Three algorithms are compared throughout this section:

1) RRT with mean wind, which represents a nominal RRT planner using the mean

wind estimate W, but assumes no future wind variation (i.e. 6w - 0, wt = W).

This approach makes no active attempt at robustness against uncertainty, but does

utilize replanning at every time step to try to counteract system disturbances.

2) Analytic CC-RRT, the full Analytic CC-RRT algorithm presented throughout

this chapter and specified in Algorithm 1 and Algorithm 2 of Section 2.5.

3) BLG, or Band-Limited Guidance, which utilizes band-limited control to ensure

accurate tracking and prediction, as well as knowledge of the mean wind estimate

W, and replanning to account for system disturbances [32]. The implementation

of BLG is detailed below.

For each parafoil drop scenario, each algorithm is tested over a large series of

simulation trials, which vary in the combination of wind profile and initial conditions
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used. Of the wind profiles released by Draper Laboratory [46], a set of 25 represen-

tative wind profiles are selected. These 25 wind profiles consist of 18 profiles from

collected drop data and 7 artificially generated profiles. Of the 7 artificially gener-

ated profiles, 6 are constant-wind profiles moving in the cardinal directions, varying

in intensity from zero wind to 25 knots (over 70% of the parafoil airspeed). The final

artificially generated profile represents an exponentially decaying wind, with average

and maximum wind speed changes with respect to altitude of 0.0025 ! and 0.05 ml,/

respectively. The actual drop wind profiles are significantly more aggressive, with an

average overall intensity of 6.7 m/s and gusts up to 17.1 m/s (nearly matching the

parafoil airspeed). These profiles are subject to average and maximum wind speed

changes with respect to altitude of 0.025 ! and 2.4 1/s, respectively. They are also

subject to rapid directional changes, potentially as large as 115'/m.

In each trial, the parafoil state is initialized 500 meters above the target, with a

random heading and a lateral distance from the target between 100 and 400 meters.

In all scenarios, the target/goal is assumed to be located at PG = (0, 0, 0). Each

algorithm is subject to the same sequence of wind profile and initial condition com-

binations. A total of 500 trials are performed for each algorithm in each scenario,

representing 20 uses of each wind profile for different initial conditions.

The primary terrain used for simulations is the 1.5 km x 1.5 km valley terrain,

Tvaiiey(Px,PY), pictured in Figure 2-5. The green shades in Figure 2-5 indicate areas

of lower altitude, while the goal is located at the yellow diamond. This represents a

particularly challenging terrain for the parafoil terminal guidance problem, for several

reasons. First, the slope of the valley is greater than the glide-slope of the parafoil,

limiting planning options at lower altitudes by making approach from either side im-

possible. Second, the large low-altitude regions away from the goal (bottom-right

and top in Figure 2-5(a)), where terrain collisions can be avoided for longer path

durations, are likely to lead to terrain interactions as the parafoil's path crosses in

and out of these regions. Finally, placing the goal near a terrain "bottleneck" makes

planning near the goal more difficult than planning away from the goal. To test how

algorithmic performance varies with terrain "difficulty," this section also considers
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Figure 2-5: Valley terrain used for parafoil terminal guidance scenarios

scaled-down versions of the valley terrain, i.e. aTvaiiey(px. Py) for a c [0, 1]. In partic-

ular, simulations are performed for a = 0, representing completely flat terrain, and

a = 0.75, representing intermediate conditions.

The Analytic CC-RRT algorithm has been implemented as a single-threaded Java

application. To simplify comparisons, a fixed number of samples, or iterations of

Algorithm 1, are performed per loop of Algorithm 2. In subsequent results, 165

samples per loop are used, representing the average number of samples generated in a

1 Hz planning cycle with 60% duty cycle by the nominal RRT algorithm. The mean

wind impulse filter (Section 2.3) has a width m = 10, while two rings of 10 covariance

samples each are used with an overall Psafe = 0.9 (Section 2.4).

The BLG algorithm, against which Analytic CC-RRT is compared, determines an

optimal control by choosing coefficients Vhk for the heading rate profile (1.1) described

in Section 1.2. This vehicle model is fundamentally different from the one used

by Analytic CC-RRT (Section 2.3.1) in the way heading rate is handled. Whereas

Analytic CC-RRT assumes heading rate is the output of a linear lag-dynamics model,

the BLG vehicle model assumes lag-free control over the heading rate, provided that

the controls are bounded by (1.1).

The BLG algorithm has been implemented in MATLAB for comparison. In this

work, the optimization is performed using iterations of MATLAB's fmincon function,

instead of Nelder-Mead simplex optimization as in Ref. [32]. The parameter values
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Figure 2-6: Screenshot of Analytic CC-RRT simulation on the valley terrain

6h = 200 m and N = 4 used in Ref. [32] are also selected for this implementation,

as well. For comparison with Analytic CC-RRT, rather than using a tolerance-based

stopping criterion with a maximum of 100 iterations [32], BLG is permitted to simu-

late the parafoil to the ground through 75 iterations per planning cycle. This number

of iterations requires a comparable amount of computation to the number of RRT

samples generated per planning cycle, as described above.

2.7.2 Valley Terrain Simulations

First, 500 trials were run for each algorithm on the valley terrain scenario, shown in

Figure 2-5. Figure 2-6 provides a simulation example of Analytic CC-RRT's online

execution in the valley terrain, where the parafoil trajectory (blue) and tree of feasible

trajectories (magenta) are shown, including the current best path (green) to the

goal location (yellow circle). Figure 2-7 and Table 2.1 show the CDF and statistics,

respectively, over all trials. The results indicate that Analytic CC-RRT demonstrates

matching or improved landing accuracy, relative to RRT with mean wind and BLG,

at nearly all percentiles.

Both RRT-based algorithms show significant improvement over BLG for all but

the worst-case trials. The mean landing accuracy for both algorithms is lower than
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Figure 2-7: Miss distance CDF for valley terrain comparison, over 500 trials

Table 2.1: Miss distance data for valley terrain comparison, over 500 trials (in mete

Algorithm Mean StDev 50% 80% 90% 95% 98% Max

RRT with mean wind 32.3 47.0 17.0 46.9 79.6 106 139 431

Analytic CC-RRT 28.2 28.5 18.0 45.7 68.6 86.5 115 167
BLG 63.5 89.0 37.9 66.1 153 227 431 581
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BLG by a factor of 2. This ratio continues approximately up to the 95th percentile,

and increases to a factor of 3-4 by the 98th percentile (Table 2.1). In particular,

about 12% of BLG trials have a miss distance exceeding 100 m, whereas less than

5% of the Analytic CC-RRT trials, and less than 6% of the RRT trials, have a miss

distance exceeding 100 m (Figure 2-7(b)). The BLG algorithm also demonstrates a

"long tail": 4% of trials have a miss distance of 300 m or worse, while the worst-case

trial misses by 581 m.

Landing accuracy is comparable between RRT with mean wind and Analytic CC-

RRT up to the 80th percentile; however, Analytic CC-RRT demonstrates superior

performance over both RRT and BLG in the worst 20% of trials. This suggests that

for those trials in which terrain interaction is unlikely, the robustness-based enhance-

ments in Analytic CC-RRT do not significantly influence performance relative to RRT

with mean wind prediction alone. However, the two CDF curves diverge near the 82nd

percentile (Figure 2-7(b)). At the 95th and 98th percentiles, Analytic CC-RRT miss

distance is 17-18% lower than RRT. By the worst-case trial (i.e. 99.8%), Analytic

CC-RRT miss distance is 61% lower. All trials of Analytic CC-RRT have an accuracy
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under 170 m, whereas RRT demonstrates some trials exceeding 430 m (Table 2.1).

This "shorter tail" for the Analytic CC-RRT distribution, relative to RRT with mean

wind (Figure 2-7), demonstrates the robustness of the algorithm to pathological un-

certainty conditions, which might otherwise drive the vehicle prematurely into the

terrain.

Both RRT with mean wind and BLG encounter trials where landing accuracy

exceeds 400 m-with BLG sometimes encountering accuracies approaching 600 m.

Such situations are the product of interaction between the uncertain wind and the

difficult terrain encountered by the parafoil. Figures 2-8 and 2-9 demonstrate how

changing wind conditions can cause selected/executed paths from RRT and BLG,

respectively, to become infeasible despite replanning.

Figure 2-8 shows the planned paths (green) for RRT on successive time steps. On

the first time step (Figure 2-8(a)), the RRT planner has identified a semi-circular

path which brings the parafoil relatively close to the goal (yellow circle). However,

after a new wind measurement, this trajectory is now predicted to collide with the

terrain only halfway through this path (Figure 2-8(b)). This causes the second half

of the path to be pruned, leaving the parafoil on a trajectory which now has poor

terminal accuracy. The issue, in this case, is that several of the intermediate path

nodes are very close to the terrain, such that a wind shift causes them to become

infeasible.

Figure 2-9 compares a planned trajectory (solid red line) and executed trajectory

(dashed blue line) for the BLG planner. The planned, nominal trajectory, based on

the mean wind estimate, takes the parafoil very close to the goal, but also comes very

close to the terrain surface on the right side of the valley before turning back toward

the goal (Figure 2-9(a)). About one-quarter of the way through execution, a small

wind shift takes place, resulting in a deviation between prediction and execution (Fig-

ure 2-9(b)) that yields a mismatch of less than 1 m (yellow line). Yet this mismatch

is sufficient to cause the parafoil to collide with the terrain (blue star), resulting in a

miss distance exceeding 450 m. The direct optimization technique of BLG does not

consider off-nominal, future terrain interactions caused by changing wind conditions.
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As a result, such adverse terrain interactions are possible in the worst case. In both

examples (Figure 2-8 and Figure 2-9), such proximity to this sloping terrain would

have been captured by the analytic uncertainty samples (Section 2.4) using the CC-

RRT formulation, such that the original path with low robustness margin would not

have been chosen for execution.

Table 2.2 shows the average computation time per node generated for both RRT

with mean wind (i.e. 0 samples) and Analytic CC-RRT, for various numbers of co-

variance samples. The time per node for Analytic CC-RRT scales favorably both with

the number of covariance samples, and relative to RRT alone. Table 2.3 demonstrates

that the desirable properties of the RRT-based algorithms are largely preserved when

each algorithm is run in real-time, rather than using a fixed number of iterations.
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Table 2.2: Average node generation times for nominal RRT and Analytic CC-RRT

# Covariance samples Time per Node (ms)
0 (RRT) 10.4

10 17.00
20 26.24
30 33.19
50 46.00

Table 2.3: Miss distance comparison in real time (60% duty cycle), over 500 trials (in

meters)

Algorithm At (s) Mean StDev 50% 80% 90% 95% 98% Max
1 30.6 39.6 18.5 48.3 76.4 94.6 135 353

RRT with mean wind 2 29.1 37.1 17.7 45.6 68.5 90.0 113 417
1 42.1 38.1 30.4 65.7 91.7 115 151 296

Analytic CC-RRT 2 33.1 32.7 22.4 50.5 80.9 92.0 122 237

In these tests. 500 trials are again performed. However, rather than running a fixed

number of iterations, the "execution" step (Algorithm 2) is run on a At = Is or

At = 2s update cycle. During each cycle, a 60% duty cycle (i.e. 0.6 s of each 1 s) is

available for the planner to update and grow the tree.

Compared to Table 2.1, the performance of RRT with mean wind is similar for

both sets of real-time results. Additionally, the extra computation available by dou-

bling the planning time does not appreciably improve performance. Because of the

additional computation needed to check covariance samples, the performance of An-

alytic CC-RRT degrades slightly when subject to real time planning constraints. Re-

gardless, Analytic CC-RRT still yields the best performance in the worst-case relative

to RRT with mean wind alone.

2.7.3 Landing Speed Penalty

Table 2.4 compares results for Analytic CC-RRT in the valley terrain over a set of

500 trials, in which the landing speed penalty of Section 2.6 is applied (C = 10).

Results are compared in terms of both the miss distance and the ground speed of

the parafoil at landing, noting that the nominal landing speed of the parafoil in the

absence of wind is 19.79 m/s.
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Table 2.4: Miss distance and landing speed data for Analytic CC-RRT on the valley

terrain, over 500 trials

Metric Speed Mean StDev 50% 80% 90% 95% 98% Maxpenalty?
Miss No 28.2 28.5 18.0 45.7 68.6 86.5 115 167
distance (m) Yes 33.6 32.2 24.9 54.1 71.9 92.2 119 265

Landing No 19.2 3.8 19.8 21.6 23.3 25.3 28.3 30.0

speed (m/s) Yes 16.0 3.7 16.6 19.8 19.8 20.1 21.8 23.1

Without the landing speed penalty, more than 50% of trials land at the nominal

speed or higher. In the worst case, the ground speed is increased by 36% relative to

the air speed, leading to potentially precarious landing conditions. With the landing

speed penalty turned on, however, the mean landing speed is reduced by 17%, well

below nominal speed. Less than 10% of trials yield a landing speed higher than the

nominal speed, implying that more than 90% of trials are oriented within 90 degrees

of the upwind direction. In the worst case, the landing speed is only 14% larger than

nominal. Additionally, while the miss distances of Analytic CC-RRT are increased

due to incorporation of the penalty, the increase is not large. The mean miss distance

increases by less than 20%, while the worst-case miss distance remains under 300m.

Figure 2-10 gives polar scatter plots representing the spread of landing orienta-

tions over each set of 500 trials in Table 2.4. In these images, the heading of each data

point corresponds to the parafoil's heading at landing relative to the wind direction

in that trial; the most desirable heading is upwind (left side of each figure), while the

least desirable heading is downwind (right side of each figure). With the landing speed

penalty off (Figure 2-10(a) and 2-10(c)), the 500 trials are widely distributed across

all landing orientations. In particular, for cases where the terminal wind exceeds

10 m/s, many trials can be seen to result in a downwind landing, significantly in-

creasing landing speed (Figure 2-10(c)). In contrast, when the landing speed penalty

is enabled, trials are heavily biased toward landing in the upwind direction. Most

trials land within 30 degrees of the upwind direction, and no trials with a terminal

wind exceeding 5 m/s land downwind (Figure 2-10(d)). However, some outliers are

introduced in terms of miss distance (Figure 2-10(b)).

65



Landing Speed Penalty OFF Landing Speed Penalty ON

300 300

200 200

.100 100

Upwind Downwind Upwind Downwind

Magnitude = Miss Distance (m) Magnitude = Miss Distance (m)

(a) Miss distances, landing speed penalty off (b) Miss distances, landing speed penalty on
Landing Speed Penalty OFF Landing Speed Penalty ON

15 15

10 10

5

Upwind Downwind Upwind Downwind

Magnitude Wind Speed (m/s) Magnitude = Wind Speed (m/s)

(c) Wind speeds, landing speed penalty off (d) Wind speeds, landing speed penalty on

Figure 2-10: Radial scatter plots of each trial of Analytic CC-RRT performed on the
valley terrain

2.7.4 CC-RRT Invariance to Terrain

Figure 2-11 and Table 2.5 show the CDF and statistics, respectively, for 500 trials

performed on a completely flat terrain, i.e. T(p,, py) = 0. Although this terrain

proves less complex for the planner, the parafoil's underactuated dynamics still yield

a challenging planning problem. In Figure 2-11, the miss distance accuracy of RRT

with mean wind and Analytic CC-RRT have converged to approximately the same

CDF, with Analytic CC-RRT showing only a slight improvement in miss distance

relative to RRT with mean wind at most percentiles, including the worst-case. This is

consistent with using obstacle-free terrain. Because covariance sampling is performed

in the 2D horizontal plane relative to the prospective trajectories, Analytic CC-RRT

samples will either all be feasible (p, > 0) or all be infeasible (p, <; 0) at any given
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time step, and thus provide no new information to the planner. As a result, Analytic

CC-RRT functions identically to RRT with mean wind in this scenario.

On the other hand, the BLG algorithm demonstrates significant improvements in

accuracy, relative to both the RRT-based algorithms and its own performance on the

valley terrain. Compared to the valley terrain, the mean miss distance has decreased

by 75%, while the worst-case miss distance has decreased by over 80% (from nearly

600m to just over 100m). BLG also demonstrates up to 40% better accuracy than

RRT with mean wind and Analytic CC-RRT, in both mean and worst-case miss

distance (Table 2.5). The improvement is most noticeable between the 50th and

90th percentiles (Figure 2-11). Because of the absence of terrain features, the BLG

algorithm is no longer susceptible to off-nominal terrain interactions in this scenario,

creating the ideal environment for the algorithm to converge on optimal solutions. In

flat terrain, finding feasible solutions, the primary strength of RRT-based algorithms,

is a relatively simple task compared to more complex terrain environments. As a

result, optimizing the planned trajectory. a task BLG is more effective at, is a more

efficient use of available computational resources. In this scenario, replanning alone,

without robustness modifications, is sufficient to counteract shifting wind conditions.

Based on this analysis, we consider how the performance of both BLG and Analytic

CC-RRT varies as the "difficulty" of the terrain is changed. As stated in Section 2.7.1,

this is done by considering scalings of the valley terrain, aTvaiey(Px, Py). In addition

to the cases of ac = 1 and cv = 0 already considered, we also consider "75% Valley

Terrain," in which a = 0.75, representing a terrain of intermediate difficulty. Figures

2-12(a) and 2-12(b) show the CDFs over 500 trials across all three terrains for BLG

and Analytic CC-RRT, respectively, with tabular data provided in Tables 2.6 and

2.7, respectively.

Based on Figure 2-12(a) and Table 2.6, it is clear that the BLG algorithm is highly

sensitive to the complexity and steepness of the terrain. As the terrain becomes more

complex, feasible paths become more difficult to find, and thus cannot be optimized

to the same extent. On the 75% valley terrain, there exists a regime of nominal

performance, up to around the 80th percentile, where BLG performance matches or
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trials (in meters)

Algorithm Mean StDev 50% 80% 90% 95% 98% Max

RRT with mean wind 25.2 26.6 16.5 42.5 59.2 76.7 98.0 220

Analytic CC-RRT 25.3 24.5 16.5 41.8 58.9 72.2 97.8 162

BLG 15.9 19.7 8.9 20.7 35.2 71.3 86.1 107

even exceeds performance on flat terrain, with all miss distances under 40 m (Figure 2-

12(a)). In these cases, finding a feasible solution is relatively straightforward, and

BLG is able to spend significant time optimizing the solution. For the remaining

approximately 100 trials, however, terrain interactions are a serious concern, and

BLG miss distance begins to increase significantly relative to the flat terrain scenario

(Figure 2-12(a)). Both the 98th percentile and worst-case BLG miss distances for

the 75% valley terrain are more than twice their flat-terrain counterparts. Once the

terrain scaling is increased to the full valley terrain (Section 2.7.2), the possibility of

terrain interactions becomes much more significant, and BLG miss distances increase

at all percentiles, especially the worst-case trials.

On the other hand, the performance of the Analytic CC-RRT algorithm (Fig-

ure 2-12(b) and Table 2.7) is largely invariant to the terrain scaling considered. The

gap in mean performance between all three terrains is only 4 m or about 12%, while

the gap in the 98th-percentile is only 17 m or about 9%. Indeed, there is little dis-

cernible difference between the shapes of the CDF curves for each terrain environment

(Figure 2-12(b)). This suggests that Analytic CC-RRT is able to maintain consis-
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and CC-RRT on various terrain, 500 trials

on various terrain- 500 trials (in meters)
BLG Mean StDev 50% 80% 90% 95% 98% Max
Flat Terrain 15.9 19.7 8.9 20.7 35.2 71.3 86.1 107
75% Valley Terrain 22.5 39.5 8.5 20.1 67.1 105 184 247
Valley Terrain 63.5 89.0 37.9 66.1 153 227 431 581

Table 2.7: Miss distance data for CC-RRT on various terrain, 500 trials (in meters)
Analytic CC-RRT Mean StDev 50% 80% 90% 95% 98% Max
Flat Terrain 25.3 24.5 16.5 41.8 58.9 72.2 97.8 162
75% Valley Terrain 27.1 26.1 18.1 42.6 63.8 90.4 101 122
Valley Terrain 28.2 28.5 18.0 45.7 68.6 86.5 115 167

tent performance, regardless of the difficulty of the terrain scenario. While other

algorithms may be able to leverage highly simplified terrain to improve accuracy.

such as through BLG's direct optimization, Analytic CC-RRT can ensure reasonable

performance even under worst-case terrain and wind conditions.

2.7.5 CC-RRT Invariance to Initial Altitude

One of the key advantages of Analytic CC-RRT relative to other parafoil terminal

guidance algorithms is the ability to start planning from any initial altitude. Other

approaches in the literature often require an upper limit on the initial altitude for

terminal guidance to remain computationally tractable [3, 4, 26-28, 32]. Figure 2-

13 and Table 2.8 present simulation results on the valley terrain when the initial
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Figure 2-13: Miss distance CDF for Analytic CC-RRT from various initial altitudes,
500 trials

Table 2.8: Miss distance data for Analytic CC-RRT from various initial altitudes, 500

trials (in meters)
Init. Alt. Mean StDev 50% 80% 90% 95% 98% Max

PzI = 500m 28.2 28.5 18.0 45.7 68.6 86.5 115 167

PzI = 1000m 27.5 28.9 19.3 44.2 63.7 79.5 95.4 256

PzI = 2000m 28.6 33.2 17.0 44.0 63.3 91.2 122 266

altitude, PzI, is varied from 500 m (as in Section 2.7.2) to 1000 m and 2000 m. All

other conditions are the same as in Section 2.7.2.

From the results in Figure 2-13 and Table 2.8, the performance of Analytic CC-

RRT is shown to be largely independent of the starting altitude. Compared to starting

at 500 m, both the mean and worst-case accuracy increase only slightly at higher

initial altitudes (Table 2.8). Again, the shapes of the CDF curves for all three cases

are nearly the same (Figure 2-13). This data suggests that Analytic CC-RRT is

capable of operating at higher altitudes without major deterioration in performance.

70



2.8 Summary

This chapter has presented a new approach to online trajectory planning and robust

obstacle avoidance for the parafoil terminal guidance problem. The proposed Analytic

Chance-Constrained Rapidly-exploring Random Trees (Analytic CC-RRT) algorithm

has been shown to demonstrate several key strengths compared to existing approaches

in the parafoil terminal guidance literature. By building on rapidly-exploring random

trees (RRT), the proposed approach can quickly generate robust trajectory solutions

with a high degree of geometric flexibility. Likewise, through the use of an intelligent

cost-to-go function, the algorithm can operate from a wide range of initial conditions,

and in particular has been shown to be largely invariant to initial altitude. The

addition of speed penalties within the cost-to-go function allows for terminal heading

conditions to be specified. Simulation results demonstrate that these penalties can

significantly reduce parafoil landing speed in order to encourage upwind landings, with

minimal effect on target accuracy. By utilizing a multi-class wind model trained on

prior wind observations, the Analytic CC-RRT planner achieves robustness to highly

dynamic wind conditions that cannot be obtained through replanning alone. Finally,

a novel approach for sampling analytic state uncertainty distributions ensures robust

collision avoidance with arbitrary, non-convex, mapped terrain, which is demonstrated

through simulations to maintain real-time tractability.
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Chapter 3

Chance-Constrained Band-Limited

Guidance (CC-BLG)

3.1 Introduction

The primary contribution of this chapter is the development of a new algorithm for

autonomous parafoil guidance which combines the benefits of analytic chance con-

straints and wind uncertainty modeling into an optimized trajectory planning frame-

work. Leveraging the advantages in robust trajectory design produced by Analytic

CC-RRT in Chapter 2, and the success of the state-of-the-art BLG algorithm for tra-

jectory optimization, this new algorithm entitled Chance-Constrained Band-Limited

Guidance (CC-BLG) is designed to overcome the limitations of both terminal guid-

ance strategies in order to provide improved parafoil performance across a wide range

of wind and terrain environments. This chapter begins with a discussion of motivat-

ing factors, followed by a description of the three core components of the CC-BLG

algorithm. First, a method of weighted analytic uncertainty sampling is proposed

to refine the estimated probability of constraint violation. Next, a novel risk-based

objective function is developed for trajectory optimization. By directly incorporating

the probability of constraint violation, this objective function enables the planner to

efficiently balance the parafoil performance metrics of landing accuracy and landing

speed, with the risk of off-nominal terrain collisions caused by future wind distur-
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bances. Finally, the principles of discrete reachability set approximation are applied

to the CC-BLG algorithm for robust obstacle detection, and avoidance, during fixed-

horizon trajectory planning in constrained terrain environments. Through the design

of an additional cost-to-go component, the reachability approximation accounts for

the effect of the parafoil heading and the wind uncertainty in determining feasibility

over future planning horizons.

3.2 Motivation

3.2.1 Analytic CC-RRT as a Parafoil Guidance Strategy

A principal motivation for the development of the Analytic CC-RRT algorithm pre-

sented in Chapter 2 is the widespread dependence of state-of-the-art parafoil guidance

algorithms on a reactive replanning strategy to compensate for the effects of future

wind disturbances [3, 4, 13, 32-34, 37]. The BLG algorithm, which relies solely on

this approach, was found to be vulnerable when a failure to predict the consequences

of off-nominal wind perturbations resulted in unanticipated collisions with the terrain

environment. As indicated in Section 2.7.2, such collisions can occur even when the

rate of replanning is high. Given these limitations, the proactive wind uncertainty

model and covariance sampling technique developed through Analytic CC-RRT were

shown to significantly improve planning robustness by anticipating the extent to which

variable wind disturbances can increase risk. Building on the framework of rapidly-

exploring random trees (RRT), the proposed algorithm was also shown to be efficient

at generating robust trajectory solutions with high geometric flexibility in order to

guide the parafoil toward the target location. These components enabled Analytic

CC-RRT to provide superior mean and worst case landing performance when com-

pared to BLG in challenging terrain scenarios.

Yet despite this success in planning robustness, one of the limitations of Analytic

CC-RRT relative to state-of-the-art parafoil terminal guidance algorithms is the sub-

optimal nature of the RRT-based trajectory design. Although the RRT algorithm is
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Table 3.1: Miss distance comparison for Analytic CC-RRT on flat terrain with various

samples per growth cycle, 500 trials (in meters).

# Samples Mean StDev 50% 80% 90% 95% 98% Max
150 27.5 29.0 17.2 43.1 67.3 83.5 101.7 236.1
300 23.7 23.3 16.1 41.3 54.7 67.9 86.2 143.5

500 22.6 21.1 , 17.3 43.2 54.2 63.2 69.2 109.8
1000 21.0 20.4 15.1 32.4 49.8 60.6 78.2 121.3

probabilistically complete, it has been shown in Ref. [66] that the lowest-cost RRT

solution does not converge to the globally optimal cost solution, even as the number

of state space samples approaches infinity. This is due, in part, to the way in which

the RRT planning framework limits the capacity for trajectory refinement [67]. While

most optimal planning algorithms maintain the ability to iteratively redesign the state

trajectory in order to produce a lower cost solution, the random sampling and tree

expansion techniques of RRT do not enable existing trajectories to be incrementally

refined except through the addition of new trajectory nodes. As described in Ref. [67],

this can potentially result in low-quality RRT trajectories that may be heavily biased

by the initial tree growth.

The simulation results in Table 3.1 examine the change in Analytic CC-RRT

landing accuracy over perfectly flat terrain as the number of samples per growth cycle

of Algorithm 1 in Section 2.5 is increased. Regardless of the increase in the number of

environmental samples and corresponding tree size, the results indicate that the RRT-

based planner produces an average landing accuracy which is markedly inferior to that

of an optimal planning algorithm such as BLG, shown in Table 2.5. As a result, one of

the primary objectives of this chapter is to develop an autonomous parafoil guidance

algorithm which incorporates the advantages of trajectory optimization for improved

landing accuracy, while maintaining planner robustness to future wind uncertainty.

From the analysis presented in Chapter 2, the use of chance constraints to gener-

ate trajectories with guaranteed probabilistic feasibility bounds provided an effective

framework for robust parafoil guidance in complex terrain. However, one component

that is not included within the design of the Analytic CC-RRT algorithm is a method

for explicitly minimizing the risk of constraint violation. In this way, the cost associ-
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ated with paths that are only marginally feasible (i.e., 0 < Pcollide < 1 - Psafe) could

be compared with the cost of paths that avoid terrain proximity completely (i.e.,

Pcollide = 0). This concept has been explored for RRT-based algorithms in Ref. [67]

by applying additional "soft constraints" to penalize risk within the objective func-

tion. If a path exists in the tree that is both risk free and terminates at the target

location, the incorporation of risk-based penalties would allow the planner to identify

this trajectory as the optimal cost solution. Unfortunately, given the asymptotically

sub-optimal nature of the Analytic CC-RRT algorithm, the addition of risk-based

penalties within the objective function cannot guarantee that the risk of constraint

violation will be driven to zero over successive planning iterations [67]. In the absence

of an optimization routine, this approach may therefore result in undesirable tradeoffs

between incurred risk and guidance performance. The CC-BLG algorithm described

in this chapter is designed to overcome these limitations by developing a cost model

which can incorporate risk directly into the process of trajectory optimization.

An alternative approach to robust sampling-based motion planning known as CC-

RRT* [67, 68] was also considered as a potential replacement for the Analytic CC-RRT

algorithm. Building upon RRT* [69, 70], this algorithm extends the capabilities of

RRT to provide asymptotic optimality guarantees for the lowest-cost trajectory so-

lution, while using chance constraints to ensure probabilistic feasibility. Asymptotic

optimality is achieved by iteratively rewiring paths within the tree in order to reduce

the cost of each partial trajectory solution. Additionally, by penalizing risk within

the CC-RRT* objective function, paths can be rewired to minimize the probability

of constraint violation [67]. While these characteristics allow CC-RRT* to address

the limitations of CC-RRT, several key challenges exist for the implementation of

CC-RRT* to the parafoil terminal guidance problem. First, the tree rewiring proce-

dure requires the development of a steering law in order to precisely connect any two

states in space. Due to the complex and underactuated nature of parafoil dynamics,

this steering law may be difficult to derive for higher order models. Even for the case

of simplified parafoil dynamics, designing a trajectory between nodes that satisfies

terminal constraints on both position and heading appears to be as difficult as solv-
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ing the original two-point boundary value problem (TPBVP) between the parafoil's

current state and the target [41. Furthermore, the additional computation required to

rewire CC-RRT* trajectories has been shown to increase average runtime relative to

CC-RRT by more than a factor of 10 [67]. Due to the limited computational resources

onboard most parafoil systems, this result may hinder the application of CC-RRT*.

For these reasons, initial work on the CC-RRT* algorithm was abandoned in favor of

the BLG trajectory optimization framework.

3.2.2 BLG as an Optimal Planning Framework

Given the motivations outlined in Section 3.2.1, this chapter considers the use of

the Band-Limited Guidance (BLG) algorithm [32] as an optimal planning framework

with which to incorporate robustness to the wind uncertainty. While several optimal

planning approaches exist in the literature for parafoil terminal guidance [13, 30, 33],

one of the primary advantages provided by the BLG algorithm is the formulation of

parafoil terminal guidance as an unconstrained optimization problem. This formu-

lation offers additional flexibility in complex terrain environments where it may be

difficult to precisely satisfy the terminal boundary constraints. An additional bene-

fit of the BLG algorithm, as described in Section 1.2, is its use of heading rate sinc

functions for trajectory design. By specifying a heading rate frequency threshold that

is sufficiently below the system bandwidth, this technique ensures accurate trajectory

tracking by the controller while permitting the design of complex trajectory shapes.

Lastly, the computational efficiency of the BLG algorithm makes it well suited for

online trajectory optimization, and allows for a high rate of replanning in order to

compensate for the effects dynamic wind disturbances [32]. These components of

trajectory tracking and design are critical to the performance of a parafoil guidance

algorithm in the presence of challenging terrain geometries [37].

One consideration that must be addressed in the implementation of the BLG al-

gorithm is the issue of optimization scalability to states spaces of increasing size and

dimensions. In the case of the parafoil terminal guidance problem, real-world terrain

environments such as canyons and mountain ranges may require the initialization of
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terminal guidance from high altitudes in order to permit obstacle avoidance during

the descent. As a result, the success of parafoil terminal guidance in these scenarios

depends on the planner's ability to quickly and consistently converge upon an opti-

mized trajectory solution given online planning constraints. In the BLG approach to

parafoil terminal guidance, the issue of optimization scalability at high initial alti-

tudes is addressed by dividing terminal guidance into two disjoint planning phases.

This approach limits the size of the search space that must be considered during each

terminal guidance phase, in order to both improve the rate of optimization conver-

gence, and reduce the potential for local cost minima. Throughout this thesis, these

two segments of BLG terminal guidance will be referred to as Phase 1 and Phase 2

respectively.

In Phase 1 of BLG terminal guidance, the planner uses the current best estimate

of the mean wind W, in order to compute a desirable upwind transition point pG1 ~

(Px,Gl , Py,G1, Pz,G1). By designating this upwind location as the goal state for Phase

1 planning, the process of BLG trajectory optimization attempts to minimize the

distance from the parafoil to the point pG1 when the transition to Phase 2 terminal

guidance begins. The transition between guidance Phase 1 and 2 is determined based

on a preselected altitude, where the BLG trajectory plan that terminates at XF1 for

Phase 1 is reinitialized from the current parafoil state. With the exception of the

initial Phase 2 state, the trajectory plans over both phases of terminal guidance are

therefore disjoint. The BLG algorithm resumes the process of trajectory optimization

during Phase 2 in order to guide the parafoil to the final target location, PG2. This

approach to terminal guidance enables trajectory planning and obstacle avoidance to

begin from above the peak altitude of the terrain, while ensuring that the initial state

for Phase 2 guidance is positioned upwind within the parafoil glide-slope cone [28].

In the design of the CC-BLG algorithm described in Section 3.3, this multi-stage

formulation of terminal guidance is used for trajectory optimization in constrained

terrain environments. The optimization of the CC-BLG cost function is based upon

the method of Nelder-Mead simplex search, which agrees with the implementation of

the BLG algorithm described in [32]. As the additional components of CC-BLG are
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introduced, the underlying structure from the existing BLG algorithm will remain

unchanged. This allows for an accurate comparison to be drawn between the CC-

BLG and nominal BLG algorithms in Chapter 5, wherein a series of Monte Carlo

simulation experiments will be used to evaluate the performance of each parafoil

guidance strategy.

3.3 Algorithm Development

3.3.1 Description of Approach

The approach to terminal guidance presented in this chapter is based upon the design

of a novel risk-based objective function that enables the planner to efficiently balance

the parafoil performance metrics of landing accuracy and landing speed, with the

risk of off-nominal terrain collisions caused by future wind disturbances. This section

describes the three core components of the CC-BLG algorithm which are derived

through the application of chance constraints to enforce probabilistic feasibility within

an optimized trajectory planning framework.

The wind model and state uncertainty distribution derived in Sections 2.3 and

2.4 are applied within the CC-BLG algorithm in order to estimate the probability of

constraint violation at each time step. From the BLG parafoil kinematics provided in

(1.2), we assume the 2-D wind estimates w., and wy may be represented as the com-

bination of a deterministic mean wind W, and stochastic variational component 6w,

according to the approach described in (2.17) and (2.21), respectively. In this way,

the discrete-time variational dynamics model (2.42) can be used within CC-BLG to

define the parafoil's state distribution at all future time steps, from the set of deter-

ministic trajectory states in (1.2), and state covariance matrix Qt in (2.47). Applying

the support vector machines (SVM) introduced in Section 2.3.3, the current best es-

timate of the wind is classified online into one of three variational models provided

in Section 2.3.2. An augmented approach to analytic uncertainty sampling is then

used to define a set of equi-spaced covariance samples along the state distribution.
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and check for collisions with the terrain environment. Probabilistic feasibility will

also be evaluated at each time step through the chance constraint Pv (x E X) psafe,

provided in (2.9). This wind classification and uncertainty sampling technique bor-

rowed from Analytic CC-RRT serves as one of the core robustness modifications to

the BLG algorithm in order to approximate the probability of future collisions against

arbitrary, non-convex terrain [46].

In the description of the CC-BLG algorithm presented below, although the method

of generating analytic covariance samples will be similar to the approach provided in

Chapter 2, the application of this technique to the trajectory generation process is

fundamentally different. By incorporating additional cost penalties into the objective

function for each covariance sample that violates the terrain constraints, CC-BLG will

attempt to directly minimize the level of risk incurred at each time step along the

trajectory in order to drive the planner towards solutions that are robust to future

wind uncertainty. In Section 3.3.2, an alternative method of analytic uncertainty

sampling is introduced in order to quantify the risk of constraint violation using the

probability density function of the state distribution. Section 3.3.3 presents the CC-

BLG objective function, which is used to incorporate the risk of constraint violation

directly into the process of trajectory optimization. Lastly, Section 3.3.4 discusses

some of the additional challenges that must be addressed during multi-stage CC-

BLG path planning in complex terrain environments, such that vehicle safety can be

maintained over consecutive planning horizons.

Within the context of a robust motion planner, the hard constraint bounds on

probabilistic feasibility Psafe in (2.9) can potentially limit the solution space of valid

trajectories, and must be considered carefully during the process of algorithm design.

This result has been demonstrated in the work by Luders et al. [67] through the anal-

ysis of several variants of both the CC-RRT and CC-RRT* algorithms over a range

feasibility conditions specified by the user. As a result, this thesis first considers re-

laxing the hard feasibility constraints (2.9) during the development of the CC-BLG

algorithm, in favor of using "soft," cost-based chance constraints to penalize the risk

of constraint violation. Although probabilistic feasibility guarantees will be lost, this
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approach is shown to provide additional flexibility for optimized trajectory planning

in tight geometry environments, and better coincides with the model of unconstrained

optimization used within BLG. Chapter 4 examines the effects of reintroducing hard

constraints on probabilistic feasibility in combination with the penalty-based formu-

lation presented in Section 3.3.3.

3.3.2 Weighted Analytic Uncertainty Sampling

Based on the principles of analytic uncertainty sampling introduced in Chapter 2,

this section presents a new method for approximating the probability of constraint

violation at each time step by developing an alternative set of weighted covariance

samples along the state distribution. These sample weights are derived using the

probability density function (PDF) of the bivariate normal distribution, which repre-

sents the parafoil's 6p, and 6py position about each nominal trajectory state. For a

vector x of arbitrary length, with vector mean R and covariance E, the general form

of the multivariate Gaussian PDF is expressed as

fx(x) = ( exp (-) (x - ). (3.1)
fX(X) (27r) /d-et(E) (_2(X-RT

Recall that when the value of (x - R)TEl(x - R) is constant, this distribution can

be used to characterize contours of equal probability-represented in 2-Dimensions

by the uncertainty ellipses introduced in Section 2.4. For the bivariate normal dis-

tribution of (6p,, 6py), the boundary of each uncertainty ellipse with covariance Q is

described in the XY-frame by

6p2 2popxopy 6P2
C = 2P6 x6  + 'Y (3.2)

relative to the nominal trajectory state x, where p is the correlation coefficient and c

is a constant value.

In the previous application of analytic uncertainty sampling provided in Chapter

2, the probability of constraint violation at a given time step was determined using
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(2.53), as the fraction of total covariance samples that violate the terrain constraint,

Pz,t <; T(pxt, py,t). By approximating probabilistic feasibility in this way, all covari-

ance samples are assigned an equal probability weight of P(S) = 1/Ns, where Ns

is the total number of covariance samples positioned around each trajectory state.

While this method has been shown to provide an efficient estimate of collision prob-

ability using a small number of covariance samples, such an approach does not take

into account the variation in the probability distribution of (6px, Spy) as the distance

from the expected trajectory state, x is increased. In this chapter, we seek a higher

fidelity probability estimate for the CC-BLG algorithm which can better differentiate

the relative levels of risk over the parafoil state distribution as the number of covari-

ance samples and ellipses are increased. This probability estimate is used in Section

3.3.3 to improve the quality of risk minimization along the parafoil trajectory plan.

The proposed approach to weighted uncertainty sampling presented in this section

considers reassigning probability weights,

P(Sij) = F(,), for i c {1,...,Ns,}, j C {1} (3.3)
N S3

P(~) (F ((u) -~31) foP(Sij) Ns - , for i E {1, ... ,Ns3 }, j E {2,..., (NE - 1

P(Sij) = (- F(or_,)) for i E {1, ... ,Ns}, j E {NE}

to each covariance sample which are proportional to the region of the uncertainty

distribution contained within each covariance ellipse. For any number of O--ellipses

j = 1, ... , NE}, and samples per ellipse Nsj, this method divides the probability

mass inside each ellipse among the number of covariance samples positioned both

along and within its boundary. From these weighted covariance samples, an estimate

of the probability of collision at a given time step will be developed by approximating

the integral of the probability density function fx(6px, 6py) over the region of the

uncertainty distribution that intersects the terrain.

Through the conic relaxation 3pTQ-l6p = 1, presented in Section 2.4.2, the prob-

ability that a point (6px, 6py) is located within an uncertainty ellipse with covariance
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Q, and covariance scale factor a, may be represented by the CDF

F(a) = 1 - C-2 (3.4)

of a Chi-squared distribution with two degrees of freedom, 02 ~ 2
2 [71]. The proba-

bility weights P(Sij) in (3.3) are equal for all covariance samples i E {1, ... , Nsj } along

the boundary of a particular as-ellipse, and the covariance samples are positioned at

equally spaced intervals. In this way, each ith sample along ellipse aj can be used to

represent an equal area, Aij, of the total probability distribution. The integral of the

PDF fx(6px, 6py) over each Aij partition results in an equivalent expression for the

probability weights,

P* = P(Sig 3 o 6py)dopxdopy. (3.5)

Figure 3-1 demonstrates how the discretization of the probability distribution

within a given o-j-ellipse is used to assign the corresponding weights for each covariance

sample. Here we recognize that any Gaussian random vector x - .A(2, E), can be

transformed into a zero mean Gaussian random vector z ~ AF(O, I), with identity

covariance matrix, I, through the linear transformation

z = (/E)-1(x - R). (3.6)

In the same way, the reverse transformation can be applied to specify a Gaussian

random vector with mean k and covariance E according to

x = R + E z. (3.7)

Given this transformation, Figure 3-1(a) illustrates that covariance samples can be

placed at equally spaced angular intervals in the variables Z1 and Z2 for a distribu-

tion z - A(O, I) using (2.49), where the angle bisectors between covariance samples

serve to divide the 1-a unit circle into equal areas. Applying (3.7), the location
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(a) standard normal ellipse (Z1 , Z2) (b) example covariance ellipse (X, Y)

Figure 3-1: Transformation of 2D uncertainty ellipse from z A(O, 1) to x - M(k, E)

of the transformed covariance samples and their bisectors can be determined in the

XY-plane along any uncertainty ellipse with covariance matrix E, such that equal

areas are maintained in the space between samples. These areas in Figure 3-1 corre-

spond to each region Aij of the probability distribution. Figure 3-1(b) displays this

transformation from (Z1, Z2 ) to a 1-a ellipse in the XY-plane.

Because Gaussian distributions are preserved through linear transformations, it

follows from (3.7) that the probability masses P*, represented by the integral (3.5)

over each area partition Aij in the variables (Z1 , Z2 ) or (X, Y), are equivalent for the

1-a ellipses drawn in Figure 3-1(a) and Figure 3-1(b), respectively. Such a relation-

ship holds for any two uncertainty ellipses in coordinates z and x of equal standard

deviation/covariance scale factor, a. This result allows (3.4) to be used to determine

the probability mass F(a) within any XY uncertainty ellipse, aj, in terms of the

identical probability mass within the corresponding aj-circle of the standard normal

distribution z - P1(0, I)-wherein o conveniently represents both the Euclidean and

Mahalanobis distance a = Z + Z2 = (z - z)TI-1(z - 2) in the (Z1, Z2 ) frame.

To understand how the probability mass within each covariance ellipse changes as a

function of a (i.e., distance from the mean), Figure 3-2 displays the CDF graph of

F(o) as a is varied over the interval {0, 6}. From Figure 3-2 it can be seen that the

probability F(a) increases most rapidly in the vicinity of the mean for a < 2, such
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Figure 3-2: Chi-squared cumulative distribution function (CDF), F(o)

that the distribution (6px, 6py) is non-uniform across varying levels of u.

Probability of Terrain Collision

By applying the method outlined above, the resulting probability of collision at each

time step along the parafoil trajectory is approximated as the sum of the probability

weights, P(Si3 ) for all covariance samples which violate the terrain constraint, Pz, t

T~s, Py,t), where

E E (SigI[(Sg) ,for ]If(i) = 0
Pcollide = = =1.(3.8)

1 , for I(x)= 1

To demonstrate how this estimate can be used, consider the case of three covariance

ellipses for u = 1, 1.5, and 2 respectively, which are positioned about a nominal

trajectory state. In this example, a set of 10 equally spaced covariance samples are

placed along the boundary of both the 1-u and 1.5-u ellipses, and 20 covariance

samples are placed along the boundary of the outermost 2-u ellipsc. Figure 3-3

represents this set of u-ellipses and covariance samples in the (Z1 , Z2 ) frame. As
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Figure 3-3: Discretization of f,(ZI, Z2 ) for covariance samples within each a-ellipse

described above, the total probability distribution is partitioned into sections whose

integrals correspond to the probability weights P* = P(S5 3 ) associated with each

covariance sample. Using (3.4), the probability that the parafoil is located within the

region of the 1-a ellipse can be computed directly as F(a) = 0.393. This is represented

by the integral of f (Z1 , Z2 ) over the yellow region of the total probability distribution

shown in Figure 3-3(a). By equally dividing the probability mass of the 1-a ellipse

among the 10 covariance samples positioned along its boundary, the corresponding

probability weight assigned to each sample is 0.0393. The result signifies that for

the discretization described above, the estimated probability of collision in (3.8) will

increase by 0.0393 for each covariance sample in the 1-a ellipse which violates the

terrain constraint. This approach differs from Section 2.5, in which all 40 covariance

samples would have been assigned an equal probability weight of 1/Ns = 0.025.

The probability region represented by covariance samples along the second 1.5-a

ellipse is F(1.5) - F(1) = 0.282. This region of the probability distribution is shown

by the red area in Figure 3-3, in which the overlapping probability region inside the

1-a ellipse has been removed from the total area of the 1.5-u ellipse. In this way, the

10 covariance samples along the 1.5-u ellipse are each assigned a probability weight of
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Figure 3-4: Example of probability region captured by collided covariance samples

0.0282. To complete the discretization, the remaining probability region of 1 - F(1.5)

is divided equally among the 20 covariance samples along the third 2-a covariance

ellipse, as shown by the blue area in Figure 3-3, where each covariance sample is

assigned a weight of 0.0162 according to (3.3)-(3.4).

With this arrangement of probability weights, Figure 3-4 illustrates how the prob-

ability of collision is determined in the presence of terrain. In this example, 12 of the

covariance samples have intersected the terrain boundary represented by the brown

hashed region in Figure 3-4: 2 from the 1-u ellipse, 3 from the 1.5-a ellipse, and 7

from the 2-a ellipse, for a total estimated probability of collision of 0.277.

By representing the contours of the state uncertainty distribution using covariance

samples, the parafoil proximity to terrain along the nominally propagated trajectory

can only be estimated from the location of covariance samples which intersect the ter-

rain boundary. As a result, Figure 3-4 demonstrates that the terrain proximity of the

expected state, xt, will always be less than or equal to the distance d = 't + 6p

to any collided covariance samples. In order to account for this effect, the probabil-

ity weights described by (3.3) represent the integral over the maximum obstructed

region of the probability distribution which can exist between the boundaries of the

remaining collision free samples. This can be observed in Figure 3-4 by the yel-
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low probability region captured within the boundaries of the two collided covariance

samples in the innermost 1-a ellipse. The formulation of (3.3) therefore provides a

favorably conservative measure of the probability of collision at each time step of the

trajectory, and helps to ensure the CC-BLG algorithm will not underestimate the

level of environmental risk. This level of conservatism approaches zero as the number

of covariance samples and covariance ellipses increases to infinity, until the weight of

each covariance sample can be expressed by the value f(6p_.t, 6p.,t)dp.,td6p,,t. The

sum of probability weights P(Sij) over all collided covariance samples then converges

to the true value of the CDF integral over the region of the distribution which inter-

sects the terrain. As a result, this implementation of weighted analytic uncertainty

sampling produces a higher fidelity model of the risk incurred due to future wind

disturbances than the previous Analytic CC-RRT approach (2.53).

3.3.3 Risk-based Trajectory Optimization

Central to the development of the CC-BLG algorithm is the design of a risk-based

objective function for enforcing the probabilistic feasibility of planned parafoil trajec-

tories. The terms of this objective function are selected to transform the probability

of constraint violation at each time step into a discrete cost penalty by utilizing both

the uncertainty sampling technique outlined in Section 3.3.2, and a novel variant of

the cost-to-go model presented in Section 2.6.

The cost function for the CC-BLG algorithm is designed to satisfy three main

objectives for trajectory optimization and collision avoidance in constrained terrain

environments. First, the cost associated with each trajectory should adequately reflect

the discrete probability of a terrain collision at time step t during the parafoil's

descent. Second, the augmented cost penalty for the risk incurred at each trajectory

state should increase proportionally with the nominal BLG costs associated with

that state. In this way, the penalty on risk can be used to forecast the BLG terminal

state cost that would result from a terrain collision at each point in the trajectory,

so as to discourage potentially high cost maneuvers. Finally, in order to account

for the underactuated nature of the parafoil dynamics, the planner should prioritize
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the minimization of short horizon risk over longer horizon risk. This reflects the

notion that, when necessary, the planner should take corrective action to account for

imminent danger before attempting to minimize long-term trajectory risk.

Given the design objectives outlined above, the cost function JT associated with

each state of the parafoil trajectory takes the form

NE Ns.

E E #iP(Sij)f(Sij), for 1(i) = 0
JT = 71 i=i (3.9)

Pcollide/ for 1(X) = 1

The estimated probability of constraint violation at each time step is incorporated

into the penalty function JT through the sum over all covariance sample probability

weights P(Sij) for which I(Sij) = 1 indicates a terrain intersection has occurred.

Likewise, in the case that the nominal planned trajectory state Rt has intersected

the terrain (i.e., I(i2) = 1), the probability of collision Pcollide is taken to be 1, as

described previously in (3.8). The base probability weight of each covariance sample

in (3.9) is then scaled by the additional weight factor,

y(x P,) 2  (y P) 2.+ (p Pz,G ) 2 
_ Ax Apy (3.10

dnorm dnorm

representing the relative distance between the location of the sample (px, Py, Pz), and

the location of the target (p,G, Py,G, Pz,G)-

To simplify the expression of the state cost, the parameter dnorm in (3.10) acts as a

normalization factor for the 3D Euclidean distance H (Apr, Apy, Apz)I which bounds

the cost of each covariance sample Sij within the range {0, 1}. This parameter can be

tuned empirically for various parafoil applications in order to estimate the maximum

3D distance the parafoil will travel from the target during the terminal guidance

phase. Throughout this work, a value of dnorm = 750 meters will be used which, in

practice, successfully normalized the value of / over most parafoil trajectory plans.

Scaling the base probability weights P(Sij) by the distance factor 3, the expression

for the penalty on risk JT in (3.9) serves to efficiently forecast the nominal BLG cost
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of a collision at each point in the trajectory plan. Recall that for the BLG objective

function outlined in Section 1.2, the cost associated with each trajectory is depicted as

the weighted sum of quadratic costs associated with the position error, Api, Apt, ApZ,

and heading error, sin(A4/2) 2 , at the terminal trajectory state. Because the parafoil's

distance from the target is one of the most relevant metrics when determining the

cost of an unintended terrain collision, the component 3 in (3.9) reflects the notion

that risk incurred in situations where a collision is least desirable (i.e., furthest from

the target) should receive a higher penalty than risk incurred in the vicinity of the

target. This approach also acts as a heuristic to gradually decrease the total penalty

on constraint violation as the parafoil approaches the target-thus shifting planning

priority toward landing accuracy over risk aversion at lower altitudes.

The final cost function J' associated with each CC-BLG trajectory is selected

as the combination of the nominal BLG terminal state cost JBLG in (1.3), and the

weighted sum JcC over all state penalties in the trajectory JT,k for k = {1,...N},

NT NT NE Ns

JCC =ZO'kJ,k = ( ok EP(Sij)R(Sij) , (3.11)
k=1 k=1 j=1 i=1

ak = a0e Alp,o-Pz,k, (3.12)

J JCC + JBLG. (3-13)

In this expression for the augmented JCC cost component, the minimization of short

horizon risk is prioritized through the addition of the scale factor ak, which decays

exponentially as a function of the altitude difference between the parafoil's current

state pz,O, and the altitude of each trajectory state Pz,k. The rate of decay is selected

through the parameter A, specifying the extent to which risk is penalized along the

trajectory. For A > 0, the scale factor ak is largest at the current state, and smallest

at the terminal trajectory state.

Given this relationship, if the risk of imminent terrain collision is high, the associ-

ated penalty on states JT,k dominate the J' cost function and encourages the planner

to make an immediate course correction so as to minimize the penalty of near term
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states. Additionally, by decaying the cost JT,k exponentially through the rate pa-

rameter A, states at lower altitudes (i.e., longer time horizons) relative to the current

parafoil state will tend to have a much smaller impact on the cost minimization.

Because the CC-BLG algorithm updates the trajectory plan every At = 1 second in

order to compensate for the effects of modeling errors and changing wind conditions,

the trajectory produced at the end of each planning cycle may change considerably

during the course of the parafoil's descent. This choice for the weight coefficient &k

accounts for the additional time the planner has in order to minimize risk at lower

altitudes, by reducing the penalty associated with trajectory states that are most

susceptible to change due to subsequent planning iterations.

The relative weighting between the objectives of terminal landing accuracy and

risk mitigation in (3.13) is determined through the selection of the constant coef-

ficient ao in (3.12), which scales the cumulative penalty JCC over all states in the

planned trajectory. In many multi-objective optimization problems, the selection of

optimization priority in the case of conflicting objectives is largely dependent on user

preference, as expressed through the relative weight of each component in the final

cost function. Through the formulation of (3.11), the minimization of risk at each

time step along the trajectory need not conflict with the minimization of the JBLG

terminal state cost. These objectives can both be satisfied if the feasible planning

space is sufficiently large at all altitudes so as to include the region of the uncertainty

distribution (3.2) contained within each state's largest covariance ellipse. However,

as the degree of wind uncertainty or environmental hazards is increased, some level

of risk may be required in order to minimize the JBLG cost objective associated with

landing at the target, or orienting the parafoil into the wind. Thus, ao serves a similar

purpose to the user defined feasibility bound psafe introduced in Analytic CC-RRT,

as a means to specify the user's desired level of risk tolerance while attempting to

satisfy the terminal state objective. Chapter 4 describes the process of tuning the

CC-BLG cost parameters of ao, A, and the number of covariance samples Ns, in order

to produce the desired balance between planner robustness and goal seeking behavior

used throughout this thesis.
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3.3.4 Reachability Approximation for Obstacle Avoidance

In Section 3.2.2, a high altitude variant of the BLG terminal guidance algorithm was

introduced which divides path planning into two distinct phases for trajectory op-

timization. This multi-stage planning approach enables BLG to overcome some of

the challenges related to optimization scalability over the range of initial altitudes

common for parafoil terminal guidance, but can also create a potentially dangerous

planning scenario in the presence of environmental obstacles. The threat to vehicle

safety can increase when partial trajectory plans designed over limited time horizons

do not adequately consider future feasibility requirements beyond each horizon's ter-

minal trajectory state [72]. As a result, satisfying the feasibility constraints over the

current planning horizon may not be sufficient to guarantee path feasibility during

future time steps.

Figure 3-5 demonstrates how a failure to account for the continuation of Phase 2

planning during the design of the Phase 1 trajectory can result in an unanticipated

collision with the terrain environment. This collision is caused by the direction of

the parafoil approach to the upwind Phase 1 target (Px,G1, Py,G1, Pz,G1), resulting in

a pathological initial condition for Phase 2 terminal guidance. Although the initial

state for Phase 2 terminal guidance (blue star) does not violate the terrain constraints,

the parafoil has insufficient time and control authority to avoid a collision with the

terrain during subsequent planning iterations. This is illustrated in Figure 3-5(b) by

the attempted BLG trajectory plans during the initial 5 seconds of Phase 2 terminal

guidance in the valley terrain environment, introduced in Section 4.2.

In this section, the principles of discrete reachability set approximation introduced

in Chapter 2 are extended to the process of multi-stage CC-BLG path planning. The

proposed approach will provide an efficient strategy for detecting the presence of

terrain obstacles beyond the current planning horizon in order to maintain trajectory

feasibility, and mitigate the risk of future terrain collisions. This is achieved by

reorienting the parafoil approach to the Phase 1 target location through the design

of an additional risk-based cost-to-go function JCTG, which considers the role of both
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Figure 3-5: BLG collision during terminal guidance phase transition
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the parafoil heading, and the wind uncertainty, in determining the feasibility of the

final trajectory design.

In Section 2.6, the full reachability set of the parafoil was approximated over

finite time using a set of N, constant control sequences, constrained within the limits

Jul <Wm . Approximating the reachability set in this way, a method for detecting

the presence of terrain obstacle over future planning horizons is incorporated into

the CC-BLG algorithm by creating a discrete boundary of states (p., p,, p) for

SE { 1,..., N} which are propagated forward in time from the terminal state XF Of

each Phase 1 candidate trajectory. For the set of N, equi-spaced constant control

sequences defined in (2.62), the location of each state along the reachability horizon

can be specified through the forward propagation of the parafoil dynamics model

provided in (2.32)-(2.36) over the finite time interval t = {tF, tF T1. Here, tF is

the time at the final state XF of the planned Phase 1 trajectory, and the propagation

time T will be taken as the minimum between the time to first terrain impact tZ, and

the finite propagation horizon tp selected by the user,

T =min(tztp). (3.14)

By applying the dynamic propagation using (2.32)-(2.36), the reachability horizon tp

can be extended to enable the planner to look further forward in time while retaining

predictive accuracy regarding the location and feasibility of future parafoil states.

This results in a better approximation of the reachability set than the previous an-

alytic expression described in (2.63), in which both the parafoil lag dynamics and

persistent wind estimate were neglected for simplicity over short propagation hori-

zons. Although this improvement in model accuracy incurs an additional increase

in computation time, in practice, this application of reachability set approximation

remains efficient, and requires far fewer function evaluations when compared to the

implementation provided in Analytic CC-RRT.

To account for the effects of possible variation in the future wind disturbances,

the state uncertainty distribution about each nominal trajectory of the reachability
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Figure 3-6: Example of reachability set approximation during Phase 1, N, = 9

set is computed using (2.44) through the discrete time propagation of the covariance

matrix, Qt. In this way, (2.48) and (2.49) can be used to define a set of covariance

samples at each time step in order to check the set of NA/ parafoil trajectories for

the presence of terrain obstacles, beginning from the last state xF of the current

planning horizon. Figure 3-6 displays the states (green circles) at time t =tF +I tp

along the reachability frontier for N1 = 9, which are propagated forward in time from

the terminal state (light blue circle) of the Phase 1 trajectory plan. The Phase 1

target location is indicated by a yellow star. The black dots around each frontier

reachability state in Figure 3-6 indicate the location of the covariance samples along

the state distribution, whereas the red triangles indicate the location of covariance

samples which have intersected the terrain. Covariance samples are also shown along

the nominal Phase 1 trajectory plan (green line).

With the reachability approximation provided above, a form for the cost-to-go

function JCTG is selected so as to compare potential position and heading configura-
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tions at the end of Phase 1 trajectory planning. To enforce that the current trajectory

plan remains feasible over future planning iterations, a desirable form of the cost-to-go

function is one that attempts to minimize the risk of terrain collision represented by

the set of reachability states. Utilizing the risk model provided in (3.9), the cost-to-go

function

N . N T kN

JCTG = E EknJTkQ iJR.n (3.15)
n=1 k=1 n=1

combines the weighted sum over the risk penalties of all reachability states JTk", for a

given number of input sequences n ={1, ... , N,}, and propagation steps per trajectory

k = {1, ... , NT}. The JCTG cost-to-go function is augmented to the CC-BLG objective

function (3.11) during Phase 1 terminal descent. Within the resulting multi-objective

optimization

J _ Jcc + JBLG + JCTG , for Pz,O > Pz,G1

JcC + JBLG , for Pz,O Pz,G1

the constant coefficient in (3.15) serves as an additional tuning parameter, which

implicitly specifies the importance of the final Phase 1 approach direction 'bF through

the weighted cost of the reachability set approximation. If the current approach direc-

tion and wind classification indicate a high degree of risk in attempting to reach the

Phase 1 target, the optimizer will attempt to redesign a trajectory which terminates

in either a different orientation OF, or with sufficient distance from the target, in

order to improve the safety of the reachability states. The purpose of the cost-to-go

function in (3.16) is therefore to ensure that the boundary of the reachability set is

collision free over the range of control { -Wmax, Wmax }, such that the nearest terrain

obstacle falls outside the horizon specified by tp. Section 4.4 considers the selection

of the propagation limit tp, and number of control sequences No, in order to produce

the desired behavior.

By formulating the cost-to-go function in this way, the parafoil approach to the

Phase 1 target location is considered cost optimal if all NA control sequences incur
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no risk over the finite horizon t = {tF, tF + T}. Such a configuration of reachability

states is advantageous by providing the greatest feasible planning space ahead of the

parafoil during the initial iterations of Phase 2 terminal guidance. While alternative

formulations of the cost-to-go function are available (e.g., minimum and maximum

functions), this relatively straightforward approach in (3.15) emphasizes the desire for

the entire finite horizon reachability set to be collision free, and does not assume the

planner's ability to immediately identify and execute the lowest cost input sequence.

As a result, this formulation of the cost-to-go function emphasizes vehicle safety, and

is more conservative than the previous formulation provided in Section 2.6. The

improvement of (3.15) for promoting future planning feasibility is demonstrated in

Section 4.4, which considers alternative forms of the cost-to-go function.

3.4 Summary

This chapter presented the three core components of the CC-BLG parafoil termi-

nal guidance algorithm. This algorithm builds upon the framework of Band-Limited

Guidance (BLG) [32] by combining the benefits of wind uncertainty modeling and

reachability set approximation for improved planning robustness in complex terrain

and wind environments. First, a new approach to weighted analytic uncertainty sam-

pling was introduced in order to efficiently approximate the probability of constraint

violation at each time step. This method leverages the information within the state

bivariate normal distribution to provide a higher fidelity estimate of the risk produced

by future wind uncertainty than the previous analytic sampling approach (i.e., Section

2.4). Second, a novel risk-based objective function was developed for the CC-BLG

algorithm which incorporates the probability of constraint violation directly into the

process of trajectory optimization. In this way, CC-BLG trajectory plans are opti-

mized for both landing accuracy and reduced landing speed, while minimizing the

risk of off-nominal terrain collisions caused by future wind disturbances. Finally, the

method of reachability set approximation introduced in Section 2.6 was applied to the

process of multi-stage CC-BLG path planning. Through the design of an additional
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cost objective, this technique enables obstacle detection and avoidance between fixed

planning horizons by considering the effects of the parafoil heading and wind uncer-

tainty on future planning feasibility. Chapter 4 presents the analysis and tuning of

each of these algorithm component within the optimized parafoil terminal guidance

strategy.
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Chapter 4

Design Analysis of CC-BLG

4.1 Introduction

This chapter analyzes the performance of each of the three components of the CC-

BLG terminal guidance algorithm introduced in Chapter 3. Development and testing

of CC-BLG is conducted over a series of Monte Carlo experiments using a high fidelity

parafoil simulation environment presented in Section 4.2. First, Section 4.3 considers

the effects of increasing the number of covariance samples and ellipses which define

the contours of the state uncertainty distribution. Additionally, a comparison is made

between the Analytic CC-RRT approach for estimating the probability of constraint

violation (Section 2.5), and the weighted analytic uncertainty sampling approach pre-

sented in Section 3.3.2. Next, Section 4.4 considers the selection of the propagation

horizon tp, and number of control sequences Ne, used to define the boundary of the

reachability horizon (Section 3.3.4). The CC-BLG objective function parameters of

ao and A (Section 3.3.3) are then tuned in Section 4.5 to create the desired balance

between planning robustness and goal seeking behavior. Lastly, this chapter considers

the effects of reintroducing hard user-defined bounds on probabilistic feasibility (Sec-

tion 2.5) in combination with the "soft" penalty-based chance constraints introduced

in Section 3.3.3. From the results of this analysis, a final set of guidance parameters

are selected.
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4.2 Implementation

Development and testing of the CC-BLG algorithm are conducted over a series of

Monte Carlo experiments using Draper Laboratory's high fidelity simulation environ-

ment [48]. This simulator has been implemented in the recent work by Stoeckle [73]

as a realistic training platform with which to design a Fault Detection, Isolation, and

Recovery (FDIR) algorithm for autonomous parafoil guidance. In this simulation,

the parafoil is represented using a full nonlinear dynamics model [73], which incor-

porates the effects of the parafoil aerodynamics described in [1] and [74]. Feedback

is provided for guidance in the form of simulated GPS position and ground veloc-

ity measurements, such that an Extended Kalman Filter (EKF) is applied in order

to estimate the true wind velocity during descent. The wind estimate provided by

the EFK is then used to derive the parafoil heading and airspeed velocity according

to [73]. This model will be used throughout the remainder of this thesis as a means

to accurately represent the limited state information that is available to most fielded

parafoil systems.

In the Monte Carlo experiments conducted in Chapters 4 and 5, the initial condi-

tions of parafoil position, velocity, altitude, and heading are randomly varied during

each simulation trial. The parafoil is simulated from the point of release at altitudes

uniformly sampled over the range from 3,048-4,572 meters (10,000-15,000 ft), and

lateral distances from 0-8,524 meters (0-28,000 ft), while a preselected altitude is

used to specify where energy management ends and Phase 1 of terminal guidance

begins. In this work, we begin Phase 1 and Phase 2 of BLG/CC-BLG terminal guid-

ance at fixed altitudes of 650 meters and 300 meters, respectively. The parafoil system

parameters including payload weight, turn rate bias, and lift-to-drag ratio are also

randomized over a range of values suitable for each canopy type [22]. This chapter

considers simulations using the UltraFly parafoil system (JPADS-ULW) developed by

Wamore Inc. [18, 21]. The system weight is uniformly sampled within the range from

250-750 lbs, while the turn rate bias and lift-to-drag ratio are sampled from a Gaus-

sian distribution centered about each nominal value with standard deviations of 0.1
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Figure 4-1: Valley terrain used in CC-BLG algorithm development (meters)

and 0.2, respectively. The presence of wind will be modeled in each simulation from

the representative set of 25 wind profiles used for the design of Analytic CC-RRT, as

described in Section 2.7.1. This is selected in order to maintain a consistent basis for

comparison between each of the three parafoil guidance algorithms considered in this

work. The Monte Carlo simulation procedure described above is used in preparation

for flight test experiments, described in Chapter 6, as a means to evaluate CC-BLG

performance over a range of flight conditions common to real-world drop scenarios.

Complex terrain is modeled through the use of Level 2 Digital Terrain Elevation

Data (DTED2) which acts as a 3-Dimensional map of the environment for each set

of simulations. During the design analysis of the CC-BLG algorithm presented in

this chapter, the 1.5 km x 1.5 km valley terrain environment shown in Figure 4-1 is

selected as a test environment for tuning the various algorithm components.

As described in Section 2.7.1, valley terrain represents a particularly challenging

scenario for airdrop systems due to tight geometry constraints that can exist at low

altitudes and within the vicinity of the target location. This is the case for the

valley terrain shown in Figure 4-1, in which elevation is denoted in meters by the

transition in color from dark blue (lowest altitude) to dark red (highest altitude).

The target for these experiments is placed in the middle of the valley, as indicated
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Table 4.1: Baseline CC-BLG parameters for tuning

Parameter Value
ao 1000
A 0.003
tp 15s

Nu 9

by the yellow circle. In this example, only a narrow band of terrain exists where

the parafoil can perform a safe landing at the desired target altitude (colored dark

blue), which runs from east to west along the middle of the map. Furthermore,

the two mountain ridges on either side of the western portion of the valley create a

potentially dangerous terrain bottleneck that continues to limit the feasible planning

space throughout the parafoil's descent. The following development of the CC-BLG

algorithm analyzes the extent to which wind uncertainty modeling can be used to

minimize terrain impacts and generate improved terminal guidance performance over

BLG in this difficult terrain environment. This procedure for algorithm development

is similar to the approach described in [47] for Analytic CC-RRT, while adjusting to

the increased fidelity of the Draper Laboratory simulation model.

Throughout this chapter, data will be presented primarily in the form of cu-

mulative distribution functions (CDF) and tabular data of normalized parafoil miss

distance performance. In each experiment, the data is normalized by the median

landing accuracy from an identical set of Monte Carlo simulation trials using the

nominal BLG algorithm. This enables a comparison of relative performance during

the process of evaluating various guidance strategies for the CC-BLG algorithm. Ta-

ble 4.1 provides the set of baseline CC-BLG parameters which will be used to initiate

algorithm tuning in Section 4.3-4.5. As various trade studies are performed, these

parameters will be replaced with alternative solutions in order to improve CC-BLG

target accuracy and planning robustness.
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4.3 Analytic Uncertainty Sampling

This section considers the effect on CC-BLG performance of varying the number of

covariance samples and ellipses used to approximate the parafoil uncertainty distribu-

tion about each nominal trajectory state. In the description of the Analytic CC-RRT

algorithm provided in Section 2.4.2, a set of 10 covariance samples were placed along

the state distribution at standard deviations of a1 = 0.7 and a 2 = 1.75 so as to check

for collisions with the terrain environment. This arrangement of covariance samples

was found to work well empirically for promoting planner robustness [46] while main-

taining computational efficiency, demonstrated previously in Table 2.2. Leveraging

the results of prior analysis, these values for a, = 0.7 and U 2 = 1.75 will be adopted

as the basis for analytic uncertainty sampling within the CC-BLG algorithm.

From the parameters provided in Table 4.1, a series of Monte Carlo simulation

experiments are first conducted within the valley terrain environment in order to

examine the impact of increasing the number of covariance samples within each a-

ellipse. Table 4.2 compares the percentage of terrain collisions which resulted over

sets of 1000 Monte Carlo trials of the CC-BLG algorithm, in which the number of

covariance samples per ellipse is varied from 5 to 250 samples for both a, and a 2 . As

the number of samples is increased, the results in Table 4.2 demonstrate a gradual

decrease in the CC-BLG crash percentage for the valley terrain scenario. However, for

coarse levels of the discretization, the CC-BLG worst-case performance also appears

sensitive to the number and arrangement of covariance samples. This is suggested

by the way the crash percentage fluctuates over the range from 5 to 25 samples per

Table 4.2: Crash percentage vs. samples per ellipse, 1000 trials

Samples per a-ellipse % Crash

a,: 5, a 2 : 5 5.1
a,: 10, a 2 : 10 4.3
a1 : 15, a 2 : 15 4.7
a,: 20, a 2 : 20 4.1
ar: 25, a2 : 25 4.7
a1 : 50, a 2 : 50 3.5
a,: 250, a2 : 250 3.5
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Table 4.3: Average computation time per state for CC-BLG

Samples, Ns Time per state (us)
10 2.098
20 2.974
30 4.080
40 4.885
50 5.799
100 9.985
500 43.33

ellipse. When the number of samples per ellipse is further increased to both 50 and

250 samples, the percentage of terrain collisions stabilizes over the final two sets of

1000 Monte Carlo trials. Further increasing the number of covariance samples for this

selection of a1 and a 2 is not expected to yield additional improvements.

These results indicate that refining the discretization of each a-ellipse may have a

limited impact on CC-BLG robustness when the total number of covariance ellipses

is small. This can be explained by the way each a-ellipse represents only a single

contour of the continuous bivariate Gaussian distribution of (6 px, Spy). Nevertheless,

Table 4.2 reveals that the collision percentage of the CC-BLG algorithm is small,

and remains less than 5% for all but the coarsest value of 5 samples per ellipse. In

particular, we observe that the same arrangement of 10 a, and a 2 covariance samples

used by Analytic CC-RRT results in a CC-BLG collision percentage that is well below

the probability threshold (1 - psafe) = 0.1 specified previously in Section 2.7.

In prior work by Sugel [47], the effect of varying the number of standard de-

viations a within the outermost covariance ellipse was evaluated for the Analytic

CC-RRT algorithm in order to determine the scale factor which empirically satisfied

the user-defined probability constraint. As the value of a was increased, this analysis

indicated a favorable reduction in the number of Analytic CC-RRT collisions due to

the planner's improved awareness of terrain proximity. Recall that in Section 2.4.2

and Section 3.3.2, the parafoil proximity to terrain can only be estimated from the lo-

cation of the nearest collided covariance samples. As a result, this work considers the

impact on CC-BLG performance of adding an additional covariance ellipse positioned

beyond the standard deviations of both a, and a2 .
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is quite small for the CC-BLG algorithm (i.e., microseconds) and scales favorably

with the increase in the number of covariance samples. For most modern CPUs,

the limited computation required to generate each covariance sample and check for

intersection with the terrain can therefore be leveraged to provide adequate sampling

definition over each of the u-ellipses used within CC-BLG. In the following analysis,

we restrict our attention to a maximum number of 40 covariance samples in order to

study the effect of doubling the value of Ns used previously by Analytic CC-RRT.

The simulation experiments conducted in Figure 4-2 therefore consider introducing

a third ring of 20 covariance samples with standard deviation o3, in addition to the

two rings of 10 covariance samples provided above.

Figure 4-2 demonstrates the change in the percentage of CC-BLG collisions within

the valley terrain environment as the value of u3 is varied along the state uncertainty

distribution. In this experiment, an identical set of 1000 Monte Carlo simulation
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trials are performed for each value of U3, while all other parameters remain equal to

those used previously in Table 4.2. The results shown in Figure 4-2 demonstrate a

reduction in the number of terrain collisions as the value of U3 is increased from 2.0 to

3.6. This suggests that CC-BLG robustness to wind uncertainty improves in complex

terrain environments as the planner is able to sample the state distribution at greater

distances from the nominal trajectory plan. Likewise, the results in Figure 4-2 indicate

that the addition of a third ring of covariance samples can significantly enhance CC-

BLG performance while using only twice as many samples as the previous Analytic

CC-RRT approach. As the value of os increases to 3.2, the CC-BLG crash percentage

is reduced to less than 1%, while the effect of further increasing the value of U3 appears

to subside. Because the probability of the parafoil being outside the a3 ellipse (3.4)

has already been reduced to less than 0.6% for Oc 3 = 3.2, this helps to explain the

diminishing returns provided by increasing the standard deviation of the outermost

covariance ellipse. From this analysis, the values of U3 = 3.2 and Ns = 40 are selected

for use throughout the remainder of this thesis.

4.3.1 Weighted Sampling Analysis

With the addition of a third covariance ellipse, a final set of Monte Carlo simulation

experiments are conducted in this section in order to evaluate the performance of the

CC-BLG approach to weighted analytic uncertainty sampling introduced in Section

3.3.2. This approach considers approximating the probability of constraint violation

at each time step using (3.8). The weighted sampling method is compared with

the previous probability estimate used by Analytic CC-RRT in which all covariance

samples are assigned uniform weights of P(S) = 1/Ns. As described in Section 2.5,

the probability of constraint violation is approximated within Analytic CC-RRT as

the fraction of total covariance samples which collide with the terrain environment.

Figure 4-3 and Table 4.4 present the results from 1000 Monte Carlo simulations of

the CC-BLG algorithm in the valley terrain environment using both the "Weighted"

and "Uniform" sampling strategies described above. For comparison, the results from

an equivalent set of 1000 Monte Carlo simulations are also provided using the nominal
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Figure 4-3: Normalized miss distance CDF for analytic sampling method, 1000 trials

Table 4.4: Normalized miss distance data for analytic sampling method, 1000 trials

Sampling Method Mean StDev 50% 80% 90% 95% 98% Max

Weighted 1.305 0.911 1.126 1.841 2.391 2.822 4.125 8.078

Uniform 1.428 1.193 1.147 1.914 2.595 3.713 5.376 9.952

BLG 1.625 2.225 1.000 1.861 2.788 6.298 10.713 15.133

BLG algorithm. The median miss distance of the BLG algorithm has been used to

normalize each set of data in accordance with the approach described previously in

Section 4.2.

From the CDF plots in Figure 4-3(a)-(b), the method of weighted analytic uncer-

tainty sampling for CC-BLG is shown to provide superior miss distance performance

over both the nominal BLG algorithm, and the CC-BLG algorithm using uniform

sample weights. As indicated in Figure 4-3(a), the distribution of parafoil miss dis-

tances in almost identical for all three data sets up to the 80th percentile. For the

remaining 200 Monte Carlo trials in the upper 20% of the distribution, the combined

cffect of complex terrain and shifting wind conditions has a noticeable impact on

planning performance by increasing the risk of future terrain collisions. Over this

set of trials, the weighted analytic sampling approach demonstrates significant im-

provements in CC-BLG performance by modeling the variation in the distribution of

(6 px, 6py) described in Section 3.3.2. In this way, the method of weighted sample prob-

abilities allows for a higher fidelity estimate of environmental risk than the previous
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"Uniform" approach. This improvement is evident in both the "Weighted" CC-BLG

landing accuracy above the 80th percentile, as well as in the shorter distribution tail

produced by decreasing the number of worst-case outliers apparent in both the nom-

inal BLG algorithm, and "Uniform" CC-BLG approach. A detailed comparison of

BLG and CC-BLG performance in complex terrain is reserved for Chapter 5.

Given the results provided in Table 4.4 and Figure 4-3, the weighted analytic

uncertainty sampling approach is selected for use within the CC-BLG algorithm.

The following sections consider the effect of modifying the parameters provided in

Table 4.1 to examine the possibility for further CC-BLG performance improvements

within the valley terrain environment.

4.4 Reachability Horizon and Cost-to-go

This section reexamines the choice of time horizon tp in (3.14), and number of control

sequences N,, in (3.15), which define the boundary of the CC-BLG reachability set

approximation. The process of determining an appropriate upper bound on the prop-

agation horizon will be considered first, and is based on an evaluation of the parafoil

maximum rate of turn.

This thesis considers the presence of complex terrain features found in real-world

drop environments such as valleys, canyons, and mountain ranges. Arbitrary, non-

convex terrain environments of this type can make predicting vehicle safety over future

planning horizons particularly difficult. Consider as an example the case of a "dead

end" terrain corridor shown in Figure 4-4, which is positioned ahead of the parafoil

prior to the transition to Phase 2 terminal guidance. Depending on the corridor

width, and given the parafoil's current heading, this type of scenario may make it

challenging, if not impossible, for the parafoil to turn around without producing a

collision with the terrain environment. Likewise, if the parafoil is flying directly

toward the nearest terrain obstacle (e.g., Figure 3-5), there may be insufficient time

at the start of Phase 2 guidance to perform a successful turn maneuver due to the

underactuated nature of the parafoil dynamics. To maintain parafoil safety, the value
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Figure 4-4: Dead end terrain scenario prior to BLG terminal guidance phase transition

of the propagation horizon tp must be sufficiently large such that dangerous terrain

features will be detected by the reachability states, and avoided during the transition

between terminal guidance phases.

This section considers the choice of four potential propagation horizons for the

reachability set, which are selected based on the maximum change in heading IA)Pp. I

that can be achieved by the parafoil at the limits of the control Wmax. These turn

maneuvers are selected as IAV/pna = 7r/2, 37/4, ir, and 57r/4 radians, respectively.

The span of the parafoil reachability set is shown in Figure 4-5 for W = 0. as the

upper bound on the propagation time tp is increased for each maneuver.

At the limits of the parafoil's control authority, wma, the time period to complete a

half turn for I AV)pma I i- represents an intelligent choice for the propagation horizon

given the shape of the reachability boundary shown in Figure 4-5. In the example of

a dead end terrain corridor described above, a reachability horizon of LA/)pmax ; > 7

would discourage the parafoil from entering any region in which there is insufficient

clearance to perform a full change in course direction of at least 7r radians. Similarly,
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Figure 4-5: Parafoil reachability horizon as propagation time tp is increased, W=O

if the parafoil is far enough away from the terrain such that a turn of I I_ = 7 can

be completed safely in either direction, it is reasonable to assume that the terminal

state of the Phase I trajectory may have at least one feasible Phase 2 solution.

Table 4.5 and Figure 4-6 present simulation results over 1000 Monte Carlo trials of

the CC-BLG algorithm on the valley terrain environment using each of the maximum

turn maneuvers provided above. Here it is assumed that propagation of the parafoil

dynamics in (2.32)-(2.36) begins from an initial state of straight flight with symmetric

line deflections such that the time to turn left and right remains equivalent for each

pair of N,, control options, as shown in Figure 4-5. In these experiments, a value of

N,, = 9 is selected so as to ensure sufficient coverage for obstacle detection across the

boundary of the reachability set. The values of ao = 1000 and A = 0.003 were also

used according to Table 4.1.

From the normalized CDF of parafoil miss distance shown in Figure 4-6, the effect

of changing the propagation horizon tp is most noticeable above the 90th percentile

of the distribution. In this region, the shape of the reachability boundary has an

impact on parafoil performance by determining the extent to which the CC-BLG
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Figure 4-6: Normalized miss distance CDF for maximum turn IAV)pa 1,. 1000 trials

Table 4.5: Normalized miss distance data for maximum turn IAV)Pm|ax, 1000 trials

Reachability Horizon Mean StDev 50% 80% 90% 95% 98% Max

lJAVp_.axl =/2 1.439 1.745 1.053 1.851 2.471 3.095 7.814 16.480

AVPm|ax = 37r/4 1.334 1.407 1.042 1.800 2.339 2.926 4.521 14.552

VA pr_ = 7r 1.331 0.991 1.129 1.897 2.428 3.184 4.352 7.220

IAV/pna I 57r/4 1.349 1.020 1.146 1.883 2.349 2.911 4.277 9.633

algorithm can successfully avoid terrain collisions during phase transition. The results

in Table 4.5 and Figure 4-6 reveal that the length of the propagation horizon for

I A)p I= 7/2 is insufficient to provide robust detection of environmental obstacles.

Likewise, the selection of IAV<pI = 37r/4 results in poor CC-BLG performance above

the 98th percentile and produces a maximum miss distance that is over 14 times the

median BLG recorded accuracy on the valley terrain. This maximum miss distance

was produced by an unanticipated terrain collision during phase transition, and thus

is considered unacceptable for improving BLG performance. As a result, the value of

I~Pmx I = ir will be selected in this work in order to generate the largest improvement

in both the mean and worst-case performance of the CC-BLG algorithm on the valley

terrain. Given the parafoil dynamics model provided in (2.32)-(2.36), this maximum

turn maneuver translates into a propagation horizon of tp = 17.6 seconds.

With the selection of the propagation horizon tp, an adequate number of control

sequences N5, must be determined in order to allow for robust obstacle detection

along the reachability frontier. Using constant control sequences, the limits on the
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Normalized miss distance data for reachability states Ns, 1000 trials

Reachability States Mean StDev 50% 80% 90% 95% 98% Max

N, = 3 1.377 1.322 1.111 1.811 2.465 3.317 4.851 13.490

N, = 5 1.298 0.886 1.126 1.838 2.370 2.816 4.092 6.480

Nu = 7 1.291 0.862 1.115 1.831 2.317 2.771 3.735 6.817

Nu = 9 1.331 0.991 1.129 1.897 2.428 3.184 4.352 7.220

control {-max, Wmax} produce a finite window in which to discretize the reachability

boundary. This also serves to decrease the marginal information benefit of each

additional reachability state as the value of N, becomes large [47]. Thus we seek to

determine the minimum number of dynamic state propagations required for obstacle

detection, so as to reduce unnecessary computation during each Phase 1 planning

iteration. Following the procedure outlined in Ref. [47], only odd values of N are

considered in this work such that the w = 0 control maneuver for straight flight is

always included within the reachability set.

The results of an additional set of Monte Carlo simulations within the valley

terrain are shown in Table 4.6 and Figure 4-7 as the value of AT, is increased from 3 to

9. It can be concluded from Figure 4-7(b) that when N, = 3, the separation between

reachability states at tp = 17.6 seconds can become too large for effective obstacle

detection. This produces a decline in CC-BLG performance above the 90th percentile

of the CDF distribution. In contrast, the values of NAl = 5 and NA, = 7 successfully

improve the maximum miss distance achieved by CC-BLG during each set of Monte
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Carlo simulations, and result in nearly identical performance on the valley terrain-

with N, = 7 showing a marginal advantage above the 95th percentile for all but the

worst-case trial. Raising the number of control sequences to N" = 9 generates slightly

worse performance in Table 4.6, as the frequency of terrain detection is increased due

to the additional number of reachability states and covariance samples. While this

high rate of detection from collided covariance samples continues to maintain parafoil

safety, the results of this experiment suggest that further increasing the value of N,

can discourage goal seeking behavior during Phase 1 terminal guidance, and may

cause CC-BLG to position the parafoil further away from the desired upwind target.

This can potentially limit final target attainability during Phase 2 guidance, resulting

in larger parafoil miss distances. If greater definition of the reachability set is required,

this conservatism can be offset by decreasing the weight on within the cost-to-go

function (3.15); however this is not considered further in this work. A value of N, =

7 is therefore selected which demonstrates the best overall performance in Figure 4-7

and Table 4.6, while limiting the maximum number of reachability states required.

4.4.1 Cost-to-go Function

In Section 3.3.4, the risk-based cost-to-go function JCTG was introduced into the

process of CC-BLG trajectory optimization to enforce obstacle avoidance and future

planning feasibility during the transition between terminal guidance phases. This

section compares the performance of the JCTG approach in (3.15) with two alternative

formulations of the cost-to-go function, J, and Jma,

J4 = max(JT,F,min(JR,1,JR,2, ,JR,Nu))i (4.1)

Jmax = max(JR,1, JR,2, -.- , JR,NU)- (4.2)

The J0 variant is based upon the design of the cost-to-go function OIF in (2.60) which

was used in the development of the Analytic CC-RRT algorithm. This approach

takes the maximum between the cost at the terminal state of the Phase 1 trajectory

JT,F = JT,NT, and the minimum cost JR,, for n E {1, ... , Nu} over all state trajectories
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Figure 4-8: Normalized miss distance CDF for reachability cost-to-go, 1000 trials

Table 4.7: Normalized miss distance data for reachability cost-to-go, 1000 trials
Cost-to-go Function Mean StDev 50% 80% 90% 95% 98% Max

JCTG 1.291 0.862 1.115 1.831 2.317 2.771 3.735 6.817

J1 1.407 1.559 1.073 1.870 2.468 3.177 8.097 14.274

Jmax 1.347 1.403 1.063 1.819 2.344 2.974 5.378 15.189

along the reachability horizon. If at least one reachability set control sequence incurs

zero risk over the finite time horizon, the solution provided by JO is considered cost

optimal. As a result, the JO cost-to-go function assumes the planner's ability to

design and execute a trajectory at the start of Phase 2 guidance which approximates

the path of the lowest cost control solution. However, by using only the minimum

value of JR,,, this approach does not penalize the potential levels of risk which may

exist over the remaining reachability states.

In contrast, the cost-to-go variant Jmax is designed to penalize the maximum cost

JR,, over all trajectories of the reachability horizon, regardless of whether a control

sequence exists which avoids terrain proximity (i.e., JR,, = 0). The Jmax approach

encourages the entire set of reachability states to be risk free, in a similar manner

to the JCTG formulation, but does not consider penalizing the cumulative risk which

may exist across multiple reachability set trajectories simultaneously.

Figure 4-8 and Table 4.7 provide the normalized miss distance distributions from

1000 Monte Carlo trials of CC-BLG using each of the reachability set cost-to-go
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functions. The results in Figure 4-8 demonstrate that the CDFs produced by all

three strategies remain largely the same below the 80th percentile. However, for the

10% of trials above the 90th percentile of the distribution, the JO cost-to-go function

generates larger miss distances than either the Jmax or JCTG approaches. This reveals

that penalizing only the minimum cost trajectory over the reachability horizon may

not be sufficient to represent the true level of environmental risk. Additionally, the

CDFs for the Jmax and J0 cost-to-go functions contain large distribution tails above

the 98th percentile due to the increased number of terrain impacts caused by both

strategies during terminal guidance phase transition.

On the other hand, the JCTG function provides improved miss distance perfor-

mance compared to J0 and Jmax above the 90th percentile, while helping to remove

the large distribution tail. Recall that in (3.15), the formulation for JCTG penalizes

the sum of risk penalties over all reachability states. This is selected in order to

produce the largest feasible planning space ahead of the parafoil during the terminal

guidance phase transition. From the simulation results in Figure 4-8 and Table 4.7,

we conclude that the JCTG approach to obstacle avoidance yields superior robust-

ness over both J0 and Jmax, which ignore the combined level of risk across multiple

reachability states.

4.4.2 Risk Mitigation

Figure 4-9 demonstrates how the reachability set approximation and augmented cost-

to-go function can be used to reorient the parafoil approach to the Phase 1 target

location. In this simulation example, the same initial conditions and Phase 1 target

have been used as in Figure 3-5 for the nominal BLG algorithm. Figure 4-9(a)-

(b) display the states of the reachability approximation at t = tF T, when the

upper bound on the propagation time tp = 17.6 seconds, and the number of control

sequences N, = 7. Covariance samples are denoted by the black dots in Figure 4-9,

which are placed at three distinct scale factors for a = 0.7, 1.75, and 3.2 respectively.

Figure 4-9(a) displays the reachability set approximation during Phase 1 terminal

guidance in which the detection of terrain obstacles is shown by the red collided
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Figure 4-9: Risk mitigation during guidance phase transition using reachability set

covariance samples. With the addition of the JCTG component in (3.16), Figure 4-9(a)

and Figure 4-9(b) illustrate that the parafoil approach direction to the Phase 1 target

now faces toward the open interior of the valley, and away from the nearest terrain

obstacles. Despite this change in heading, Figure 4-9(b) reveals that the parafoil is

still capable of approaching the desired upwind target (yellow star) in preparation for

Phase 2 terminal guidance. As compared to Figure 3-5 however, the risk of collision
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Figure 4-10: Phase 2 initial conditions (d > 250 m) produced by BLG and CC-BLG

has been significantly reduced. Figure 4-9(c) shows the CC-BLG trajectory plan after

two iterations of Phase 2 terminal guidance, indicating a path toward the final target

location has been successfully identified. The final trajectory executed by the parafoil

is shown in Figure 4-9(d), demonstrating that the target altitude has been reached,

and all terrain obstacles have been avoided.

Figure 4-10(a)-(b) compare the initial conditions for Phase 2 terminal guidance

produced by the BLG and CC-BLG algorithms over 1500 Monte Carlo simulation tri-

als in the valley terrain environment. In these figures, each parafoil position is marked

by a red colored circle, while the direction of the parafoil ground velocity is indicated

using a black arrow. To aid in the visualization, Figure 4-10 displays only those initial

conditions in which the parafoil distance from the target d = VAp2+ Ap2 > 250

meters, representing an increased risk of terrain proximity at the start of Phase 2

terminal guidance.

The results for the nominal BLG algorithm are shown in Figure 4-10(a). In this set

of Monte Carlo simulations, 867 initial conditions for Phase 2 terminal guidance began

from a distance of over 250 meters from the target location. From Figure 4-10(a) it can

be observed that the BLG algorithm produces numerous initial conditions for which
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the parafoil is both in close proximity to the terrain, and oriented in the direction

of the nearest terrain obstacle (i.e., the blue-green terrain elevation band). From the

total set of 1500 simulations, 56 terrain collisions occurred at high altitude during the

BLG transition to Phase 2 terminal guidance. As described in Section 3.3.4, this is a

consequence of finite horizon trajectory planning that does not adequately consider

future feasibility requirements.

Conversely, Figure 4-10(b) displays 662 initial conditions produced by the CC-

BLG algorithm at the start of Phase 2 terminal guidance. Here it can be observed that

the CC-BLG reachability approximation has reduced the number of initial conditions

within close proximity to terrain. The vast majority of initial conditions have also

been reoriented to face either toward the middle of the map, or along the axis of the

east-west valley. As a result, the parafoil's approach direction to the Phase 1 target

tends to face away from the nearest terrain obstacles, so as to maximize the feasible

planning space during the initial iterations of Phase 2 trajectory planning. In this set

of 1500 CC-BLG Monte Carlo simulations, not a single high altitude collision occurred

during phase transition. The results shown in Figure 4-9 and Figure 4-10 highlight

the improvements to vehicle safety produced by the reachability set approximation

for finite horizon path planning in the presence of environmental obstacles.

4.5 Multi-Objective Optimization Parameters

The CC-BLG multi-objective function (3.16) introduced in Section 3.3.4 combines

the nominal BLG cost objective JBLG provided in (1.3), with the two risk-based cost

components JcC and JCTG presented in (3.11) and (3.15), respectively. This section

considers the appropriate tuning of the augmented cost parameters ao and A in (3.11)

to produce the desired balance of performance between risk minimization, and the

objectives for both landing accuracy and landing speed.

To select an appropriate value for the risk penalty parameter ao, a series of Monte

Carlo simulation experiments are performed within the valley terrain environment.

In these experiments, 1000 simulation trials are conducted for each value of ao E
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Figure 4-11: Normalized miss distance CDF for ao, 1000 trials

Table 4.8: Normalized miss distance data for ao, 1000 trials

Weight, JCC Mean StDev 50% 80% 90% 95% 98% Max
ao = 100 1.297 1.198 1.089 1.767 2.298 2.782 3.782 13.649
ao = 200 1.235 1.131 1.024 1.707 2.216 2.735 3.688 15.103
ao = 500 1.283 0.962 1.107 1.809 2.330 2.746 3.868 12.737
ao = 1000 1.329 1.033 1.090 1.809 2.369 2.972 4.270 14.258
ao = 2000 1.452 1.290 1.141 1.906 2.717 3.821 5.875 11.260
ao = 5000 1.709 1.637 1.238 2.288 3.655 5.340 6.559 15.939
BLG 1.625 2.225 1.000 1.861 2.788 6.298 10.713 15.133

{100, 200, 500, 1000, 2000, 5000} using a value of A = 0, such that all trajectory states

are weighted equally during the (3.11) cost minimization. These results are provided

in Figure-4-11 and Table 4.8. The results produced from an equivalent set of 1000

Monte Carlo simulation trials using the nominal BLG algorithm, shown previously in

Table 4.4, are repeated for convenience in Table 4.8.

Figure 4-11(a) reveals that the distribution of CC-BLG miss distances remains

relatively constant below the 60th percentile as the value of ao is increased from 100

to 5000. In this section of the distribution, the increasing penalty on risk has only

a minor effect on the planner's ability to identify a feasible trajectory solution to

the target that successfully minimizes terrain interaction. However, as the value of

ao becomes large, the CC-BLG level of conservatism is also increased. Under such

conditions, the planner may choose to design a trajectory to an alternative landing

point further away from the target so as to better reduce the risk to parafoil safety.

119



This effect is most noticeable in Figure 4-11(b), which highlights the region of the

distribution above the 80th percentile. For ao = 2000 and ao = 5000, the increase

in planning conservatism helps to improve the number of safe landings at the target

altitude, but also introduces larger miss distances which degrade CC-BLG accuracy

in the upper 20% of the distribution.

Despite the effect on planning conservatism, the results in Table 4.8 demonstrate

an improvement in CC-BLG performance over BLG above the 95th percentile of the

distribution for all of the values of ao considered. At smaller values such as ao = 100,

200, 500, and 1000, this improvement extends to all Monte Carlo trials above the 80th

percentile, and also results in better CC-BLG mean landing performance. This effect

is caused by the introduction of the Jcc component within the objective function to

reduce the number of off-nominal terrain collisions, and will be analyzed further in

Chapter 5. For this work, a value of ao = 500 is selected which provides an appropriate

balance between conservatism and landing accuracy, as shown in Table 4.8, while

reducing some of the worst-case outliers that were not eliminated at smaller values.

The selection of the decay rate factor A is conducted empirically using a similar

process of Monte Carlo simulation experiments. Recall that in (3.11), this factor

serves to prioritize the minimization of short horizon risk over long horizon risk by

de-weighting the penalty a with increasing altitude separation Ipz,o - Pz,k I from the

current parafoil state (pxO, Py,O, Pz,O). The values of A considered in this section are

derived by selecting a desired minimum for the ratio a* = a(Pz,G)/a(pz,o), where the

function a(b) represents (3.12) evaluated at the altitude Pz,k = b. The value of a*

specifies the lower bound on the ratio of a-weights between the target altitude a(pz,G)

and current altitude a(p,o) = ao based on the total altitude change Apz* within each

terminal guidance phase. For a given ratio of a* and total altitude change Apz*, the

corresponding value of A is found by rearranging (3.12) as

A - ln(a*) (4.3)

To determine the effects of the A parameter, five values of a* E {0.05, 0.1.0.2, 0.4, 0.8}
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Figure 4-12: Decay of a with altitude change Pz,O - Pz,k I for each ratio of a*

are tested. Figure 4-12 displays how the ratio of a(pz,k)/ao changes over the altitude

range Apz* for each value of a* considered. When the parafoil is at the initial altitude

of each terminal guidance phase (i.e., pz,I pz,o and Ipz,o - pz,GI Apz*), the ratio

of a(pz,F) at the altitude of the final trajectory state Pz,F, over a(pz,o) at the current

altitude can be summarized by a(Pz,F)/a(Pz,o) = a* if a path to the target altitude

is successfully identified by the planner (i.e., Pz,F = Pz,G). As the parafoil descends,

the current value of lpz,o - Pz,FI decreases such that IPz,o - Pz,FI < Apz*, and the

minimum possible value of a(pz,F) increases along the corresponding a* exponential

curve shown in Figure 4-12. Likewise, the value of a(pz,o) = ao serves to upper bound

the value of a at the root of each trajectory throughout the descent, as the horizon

between future trajectory states Ipz,o - Pz,kl decreases to zero. By computing the

decay factor A according to (4.3), Figure 4-12 demonstrates how the selection of a*

also affects the shape of the exponential curves, ranging from near linear at a* = 0.8,

to a much steeper exponential decay at a* = 0.05.

Table 4.9 and Figure 4-13 compare the normalized miss distance data over 1000

Monte Carlo simulation trials on the valley terrain using each value of a* and ao =
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Figure 4-13: Normalized miss distance CDF for a*, 1000 trials

Table 4.9: Normalized miss distance data for a,*, 1000 trials

7

Ratio, a Mean StDev 50% 80% 90% 95% 98% 99% Max

a* = 0.05 1.285 1.060 1.070 1.769 2.302 2.900 4.068 4.827 11.607

a* = 0.1 1.248 0.818 1.099 1.730 2.253 2.780 3.513 4.182 6.391

a* = 0.2 1.268 0.914 1.103 1.771 2.300 2.804 3.589 4.483 9.859

a* = 0.4 1.272 0.936 1.114 1.810 2.265 2.777 3.654 4.442 11.356

a* = 0.8 1.285 1.031 1.110 1.806 2.284 2.733 3.711 4.773 12.737

.* = 1.0 1.283 0.962 1.107 1.809 2.330 2.746 3.868 4.998 12.737

500 selected previously. For comparison, the miss distance data for ao = 500 and a*

= 1 from Table 4.8 (i.e., no decay, A = 0) is also included in Figure 4-13 and Table 4.9.

From the results in Figure 4-13, the decay factor A is shown to have minimal effect

on the shape of the miss distance CDF with the exception of the worst-case trials in

the tail of the distribution. In this region, the ratio of a* = 0.1 provides the best miss

distance performance above the 98th percentile and produces the shortest distribution

tail, with a maximum miss distance of 6.391 times the BLG median accuracy. This

represents nearly a factor of 2 reduction in the maximum miss distance produced by

a* = 1 over the same 1000 Monte Carlo trials.

For a small fraction of trials within each set of Monte Carlo simulations, aspects

such as shifting winds and tracking/modeling errors resulted in a potentially danger-

ous planning scenario within the valley terrain environment despite the uncertainty

sampling and risk-based penalties examined above. The data in Table 4.9 and Fig-

ure 4-13 suggests that significantly decaying the risk penalty of long-term trajectory
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Table 4.10: Normalized miss distance data for refined a* range, 1000 trials

Ratio Mean StDev 50% 80% 90% 95% 98% 99% Max

a* = 0.075 1.262 0.945 1.077 1.760 2.311 2.843 3.779 4.580 9.794

a* = 0.1 1.248 0.818 1.099 1.730 2.253 2.780 3.513 4.182 6.391

a* = 0.15 1.259 0.915 1.064 1.781 2.306 2.774 3.627 4.304 9.478

states using a* = 0.1 can allow the planner to better account for imminent danger

in these situations. When the cost JT of all trajectory states is equal (i.e., a* = 1),

short-term course corrections by the planner to avoid terrain obstacles may incur a

large penalty over the remaining trajectory states. This increase in cost can prevent

CC-BLG from identifying trajectory solutions that successfully mitigate near term

risk. On the other hand, as the rate of decay becomes large, as for a* = 0.05, the

results in Table 4.9 suggest that the risk penalty on future trajectory states may not

be high enough to enable long-term planning robustness against the most dangerous

wind-terrain interactions. This degrades the performance of the CC-BLG algorithm

by limiting the amount of useful cost information about the future wind uncertainty

that is available during the design of the trajectory plan. Such an effect increases the

number of outliers in the tail of the distribution due to worst-case terrain impacts.

The remaining decay rates of a* = 0.8, 0.4, and 0.2 produce marginal improvements

over a* = 1 above the 98th percentile, but are not very successful at removing the

large distribution tail, as shown in Table 4.9.

Given these observations, a final series of Monte Carlo simulation trials are con-

ducted to determine whether additional sensitivity exists for improved performance

on the valley terrain. Table 4.10 compares the distribution of miss distances for 1000

Monte Carlo simulations using two additional values of a* = 0.075 and a*= 0.15.

The results indicate that additional sensitivity to the value of A exists between a* =

0.2 and a* = 0.05, but that the distribution remains largely the same as in Table 4.9.

The value of a* = 0.1 continues to provide the best mean and worst-case performance

by reducing the number of CC-BLG terrain impacts above the 98th percentile.

The final experiment compares the value of a* = 0.1 using two alternative com-

binations of ao = 200 and ao = 1000. The results in Table 4.11 and Figure 4-14
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Table 4.11: Normalized miss distance data for final a* and aO, 1000 trials

Weight Decay Factor Mean StDev 50% 80% 90% 95% 98% Max

ao = 200 a* = 0.1 1.287 1.306 1.037 1.727 2.226 2.742 4.033 15.520

ao = 500 a* = 0.1 1.248 0.818 1.099 1.730 2.253 2.780 3.513 6.391

ao = 1000 a* = 0.1 1.333 0.975 1.125 1.865 2.390 3.063 4.271 9.145

Table 4.12: Summary of tuned CC-BLG

Parameter Value
ao 500
A, 0.00658

0.00768
17.6 s

7

parameters

reveal that as the value of ao is adjusted, the CC-BLG performance above the 95th

percentile tends to degrade relative to ao = 500. This suggests that the values of ao

= 500 and a* = 0.1 constitute an appropriate combination of cost parameters within

the CC-BLG multi-objective function. In this work, Phase 1 and Phase 2 of CC-BLG

terminal guidance are conducted over an altitude change of Ap, 1 * = 350 meters and

Apz,2* = 300 meters, respectively. As a result, the selected value of a* = 0.1 corre-

sponds to a value of A1 = 0.00658 for Phase 1 and A2 = 0.00768 for Phase 2, and will

be used with ao = 500 for all Monte Carlo simulation experiments throughout the

remainder of this thesis. Table 4.12 provides a summary of all four tuned CC-BLG

parameters examined in this chapter.
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4.6 Chance Constraints

In the design of the CC-BLG algorithm, "soft" chance constraints are applied to en-

force probabilistic feasibility through the development of a novel risk-based objective

function (3.11) presented in Section 3.3.3. This section considers the effect of rein-

troducing the hard user-defined bound on probabilistic feasibility psafe in addition to

the penalty terms on risk outlined above.

Figure 4-15 and Table 4.13 contain the results from 1500 Monte Carlo trials in

the valley terrain environment for each value of psafe E {0.9, 0.8, 0.7, 0.5}. An ad-

ditional set of trials (labeled "None") is also conducted for the scenario in which

only soft chance constraints are used, as demonstrated previously in Section 4.3-4.5.

The CDFs of normalized miss distance provided in Figure 4-15(a)-(b) indicate an

improvement in CC-BLG landing accuracy as the feasibility bound psafe is tightened

from 0.5 to 0.9. The distributions for psafe = 0.9 and psafe = 0.8 are almost exactly

the same, which suggests that both feasibility bounds generate a similar solution

space for the CC-BLG optimizer over each identical set of Monte Carlo trials. As the

value of psafe is further reduced, the risk tolerance increases via the chance constraint

Pcollide (1 - Psafe). Given the uncertainty in the wind environment, this can raise

the level of danger in complex terrain by permitting the design of trajectories with

low probabilities of safety. When hard constraints on probabilistic feasibility are em-

ployed, the results in Figure 4-15 and Table 4.13 suggest that decreasing the value

of Psafe produces an increasing number of large CC-BLG miss distances in the tail of

the distribution due to off-nominal terrain collisions.

However, Table 4.13 and Figure 4-15 also demonstrate that using soft chance con-

straints alone, without any hard bounds on probabilistic feasibility, results in better

CC-BLG performance above the 50th percentile than any other constraint scenario.

This seemingly contradictory result can be explained by the way hard constraints on

probabilistic feasibility limit the size of the solution space and may interrupt the pro-

cess of trajectory optimization. Sudden changes in the wind that perturb the nominal

trajectory plan can increase the number of covariance samples along the state dis-
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data using psafe constraints, 1500 trials

Weight Mean StDev 50% 80% 90% 95% 98% Max

None 1.242 0.840 1.066 1.766 2.267 2.728 3.592 6.345

Psafe = 0.9 1.335 1.024 1.078 1.919 2.634 3.318 4.478 8.503

Psafe = 0.8 1.337 1.028 1.079 1.921 2.637 3.318 4.478 8.894

Psafe = 0.7 1.411 1.106 1.121 2.022 2.744 3.658 4.804 10.274

Psafe = 0.5 1.522 1.196 1.188 2.192 3.097 4.057 5.021 9.420

tribution that intersect the terrain environment. When hard constraints are used, if

the sum of probability weights from collided covariance samples at a given trajectory

state (3.8) exceeds the limit on probabilistic feasibility Pcollide > (1 - Psafe), the dy-

namic propagation of the parafoil trajectory is terminated, and the remainder of the

previous trajectory plan is pruned. The high cost of JBLG incurred by terminating the

trajectory plan above the target altitude is factored into the CC-BLG optimization

and ian therefore disrupt the sequence of trajectory refinement. Additionally, for sit-

uations in which some risk may be required in order to guide the parafoil away from

nearby obstacles, hard bounds on probabilistic feasibility may prevent the optimizer

from identifying any trajectory plan which satisfies the constraints. This can result

in an immediate termination of trajectory propagation with no plan forward.

Conversely, when only soft constraints are used, temporary increases in risk are

tolerated by the planner and trajectory propagation continues until the nominal tra-

jectory plan Rt either intersects the terrain, or reaches the desired target altitude. This
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enables the optimizer to refine the current trajectory plan in subsequent iterations

by removing the regions of increased risk. The results in Table 4.13 and Figure 4-15

suggest that tolerating temporary increases in risk without terminating trajectory

propagation can ultimately improve the quality of the risk-based optimization used

within CC-BLG. Based on these improvements, a strategy of soft chance constraints

will be used throughout the remainder of this thesis in order to directly minimize risk

in the absence of hard feasibility constraints.

4.7 Summary

This chapter presented a detailed design analysis of the CC-BLG parafoil terminal

guidance algorithm. Through a series of Monte Carlo simulation experiments, Sec-

tion 4.3 demonstrated the robustness benefits of increasing the size of the sampling

standard deviation a using an additional set of covariance samples along the state

uncertainty distribution. In order to estimate the probability of constraint violation,

the weighted analytic uncertainty sampling approach presented in Section 3.3.2 was

found to generate improved CC-BLG performance relative to the previous Analytic

CC-RRT approach. In Section 4.4, the reachability set approximation and cost-to-go

function JCTG were shown to be effective at reducing the number of terrain impacts

caused by finite horizon trajectory planning in complex terrain. The CC-BLG method

of unconstrained optimization using "soft" chance constraints was also found to pro-

vide greater planning flexibility over alternative formulations using hard feasibility

constraints (Section 4.6). Lastly, from a parametric study of the CC-BLG reacha-

bility set approximation and risk-based objective function in Sections 4.4-4.5, final

values were selected for the variables of ao, A, tp, and N, to be used throughout the

remainder of simulation experiments. Chapter 5 proceeds with a direct comparison

between the BLG and CC-BLG algorithms over a variety of complex terrain scenarios

using Draper Laboratory's high fidelity parafoil simulator introduced in Section 4.2.
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Chapter 5

Simulation Results

5.1 Introduction

This chapter presents simulation results demonstrating the effectiveness of the CC-

BLG algorithm for robust parafoil guidance in complex terrain and wind environ-

ments. The improvements provided by the augmented CC-BLG components of real-

time wind modeling and analytic uncertainty sampling are compared directly with the

state-of-the-art Band-Limited Guidance algorithm (BLG) in three challenging terrain

scenarios. Section 5.2 evaluates the performance of the final CC-BLG algorithm de-

veloped in Chapter 4 through a set of Monte Carlo simulations in the valley terrain

environment. Two Grand Canyon terrain scenarios are also considered in Section 5.3

to further validate the CC-BLG algorithm in highly constrained terrain geometries.

The results of these experiments demonstrate (1) superior CC-BLG mean and worst-

case landing accuracy over BLG in all three terrain scenarios, and (2) a significant

reduction in the number of CC-BLG collisions with the terrain environment. Despite

the incorporation of risk-based cost objectives, this chapter also demonstrates that

the CC-BLG algorithm retains nominal BLG miss distance performance on flat ter-

rain (Section 5.4), while exhibiting either identical, or improved, mean and worst-case

landing speed performance across multiple terrain scenarios (Section 5.5).
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5.2 Valley Terrain Simulations

In this chapter, the high fidelity simulation environment and Monte Carlo testing

procedure outlined in Section 4.2 are used to compare the BLG and CC-BLG algo-

rithms over an identical series of randomized initial conditions. A large data set of

2500 Monte Carlo trials is -collected for each terrain scenario in order to exhaustively

test the performance of both algorithms, while allowing for the observation of pos-

sible outliers. To establish a comparison of relative terminal guidance performance,

the miss distance data from these experiments is once again normalized using the

median landing accuracy of the BLG algorithm. The software for the BLG and CC-

BLG algorithms is written in C and executed on a 3.2 GHz Intel i5-3470 desktop

computer using a maximum of 50 Nelder-Mead optimization iterations per second.

Although both BLG and CC-BLG typically converged in less than 50 iterations, this

upper bound ensured that each algorithm could be run in real-time using a 1 Hz

planning/executing cycle with less than a 60% duty cycle.

Figure 5-1 provides the normalized miss distance CDF from 2500 Monte Carlo

trials of the BLG and CC-BLG algorithms in the valley terrain environment. While

both algorithms demonstrate almost identical performance below the 80th percentile,

CC-BLG provides a significant improvement over BLG in the upper 20% of the dis-

tribution. In particular, the statistics in Table 5.1 reveal that CC-BLG produces an

improvement in landing accuracy of more than 15% by the 90th percentile, and at

least a factor of 2 reduction in miss distance for all worst-case trials above the 95th

percentile. It can also be observed from Table 5.1 that although the median CC-BLG

landing accuracy increases by 5% relative to BLG in this scenario, the mean landing

accuracy is improved by more than 21%. The effect on median miss distance can

be attributed to the trade-offs between the JcC and JBLG cost components of the

CC-BLG objective function (3.13), which simultaneously balance trajectory risk with

the parafoil performance metrics of landing accuracy and landing speed. Despite

the additional robustness modifications during trajectory optimization, the results in

Table 5.1 demonstrate that the overall effect on median landing accuracy is small.
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Figure 5-1: Normalized miss distance CDF for valley terrain, 2500 trials

Table 5.1: Normalized miss distance data for valley terrain comparison, 2500 trials

Algorithm Mean StDev 50% 80% 90% 95% 98% Max
BLG 1.56 2.10 1.00 1.81 2.64 5.62 10.18 15.04
CC-BLG 1.23 0.83 1.05 1.76 2.23 2.71 3.53 6.34

On the other hand, by incorporating soft chance constraints on the risk produced

by future wind uncertainty, the CC-BLG algorithm reduces the number of large miss

distances caused by off-nominal terrain collisions. This results in a CC-BLG standard

deviation that is more than 2.5 times smaller than BLG's.

Figure 5-2 displays the impact points from each set of 2500 simulations of the

BLG and CC-BLG algorithms described above. In Figure 5-2(a)-(d), the elevation

change above the Phase 2 target/goal is denoted in meters by the transition of terrain

color from blue (lowest altitude) to red (highest altitude), while each impact point

is denoted using a red 'x'. For these simulations, the narrow terrain geometry and

steep valley slope prevent the parafoil from approaching the target location along

the north-south direction. Given the large parafoil turning radius and underactuated

dynamics, this produces a challenging terminal guidance scenario that frequently

places the parafoil within close proximity to the terrain throughout the descent.
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From the BLG impact points provided in Figure 5-2(a)-(b), numerous collisions

can be observed within the valley environment. These collisions are caused by the

effects of unanticipated wind disturbances that perturb the parafoil along the nominal

trajectory plan. As shown in Figure 5-2(a)-(b), because the BLG approach to trajec-

tory optimization does not consider the potential risk produced by future variations

in the wind environment, robustness to uncertainty cannot be maintained.

Figure 5-2(c)-(d) display the impact points produced by the CC-BLG algorithm

over the identical set of 2500 Monte Carlo trials shown in Figure 5-1 and Table 5.1

above. These results illustrate that the total number of terrain collisions has been
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significantly reduced relative to Figure 5-2(a)-(b) such that the distribution of CC-

BLG impact points is tightly grouped in the vicinity of the target. Additionally, while

numerous BLG collisions can be observed at high altitudes along both the yellow and

light-blue terrain elevation bands, the vast majority of CC-BLG simulation trials in

Figure 5-2(c)-(d) result in safe landings at the desired target altitude. Although a

small number of outliers are present, all CC-BLG impacts occur at altitudes less

than 250 meters above the target location. This demonstrates that the CC-BLG

implementation of reachability set approximation (Section 3.3.4) has eliminated the

collisions caused between terminal guidance phase transitions. The absence of high

altitude impacts also indicates that the CC-BLG method of analytic uncertainty

sampling successfully maintains parafoil safety during all Phase 1 terminal guidance

segments when the penalty on risk (3.11) is highest. Over the entire set of 2500

trials in the valley terrain, CC-BLG produces a crash percentage of only 1.12%. As

compared to the BLG crash percentage of 7.28%, this represents more than a factor

of 6 reduction in the number of off-nominal collisions with the terrain environment.

5.3 Canyon Terrain Simulations

This section further demonstrates the effectiveness of the CC-BLG algorithm in tight

geometry environments using two canyon terrain scenarios. Both scenarios, referred

to in this work as canyon-1 and canyon-2, were developed using DTED2 data from

the Grand Canyon, and are plotted for convenience in Figure 5-3 and Figure 5-4.

The target for each terrain scenario is placed at the bottom of the canyon as

indicated by the yellow circle. The region of lowest altitude within the canyon-i

terrain is depicted in Figure 5-3 by the dark blue elevation band that runs primarily

from east to west along the middle of the map. This environment contains many

complex features including a tight terrain bottleneck both along the west end of the

map, and in the vicinity of the goal, as well as a ravine to the northeast formed by two

terrain ridges elevated roughly 200 meters above the target altitude. Such features

represent potentially dangerous environmental hazards that complicate the planning
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process and make robust parafoil guidance essential due to limited maneuverability

at lower altitudes. The canyon-2 scenario (shown in Figure 5-4) is oriented along

the north-south direction and provides extremely steep changes in elevation along

the canyon walls. As a result, obstacle avoidance must begin from the initialization

of Phase 1 terminal guidance in order to maintain parafoil safety in this terrain.

Likewise, Figure 5-4 reveals that the region of terrain elevation at the target altitude

(colored dark blue) is very narrow, and sinks sharply below the elevation of the

canyon walls on either side. This constrains the parafoil final approach to be along
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Figure 5-5: Normalized miss distance CDF for canyon-1 terrain, 2500 trials

Table 5.2: Normalized miss distance data for canyon-1 terrain comparison, 2500 trials

Algorithm Mean StDev 50% 80% 90% 95% 98% Max

BLG 1.74 2.35 1.00 1.99 3.67 7.89 10.10 19.10

CC-BLG 1.17 0.81 1.00 1.71 2.14 2.56 3.42 6.41

the north-south direction so as to obtain a safe landing at the desired target location.

Figure 5-5 and Table 5.2 provide the normalized miss distance CDF and statistics

for 2500 Monte Carlo trials of the BLG and CC-BLG algorithms within the canyon-1

terrain. In this terrain scenario, both algorithms produce similar performance over

the lower half of the CDF depicted in Figure 5-5. For the subset of trials below the

60th percentile, the level of terrain and wind interaction is minimal such that BLG

and CC-BLG can both find feasible trajectories to the target which remain robust

to future wind uncertainty. However, the results in Figure 5-5 demonstrate that the

performance of the two algorithms begins to diverge around the 70th percentile as

CC-BLG provides superior landing accuracy over the remainder of the distribution.

By the 80th and 90th percentiles, the statistics in Table 5.2 indicate that the miss

distances produced by CC-BLG are 14% and 41% lower than BLG, respectively.
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The improvement in landing accuracy demonstrated by the CC-BLG algorithm

is even more significant for the final 250 trials in the upper 10% of the distribution.

Here, CC-BLG produces more than a factor of 3 reduction in miss distance over BLG

by the 95th percentile, and between a factor of 2-3 reduction in miss distance for all

trials above the 98th percentile. The shorter tail of the CDF distribution shown in

Figure 5-5 can be attributed to the increased robustness of the CC-BLG algorithm

to pathological wind uncertainty conditions. This reveals the effectiveness of both

the wind classifier and analytic uncertainty model for providing reliable predictions

of future environmental risk. Incorporating this risk directly into the process of

trajectory optimization causes the CC-BLG mean landing accuracy to be improved by

over 32% relative to the nominal BLG algorithm, while the median landing accuracy

remains unaffected by the additional Jcc and JCTG cost objectives.

The set of impact points in Figure 5-6 reveal the sensitivity of the nominal BLG

algorithm to dynamic wind disturbances in complex and highly constrained terrain

environments. Collisions produced by BLG in the canyon-1 scenario can be observed

in Figure 5-6(a)-(b) both at high altitudes and at significant distances from the target

location. A particularly high concentration of BLG terrain collisions exists along the

south canyon wall at altitudes between 250-350 meters above the target, and along

the north canyon ridge which acts to constrain the parafoil final approach direction.

These sections of the map represent locations where the parafoil is frequently within

close proximity to the terrain while attempting to turn toward the middle of the

canyon. Unanticipated wind perturbations during these maneuvers have a significant

effect on BLG performance when tight geometry constraints necessitate planning

in the vicinity of environmental obstacles. Replanning alone, without robustness

modifications, is insufficient to ensure parafoil safety in these situations.

The CC-BLG impact points in Figure 5-6(c)-(d) demonstrate the significant im-

provement in planning robustness provided by the J' risk-based objective function

introduced in Chapter 3. Over this set of simulations, CC-BLG dramatically reduces

the number of collisions within the canyon-1 terrain environment. As in Figure 5-2,

no CC-BLG collisions occur during Phase 1 terminal guidance or at altitudes greater
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s in canyon-1 terrain, 2500 trials (meters)

than 250 meters above the target location. Figure 5-6(c)-(d) reveal that a small con-

centration of CC-BLG terrain impacts are present along the north canyon ridge due

to the parafoil's limited maneuverability in the vicinity of the target. Despite the

presence of these outliers, the overall distribution of CC-BLG impact points remains

clustered around the target location. This indicates that the vast majority of trials

arrive safely at the desired altitude such that flare can be performed, and soft land-

ings achieved. The result is that the CC-BLG crash percentage of 1% is more than

10 times smaller than the BLG crash percentage of 10.7% for the same set of 2500

Monte Carlo trials in the canyon-1 terrain scenario.
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Figure 5-7: Normalized miss distance CDF for canyon-2 terrain, 2500 trials

Table 5.3: Normalized miss distance data for canyon-2 terrain comparison, 2500 trials

Algorithm Mean StDev 50% 80% 90% 95% 98% Max

BLG 1.57 2.08 1.00 1.84 2.80 5.39 9.57 15.97
CC-BLG 1.17 0.87 0.96 1.68 2.24 2.85 3.59 7.05

The results from the set of Monte Carlo simulations within the canyon-2 scenario

demonstrate similar improvements in CC-BLG planning robustness throughout this

third challenging terrain environment. The normalized CDF and statistics in Figure 5-

7 and Table 5.3 reveal that CC-BLG provides superior landing accuracy over BLG

beginning around the 50th percentile of the distribution. As a result, the CC-BLG

median miss distance is slightly lower than BLG in this terrain scenario. The added

robustness provided by the CC-BLG approach to trajectory optimization is once again

shown to produce a shorter distribution tail (Figure 5-7), resulting in a 20% reduction

in BLG miss distance by the 90th percentile, and more than a factor of 2 reduction

in miss distance for all trials above the 98th percentile (Table 5.3). By reducing

the number of off-nominal terrain impacts caused by future wind uncertainty, the

CC-BLG mean accuracy is also improved relative to BLG by more than 25%.

The impact points over each set of 2500 Monte Carlo trials of the BLG and CC-
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BLG algorithms are displayed in Figure 5-8 for the canyon-2 terrain. The results

suggest that for this terrain scenario, the steep elevation gradient along the canyon

walls makes BLG trajectory planning particularly vulnerable to possible variations in

the wind environment. The BLG impact points in Figure 5-8(a)-(b) indicate terrain

collisions across numerous elevations bands beginning nearly 600 meters above the

target altitude. These collisions are scattered throughout the canyon-2 terrain, with a

high concentration of impacts also shown along the protruding section of canyon to the

south-west of the target. In contrast, the CC-BLG impact points in Figure 5-8(c)-(d)

demonstrate far fewer worst-case collisions within the canyon-2 terrain scenario. Here
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Figure 5-9: Normalized miss distance CDF for flat terrain, 2500 trials

Table 5.4: Normalized miss distance data for flat terrain comparison, 2500 trials

Algorithm Mean StDev 50% 80% 90% 95% 98% Max

BLG 1.28 0.93 1.00 1.80 2.42 3.07 3.84 10.48

CC-BLG 1.22 0.92 0.99 1.78 2.49 2.97 3.59 10.47

again we observe that CC-BLG has successfully eliminated the presence of terrain

collisions at high altitude, while the majority of CC-BLG simulations land safely

near the target at the bottom of the canyon.

5.4 Flat Terrain Simulations

Figure 5-9 and Table 5.4 provide the results from an additional set of 2500 Monte

Carlo simulations of the BLG and CC-BLG parafoil terminal guidance algorithms

conducted over flat terrain. In the absence of environmental obstacles, Figure 5-9

demonstrates that the distribution of BLG and CC-BLG miss distances are nearly

identical, such that CC-BLG successfully maintains the landing accuracy of the nom-

inal BLG planner. This result is expected given the formulation of the CC-BLG

risk-based objectives Jcc and JCTG presented in Chapter 3.

140



When the environment is obstacle-free, and significant elevation changes do not

exist, the 2D analytic uncertainty sampling technique set forth by CC-BLG pro-

vides little to no additional information to the planner. Under these conditions,

the set of covariance samples at any given time step will either all be feasible (i.e.,

Pz,t > T(PX't, Pyt)) or all be infeasible (i.e., pz,t ! T(px,t,py,t)), as determined by the

feasibility of the nominal trajectory state. Because the JBLG component of CC-BLG

in (3.16) is identical to the objective function of the nominal BLG algorithm, the

process of CC-BLG trajectory optimization is therefore reduced to the original BLG

formulation in the absence of cost penalties from collided covariance samples. This

claim is supported by the results in Figure 5-9 and Table 5.4. If robustness modifica-

tions are not required due to the lack of terrain variability, conditionals can easily be

incorporated into the CC-BLG algorithm to reduce unnecessary computation during

low risk guidance scenarios.

5.5 Landing Speed

Parafoil landing speed is penalized implicitly for the CC-BLG and BLG algorithms

through the weighted error (sin(Ab/2)) 2 between the final parafoil heading and de-

sired upwind heading at the terminal trajectory state. This section compares the

distribution of landing speeds produced by both algorithms from the set of flat and

valley terrain simulations provided in Section 5.4 and Section 5.2, respectively. Each

data set will be normalized using the median BLG landing speed in the flat terrain

scenario. In this way, a comparison of relative performance is established between CC-

BLG and BLG, and between the flat and valley landing speed distributions provided

by each terminal guidance strategy.

The distributions of BLG and CC-BLG landing speeds in Figure 5-10 and Ta-

ble 5.5 display no statistically significant differences in the flat terrain scenario. This

result further supports that CC-BLG behaves identically to BLG when the risk-based

penalties on terrain interaction are negligible throughout the descent. Such perfor-

mance is desirable by retaining the BLG property of soft target impacts produced by

141



0.1 -- - -- - - - - - - -BLG

CC-BLG
0

0 0.5 1 1.5 2 2. 5 3
Normalized Landing Speed

Figure 5-10: Normalized landing speed CDF for flat terrain, 2500 trials

Table 5.5: Normalized landing speed data for fiat terrain comparison, 2500 trials

Algorithm Mean StDev 50% 80% 90% 95% 98% Max
BLG 1.02 0.29 1.00 1.26 1.40 1.50 1.65 2.43

CC-BLG 1.03 0.30 1.01 1.29 1.43 1.53 1.71 2.51

the JBLG terminal state objectives presented in (1.3).

Figure 5-11 and Table 5.6 reveal that BLG and CC-BLG also produce similar

landing speed performance in the valley terrain scenario over the majority of the

distribution below the 90th percentile. The augmented risk penalties within the CC-

BLG objective function generate only a marginal increase in landing speed relative

to BLG in the middle 50% of the distribution, and less than a 3% increase in median

landing speed, as shown in Table 5.6. However, the superior robustness properties

of the CC-BLG algorithm improve performance for the set of worst-case trials in

the upper 10% of the distribution due to a significant reduction in the number of

terrain collisions, shown previously in Figure 5-2. As a result. CC-BLG maintains

BLG average landing speed in the valley terrain.

When environmental obstacles are present, the statistics in Table 5.6 indicate an

increase in parafoil landing speed for both BLG and CC-BLG relative to their flat ter-
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Figure 5-11: Normalized landing speed CDF for the valley terrain, 2500 trials

Table 5.6: Normalized landing speed data for valley terrain comparison, 2500 trials

Algorithm Mean StDev 50% 80% 90% 95% 98% Max

BLG 1.22 0.46 1.14 1.46 1.68 2.21 2.64 4.04

CC-BLG 1.21 0.40 1.17 1.48 1.65 1.91 2.30 3.61

rain counterparts. The tight geometry constraints in the valley scenario make landing

into the wind more difficult while simultaneously maintaining both parafoil safety and

target accuracy. The flexibility provided by the BLG and CC-BLG method of un-

constrained optimization allows these trade-offs to be balanced efficiently throughout

terminal guidance. As a result, the increase in mean landing speed for both algo-

rithms is less than 20% relative to the flat terrain scenario. Although the maximum

landing speeds produced by BLG and CC-BLG increase due to worst-case collisions

within the valley environment, the increase in landing speed is significantly smaller

for CC-BLG over all Monte Carlo trials above the 95th percentile.
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5.6 Summary

This chapter demonstrates the effectiveness of the CC-BLG algorithm for robust

parafoil guidance in three challenging drop scenarios. The method of weighted an-

alytic uncertainty sampling presented in Chapters 3-4 enables CC-BLG to establish

a reliable estimate of trajectory feasibility against arbitrary, and potentially aggres-

sive terrain map functions. By directly penalizing the risk of constraint violation

during trajectory optimization, CC-BLG is shown to dramatically reduce the num-

ber of terrain collisions caused by wind disturbances relative to the state-of-the-art

BLG algorithm. This results in superior CC-BLG mean and worst-case landing ac-

curacy relative to BLG in all three constrained terrain environments considered in

Sections 5.2 - 5.3. The wind uncertainty model and classification strategy borrowed

from Analytic CC-RRT (Chapter 2) allow CC-BLG to dynamically adjust the level of

planning conservatism online to reflect variability in the wind conditions. As a result,

CC-BLG is able to maintain identical BLG performance when the risk from terrain

and wind interaction is minimal. Lastly, CC-BLG is shown to provide identical or

improved landing speed performance in the presence of environmental obstacles. This

demonstrates that the robustness modifications of CC-BLG do not detract from the

terminal state objectives of the nominal BLG algorithm.
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Chapter 6

Flight Test Results

6.1 Introduction

The simulation experiments conducted in Chapters 4 and 5 were used to evaluate the

performance of the CC-BLG algorithm in preparation for a flight test demonstration.

This chapter presents the CC-BLG flight test results produced from 9 autonomous

drops of a full-scale UltraFly parafoil system. During each flight test experiment,

the presence of terrain was simulated within the onboard guidance software using

the maps of the canyon-1 and canyon-2 environments presented previously in Chap-

ter 5. These simulated terrain obstacles allowed for the performance and robustness

of the CC-BLG algorithm to be assessed while flight testing, for convenience, over

a flat real-world drop zone. Flat terrain drop zones facilitate efficient monitoring

and recovery of parafoil systems, and are commonly used for testing developmental

guidance strategies [17, 20]. This chapter begins with an overview of the parafoil

system and flight test procedure provided in Section 6.2. A series of modifications to

the CC-BLG algorithm are then discussed in Section 6.3 in order to comply with the

limited computational resources of the available flight hardware. The results from

each of the 9 flight test experiments are provided in Section 6.4. Lastly, Section 6.5

compares the statistical performance of the BLG and CC-BLG algorithms in simula-

tion by recreating the flight test conditions from each drop experiment. The results
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(a) Airborne Guidance Unit (AGU) (b) AGU and mission planner laptop

Figure 6-1: Airborne Guidance Unit developed by Wamore Inc. (author photo)

from this chapter demonstrate the capability of the modified CC-BLG algorithm to

perform robust parafoil guidance subject to real-world testing conditions, hardware

limitations, and complex terrain environments.

6.2 Implementation

The full-scale UltraFly parafoil system (JPADS-ULW) and Airborne Guidance Unit

(AGU) developed by Wamore Inc. [21] were used for flight testing of the CC-BLG

algorithm. The UltraFly AGU is shown in Figure 6-1 and includes the parafoil avionics

and onboard guidance computer. The AGU also houses two servo motor actuators for

parafoil steering, and a GPS receiver for measuring the parafoil position and ground

velocity. The flight software for the guidance, navigation, and control (GN&C) of the

UltraFly system was developed by Draper Laboratory and is loaded onto the AGU

using a JPADS mission planner laptop [32], shown in Figure 6-1(b). The guidance

architecture for the UltraFly AGU is similar to that of the Megafly system in Ref. [32],

wherein the additional flight software developed for CC-BLG was used in place of the

nominal BLG algorithm during parafoil terminal guidance. This software was written

in C and run online using a 32-bit 180 MHz microcontroller (MCU) installed within

the UltraFly AGU. Flight test data was also recorded onboard the AGU during the

parafoil's descent, and was extracted for analysis after each drop experiment.
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(a) (b)

Figure 6-2: Packed UltraFly parafoil and payload (author photo)

The payload used during testing consisted of a metal weight tub designed by

Wamore Inc. as part of the UltraFly parafoil system [21]. This payload (shown by

the orange box in Figure 6-2) is loaded with detachable steel plates so as to obtain

the desired user-specified weight. For each of the 9 drop experiments presented in this

chapter, the parafoil was rigged for a total system weight of 355 lbs, which includes

the AGU and packed MC-5 ram-air canopy shown in Figure 6-2. The parafoil was

deployed from a SC.7 Skyvan aircraft at altitudes between 2,469-3,124 meters above

the target, and release distances ranging from 153-1,797 meters. Each flight test

consisted of both a homing phase and an energy management phase coordinated by

the Draper Laboratory GN&C software, followed by the initialization of CC-BLG

terminal guidance. A final flare phase was also performed above the target altitude

in order to slow the parafoil prior to impact. Figure 6-3 displays this flare maneuver

for the deployed UltraFly parafoil system.

Flight testing of the CC-BLG algorithm was conducted outside of Eloy, Arizona

over two 1-week test periods beginning January, 2015. The drop zone used for these

experiments was a flat desert plain (shown in Figure 6-3) which enabled both reliable

communications and the efficient recovery of the parafoil system. In order to test the

robust guidance and obstacle avoidance features of the CC-BLG algorithm, simulated
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Figure 6-3: Deployed UltraFly parafoil system with MC-5 canopy during flare at Eloy

test range (author photo)

terrain was loaded within the GN&C flight software using the DTED2 maps of the

canyon-1 and canyon-2 environments presented in Chapter 5. To imitate parafoil

terminal guidance within each of these simulated Grand Canyon locations, two new

maps were created by overlaying the DTED2 data from the canyon-1 and canyon-2

environments onto the flat terrain map of the real-world drop zone. In this way,

the target within each canyon-1 and canyon-2 map (denoted by the yellow circle in

Figure 5-3 and Figure 5-4, respectively) was made to coincide with the true drop zone

target location (i.e., latitude, longitude, and altitude), such that all simulated terrain

was positioned relative to this point. For the flight test experiments presented in this

chapter, the objective of the CC-BLG algorithm is therefore to design and execute a

trajectory plan that guides the parafoil to the target location within the real-world

drop zone, while avoiding terrain obstacles in the simulated software environment.
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6.3 CC-BLG Flight Modifications

The available 180 MHz microcontroller (MCU) onboard the UltraFly AGU posed

significant computational limitations for CC-BLG algorithm development when at-

tempting to augment the existing Draper Laboratory flight software package. As a

result, although the CC-BLG algorithm presented in Chapters 3-5 was shown to be

computationally efficient relative to the computing power of standard modern day

CPUs (as demonstrated in Table 4.3), adjustments to the algorithm had to be made

in order to operate within the mandated 1 Hz GN&C software execution cycle using

the MCU flight hardware. The largest amount of augmented computation for the

CC-BLG algorithm exists during the process of generating covariance samples and

checking for collisions against the terrain environment. Thus to reduce computational

overhead, two primary changes were made to the CC-BLG formulation.

The first modification to the CC-BLG algorithm was to replace the method of

dynamic propagation (2.32)-(2.36) used for generating the set of N, reachability

trajectories, with the previous analytic approach developed in (2.63). This analytic

expression was modified for use within the CC-BLG algorithm by incorporating the

predicted displacement produced by the mean wind estimate W over the propagation

horizon T according to

PXi = PxO+ cos(V o + sign(wi) ) + cos(Oo + (2 + sign(wi)) wiT)

+WXT, (6.1)

Pyi = PyO+ sin(o + sign(wi) -) + sin()o + (2 + sign(o.ui)) 7+ Wi)Wi2 2

+WYr, (6.2)

Pzi = P- z ( + Wz T, (6.3)

where T is defined using (3.14), and the mean wind estimate is provided in (2.18).

To further reduce computation, reachability states and covariance samples are

generated at only 2 discrete time points r = {2tp/3, tp} for each of the N, trajecto-

ries, as opposed to every At = 0.1 seconds during the original dynamic propagation.
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Figure 6-4: CC-BLG Flight modified reachability set approximation, Ne 5

Additionally, the total number of reachability trajectories was reduced from Ne 7

to Ne 5. The result of these modifications is a significant reduction in the to-

tal number of covariance samples used for collision checking along the reachability

horizon during each planning iteration. By neglecting the lag dynamics however, the

ability of (6. 1)-(6.3) to accurately predict the set of future parafoil states diminishes

more quickly with increasing propagation time T. To compensate for this effect. the

limits for the control were adjusted from mul Woma, to lul O.8Wmax in (2.62) so as to

produce wider turning circles, and offset the assumption of instantaneous heading rate

response. These limits were selected manually by comparing the set of reachability

states in (6.1)-(6.3) with those generated using (2.32)-(2.36) under the assumptions

Po =0 and ?/do = 0, until the positions of the states approximately aligned. Although

a more rigorous approach to tuning will be considered in future work, this approxima-

tion was found to work well in practice while significantly reducing the computation
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time required to generate each Phase 1 reachability set. The new reachability states

(green circles) are shown in Figure 6-4 at times t = {tF + 2tp/3- tF tP} within the

valley terrain environment.

The second set of modifications to the CC-BLG algorithm involved reducing both

the number of optimization iterations per 1 Hz planning cycle, and the number of co-

variance samples Ns generated around each trajectory state. Recall that a maximum

limit of 50 Nelder-Mead optimization iterations was specified per planning cycle for

the BLG and CC-BLG algorithms compared in Chapters 4-5. Throughout the simu-

lation experiments conducted on a 3.2 GHz Intel i5-3470 CPU, this upper bound on

iterations enabled both algorithms to satisfy the online computational requirements,

such that the total time per cycle to converge upon a trajectory solution remained

well below the 1 second threshold. It was also observed from simulation that the full

set of 50 iterations was not typically required for optimization convergence after the

initial planning cycles of Phase 1 and Phase 2 terminal guidance. Within the first

several planning cycles, a larger number of optimization iterations may be required

by the BLG and CC-BLG algorithms in order to refine the initial guess solution.

However, by reinitializing each 1 Hz cycle using the previous best solution, the op-

timization was often found to converge more quickly, and in fewer iterations, during

subsequent planning steps.

When comparing the performance of the CC-BLG algorithm on the 180 MHz

MCU, the margin of computation available after the execution of the existing Draper

GN&C software was insufficient for CC-BLG to remain within the 1 Hz planning cycle

when a large number of optimization iterations were required. To reduce CC-BLG

computation time, the maximum number of iterations allowable was decreased to 25

per cycle for the flight test version of the algorithm.

Figure 6-5 and Table 6.1 display the results from hardware-in-the-loop (HWIL)

testing of CC-BLG on the 180 MHz MCU using Draper Laboratory's HWIL simula-

tion facility [48]. In these experiments, a target threshold of 0.7 seconds was specified

for the total computation time required to complete the GN&C cycle, including CC-

BLG planning, so as to provide sufficient margin for the controller to successfully
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Figure 6-5: Average GN&C time per cycle for CC-BLG on 180 MHz microcontroller

Table 6.1: Computation time for CC-BLG on 180 MHz microcontroller (MCU)

Max Samples Average GN&C Average Time
Iterations per state Time per cycle (s) per state (ms)

10 0.628 0.473
15 0.780 0.658

25 20 0.868 0.842

30 1.088 1.175
40 1.399 1.545

10 0.755 0.485
15 0.852 0.651

30 20 1.032 0.844
30 1.272 1.089
40 1.443 1.538
10 1.033 0.472
15 1.057 0.617

50 20 1.382 0.836
30 1.640 1.173

1 40 1.814 1.526
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execute commands at the designated 1 Hz frequency [32]. This represents a 70%

GN&C duty cycle as indicated by the black dashed line in Figure 6-5. From the

results shown in Figure 6-5 and Table 6.1, the average GN&C computation time of

the CC-BLG flight software remains below the desired 0.7 second threshold when the

total number of covariance samples per state Ns is reduced to 10, and the maximum

number of optimization iterations per cycle is set to 25. These modifications to the

CC-BLG algorithm represent a significant cutback to the set of 40 samples per state

and 50 maximum optimization iterations used in Chapters 4-5. The Ns = 10 covari-

ance samples per state used for the flight test version of CC-BLG were positioned

along a single covariance ellipse with a = O3 = 3.2 (selected in Section 4.3), so as

to provide sufficient warning to the planner about the location of environmental ob-

stacles along the optimized parafoil trajectory. However, a potential side effect of

this reduced arrangement of covariance samples is increased planning conservatism

via the large probability weights P(S) = 0.1 assigned to the samples furthest away

from the nominal trajectory state.

The normalized miss distance data of the modified flight test algorithm, referred

to here as "CC-BLG Flight", is shown in Figure 6-6 and Table 6.2 over a series of

2500 Monte Carlo trials within the valley terrain environment using Draper Labora-

tory's high fidelity simulator, described in Section 4.2. The results produced by the

CC-BLG Flight algorithm are compared alongside the BLG and CC-BLG simulation

results reported in Table 5.1 and Figure 5-1, where the data from all three algorithms

has once again been normalized using the BLG median miss distance for this terrain

scenario. Notice in Figure 6-6 that CC-BLG Flight produces a miss distance CDF

that is very similar to the original CC-BLG algorithm, while also demonstrating im-

proved landing accuracy over BLG in the upper 15% of the distribution. With fewer

covariance samples, and a smaller number of optimization iterations allowable per

planning cycle, the CC-BLG Flight algorithm produces a slightly longer distribution

tail than the CC-BLG algorithm due to the addition of several worst-case outliers.

Additionally, the median miss distance of CC-BLG Flight is 12% larger than BLG in

this terrain, whereas the median miss distance of the full CC-BLG algorithm is only
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Table 6.2: Normalized miss distance data for valley terrain comparison of CC-BLG

Flight, 2500 trials
Algorithm Mean StDev 50% 80% 90% 95% 98% Max

BLG 1.56 2.10 1.00 1.81 2.64 5.62 10.18 15.04

CC-BLG Flight 1.29 0.89 1.12 1.86 2.31 2.76 3.55 8.62

CC-BLG 1.23 0.83 1.05 1.76 2.23 2.71 3.53 6.34

5% larger, as shown in Table 6.2. However, the overall similarities between the per-

formance of the CC-BLG and CC-BLG Flight algorithms in Figure 6-6 and Table 6.2

demonstrate that the robustness characteristics produced by the analytic chance con-

straints have been largely preserved, despite the modifications to reduce computation.

The results of this experiment also highlight the effectiveness of the covariance sam-

ples and reachability set augmentations to the original BLG algorithm, such that as

these features are removed, the performance of CC-BLG Flight is slightly diminished

relative to the full CC-BLG algorithm. Throughout the following discussion of the 9

flight test experiments conducted with the CC-BLG Flight algorithm in Section 6.4,

"CC-BLG Flight" will once again be referred to simply as "CC-BLG" for the purpose

of convenience.
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6.4 Flight Results

Table 6.3 summarizes the results from 9 CC-BLG flight test experiments performed

during the months of January and March, 2015. The test procedure and CC-BLG

flight software used for each drop experiment were preselected prior to both one

week test periods, such that real-time modifications could not be made based on

the observed flight results. The experiments were divided between drops using the

canyon-i and canyon-2 scenarios in order to evaluate CC-BLG robustness subject

to challenging wind and terrain interaction. Throughout all 9 flight tests, the CC-

BLG algorithm successfully guided the UltraFly parafoil to the target location while

avoiding collisions within the simulated terrain environment. Figure 6-7 displays the

landed UltraFly system at the Eloy drop zone after the first successful test flight of

the CC-BLG parafoil terminal guidance algorithm.

Figures 6-8(a)-(b) display the impact points produced by each flight test exper-

iment in the simulated canyon-i and canyon-2 terrains. From the locations of these

impact points (denoted with a red 'x') it can be observed that all 9 drops of CC-BLG

resulted in a safe parafoil landing along the region of dark blue elevation at the bottom

of each canyon environment. The impact points in Figure 6-8(b) demonstrate the ef-

fect of the constrained geometry produced by the walls of the canyon-2 terrain. These

impact points are positioned along a line running from north to south, correspond-

ing to the unconstrained direction of the parafoil final approach. Figures 6-8(a)-(b)

Table 6.3: Summary of CC-BLG flight test results

Test Date Terrain Release Alt. Release Miss
Test_ Date Terrai (ft. MSL) Distance (in) Distance (in)

1 1/6/2015 canyon-i 11,673.1 877.0 35.9

2 1/7/2015 canyon-2 11,523.5 719.1 140.3

3 1/7/2015 canyon-2 11,535.9 945.5 86.3

4 1/8/2015 canyon-i 10,515.6 973.0 70.9

5 1/8/2015 canyon-2 9,638.6 582.6 80.5

6 3/10/2015 canyon-1 11,699.3 153.2 31.9
7 3/11/2015 canyon-2 11,811.2 148.4 26.6
8 3/11/2015 canyon-i 11,623.2 318.7 20.4

9 3/12/2015 canyon-2 11,752.5 1797.1 14.1
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Figure 6-7: Landed parafoil at Eloy drop zone after CC-BLG Test 1 (author photo)

reveal that the landing locations produced by the CC-BLG algorithm are grouped in

the vicinity of the target for each terrain environment, with the largest miss distance

shown in Figure 6-8(b) by the northernmost impact point produced during Test 2.

Significant GPS altitude bias was found to be present in the Test 2 experiment, caus-

ing the parafoil to land short of the planned terminal trajectory state. Regardless of

this effect, CC-BLG maintained safety and landed the parafoil in the obstacle free

region at the bottom of the simulated canyon-2 environment.

Test 4: Analysis

Figure 6-9 displays the GPS ground track of the parafoil produced during Test 4,

beginning with the energy management phase. For clarity, the Phase 1 and Phase 2

terminal guidance portions of the CC-BLG trajectory are also plotted in Figure 6-

10(a)-(b) within the simulated canyon-1 environment. Figure 6-10 illustrates that

the Test 4 parafoil trajectory produced by CC-BLG remains robust to possible wind

uncertainty while successfully maneuvering in the vicinity of the terrain. In particular,

Figure 6-10(b) reveals that the upwind Phase 1 target for this experiment (shown by

156



I,500

450

400

350

00

-50
z

200

150

- - 100

S.100

0
Easting

(a) canyon-2

F00

700

600

0 -500

z -- 400

300

200

Easting

(b) canyon-2

Figure 6-8: Flight test impact points within the canyon-1 and canyon-2 terrain
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Figure 6-9: CC-BLG GPS ground track, Test 4

the yellow star) is located very close to the southern wall of the canyon-i environment,

creating a potentially dangerous planning scenario. With the help of the reachability

set approximation, CC-BLG completes Phase 1 guidance with the parafoil positioned

at a slight offset (blue star) and oriented parallel to the nearest terrain obstacle, as

shown in Figure 6-10(b). This position and orientation increase the feasible planning

space during the terminal guidance phase transition.

Figure 6-11 displays the wind measurements recorded onboard the UltraFly AGU

from the Test 4 flight experiment. In this test, the west component of the wind

increased by over 13 ft/s (7.7 knots) within the final 500 ft of descent above the

target altitude. This caused the parafoil to accelerate rapidly towards the end of the

Phase 2 trajectory segment (shown in Figures 6-9 and 6-10), while traveling downwind

to the target location. Due to the wind uncertainty and environmental constraints,

CC-BLG determined that it was unsafe to guide the parafoil further north in order to

dissipate altitude before reaching the target. From the trajectory shown in Figure 6-

10, this resulted in a slight target overshoot during the final turn maneuver into the

wind. Figure 6-12 depicts the UltraFly parafoil system at the end of Test 4 after

158



-C
C

z

. ....... -

Easting

(a)
Trajectory
Start CC-BLG
Landing Point
Target Phase 1
End: Phase 1
Target Phase 2

EastingNorthing

Figure 6-10: CC-BLG trajectory in the canyon-1 terrain, Test 4
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Figure 6-12: Parafoil system on final approach during CC-BLG Test 4 (author photo)
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completing this final turn maneuver prior to flare initialization. Of the 4 experiments

using the simulated canyon-1 terrain, this test produced the largest miss distance of

70.9 meters.

Test 9: Analysis

Figures 6-13 and 6-14 provide an example of CC-BLG trajectory planning in the

canyon-2 terrain using the Test 9 flight results. It can be observed in Figure 6-

13 that the direction of the wind changed from north to south during the Test 9

energy management phase (red markers), causing the GN&C software to reposition

the parafoil upwind of the target (black 'x') prior to the initialization of Phase 1

terminal guidance. The wind measurements recorded onboard the AGU are shown

in Figure 6-15. In this example, the Phase 1 target point (yellow star) in Figure 6-14

is far enough away from the terrain that CC-BLG determines the parafoil can safely

approach this upwind point at the start of Phase 2 guidance (blue star). Throughout

Phase 2, CC-BLG designs and executes a trajectory plan that guides the parafoil

toward the middle of the canyon so as to perform a final turn maneuver into the

wind. As compared to Figure 6-11, the winds during this test displayed less variability

throughout the final stages of CC-BLG terminal guidance, which helped to facilitate

an accurate landing at the target location.

Test 8: CC-BLG Trajectory Planning

Figure 6-16 displays the process of CC-BLG robust parafoil guidance over a series

of four time points using the data recorded from Test 8 in the simulated canyon-1

terrain environment. The CC-BLG trajectory plan (green line) is shown in Figure 6-

16(a) roughly three quarters of the way through Phase 1 terminal guidance, including

the reachability states (green circles) and covariances samples (black dots). Figure 6-

16(a) also displays collided covariance samples (red triangles) around several of the

reachability states which incur a penalty within the JCTG component of the CC-

BLG objective function (3.16). In this flight test experiment, the desired upwind

target point (yellow star) for Phase 1 guidance was once again positioned in close

proximity to the terrain due to the narrow canyon geometry constraints. As a result,
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Figure 6-13: CC-BLG GPS ground track, Test 9

the reachability states in Figure 6-16(a) were used by CC-BLG to maintain a safe

distance between the parafoil and the terrain, while orienting the parafoil's Phase 1

target approach to be parallel to the east-west contour of the canyon. From the set

of risk-free reachability states shown in Figure 6-16(a), it can also be observed that

a safe trajectory plan exists over the middle of the canyon if the parafoil turns to the

right following the initialization of Phase 2 guidance.

The parafoil trajectory (magenta line) and CC-BLG plan (green line) are shown

in Figure 6-16(b) after the first 3 seconds of Phase 2 terminal guidance. At this

point in the flight, Figure 6-16(b) reveals that CC-BLG has successfully identified

a trajectory plan to the final target location (yellow circle). As predicted from the

reachability states in Figure 6-16(a), the Phase 2 CC-BLG plan turns to the right

and avoids a collision with the terrain environment. However, because of the narrow

canyon-i bottleneck in the middle of the map, this trajectory plan causes the parafoil

to pass within close proximity to the terrain along the path to the target location.

In Figure 6-16(b), several collided covariance samples (red dots) are shown inter-

secting the canyon-i terrain to the north and south, indicating regions of increased
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Figure 6-15: Onboard AGU wind measurements during parafoil descent, Test 9

risk. During this flight test, the CC-BLG optimization determined that the level of

environmental risk was acceptable in order to minimize the landing distance from

the target location. Figure 6-16(b) illustrates that with the information provided by

the covariance samples, CC-BLG is able to generate an appropriate buffer of terrain

separation for the nominal trajectory plan as a means to safeguard against possible

wind disturbances throughout the remainder of the descent.

Figure 6-16(c) displays the Test 8 parafoil trajectory approximately halfway through

the process of Phase 2 terminal guidance. Here it can be seen that as the parafoil

passes alongside the southern canyon wall, CC-BLG has successfully minimized the

level of environmental risk by eliminating all of the collided covariance samples within

this region. After safely guiding the parafoil into the middle of the canyon, the final

segment of the CC-BLG Phase 2 trajectory is shown in Figure 6-16(d), resulting in

an upwind landing near the target location. The flight test data presented in these

images demonstrates the robustness capabilities of CC-BLG in complex terrain envi-

ronments, and reveals that the modified flight algorithm behaved largely as expected

given the set of original CC-BLG simulation experiments conducted in Chapters 4-5.
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JBLG and JCTG objectives, as the optimizer attempts to minimize the distance from

the upwind Phase 1 target. As demonstrated in Figure 6-16, this upwind target is

positioned close to the canyon-i terrain, causing the reachability states to incur an
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additional cost penalty by detecting the presence of environmental obstacles. Over

the CC-BLG time period from 30 to 75 seconds, the total cost J' produced by these

competing objectives is shown to be in relative equilibrium. This suggests that the

optimizer has converged around a parafoil approach orientation that simultaneously

balances the level of risk with the distance from Phase 1 target location. After

the transition to Phase 2 terminal guidance, CC-BLG quickly minimizes the total

cost of the remaining JcC and JBLG objectives by converging to a robust trajectory

solution that terminates at the final target location. As indicated in Figure 6-17,

the Jcc component for the risk incurred along the planned CC-BLG trajectory is

visible for only a brief period during the start of Phase 2 guidance. This cost is

incurred by a small number of collided covariance samples, as shown in Figure 6-

16(b)-(c). The results from the Test 8 flight experiment indicate that CC-BLG is

effective at minimizing the total level of environmental risk, such that the planned

parafoil trajectory remains robust to future wind uncertainty.
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6.5 Post-flight Simulation Analysis

This section provides a statistical comparison between the flight tested version of the

CC-BLG algorithm, referred to hereafter as "CC-BLG Flight", and the nominal BLG

algorithm using Draper Laboratory's high fidelity simulation environment [48]. Due

to the limited resources available to extensively flight test both algorithms under iden-

tical drop conditions, this simulation environment is an effective tool for describing

how both algorithms would have performed over repeated experiments by recreating

the environmental conditions from each of the 9 flight tests described in Table 6.3.

This was achieved by generating an altitude-dependent wind profile from each flight

experiment using the measurement logs stored onboard the UltraFly AGU. Two of

these wind profiles have been shown in Figure 6-11 and Figure 6-15 from the data

recorded during Test 4 and Test 9, respectively.

The wind profiles produced from each of the 9 flight test experiments were in-

corporated into the Draper Laboratory simulation as the "truth" wind acting on the

nonlinear parafoil model [73]. Additionally, the adjusted map tiles of the canyon-i

and canyon-2 terrain environments used throughout flight testing (described in Sec-

tion 6.2) were also implemented within the following Monte Carlo experiments in

order to simulate the parafoil over the identical altitude range relative to the Eloy

drop zone. Because the wind measurements observed by the GN&C software are

instrumental in selecting both the upwind location for energy management, and the

target point for Phase 1 terminal guidance, the wind-terrain interaction produced dur-

ing each of the 9 flight tests within the canyon-I and canyon-2 environments could

be effectively recreated in simulation using the recorded wind data. This enabled the

parafoil to be placed in a similar location at the initialization of Phase 1 terminal

guidance. The Monte Carlo parameters for this set of simulation experiments were

also adjusted to mimic both the flight test characteristics of the UltraFly parafoil,

as well as the release distances and altitudes shown in Table 6.3. To reflect possible

variations in the rigged weight of 355 lbs used during testing, the parafoil system

weight was uniformly sampled in the range from 350 to 360 lbs for each simulation.
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Likewise, the parafoil was simulated from release altitudes uniformly sampled over

the range from 2,591 meters (8,500 ft) to 3,200 meters (10,500 ft) above the target,

and release distances ranging from 100 to 2,000 meters. The sampling distributions

for the remaining Monte Carlo variables of lift-to-drag ratio and turn rate bias were

left the same as in Chapters 4-5 in order to represent imperfect knowledge of the

parafoil system about the nominal canopy values.

From the analysis of the wind data recorded at Eloy, the set of 5 wind profiles

from the January flight test displayed stronger average winds and higher variability

than the 4 wind profiles from March-particularly in the final 2,000 ft above the

target altitude. Within this altitude range used for parafoil terminal guidance, the

wind profiles from the 5 tests in January had an average overall intensity of 14.78 ft/s

(4.51 m/s), as compared to 9.91 ft/s (3.02 m/s) for the 4 tests in March. Although

higher intensity wind gusts above 17.5 ft/s (5.33 m/s) were also more prevalent during

the January flight tests, both months saw parafoil drops in which the wind gusts

exceeded 24 ft/s (7.32 m/s) during the terminal guidance phase. In order to capture

the differences between the winds observed from each test period, the following Monte

Carlo experiments are divided into two simulation sets. The first set includes the 5

wind profiles from January, while the second set includes the 4 wind profiles from

March. These sets of experiments will be referred to as "January-FT" for January

flight test, and "March-FT" for March flight test, respectively.

January-FT Simulation Analysis

Figure 6-18 and Table 6.4 display the results from 1500 Monte Carlo simulation

trials of the BLG and CC-BLG Flight terminal guidance algorithms in both the

canyon-1 and canyon-2 terrain environments. These tests were conducted with the

January-FT simulation set, representing 300 Monte Carlo trials using each of the

5 wind profiles. For comparison, the results produced by the original CC-BLG al-

gorithm with 40 covariance samples per state, and a maximum of 50 optimization

iterations per planning cycle, are also shown in Table 6.4 and Figure 6-18 over an

identical set of 1500 Monte Carlo trials in each terrain environment. Following the
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gure 6-18: Normalized miss distance CDF for January-FT simulation, 1500 trials

Table 6.4: Normalized miss distance data for January-FT simulation, 1500 trials

Terrain Algorithm Mean StDev 50% 80% 90% 95% 98% Max

BLG 2.57 3.23 1.68 2.92 3.99 10.78 15.00 21.45

canyon-1 CC-BLG Flight 1.79 1.00 1.66 2.41 2.93 3.42 4.04 10.31

CC-BLG 1.68 0.94 1.58 2.20 2.73 3.13 3.94 8.75

BLG 2.48 2.70 1.88 3.06 4.03 5.44 12.12 24.07

canyon-2 CC-BLG Flight 2.04 0.98 2.01 2.90 3.28 3.59 3.95 7.57

CC-BLG 1.94 0.94 1.93 2.77 3.08 3.30 3.72 8.91

procedure outlined in Chapters 4-5, these simulations were performed on a 3.2 GHz

Intel i5-3470 CPU, such that computational limits were no longer a factor for the full

CC-BLG algorithm. In this section, the miss distance data from all experiments is

normalized using the median miss distance of the BLG algorithm on the flat terrain

scenario recorded in Section 5.4. This is selected so as to compare the simulation

performance of all 3 algorithms against the median BLG landing accuracy achieved

in an obstacle free environment.

From the CDF plots in Figures 6-18(a) and 6-18(b), it can be observed that when

the January-FT conditions are used for simulation, the CC-BLG and CC-BLG Flight

algorithms provide improved landing accuracy over BLG throughout the upper tail

of the distribution in both terrain environments. This improvement is evident for all

trials above the 50th percentile in the canyon-1 scenario, and for all trials above the

78th percentile in the canyon-2 scenario. These results demonstrate that both variants
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of CC-BLG successfully reduce the number of worst-case collisions caused by the BLG

algorithm, thereby eliminating a significant portion of large miss distances from each

distribution. The statistics in Table 6.4 reveal that the average landing accuracy of

the CC-BLG Flight algorithm is improved relative to BLG by more than 30% in the

canyon-1 terrain, and by more than 17.5% in the canyon-2 terrain, while the worst-

case miss distances are also reduced by more than a factor of 2 and 3, respectively.

While the full CC-BLG algorithm produces slightly better accuracy than CC-BLG

Flight across nearly all percentiles, the shapes of the distributions for the two CC-

BLG variants in Figures 6-18(a)-(b) are very similar in both terrain scenarios. This

indicates that even with only half the number of allowable optimization iterations and

a quarter the number of covariance samples as the original algorithm, CC-BLG Flight

is capable of providing improved terminal guidance performance over the state-of-the-

art BLG algorithm in complex terrain environments due to the superior robustness

properties of the analytic chance constraints.

The impact points produced by the BLG and CC-BLG Flight algorithms during

each set of 1500 January-FT Monte Carlo trials are shown in Figure 6-19 for each

terrain scenario. Note from Figures 6-19(b) and 6-19(d) that nearly all of the simu-

lation trials of the CC-BLG Flight algorithm result in safe landings in the vicinity of

the target at the bottom of the canyon-1 and canyon-2 environments. In contrast, the

BLG algorithm in Figures 6-19(a) and 6-19(c) produces numerous terrain collisions

during each set of simulations using the January-FT wind conditions. As illustrated

in Figure 6-10, the direction of the wind during several of the January flight tests

caused the Phase 1 target point to be placed in close proximity to the canyon-1 ter-

rain in order to keep the parafoil upwind prior to the initialization of Phase 2 terminal

guidance. This results in a particularly high concentration of BLG terrain collisions

along the south wall of the canyon-1 terrain (shown in Figure 6-19(a)), suggesting

the BLG algorithm is less robust to the wind-terrain interaction that was observed

during these flight tests. BLG collisions can also be seen in Figure 6-19(c) along

the protruding section of canyon-2 terrain to the southwest of the target, as well as

scattered along the east canyon wall.
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Figure 6-19: BLG and CC-BLG impact points from January-FT simulation, 1500
trials

While the 5 wind profiles created from the January flight test are generally less

severe than some of the more aggressive winds contained within the 25 training profiles

used in Chapters 2, 4 and 5, the January-FT wind variability at lower altitudes poses a

significant challenge for robust parafoil guidance in constrained terrain environments.

The results in Figure 6-19 demonstrate the ability of the CC-BLG Flight algorithm to

provide improved terminal guidance performance relative to BLG under these drop

conditions.
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Table 6.5: Normalized miss distance data for March-FT simulation, 1200 trials

Terrain Algorithm Mean StDev 50% 80% 90% 95% 98% Max
BLG 1.48 3.29 0.75 1.26 2.35 4.33 13.14 30.17

canyon-1 CC-BLG Flight 1.21 0.81 1.14 1.74 2.12 2.60 3.12 9.09
CC-BLG 1.10 0.81 0.87 1.64 2.10 2.50 3.32 6.56
BLG 1.49 1.74 1.11 2.09 2.59 3.39 5.06 27.29

canyon-2 CC-BLG Flight 1.48 1.21 1.28 2.22 2.64 3.05 4.23 13.50
CC-BLG 1.32 0.97 1.15 2.03 2.35 2.65 3.26 10.23

March-FT Simulation Analysis

Figure 6-20 and Table 6.5 display the results from 1200 Monte Carlo simulation

trials of the BLG, CC-BLG, and CC-BLG Flight terminal guidance algorithms using

the March-FT wind conditions. As compared to the January-FT simulations, the

results in Figure 6-20 and Table 6.5 reflect the decreased intensity and variability of

the wind conditions recorded during the second set of March flight test experiments.

The statistics in Table 6.5 indicate that the performance of the BLG algorithm has

improved significantly in both the canyon-1 and canyon-2 terrain scenarios relative to

the January-FT simulations shown previously in Table 6.4. In particular, the BLG

mean and median miss distances have been reduced by 42% and 55% respectively in

the canyon-1 scenario, and by 40% and 41% respectively in the canyon-2 scenario.

This significant improvement in BLG landing accuracy can be attributed to the more

passive March-FT wind conditions which lower the risk of off-nominal terrain colli-
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sions. Improvements in the mean and median landing accuracy of the CC-BLG and

CC-BLG Flight algorithms are also apparent in Table 6.5, ranging from a 27.5% re-

duction in the mean miss distance of CC-BLG Flight in the canyon-2 terrain, to a 45%

reduction in the median miss distance of CC-BLG in the canyon-1 terrain. However,

the CDF plots shown in Figures 6-20(a) and 6-20(b) also demonstrate that the margin

of improvement provided by each variant of CC-BLG relative to BLG is noticeably

smaller than in the previous set of January-FT simulations. Figure 6-20(a) reveals

that under the March-FT wind conditions, the reduced conservatism of the BLG

algorithm results in improved landing accuracy over both CC-BLG and CC-BLG

Flight in the canyon-1 terrain throughout most of the distribution below the 90th

percentile. Although the planning conservatism used by the CC-BLG and CC-BLG

Flight algorithms is adjusted dynamically via the online wind classifier (described in

Section 2.3), the results in Figure 6-20(a) suggest that additional tuning may be re-

quired in order to prevent over-conservatism when the degree of environmental wind

uncertainty is low.

Despite the less aggressive March-FT wind conditions, slight variations in the

wind environment continue to produce several large BLG miss distances within the

tail of each distribution shown in Figures 6-20(a) and 6-20(b). As a result, CC-

BLG and CC-BLG Flight generate improved landing accuracy relative to BLG in the

upper 10% of the distribution for the canyon-1 scenario (Figure 6-20(a)). Within the

canyon-2 terrain scenario, the CDFs in Figure 6-20(b) demonstrate that all 3 terminal

algorithms perform similarly up until roughly the 90th percentile of the distribution,

with CC-BLG Flight producing slightly larger miss distances than either BLG or

CC-BLG from the 40th to 90th percentiles. Here again we observe that both CC-

BLG and CC-BLG Flight reduce the number of off-nominal terrain collisions in the

tail of the distribution, and generate between a factor of 2-3 reduction in the BLG

maximum miss distance. However, while CC-BLG demonstrates improved landing

accuracy relative to BLG for all trials above the 80th percentile, CC-BLG Flight

appears to improve only those trials above roughly the 94th percentile.

The miss distance results in Figure 6-20 and Table 6.5 reveal the effects of limiting
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the maximum number of optimization iterations for the CC-BLG Flight algorithm.

In the March-FT wind conditions, the CDF plots in Figure 6-20 demonstrate that

CC-BLG Flight does not achieve the same degree of accuracy over the interior of the

distribution from the 40th to 80th percentiles, resulting in a median miss distance

which is larger than BLG and CC-BLG in both the canyon-1 and canyon-2 terrain

environments. When the wind conditions are calm, the results in Table 6.5 indicate

that the optimizer is able to spend more time refining the trajectory solution, and less

time compensating for the effects of the wind disturbances. As a result, with only half

the allowable optimization iterations as the BLG and CC-BLG algorithms, CC-BLG

Flight is unable to refine the trajectory solution to the same extent. For the set of

March-FT simulations, this leads to slightly larger miss distances on average in the

presence of complex environmental constraints. As demonstrated by the blue CDF

curve of the CC-BLG algorithm shown in Figures 6-20(a) and 6-20(b), such limitations

can largely be avoided with the use of additional computational resources.

The impacts points produced by the 1200 Monte Carlo trials of the BLG and CC-

BLG Flight algorithms are shown in Figure 6-21 for the March-FT simulations. The

BLG impact points in Figure 6-21(a) and 6-21(c) confirm the presence of large miss

distances caused by collisions with the canyon-1 and canyon-2 terrain. Because BLG

utilizes only a reactive replanning strategy in order to compensate for the effects of

future wind disturbances, these results demonstrate that off-nominal terrain impacts

can still occur even when the wind conditions are less volatile. As compared to

the impact points shown previously in Figures 6-19(a) and 6-19(c), the fraction of

total BLG simulation trials resulting in a terrain collision is noticeably smaller using

the March-FT wind conditions, such that the majority of BLG impact points are

positioned around the target location. The impact points for the CC-BLG Flight

algorithm in Figures 6-21(b) and 6-21(d) continue to produce far fewer collisions

than BLG in both terrain scenarios due to the added robustness of the analytic

chance constraints. Although restricting the number of optimization iterations results

in several large CC-BLG Flight miss distances, shown to the south of the canyon-

2 target in Figure 6-21(d), these simulation trials land safely at the bottom of the
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points from March-FT simulation, 1200 trials

canyon and avoid collisions with the terrain environment. Such results indicate that

despite the modifications to reduce computation, CC-BLG Flight continues to remain

robust to the environmental wind uncertainty.

6.6 Summary

This chapter presented the results from 9 flight tests of the modified CC-BLG termi-

nal guidance algorithm conducted with a full-scale UltraFly parafoil system. In order

to evaluate the robustness of the CC-BLG algorithm, the presence of complex terrain
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was simulated within the onboard GN&C software using the two Grand Canyon ter-

rain scenarios introduced in Chapter 5. During all 9 flight test experiments, CC-BLG

successfully guided the UltraFly parafoil to the target location while avoiding colli-

sions with the simulated terrain environment. From the analysis of CC-BLG in-flight

trajectory planning, this chapter demonstrates that the analytic chance constraints

and augmented CC-BLG objective function developed in Chapter 3 effectively main-

tained parafoil safety, and mitigated the level of environmental risk throughout the

terminal guidance phase. These results confirm that the modified flight test algorithm

operates as expected given the set of CC-BLG simulations conducted previously in

Chapters 4-5.

With the aid of Draper Laboratory's high fidelity simulator [48], this chapter also

compared the statistical performance of the BLG, CC-BLG, and CC-BLG Flight al-

gorithms by recreating the set of wind and drop conditions from the 9 flight test

experiments. These simulations demonstrate that CC-BLG and CC-BLG Flight pro-

vide improved planning robustness relative to BLG in each terrain scenario over a

series of repeated experiments using the flight test- wind conditions. This improve-

ment in performance is more pronounced when the intensity and variability of the

flight test winds lead to increased planning uncertainty during the terminal guidance

phase. Despite the computational limitations imposed by the available flight hard-

ware, this chapter reveals that the robustness properties of CC-BLG Flight remain

largely consistent with the full CC-BLG algorithm. When additional computational

resources are available, simulation results demonstrate that CC-BLG offers a slight

advantage in landing accuracy over CC-BLG Flight.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis has presented two novel parafoil terminal guidance algorithms for robust

motion planning in challenging wind and terrain environments. Through explicit

modeling of the wind uncertainty, these algorithms address the limitations of current

state-of-the-art parafoil guidance strategies by directly considering the possibility

of future wind and terrain interaction during the trajectory planning process. The

Analytic CC-RRT and CC-BLG algorithms developed in this thesis are capable of

handling arbitrary initial altitudes, approach geometries, and terrain surfaces, while

providing robustness to highly dynamic wind conditions that cannot be achieved

through replanning alone. The effectiveness of each algorithm has been thoroughly

demonstrated in simulation over a series of Monte Carlo experiments in complex ter-

rain scenarios. Simulation results have shown that Analytic CC-RRT and CC-BLG

achieve significant improvements in both mean and worst-case landing accuracy rela-

tive to the state-of-the-art Band-Limited Guidance (BLG) algorithm by substantially

reducing the number of off-nominal terrain collisions caused by wind disturbances.

Flight test experiments with a full-scale UltraFly parafoil system confirm that the

optimized CC-BLG algorithm can robustly execute collision avoidance and preci-

sion landings in simulated Grand Canyon terrain by applying the method of analytic

chance constraints presented in this work.
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In Analytic CC-RRT, a unique multi-class wind uncertainty model is introduced

to anticipate the effect of future wind disturbances. This model has been shown to

accurately represent true wind behavior, and to enable online adaptation of planning

conservatism to reflect the intensity and variability of the observed wind conditions.

Leveraging the assumed form of the wind uncertainty model, the analytic a priori

uncertainty distribution is derived over future parafoil trajectories. Through analytic

sampling of the state uncertainty distribution, the risk of constraint violation is effi-

ciently evaluated against arbitrary, non-convex terrain environments to ensure prob-

abilistic feasibility with guaranteed, user-specified bounds. Simulation results have

demonstrated that Analytic CC-RRT can operate successfully from a wide range of

initial conditions, including altitudes up to 2000 meters, while the addition of speed

penalties within the cost-to-go function has been shown to promote upwind parafoil

landings with minimal effect on target accuracy.

The CC-BLG algorithm incorporates the wind uncertainty model and analytic

sampling technique into the optimized BLG trajectory planning framework. A novel

risk-based objective function is proposed in order to directly minimize the probabil-

ity of constraint violation during trajectory optimization. This objective function

utilizes several heuristics, tuned to create the desired balance between risk aversion

and goal seeking behavior throughout the terminal guidance phase. By applying the

principles of discrete reachability set approximation, obstacle detection and avoidance

is effectively maintained during finite-horizon CC-BLG path planning in constrained

terrain environments, allowing for the initialization of terminal guidance beginning

from high initial altitudes, and significant target offsets. Extensive Monte Carlo

simulation analysis has demonstrated the effectiveness of each of these components,

and that the resulting CC-BLG algorithm is capable of generating improvements in

both mean and worst-case landing accuracy relative to BLG of more than 32% and

66%, respectively, in complex terrain scenarios. The results of nine flight test experi-

ments demonstrate that CC-BLG performed as expected given prior simulations, and

is readily implementable for online trajectory planning using commercially available

flight hardware.
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7.2 Future Work

7.2.1 Planning Conservatism

Planning conservatism can be a valuable quality for parafoil terminal guidance al-

gorithms by promoting robustness to future wind disturbances in the presence of

environmental obstacles. However, over-conservatism in the planner also has the po-

tential to degrade performance when wind conditions are less dynamic, and the risk to

parafoil safety is minimal. Although the Analytic CC-RRT and CC-BLG algorithms

were shown to handle this dichotomy well for a wide variety of wind and terrain condi-

tions, the effect of over-conservatism was observed in Section 6.5 during Monte Carlo

simulation trials of CC-BLG and CC-BLG Flight using the less aggressive March-

FT wind conditions. Further refinements to the wind model, classifier, and analytic

uncertainty sampling technique may help to prevent over-conservatism by improving

the fidelity of the wind prediction.

Wind Model Training Set

First, the training set of wind profiles should be expanded using additional real-world

drop data in order to capture an increased variety of possible wind behaviors. The

DP-means clustering algorithm in Section 2.3.2 can then be used to generate a new

set of NC wind classes, including those with less aggressive characteristics. In the

event that DP-means identifies NC > 5 clusters within the expanded set of training

wind profiles, Error-Correcting Output Coding (ECOC) could be incorporated as

a low bias and low variance classification method for supervised learning problems

involving k >> 2 classes [75, 76]. These modifications may allow the classifier to

better distinguish between various levels of environmental risk, without significantly

effecting model complexity.

Wind Model Feature Vector

To construct the feature vector (2.23) for each wind profile, future work should also

consider replacing the maximum value of wind magnitude, rate of change of wind
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Figure 7-1: Alternative arrangements of weighted covariance samples

magnitude, and rate of change of wind direction with the standard deviation of each

feature, respectively. Characterizing the effect of wind disturbances using the max-

imum function has the potential to create bias during both offline clustering, and

online classification, due to possible sensor noise and measurement outliers. If a

single large outlier is observed, this information will be retained within the feature

vector throughout all future time steps, and may bias classification toward greater

conservative. On the other hand, the standard deviation represents another useful

metric for describing wind variability, while reducing the risk of classification bias.

Weighted Covariance Sampling

Another possible modification to prevent over-conservatism is an alternative arrange-

ment of the weighted covariance samples. For the CC-BLG Flight algorithm presented

in Chapter 6, sampling the uncertainty distribution along a single covariance ellipse

with standard deviation a- > 1.5 can encourage planner conservatism, particularly

when the total number of covariance samples, Ns, is small. If only a single covariance

ellipse is used for sampling, all samples carry a probability weight of P(S) = 1/Ns re-

gardless of the value of u. Sampling the distribution at large values of o will therefore
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penalize sample collisions at locations far from the nominal trajectory state where the

parafoil is unlikely to be. An alternative approach is to arrange covariance samples

across multiple a-ellipses, even for small Ns, in order to better distribute the sam-

ple probability weights. To compensate for reduced sampling coverage along each

ellipse, equi-spaced covariance samples can be arranged at rotated angular offsets

between consecutive a-ellipses, as shown in Figure 7-1. Figure 7-1(a) demonstrates

a possible arrangement of Ns = 12 samples over NE = 2 covariance ellipses for

{uI, ( 2} = {1.5, 3.2} and {Ns1 , Ns 2 } ={6, 6}, respectively. The yellow area in Figure

7-1(a) represents the region of the probability distribution assigned to samples along

the u1 -ellipse, while the gray area represents the remaining region of the probability

distribution assigned to samples along the c 2-ellipse. This arrangement with Ns = 12

samples could potentially be used for CC-BLG Flight. For the case of Ns = 40, Figure

7-1(b) provides an example arrangement of covariance samples using NE = 4 ellipses

for {Ui,a2 ,9 3 ,a4} = {0.75,1.5,2.25,3.25} and {Ns1 ,Ns2, Ns 3 , Ns4} = {5, 10, 10, 15},

respectively. Future work should evaluate the benefit of these alternative covariance

sample arrangements for improving planning conservatism while maintaining robust-

ness to the wind uncertainty.

7.2.2 Analytic Uncertainty in 3-Dimensions

Extending the wind uncertainty model to 3-Dimensions to incorporate the effects of

vertical wind disturbances, such as updrafts and downdrafts, could provide an ad-

ditional degree of robustness for parafoil guidance in complex terrain environments.

Such an extension was proposed in Ref. [47] and is worth considering for future Ana-

lytic CC-RRT and CC-BLG development. Under the consistent assumption that the

wind uncertainty along the z-axis is uncorrelated with uncertainty in the xy-plane,

the colored noise parameters for the wind model (2.31) could be re-tuned in 3D by

repeating the procedure outlined in Section 2.3.2. In order to isolate each component,

this approach would require tuning first the x/y wind uncertainty by neglecting ver-

tical wind disturbances, and then the z wind uncertainty by neglecting the x/y wind

disturbances [47]. The difference in impact time between the propagated parafoil

181



dynamics subject to true vertical wind, and subject to the estimated mean vertical

wind, could be used to derive a similar vertical distance metric and empirical CDF

to the one developed in Section 2.3.2 for x/y, so as to represent the cumulative effect

of updrafts and downdrafts on parafoil altitude. After re-deriving the analytic uncer-

tainty distribution following the approach in Section 2.4, a method of 3D uncertainty

sampling over covariance ellipsoids could be developed using a similar approach to

the one described in Ref.[77].

Although 3D analytic uncertainty sampling would require additional computation

in comparison to the 2D sampling approach described in this work, 3D sampling may

result in valuable robustness properties-particularly for parafoil guidance scenarios

such as canyons, valleys, and urban environments, where updraft and downdrafts can

have a significant impact on the parafoil dynamics. To further evaluate Analytic CC-

RRT and CC-BLG performance, wind profile data should be recorded within these

types of complex terrain scenarios and incorporated into future simulation analysis.

This would enable more consistent modeling of the challenging wind-terrain interac-

tion associated with a particular target environment, while providing useful training

data for wind classification.
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