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Abstract

Upon concluding a meeting, participants can occasionally leave with different un-
derstandings of what had been discussed. For meetings that result in immediate
subsequent action, such as emergency response planning, all participants must share
a common understanding of the decisions reached by the team in order to ensure suc-
cessful execution of their mission. Thus, detecting inconsistencies in understanding
among meeting participants is a desired capability for an intelligent system designed
to monitor meetings and provide feedback to spur stronger shared understanding
within a group.

In this thesis, we present a computational model for the automatic prediction
of consistency among team members' understanding of their group's decisions. The
model utilizes dialogue features focused on capturing the dynamics of group decision-
making. We trained our model using one of the largest publicly available meeting
datasets and achieved a prediction accuracy rate of 64.2%, as well as robustness
across different meeting phases. To the best of our knowledge, our work is the first
to automatically predict levels of shared understanding using natural dialogue.

We then implemented our model in an intelligent system that participated in
human team planning meetings about a hypothetical emergency response mission.
The system suggested discussion topics that the team would derive the most bene-
fit from reviewing with one another. Through human subject experiments with 30
participants, we evaluated the utility of such a feedback system, and observed a sta-
tistically significant mean increase of 17.5% in objective measures of the consistency
of the teams' understanding compared with that obtained using a baseline interactive
system.

Thesis Supervisor: Julie A. Shah
Title: Assistant Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

Meetings are an integral component of many collaborative and organized work envi-

ronments [46]. Each day, over 11 million meetings take place in the United States,

and over 2.6 billion occur each year [2]. Meetings are essential and the number of

meetings and their duration has been steadily increasing [48], [46]. Managers spend

between a quarter and three-quarters of their time in meetings [41], and approxi-

mately 97% of workers have reported in a large-scale study [28] that collaboration is

essential to do their best work. However, we realize that meetings are often not as

efficient as they could be: An estimated $54 million to $3.4 billion is lost annually

as a result of inefficient meetings (e.g., getting off-topic, poor preparation, a lack of

organization, misunderstandings among participants, etc.) [51]. Consequently, there

is a great interest in improving meeting productivity and efficiency.

One common source of inefficiency is inconsistency between team members in

their understanding of the outcome of a meeting [51], potentially causing miscom-

munication and confusion. Figure 1-3 provides a visual illustration of inconsistency

between team members' understandings. In highly dynamic crisis domains, where

degradation in team performance can lead to high public safety costs, such mishaps

can have severe consequences [17]. Therefore, it is imperative in such situations that

team members reach a uniform understanding of the decisions made by the group.
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Figure 1-1: Pictures of typical meetings in office environments. They can be phys-

ical meetings or meetings conducted through an electronic medium such as a video

conferencing. Images are from [1] and [12] respectively.

Figure 1-2: Meetings in safety-critical domains. Image on the left hand side shows

firefighters using a Web-based situational awareness tool (NICS [18]) to coordinate

missions for emergency response. Image on the right hand side shows a crew operating

inside an E-2D Advanced Hawkeye, coordinating distributed aerial fleets. Images are

from [13] and [31] respectively.

We are interested in developing an intelligent system that would monitor meetings

and provide useful feedback to help team members to remain 'on the same page.' The

system would suggest a review of the discussion topics with the greatest potential

to result in inconsistent understanding among team members, and provide friendly

reminders to review those topics before adjourning the meeting (Figure 1-4 illustrates

this idea). A system with this capability could serve to reduce misunderstandings

and hidden conflicts among meeting participants that could have otherwise gone

unnoticed. This has potential to make everyday meetings more efficient.
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Figure 1-3: A visual illustration of the inconsistency between team members' under-

standings. The team member on the rightmost side possesses an understanding that

is conceptually different from that of the other members.

1.2 Thesis Contribution

In prior literature [49], [58] researchers have proposed qualitative models to explain

the process of how teams reach a consistent, or shared, understanding of one another.

Although much has been written about the modeling of a shared understanding pro-

cess, prior work has been purely qualitative i.e., constructing theoretical models

inspired by results from observational studies. We build on this prior work by en-

abling a computational framework such that the level of shared understanding among

team members can be quantitatively assessed by a computer.

In this thesis, we present a computational model to predict the consistency among

team members' understanding of their group decisions (defined as consistency of

understanding). Our work enables an automatic framework for assessing a level

of shared understanding, a form of shared cognition that has previously only been

analyzed qualitatively. To do this, we utilize a set of dialogue features that focuses on

capturing the dynamics of group decision-making and incorporate them as features

of a machine learning algorithm.

One of the key benefits of our model is generalizability: The model learns by

monitoring the dynamics of how teams plan, not what they are planning for - in

essence, it does not rely on any domain-specific content. We trained our model using

one of the largest publicly available meeting datasets, and achieved a mean prediction

15



accuracy rate of 64.2%, with robust performance across different meeting phases.

Next, we demonstrate the utility of our computational model when it is imple-

mented for an intelligent agent participating in live meetings. This agent monitors

team dialogue over the course of a meeting, and suggests that the participants review

discussion topics that the model has predicted will result in inconsistencies. Through

human subject experiments involving 30 participants, we evaluated the utility of such

a feedback system and observed a statistically significant mean increase of 17.5% in

objective measures of consistency of understanding.

Overall, our multi-step study makes the following contributions to the literature:

(1) We demonstrate that a computer can automatically assess the consistency of

understanding within a team through natural dialogue, with a prediction accuracy

rate above random chance. In other words, we show that there is a predictive signal in

the monitoring of team planning dynamics through dialogue features proposed from

qualitative studies. (2) We contribute to the understanding of how an intelligent

agent could participate in human meetings. To our knowledge, no prior studies have

explored how shared understanding within a team is affected by receiving a review

recommendation from a computer.

Monitor conversation

Suggest review "Could we review
these topics {...}

once more?"

Figure 1-4: An illustration of intelligent system helping teams reach consistent un-

derstanding of each other.
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Chapter 2

Related Work

2.1 Shared Understanding

Assessing levels of shared understanding through natural dialogue is a challenging

task. Human dialogue is complex: Discussions unfold in cycles, agreements are fluid

and idea proposals are often communicated and accepted implicitly [19]. Shared

understanding represents an alignment of mental states, and therefore presents diffi-

culties for explicitly monitoring its continually evolving process [49].

Despite these challenges, shared understanding has been a topic of multidisci-

plinary research in the linguistics, cognitive psychology and social science commu-

nities. Definitions of shared understanding include "the overlap of understanding

and concepts among group members [49]," "the ability to coordinate behaviors to-

ward common goals or objectives [52]" and "having mutual knowledge, mutual beliefs

and mutual assumptions (content and structure) on the task [11]." Here, the idea of

"sharedness" refers to the commonality of understandings among team members, and

not "shared" in the sense of the division of resources. Our definition of "consistency

of understanding" is synonymous with previously mentioned definitions, but it pro-

vides a clear emphasis on the overlap and alignment of understandings. According

to prior work, shared understanding has positive effects on production performance

(with regard to both quality and quantity of products) [43], individual satisfaction

[38], reduction of iterative loops and re-work [363, innovation [37] and team morale

17



[15].

The process of how shared understanding is achieved has been investigated pre-

viously. Mulder et al. [49] described this process as a three-step transition from

an initial phase of conceptual learning (primary exchange, reflection and refinement

of facts and concepts), to a feedback phase (confirmations, checks and explanations

among group members), and finally to a motivation phase (evaluative expressions of

usefulness, certainty and uncertainty). Bossche et al. [58] identified a set of team

learning behaviors and explained that collaborative groups express and listen to in-

dividual understandings (construction), discuss and clarify them to reach mutual

understanding (co-construction) and negotiate an agreement upon a mutually shared

perspective (constructive conflict). Eugenio et al. [19] described the process as a

three-phase transition between balance, propose and dispose stages, and also high-

lighted the importance of tracking commitment dynamics across team members.

In short, shared understanding is considered crucial to the quality of group inter-

actions, and much has been written about the essence of shared understanding and

the process through which is reached. However, prior work has been purely qual-

itative, focused on theoretical definitions and modeling motivated by results from

observational studies. To the best of our knowledge, the study of monitoring and

assessing shared understanding has not yet been generalized to an automatic, predic-

tive framework. In this thesis, we present a computational model to predict the levels

of shared understanding, such that a computer would be able to provide quantitative

measures.

2.2 NLP: Agreement Detection

Prior work within the natural language processing (NLP) community has explored the

related task of automatically detecting "agreements" in meetings [30], [22], [24]. This

task involves the detection and classification of agreements as positive or negative

through machine learning algorithms incorporating verbal and nonverbal dialogue

features.
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The detection task is generally performed for each spoken utterance. For example:

"Yes, that sounds great" would be classified as a positive agreement, while "I don't

like that idea" would be classified as a negative agreement or disagreement. Non-

agreement utterances would be classified as neutral. However, this work only captures

agreements during single instances, and from a single speaker's perspective; they do

not capture the essence of "joint agreement," which is more closely related to the

definition of shared understanding.

Figure 2-1: Example annotation of agreement detection task.

While we believe that momentary agreement is an important feature that may

lead to an eventual shared understanding within a group, these two terms are not

interchangeable. "Agreement" refers to an accordance with another's opinion at a

spoken utterance, while "shared understanding" refers to a state of group consensus

resulting from the culmination of an entire discussion. For example, a meeting par-

ticipant can disagree with another participant during a given moment in a discussion,

but may still possess a clear understanding of what the group has decided on upon

completion of the meeting. In contrast to the related work in the NLP field, our work

focuses on utilizing the full discussion to predict the level of shared understanding

within the group.

2.3 Intelligent Agent Participation

Intelligent agents are increasingly being integrated into tasks such as automatic sum-

marization [61], speaker identification [21], plan extraction, detection of meeting ac-

19
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A What is our priority?

B Um, how about we proceed with lower region first?

A Okay, I like that idea. *-{Positive agreement}

C I don't think so. 4- {Negative agreement}



tions [45], modeling of social interactions [23] and audiovisual processing of various

cognitive states for analysis [47]. In the case of the latter, researchers are devel-

oping models to infer participants' states of concentration, interest, confusion and

frustration [20], [35], and have used intelligent agents to predict the outcomes of in-

terviews [50] and the success of negotiations [42]. More recently, we have seen physical

intelligent agents (robots) integrated into meetings for example, to serve as moder-

ators in balancing engagement and dominance levels [57] and in predicting levels of

interpersonal trust among team members [39]. Our work addresses the novel task

of automatically predicting the consistency of understanding during team meetings.

This problem is unique, in that it involves prediction of a shared cognitive state.

Figure 2-2: Examples of intelligent agent participation. On the left hand side, a

Wakamaru robot is monitoring the human's engagement. The right image shows a

Nexi robot interacting with a human and monitoring the levels of interpersonal trust.

Images are from [55] and [39] respectively.
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Chapter 3

Problem Statement and Approach

The problem statement of our work is to automatically predict the consistency of

understanding using a team's natural dialogue, which can be supplied either online

or offline. The focus is on learning through textual data; however, we also investigate

the potential benefits of incorporating nonverbal features, such as head gestures, into

the model.

In our problem, we assume a structural form that meetings are composed of

discussions of several topics. These topics can be envisioned as a list of items on a

meeting agenda, where topic discussions form collections of dialogue relevant to

decision-making for individual topics. In our problem, we perform a single prediction

task for each topic discussed. We believe this is an important level of granularity for

the development of a system that can identify (in)consistent topics over the course of

a meeting, rather than outputting a measure for the meeting as a whole.

3.1 System Flowchart

Figure 3-1 depicts the flowchart of our problem statement. A topic of discussion is

read as input by the computation model, which then outputs a prediction about the

consistency of understanding within the group for that topic. The output is binary

i.e., team members can have either a consistent or inconsistent understanding of

group decisions. We leave explorations of additional levels (such as a moderate level

21



of consistency) for future work. Consistency of understanding, especially information

on its ground truth labeling, is described in Section 4.2.2. Finally, for topics that the

model predicts will result in inconsistency, a system feedback is triggered suggesting

that team members review those topics. To avoid potential confusion, we would like to

emphasize that the term 'inconsistent' here refers to inconsistencies or misalignment

among team members' understandings. We are not using the term to represent the

quantitative infeasibility of a plan structure (which is a term frequently utilized in

AI).

Computational Output
Model

Consistent

Predict
Inconsistent

System
feedback

"Could we review this
topic once more ?"

Figure 3-1: Flowchart of the problem statement. The input is a topic discussion, and

the output is consistency of understanding. System feedback is triggered for topics

predicted to be inconsistent.

3.2 Approach

One of the biggest challenges for our problem statement is the mapping of natural

dialogue to a concrete set of features that can capture information about a team's con-

sistency of understanding. In order to accomplish this, we adopt the idea of tracking

the conversational dynamics of group decision-making. In essence, we aim to capture

the process of how a team plans, which is considered to be an important feature in

modeling group consensus [29], commitment [26] and agreement [19]. With regard to

the aforementioned cognitive states, we assume that consistency of understanding is
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related to shared cognition, and thus utilize the set of features proposed from prior

studies for our computational model.

We use a particular set of features defined from Eugenio et al. [19] (referred to

here as Eugenio's features), which has been shown to monitor the evolving attitude

of participants' commitment toward options presented during a meeting.1 It also

describes how joint commitments are achieved by the group. Eugenio's features are

types of dialogue acts [54], [34], or labels that define the functional role of utterances.

Table 3.1 provides a list of dialogue acts, their definitions and example sentences

(showing only subset of a full list from [8]). However, in contrast to conventional

dialogue acts, Eugenio's features have been shown to facilitate the recognition of im-

plicit and/or passive acceptance of options by team members. These characteristics

make Eugenio's features useful for predicting consistency of understanding, as joint

commitment toward options would naturally lead to joint understanding of group de-

cisions. We describe how Eugenio's features are generated from conventional dialogue

acts in Section 4.2.3.

Table 3.1: Sample Dialogue Act Labels [8]
Label Definition Example sentence

Inform Exchange of information UAV is located here.

Assess Comment expressing an evaluation That is a good plan.

Suggest Expression of intention to the actions of Let's send it over

another individual, or a group as a whole there.

Offer Expression of intention relating to own ac- I can do that task.

tions

Elicit-Inform Requesting of an information What kind of system

is it?

Elicit-Assess Attempt to elicit an assessment What do you think

about this?

Understanding Comment on understanding about a dis- Yes I see.

cussion point

Elicit- Asking for a comment about understand- Do you see what I

Understanding ing mean?

We learn a model for consistency of understanding from sequences of Eugenio's

features in dialogue. Maintaining sequential information is of particular importance,

"'Options' here refers to proposed ideas and choices to be decided on by the group [19].
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because natural turn-taking behavior exists within human dialogue (often called ad-

jacency pairs, e.g. proceeding from question to answer, request to acceptance or

rejection, etc.). The order in which one dialogue act follows another may provide

discriminative information for distinguishing a team's shared understanding: For ex-

ample, a sequence of "question -+ question - question" may be a pattern of weaker

understanding than a sequence of "question -+ acceptance -+ confirm." Our approach

is to apply machine learning algorithms to learn discriminative sequences of Eugenio's

features. We perform machine learning to derive patterns from real human dialogue,

rather than specifying any hardcoded templates. We represent a topic discussion us-

ing a sequence of dialogue acts, as follows:

D =< DA1,DA 2 ,...,DAL >, where DA, C A

where D is a topic discussion, DAi is a dialogue act realized at instance i (which

designates a row on a discussion table), subscript L is the length of the topic discussion

and A is a finite set of dialogue acts. For A, our primary feature set incorporates

Eugenio's features.

There are several advantages to using dialogue acts to represent a discussion:

First, dialogue acts allow for the learning of conversational dynamics without the

extraction of keywords or domain-specific content, in turn allowing for generalizability

of both qualitative and quantitative models across different topic discussions. The

resulting sequence essentially stores information about how teams plan, and does

not require the processing of potentially sensitive information. Second, dialogue acts

offer a higher level of abstraction than working directly at the word level (a common

approach for NLP-related tasks such as topic modeling and document classification).

By representing a discussion as a sequence of labels drawn from a finite set, the

computational complexity for learning algorithms is significantly reduced.

Also, we investigate the benefits of multimodal fusion by including head gestures

as an extended feature set. Head gestures have been used previously to infer a state of

agreement, disagreement, concentration, interest or confusion [20]. We test whether
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the combination of head gestures with textual features improves the prediction per-

formance of the model.
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Chapter 4

Dataset

4.1 AMI Meeting Corpus

The dataset we used to build and train our model comes from the AMI meeting corpus

[8]. It is one of the largest publicly available meeting corpora, containing over 100

hours of recordings. In each of these meetings, a team of four people collaborated on

a task related to product design. The meetings were divided into four distinct phases

of the design process (descriptions are provided in Table 5.1) and were scenario-

driven. Each participant served one of four specific roles: project manager, industrial

designer, marketing expert or user interface designer. Although the participants were

engaged in role-playing, they were guided by personal coaches with regard to how best

perform their role and, most importantly, their conversations were collaborative and

reflected natural, human-to-human interaction. The length of the meetings ranged

from approximately 10 minutes to 45 minutes, which overlaps with the most common

lengths of meeting, as discussed by [51].

The AMI meeting corpus is well-suited for our study, because the conversations

that occurred during these meetings were tailored toward a group decision-making

process. The use of Eugenio's features is also appropriate due to the collaborative

environment of the meetings, wherein all decision points were consensual. This makes

consistency of understanding an important outcome from these meetings.
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Lis Hea
I opic Discussion = Kemote locator

Do we incorporate the idea of trying to locate the
remote control again via a beeping noise?
Yeah, think so.
Urn, I think so, because it's so small
I mean if we only have like two, three buttons it
might be essential to have to have that [pause]
The ability to locate it again.
Yeah.

That would require a transmitter maybe attached
to the TV and a basically small microphone

If you could look into what we've suggested so
far, the feasibility of small transmitter, and ...
Okay. Sure.

DAs: Head
Eugenio's gestures

PDO

D: Concord

B: Concord

B

D
C
C

B
C

B

B

C

DAs:
Conventional

Elicit-
Assess
Assess
Inform
Assess

Elicit-inform
Inform

Inform

Suggest

Assess

Figure 4-1: A sample conversation segment taken from the AMI corpus. Here, the
partieipaLnt A 1 discussVU a Lt a remote lcto vi Corresitpondig

annotation layers of dialogue acts, Eugenio's features and head gestures are provided
in the right-hand columns.

The corpus also contains a rich collection of annotations. In our study, we utilized

annotations of topic segmentations, participant summaries, dialogue acts and head

gestures. Here, we describe how each annotation layer was used to construct the

components necessary to build our computational model.

4.2 Generation of Input Components

4.2.1 From topic segmentations to topic discussions

Topic segmentations partition each meeting according to related topics. They natu-

rally represent our definition of a topic discussion by providing conversation segments

that focus on decision-making about a single topic. Some examples of topics from the

AMI corpus include: physical appearance, target audience, product customizability,

etc.

for a full list of available annotations, we refer readers to [8]
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4.2.2 From participant summaries to consistency of under-

standing

Self-reported participant summaries were used to establish ground truth on consis-

tency of understanding. At the end of each meeting phase, participants were asked to

provide written summaries of all the decisions made by the group. We compared the

summaries and checked for alignment. If all summaries were aligned, the associated

topic discussion was labeled consistent; the discussion was identified as inconsistent if

one or more of the summaries differed in content. Note that this is a "hard" measure

of consistency; i.e., if even one individual's summary differed from the others (in a

group size of n members), a ground truth of inconsistent was applied. For groups of

larger sizes, alternate and more conservative methods of labeling consistency can be

explored. In the AMI dataset, there were four participants per meeting.

Two annotators performed the comparison of consistency (inter-rater agreement,

K= 0.73), resulting in ground truth labels for a total of 140 topic discussions. There

was an imbalance in the distribution: 93 discussions were identified as consistent and

47 discussions were inconsistent.

Prior work has utilized an identical approach for comparing participant summaries

to form ground truth on shared understanding [3], [4]. Other measurement alterna-

tives include structured interviews and Likert scale questionnaires about perceived

shared understanding [60], [49]. However, an individual's perception of the shared

understanding within a group may be susceptible to confirmation biases. Therefore,

we believe that comparing individual plan summaries provides a more objective mea-

sure of shared understanding.

4.2.3 From dialogue acts to Eugenio's features

The AMI dataset provides annotations of conventional dialogue acts (DAs), but not

Eugenio's features. However, conventional DAs can be used to construct Eugenio's

features given the knowledge of "solution sizes." A solution size is defined as "deter-

minate" when sufficient relevant information has been exchanged between meeting
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participants to form options. "Indeterminate" refers to instances wherein further

balancing of information is required. Solution sizes are the distinguishing element of

Eugenio's features. They represent the state of the discussion on whether or not the

participants would need more information before deliberation. Because we did not

want to rely on any domain-specific materials, we had to approximate the state from

the dialogue acts. We applied the heuristic of marking a portion of a topic discussion

as "indeterminate" until the final DA label of "Inform" is displayed, at which point

the conversation segment is marked as "determinate." Note that this effectively re-

quires the whole topic discussion to be seen by the system, before solution sizes can

be determined.

With DAs and solution sizes, we applied the coding scheme described in [19] to

construct Eugenio's features. Table 4.1 provides an overview of Eugenio's features,

including their descriptions and coding schemes. Figure 4-1 depicts a sample conver-

sation segment with a full layer of annotations, including Eugenio's features. Note

that "action-directives (AD)" correspond with suggestions and all elicit forms of DAs

that require actions from partners.

Table 4.1: Eugenio's features, descriptions and coding schemes
Feature Description Coding
Partner Occurs when a speaker offers an option that AD, offer +
decidable op- partners can use during decision-making. Cor- indeterminate
tion (PDO) responds to options that require further delib-

eration and balancing of information within
the group.

Proposal Occurs when a speaker offers an option follow- AD, offer +
ing its full deliberation by the group. determinate

Commit Occurs when a speaker indicates commitment Offer, as-
to an option after full deliberation. sessment

(positive) +
determinate

Unendorsed Occurs when an option is simply presented Open-options
option (UO) during deliberation, without the speaker ex- + determinate

pecting any corresponding action from other
group members.
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4.2.4 Head gestures

The AMI corpus provides annotations of head gestures that reflect one's intent rather

than simple form. (For example, a nod of the head is further evaluated in order to dis-

tinguish between signals of comprehension, emphasis, etc.) We incorporated gestures

intended to communicate understanding and comprehension between participants.

Table 4.2 highlights the description of head gestures used in our study. Figure 4-1

also depicts the head gestures made during the conversation segment.

Table 4.2: Description of head gestures used in our study

Head gesture Description

Concord Signals comprehension, agreement or positive response; often

characterized by a head nod.

Discord Signals comprehension failure, uncertainty or disagreement; of-

ten characterized by a head shake or tilt.

Negative Signals negative response to a yes/no question; usually charac-

terized by a head shake.

Emphasis Signals effort to accentuate or highlight a particular word or

phrase, often characterized by a nod or head bob.

4.2.5 Processed Data

The processed data from the AMI corpus were reduced to 140 topic discussions with

labeled consistency of understanding. Each topic discussion is represented as a se-

quence of DAs. These sequences were of varying length. In the following section, we

describe how we utilized the training data to predict consistency of understanding for

a test discussion, Dtest.

Training Data:

D, =< DA, DA 2 , ... , DAL > Yi = consistent

D 2 =< DA 1 , DA 2 , ... > Y2 = consistent

D3 =< DA 1 , DA2 , ... > Y3 = inconsistent
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Chapter 5

Computational Model

5.1 HMM Formulation

We designed a computational model to evaluate consistency of understanding using

the proposed feature sets. We modeled the problem using hidden Markov models

(HMMs) because of their applicability to modeling systems with temporal sequences,

as well as for their prior success within the human communication and social inter-

action domains [44], [39], [59].

An HMM is defined as a 5-tuple {S, 0, A, B, 7r}, where:

* S is the finite set of hidden states, and m = ISI is its cardinality. One potential

interpretation of the hidden states is that they serve as representations of dif-

ferent shared understanding processes defined from qualitative literature [49],

[58], [19]. For example, they may represent Bossche et al's definitions, wherein

the group may be going through a state of construction or co-construction or

a constructive conflict during a specific moment of a discussion. A precise, in-

terpretable definition of S is unknown, but only m is required to train and test

an HMM. m controls the number of underlying discussion states and serves as

a meta-parameter for the prediction model.

* 0 is the finite set of observations. An observation at each time step is a dialogue
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act realized from the speaker's utterance. 101 represents the number of unique

observations (i.e., the number of features). The primary 0 we use consists of

Eugenio's features, presented in Table 4.1. However, we also test cases in which

0 includes conventional DAs, head gestures or combinations of the two, in order

to build baseline HMMs to compare performance across different feature sets.

" A is the state transition matrix, with a size of m by m, and describes the prob-

ability distribution of transitioning from one discussion state to another. The

Markov assumption is generally accepted due to the frequent occurrences of

adjacency pairs in human dialogue [14], [61, [51.

" B is the observation probability matrix. It describes the emission probability

of an observation (dialogue act) conditioned on a hidden discussion state. With

a combination of A and B, the stochastic process of 0 is fully described.

" 7F is the initial hidden state distribution.

In order to train HMMs, the distributions of A, B, and 7 are iteratively learned

through an expectation-maximization algorithm known as the Baum-Welch algorithm

[16] using the processed training data. Two separate HMMs are learned for predic-

tion - one for consistent class and one for inconsistent class - and their likelihoods

are compared to determine the predicted label Q, as described with Equation 5.1.

Because Baum-Welch algorithm is a local-maximum search, we ran ten iterations of

randomized initial values for each training step and chose the best iteration (based

on log-likelihood) for testing. When testing, P( Dtet I HMMj) represents the "eval-

uation" step for an HMM and has polynomial complexity of m2 * L where L is the

length of the discussion. In other words, with the trained HMMs, Equation 5.1 can be

computed in a quick fashion. For further details and properties of standard HMMs,

see [25].
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y = argmax P( D1est 1 IHMIi)
jE{consistent,inconsistent}

Our primary HMM uses Eugenio's features as observations (HMMEugenio, 101 = 4).

A graphical representation is depicted in Figure 5-1. We also built a baseline HMM

with conventional DAs (HMMDAs-full, 101 = 11). In order to balance the number of

features and counter the effect of overfitting, a second baseline HMM was built with

four conventional DAsi (HMMDAs, 101 = 4).

In order to incorporate head gestures into our model, we used an early fusion tech-

nique of combining both verbal and nonverbal features into a larger feature set. The

two modality streams (Eugenio's features and head gestures) were ordered chrono-

logically to form a single stream of observations; i.e., feature-level fusion. Figure 5-2

depicts the resulting HMMEugenio+Head, which captures occurrences of both feature

sets. The model effectively learns information regarding their transitions. In the

future, we intend to investigate alternative fusion techniques, such as decision-level

fusion [27], where outputs of single-modality HMMs would be weighted and summed.

The baseline for the combined model was an HMM wherein four conventional DAs

are added into the set of Eugenio's features (HMMEugenio+DAs)-

5.2 Prediction Performance

Here, we present the prediction performance of HMMEugenio and HMMEugenio+Head-

For training and testing, we performed leave-one-out cross validation (LOOCV) in

order to maximize the size of the training data per fold. Standard performance

measures such as accuracy, recall, precision, F1 score and false positive rate (FPR)

were measured. We averaged the results from five different values of m, which we

'Four DAs with definitions most relevant to group decision-making were used: assessment, elicit-

assessment, comment-about-understanding (CAU) and elicit-CAU.
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Observations = sequence of Eugenio's features

<start of <end of

discussion> discussion>

Figure 5-1: A graphical representation of HMM with Eugenio's features as observa-

tions (following the order shown in the sample conversation segment in Figure 4-1).

Combined sequence of Eugenio's features and head gestures

D B

<start of <end of

discussion> discussion>

Figure 5-2: A graphical representation of HMM combining both Eugenio's features

and head gestures (following the order shown in the sample conversation segment in

Figure 4-1).

varied from 1-5.

As shown in Figure 5-3, HMMEugenio resulted in a mean accuracy of 62.1% an

increase of 11% compared with HMMDAs. Other measures, such as recall, precision

and F1 score, also showed improvement, each with an increase of approximately 10%.

There was a 12% reduction to FPR. HMMDAsIuI performed very poorly, most likely

due to overfitting from a large number of features. Paired t-tests (df = 4) between

HMMEugenio and HMMDs indicated statistically significant differences (a = 0.05)

across all performance measures. These results demonstrated that using Eugenio's

features improves overall prediction performance compared with conventional DAs.
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HMMDAS 4 51.4 36.5 31.0 33.5 41.1

HMMEugenio 4 62.1 44.7 43.8 44.2 29.5
P-value 0.01 0.02 0.001 0.007 <0.001

Figure 5-3: Prediction performance of HMMEugenio and baselines. The p-values reflect

comparisons between HMMEugenio and HMMDAs-

HMMEugenio 4 62.1 44.7 43.8 44.2 29.5

HMMEugenio+DAs 8 45.1 39.1 39.1 39.1 50.0

HMMueni*Hea 8 64.2 55.3 47.3 51.0 31.1

P-value 0.28 0.02 0.18 0.03 0.49

Figure 5-4: Prediction performance of HMMEugenio+Head and baselines.

reflect comparisons between HMMEugenio+Head and HMMEugenio-

The p-values

When evaluating Figure 5-4, we first noted that HMMEugenio+DAs performed much

more poorly than HMMEugenio. In this case, additional features reduced overall per-

formance. With HMMEugenio+Head, however, there was an increase in mean accuracy,

recall, precision and F1 score compared with HMMEugenio. Although 01 was doubled,

there did not seem to be a negative overfitting effect. The increases to accuracy and

precision were small approximately 2-4% and paired t-tests indicated that only the

improvements to recall and F1 score were statistically significant. We observed a

small increase to FPR; however, this change was not significant.

5.2.1 Robustness across different meeting phases

We performed four-fold cross validation and compared prediction performance across

the four distinct meeting phases in the AMI corpus. As described in Table 5.1, each

meeting phase was fundamentally unique with regard to agenda and the topics under

discussion. Similar prediction performance across meeting phases would indicate the

robustness of our model to phase-specific keywords and topics. Figure 5-5 depicts
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this comparison, highlighting the accuracies of HMMEugenio+Head, HMMEugenio and

HMMDAs-

Table 5.1: Four distinct meeting phases in the AMI corpus [8]
Meeting Phase Discussion

Project kick-off Getting acquainted with one another and discussing the
project goals

Functional design Setting user requirements, technical functionality and
working design

Conceptual design Determining conceptual specifications for components,
properties and materials

Detailed design Finalizing user interface and evaluating the final prod-
uct

N Eugenio+Head 0 Eugenio
T ftj -T -

a DAs
,

m- I

T

Project kick-off Functional design Conceptual design

Meeting Phases

Figure 5-5: Comparison of model accuracies across different meeting phases

The mean accuracies for all three HMMs remained similar across the different

meeting phases, though the values were slightly lower than the global numbers pre-

sented in Figures 5-3 and 5-4. This was to be expected, as four-fold CV has less

available training data per fold than LOOCV. We observed a trend toward increasing

accuracy from HMMDAs -+ HMMEugenio 4 HMMEugenio+Head, which was consistent

across all four meeting phases.
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5.2.2 Comparison with other learning algorithms

Lastly, we compared the prediction performance of the HMM model to other super-

vised machine learning algorithms. Specifically, we applied support vector machines

(SVM) with radial basis function kernel, logistic regression and a Naive Bayes clas-

sifier with a Gaussian density assumption. The input vectors for these algorithms

corresponded to the frequency of Eugenio's features (e.g., a topic discussion can have

a total of three "proposals" and two "commitments").

The purpose of our comparison was to investigate the utility of applying genera-

tive, dynamic Bayesian models, such as HMMs, against frequency-based approaches.

Figure 5-6 shows the comparison on a receiver operating characteristic (ROC) curve.

The ROC curve plots recall against the false positive rate at various meta-parameter

settings. The diagonal line represents the baseline performance of random chance.

We used the area under the curve (AUC) statistic for model comparison. (Head ges-

tures were not incorporated for this section; we focused only on the set of Eugenio's

features.)

HMM outperformed the other learning algorithms with an AUC of 0.671, sup-

porting our hypothesis for using HMMs in the context of our problem. m = 3 was

the best setting for the HMM with regard to maximizing accuracy with reasonable

recall and FPR tradeoffs. NaYve Bayes yielded the poorest performance, most likely

due to its strong independence assumption between the features.

5.2.3 Discussion

Not only did the HMM trained using Eugenio's features result in prediction per-

formance above random chance, but it also outperformed the HMM trained with

conventional DAs. These findings indicate that an informative signal exists within

the set of Eugenio's features for predicting consistency of understanding. Essentially,

the notion of using DAs to follow how a team generates plans seemed to carry rel-

evant information for distinguishing consistency. However, the choice of the DA set

matters, as we found that an HMM trained with conventional DAs resulted in poor
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Receiver Operating Characteristic

0.9 -m =3
Acc = 66.4% -

0.8 Reca/I = 55.3%

(D 0FPR = 27.9%

0.40

H AUC= .671

.0.2 - - - SVM-rbf AUC= .606-

. w - - Logistic AUC= .557

0.1 - - NaiveBayes AUC= .532

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

Figure 5-6: ROC curve comparing different prediction algorithms. AUC is reported.

prediction performance. Our results quantitatively verify the utility of Eugenio's fea-

tures, specifically in the context of capturing information regarding a team's shared

understanding.

When head gestures were incorporated into the model, there were statistically

significant increases to recall and F1 score, along with non-significant increases to

accuracy and precision. Although this combined model yielded positive changes,

more statistical evidence is required to conclude improvement. When we tested the

performance of an HMM trained only with head gestures, prediction performance was

very poor, with accuracy close to 50%. Head gestures alone did not seem to provide

an informative signal toward the prediction of consistency of understanding; it was

only when they were included with Eugenio's features that signs of a potential benefit

emerged. We suspect that this is the product of a strong imbalance within the set

of head gestures: 98% of all head gestures in the AMI dataset were characterized by
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head nods, with 54% labeled as "concord" and 44% as "emphasis." Head shakes and

tilts comprised only 2% of all head gestures. This indicates that participants rarely

display head gestures that explicitly convey "discord" or "negative" signals.

We believe that there must be a finer level of granularity particularly within head

nods in order to further characterize a person's cognitive intent. However, recover-

ing accurate intentionality from head gestures is a separate and challenging research

problem. Also, the utility of features depends upon the chosen learning model. To

further investigate the utility of head gestures, alternative computational models or

fusion techniques (e.g. coupled-HMMs [7]) can be employed. In the future, we would

like to incorporate additional audiovisual modalities, such as vocal intonation, gaze

and hand gestures.

With similar accuracies and their consistent ordering through different feature sets

(HMMEugenio+Head > HMMEugenio > HMMDAs), our approach demonstrated robustness

across different meeting phases. This was an initial investigation of generalizability,

conducted internally within the AMI dataset. We hope to test how our approach

generalizes to external meeting datasets, such as the ICSI [33], the VACE [9] and the

Wolf [32] corpora, in future study. It is important to focus on meetings that are col-

laborative and goal-oriented, such that the consistency of understanding is a relevant

measure. The biggest challenge to testing other meeting datasets is that they lack suf-

ficient layers of annotations: most do not include self-reported participant summaries,

which are necessary to label ground truth on consistency of understanding.

When integrating our computational model for an online system, high recall and

low FPR are particularly important. High recall signifies a high hit rate of detecting

discussion topics with inconsistency; the system can then provide suggestions to re-

view those topics. Low FPR is also important to reduce the incidence of false alarms

within the system. Incorrect predictions and false feedback would be disruptive and

could cause human teams to lose trust in the system. The "best" model setting at

m = 3 (boxed in Figure 5-6) optimizes over these considerations and performs with an

accuracy of 66.4%, recall of 55.3% and FPR of 27.9%. (We later use this setting for

model implementation.) A simple predictor labeling the most dominant class would
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result in similar accuracy but zero recall, rendering the system useless. A system

capturing only 55.3% of true inconsistent topics can still be helpful to human teams

as long as the FPR is low, which would cause the system to report inconsistency only

when it is highly confident in the result.
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Chapter 6

Model Implementation and

Evaluation

We implemented and evaluated our computational model using an intelligent agent

system that provides review suggestions during meetings. In order to do this, we

developed a Web-based collaboration tool and conducted a set of experiments with

human subjects.

6.1 Web-based Tool Design

Emergency response teams increasingly use Web-based tools to coordinate missions

and share situational awareness among team members. One of the tools currently

used by first-responders is the Next Generation Incident Command System (NICS)

[18]. This command-and-control system allows a distributed team of responders to

efficiently exchange information and coordinate mission planning. It provides a rich

set of communication channels, including audio and video conferencing, text chat, a

shared map, drawing tools, resource logs and situational information.

We have designed a Web-based tool modeled after this system, with a modifica-

tion that only allows the team to communicate via text. The tool contains a standard

window for text-based chat, a shared map of the environment, a distributed infor-

mation log and a list of topic discussions. Within the text chat, the software runs
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Shared map Information Log

Figure 6-1: A snapshot of the Next Generation Incident Command System (NICS)

an HMMEugenio trained using the AMI corpus that predicts the consistency of un-

derstanding for each topic. Segmentation of utterances is provided by participants'

natural turn-taking when using the text chat (a new line of utterance is triggered

whenever "Enter" is pressed). Figure 6-2 depicts a snapshot of our collaboration

tool. Although our software represents a simplified version of the NICS, it captures

the essence of this emerging technology for emergency response coordination.

The tool implements an algorithm that automatically tags dialogue acts [40], as-

signing the most likely DA label for a given utterance. In implementing the algorithm,

we used a bigram classifier with Jelinek-Mercer smoothing [10]. This classifier was

trained using the AMI corpus over 11 different DA classes1 , and achieved a classifi-

cation accuracy rate of 72%.

For the experiment, we preprocessed incoming text in order to reduce noise and

'The following AMI DA classes were not considered: 'Stalls,' 'Fragments,' 'Be-Negatives' and

'Other.'
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increase DA classification accuracy as much as possible. For example, the preproces-

sor removed articles, punctuations, verbal fragments and stop words such as { "uh,"

"um," "hmm," etc.}. We also added additional training utterances pertaining to

our scenario, derived from five iterations of pilot study. These steps were taken so

that the uncertainty of the intelligent agent system would be primarily attributed to

the higher-level HMMEugenio rather than inaccuracies in the low-level DA classifier.

In our post-experimental analysis, the "effective" tagging accuracy was 80%. Using

the tagged DAs, we applied the coding scheme in Table 4.1 to generate sequences of

Eugenio's features.

'I'N"" am"""' "" Information log
* Traelt.eslor e abulance as and me road crew

AN repaltineathe1Mcram: 1 t~i
* Fact SMat in order to repan a bidge. road crew ad boat crew need to werk sImtaneoUSly

"or '* "''wer'" & Text chat
Pt. How about the mayor Oy the cSy hail ls?

Sarah: What his heat condition?

Pa8se Nausea and besoy headache
arah: Hie . wouldntme ctmbers near me camps te be mOre urgent?

Sarah: besides we can send awt A sraght down me Mounata road

POWee ok

PMlar Scan pick up two patients rghtt

PaONe: ok lets do at tor mett topic
Saah: or we could send a hehcopter too

Pet": boO only pIcks up one, and boM are simtae conditons

POWae: trs go Mth aM A

Shared map

Figure 6-2: A snapshot of our Web-based collaboration tool

6.2 Experiment Design

6.2.1 Task

Fifteen teams of two participants each acted as first-responders in a hypothetical

emergency scenario. Their goal was to develop a plan to transport several injured

patients to hospitals. There were multiple factors to consider, including variations

in the patients' health, travel times, road conditions and transportation capabilities.
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Due to the limited number of transports, participants had to prioritize patient de-

livery and determine ideal travel routes. The overall scenario design was inspired

by an existing work on collaborative planning for hypothetical emergency response,

the Monroe Corpus [53], and is similar with regard to the process of collaborative

problem-solving and encouraging mixed-initiative interaction. However, it should be

noted that the Monroe Corpus was an observational study, while our work was an

experiment with integration of an intelligent agent: The tool analyzed team chat in

real-time and applied a set of experimental treatments during the planning process.

With knowledge and resources distributed among the participants, collaboration

was essential for successful completion of the scenario; one participant could not

dominate and solve the scenario effectively. The relationship dynamic between the two

participants in each team was that of equal collaborators, rather than a supervisor-

subordinate relationship.

6.2.2 Procedure

Each scenario consisted of three distinct phases: 1) the main planning session; 2)

intelligent agent feedback and review; and 3) individual post-meeting summaries and

questionnaires.

During phase 1, the experimenter explained the scenario and described the col-

laboration tool. Afterwards, participants held their main planning session, communi-

cating with one another through the text chat. Specifically, participants were asked

to identify patient groups and set their emergency priority, such that transport plans

could be discussed for one group at a time. These partial plans represented distinct

topic discussions, where the plan for transporting the first patient group was marked

as "Topic A," the plan for the second patient group as "Topic B," and so on. The

table of topics depicted in Figure 6-2 illustrates this breakdown. To the right of the

table, there was a "Current Topic" indicator that reminded the team which patient

group they were currently discussing. Once the team members agreed that they had

finished forming a plan for the current patient group, they clicked the 'Next' button

to signify that they would move on to discuss a plan for the transport of the next
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patient group. This process repeated until the team concluded their discussion about

the fourth patient group ("Topic D"). Clicking the 'Next' button naturally provided

the topic segmentations. Participants were allotted 20 minutes for the entire main

planning session, simulating the time-critical nature of emergency response.

After the team had completed their main planning session, the intelligent agent

provided feedback during phase 2 by suggesting two topics out of the four for the

team to review. (A detailed explanation of the selection process for review topics is

provided in the following section.) The suggestion from the agent was displayed in

a pop-up window, as shown in Figure 6-3. Once the team confirmed receipt of the

suggestion, they engaged in a 5-minute review session reiterating their plans for the

suggested topics.

Request for Plan Review X

Please review with your partner the following topics.
Topic A: Transport for the I 5 patient group

* Topic C; Transport for the 3 'd patient group

Confirm

Figure 6-3: Phase 2: The intelligent agent suggests that the team review plans for

the selected topics

During phase 3, the participants completed individual post-meeting summaries,

writing down detailed plan descriptions for each of their discussion topics. They were

permitted as much time as needed to provide the summaries, which were then checked

by the annotators to objectively measure consistency of understanding. Participants

also responded to post-experiment questionnaires, offering subjective evaluations of

their perceived shared understanding and the utility of the review suggestion.

Phases 1 through 3 represented the procedure for a single scenario, and each

team completed two scenarios with alternating treatment. (The treatment order was

randomized to mitigate learning effect.) Although two scenarios had similar goals for
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patient delivery, their detailed environments were different.

The entire experiment took teams approximately 60 minutes to complete. Each

participant was compensated $10 for their time.

6.2.3 Experimental 'Tfreatment

The topics suggested for review by the intelligent agent varied according to treatment,

and the choice of topic represented our treatment levels. The two treatment levels

depicted in Table 6.1 were inspired by a related review protocol presented in [56].

In order to explain our treatment levels, we must first need to define a consis-

tencv scnr, or q normali7atinn hbetwerpen twh -MT Wikeihods fren Eruti-n . 1

Mathematically, it represents the posterior probability, P(Q = consistent I Dtest)

with a uniform prior assumption. It represents a numerical level of consistency on a

scale from 0 to 1, where a score closer to 1 signifies that the discussion is predicted

to be highly consistent and a score closer to 0 indicates the discussion is highly

inconsistent. Instead of taking argmax, the normalized score provides more informa-

tion regarding the "confidence" of consistency. For the sake of brevity, we will refer

to this a predicted c-score.

Table 6.1: Type of review suggestion by the intelligent agent
Treatment level Definition

1. Adaptive review System suggests review of the two topics with the
lowest predicted c-scores (weak topics)

2. Maladaptive review System suggests review of the two topics with the
highest predicted c-scores (strong topics).

For our treatment, the system always suggested two topics for review. In order

to determine which topics to present, the predicted c-scores of the four discussion

topics were ranked. In treatment (1) adaptive review, the system selected the two

topics with the lowest predicted c-scores; we refer to this as reviewing the "weak"

topics. Essentially, this treatment represents what is desired for an intelligent system:

prompting teams to review the topics with the greatest potential to result in conflicts

and misunderstandings. In comparison, the baseline treatment (2) maladaptive review
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suggested the topics with the highest predicted c-scores, or the topics for which the

system already predicts strong consistency within the team. We refer to this as

reviewing the "strong" topics.

6.2.4 Dependent Measures

Dependent measures were split into two categories: an objective measure of consis-

tency score and subjective measures self-reported by the participants. The objective

measure of consistency (or objective c-score to be short) was obtained by comparing

the alignment of decision points across the individual post-meeting summaries using a

standardized rubric associated with our scenarios. This rubric, depicted in Table 6.2,

listed specific decision points and assigned weighted scores for their alignment. An

accumulated score of 100% would signify the perfect alignment of all decision points.

Annotation of objective c-scores was completed for each topic discussion. There

was a substantial inter-rater agreement between two annotators (r = 0.70).

Subjective measures were obtained through participants' rating their perceived

utility of the review phase, and whether or not they thought the system suggested

the correct topics for review, on five-point Likert scales. These questions are shown

in Table 6.3.

Table 6.2: Rubric for Objective Measure of Consistency

Item Description Score [%]

L Patient Same set of patients? Correct health con- [25]

ditions?
0 Transport Same transport type? [12.5]

Same letter of the transport vehicle? [12.5]

El Route Same start and end locations? [12.5]

Same roads being utilized? [12.5]

LI Other details Any roads, bridged fixed? Same set of si- [25]
multaneous events?
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Table 6.3: Subjective Questionnaires
Measure Questionnaire Items
Perceived utility "The review phase of topics suggested by the system helped

my teammate and I reach a stronger understanding over
those topics."

Perceived recall "The system suggested the two topics where there was po-
tential for lack of understanding between my teammate and
I."

6.2.5 Hypothesis

We formed our hypotheses to test the relationship between the type of review and

the measures of a team's consistency.

Hi: Adaptive review, or a review focused on topics that had the lowest predicted

c-scores, will increase teams' objective c-scores on those topics compared with a base-

line without review. Meanwhile, maladaptive review, or a review focused on topics

that had the highest predicted c-scores, will not increase objective c-scores for those

topics compared with its no review baseline.

H2: There will be an improvement to overall meeting score (the average of all

four topic objective c-scores) when participants receive adaptive review compared

with maladaptive review.

H3: There will be an improvement to the participants' perceived utility of the

review suggestion with adaptive review compared with maladaptive review.

6.2.6 Participants

Fifteen teams of two, for a total of 30 participants (17 males and 13 females), took

part in the experiment. Twenty-six of the 30 participants were students from the

MIT campus, including undergraduate and graduate students and postdoctoral asso-

ciates. The remaining four identified themselves as a professional engineer, a software
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developer, a scientist and a housekeeper, respectively. The average participant age

was 23.8 (SD = 4.33) years, ranging from 18 to 38 years. Two-thirds of the partici-

pants knew their partners prior to the experiment. On a five-point Likert scale, the

participants reported a high degree of familiarity with text-based Web chat (M =

4.47, SD = 0.73, Md = 5, IQR = 1).

6.3 Statistical Analysis and Results

Here, we present the details of our statistical analysis of the experimental data and

evaluations of the proposed hypotheses.

In order to test H1, we performed a set of two paired t-tests to evaluate the utility

of an intelligent agent suggesting topics for review following a meeting. The paired

t-tests were appropriate for our repeated measures experiment design, wherein each

team received both treatments. The t-tests assessed within-subject differences, with

"subject" representing a team of two participants. Objective c-scores were measured

per topic discussion for each team.

Our experiment was based on the premise that while the act of review would

always be helpful for increasing a team's consistency, the significance of this improve-

ment would differ according to the topics reviewed. Our first paired t-test compared

the difference in objective c-scores between reviewing and not reviewing the weak-

est topics (adaptive review), while the second paired t-test compared the difference

between reviewing and not reviewing the strong topics (maladaptive review). In sat-

isfying the assumptions of the statistical test, no significant outliers existed in the

data, and the assumption of normality was not rejected by the Shapiro-Wilk test (W

= 0.91, p = 0.12).

Figure 6-6 depicts the results of the paired t-tests, with each bar graph indicating

the mean values of objective c-scores and standard errors. There was a significant

effect on objective c-scores from reviewing weak topics, as indicated on the left plot

(t(14) = 3.29, p < 0.01). The 95% confidence interval of the mean difference was

[6.08, 28.92]. The positive direction of the confidence interval confirmed a statistically
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1. Effect of reviewing weak topics
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70 ...-.. No review
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t(1 4)=3.29 p < 0.01

0
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2. Effect of reviewing strong topics
100 ..........................

95 ..........................

90....-...

85 ........

80

70 ---.-.- No review-
MReview

65 - -
t(14)=0.86 p = 0.406

Figure 6-4: Mean values of consistency scores, with error bars indicating standard

errors of the mean. The results illustrate that adaptive review had a positive effect

on weak topics, increasing the mean of objective c-scores from a no-review baseline

of 73.7% to 91.2%. Meanwhile, maladaptive review yielded no statistically significant

difference between a review of strong topics and no review.

significant increase, with a mean difference of 17.5%. As illustrated by the right plot,

there was no statistically significant difference in objective c-scores when reviewing

strong topics (t(14) = 0.86, p = 0.406). These results provided strong support for

both aspects of H1.

Figure 6-5 shows a histogram of predicted c-scores, grouped by whether the topics

were identified as "weak" or "strong." Mean and standard deviation among the weak

topics were 0.471 and 0.058 respectively. Among the strong topics, mean and standard

deviation were 0.550 and 0.033 respectively. Most of the distribution lied between

the range of 0.4 and 0.6. This plot illustrates the difference in the ranges of the two

distributions. Also, it shows that a score of 0.5 can reasonably act as a discriminative

threshold.

In order to test H2, overall meeting scores were computed using the mean of all

discussion topics' objective c-scores. The score represents a numerical level of a team's

consistency for the entire meeting, with each topic discussion assigned equal impor-

tance. The left plot in Figure 5-4 compares teams receiving adaptive and maladaptive

review, and indicates insufficient evidence to support a statistically significant differ-

ence between the two (t(14)=1.20, p = 0.25).
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Figure 6-5: Distribution of predicted c-scores.

For subjective measures, we used the Wilcoxon signed-rank test (nonparametric

equivalent of paired t-test) to analyze paired differences on a five-point Likert scale.

The results showed no significant effect of the type of review on perceived utility

(W = 119, p = 0.595); however, a borderline statistically significant difference was

observed for perceived recall (W = 284.5, p = 0.062).

6.4 Discussion

Reviewing the weak topics suggested by the system (those with low predicted c-

scores) resulted in a statistically significant improvement to teams' objective c-scores

specifically, a mean improvement of 17.5% over the baseline of not reviewing weak

topics. On the other hand, there was no significant difference between reviewing and

not reviewing strong topics (those with high predicted c-scores). That a significant

improvement occurred only when weak topics were reviewed suggests that the system,

on average, chose the "correct" topics for review those with probable inconsistency

and a greater potential for the review to improve shared understanding among team

members. The experiment demonstrated that the type of review suggested is related
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Overall meeting score Boxplot of Perceived Recall
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Figure 6-6: A comparison of overall meeting score (average{alltopics}) is shown in

the left plot. The right boxplot depicts the paired difference of medians for perceived

recall.

to varying improvements of consistency based on predicted c-scores.

Our results support the notion that simply reviewing all topics is a non-optimal

strategy. There is utility behind an intelligent, selective review; one that optimizes

over the number of topics discussed during the review session for the most effective

improvement to shared understanding. Also, reviewing unnecessary material can

potentially be detrimental: It may lead to annoyance among participants, who would

be required to re-discuss topics that they already have developed strong opinions

about. The frequent occurrence of such false positives can reduce participants' trust

in the system and reduce the effectiveness of review.

The difference in overall meeting score was not statistically significant across types

of review; therefore, H2 was not supported. Due to the averaging effect over all

four discussion topics, even those with no review, we suspect there may be a loss

of sensitivity. These results do not necessarily confound with H1, since our original

focus was to investigate improvements at the topic level.

We observed no significant effects of the type of review on perceived utility with

regard to subjective measures. Participants' perception of the utility of the review

phase did not differ significantly across treatments, even though there was a signif-

icant objective difference in consistencies. We suspect that the utility of the review
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may not be apparent to humans, or it may be that the participants have fundamen-

tally different criteria for judging this utility. Which aspects of review (reiteration,

confirmation, clarification, addition of details, changes to plans, etc.) participants

consider helpful may vary across different groups of people.

Meanwhile, there was a nearly statistically significant difference in perceived re-

call: With adaptive review, participants felt more strongly that the system suggested

topics that contained the potential for a lack of understanding. In contrast to per-

ceived utility, perceived recall measured participants' direct assessment of the system's

topic selection. The borderline significance of this difference in perceived recall was

supportive of H1. The contrast in the differences of two subjective measures is inter-

esting to note here. It may be possible that even if participants recognize that certain

topics have a greater potential to lead to a lack of understanding than others, this

does not necessarily mean that they will find a review of those topics to be helpful.

For instance, a topic may be difficult to discuss in general, but a participant can

still maintain a strong level of confidence in the team's shared understanding of that

topic. Another example would be participants who consider the meeting content and

planning to be trivial. Such participants would view the review phase as altogether

unnecessary, regardless of whether or not certain topics result in greater inconsistency

than others. Further statistical evidence would be required to fully support H3.

Overall, our computational model learned from the AMI dataset demonstrated

utility when implemented in the context of an intelligent review system. Even with

66.4% theoretical prediction accuracy, the model successfully translated to a 17.5%

improvement in teams' consistency of understanding, and demonstrated a suitable

framework for guiding which topics should be reviewed following initial discussion.

The experimental result also provides supporting evidence for the generalizability

of the model: While AMI meetings were focused on product design, the learned

model transferred and demonstrated utility within the domain of emergency response

planning.
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Chapter 7

Conclusion and Future Work

In this thesis, we have presented a computational model to predict teams' consistency

of understanding in meetings. The model expands upon prior literature by enabling an

automatic framework for assessing shared understanding - a form of shared cognition

which has previously only been analyzed qualitatively. The model incorporates a set

of dialogue acts that focuses on capturing group decision-making dynamics and learns

discriminative sequences with a machine learning algorithm. Using the AMI dataset,

the model achieved a prediction accuracy rate of 64.2% and demonstrated robustness

across different meeting phases. The model's HMM formulation also outperformed

other widely used machine learning algorithms.

We then implemented the learned model within an intelligent system that partic-

ipated in human planning meetings for a hypothetical emergency response mission.

Running the computational model, the system suggested the topics that the team

would benefit most from reviewing with one another. Through human subject ex-

periments, we evaluated the utility of such a feedback system and observed a sta-

tistically significant increase (17.5%) to objective measures of teams' consistency of

understanding as compared with a baseline, non-intelligent system.

Overall, we have presented a novel framework for predicting consistency of un-

derstanding using only textual data and with no prior knowledge of domain-specific

content. We have shown that there exists a predictive signal in the monitoring of

team planning dynamics through dialogue features proposed from qualitative studies.
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And we have shown that this signal can be leveraged to design an intelligent system

that can positively affect a team's shared understanding.

Our problem was motivated with the application for emergency response, but it is

applicable to other safety-critical domains and to everyday meetings requiring group

decisions. Our model can be potentially integrated to popular web chat software

(e.g. Google chat) or other integrated situational awareness-sharing tools like NICS.

Our multi-step study combines the strength of human communications research and

machine learning with a vision for developing an intelligent system that would help

teams to achieve stronger group understanding in meetings.

7.1 Future Work

Our model requires an input stream of Eugenio's features, which were derived from

conventional DAs. Therefore, the success of the high-level HMM depends on the

low-level DA classifier. We implemented an off-the-shelf algorithm and applied pre-

processing to obtain an 80% classification rate. In future work, we would like to

investigate the sensitivity of the high-level HMM as it relates to inaccuracies of the

low-level DA classifier. We would also like to investigate error propagations resulting

from additional input layers, such as a speech recognition tool.

Our current design relies on accurate, manual topic segmentations. For the com-

putational model, the AMI corpus already contained segmented topic boundaries. In

our experiment, it was supplied through a signal given by the participants: the click-

ing of the 'Next' button. In order to design a more independent system, automatic

topic segmentation tools must be integrated. This would be especially important

when observing physical meetings incorporating live speech. This is a challenging

research problem, as participants may switch back and forth spontaneously between

or diverge from topics.

In our experimental design, two topics out of four were always suggested by the

system. The two topics were ranked with respect to each other and the two with lowest

scores were suggested. One could imagine an alternative system where a feedback is

58



triggered with respect to an absolute threshold (i.e. a topic suggested if it falls

below a threshold value. The "best" threshold value can be learned from the data).

Consequently, the number of review topics would become a free variable, and it would

be possible to have all or none of the topics reviewed. We would like to investigate

such a setting in future. We would need to investigate if this generalizes appropriately

across teams. Some teams may be better at reaching consistent understanding than

others, where the differences of predicted c-scores could be substantial. Aggregating

the data and setting a global threshold may not transfer well to all teams.

Instead of just dialogue acts, an advanced system will attempt to uncover more

information on the planning details of the conversation. This is a scenario where

domain-specific content would have a high utility. The problem then becomes as-

sociated with "plan inference" and the resulting feedback from the intelligent agent

would change. Instead of designating a topic to be "weak", the agent would scope

further and present subcomponents of a topic that cause consistency scores to drop.

Such a system would be able to search through different planning predicates (e.g.

send(A to B), move(C to D), etc.) and pinpoint where a potential misunderstanding

has occurred. We also envision a system in the future that can automatically suggest

alternative plans (e.g. "sending truck to B is not optimal due to heavy traffic, why

don't you try route C?").

Our design represents a prototype that highlights one potential means for intelli-

gent agent support in meetings. Other avenues for future research might include the

design of tools for real-time visualization of consistency of understanding. A numeri-

cal score could be visualized and updated dynamically as discussions unfold, providing

constant feedback for human teams. Review suggestions could be provided as weak

discussion points are discovered online, rather than in a batch format upon completion

of the meeting. During physical meetings, the method of feedback from the intelligent

agent is also an important variable for investigation (e.g., feedback through speech

synthesis or through a screen visualization). It would also be interesting to compare

prediction performance between a computer and a human moderator in future work.
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