
Survivability of Time-varying Networks

by

Qingkai Liang

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2015

@ Massachusetts Institute of Technology 2015. All rights reserved.

Signature redacted
A uthor

Department of Aeronautics and Astronautics
May 13, 2015

Signature redacted
Certified by

Eytan Modiano
Professor, Departent of Aeronautics and Astronautics

Thesis Supervisor

Signature redacted
Accepted by...........................

Paulo C. Lozano
Associate Professor of Aeronautics and Astronautics

Chair, Graduate Program Committee

MASSACHUSETTS INSTITUTE
OF TECHNOLOLGY

JUN 23 2015

LIBRARIES

2

Survivability of Time-varying Networks

by

Qingkai Liang

Submitted to the Department of Aeronautics and Astronautics
on May 13, 2015, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

Time-varying graphs are a useful model for networks with dynamic connectivity such as
mmWave networks and vehicular networks, yet, despite their great modeling power, many
important features of time-varying graphs are still poorly understood. In this thesis, we
study the survivability properties of time-varying networks against unpredictable inter-
ruptions. We first show that the traditional definition of survivability is not effective in
time-varying networks and propose a new survivability framework. To evaluate survivabil-
ity of time-varying networks under the new framework, we propose two metrics that are
analogous to MaxFlow and MinCut in static networks. We show that some fundamental
survivability-related results such as Menger's Theorem only conditionally hold in time-
varying networks. Then we analyze the complexity of computing the proposed metrics and
develop several approximation algorithms. Finally, we conduct trace-driven simulation-
s to demonstrate the application of our survivability framework in the robust design of a
real-world bus communication network.

Thesis Supervisor: Eytan Modiano
Title: Professor, Department of Aeronautics and Astronautics

3

4

Acknowledgments

First and foremost, I would like to express my gratitude to my research advisor Professor

Eytan Modiano for his invaluable guidance during the past two years. His encouragement

has always been the driving force for me when I encounter difficulties, both in my research

and in my daily life. He is such an experienced advisor that can always shed light on my

research directions and tell me to do the right things at the right time. He is very patient

to discuss various research problems and share inspiring ideas. His detailed comments on

this thesis greatly improved my academic writing skills as well as the quality of this thesis.

Second, I would like to thank my colleagues in Communications and Networking Re-

search Group (CNRG): Chih Ping Li, Georgios Paschos, Matt Johnston, Marzieh Parande-

hgheibi, Anurag Rai, Abhishek Sinha, Jianan Zhang, and Thomas Stahlbuhk. They provide

me with lots of insightful feedback on this research, which directly contributes to the im-

provement of several chapters in this thesis.

Third, my appreciation goes to my roommates: Fangchang Ma, Yili Qian, and Rujian

Chen. They not only share their ideas on this thesis but also bring a lot of happiness to my

daily life at MIT.

Fourth, I would like to thank my parents whose love and support have always been the

most important source of energy when I pursue my career dream.

Finally, I would like to express my thanks to National Science Foundation (NSF Grant

CNS-1116209) for its generous support for this research.

5

6

Contents

1 Introduction 15

1.1 Background and Motivations . 15

1.2 Contributions . 17

1.3 Related Work 18

2 Model of Time-varying Graphs 21

2.1 Definitions and Assumptions . 21

2.2 Terminology . 23

2.3 A Useful Tool: Line Graph . 24

3 Survivability Model and Metrics 27

3.1 (n, J)-Survivability . 27

3.2 Survivability Metrics . 29

3.2.1 Survivability Metric: MinCutj . 29

3.2.2 Survivability Metric: MaxFlowj 31

3.3 Analysis of Metrics . 33

4 Computational Issues 39

4.1 Computation of MaxFlowj . 39

4.1.1 Computational Complexity . 39

4.1.2 Optimal Approximation Algorithm 41

4.1.3 Special Case . 45

4.2 Computation of MinCut . 47

7

4.2.1 Computational Complexity 47

4.2.2 Naive Algorithm . 48

4.2.3 Heuristic Algorithm . 49

5 Discussion 55

5.1 Reductions Between Variants . 55

5.2 Arbitrary Failures . 58

5.3 Extended Metrics . 59

5.4 Applications of MinCut6 . 61

6 Application: Bus Communication Networks 63

6.1 Survivable Routing Protocol: DJR . 63

6.2 Trace Statistics . 64

6.3 Simulation Setting g -- ----------- ---------.

6.4 Total Number of 6-Disjoint Journeys . 66

6.5 Tunability of DJR . 67

6.6 Comparison with DPR . 68

7 Conclusion 71

A Compact Formulation 73

B Formal Proof to Theorem 2 77

C Computation of 6-cover 79

8

List of Figures

1-1 (a) The original time-varying graph, where the numbers next to each edge

indicate the slots when that edge is active. The traversal delay over each

edge is one slot. (b) Snapshots of the time-varying graph. 16

2-1 Illustration of the Line Graph (src: A, dst: D). 25

3-1 Illustration of 6-disjoint journeys. The source-destination pair is (A, C).

(a) When J = 1, any two different 6-disjoint journeys cannot use the same

link within the same slot, and there are three S-disjoint journeys. (b) When

S = 2, only two 6-disjoint journeys exist since any link cannot be used by

two S-disjoint journeys within 2 slots. For example, link A -+ B has been

used by Journey 2 in slot 1, so any other S-disjoint journey cannot use this

link in slot I or 2. 31

3-2 Examples used in the proof to Theorem 2. The source-destination pair is

(s, dk) in graph g (k = 1, 2, 3). 35

3-3 Forbidden structure W, and 7-2. The source-destination pair is A -+ F. . . . 36

3-4 Illustration of the contraction for edge (u, v). 37

4-1 Illustration of the reduction from BLEDP to 6-MAXFLOW. 41

4-2 Comparison between the greedy algorithm (Algorithm 1) and the optimal

solution to S-MAXFLOW. 44

9

4-3 Example where the naive algorithm (Algorithm 2) fails to find the optimal

solution. Suppose 6 = 3 and the source-destination pair is (S, D). The

naive algorithm will remove contacts (AB, 4) and (AC, 4), which needs

two 6-removals. By comparison, the optimal solution is to remove contacts

(SA, 1), (SA, 2) and (SA, 3), which only needs one 6-removal when 6 = 3. . 50

4-4 Illustration of the weight assignment. Suppose edge e is active in slots

t1 < t2 < - < t6 and we are assigning the weight for contact (e, t4).

We first scan all the windows (with a length of 6 slots) that contain the

target contact (e, t4) and then check the number of contacts containing in

these windows. It turns out that the second window contains the maximum

number of contacts (4 contacts). Hence, we know Ke,t = 4 and its weight

is 1 1................................... 51
Ke,t 4

4*

4-5 C1mriso~cn among the naie agit(Algri[thm 2), #be bhulristc ag

rithm (Algorithm 3) and the optimal result to 6-MINCUT 54

5-1 Illustration of the split graph. Note that we do not consider node presence

or delay functions here so each splitting edge is active in the entire time

span and its traversal delay is zero. Also note that the source-destination

pair becomes (s+, d~) in the split graph. 56

5-2 Illustration of the gadgets that reduces an undirected edge u - v to directed

edges. In the failure-independent case, we only need to replace it by two

directed edges. In the failure-dependent case, we first add two additional

nodes wI1 , W2 and then add directed edges it -+ w1 , w 2 -* v, -+ W1 ,

W2 -+ u and w 1 -- + w2 . The active slots and traversal delay of w, -+ W 2

are the same as those of the original undirected edge u - v. The remaining

directed edges are active in the entire time span and have zero traversal delay. 59

6-1 Statistical structures of the bus communication network. (a) The bursty

pattern for the contacts between a typical pair of buses. (b) Histogram for

the contact duration. Most contacts only last for a short period of time (less

than 20s). 65

10

6-2 The total number of S-disjoint journeys in the bus communication network. 67

6-3 Influence of n and J on packet loss rates (DDL=300s, p=0.0 5 , d=60s). . . . 68

6-4 Comparison between DJR and DPR (DDL = 300s, p=0.0 5 , n=3). 69

A-1 Illustration of the transformations: g -+ L(9) -+ S(L(g)). The source-

destination pair is (A, D) in g and L(g), and is (A+, D-) in S(L(g)). . . . 74

11

12

List of Tables

3.1 Frequency of Gap Occurrence . 37

4.1 Approximation gaps of different algorithms 54

13

14

Chapter 1

Introduction

1.1 Background and Motivations

Time-varying graphs have emerged as a useful model for networks with time-varying con-

nectivity, especially in the context of communication networks. For example, in vehicu-

lar networks, the network connectivity changes over time with the movement of vehicles;

in whitespace networks [16] [17] [18], the state of secondary links will switch between

ON/OFF with primary users' channel reclamation/release; in millimeter-wave (mmWave)

networks [22], the network topology changes with the adjustment of beam directions of

directional antennas. In Figure 1-1, we illustrate a simple time-varying graph and its snap-

shots within 3 time slots.

In many applications of time-varying networks, transmission reliability is of a great

concern. For example, it is crucial to provide robustness against unexpected shadowing

in mmWave networks; it is also critical to guarantee transmission reliability in a vehicular

network if it is used for emergency surveillance. Unfortunately, time-varying networks are

particularly vulnerable due to their constantly changing topology that results from either

predictable or unpredictable interruptions. Predictable interruptions (or intrinsic interrup-

tions) usually follow the nature of networks, such as node mobility in mobile networks.

In contrast, unpredictable interruptions, such as unexpected obstacles, bring in uncertainty

and may greatly degrade network performance. Therefore, the goal of this thesis is to un-

derstand the robustness of time-varying networks against unpredictable interruptions (also

15

I I
A D A A @ D

1,2 3 3

B 2 C B (DB C B C
slot 1 slot 2 slot 3

(a) A time-varying graph (b) Snapshots of the time-varying graph

Figure 1-1: (a) The original time-varying graph, where the numbers next to each edge
indicate the slots when that edge is active. The traversal delay over each edge is one slot.
(b) Snapshots of the time-varying graph.

referred to as failures) while treating those predictable interruptions as an inherent feature

of the network topology.

'ue tU UICe uiprUeictauiLity UI dILus, iA Is UsiaUle Lu evaluate te wrst-case sur-

vivability. In static networks, this is usually defined to be the ability to survive a certain

number of failures as measured by the mincut of the graph. However, this definition is

not effective in time-varying networks. By its very nature, a time-varying network may

have different topologies at different instants, so its connectivity or survivability must be

measured over a long time interval. To be more specific, we would like to highlight two

important temporal features that are neglected by the traditional notion of survivability.

First, failures have significantly different durations in a time-varying network. For

example, an unexpected obstacle may only disable the link between two nodes for several

seconds while a hardware malfunction may influence the network for several days. By

comparison, the traditional definition of survivability is intended for a static environment

and fails to account for links reappearing. Duration of failures has a crucial impact on the

performance of time-varying networks; for example, in the time-varying network shown

in Figure 1-1, an one-slot failure of any link cannot separate node A and node D while a

two-slot failure (i.e., a failure that spans two consecutive slots) can disconnect D from A by

disabling link A -+ B in the first two slots.

Second, failures may occur at different instants. This feature is obscured in static net-

works but has a great influence on time-varying networks due to their changing connec-

16

tivity. For example, if a two-slot failure occurs to link A - B at the beginning of slot 2,

node D is still reachable from node A within the three slots; however, if the two-slot failure

happens at the beginning of slot 1, there is no way to travel from A to D within the three

slots.

1.2 Contributions

This thesis tackles the above non-trivial temporal factors by proposing a new survivability

framework for time-varying networks. Our framework captures both the number and the

duration of failures, regardless of where and when failures occur.

Chapter 2 formally introduces the model of time-varying graphs and develops a useful

tool called the Line Graph which bridges time-varying and static graphs.

Chapter 3 proposes a new survivability framework, i.e., (n, 6)-survivability, where the

values of n and 6 characterize the number and the duration of failures the network can

tolerate. Moreover, by tuning the two parameters, the proposed framework can generalize

many existing survivability models. We further propose two metrics, namely MinCutj

and MaxFlow6, in order to assess robustness of time-varying networks. Moreover, this

chapter presents some graph-theoretic results that highlight the difference between static

and time-varying graphs. For example, it is shown that some fundamental survivability-

related results such as Menger's Theoremi only conditionally hold for time-varying graphs.

Due to the difference between static and time-varying graphs, the evaluation of surviv-

ability becomes very challenging in time-varying networks. In Chapter 4, we analyze the

complexity of computing the proposed survivability metrics and develop several approxi-

mation algorithms with provable approximation ratios.

Chapter 5 presents detailed discussions on applications and extensions of the proposed

framework.

Chapter 6 applies the proposed framework in the design of survivable routing protocols

for vehicular networks. Real-world traces are used to validate the proposed design. It is

'In graph theory, Menger's Theorem is a special case of the maxflow-mincut theorem, which states that

the maximum number of edge (node) disjoint paths equals to the size of the minimum edge (node) cut.

17

shown that our survivability framework has strong modeling power and is more suitable for

time-varying networks than existing approaches.

1.3 Related Work

Time-varying Graphs. With the advent of many dynamic networks (e.g., mobile net-

works), time-varying graphs have been recognized as a powerful modeling tool. There is

extensive literature seeking to define graphical metrics for time-varying graphs, such as

connectivity [12,26], distance [6,27], centrality [13,20], diameter [5, 15], etc. The com-

binatorial properties of time-varying graphs are also an active research area. For example,

Kranakis et al. focused on finding connected components in a time-varying graph; Ferreira

et al. investigated the complexity and algorithms for computing the shortest journey [27]

(see the survey [41 for more details)

Survivability in Time-varying Networks. Interestingly, despite the extensive research on

time-varying graphs, there is very little literature on survivability of time-varying networks.

The closest work to this thesis was done by Berman [3] and Kleinberg et al. [12]. They

discussed network vulnerability for so-called "edge-scheduled networks" or "temporal net-

works" where each link is active for exactly one slot and only permanent failures happen.

By comparison, this research considers a more general graph model while leveraging the

temporal features of failures, thus generalizing their results. Scellato et al. [23] investigated

a similar problem on random time-varying graphs and proposed a metric called temporal

robustness. By comparison, the framework proposed in this thesis is deterministic, thus

guaranteeing the worst-case survivability.

Time-varying Graph and DTN An important application scenario of time-varying graphs

is Delay Tolerant Networks (DTN), where nodes have intermittent connectivity and can

only send packets opportunistically. The primary goal of DTN is to improve the packet

delivery ratio via some routing schemes, and there is extensive literature in this area, such

as [10, 11, 19, 25]. Different from DTN literature, this work does not focus on any specific

routing algorithms. Instead, this thesis is intended to understand the inherent survivability

of a time-varying network, which can facilitate the design of survivable routing algorithms

18

in DTN (as will be demonstrated in Chapter 6). As a result, the framework proposed in this

thesis is complementary to previous DTN papers.

19

20

Chapter 2

Model of Time-varying Graphs

In this chapter, we formalize the model of time-varying graphs and introduce some impor-

tant terminology and assumptions that will be frequently used throughout this thesis. A

useful tool for transforming time-varying graphs is also introduced.

2.1 Definitions and Assumptions

Time-varying graphs are a high-level abstraction for networks with time-varying connec-

tivity. The formal definition, first proposed in [4], is as follows.

Definition 1 (Time-Varying Graph). A time varying graph G = (G, T, p, () has the follow-

ing components:

(i) Underlying (static) digraph G = (V, E);

(ii) Time span T C T, where T is the time domain;

(iii) Edge-presence function p : E x T h-+ {0, 1}, indicating whether a given edge is active

at a given instant;

(iv) Edge-delay function E : x T F-- T, indicating the time spent on crossing a given

edge at a given instant.

This model can be naturally extended by adding a node-presence function and a node-delay

function (e.g., queuing delay). However, it is trivial to transform node-related functions

to edge-related functions by node splitting (see Chapter 5.1 for details); thus, it suffices

21

to consider the above edge-version characterization. Similarly, the above definition only

captures directed graphs since the undirected case can be transformed to the directed case

(also see Chapter 5.1).

In this thesis, we consider a discrete and finite time span, i.e., T = {1, 2, I ,

where T is a bounded integer indicating the time horizon of interests, measured in the

number of slots. In practice, T may have different physical meanings. For instance, it may

refer to the deadline of packets or delay tolerance in Delay Tolerant Networks; it may also

correspond to the period of a network whose topology varies periodically (e.g., satellite

networks with periodical orbits). The slot length (or the resolution time) of a time-varying

graph is arbitrary as long as it can capture topology changes in sufficient granularity. For

example, if link states change frequently due to fast fading, the slot length needs to be very

small (milliseconds) to capture such rapid variations; in contrast, if the network topology

changes due to node mobility, the slot length may be much larger (seconds or minutes). In

general, a smaller slot length yields more modeling accuracy but increases computational

complexity.

Under the discrete-time model, the edge-delay function (can take values from N =

{0, 1, . - - }. Note that zero delay means that the time used for crossing an edge is negligible

as compared to the slot length. In the rest of this thesis, we consider the case where edge

delay is one slot, i.e., ((e, t) = 1 for any e E E and t E T, and it is trivial to extend the

analysis to arbitrary traversal time.

The edge-presence function p indicates the predictable topology changes in a time-

varying network. Examples of such predictable topology changes include those in a satel-

lite network with known orbits, in a whitespace network with planned channel reclamation,

in a mmWave network with scheduled beam steering, in a sensor network with pre-designed

sleep-wake patterns, etc. In contrast, unpredictable topology changes (also referred to as

failures in this thesis) may include those caused by unexpected shadowing, unscheduled

channel reclamation, hardware malfunctions, etc. Note that this model does not require

perfect predictions on future topology changes since any prediction errors can be treated as

failures.

Finally, we would like to highlight the modeling power of time-varying graphs. In

22

theory, this time-varying graph model generalizes many types of graphs. For example, it

generalizes the notion of static graphs since we can view a static graph as a time-varying

graph where the time horizon is only one slot (T = 1) and the slot length is infinite. This

model also generalizes the so-called "edge-scheduled graphs" [3] or "temporal graphs" [12]

which can be reduced to a time-varying graph where each edge is active for only one slot.

In practice, they can be used to model almost all types of networks with topology changes.

Examples include (i) mobile networks (e.g., vehicular or satellite networks), where the net-

work topology varies due to node mobility or scheduled obstacles, (ii) whitespace networks

where link states change due to primary users' channel reclamation/release, (iii) mmWave

networks with tunable directional antennas where the network topology varies with the

dynamic adjustment of beam directions.

2.2 Terminology

Definition 2 (Contact). There exists a contact from node u to node v in time slot t if e =

(u, v) E E and p(e, t) = 1. This contact is denoted by (e, t) or (uv, t).

Intuitively, a contact is a "temporal edge", indicating the activation of a certain edge in

a certain time slot. In the example shown in Figure 1-1, there exists a contact (AB, 1),

showing that link A -+ B is active in slot 1.

Definition 3 (Journey [26]). In a time-varying graph, a journey from node s to node d is a

sequence of contacts: (e 1 , t1) -* (e2 , t2) -> - -+ (en, t,) such that for any i < n

(i) start(ei) = s, end(en) = d;

(ii) end(ei) = start(ei+ 1);

(iii) p(ei, ti) = 1;

(iv) ti+1 > ti andtn < T.

Intuitively, a journey is just a time-respecting path. Conditions (i)-(ii) mean that inter-

mediate edges used by a journey are spatially connected. Condition (iii) shows that in-

termediate edges must remain active when traversed. Condition (iv) indicates that the

usage of intermediate edges must respect time and the journey should be completed be-

23

fore the time horizon T. For example, there exists a journey from A to D in Figure 1-1:

(A B, 1) -+ (BC, 2) -+ (CD, 3) when T = 3.

Definition 4 (Reachability). Node d is reachable from node s if there is a journey from s to

d.

Intuitively, reachability can be regarded as temporal connectivity which indicates whether

two nodes can communicate within T slots. For example, node D is reachable from node

A in Figure 1-1, meaning that a message from A can reach D within T = 3 slots.

2.3 A Useful Tool: Line Graph

In this section, we introduce a useful tool which transforms a time-varying graph into a

static graph that preserves the original reachability information. Readers may temporarily

skip the details and revisit this section when necessary.

The transformation uses a similar idea to the classical Line Graph [2] which illustrates

the adjacency between edges. The difference here is that we also need to consider the

temporal features of time-varying graphs. Given a time-varying graph 9 with source s and

destination d, its Line Graph L(9) is constructed as follows.

" For each contact (e, t) in the original time-varying graph g, create a corresponding

node in the Line Graph; the new node is denoted by v,. In addition, create a node

for the source s and a node for the destination d, respectively.

* Add a directed edge from node ve,,,t to node ve2 ,t2 in the Line Graph if (ei, t1) -

(e2 , t2) is a feasible journey from start(el) to end(e 2). Also, add an edge from node

s to node ve,t if start(e) = s, and add an edge from node ve,t to node d if end(e) = d.

Note that the construction of the Line Graph only relies on the original time-varying graph

and the source-destination pair. An example of the Line Graph is shown in Figure 2-1.

The Line Graph is useful in the sense that it preserves the information of every s-d jour-

ney in the original time-varying graph. In Figure 2-1, we can observe the correspondence

betweenjourney (AB, 1) -+ (BC, 2) -+ (CD, 3) and path A -+ VAB,1 --+ VBC,2 -+ VCD,3 -+ D.

This is generalized in Observation 1 whose correctness is easy to verify.

24

Observation 1. Every s-d journey in a time-varying graph has an one-to-one correspon-

dence to some s-d path in its Line Graph.

Observation 1 implies that we can handle many journey-related problems in a time-varying

graph by looking at paths in the corresponding Line Graph. This allows us to apply path-

related results in static graphs, such as Menger's Theorem and Dijkstra Algorithm, to help

solve journey-related problems in time-varying graphs.

A D A VAB,2 VBD,3

1,2 33

(a2 VAB VBC,2 VC,3 D

(a) A time-varying graph (b) Its Line Graph

Figure 2-1: Illustration of the Line Graph (src: A, dst: D).

25

26

Chapter 3

Survivability Model and Metrics

In this chapter, we begin to investigate robustness of time-varying networks. Specifically,

we are interested in their resilience against unpredictable interruptions (i.e., failures) such

as unscheduled channel reclamation, unexpected obstacles, hardware malfunctions, etc.

We first develop a new survivability model for time-varying networks. Next, several

metrics are introduced to evaluate survivability under the new model. Finally, we present

some graph-theoretic results regarding these metrics, which highlights the key difference

between time-varying and static networks. In particular, we will show that some funda-

mental survivability-related results in static networks, such as Menger's Theorem, only

conditionally hold in time-varying networks. Such a difference makes it a challenging task

to evaluate robustness of time-varying networks.

3.1 (n, J) -Survivability

In static networks, the worst-case survivability is usually defined to be the ability to survive

a certain number of failures wherever these failures occur. This definition is still feasible but

very ineffective in time-varying networks because it fails to capture many temporal features

of failures (e.g., duration and instant of occurrence). As discussed in the introduction, these

temporal features have significant impacts on time-varying networks. Hence, we extend the

survivability model in order to account for these temporal effects and propose the concept

of (n, 6)-Survivability. We first define (n, 6)-survivability for a given source-destination

27

pair, i.e., pairwise (n, 6)-survivability.

Definition 5 (Pairwise (n, 6)-Survivability). In a time-varying graph g, a source-destination

pair (s, d) is (n, 6)-survivable if d is still reachable from s after the occurrence of any n

failures, with each failure lasting for at most 6 slots.

We can further define global (n, 6)-survivability.

Definition 6 (Global (n, 6)-Survivability). A time-varying network is (n, 6)-survivable if

all pairs of nodes are (n, 6)-survivable.

Since it only takes O(1V12) to check all pairs of nodes, global (n, 6) -survivability can be

easily derived from pairwise (n, 6)-survivability. Therefore, we will focus on pairwise

(n, 6)-sirvivahilitv for n given pair of nodes (, d) in the rest of this thesvis

Discussion on (n, 6)-Survivability: First, the above definitions do not impose any assump-

tion about when and where the n failures occur and thus imply the worst-case survivability.

In other words, (n, 6)-survivability means the network can survive any n failures that last

for 6 slots wherever and whenever these failures occur. The parameter n reflects "spatial

survivability", indicating how many failures the network can survive, and the parameter 6

reflects "temporal survivability", indicating how long these failures can last.

Second, (n, 6)-survivability is a generalized definition. For example, if J = T holds',

then (n, 6)-survivability reflects the number of permanentfailures the network can tolerate,

which becomes the conventional notion of survivability we use in static networks.

Finally, it should also be mentioned that failures can be either link failures or node

failures. As will be shown in Chapter 5.1, node failures can be equivalently converted

to link failures, so we will consider link failures unless otherwise stated. Also, failures

are assumed to occur at the beginning of slots and last for multiples of the slot length.

In Chapter 5.2, we will demonstrate how to accommodate failures happening at arbitrary

instants and lasting for arbitrary duration.

In our model, the time span of a time-varying graph is at most T, so 6 = T is enough to imply permanent
failures.

28

3.2 Survivability Metrics

In static networks, two commonly-used survivability metrics are: MinCut, i.e., the min-

imum number of edges whose deletion can separate the source and the destination, and

MaxFlow, i.e., the maximum number of edge-disjoint paths from the source to the destina-

tion. If MinCut (or MaxFlow) equals to n, the destination is still connected to the source

after any n - 1 link failures. However, by its very nature, a time-varying network has dif-

ferent topologies at different instants, so its connectivity or survivability must be measured

over a long time interval and these static metrics cannot be directly applied to time-varying

networks. In this section, we introduce two new survivability metrics for time-varying net-

works. The fundamental relationship between the two metrics will be discussed in Chapter

3.3.

3.2.1 Survivability Metric: MinCut6

Before we proceed to the first survivability metric, it is necessary to introduce the notions

of 3-removal and 6-cut.

Definition 7 (6-removal). A 6-removal is the deletion of a link for 6 consecutive time slots.

Intuitively, a 6-removal just corresponds to a link failure that lasts for 6 slots. For the

simplicity of notations, if a 6-removal disables link e in slots t, t + 1, - - - , t + 6 - 1, we

say that contact (e, t) is the Removal Head of this 3-removal, meaning that this 6-removal

starts to block link e in slot t. Any 6-removal can be uniquely identified by its removal

head.

Definition 8 (6-cut). A 6-cut (denoted by CUT5) is a set of 6-removals that can render the

destination unreachable from the source.

The above definition is similar to the traditional notion of graph cuts except that 6-cuts also

account for the duration of removals.

Now we are ready to introduce the first survivability metric for time-varying networks,

namely MinCuts. This metric directly follows from the definition of (n, 6)-survivability

and is analogous to MinCut in static networks.

29

Definition 9 (MinCut 3). MinCut6 is the cardinality of the smallest 6-cut, i.e., the minimum

number of 6-removals needed to render the destination unreachable from the source.

Discussion: First, MinCuts gives the minimum number of 6-slot failures required to dis-

connect the time-varying network. If the number of 6-slot failures is strictly fewer than

MinCut6 , the destination is still reachable from the source. In particular, when MinCutb =

n, the source-destination pair can safely survive any n - 1 failures that last for 6 slots and

is thus (n - 1, 6)-survivable. Second, MinCut6 generalizes MinCut in static networks since

we can simply set 6 = T such that a 6-removal becomes a permanent link removal. Finally,

Min Cutj has many applications in practical problems, which will be discussed in details in

Chapter 5.4.

Formulation: MinCut6 corresponds to the following Integer Linear Programming (ILP):

Inin ' L Ye't

(e,t)EC

s.t. E Ye,t ;> 1, VJ E Jsd

(e,t)ER(6,J)

Ye,t E {o, 1}, V(e, t) E C.

Here, C is the set of contacts in the time-varying graph and ye,,t is a binary decision variable

indicating whether contact (e, t) is chosen to be a 6-removal head (note that a 6-removal

head uniquely identifies a 6-removal). Jefd is the set of feasible journeys from source s to

destination d. For any J E Jsd, we define R(6, J) as the set of contacts such that if any of

these contacts is selected to be a 6-removal head, then at least one contact used by journey

J will be disabled, i.e., R(6, J) = {(e, t) I 3(e, t') E Cj s.t. 0 < t'- t < 6}, where Cj is the

set of contacts used by journey J. Thus, the first constraint in the above ILP forces every

journey from s to d to be disabled by at least one of the selected 6-removals, such that d is

not reachable from s.

This formulation is concise but has an exponential number of constraints because the

number of possible journeys is exponential in the number of contacts. In Appendix A,

we present a compact ILP formulation which is less intuitive. The complexity and the

algorithm for solving the above ILP will be further discussed in Chapter 4.2.

30

3.2.2 Survivability Metric: MaxFlow6

The second survivability metric, namely MaxFlow6 , is analogous to MaxFlow in static net-

works. Before the detailed definition of this metric, we first introduce the notion of 6-

Disjoint Journeys.

Definition 10 (6-Disjoint Journey). A set ofjourneys from the source to the destination are

6-disjoint if any two of these journeys do not use the same edge within 6 time slots.

Mathematically, suppose J is a set of 6-disjoint journeys. For any two journeys Ji, J2 E

J, if edge e is used by J in slot t E T, then J2 cannot use the same edge e from slot t-6+1

to slot t + 6 - 1. In other words, sliding a window of 6 slots over time, we can observe at

most one active journey on any edge within the window. Figure 3-1 gives an example of

6-disjoint journeys for the cases where 6 = 1 and 6 = 2.

O......- Journey I
A------P Journey2

Journey 3

B B
slot 1 slot 2 slot 3

(a) Case 1: 6= 1

-""" * Journey 1

A3% -------- Journey 2

B B

slot I slot 2 slot 3

(b) Case 2: = 2

Figure 3-1: Illustration of 6-disjoint journeys. The source-destination pair is (A, C). (a)
When 6 = 1, any two different 6-disjoint journeys cannot use the same link within the
same slot, and there are three 6-disjoint journeys. (b) When 6 = 2, only two 6-disjoint
journeys exist since any link cannot be used by two 6-disjoint journeys within 2 slots. For
example, link A -+ B has been used by Journey 2 in slot 1, so any other 6-disjoint journey
cannot use this link in slot 1 or 2.

It is easy to see that each one of the 6-disjoint journeys keeps a "temporal distance"

of 6 slots from others. Due to the temporal distance, any failure that lasts for 6 slots can

31

influence at most one of these 6-disjoint journeys. Consequently, the maximum number of

6-disjoint journeys in a time-varying network is a good indicator of its survivability. The

more 6-disjoint journeys there exist, the more failures (lasting for J slots) the network can

survive. Now it is natural to introduce the second survivability metric MaxFlow 6 .

Definition 11 (MaxFlows). MaxFlow3 is the maximum number of 6-disjoint journeys from

the source to the destination.

Discussion: First, we would like to compare MaxFlow (for static networks) and MaxFlows

(for time-varying networks). MaxFlow considers disjoint paths which require spatial dis-

jointness, i.e., any two disjoint paths never use the same link. This requirement is too

demanding for time-varying networks because such networks often have sparse spatial

connectivity. In the example of a bus communication network (see Chapter 6 for detail-

s), we will see that a time-varying network may not have any spatially-disjoint paths. Thus,

MaxFlow proposed in static networks is not effective in time-varying networks. By com-

parison, MaxFlow6 considers 6-disjoint journeys, which allows for temporal disjointness.

Moreover, MaxFlow6 generalizes MaxFlow since we can simply set 6 = T such that 6-

disjoint journeys become spatially disjoint.

Second, MaxFlows not only gives us a measure of network survivability but also tells

us how to achieve such survivability. The idea is similar to the Disjoint-Path Protection in

static networks [24] [14], where disjoint paths are used as backup routes. In time-varying

networks, we can send packets along different 6-disjoint journeys to increase transmission

reliability. If we use n 6-disjoint journeys (i.e., MaxFlow6 ;> n), the transmission can

survive any n - 1 failures that last for 6 slots and is thus (n - 1, 6)-survivable.

Formulation: MaxFlowb corresponds to the following ILP:

max ZxJ
.JEJ~d

SAt. E XJ < 1, V(e, t) (E C
J:(e,t)ER(S,J)

Xj E {0,1}, VJ E 7sd-

Here, xj is a binary decision variable indicating whether journey J is added to the set of

32

6-disjoint journeys. All the other notations have the same meanings as in the formulation of

MinCuts. The first constraint checks every edge and forces this edge to be used by at most

one of the 6-disjoint journey in any time window of J slots. The above formulation also has

an exponential number of constraints in the number of contacts. A compact formulation is

shown in Appendix A. The complexity and the algorithms for solving the above ILP will

be further investigated in Chapter 4.1.

3.3 Analysis of Metrics

Recall that in static networks, the well-known Menger's Theorem shows that MinCut equal-

s to MaxFlow; due to this equivalence, we can compute MaxFlow and MinCut efficiently

(e.g., Ford-Fulkerson algorithm). Hence, it is necessary to study the fundamental rela-

tionship between MinCut6 and MaxFlow5 , in order to gain insights into their computation.

Let MinCut' and MaxFIowR be the LP relaxation for the ILP formulation of MinCut6 and

MaxFlows, respectively. It is easy to show that MinCut' is the dual problem of MaxFlow'.

By Strong Duality Theorem and the properties of LP relaxation, we make the following

observation:

MaxFlowb < MaxFlow6 = MinCuty < MinCutg.

As a result, as long as MaxFlow6 = MinCut5 (i.e., Menger's Theorem still holds in time-

varying networks), all the four quantities will be equivalent, and we can simply compute

MaxFlow6 and MinCut5 by solving their LP relaxations, which is an easy job. Interestingly,

the following theorem shows that Menger's Theorem only "conditionally" holds in time-

varying networks.

Theorem 1. In a time-varying graph g, Menger's Theorem holds (MaxFIow 6 = MinCut6)

0 =1.

Proof Consider a time-varying graph g with the source s and the destination d. Let

MaxFlow be the maximum number of node-disjoint paths from s to d in the Line Graph

of g (see Chapter 2.3 for details) and MinCut be the cardinality of the smallest node cut

that separates s and d in the Line Graph. It is not hard to verify the following lemma.

33

Lemma 1. MaxFlow1 = MaxFlow and MinCuti = MinCut.

Remark: Lemma 1 does not holds for 6 > 2. For example, if 6 = 2, there is only one

6-disjoint journey in Figure 2-1(a) but there are two node-disjoint paths in its Line Graph.

Now we can apply the node-version Menger's Theorem to the Line Graph and obtain

MaxFlow = MinCut. By Lemma 1, we finally have MaxFlow1 = MinCutl. L

Theorem 1 implies that MaxFlowl and MinCuti can be efficiently computed. We pro-

vide two possible approaches here. The first approach is to directly solve the LP relaxation.

Alternatively, we can first derive the Line Graph (see Chapter 2.3 for details) of the original

time-varying graph and then apply traditional MaxFlow Algorithms such as Ford-Fulkerson

algorithm to find the maximum number of node-disjoint paths in the Line Graph.

The following theorem shows that, in general, Menger's Theorem may break down.

Theorem 2. For any 6 > 2, there exist instances such that MaxFlow3 = MinCuts. More-

over the gap ratio Min can grow without bound.MaxFlows a rwwtotbud

Proof The non-trivial part is to show that the gap ratio can be arbitrarily large. We con-

struct a family of time-varying graphs { 9
k}k>1 such that Mncut = k for any 6> 2 in theMaxFiow6s

k-th graph. The construction for k = 1, 2,3 is shown in Figure 3-2. We can observe that

g, is a single-level graph; 92 is built upon g1, where the first level is exactly 91; similarly,

93 is built upon 92, where the first two levels correspond to g 2 . Note that the structure of

92 is similar to the time-varying graph 'W1 shown in Figure 3-3, and the structure of !9 can

also be seen as an "extension" from 'i.

We use inductions to prove = k for any 6 > 2 in 9k. For brevity, we on-

ly demonstrate the induction philosophy from g1 to 92 while its formal generalization is

presented in Appendix B.

" In g1 , the source-destination pair is (s, di). It is obvious that MaxFlow6 = MinCut6 = 1.

" In 92, the source-destination pair is (s, d 2). We want to show that MaxFlow6 = 1 but

MinCuts = 2 for any 6 > 2. To see MaxFlows = 1, we notice that there are two possible

choices for traveling from s to d2. One is via node d, and the other is to directly descend to

level 2. The former choice yields only one 6-disjoint journey from s to d2 since we know

34

Level 1

(a) k=1

s 1 Vill 2 di Level 1

4

V21 4s V 2 2 V23 2
6 V2, ~ *Level 2

(b) k =2

4 Levl 2

1 ,_:,V2,1 4, s 2,2 6 V2,3 7 d2 J 012

9
V3, V3,2 3,3 V3,4 V3,s d3

(c) k=3

Figure 3-2: Examples used in the proof to Theorem 2. The source-destination pair is (s, dk)

in graph 9k (k = 1, 2, 3).

from g, that there is only one 6-disjoint journey from s to dl. For the latter choice, the only

possibility is s -* v 2 ,1 -+ V2,2 -+ v2 ,3 -+ d 2 but this journey cannot be 6-disjoint of any

journey in the first choice (i.e., via node dl). Hence, there is only one 6-disjoint journey

from s to d2 , i.e., MaxFlowb = 1 for any 6 > 2. Now it remains to show MinCut6 = 2

and we prove this by showing that any single 6-removal cannot disconnect d2 from s. If

the 6-removal takes place in level 1 or occurs to some "cross-level" contact (say contact

(d -+ v2 ,1 , 1) or (di -+ v2 ,3 , 1)), we can still descend to level 2 and reach d 2 . If the 6-

removal occurs to any "inner" contact within level 2, there is still a journey from s to d2 via

d, since there are two spatially disjoint journeys from d, to d2 . Hence, we can conclude

that any single 6-removal cannot disconnect d2 from s and MinCutj = 2.

Note that the key part in g2 is the "shortcut edge" v2 ,2 -+ d2 which can only be used by

journeys that travel through di.

Figure 3-3 shows two simple examples where MaxFlowb , MinCut6 for 6 = 2. It is not

hard to see that there is only one 6-disjoint journey from A to F while MinCut6 = 2 since

35

any single 6-removal cannot disconnect F from A. In fact, the proof to Theorem 2 also

shows that the two simple examples are the basic blocks for constructing the gap between

MaxFlow6 and MinCut6. We will formalize this observation at the end of this section.

2

01,3 3,4 5 E6

4

(a) Time-varying Graph 'R1I

S

1 2 3,44,B C E

(b) Time-varying Graph 712

Figure 3-3: Forbidden structure 'HI and W2. The source-destination pair is A -+ F.

Although Theorem 2 shows the existence of the gap between MaxFlow3 and MinCut6

for 6 > 2, it does not tell us how often such a gap occurs. We investigate this issue

through experiments over random time-varying graphs. The number of nodes is uniformly

distributed within [5, 15]; the underlying topology is a random scale-free graph; the time

horizon T is uniformly distributed within [2, 5] and each link is active with a random

probability within [0.1, 0.9] in each slot. MaxFlow6 and MinCutb are computed directly

through their ILP formulations.

Table 3.1 adds up MaxFlowj and MinCut6 in 50000 random time-varying graphs and

shows the frequency of gap occurrence. Surprisingly, it turns out that the gap occurs at an

extremely low frequency over these random instances. Hence, it is a rare event that Min Cut

does not equal to MaxFlows for 6 > 2; this motivates us to investigate the conditions under

which the gap occurs. As discussed before, 1 and 712 shown in Figure 3-3 might be

fundamental to the occurrence of the gap. In the rest of this section, we present forbidden

structures based on W, and W2 to explain the gap. Before providing the formal result, we

36

Table 3.1: Frequency of Gap Occurrence
Total MinCutj Total MaxFIowg Frequency

J = 2 153488 153484 0.008%
6 = 3 133503 133493 0.02%
6 = 5 117956 117940 0.032%

introduce two terms (defined over static graphs).

9 Edge Contraction: The contraction of edge e is to first delete both ends of e and then

build a new vertex adjacent to all vertices originally adjacent to one or both ends of

e. This procedure is illustrated in Figure 3-4.

& Topological Minor: A graph G is a topological minor of a graph H if G can be

obtained from H by contracting edges.

A E A E

B B

C D CD

Contract edge (uv)

Figure 3-4: Illustration of the contraction for edge (u, v).

Now we are ready to present the following forbidden structure characterization about

the gap between MaxFlows and MinCuts. Unfortunately, we are still unable to prove this

result in its full generality.

Conjecture 1. In a time-varying graph G, Menger's Theorem holds (MaxFlows = MinCut)

for any 6 > 1 if the Line Graph of G does not contain a subgraph that has either L(7-1) or

L(- 2) as a topological minor where L(h1) or L(H 2) is the Line Graph ofthe time-varying

graph W,1 or -12 shown in Figure 3-3.

In other words, the two forbidden structures L(1i) and L(- 2) are the only obstacles

to the equivalence between the two metrics. Note that we use the Line Graph instead of

37

the original time-varying graph in the above characterization because it is the adjacency

between edges and the time ordering that matter while the detailed activation slot num-

bers are not important. The Line Graph preserves such information and is invariant to the

detailed activation slot numbers.

Conjecture 1 also shows that the gap between MaxFlowj and MinCut6 can only occur

under very specific spatial and temporal structures. In a random time-varying graph, the

probability of satisfying both the spatial and the temporal structures is very low. Hence, it

is a rare event that MaxFlow5 does not equal to MinCut6 (just as we observe in Table 3.1).

More importantly, it implies that both MaxFlow5 and MinCutj may be efficiently computed

(e.g., by solving the LP relaxations) in most time-varying graphs. In cases where the gap

exists, computing the two metrics may be hard and alternative schemes should be deployed

to handle these defective cases. In the next chapter, we will discuss the computational

aspects to address this problem.

38

Chapter 4

Computational Issues

Although the previous chapter shows that both MaxFlow6 and MinCut6 may be efficiently

computed in most cases, it is still necessary to develop algorithms that can handle the

computation in the general case where Menger's Theorem may break down. In this chapter,

we study the computational complexity and related algorithms for evaluating survivability

in time-varying networks.

4.1 Computation of MaxFlow6

We start with the computation of MaxFlows for an arbitrary value of 6, referred to as the

6-MAXFLOW problem:

6-MAXFLOW

Input: a time-varying network G, a source-destination pair (s, d), and the value of 6;

Output: the value of MaxFlow6 and the corresponding set of 6-disjoint journeys.

4.1.1 Computational Complexity

The following theorem shows that 6-MAXFLOW is even hard to approximate.

39

Theorem 3. 6-MAXFLOW is NP-hard, and it is even NP-hard to achieve O(|E| 1/2-e_

approximation for any c > 0. Moreover this bound is tight.

Proof The proof is by reducing from the Bounded-Length Edge-Disjoint Paths (BLEDP)

problem [8].

" PROBLEM: BLEDP.

" INSTANCE:

- A weighted digraph G' = (V', E'), where the weight on edge e indicates its length

(denoted by le). The length of each edge is a positive integer.

- The source-destination pair (s, d).

- A positive integer L indicating the length bound.

" QUESTION: Find the maximum number of edge-disjoint paths from s to d in G' such

that the length of each of these paths is upper-bounded by L.

Here we make an additional assumption that there exists no edge with its length greater

than L in G'. We also assume that there are no isolated nodes in G'. These assumptions do

not change the complexity of BLEDP because we can simply remove these isolated nodes

or long edges from G' without any influence on the optimal solution.

The high-level idea of the reduction is to transform the "spatial length bound" into the

"temporal length bound". Note that in our model, a natural temporal bound T exists so

we set T = L. In addition, we also need to make sure that whenever edge e is crossed,

a "temporal distance" of 1
e slots is traversed. Since it is assumed that the edge-traversal

delay is one slot, we can expand each edge in series such that extra delay is incurred. To

be more specific, if the length of edge e is 1e, we replace e by 1e edges in series; each

edge has one-slot delay and is active in the entire time span. An example is illustrated in

Figure 4-1. It is trivial to check that BLEDP is equivalent to solving J-MAXFLOW in the

constructed time-varying graph for 6 = T. Hence, 6-MAXFLOW is NP-hard. It remains to

investigate the hardness of approximation for 6-MAXFLOW. Guruswami et al. [8] proved

that it is NP-hard to achieve 0(E' 1/ 2-6)-approximation for any E > 0 for BLEDP. In

40

the constructed time-varying graph, we have IEI = eE' le 5 LIE' = TIE'I. Since T

is a bounded integer, it follows that JE'J = Q(IEI). Therefore, it is NP-hard to achieve

O(1EI'/ 2 -')-approximation for any c > 0 for 6-MAXFLOW. 0

Length Bound=4 Time Horizon T=4 slots Each edge is active in slots 1, 2, 3, 4

Length=2 Length3

LengI= Length=

Original Graph (instance of BLEDP) Corresponding Time-varying Graph
(instance of6-MAXFLOW)

Figure 4-1: Illustration of the reduction from BLEDP to 6-MAXFLOW.

Note that to prove the tightness of the inapproximability bound, we just need to find an

algorithm that achieves O(El"/2) approximation, which will be demonstrated in the next

section.

4.1.2 Optimal Approximation Algorithm

In this section, we propose an approximation algorithm that attains the approximation low-

er bound in Theorem 3. Before we move on to the detailed algorithm description, it is

necessary to introduce a short-hand term called interfering contact.

Definition 12 (Interfering Contact). Consider a time-varying graph 9 and a journey J. A

contact (e, t) is said to be an interfering contact ofjourney J if there exists a contact (e, t')

used by J such that It - t'| < 6.

Intuitively speaking, if J is one of the 6-disjoint journeys, then its interfering contacts

cannot be used by any other 6-disjoint journey.

Now we are ready to present a greedy algorithm for 6-MAXFLOW, shown as Algorithm

1. It first computes the Line Graph (see Chapter 2.3) of the original time-varying graph and

then finds an s - d path with the least number of nodes in the Line Graph. By the property

of Line Graphs (see Observation 1 in Chapter 2.3), this path corresponds to a journey in

the original time-varying graph; then we add this journey to the set of 6-disjoint journeys.

41

The next operation is to remove all the interfering contacts of this journey from the time-

varying graph and reconstruct the Line Graph from the remaining time-varying graph. If

s and d are still connected in the Line Graph, the above procedure is repeated until s and

d are disconnected in the Line Graph. From the definition of interfering contacts, we can

easily verify that the obtained journeys are 6-disjoint.

Algorithm 1 Greedy Algorithm for 6-MAXFLOW
Input:

g: the time-varying graph;

(s, d): the source-destination pair
6: the degree of temporal disjointness;

Output:

J1, - - - , Jm: a set of 3-disjoint joumeys.
1: Initialize m = 0;
2: Compute the Line Graph of g;
3: if s and d is disconnected in the Line Graph then
4: Go to sten 10;
5: end if
6: m -- m + 1;
7: In the Line Graph, find an s - d path Pm that passes the least number of nodes (the

corresponding journey is denoted by J.);
8: Remove all the interfering contacts of J, from g;
9: Go to step 2;

10: END.

Now we estimate the time complexity of this greedy algorithm. In each iteration (steps

2-8), we need to compute the Line Graph and the path with the least number of nodes.

Recall that we denote 1C the total number of contacts in the time-varying graph. Then

it takes O(IC2) time to construct the Line Graph and O(IC2) time to compute the path

with the least number of nodes (suppose BFS is used). Also note that the total number

of iterations is at most ICI since the number of 6-disjoint journeys cannot exceed ICI and

each iteration adds one 6-disjoint journey. Consequently, the overall time complexity of the

greedy algorithm is 0(1ClI).

The approximation ratio of this greedy algorithm is shown in the following theorem.

Theorem 4. The greedy algorithm attains O(F)[E J) approximation for 6-MAXFLOW i.e.,

OPT = o(/iEi).

42

Proof If the the destination is unreachable from the source, both the optimal solution and

the greedy algorithm will yield a result of zero, where no approximation gaps exist. Hence,

it is enough to consider the scenario where the destination is reachable from the source.

Before the detailed proof, it is essential to define the notions of short paths and long

paths in the Line Graph. Let k be an arbitrary positive integer. A short path consists of

at most k nodes while a long path is made up of more than k nodes. Their corresponding

journeys are called the short journey (traversing at most k edges) and the long journey

(traversing more than k edges), respectively. Denote 3* = {J*, - - - } the optimal solution

and 3 = {Ji, - - } the solution obtained by the greedy algorithm.

We first prove that the number of long journeys in J* is at most kEI(+1). Indeed, since

journeys in 3* are 6-disjoint, each edge can be traversed by at most [!] journeys in J*.

At the same time, each of the long journeys in 3* traverses more than k edges so the total

number of long journeys in 3* can be at most 6[L 1E +1)

Then we prove that the number of short journey in 3* is at most 2k x 131. To show

this point, we first prove that each short journey (say Jj) in 3* is interfered by some short

journey (say Ji) in 3 (i.e., Jj and Ji use the same edge within 6 slots). Note that each

short journey in 3* must be interfered by at least one journey in 3 otherwise the greedy

algorithm is not finished. Let Ji E J be the journey that interferes with some journey

JjE 3* for the first time, i.e., journeys constructed in the greedy algorithm before Ji do

not interfere with Jj. In other words, when the greedy algorithm is constructing journey

Ji, journey Jj is also a candidate journey. Since Ji is selected rather than Jj, it implies that

the number of edges traversed by Ji is less or equal to that of Jj*. Due to the fact that Jj is

a short journey, we can conclude that Ji is also a short journey.

Meanwhile, each short journey in 3 can interfere with at most 2k 6-disjoint journeys

because any short journey in 3 contains at most k contacts and each of these contacts can

interferes with at most 2 6-disjoint journeys. Hence, the total number of 6-disjoint journeys

that can be interfered by the short journeys in 3 is at most 2k x I31. Since we have shown

that each short journey in 3* is interfered by at least one short journey in 3, it is safe to

conclude that the number of short journeys in 3* is upper-bounded by 2k x J3, which

43

means that
|E|(I + 1)

I J* I = I J*n I+ 1,*sr I + 2k x |JJ (4.1)

Now we set k to be the integer such that IEI(Z. + 1) < k < IEI(1 + 1) + 1. Then it

follows that

IJ* < Ej(+ 1) +2(IEI(T + 1) + j

=3 IE(+ 1) + 2)|,7|

where the first inequality follows from the setting of k and the second inequality holds

because of our premise that |,| > 1 (i.e., the destination is reachable from the source).

Since T is a bounded integer and 6 < T, we can finally conclude that Algorithm I achieves

O(VIEJ)-approximation. 0

gap = 7.3% Optimal HWHM

V 35

gap =5.3%
o 25

20

5 gap= 29%

0
54 gap =0.9%

=1 6= 2 =5 = 20

Figure 4-2: Comparison between the greedy algorithm (Algorithm 1) and the optimal so-

lution to 6-MAXFLOW.

It is interesting to observe that the above approximation ratio attains the lower bound

in Theorem 3. As a result, the greedy algorithm is the optimal approximation algorithm

and the inapproximability bound in Theorem 3 is tight. In practice, the greedy algorithm

44

also performs extremely well, as is demonstrated by the following numerical results.

Numerical Results on the Greedy Algorithm: In order to understand the performance

of the greedy algorithm, we compare it with the optimal solution to 6-MAXFLOW. In our

experiment, 1000 random time-varying graphs are tested. Each network has 20 nodes and

the underlying static graph is a random scale-free graph. The time horizon is T = 20 slots

and we assume each link is active with a probability p = 0.5 in each slot. The source-

destination pair is also randomly picked. The optimal solution to 6-MAXFLOW is derived

by directly solving its ILP formulation. Figure 4-2 shows the comparison, where the ap-

proximation gap is calculated by OPT-ALG. We can observe that the approximation gap is

less than 8% even in the worst case, much better than the theoretical bound in Theorem 4.

4.1.3 Special Case

Sometimes we may only want find a fixed number (say k) 6-disjoint journeys (called the

3-FIXFLOW problem) instead of the maximum number. For example, traditional disjoint-

path protection usually exploits two disjoint paths, one as the primary path and the other

as the backup path. Unfortunately, 6-FIXFLOW problem is still NP-hard in general. This

hardness result can be easily derived from the work of Kleinberg et al. [12]. They showed

that a special case of 6-FIXFLOW problem is NP-hard, where each link is active for exactly

one slot and spatial disjointness (i.e., 6 = T) is assumed. Hence, 6-FIXFLOW problem

is also NP-hard. However, the celebrated news is that 6-FIXFLOW is polynomial-time

solvable if the underlying graph is a Directed Acyclic Graph (DAG) (note that the Line

Graph of such a underlying graph is also a DAG). This is achieved through the modification

of classic Pebbling Games [7]. The detailed procedures are shown as the following

Suppose we are given a fixed integer k > 0 and need to find k 6-disjoint journeys.

Denote L(9) the Line Graph of the input time-varying graph g and L(G) the Line Graph

of the underlying graph G. Then the pebbling game executes the following operations.

* Perform topological sorting over L(G). Note that if there is an edge u -+ v in L(G),

then the level of u is higher than the level of v. Also note that each node in L(G)

represents an edge in G, so after the topological sorting we get the level for each edge

45

in G. Denote l the level of edge e E E.

* In L(g), associate node ve,,t (which corresponds to contact (e, t)) with level l.

" The pebbling game is run over L(!) with the following rules. Initially, there are k

pebbles at the source s. In each round of the game, we decide whether pebbles can

be moved. A pebble can be move from node v,, to Vel,t' in L(9) if (i) there is an edge

between Ve,t and ve,,, in L(g), (ii) there are no other pebbles resided in any node

ve',ti such that It" - t' < 6, and (iii) the level of node v,, is higher or equal to any

other nodes that are resided by a pebble. Note that if a pebble is moved from node

s, rule (iii) can be ignored; if a pebble is moved to node d, rule (ii) can be neglected.

When all the pebbles are moved to the destination d, the pebbling game is won.

Note that when the game ends, if all the k pebbles are moved to the destination, we can

easily find k 6-disjoint journeys by using the trajectories of pebbles (by Theorem 1); other-

wise the game is lost and it is impossible to find k 6-disjoint journeys. The correctness of

the pebbling game is given by Theorem 5.

Theorem 5. For a given constant k, the pebbling game is won if and only if there are k

6-disjoint journeys from s to d.

Proof When the pebbling game is won, all of the k pebbles are moved to the destination d

along k paths P1 , . - - , Pk. in the line graph, which corresponds to k journeys in the original

time-varying graph: J1, - - - , Jk.. Then we prove that these journeys are 6-disjoint.

Suppose two of these journeys (say Ji and Jj) are not 6-disjoint, i.e., they use the same

edge (say e) within 6 slots. Assume Ji uses edge e in slot ti and Jj uses e at time t1.

Then we have Iti - tj < 6 by the assumption. Without loss of generality, we let pebble

pi reaches Ve,ti first. Then pebble pi must leave node ve,t, before pebble pj reaches ve,tj

since Iti - tjI < 6 (by the second rule of the pebbling game). Denote ve,,, the node that

p3 resides in when pebble pi moves away from ve,iL. It is obvious that pebble p3 visits node

Ve',t' before node ve,tj, so the level of ve',t, is higher than the level of ve,t3 , i.e., 1e, >l1. By

the third rule of the pebbling game, for pebble pi to be able to move away from node vg,1 s,

46

the level of node ve,,t must be higher than the level of node v,,t,, which means that 1e > 1e,,

which causes a contradiction.

Conversely, it is clear that if there are k 5-disjoint journeys from s to d, then the k

pebbles can be moved along the paths corresponding to these journeys, which makes the

pebbling game won. El

The analysis of time complexity for the pebbling game is similar to [12]. Recall that

the time-varying graph G has 1C contacts, so there are 1C + 2 nodes in the Line Graph

(including the source node s and the destination node d). Varying the positions of the k

pebbles in L(g), we can obtain (IC + 2)k patterns. The starting pattern is the one where all

the pebbles reside in node s and the ending pattern is the one where all the pebbles reach

node d. Hence, we will go through at most (IC + 2)k patterns before the game ends, and

the overall time complexity of the pebbling game is Q(1C1 k). It is easy to see that when k

is a fixed constant, the pebbling game is polynomial-time but becomes exponential when k

is a part of the input parameters.

4.2 Computation of MinCut6

In this section, we study the computation of Min Cut6 for an arbitrary value of 6, referred to

as the 6-MINCUT problem:

Input: a time-varying network G, a source-destination pair (s, d), and the value of 5;

Output: the smallest 5-cut CUT*, and MinCuts = ICUT-1.

In the rest of this section, we first study the complexity of 6-MINCUT and then present a

naive algorithm as well as its heuristic improvement.

4.2.1 Computational Complexity

Similar to 6-MAXFLOW, the computation of MinCut6 for an arbitrary value of 6 is also

intractable, as is shown in Theorem 6.

47

Theorem 6. 6-MINCUT is NP-hard.

Proof Kempe et al. [12] showed that in a special type of time-varying graphs, where each

link is active for only one slot, it is NP-hard to determine whether there exists a set of

k nodes whose permanent removals can disconnect the source-destination pair. This is

obviously a restricted instance of the node-version 6-MINCUT problem, which implies that

the node-version 6-MINCUT is NP-hard. Note that the node-version 6-MINCUT problem

is just a special case of its edge-version counterpart (see Chapter 5.1 for the formal proof).

As a result, the edge-version 6-MINCUT problem is also NP-hard. Il

It is still unknown how hard it is to approximate for 6-MINCUT. However, as will be

shown later, it is possible to find algorithms that achieve near-constant approximations, so

we would expect 6-MINCUT to be a more tractable problem than 6-MAXFLOW.

4.2.2 Naive Algorithm

In this section, we present a naive approximation algorithm for 6-MINCUT. Before the

detailed introduction, it is necessary to introduce the following concept.

Definition 13 (6-cover). For a given set of contacts S, its 6-cover (denoted by Cover6 (S))

is the smallest set of 6-removals required to disable all the contacts in S.

For example, suppose S = {(ei, 1), (ei, 2), (e2 ,2), (e2 ,4)} and 6 = 2. Then we need

at least three 6-removals to disable all the contacts in S: one for (ei, 1) and (ei, 2), one

for (e 2 , 2) and one for (e 2 , 4); this means that ICover6 (S)I = 3. It is trivial to prove that

the value of CoverS(S) is uniquely determined once the contact set S is given. A simple

approach for calculating Cover 6 (S) is shown in Appendix C.

The basic idea of the naive algorithm is to first compute MinCuti, which has been shown

to be computationally tractable in Chapter 3.3. Note that the computation of MinCuti

gives us the smallest 1-cut CUT*, and if we compute the 6-cover of CUT*, a feasible

solution to 6-MINCUT will be derived. The above procedure is shown in Algorithm 2.

Note that the solution found in the naive algorithm is only optimal when we input 6 = 1

and approximation gaps exist when 6 > 2. Surprisingly, this naive algorithm has a good

approximation ratio, as is shown in Theorem 7.

48

Algorithm 2 Naive Algorithm for 6-MINCUT
1: Compute the smallest 1-cut CUT*;
2: Return the 6-cover of CUT* as the solution.

Theorem 7. The naive algorithm (Algorithm 2) achieves 6-approximation for 6-MINCUT,

ALG J

Proof. Denote S the set of contacts disabled by the 1-removals found in the first step of

the naive algorithm. It is obvious that ICovers(S)I < MinCut, for any 6 > 1. At the same

time, we notice that each 6-removal found in the optimal solution to 6-MINCUT contains

at most 6 contacts, which corresponds to at most 6 1-removals. Thus, we can disconnect the

source-destination pair with at most 6MinCutj 1-removals. According to the minimality of

MinCuti, we have MinCut, < 6MinCutb, which implies that

|Coverg(S)| MinCut1 < 6MinCutb,

i.e., 6-approximation is achieved by the naive algorithm for 6-MINCUT. l

The overall time complexity of Algorithm 2 depends on the way we compute MinCutj

(see Chapter 3.3 for different approaches). For example, if Ford-Fulkerson Algorithm is

used over the Line Graph to compute MinCut1 , then the first step of Algorithm 2 consumes

O(IC3) time. The computation of the 6-cover consumes O(ICI) time. Hence, the overall

time complexity of the naive algorithm is O(IC3).

4.2.3 Heuristic Algorithm

Although the above naive algorithm achieves a good approximation ratio, it has an obvious

drawback as is illustrated in Figure 4-3. Suppose 6 = 3. If the naive algorithm is used,

we first calculate MinCuti, where contacts (AB, 4) and (AC, 4) are removed; thus, we need

two 6-removals to disable the above two contacts when J = 3, meaning that the naive

algorithm will output a 6-cut of size two. However, it is obvious that the optimal cut should

remove contacts (SA, 1), (SA, 2) and (SA, 3), requiring only one 6-removal when 6 = 3.

This bad scenario occurs because the naive algorithm uses the result when 6 = 1, which

49

only considers one-slot removals and fails to distinguish the temporal correlation between

contacts. For example, although removing (SA, 1), (SA, 2) and (SA, 3) requires more one-

slot removals, they are temporally closed to each other and thus can be removed together

by a single 6-removal when 6 is large. By comparison, contacts (AB, 4) and (AC, 4) are

spatially disjoint and poorly correlated, which means that they cannot be removed together

no matter how large 6 is.

4 B 5

1,2,3
SAD

4 C 5

Figure 4-3: Example where the naive algorithm (Algorithm 2) fails to nnd the optimal
solution. Suppose 6 = 3 and the source-destination pair is (S, D). The naive algorithm will
remove contacts (AB, 4) and (AC, 4), which needs two 6-removals. By comparison, the
optimal solution is to remove contacts (SA, 1), (SA, 2) and (SA, 3), which only needs one
6-removal when 6 = 3.

Observing the above drawback, we propose a heuristic improvement (Algorithm 3) so

as to leverage the time correlation between contacts. The idea is to first assign weights

to contacts according to their time correlation and then call the naive algorithm over the

weighted time-varying graph. Note that approaches for computing MinCut, over an un-

weighted time-varying graph is still valid in the weighted case.

The key part is the weight assignment. Intuitively, if there are more contacts in the

"temporal neighborhood" of a given contact, its time correlation to other contacts is larger

and a single 6-removal is likely to disable more contacts together with this given contact.

Hence, such a contact should be given a smaller weight such that it has a higher priority

of being removed. Keeping this in mind, we propose the following weight assignment

scheme. Suppose we are assigning the weight for contact (e, t). We first scan all the 6-

slot windows containing this contact and then find a window that contains the maximum

number of contacts (say it contains K contacts). The weight of contact (e, t) is just the

50

reciprocal of K. This procedure is illustrated in Figure 4-4.

Algorithm 3 Heuristic Algorithm for 6-MINCUT
1: Call SETWEIGHT to compute the weight for each contact;
2: Call the naive algorithm (Algorithm 2) over the weighted time-varying graph;
3: Procedure: SETWEIGHT
4: for each contact (e, t) do
5: Scan all the 6-slot windows containing (e, t), and find the one that contains the max-

imum number of contacts (say containing Ke,t contacts);
6: Set we,t = ;

7: end for

t1 112 3]4 15 6 Window 1 contains
e ~3 contacts

Time

t1 12 13 14 As 16 Window 2 containse -_ 4 contacts
Time

1 12 t3 14 15 16 Window 3 contains
e ~3 contacts

Time

Figure 4-4: Illustration of the weight assignment. Suppose edge e is active in slots t1 <

t 2 < - < t6 and we are assigning the weight for contact (e, t4). We first scan all the
windows (with a length of 6 slots) that contain the target contact (e, t4) and then check
the number of contacts containing in these windows. It turns out that the second window
contains the maximum number of contacts (4 contacts). Hence, we know Ket 4 = 4 and its

weight is = .

Applying the heuristic algorithm to the example in Figure 4-3, we would give a weight

of ! to contacts (SA, 1), (SA, 2) and (SA, 3), and a weight of I to contacts (AB, 4) and

(AC, 4). In this case, MinCut1 will correspond to the removals of contacts (SA, 1), (SA, 2)

and (SA, 3) since their weights only sum to one while removing (AB, 4) and (AC, 4) yields

the total weights of 2. Thus, the optimal solution is found with the heuristics.

Finally, we investigate the performance of the heuristic algorithm. Unfortunately, it

turns out the theoretical approximation ratio is still 6, as is shown in Theorem 8. However,

the subsequent numerical results indicate that the practical performance of the heuristic

51

algorithm is much better. The time complexity used for setting weights is merely 0(1C16),

so the heuristic improvement does not increase the overall time complexity.

Theorem 8. The heuristic algorithm (Algorithm 3) achieves 6-approximationfor 6-MINCUT

i.e. AL"-<6-'OPT -

Proof. We make two simple observations regarding the weights. The first is that w,,t

since Ke,, < 6. The second is that the sum of weights that can be removed by one 6-

removal is less or equals to 1. Indeed, consider a certain 6-removal that deletes contacts

(e, ti), (e, t 2), - - , (e, tn). It should be obvious that Ke,, .> n for any 1 < i < n, which

means En 1 Weti = En 1 1 < En 1 1 = 1. Then we introduce the following lemma.

Lemma 2. Let C be an arbitrary set of contacts whose removals disconnect the source-

destination pair The following result holds

E We,t Covers(C)I 6 Y3 We,t.

(e,t)EC (e,t)EC

Proof The lower bound directly follows from the second observation mentioned above.

Then we get down to proving the upper bound.

Denote E, the set of underlying edges in C. For each edge e E Ec, suppose we need

ne 6-removals to completely delete e from C, and the corresponding removal heads are

(e, ti), (e, t2), - - - , (e, tne), where we assume 1 < ti < t2 < -.. < , 5 T. Denote C,i

the set of contacts deleted by the 6-removal with head (e, ti) and define

W'e,i = 3 We,t, Ve E Ec and 1 < i < ne. (4.2)

(e,t) ECe ,i

Then we have

|Coverg(C)I = ne = > Z (e,t)C W e,t , (4.3)
eEEc eEEc i=1 e,z

where the last equality is due to equation (4.2). We also notice that for any e E E, and

1 i < ne

(>3 t)E e,t

(e,t)EC~,i

52

because contact (e, ti) is included in Ce,,. By simple transformations, we obtain

Z (e,t)ECe,i We,t > Z(e,t)ECe,,i We,t

We'ti Wei

Since We,ti ;> , we have

(et):et e,tj, -e~ Y e,.i W~We~ > We,t > We, i
(e,t)ECe,i

Taking the above inequality into (4.3), we obtain

ICover6(C) 6 Y We, = 6 17 We,t,

eEEc i=1 (e,t)ECe,i (e,t)EC

where the last equality holds because C = UeEEc Uli Cei and any two sets in the collec-

tion {Ce,ile E Ec, 1 i < ne} do not intersect. E

With the above lemma, we are ready to prove the approximation ratio for the heuristic

algorithm. Suppose CALG is the set of contacts disabled by the solution of the heuristic

algorithm and C* is the set of contacts disabled by the optimal solution to 6-MINCUT.

Then according to Lemma 2, we have

ICover6(CALG)I 6 Lde't
(e,t)ECALG

Since the heuristic algorithm first finds the minimum number of 1-removals that can dis-

connect the source-destination pair in the weighted time-varying graph, we have

E We,t <_ We,t.
(e,t)ECALG (e,t)EC*

This implies that

ICoverj(CALG)I'!5 We,t < 6Cover 6(C*)I,
(e~t)EC*

53

where the last inequality is due to the lower bound in Lemma 2. Therefore, 6-approximation

is achieved by the heuristic algorithm. L

35
rOptimal Wssssasa

30 Heuristic
Naive

a20

4=1 3=2 3=5 1=20

Figure 4-5: Comparison among the naive algorithm (Algorithm 2), the heuristic algorithm

(Algorithm 3) and the optimal result to 6-MINCUT.

Table 4.1: Approximation gaps of different algorithms
ApproximationGap 6=1 6=2 6=5 = 20

Naive Algorithm 0% 11.92% 29.95% 77.22%

Heuristic Algorithm 0% 2.54% 9.92% 36.62%

Numerical Results on the Heuristic Algorithm: The simulation environment is the same

as that used for Algorithm 1. Figure 4-5 shows the comparison between the naive and

the heuristic algorithms, and Table 4.1 gives their detailed approximation gaps'. As is

expected, the heuristic algorithm significantly outperforms the naive algorithm; the only

exception is when 6 = 1 since both algorithms give the optimal solution in this case. We

also notice that the heuristic algorithm is very close to the optimum: the approximation gap

is less than 10% in most cases and less than 40% even in the worst case; this is much better

than the theoretical bound in Theorem 8. The final observation is that the approximation

gaps of both algorithms become larger with the increase in 6; this tendency is consistent

with their theoretical approximation ratio of 6.

'The approximation gap is calculated by ALG-OPT

54

Chapter 5

Discussion

In this chapter, we discuss some important extensions and applications of the proposed

framework. First, we discuss how to extend the graph and failure model used in the pre-

vious chapter to a more general setting. Then some extended survivability metrics are

investigated. Finally, we demonstrate the applications of these metrics.

5.1 Reductions Between Variants

In this section, we discuss how to reduce different variants of the proposed problems to our

existing framework.

(1) Node vs. Edge. Sometimes we may need to handle node-related problems. In our

context, we are interested in

* Node-version 6-MAXFLOW: find the maximum number of 6-node-disjoint jour-

neys in a time-varying graph.

* Node-version 6-MINCUT: find the minimum number of 6-node-removals 2 that can

render the destination unreachable from the source.

The above node-version problems can be easily reduced to edge-version problems by

using the split graph (which is also a time-varying graph). The basic idea of split graphs is

'The definition of 6-node-disjoint journeys is similar to its edge-version counterpart, requiring that any
two of these journeys do not use the same node within 6 slots.

2A 6-node-removal means that we disable a node for consecutive 6 slots.

55

to split each node in the original time-varying graph into two nodes and replace the original

node by an edge between the two splitting nodes. To be more specific, for a time-varying

graph g, the construction of its split graph S(9) is as follows.

" Split any node v in g into two nodes v- and v+; add an edge v -+ v+ (i.e., splitting

edge) in the split graph. The active slots and traversal time of this edge are dependent

on the presence and delay functions of node v (see the remark below).

" For each contact (UV, t) in g, create a contact (u+v~, t) in the split graph. Note the

one-to-one correspondence: (uv, t) +- (u+v-, t).

Remark on split graphs. It should be clear that any node features (e.g., node presence

and delay) are transformed to edge features of the corresponding splitting edges. If node v

is acti ,II slsJL U1, u27 --- -, LInIIIL3 slIiLL1ngr gU -+ U + hUU1 also Ue actiLLV III thls

slots. Similarly, if there is a delay of D slots when passing node v, then the traversal delay

over its splitting edge v- - v+ should also be D slots. It should be pointed out that if we

do not consider node delay or presence functions, each splitting edge is active in the entire

time span 1,- , T and the traversal delay is zero. An example of split graphs is shown in

Figure 5-1.

Time Horizon T=3

2 U 3

s d

1V 2,3

(a) Original Time-varying Graph

2 U- u+ 3
1,2,3 1,2,3

s- s+ d- d+

1 v- V+ 2,3
1,2,3

(b) Split Graph

Figure 5-1: Illustration of the split graph. Note that we do not consider node presence or
delay functions here so each splitting edge is active in the entire time span and its traversal
delay is zero. Also note that the source-destination pair becomes (s+, d-) in the split graph.

56

Split graphs are very useful in solving the node-version 6-MINCUT and 6-MAXFLOW

problems, as is shown in the following theorem.

Theorem 9. Solving the node-version 6-MAXFLOW and 6-MINCUT problems in a time-

varying graph g is equivalent to solving the edge-version J-MAXFLOW and 6-MINCUT

problems in its split graph S(G).

Proof For a journey J in the original time-varying graph G:

J : s -+ (svi, ti) -+ (viv2 , t2) -+ - - d,

we can find the corresponding split journey Jin the split graph S(g):

J: s+ -+ (s+v1 t) -+ (vIv, t2) -

-4 (v1v ,t 2) -+ (v-2+4,t2) -+ -4 d-.

It should be mentioned that the inverse mapping, i.e., J -+ J, also holds, so there is an

one-to-one correspondence between a journey J in G and its split journey .Jin S(g), i.e.,

J +-+ J. Besides, it's obvious that a certain journey visits node v in slot t if and only if its

split journey visits contact (v-v+, t).

We first prove for 6-MAXFLOW. Consider an arbitrary set of journeys J1,. -, Jm in

g and their split journeys J1 , , Jm in S(G). It can be easily verified that J1,- - Jm are

6-node-disjoint if and only J1, J , are 6-edge-disjoint. Hence, finding the maximum

number of 6-node-disjoint journeys in G is equivalent to finding the maximum number of

6-edge-disjoint journeys in its split graph S(!).

As for 6-MINCUT, we first notice that any 6-node-cut CUT'ode in G naturally corre-

sponds to a 6-edge-cut CUT'dge in its split graph S(g), where

C dge {(v-V+, t)I(v,t) E CUTnode.

As a result, the size of the minimum 6-edge-cut in S(G) is less or equal to the size of the

minimum 6-node-cut in g. To show the inverse direction, suppose CUTedge is an arbitrary

6-edge-cut in the split graph. Then we construct a set of 6-node-removals (denoted by R)

57

in g from CUT' '. For any contact (v-v+, t) c CUTedge, we add (v, t) to R. For any

contact (u+v~, t) E CUT' dg, if u -f s, we add (u, t) to R; if u = s, we add (v, t) to R. It

can be easily observed that R forms a legitimate 6-node-cut in g. Therefore, the size of the

minimum 6-node-cut in g is less or equal to the size of the minimum 6-edge-cut in S(g),

which completes our proof. 0

Note that the source-destination pair in the split graph S(9) becomes (s+, d-). It es-

sentially implies that the node-version 6-MAXFLOW and 6-MINCUT problems are just

a special case of the corresponding edge-version problems which have been extensively

studied in the previous chapters.

(2) Directed vs. Undirected. Sometimes the underlying graph is undirected and we need

to transform it into the directed case in order to apply our framework. Now we consider two

possible scenarios. In the first case, the two directions of an undirected edge are failure-

independent; that is, if one direction fails, the other direction is not affected. For example,

in cognitive radio networks, the downlink and the uplink may be assigned two independent

channels, where the reclamation of one channel does not influence the other. In this case,

it is enough to replace the undirected edge with two directed edges (Figure 5-2(b)). On the

other hand, it is often the case that the two directions are failure-dependent, which means

both directions are ON or OFF simultaneously. For instance, if an unexpected obstacle

appears in the middle of two nodes, then transmissions in both directions are disabled. In

this case, we cannot simply use two directed edges, and the gadget shown in Figure 5-2(c)

will be helpful. It can be observed that no matter which direction is used when we cross the

undirected edge u - v, the same directed edge w, -- to2 is traversed. Conversely, disabling

edge w -> w2 is enough to disable the two directions. Hence, with such a gadget, we can

easily solve 6-MAXFLOW and 6-MINCUT in the undirected and failure-dependent case.

5.2 Arbitrary Failures

Our previous discussion about (n, 6)-survivability assumes that failures occur at the be-

ginning of slots and last for multiples of the slot length. In this section, we show how to

58

(a) Original undirected edge ', 2, ,T wi 1,2,
u 1, t2, - v

1, 02, -

21,, ,-

(b) Failure-independent case (c) Failure-dependent case

Figure 5-2: Illustration of the gadgets that reduces an undirected edge u - v to directed
edges. In the failure-independent case, we only need to replace it by two directed edges. In
the failure-dependent case, we first add two additional nodes w 1 , w2 and then add directed
edges u -+ w1 , w 2 -+ v, V -* w1 , w 2 -+ u and w, -+ w 2 . The active slots and traversal
delay of w, -+ W2 are the same as those of the original undirected edge u - v. The
remaining directed edges are active in the entire time span and have zero traversal delay.

relax this assumption and accommodate failure happening at arbitrary instants or lasting

for arbitrary duration.

Denote I the slot length used for the time-varying graph. Suppose a failure with arbi-

trary duration D E R+ occurs at instant t + E, where t is the beginning of a certain slot

(say slot n) and 0 < c < 1. It is easy to see that this failure influences the transmission in

slots n, n+1, . . . , n+ [- 1, which is the same as a failure happening at instant t and

lasting for [D+-] slots with respect to their destruction to the graph.

5.3 Extended Metrics

In this section, we discuss two other survivability metrics that are extended from MinCuts

and MaxFlow6 .

Definition 14 (MinTimen). Given any positive integer n, MinTimen is the minimum value

of 6 such that we can render the destination unreachable from the source with at most n

6-removals.

Intuitively, MinTimen indicates the minimum failure duration needed to disconnect the

network given afixed number offailures. If MinTimen = 6, the source-destination pair can

survive any n failures that last for fewer than 6 slots and is thus (n, 6 - 1)-survivable. Note

that 1 < MinTime, < T. If we cannot disconnect the network with n permanent failures,

59

this metric is null. It should also be pointed out that MinTime, is the sibling metric of

MinCutj since the latter evaluates the minimum number of failures needed to disconnect

the network given fixed duration offailures.

Applying the similar trick to MaxFlows, we can define the following metric.

Definition 15 (MaxTimen). Given any positive integer n, MaxTimen is the maximum value

of 6 such that there are at least n 6-disjoint journeys from the source to the destination.

When MaxTime, = 6, there are at least n 6-disjoint journeys, which means the source-

destination pair is (n - 1, 6)-survivable. If there exist no n 6-disjoint journeys even when

6 = 1, then MaxTimen is null.

From the definitions of MinTimen and MaxTimen, it is not hard to make the following

observation regarding their computations.

Observation 2. The computations of MinTimen can be reduced to the computation of

MinCut5 in polynomial time, and vice versa. The same argument applies to MaxTimen

and MaxFlow6 .

Proof We only show the reductions from MinTimen to MinCut6 while the analysis for

other reductions is similar.

Suppose we have an oracle that can output the value of MinCutb if we input 6. To

compute MinTimen, we can first feed 6 = I to the oracle and get MinCut1 . If MinCUti n,

then MinTimen = 1; otherwise we increase 6 by 1 and repeat the above procedure until

MinCuts. < n for some 6*, where we obtain MinTimen = 6*. Since the above procedure

repeats for at most T rounds, the computation of MinTimen can be reduced to finding

MinCut3 in polynomial time. l

This observation has two important implications. First, computing MinTime" or MaxTimes

is as hard as computing MinCut6 or MaxFlow6 , which is NP-hard. Second, the approxima-

tion algorithms we develop for computing MinCutj and MaxFlows can be used to solve

MinTimen or MaxTimen. Therefore, we can see the fundamental role of MinCut6 and

MaxFlow6 in understanding other metrics.

60

5.4 Applications of MinCut6

Besides being a survivability metric, MinCut6 can also be applied to many practical prob-

lems. For example, we may need to block the spread of rumors or viruses in time-varying

networks (e.g., evolving social networks or multi-robot systems) [9]. By calculating MinCut5 ,

we can easily identify crucial contacts (or spread blockers) and block rumors or viruses by

disabling only a small number of edges for 6 slots. An extension of this application is the

so-called Flow Inhibition/Interdiction Problem [21] in time-varying networks, where we

need to disconnect the network at the minimum cost.

61

62

Chapter 6

Application: Bus Communication

Networks

In this chapter, we demonstrate how to use our survivability framework to facilitate the

design of robust networks in practice. To be more specific, we exploit 6-disjoint journeys

to design a survivable routing protocol for a real-world bus communication network [1].

Each bus in the network has a pre-designed route and is equipped with an 802.11 radio that

constantly scans for other buses. Since the route of each bus is designed in advance, we

can make a coarse prediction about bus mobility and the evolution of their communication

topology. As a result, we can convert this bus communication network into a time-varying

graph where topology changes are caused by the estimated bus mobility. However, the

prediction may not be perfect due to various reasons such as unexpected obstacles, traffic

accidents, traffic jam, etc. The goal of survivable routing is to reduce the packet loss rate

due to these unpredictable failures.

In the rest of this chapter, we first present the design of the survivable routing protocol

using 6-disjoint journeys. Then we discuss trace statistics, simulation settings and results.

6.1 Survivable Routing Protocol: DJR

The basic idea of this protocol is to replicate each packet at the source and send these copies

along multiple 6-disjoint journeys obtained by solving 6-MAXFLOW. When at least one

63

of these copies reaches the destination, the original packet is successfully delivered. This

replication-based protocol is referred to as Disjoint-Journey Routing (DJR). The advan-

tages of DJR over other reliable transmission protocols are outlined as follows.

e Simplicity of Deployment in lime-varying Networks: Static networks usually deploy AR-

Q at the data link layer and TCP at the transport layer for error recovery. However, due to

the lack of connectivity, it is not only difficult to get timely ACK at the sender but also hard

to find opportunities for retransmissions. In contrast, DJR does not require any feedback,

which greatly simplifies the data link layer and the transport layer (no need for error recov-

ery). In addition, as a network-layer protocol, it can be combined with FEC codes at the

physical layer (e.g., erasure code [10]) to achieve a better performance.

* Temporal Diversity: Many traditional survivable routing protocols rely on spatial diver-

sity, such as Disjoint-Path Routing (DPR) [24] [14], where spatially-disjoint paths are used

to recoverJL packets. %HXweverL spaia dies ty isa eanig 4uirement-JI In netLW-0rksZ W It1

sparse and intermittent connectivity. We will demonstrate that it is hard to find even two

spatially-disjoint paths in the bus network. By comparison, DJR exploits temporal diversity

to combat failures and is well suited for time-varying networks, especially when failures

are transient.

* Two-fold Tunability: Our survivability framework has two natural parameters, namely

n and 6. Hence, the tunability of DJR is also in two dimensions: we can both tune the

number of 6-disjoint journeys to use, and also adapt the degree of temporal disjointness. By

comparison, existing survivable routing protocols (e.g., [11, 19,25]) lack such flexibility.

6.2 Trace Statistics

We use the trace from UMassDieselNet [1] where a public bus transportation system was

operated around Amherst, Massachusetts. The trace records the contacts among 40 buses

in 9 weekdays, which roughly reflects the bus mobility over those pre-designed bus routes.

We will use this estimated mobility to coarsely predict the topology changes of this bus

communication network (yet, we will assume that the estimation is imperfect due to obsta-

cles, traffic jam, etc.).

64

To facilitate our subsequent discussion, we pre-process the raw trace and observe two

important features of this bus communication network. The first observation is the "bursty"

structure of contacts between any two buses; that is, buses only communicate with each

other occasionally. Figure 6-1(a) illustrates such a bursty structure for a typical pair of

buses. The second observation is that most connections in this network last for only a short

period of time. As is shown in Figure 6-1(b), most contacts span less than 20s.

active - -- 300 . --. --- .-. -

250 Mean 10
Standard Deviation = 12.0373

150
a)

-U_ 100

50

6AM 12PM 6PM 12AM 0 13 26 39 52 65
Time Contact Duration (s)

(a) (b)

Figure 6- 1: Statistical structures of the bus communication network. (a) The bursty pattern

for the contacts between a typical pair of buses. (b) Histogram for the contact duration.

Most contacts only last for a short period of time (less than 20s).

6.3 Simulation Settings

In our simulation, the slot length is identical to the trace resolution, i.e., one second. Ac-

cording to the measurement in [1], the average transmission rate is about 1.64Mbps. If

the packet size is set to be 1KB, the transmission time of one packet is nearly negligible

as compared to the slot length, which implies zero link-traversal delay. Each packet has

a deadline (DDL) after which it will be dropped from the network; naturally, the packet

deadline can be modeled by the time horizon T of the corresponding time-varying graph.

A packets is generated between a random source-destination pair immediately after the

previous packet becomes expired or delivered. In addition, at most n copies are allowed,

meaning that we can use at most n 6-disjoint journeys to send these copies. In addition, we

65

resort to Algorithm 1 to compute 6-disjoint journeys.

Since it is impossible to precisely predict the topology changes in the future, we impose

random failures on the estimated time-varying graph generated from the trace. For each

link, we let failures occur in each slot with a certain probability p, and the duration of each

failure is uniformly distributed within [0, d} seconds. The performance metric is the packet

loss rate, i.e., the fraction of packets that fail to reach the destination before the deadline.

6.4 Total Number of 5-Disjoint Journeys

We first look at the maximum number of 6-disjoint journeys in the bus communication

network (Figure 6-2). First, it can be observed that there exist very few 6-disjoint journeys

in this network: less than three 6-disjoint journeys when 6 > 5. Particularly, only one 6-

disjoint journey exists when 6 is relatively large, which means that it is almost impossible

to find even two journeys that are spatially disjoint. This observation indicates the lack of

spatial connectivity in this bus network and implies the inefficiency of traditional Disjoint-

Path Routing in networks with intermittent connectivity since such a protocol only relies

on spatial diversity (we will validate this later). Second, we can observe the diminishing

return for the number of 6-disjoint journeys: beyond a certain value of 6, the increase of 6

no longer reduces the number of 6-disjoint journeys. Such a tendency is due to the short

and bursty contacts in this bus network (see Chapter 6.2). For example, if a contact only

lasts for 20s while the next contact occurs 1 hour later, the temporal distance between any

two journeys that use this link is at most 20s within the deadline (unless the packet deadline

is greater than 1 hour), and any larger 6 actually prevents any two 6-disjoint journeys from

using the same link within the deadline, which essentially becomes spatial disjointness.

The final observation is that extending the packet deadline increases the total number of 6-

disjoint journeys since there are more transmission opportunities within a longer deadline.

66

2.
Packet Deadline=30s ----

2.4 - P--- - Packet Deadline=60s-*-

S2.2 - Packet Deadline=300s -,A--

40

-~1.6

0

5 10 15 20 25 30 35 40 45 50
8 (s)

Figure 6-2: The total number of 6-disjoint journeys in the bus communication network.

6.5 Tunability of DJR

Next, we study the two-fold tunability of DJR (Figure 6-3). We first investigate the tunabil-

ity of n, i.e., the maximum number of copies we are allowed to produce or the maximum

number of 6-disjoint journeys we can use. If we are allowed to use only one of the 6-

disjoint journeys (n= 1), DJR is ineffective and the packet loss rate remains at a high level

regardless of the value of 6. If we can use more 6-disjoint journeys, the packet loss rate is

significantly reduced (of course, more redundant copies are produced).

The influence of 6 is more interesting. With the increase of 6, the packet loss rate

first goes down and then increases; this tendency can be explained as follows. When 6 is

relatively small, there exist many 6-disjoint journeys and we can choose any n of them to

use. With a fixed number of disjoint journeys, it is known that larger temporal disjointness

makes the network more robust since it can survive failures of longer duration. Hence,

the packet loss rate goes down with the increase of 6 initially. However, the increase of 6

also leads to the reduction in the number of 6-disjoint journeys (see Figure 6-2); beyond a

certain value of 6, the number of 6-disjoint journeys becomes smaller than n and we have to

send copies over fewer than n disjoint journeys, which means that the network can survive

fewer failures. Therefore, although temporal disjointness continues to grow, the reduction

67

in the number of available disjoint journeys makes the loss rate increase. Moreover, we

can observe that there exists an "optimal" value of 6 which minimizes the packet loss rate

(highlighted by shaded circles). In fact, this optimal value is the maximum 6 such that

MaxFlowj ;> n, i.e., MaxTimen we introduce in Chapter 5.3.

n=1 -*- n=2 --e- n=3 -*- n=4 -L-

30%

27%
a)
024%

S 18% -- - - - -.ca

15% -

12%
0 2 4 6 8 10 12 14 16

8 (s)

Figure 6-3: Influence of n and 6 on packet loss rates (DDL=300s, p=0.05, d=60s).

6.6 Comparison with DPR

To numerically demonstrate the necessity of exploiting temporal diversity in time-varying

networks, we numerically study the comparison between Disjoint-Journey Routing (DJR)

and Disjoint-Path Routing (DPR) [24] [14]. Note that DPR relies on spatial diversity and

only sends copies along spatially-disjoint paths; in a sense, DPR is a special case of DJR

when 6 = T. In the comparison, we let DJR use the "optimal" value of 6 as previously seen

in Figure 6-3. We also consider different failure duration, ranging from tens of seconds

(transient failures) to infinity (permanent failures).

The comparison between DJR and DPR is shown in Figure 6-4. In almost all the cases,

the network experiences significantly higher packet loss rates (around 2x more) if DPR is

68

used rather than DJR. The underlying reason has been argued: it is almost impossible to

find even two paths that are spatially-disjoint due to the sparse and intermittent connectivity.

Hence, traditional DPR is not very effective in time-varying networks. By comparison,

DJR exploits temporal diversity, where we can find a reasonable number of journeys to use

despite the intermittent connectivity. As a result, DJR is more suitable for time-varying

networks that are intermittently connected, especially when most failures are transient.

50% --- -
DJR
DPR MMOM

4% 1

10%0

d=20s d=30s d=60s Perm. Failure

Figure 6-4: Comparison between DJR and DPR (DDL = 300s, p=0.05 , n=3).

69

70

Chapter 7

Conclusion

In this thesis, a new survivability framework is proposed for time-varying networks, name-

ly (n, 6)-survivability. In order to evaluate (n, 6)-survivability, two metrics are proposed:

MinCut6 and MaxFlow6. These metrics are analogous to MinCut and MaxFlow in static

graphs but account for the temporal features of time-varying networks, such as failure du-

ration. We analyze the fundamental relationship between the two metrics and show that

Menger's Theorem only conditionally holds in time-varying graphs. Due to the differ-

ence, it is NP-hard to compute both survivability metrics. To resolve the computational

intractability, we develop several approximation algorithms. Finally, we use trace-driven

simulations to demonstrate the application of our framework in the robust design of a real-

world bus communication network.

71

72

Appendix A

Compact Formulation

In this appendix, we provide a compact formulation for MaxFlow6 and MinCutj. For the

simplicity of demonstration, we only provide the compact formulation for the case with

one-slot traversal delay; other cases can be formulated in a similar way. Suppose the o-

riginal time-varying graph is 9 (its underlying graph is G = (V, E) and the time span is

T = {1, - - - , T}). The source-destination pair is (s, d) and the corresponding Line Graph

is L(9). Except node s and node d, every node in L(9) has unit capacity; edges in L(9)

have infinite capacity.

The compact formulation of MaxFlow6 is defined over the Line Graph L(g). The ba-

sic idea is to formulate it as a classic maxflow problem in the Line Graph plus additional

constraints on the integrality and the 6-disjointness. Since node capacity is considered in

the Line Graph, we resort to the split graph of L(9) (see Chapter 5.1), which is denoted by

S(L(9)) = (V', E'). Note that the capacity of every splitting edge has unit capacity and

any other edge has infinite capacity. Also note that the source-destination pair becomes

(s+, d-) in the split graph. In Figure A-1, we give an example for the above transforma-

tions: 9 -+ L(9) -+ S(L(9)).

Denote F the exogenous flow into the split graph and f(x, y) the flow over edge (x, y) E

E' in the split graph. Also let I(x) and O(x) be the set of ingoing and outgoing neighbors of

node x in the split graph, respectively, i.e., I(x) = {y|(y, x) E E'} and O(x) = {yj(x, y) E

E'}. The compact formulation for MaxFlow6 is as follows.

73

0

slot 1 slot 2

D

B C
slot 3

Original time-varying graph

A VAB, VBD,3

VBC,2 CD D

Line Graph

A- A+ V AB,1 VAB,1 VBD,3 B +D,3

VBC,2 VBC,2 CD, VCD3 D- D+

Split Graph of the Line Graph

Figure A-1: Illustration of the transformations: g - L(-) - S(L(g)). The source-

destination pair is (A, D) in g and L(g), and is (A+, D-) in S(L(g)).

max F

s.t. E f(y,) -
YEO()

E
YCIWx

F,

f (X, Y) =-F,

0,

f(v_-,, v+,,) < 1, V splitting edge

x= d-

cc E V'\{s+,d}-

(vj ,V+) E E'

f(X, y) E {, 1, - - -}, V (x, y) E E'.

The first constraint is just the flow conservation constraint. The second constraint forces

74

any splitting edge, which corresponds to a contact in the original time-varying graph, to

be used by at most one journey within a window of 6 slots. Note that the unit-capacity

constraint for splitting edges has already been included in the second constraint.

It is interesting to observe that when 6 = 1 the second constraint becomes f(v;j, v+j) <

1, which we recognize as the capacity constraint for splitting edges. In this case, the above

formulation just becomes a standard maxflow problem and the integrality gap disappears.

This is consistent with Theorem 1.

The above formulation only gives the value of MaxFlow6 . If we need to know the

detailed 6-disjoint journeys, we can label different flows by their first-hop destination and

consider the conservation constraints separately.

As for MinCut6, we can similarly formulate it as a standard mincut problem in the split

Line Graph plus additional constraints on 6-removals. It turns out that the LP relaxation

of the compact formulation for MinCut5 can be formulated as the dual problem of the LP

relaxation for the above MaxFlow6 formulation. Thus, obtaining the compact formulation

of MinCutb reduces to mechanical procedures of LP dualization (omitted here).

75

76

Appendix B

Formal Proof to Theorem 2

Recall that our goal is to construct a family of time-varying graphs {Qk}k>1 such that

MinCut& = k for any 6 > 2 in the k-th graph. The constructions for k = 1, 2, 3 have beenMaxFlowi

shown in Figure 3-2. In general, graph C. has k levels. Different levels share the same

source s and have their own "virtual destinations" di, , dk. Note that the real source-

destination pair in g is (s, d4). Besides, the i-th level has 2i - 1 inner nodes, where we

denote vij the j-th inner node at level i. The inner contacts in level i include the following.

" s -+ vi,1 : active in slot i2 ;

" viJ -+ vij+1: active in slot i 2 + j for any even j and in slots i2 + j - 1, i2 + j for any

odd j;

" vi,2i- 1 - di : active in slot 2 + 2i - 1;

* Vij -+ di: active in slot i 2 + j - 1 for any even j.

Besides, there are also cross-level edges from lower levels to higher levels, i.e., di -+ vi+÷,j

which is active in slot (i + 1)2 - 1 for any 1 < i < k - 1 and odd j.

Then we prove by induction that MaxFlow = 1 and MinCut 6 = k for any 6 > 2 in

!9. When k = 1, it is obvious that MinCutj = 1 and MaxFlow6 = 1. Now suppose

the claim holds in 91, -- - , 9 k for some k > 1. In 9k+1, there are two possible choices

for traveling from s to dk+1: one is via node dk (i.e., s -+ dk dk+1) and the other is

directly descend to the (k + 1)-th level (i.e., s -* Vk+1,1 -> Vk+1,2 -+ . . . -+ dk+1). By our

77

induction, there is only one 6-disjoint journey from s to dk, so the former choice can yield

only one 6-disjoint journey from s to dk+1. Moreover, whichever journey from s to dk+1

that travels via dk is chosen, it cannot be 6-disjoint of any journey in the latter choice (i.e.,

S -+ k+1,1 - 2 4 --+ - - - -+ dk+l) for any 6 > 2. As a result, there is only one 6-disjoint

journey from s to dk, i.e., MaxFlows = 1 in 9k+1-

As for MinCuts, we notice that MinCut6 <; k+ 1 in gk+1 since removing all the contacts

starting from s can separate s and dk+1. Then it is sufficient to prove MinCutb > k +1, i.e.,

any k 6-removals cannot disconnect s and dk+1 if 6 > 2. To show this point, we first denote

C1 the set of inner contacts in levels 1, 2, - - - , k and all cross-level contacts, and denote C2

the inner contacts in level k + 1. Then we discuss three possible scenarios.

* Case 1: all the k 6-removals are in C1. In this case, it is obvious that we can still travel

within level k + 1, i.e., s -- + k+1,1 -- + -+ - - --+ dk+-

9 Case 2: all the k 6-removals are in C2 . It can be observed that there are k + 1 6-disjoint

journeys from dk to dk+1; thus, even with k 6-removals of the inner contacts in level k + 1,

there is still one journey from dk to dk+1, thus preserving a journey s -+ dk --+ dk+1-

o Case 3: there are i > 0 6-removals in C1 and k - i > 0 6-removals in C2. In this case,

we first notice that with i < k 6-removals in C1, there is still a journey from s to dk (by the

induction in gk) and there are at least k + 1 - i 6-disjoint journeys from dk to dk+1 even

after i 6-removals in C1. As a result, with k - i > 0 6-removals in C2, at least one journey

from dk to dk+1 is preserved, thus also preserving a journey s -+ dk -> dk+1-

Therefore, we can conclude that Mi n Cut6 = k + 1, completing the induction proof.

78

Appendix C

Computation of 6-cover

We describe an algorithm for calculating the 6-cover for a given set of contacts S, i.e.,

Covers(S). Suppose S includes n edges el, - - - , e,, and denote Covers(si) the 6-cover for

all the contacts in S that is associated with edge ei. Then it is easy to see that Covers(S) =

Ui= 1 Covers(si), so it is enough to know the method of calculating the 6-cover for each

edge. Now, suppose edge e is active in slots ti) < i, < .. < t(in the contact set

S. Then the algorithm for computing Cover6 (S) is shown as Algorithm 4. Note that

Flag(e, t) = 0 indicates that contact (e, t) has not been disabled by existing 6-removals.

Intuitively, this algorithm just keeps on imposing a 6-removal to the earliest contact that

has not been disabled by any exiting 6-removals yet (i.e., Flag(e, t) = 0).

Algorithm 4 Compute the 6-cover for a given set of contacts S

1: Initialize Cover6(si) = 0 for any 1 < i < n;
2: Initialize Flag(e, t) = 0 for any (e, t) E S;
3: for i = 1 : n do
4: forj = 1 : ki do
5: t = t)
6: if Flag(ei, t) = 0 then
7: Add contact (es, t) to Cover6 (si);

// Note that (es, t) becomes a removal head
8: Flag(ei, t') = 1 for any t < t' < t+ 6 - 1;
9: end if

10: end for
11: end for
12: Coverj(S) = U'l Cover6(si).

79

80

Bibliography

[1] Aruna Balasubramanian, Brian Neil Levine, and Arun Venkataramani. Enhancing
interactive web applications in hybrid networks. In Proceedings of the 14th ACM In-

ternational Conference on Mobile Computing and Networking, MobiCom '08, pages
70-80, New York, NY, USA, 2008. ACM.

[2] Lowell W. Beineke. Characterizations of derived graphs. Journal of Combinatorial
Theory, 9(2):129 - 135, 1970.

[3] Kenneth A. Berman. Vulnerability of scheduled networks and a generalization of
menger's theorem. Networks, 28(3):125-134, 1996.

[4] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-
varying graphs and dynamic networks. In Proceedings of the 10th International Con-

ference on Ad-hoc, Mobile, and Wireless Networks, ADHOC-NOW' 11, pages 346-

359, Berlin, Heidelberg, 2011. Springer-Verlag.

[5] Augustin Chaintreau, Abderrahmen Mtibaa, Laurent Massoulie, and Christophe Diot.

The diameter of opportunistic mobile networks. In Proceedings of the 2007 ACM
CoNEXT Conference, CoNEXT '07, pages 12:1-12:12, New York, NY, USA, 2007.
ACM.

[6] A. Ferreira. Building a reference combinatorial model for manets. Network, IEEE,
18(5):24-29, Sept 2004.

[7] Steven Fortune, John Hopcroft, and James Wyllie. The directed subgraph homeomor-
phism problem. Theoretical Computer Science, 10(2):111-121, 1980.

[8] Venkatesan Guruswami, Sanjeev Khanna, Rajmohan Rajaraman, Bruce Shepherd,
and Mihalis Yannakakis. Near-optimal hardness results and approximation algorithms
for edge-disjoint paths and related problems. In Proceedings of the Thirty-first Annual
ACM Symposium on Theory of Computing, STOC '99, pages 19-28, New York, NY,
USA, 1999. ACM.

[9] Habiba Habiba, Yintao Yu, Tanya Y. Berger-Wolf, and Jared Saia. Finding spread

blockers in dynamic networks. In Proceedings of the Second International Conference

on Advances in Social Network Mining and Analysis, SNAKDD'08, pages 55-76,
Berlin, Heidelberg, 2010. Springer-Verlag.

81

[10] Sushant Jain, Michael Demmer, Rabin Patra, and Kevin Fall. Using redundancy to
cope with failures in a delay tolerant network. In Proceedings of the 2005 Conference
on Applications, Technologies, Architectures, and Protocols for Computer Communi-
cations, SIGCOMM '05, pages 109-120, New York, NY, USA, 2005. ACM.

[11] Sushant Jain, Kevin Fall, and Rabin Patra. Routing in a delay tolerant network. In
Proceedings of the 2004 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, SIGCOMM '04, pages 145-15 8, New
York, NY, USA, 2004. ACM.

[12] David Kempe, Jon Kleinberg, and Amit Kumar. Connectivity and inference problems
for temporal networks. In Proceedings of the Thirty-second Annual ACM Symposium

on Theory of Computing, STOC '00, pages 504-513, New York, NY, USA, 2000.
ACM.

[13] Hyoungshick Kim and Ross Anderson. Temporal node centrality in complex net-
works. Phys. Rev. E, 85:026107, Feb 2012.

[14] G. Kuperman and E. Modiano. Disjoint path protection in multi-hop wireless
networks wiuh interference constraints. In Global Communications Conference

(GLOBECOM), 2014 IEEE, pages 4472-4477, Dec 2014.

[15] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: Densifi-

cation laws, shrinking diameters and possible explanations. In Proceedings of the

Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data
Mining, KDD '05, pages 177-187, New York, NY, USA, 2005. ACM.

[16] Q. Liang, S. Han, F. Yang, G. Sun, and X. Wang. A distributed-centralized scheme
for short- and long-term spectrum sharing with a random leader in cognitive radio
networks. Selected Areas in Communications, IEEE Journal on, 30(11):2274-2284,
December 2012.

[17] Q. Liang, X. Wang, and Z. Feng. Singleton spectrum mobility games with incomplete
information. In Global Communications Conference (GLOBECOM), 2012 IEEE,
pages 5608-5613, Dec 2012.

[18] Q. Liang, X. Wang, X. Tian, F. Wu, and Q. Zhang. Two-dimensional route switching
in cognitive radio networks: A game-theoretical framework. Networking, IEEE/ACM
Transactions on, PP(99):1-1, 2014.

[19] Anders Lindgren, Avri Doria, and Olov Schel6n. Probabilistic routing in intermittent-

ly connected networks. SIGMOBILE Mob. Comput. Commun. Rev., 7(3):19-20, July
2003.

[20] Raj Kumar Pan and Jari Saramiki. Path lengths, correlations, and centrality in tem-
poral networks. Phys. Rev. E, 84:016105, Jul 2011.

82

[21] Cynthia A. Phillips. The network inhibition problem. In Proceedings of the Twenty-

fifth Annual ACM Symposium on Theory of Computing, STOC '93, pages 776-785,
New York, NY, USA, 1993. ACM.

[22] S. Rangan, T. S. Rappaport, and E. Erkip. Millimeter-wave cellular wireless networks:
Potentials and challenges. Proceedings of the IEEE, 102(3):366-385, March 2014.

[23] Salvatore Scellato, Ilias Leontiadis, Cecilia Mascolo, Prithwish Basu, and Murtaza
Zafer. Evaluating temporal robustness of mobile networks. IEEE Transactions on

Mobile Computing, 12(1):105-117, January 2013.

[24] Anand Srinivas and Eytan Modiano. Minimum energy disjoint path routing in wire-
less ad-hoc networks. In Proceedings of the 9th Annual International Conference on

Mobile Computing and Networking, MobiCom '03, pages 122-133, New York, NY,
USA, 2003. ACM.

[25] A. Vahdat and D. Becker. Epidemic routing for partially connected ad hoc networks.
Technical Report, Department of Computer Science, Duke University, 2000.

[26] John Whitbeck, Marcelo Dias de Amorim, Vania Conan, and Jean-Loup Guillaume.
Temporal reachability graphs. In Proceedings of the 18th Annual International Con-
ference on Mobile Computing and Networking, Mobicom '12, pages 377-388, New

York, NY, USA, 2012. ACM.

[27] B. Xuan, A. Ferreira, and A. Jarry. Computing the shortest, fastest, and foremost
journeys in dynamic networks. International Journal of Foundations of Computer
Science, 14:267-285, 2003.

83

