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Automated Feedback in Flow for Accelerated Reaction Screening,
Optimization, and Kinetic Parameter Estimation

Brandon Jacob Reizman

ABSTRACT

With the cost to discover and develop a drug now estimated to exceed $2 billion, the
pharmaceutical industry is in search of innovative and cost-effective ways to reduce process
footprint, minimize lead times, and accelerate scale-up. One path to achieving these goals is in
the adoption of continuous processing. Among the many advantages offered by the use of
continuous flow systems is the ease of integration of automation and online analytics for real-
time monitoring of reactions. The further incorporation of feedback into automated systems
invents an even greater possibility: the use of algorithms to intelligently manipulate different
continuous variables—for instance temperature, time, and concentration—until an optimal
synthesis is achieved. This thesis opens by reviewing the most recent applications of feedback
optimization in flow. The same methodology is then applied to the estimation of reaction kinetics
in a series-parallel SNAr reaction network.

Unfortunately, the most challenging aspect of reaction development tends not to necessarily
be the continuous variables, but rather the enumerate combinations of discrete variables—e.g.
catalysts, ligands, and solvents—that, when paired with the continuous variables, give rise to
changes in the reaction mechanism or kinetics. To address this problem, this thesis introduces a
more general approach to reaction optimization with the construction of an automated segmented
flow system, wherein reactants are confined to sub-20 uL slugs flowing through a heated Teflon
tube microreactor and analyzed online by LC/MS. The system allows for manipulation of both
discrete and continuous variables, making it possible to simultaneously screen reagents while
optimizing the reaction. A sequential adaptive response surface methodology for optimizing both
discrete and continuous variables is presented. The algorithm employs optimal design of
experiments in feedback to greatly accelerate convergence of the mixed integer nonlinear
programming (MINLP). Examples of real-time simultaneous screening and optimization are
explored, including optimal solvent selection in a selective alkylation reaction and optimal
palladacycle-ligand precatalyst selection for Suzuki-Miyaura cross-coupling reactions. We
conclude by showing how the automated system can be utilized to gain further understanding of
reaction mechanisms and kinetics and by demonstrating that the optimal results can be scaled to
larger chemical syntheses.
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Department Head. Chemical Engineering
Warren K. Lewis Professor of Chemical Engineering
Professor of Materials Science and Engineering
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1. FEEDBACK SYSTEMS FOR THE ACCELERATION OF REACTION
DEVELOPMENT

With the cost to discover and develop a drug now estimated to exceed $2 billion,' the
pharmaceutical industry is in search of innovative and cost-effective ways to reduce process
footprint, minimize lead times, and accelerate scale-up. One path to achieving these goals that
has received great attention lately is the adoption of continuous flow technology.>* In the past
few years, the pharmaceutical industry has begun to incorporate continuous processing into more
and more small molecule syntheses, with applications ranging from the replacement of

individual batch unit operations for safer,”® greener,’!?

and/or more aggressive flow reaction
steps,'>!® to the design and implementation of an end-to-end pilot plant encompassing
continuous drug manufacture.!” It is widely accepted that the continued introduction of efficient
and rapidly scalable technologies for the acceleration of reaction development into
manufacturing will help greatly in delivering drugs in less time and at lower cost to the patient.

A breadth of technologies and methodologies fall under the heading of “acceleration of
reaction development.” Much of our lab’s focus has been in the development of microreaction

technology,'®2!

namely the use of sub-millimeter scale reactors to achieve highly controlled
chemical syntheses that can then be scaled to larger flow systems.??>?> This is made possible by
the excellent rates of heat and mass transfer’® and minimal dispersion®’ in microscale systems,
which enable easier access to the intrinsic kinetics of the reaction.?>?%-3! The reduced volumes of
microreactors further allow profiling of reactions at conditions that would be too hazardous or
simply impossible to achieve in batch, a few examples of these being reactions of azides,’>*

33-36

fluorinations, nitrations,’”*® DIBAL-H reductions,**! lithiations,>****>  Grignard

reactions,>%42:46.47

and reactions in supercritical media.**-% Data collection from continuous flow
systems is accelerated by the incorporation of online analytics such as HPLC 22233051 (S 5253
GC,28 UV-Vis,*** FTIR, 265 Raman,*® and NMR.%! These instruments allow the experimenter
near infinite access to the inner workings of the chemistry, enhancing understanding of reaction
mechanisms, formation rates of intermediates and byproducts, and responses to perturbations in
process conditions.

Of course, to some “acceleration of reaction development” does not only imply easier

scalability, but actually running more experiments in a reduced period of time. This is the

essence of high-throughput experimentation (HTE),%2-%® whereby automation and robotics are
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used to rapidly conduct and analyze many experiments in parallel with little to no intervention
required on the part of the scientist. These tools enable fast understanding of the reaction
performance as a function of many different variables, with full reaction maps being assembled
in time spans of days down to a few hours.®”®® By minimizing the volume of each reaction
sample, reaction profiling can be completed with milligram-scale quantities of expensive

pharmaceutical precursers®?

or nanogram-scale quantities of expensive catalysts or ligands. Yet
techniques imported from high-throughput drug discovery are often limited in scope, ranging
from the limited scalability of batch results to limitations in the ability to modulate key factors
such as reaction time or temperature. To alleviate these concerns, efforts have been made to
employ rapid automated experimentation in flow, merging the scalability of microreaction
technology with the sheer speed of HTE 223437

Unfortunately, the direct assimilation of HTE and automation approaches into chemical
synthesis introduces a new problem—the curse of dimensionality. To illustrate, consider a case
study where an experimenter is interested in studying the combined effects of 10 catalysts and 10
ligands. Teasing out all of the catalyst-ligand interactions would require 100 experiments, which
can be easily executed in a single parallelized screen. Now consider the addition of 10 solvents
and 10 bases to the study, giving 10,000 total experiments to be run. While such a system is still
solvable, the cost of these experiments is substantially more. What if the kinetics of the reaction
are important, such that the experimenter needs to also study 10 temperatures and 10 reaction
times? Alternatively, how much money and time are lost in screening if one of these variables is
found later to have no effect on the reaction? Clearly simplifications are needed and often
employed, the most well-known of these being the one-factor-at-a-time approach.®® Yet by
manipulating only a single variable at a time, then optimizing, then moving to a new variable, all
of the information is lost from the system with regard to how multiple variables interact with one
another, which can be critical when constructing reaction mechanisms or identifying an optimal
process envelope. It is also easy to see that such an approach can lead to identification of less-
than-optimal process conditions, leading to reduced yields in scale-up, or the worst-case
possibility of not being able to manufacture the drug altogether.

A better approach that addresses the concerns listed above is to use feedback to engineer
reactions to more optimal conditions. Unlike straight HTE, all experimental conditions are not

screened upfront; rather one or multiple initial experiments are chosen as an initialization, then
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an optimization routine selects the next best experiment or set of experiments to run that moves
the system toward finding an optimum (Figure 1.1). To accomplish this task, the optimization
routine must first assess the fitness of previous experimental data points against an objective
function. For deterministic routines, the data are then extrapolated to a model, which can be as
simple as a piecewise response surface or as complex as to fully describe the kinetics and
transport phenomena taking place within the system. Based upon this model, a more optimal

experiment is selected, observed, and then the model is updated in iteration until convergence is

reached.
Run Initial Analyze Data and Fit
Experimental Design to Model or Response Surface
L) ¢
A X
Run New Experiment to @e‘?@ {}

Move toward Optimum Select New, More Optimal

Experiment to Run

min, [Objective]

Figure 1.1 Generalized feedback loop for (deterministic) automated reaction optimization.

Naturally such an approach would be rather tedious in small-scale reaction development,
hence the reason feedback optimal design has generally been reserved for instances where
experimental data are expensive to collect.”>” With automation, however, the amount of user
interface required to collect a data point becomes considerably less. With the use of continuous
flow and online analytics, smart automated systems can be constructed that use experimental
data collected in real-time as feedback for rapid reaction development. In the simplest case, an
automated feedback system can be used to identify the optimal yield for a reaction, but
algorithms can also be constructed that identify best-fit reaction kinetics and mechanisms using

information theory. In more complex reaction cases, questions arise as to the best way to

27



elucidate reaction kinetics in a single flow system, and how to optimize reactions in which
discrete variables—such as catalysts, ligands, or solvents—interact differently with continuous
variables—such as temperature, reaction time, or concentration. This thesis aims to answer both
of these questions, and in so doing looks for a faster, more versatile, and more economical way

to accelerate reaction development.

1.1. THE TooOLS FOR FEEDBACK OPTIMIZATION IN FLOW

The general tools for flow chemistry have been reviewed recently.?' These comprise reagent
delivery, reaction, separation, analysis, and pressure control. Figure 1.2 illustrates how all of
these components can be integrated into a single continuous flow feedback system. Both reagent
delivery and reaction control (temperatures and flow rates) are controlled with a central
automation software. Automation software and hardware can also be used to interface with
online analytical devices that may identify changes in the process (for instance disturbances in
temperature or pressure) or be used to extract quantitative data from the reaction—most often
yields and conversion. These data are then passed to an optimization algorithm that interprets the
data—perhaps also in the context of prior experiments—and use the information to project a new
set of inputs that will move the system toward the optimum of a user-defined objective. These

inputs are passed to the central control system, which makes the necessary manipulations to the

experiment.

R ! Central Control |

! : System !

E r-="TT =TT b It Jl""ﬁ """"""""""" hn Inia h

! v v v ¥ v

i | Reagent N Flow | | Separation Online ,| Pressure
! Delivery Reactor (if Necessary) Analysis Regulation
e Real-time ,‘ ________ i

Optimization Algorithm

Figure 1.2. Block diagram for automated feedback optimization in flow systems.

For reagent delivery in optimization systems, our lab has had the most success using syringe
pumps. These tend to produce the greatest accuracy in the flow rate range of 1 pl/min-250

uL/min, which depending on the number of pumps and size of reactor in use may translate to
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residence times of 30 s to 30 min. At or below 30 s, the rate of mixing can become a key
confounding variable in the optimization.?” Reaction times of 30 min or more are usually
undesirable for rapid feedback because the time to reach steady-state in continuous, non-droplet,
systems is greater than or equal to triple the residence time. Long reaction times may be more
suitable for flow rate ramps, where each segment of fluid is treated as a separate batch reactor.”
For accurate optimization results, the choice of syringe material can matter greatly. Despite their
convenience and low cost, plastic syringes are almost never desirable because of the tendency of
the plastic plungers and barrels to buckle and produce inconsistent flow rates under even the
mildest of pressures. Glass syringes are excellent in terms of accuracy and chemical
compatibility; however these leak and therefore cannot be used at pressures above ~14 bar. Even
prolonged use at ~7 bar will after several days require replacement of the syringe because of
leaking. At high pressures, the only suitable syringe material option is stainless steel; however
reagents which corrode stainless steel must be avoided.

Flow optimization systems require special treatment in reactor selection, as the nature of the
experiment requires the reaction to proceed uninterrupted under a diverse and often sub-optimal
range of experimental conditions. Flow reactors that are slow to reach temperature or cool
down—most notably stainless steel or Teflon tubes submerged in an oil bath—tend to be
undesirable for optimizations where the temperature must be manipulated regularly. Of course
chemical compatibility with harsh organic reagents is of utmost concern, hence the avoidance of
PDMS in flow chemistry. Our lab’s preferred reactor material has been silicon because of its
excellent heat transfer properties and well-known microfabrication procedures, with the only
notable limitation being its incompatibility with strong bases such as NaOH or KOH. For greater
chemical compatibility, glass™" or silicon carbide’’ reactors are available, though these are
more difficult to machine and are expensive to replace in the event of a clog. In this thesis, a new
reactor is introduced which comprises a Teflon tube heated in an aluminum chuck. The
advantages of this design are extensive chemical compatibility, easy replacement of the Teflon
tube in the event of temperature-induced degradation or clogging, and faster equilibration to the
set point temperature compared to heating in an oil bath.

The available tools for online analysis were discussed earlier, and any and all could be applied
to flow optimization systems. Our lab has explored predominantly online HPLC—because of its

ability to resolve a diverse spectrum of reaction products—and FTIR—because of the speed at
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which data can be collected and fed back to the process. The time needed to collect data by
HPLC makes LC analysis the limiting step in many instances of feedback optimization.
Consequently, work has been done in recent years to improve the speed of HPLC analysis for
high-throughput applications.”” As is always the concern, the greater the specificity in
designing an optimal LC method for a given reaction, the less generalizable the platform can be
for broader scopes of substrates and products.

The design of an optimization system with automation software is dependent upon
recognizing which variables are to be controlled and which observables (responses) are to be
measured. As straightforward as it may seem, model inputs that cannot be controlled cannot be
manipulated to achieve an optimum. Likewise outputs that cannot be measured cannot be
optimized, unless there is a model relating another measured output to the desired response.
Inputs can be controlled by local controllers (for instance most syringe pumps deliver at a
controlled flow rate once a set point is received) or by the central controller. The choice of when
to use either is usually a matter of how much control needs to be exercised and what local
controllers, if any, are available (for example if the pump flow rate needs to change as a function
of pressure but the pump has no pressure sensor, then this loop is built into the central
controller). Sometimes sensory measurements trigger decisions by the control system, such as
the decision to switch valves and flush out a reactor on account of an observed increase in
pressure.®” Constraints with regard to maximum and minimum values of the controlled inputs are
almost always incorporated into the optimization and control routine and depend upon the
physics of the system. For sake of clarity in the subsequent sections and chapters, the responses
are the measurements that factors into the objective of the optimization—for instance product
yield, which is estimated based on a calibration model of the measured analytical signal. In all of
the accounts presented herein, LabView (National Instruments Corporation) was used as the
central control software for manipulating inputs. Responses were sometimes interpreted directly
by LabView, or worked up analyses were passed to LabView from software such as
ChemStation (Agilent Technologies) or iC IR (Mettler Toledo International Inc.). Optimization
routines executed in MATLAB (The MathWorks Inc.) or LabView provided new set points for

inputs.
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1.2. REACTION OPTIMIZATION “FROM SCRATCH”

With no prior information or models to which to resort, a plausible optimization strategy must
accept input factors known to influence the desired response and interpret relationships among
these variables which lead to improvement—and hopefully optimality—in an objective. Such a
model-free strategy is commonly referred to as “black box™ optimization. An important aspect of
black box optimization is that, from an engineering standpoint, little to no modeling information
is gained from the search. Consequently, optimal results have no guarantee to transfer across
scales. This is of course the major concern of using black box approaches for the application of
reaction development, where the ultimate goal is scale-up. However, if the feedback system is
engineered to detect intrinsic reaction rates, the results of black box optimization routines can
still have great utility, especially when little to no a priori information is known about the
chemistry. If optimization of the flow system is desired simply to increase production rate or
yield in the same flow reactor, black box strategies are excellent simple tools to identify
improved or perhaps optimal reaction conditions.

Some of the earliest methods for incorporating black box optimization algorithms into
automated microreactor experiments were developed by Krishnadasan et al.®' and by McMullen
and Jensen.225! Krishnadasan et al. employed a Stable Noisy Optimization by Branch and Fit
(SNOBFIT)® algorithm to optimize the automated synthesis of CdSe quantum dots.
Nanoparticles were monitored inline by fluorescent emission measurements from a CCD
spectrometer, and a feedback loop allowed for tuning of the microreactor temperature and flow
rates in order to maximize the quantum dot emission at a specified wavelength. McMullen and
Jensen compared the SNOBFIT algorithm with two local-search black box optimization
algorithms—Nelder-Mead Simplex and steepest descent—in studying the Knoevenagel
condensation reaction of p-anisaldehyde and malononitrile. Species concentrations were
monitored online by HPLC. The two-dimensional optimization of reactor residence time and
temperature consistently identified the maximum objective function value as occurring at the
maximum allowable reaction temperature of 100°C and the minimum residence time of 30 min,
regardless of the optimization method employed. The fastest convergence upon the optimum was
achieved with the gradient-based steepest descent method.

Though only a local search strategy, the Simplex method®® has been used extensively in black

box flow optimization systems. In its simplest implementation, Simplex selects k + 1 points for a
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k-dimensional optimization, then after identifying the least optimal point from that experimental
set, reflects the least optimal point across the polygon defined by the other k points to define a
new Simplex. When no improvement in the optimization is achieved, the size of the Simplex is
reduced and the method repeats. This strategy is both simple to implement and does not require
approximation of a gradient, which caters well to expensive experimentation. In one application,
McMullen and Jensen demonstrated use of the Simplex method in a four-dimensional
optimization of benzaldehyde production, increasing the yield from 21% to 80%.°! The Simplex
method was further applied in optimizing the number of alkene equivalents and reaction time in
a selective Heck reaction (Scheme 1.1).%2 In both cases, syringe pumps were connected to a
temperature-controlled silicon microreactor, with analysis performed by online HPLC (Figure
1.3). The feedback optimization algorithm was executed in MATLAB and the system was
controlled with LabView software. For the Heck reaction example, nine sets of reaction
conditions were then scaled 50 times to a 7 mL Corning Advanced-Flow glass reactor module.
The scaled optimum was found to be consistent with the microscale optimum and resulted in the

synthesis of 26.9 g desired product at 80% yield.
1 mol% Pd(OAc),

/©/0| o 3 mol% L F3C Q O CF3
+
FsC @ 1 2 equiv. Cy,NMe

n-butanol, 90°C
Equiv = 1.0-6.0 tres = 3.0-8.0 min Desired Undesired

P'BUZ
Me
Scheme 1.1. Heck reaction optimization studied by McMullen et al.??

Microreactor

Syringe pumps
A

Micromixer

Inline
HPLC

Reaction

Control

Figure 1.3. Automated feedback loop used by McMullen ef al. for the optimization in Scheme 1.1.2?
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Poliakoff and coworkers®*%® have been interested in the use of feedback for online:
optimization of the methylation of primary alcohols by dimethyl carbonate (DMC) in
supercritical CO2 (Scheme 1.2). Here the advantage of the flow system was both in rapid
optimization and in the accessibility of supercritical reaction conditions. In the original system,
Parrott et al® flowed the methylation reactants through a packed bed of y-alumina in the
presence of supercritical CO2 and monitored the reaction yield by online GC. The Super
Modified Simplex algorithm® was used to optimize the reaction yield with respect to
temperature, pressure, and the flow rate of CO2. The Super Modified Simplex algorithm
functions similarly to Nelder-Mead Simplex but additionally determines if the size of the
Simplex can be expanded in regions of the experimental space where little change in the
objective is observed—hence leading to faster convergence. Even with the improved
convergence rate, approximately 35 hr were required for the optimizations in the study.
Improvements to the system were later made by Bourne et al.®> (who included equivalents of
methylating agent as a variable in the optimization), Jumbam er al.%® (who demonstrated
optimization over several objective functions including yield, space-time yield, and E-factor),
and Skilton ef al®” (who accelerated data collection with use of an FTIR and compared the
performance of Simplex to SNOBFIT). Most recently the group demonstrated the potential of

automated chemical reaction systems by allowing a researcher to remotely study and optimize

the UK-based system from Brazil.*
DMC o)
y-alumina -CO,
HOV\R - \O)l\o/\/R \O/\/R
R =H, CoH; P?

CO; Flow Rate?

Scheme 1.2. The methylation of primary alcohols by DMC in supercritical CO: studied by Parrott et al®
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Figure 1.4. Automated system for optimization of the methylation of alcohols introduced by Parrott ef al.%* M
is a static mixed and R is the reactor packed with catalyst.

Recent applications of automated optimization systems have demonstrated incorporation of
more advanced synthesis and analytical systems into the Simplex algorithm framework. In
increasing the scope of chemistries available for feedback control, the utility of smart
optimization systems has increased substantially. As an example, Fabry et al.”’ coupled LabView
software to a commercial flow hydrogenation system, the H-cube, and demonstrated
optimization of Scheme 1.3 with respect to hydrogen pressure, temperature. and flow rate. Inline
FTIR was used for analysis. The Simplex optimization required 24 hr to complete 17
experiments but identified optimal conditions for 99% conversion to the alcohol product.
Feedback optimization with an inline NMR, introduced by Sans et al..%' offers the researcher an
opportunity to study kinetics of intermediate formation and optimize chemistries that would be
otherwise impossible to observe by optical or chromatographic techniques. In an application of
Nelder-Mead Simplex, Sans et al. optimized imine formation in the reaction of 4-
fluorobenzaldehyde and aniline (Scheme 1.4) by monitoring reaction yield and conversion with

'H NMR. The optimization resulted in a reduction of reaction time to 2 min, while the reaction
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yield was maintained above 70%. It is inevitable that to study more complex chemistries inline,
multiple analytical instruments such as IRs, LCs, GCs, and/or NMRs will be incorporated into

flow systems in series or in parallel to maximize the information gained on a per experiment

basis.
o 5 wt% Pd/C OH
R Pn2 = 0-100 bar R
MeOH
T = 20-100°C
R =H, COOEt, CH,COOEt
01 M

Flow = 0.3-1.0 ml/min

Scheme 1.3. Hydrogenation optimization studied by Fabry ef al.”°

Q NH 0.05 M TFA /@
2
tres = 2-10 min
F res F

Cp0=0.0-10M Cgp=2.0M-2*Cpo
Scheme 1.4. Optimization of imine formation by inline NMR from Sans et al.®!

Despite the popularity of the method, the Simplex optimization routine can struggle to
converge efficiently on account of the algorithm chosen for Simplex contraction, the
dimensionality of the optimization, and the initial guess. Gradient-based optimization strategies
tend to offer much faster convergence rates, at the expense of the extra experiments involved in
gradient calculation. With a slow HPLC method, for instance, the time required for a gradient
estimation can be quite limiting, but with the emergence of technology such as inline FTIR the
use of gradient-based optimization methods should become more widely accepted. As an
example of the speed at which feedback optimization can be accomplished with a gradient
search, Moore and Jensen>® demonstrated optimization of space-time yield for a Paul-Knorr
reaction (Scheme 1.5) with three different gradient-based searches: steepest descent, conjugate
gradient, and conjugate gradient with an Armijo step size. As illustrated in Figure 1.5, the rate of
convergence effectively doubled when the conjugate gradient method was used compared to the
steepest descent method, because of the additional gradient history incorporated into the
selection of the conjugate gradient search direction. With a smarter selection of step size
(following the Armijo rule’!), the rate of convergence of the same optimization was accelerated
to greater than three times the rate of convergence of the original steepest descent method.

Though these methods are still black box local optimization searches, their abilities to rapidly
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map out the trajectory to an optimum allow experimenters a quantitative interpretation of the
response surface curvature that could be of service to kinetic investigations.

O

DMSO
N + H2N/\/OH = . N
T=30130C ¢ \_on

0]
tres = 2-30 min

Scheme 1.5. Paul-Knorr reaction optimization studied by Moore and Jensen.*®
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Figure 1.5. Convergence of the Paul-Knorr reaction from the automated system of Moore and Jensen.
Diamond—steepest descent algorithm. Circle—conjugate gradient algorithm with fixed step size. Triangle—
conjugate gradient algorithm with Armijo step size.

1.3. KINETICS IN FLOW: A ROUTE TO FASTER SCALE-UP

Though black box strategies are valuable tools for identifying improved reaction conditions in
less time than combinatorial or one-factor-at-a-time screening, predictable scalability of results
can only come from a complete understanding of the reaction mechanism and kinetics.
Identification of reaction kinetics in flow offers many of the advantages already discussed in
previous sections in terms of fast heat and mass transfer rates and more precise control of
reaction conditions. Additionally, with feedback an automated system can determine which
kinetic experiments are most valuable to run in order to select optimal rate parameters and an
optimal rate law. This offers an invaluable tool to the experimenter looking to discriminate
among many possible reaction mechanisms.

As an example of using feedback in the determination of reaction kinetics, McMullen and

Jensen® used a silicon microreactor flow system with online HPLC sampling to study the Diels-
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Alder reaction of isoprene and maleic anhydride (Scheme 1.6). The experimenters initiated the
algorithm by proposing four different kinetic rate laws—only one of which represented the true
second order reaction rate of the system. Following the Shannon’s entropy approach presented
by Box and Hill,”? the automated system selected a series of experiments that attempted to
maximize the discrepancy between the predictions of each rate model. This allowed the system
to discriminate between models based on the reaction’s performance at each set of experimental
conditions. After identification of the correct kinetic model, a D-optimal experimental design
approach,”>** whereby experiments are chosen to minimize the collective uncertainty in fitted
model parameters, was employed to estimate kinetic parameters for the model. The results were

found to be in good agreement with literature and with transition-state theory calculations.

0
T = 50-150°C O
tes = 1-10 min

res O

Scheme 1.6. Diels-Alder reaction used in the kinetic study by McMullen and Jensen.?

Demonstration of the scalability of the kinetic model required use of the Corning Advanced-
Flow reactor system (Corning Incorporated). In this case, 9 glass reactors were used in series to
produce a 500-fold scale-up from the silicon microreactor. It is important to note here that
immediate scale-up of the microreactor optimum did not result in the same yield as observed
during the optimization; this was on account of the losses of product yield to dispersion and less
efficient heat removal in the scaled-up system. However, by accurately measuring the residence
time distribution in the Advanced-Flow reactor and incorporating the heat of reaction into reactor
temperature models along with the reaction kinetics, the optimal yield from the microreactor
system was, in fact, found to scale predictably. The success of this scale-up emphasizes the
superiority of model-based approaches over black box approaches when translating optimal

operating conditions across scale.

1.4. BRINGING DISCRETE VARIABLES INTO THE OPTIMIZATION

Droplet-based flow systems have gained much interest recently as tools for continuous
HTE.”>'% By performing reactions, crystallizations, or biological assays in the confines of
isolated droplets, reagent compositions can be controlled accurately, and the rates of mixing and

heat transfer are consistent with batch reaction kinetics. Most importantly for optimization,
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segmented-flow systems allow experimenters the opportunity to manipulate discrete variables
such as catalysts or solvents in addition to the standard continuous variables of temperature,
reaction time, and concentration, greatly expanding the design space for the synthesis.’” The
need for such systems in process scale-up has inspired the development and application of a
commercial system'?”!!2 that can screen 20-900 pL volumes of reactions with different reagents,
temperatures, and flow rates, though as was discussed earlier the problem of enumeration in any
of these systems becomes limiting if many discrete variables and reaction conditions are
incorporated into the screen without the use of feedback.

The incorporation of a global optimization algorithm into an automated, high-throughput
catalyst screening process was demonstrated by Kreutz et al.®® The feedback loop is shown in
Figure 1.6. For the oxidation of methane by oxygen, multiple catalysts, cocatalysts, and ligands
were screened in a segmented two-phase system, with the extent of each individual reaction
assessed through the monitoring of an in situ colorimetric indicator. After 48 segmented flow
experiments in quadruplicate for a given generation were completed, the “fitness” of each
reaction (corresponding to the color change in an indicator solution) was supplied to a computer,
which applied a genetic algorithm'"? to identify a new generation of catalyst, cocatalyst, and
ligand combinations to be screened. After four generations of experiments, the genetic algorithm
had sufficiently sampled the possible solution space, and the migration operator was deactivated
in the algorithm in favor of attempting to select the fittest catalyst/cocatalyst/ligand
combinations. The optimal active catalyst system was found after a total of eight generations to

be Pt and POM-V2, in agreement with catalyst systems already reported in literature.

Identify the relevant parameters Construct the population
to solve the problem (Mix the componell"ltsplogeﬂ'ier)
(catalyst, cocatalyst, ligand) —— z : Perform fitness test
B 5 4 L < : 3 ‘(;actglinpiaqtr?ten‘t’lalize
e 7% 4 -5 ysts into plugs,
Define composition of each = iﬁ RS —— "un.h methane exidaion
individual in the population PR e activity of the individuals)

(What catalysts, cocatalysts and ligands
are used in each of the 48 individuals)

Gene A Gene B Gene C
L6 [BL

Catalyst  Cocatalyst
1 [Ag[™ RhIBL[BL]_Fr—IEn];” Zn [Mn ;

l__l

Select and evolve
2 [AJRA[PdTELTPV Mo [Co[BL TS TBL (Use the measured fitness to select for individuals to pass
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48 [Ec[AuTAg[BL]BL| W]FelBL[a]12] via either crossover with another individual or mutation)
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Figure 1.6. Feedback loop for the optimization of methane oxidation by Kreutz ef al.”®
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The ability to reduce over 8 million catalyst/cocatalyst/ligand combinations to fewer than 400
experiments illustrates the tremendous time and cost savings that can be achieved with the
application of feedback in discrete variable screening. The inclusion of continuous variables in
the optimization has the potential to lead to even more improvements in efficiency, particularly if
the performance of each catalyst differs at different temperatures, reaction times, or reagent

concentration.

1.5. THESIS OVERVIEW AND GOALS

In a very short time, the field of continuous feedback optimization has grown from novelty to
necessity. As syntheses of interest increase in complexity, the number of factors that can affecta
response increase, and the level of complexity of the instrumentation needed to observe the
response (or responses) increases accordingly. Along with that growth comes the requirement
that smarter approaches continue to develop for solving more difficult and more integrated
problems, and that technologies continue to develop in order to produce more rapidly scalable
results.

This thesis begins in Chapter 2 by establishing an approach to evaluating reaction Kinetics
when the reaction pathway is more complex and an automated system alone cannot fully solve
the kinetic model. Though a suitable approach is found by breaking the reaction pathway into
smaller reaction steps and then applying the automated feedback approach, the question emerges
as to how a smart system could be developed to increase the number of variables at the
experimenter’s disposal and hence greatly simplify the task of resolving a complex system.
Specifically we ask how discrete variables can be brought into the optimization, and Chapter 3 is
dedicated to the construction of a fully automated segmented flow system that allows for on-
demand screening of both discrete and continuous variables. The optimization of both classes of
variables simultancously is a challenge within itself, with the introduction of a sequential
adaptive response surface methodology aimed at solving this problem presented in Chapter 4.
Chapters 5 and 6 then delve specifically into the application of the new method in the
optimization of complex systems where both continuous variables and discrete variables strongly
interact. In Chapter 5, the effect of solvent upon a selective alkylation reaction is explored. In
Chapter 6, the method is applied to several case studies of Suzuki-Miyaura cross-coupling

reactions in an effort to identify the best catalyst-ligand system and corresponding optimal
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reaction conditions. Chapter 7 summarizes the significant contributions of this thesis and outlines

future directions for feedback optimization in highly multivariate systems.

By the conclusion of this thesis, we aim to address the following goals:

Expansion of the scope of automated kinetic parameter estimation

Design and implementation of an automated segmented flow system capable of
screening a diverse range of liquid-phase reactions

Implementation of an algorithm that solves in real-time the mixed integer nonlinear
programming (MINLP) of simultaneous discrete variable screening and continuous
variable screening optimization

Application of the screening system to simultaneous ligand, catalyst, and solvent
selection and reaction optimization

Demonstration of scale-up of optimized reaction conditions

In route to accomplishing these goals, we present a methodology that accelerates reaction

development in a novel yet versatile way, transforming small amounts of material into

information that can be used to optimize reactions and gain increased understanding of the

underlying chemistry. We present new levels of understanding, not just of algorithms and

chemistries, but of how to characterize reactions in a versatile, simple, and accurate manner. In

continuation of research into smart feedback systems, it is these motives of versatility, simplicity,

and accuracy that should be expected to drive innovation, helping foster greater continuity from

reaction discovery all the way through drug manufacture.

40



2. AN AUTOMATED CONTINUOUS-FLOW PLATFORM FOR THE
ESTIMATION OF MULTI-STEP REACTION KINETICS

2.1. INTRODUCTION

A primary concern in pharmaceutical process chemistry is scale-up of a reaction from bench
to production levels. Commonly, conditions found to be optimal on the bench scale end up non-
optimal at a larger scale, due to changes in mass and heat transfer properties between reactor
volumes. These changes in transport properties can lead to the formation of byproducts at the
larger scale that were not accounted for in the preliminary optimization. In contrast to small-
scale optimization followed by scale-up, it is traditionally preferred to model and parameterize a
synthesis in terms of its kinetics at the small scale. The reaction kinetics are then coupled with
knowledge of the effects of heat and mass transfer in the larger scale reactor in order to optimize
the reaction.

As summarized in Chapter 1, our group has demonstrated the application of automated,
continuous-flow microreactor systems for the purposes of reaction screening,>
optimization,??*'*® kinetic model discrimination,”® and kinetic parameter estimation.”**! Such
systems offered the advantages of precise control of reaction conditions while minimizing both
reagent consumption and user intervention. A challenge still to be considered in all of these cases
was the extraction of reaction kinetic information from more complex reaction networks—those
which proceed in either series or parallel and have the potential to form one or more unwanted
byproducts.

In this study, we demonstrated use of an automated, continuous-flow system capable of both
accurately estimating kinetic parameters for a series-parallel reaction network and optimizing the
yield of a desired mono-substituted product. As is often the case in complex networks, however,
we found that the kinetic parameters estimated by the automated system included a high degree
of uncertainty—as great as 20% for some parameters—which had not been observed in
automated studies of more simplified reaction networks.?> To ensure scalability of our final
results, we applied the same automated system to determine the kinetics of isolated steps in the
reaction network, greatly reducing parameter uncertainties to more acceptable values of less than
4%. This yielded precise kinetic estimates for all steps in the reaction pathway. including those

which accounted for only a small amount of byproduct formation.
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The model reaction network studied was the nucleophilic aromatic substitution (SNATr)
reaction of 2,4-dichloropyrimidine (1) and morpholine (2) in ethanol to form a desired 2-
substituted aminopyrimidine (4) and the less-desired 4-substituted (3) and 2,4-substituted (5)
byproducts. The reaction network is shown in Scheme 2.1. 2- and 4-substituted
aminopyrimidines have generated considerable pharmaceutical interest as inhibitors of kinases
such as Cdks, p38, Aurora, KDR, and Gsk3.'""!''7 The observed inhibitory effect has been
attributed to hydrogen bonding interactions between the 1-nitrogen and the 2-amino group on the
pyrimidine molecule and the hinge amino acid of the kinase.''® Synthesis of 2-aminopyrimidines
is complicated by the preference of the amine nucleophile to substitute at the 4-carbon position
of the substrate.''” More aggressive reaction conditions are generally required in order to
promote the second nucleophilic substitution and thereby generate the 2-amino derivative.'20-12!
Using a silicon microreactor for this synthesis, we were able to safely pressurize the flow system
and carry out the reaction above the atmospheric boiling point of the solvent—a traditional
limitation of batch experimentation. The rapid heat transfer rate of silicon additionally improved
the likelihood of obtaining intrinsic reaction kinetics during experimentation without being

limited by reaction exothermicity.
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Scheme 2.1. Multi-step reaction network for conversion of 2,4-dichloropyrimidine to 4,4'-(2,4-
pyrimidinediyl)bis-morpholine.

2.2. METHOD

A similar optimal experimental design procedure was followed to that used for kinetic
estimation by McMullen and Jensen.”* The procedure was iterative and is illustrated
schematically in Figure 2.1. Experimentation began with an initial factorial design. Based upon
data collected through online analysis, a regression-fitting algorithm optimized the values of
parameters specified in a user-defined model in order to best agree with experimental data.

Sensitivity coefficients were then calculated based upon the optimal parameter estimates for the
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experiments performed and for each candidate posterior experiment to be tested for optimality.
The sensitivity coefficients were stored in the Fischer information matrix, the determinant of
which gave the objective function to be minimized in the selection of a D-optimal posterior
experiment. The optimal experiment was subsequently identified, and the prior experimental data
were augmented by the results of the D-optimal posterior experiment. This procedure iterated

until the system was terminated by a user.
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Figure 2.1. Logic flow diagram for automated kinetic parameter estimation in continuous flow.

2.2.1. Kinetic Model

We assumed for our kinetic model that all four reactions in Scheme 2.1 followed second
order, bimolecular reaction kinetics and that the reaction system could be modeled as an ideal
plug flow reactor (PFR). The assumption of second-order, bimolecular reaction kinetics agreed
with the mechanisms previously established in literature for SNAr reactions.'?*"'** For 400 pm-
reactor channels and liquid phase species diffusivities of greater than or equal to 1 x 10? m?s™',
the flow reactor used in these experiments could be modeled as an ideal plug flow reactor for
residence times exceeding 2 min. Only small deviations from plug flow were expected for
shorter reactor residence times extending down to 30 s.2-'2> We chose the minimum reaction

time for our experiments to be 30 s so as not to have to de-convolute the effect of dispersion in

our online kinetic analysis.
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Considering our assumptions for the kinetics of the reactions in Scheme 2.1, we proposed the

following rate laws governing species generation and consumption:

-2k ey @) -ule) e, o
(G),-k(C),(S), 2.2)
dt zk'(A“)I(Au)z_ks(éu)_?(ﬂfu)z (2.3)

=10 (e e)-n(e) () o

dt
d(C, o o
fs =%= k, (Cu )3(CN )2 +k, (c” )4 (cu )2 (2.5)

The model-predicted response of species i was specified in Equations 2.1-2.5 as (Cu)i. the
predicted concentration of i in experiment u as a function of the reaction time ¢, the reaction
temperature 7, and the initial concentrations of 1 and 2, Cio and Cao, respectively. k- was the rate

constant for reaction r, expressed as:

E
k =A4 exp| —2| r=1,..4 2.6
, =4, P( RTJ (2.6)

where A4 and E4r were the pre-exponential factor and activation energy associated with kr,
respectively, and R was the gas constant. To achieve better convergence to an optimal set of

kinetic parameters, we defined scaled parameters 6, such that:

6p=2r—l = ln (Ar) (27)
E r
0, = R_}* (2.8)
Equation 2.6 was then rewritten as:
T*
kr = eXP(HZr—l _7.02"] (2'9)
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where the pre-exponential factor and the activation energy were scaled comparably. We chose
for our case T* = 343 K to represent an average value for the reaction temperature in our

experiments, ensuring that 7*T ~ 1 over the range of reaction temperatures studied.

2.2.2. Approach to Parameter Estimation

An optimal set of kinetic parameters was obtained by fitting the kinetic model of Equations
2.1-2.5 to the calibrated HPLC responses of 1, 3, 4, and 5 as functions of 7, Cio, C20, and the
residence time trs. Both maximum likelihood estimation (MLE) and maximum a posteriori
(MAP) estimation were applied in obtaining optimal least squares regression estimates of the
kinetic parameters.

For experiments in which no prior estimates for optimal kinetic parameters were available, a
set of optimal kinetic parameters was found by MLE. The non-linear programming for MLE was
formulated as:

N epis 12
min, Z [c.-¢.(8)] w,[c,-C,(0)] (2.10)
where Cu was the Nresp X 1 vector of measured responses for experiment u and éu(G) was the

Nresp % 1 vector of model-predicted responses for experiment u with model parameters 6. W, was

a weighting matrix for the residuals which we chose to be:

W =V, u=1,.,N 2.11)

*> < Texpis
V 5 was the response-covariance matrix, defined for species i and species j as:'?®

zz»vezw[(cu),—(éu),]' (),-(¢.) | .

(VB )ij = S’/ s N -N

expls params

where the difference in the number of experiments and the number of optimized parameters,
Nexpis — Nparams, Was strictly greater than zero. Because the objective function required Vp as an
input, we used Vs from the previous experiment as an input to the updated MLE optimization.
Vg was initialized as the identity matrix prior to the first parameter optimization and was found
experimentally to converge to a consistent set of values after only 1 to 2 posterior experiments.
The optimization in Equation 2.10 was performed as a constrained sequential quadratic

programming (SQP) optimization in MATLAB. The lower and upper bounds on the optimization
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were found by computing the 98% confidence intervals on the prior optimal parameters. In order
to limit online computational time, a maximum of 500 SQP iterations was allowed for the
optimization.

Uncertainties in parameter values were evaluated based upon the parameter covariance matrix
Vy following the treatment of Beck and Amold.'”® To calculate Vg, we first defined the

sensitivity coefficient, (Xu)ip, for response / with respect to parameter & in experiment u:

(X.), =—5 (2.13)
0=6,,

Here 0oy denoted the optimal set of MLE or MAP parameters found by SQP. Given the kinetic

rate laws f; in Equations 2.1-2.5, we werc ablc to analytically evaluate Equaiion 2.13 in the form
of an ordinary differential equation:'?’
d (X" )'/7 af Nyesp af
i o0 " Zac X @.14)

From the matrix of sensitivity coefficients, we calculated the Fisher information matrix, Z, which

equaled the inverse of the parameter covariance matrix for the case of MLE:

chp/x

Z=Y X/ V;'X, (2.15)
u=l

Z=V,' for MLE (2.16)

Estimation of the parameter covariance matrix allowed for the uncertainties of our kinetic
parameter estimates to be calculated. For a single parameter 6, a 1-dimensional confidence

interval was calculated from the expression:!'?®

172 172
(eopl ),7 - [(VH ),,,,:' ta/Z,v:Nm,,‘-N,,l,,.,,,,,v < gp < (enpl )p + [(VH )p,,:l a/2 V=Newprs =N params (2 ] 7)

where £, ,._ NN wey W3S the Student’s t-distribution value for a/2 confidence and Nexpis - Nparams

param
degrees of freedom.

The approach to MAP estimation was similar to the approach for MLE, though MAP
estimation considered a priori estimates and uncertainties for the vector of model parameters 0.

The quadratic program for MAP estimation was given as:
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N,

min, [n—6] V;'[n—8]+ Zl[c -C, (9)]' s [Cu —-C, (e)] (2.18)
p was the a priori vector of optimal model parameters and V! was a weighting matrix for the
difference between the prior model parameters and the optimal a posteriori model parameters.
V. was identified as the a priori parameter covariance matrix, which could be calculated as in
Equations 2.15 and 2.16 for all prior experiments. The a posteriori parameter covariance matrix
was then given by:

Vi =V, + V! 2.19)

and was substituted into Equation 2.17 for V4! in order to obtain posterior confidence intervals.
The number of degrees of freedom in this case was Nprior + Nexpts - Nparams, where Nprior Was the
number of prior experiments already conducted. As in MLE, the MAP optimization was
evaluated in MATLAB with the constrained SQP optimization algorithm and limited to a

maximum of 500 iterations.

2.2.3. Approach to Optimal Experimental Design

Our objective in parameter estimation was to minimize the total uncertainty and joint-

uncertainty in the MLE and MAP optimal parameters. Experiments were selected based upon the

D-optimality criterion, introduced by Box and coworkers:****

(2.20)
D =min,

-1
(V;‘ + (Xu )' V[;lxu)

s.t. u € Experimental design space

The optimal D corresponded to the choice of conditions for the next experiment in the design of
experiments for which the predicted volume of the parameter covariance matrix was minimized.
By minimizing the volume of the parameter covariance matrix, the total joint uncertainty among
all parameters in the model was minimized. For MLE, we incorporated Equation 2.20, as written,
into the parameter estimation program. For MAP estimation, we substituted Vaup for Vg as was

done for estimation of parameter confidence intervals.
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2.3. EXPERIMENTAL

2.3.1. Automated Parameter Estimation System

A diagram of the automated parameter estimation system is shown in Figure 2.2. A 0.30 M
solution of 1 (98%, Sigma-Aldrich) was delivered with an internal standard, 1,2-
dimethoxybenzene (> 99%, TCI) in ethanol to a silicon microreactor. A solution of 0.92 M 2 =
99.0%, Sigma-Aldrich) and 0.92 M triethylamine (EtsN, > 99.0%, TCI) in ethanol was delivered
to a T-junction, diluted with ethanol, and delivered to the second inlet port of the microreactor.
The reaction product was quenched in the quenching zone of the microreactor by al.6 M
solution of trifluoroacetic acid (TFA, 99%, Sigma-Aldrich) in ethanol. This quenched product
was then further diluted to a 3:5 ratio in a micromixer by a second stream of ethanol and injected
into an HPLC for online analysis. In a separate set of experiments, solutions of 3 and 4 were each
reacted with a solution of 0.36 M 2 and 0.36 M Et:N to produce 5. In the case of using 3 or 4 as a
starting material, a 0.16 M solution of 3 dissolved with the internal standard in ethanol or a 0.08
M solution of 4 dissolved with the internal standard in ethanol, respectively, was substituted into

the system in place of 1.

Syringe Pumps Syringe Pump
)
| 1L6MTFA o e e e e e e,
: in EtOH 1
e :
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Figure 2.2. Diagram of the automated continuous-flow parameter estimation system



Pumping of fluids through the microreactor and micromixer system was accomplished using
PhD 2200 syringe pumps (Harvard Apparatus) under the control of LabVIEW v8.6.
Manipulation of pump flow rates allowed for a range of residence times and reactant
concentrations to be explored. Connections downstream of the microreactor were made using
218 um (0.0086 in.) internal diameter PFA tubing (Upchurch Scientific, IDEX Health & Science
LLC) to minimize dead volume. Check valves were installed on all feed streams and a 1.4 bar
(20 psi) backpressure regulator was installed downstream of the HPLC injection valve in order to
dampen flow oscillations and to increase the boiling temperature of the primary solvent, ethanol.

The silicon microreactor employed in this experiment was fabricated following standard
photolithography and deep reactive ion etching techniques.® The channel cross-sectional
dimensions were 500 pm (width) x 400 um (height). A halo etch of the microreactor enabled
temperature control in two different zones of the reactor. At the entrance of reactants to the
reactor, a 20-ul. mixing zone allowed for mixing of both reactant streams at ambient
temperature. The 220-uL spiral reaction zone of the reactor was then heated to a uniform
temperature by a cartridge heater controlled by an OMEGA temperature controller (OMEGA
Engineering Inc.) to + 0.4°C. The silicon micromixer design has been described previously!'?’
and allows for rapid mixing or dilution in a 4.1-uL volume. Both the microreactor and the
micromixer were compression packaged to enable continuous fluid transfer throughout the
system. The total volume of the system, including the microreactor, micromixer, and transfer
tubing downstream of the microreactor was approximately 280 pL. To allow adequate time for
the system to reach a steady state after equilibration of the reactor temperature, 1 mL of reactants
were infused into the system prior to online analysis. To allow sufficient time for the syringe
pumps to equilibrate, the system was additionally required to have run for a minimum of 3 min at
the same temperature and flow rates prior to online analysis.

Based on the system design, constraints were placed a priori upon the experimental design
space. Residence times were constrained to within the range of accuracy for the syringe pumps
exerting force on 5 pL glass syringes dispensing through the system under 1.4 bar backpressure.
We estimated this range to be from flow rates of approximately 1 pL. min™! to 250 uL min™! for
each syringe pump. We reasoned the minimum temperature to be that at which the rate of
reaction in the mixing zone of the microreactor (held at room temperature) was insignificant in

comparison to the reaction rate in the reaction zone. Under this condition, the complications of
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the reaction mechanism in the mixing zone could be excluded from the kinetic model. A
maximum temperature of 100°C was specified so as not to exceed the boiling point of ethanol in
the presence of 1.4 bar of backpressure. In future studies, a change to a higher boiling point
solvent such as n-butanol would enable a more extensive range of temperatures to be explored.
The initial concentration of 1 was limited by the solubility of 1 in ethanol, and the range of
equivalents 2 and EtsN added was chosen to extend from 0.5 to 5.0. The number of
discretizations of the experimental space (1600) was chosen to achieve an extensive range of
internal points at which to evaluate the D-optimality condition, while at the same time limiting
the time required online to exhaust all possible combinations of the four input variables.

Analyte concentrations were measured online by HPLC. Analysis by HPLC was
advantageous in allowing for a quantitative separation of reaction components and demonstrated
the potential for this method to be applied to more complex reaction networks. Species were
measured using a Waters HPLC (Waters Corporation) with 1525 binary pumps; a Nova-Pak C18
4pm, 3.9 x 150 mm column; a 2996 PDA detector; and Empower software. A 2-uL volume of
diluted reaction product was automatically injected into the HPLC for analysis. A gradient
method of water and acetonitrile was employed in order to separate 1, 3, 4, 5. and the internal
standard. MATLAB code was written to integrate peak areas and determine species
concentrations based upon previous calibrations with the internal standard. Analysis was
completed in 9.25 min, at which point either reaction conditions were manipulated in preparation
for collecting the next experimental data point or data were passed to the parameter estimation

program in MATLAB in order to identify the next D-optimal experiment to conduct.

2.3.2. Experimental Design

The design of experiments proceeded in three stages: an initial set of experiments aimed at
determining the eight parameters in Equations 2.1-2.6 simultaneously; a second set of
experiments aimed at parameterizing each step of the reaction pathway in isolation; and a final
set of experiments aimed at determining the eight kinetic parameters simultaneously using a
priori estimates from the prior sets of experiments. Up to four factors were manipulated for each
experiment: the reaction residence time (fres), the reaction temperature (7), the initial substrate
concentration (Ci). and the equivalents of 2 fed to the reactor. Each set of experiments began

with an initial factorial design, which characterized the effect of manipulating multiple factors
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upon product yield. Following the initial factorial design, experiments were chosen sequentially
from the solution of Equation 2.20 over 1600 candidate experimental points found from
enumeration of:
1 € {0.5 min, 1 min, 1.5 min, ..., 20 min} 2.21)
T e{40°C, 60°C, 80°C, 100°C}
C, €{0.075M,0.150 M} or C, €{0.025M,0.050 M} or C, {0.015 M, 0.030 M}
Equiv. 2 € {0.5, 1.0, 1.5, 2.0, 2.5}
A complete list of experimental conditions tested can be found in Appendix A.

The program initiated with a set of factorial experiments designed to estimate all Kinetic
parameters in Equations 2.1-2.6 simultaneously. The initial number of experiments needed
before an initial guess of the reaction kinetics could be calculated had to exceed eight, the
number of parameters in the model. To lessen parameter uncertainty before the selection of the
first D-optimal experiment, a 12-experiment factorial design was chosen which sampled from
several different regions of the experimental design space. The factorial design included all
combinations of 3 different residence times (30 s, 60 s, and 5 min), 2 different reaction
temperatures (40°C and 80°C), 2 different initial concentrations of morpholine (0.15 M and 0.30
M), and an initial concentration of 1 of 0.15 M. Experiments were sequenced randomly, and no
replicates were specified initially.

The MLE estimates for the Kinetic parameters after the initial factorial design were found
from initial guesses of logio(4-/ M"'s™") = 0 and E4- = 14.2 kJ mol™! for all four rate constants. To
initiate the method, Vs was chosen to be the identity matrix (assuming that measurement
uncertainty was the same for the starting material and all three products), and lower and upper

bounds on the pre-exponential factors and activation energies were specified as:

~10.9<log,,(4, /Ms")<10.9 (2.22)

0 kJmol' <E, <285kJ mol” (2.23)

Setting feasible upper and lower bounds which did not extend toward +oo improved the speed of
convergence for the online estimation and allowed for a more accurate fit of the rate parameters
to be achieved in a limited number of MLE iterations.

Following simultaneous parameter estimation, the kinetics of isolated reactions of 1 and 2, 3
and 2. and 4 and 2 were assessed. For the reaction of 1 and 2, a 2x2x2 factorial design was

selected which, based upon the prior parameter estimates obtained from estimating all
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parameters simultaneously, was expected to most greatly minimize uncertainty in the estimates
of A1, Es1, A2, and E4. 0.5 min and 1.0 min residence times, 40°C and 100°C reaction
temperatures, and initial concentrations of 2 of 0.150 M and 0.300 M were studied along with an
initial concentration of 1 of 0.150 M. The initial guess for the MAP estimation corresponded to
the prior optimal parameter estimates for A1, Ea1, A2, and Es. Vg was supplied as the final
response-covariance matrix obtained from the simultaneous estimation of all kinetic parameters.

The isolated product 3 was reacted with 2 and Et3N to produce 5. Following from the kinetic
model, we expected this reaction to obey second order kinetics and to be governed by the
parameters A3 and E43. As only two parameters were to be estimated, we limited the initial
factorial design to a 2x2 set of four experiments at 80°C and 100°C with 10 min and 20 min
residence times, an initial concentration of 3 of 0.050 M, and 2.5 equivalents of 2 and EtsN. This
factorial design was chosen to maximize the sensitivity coefficients for the final concentration of
5 with respect to the parameters 43 and Es3. These sensitivity coefficients were observed to
increase with increasing reaction time, temperature, and starting material concentrations. After
the initial factorial design, the MAP parameter estimation procedure was initiated with the prior
estimates and uncertainties listed for 43 and Es3 in Table 1. V was specified as the matrix of
covariances corresponding to the measurements of 3 and 5 in the simultaneous parameter
estimation experiment. The set of allowable initial concentrations for 3 was limited in the
combinatorial optimization to 0.025 M and 0.050 M in order to conserve reagents. The allowable
initial concentrations of 2 were scaled to range from 0.025 M to 0.125 M in 0.025 M increments.
The allowable reaction temperatures and residence times were the same as given for the
simultaneous experiment.

To determine the kinetic parameters for ks in isolation, 4 was reacted with 2 in the presence of
EtN to produce 5. Because less than 0.15 g of 4 were synthesized and purified, we limited the
initial concentration of 4 in all experiments to 0.030 M. All other inputs to the initial 2x2
factorial design were the same as for Scheme 3: temperatures of 80°C and 100°C. residence
times of 10 min and 20 min, and 2.5 molar equivalents of 2 and Et3N. For the eight D-optimal
experiments, the D-optimal design program was allowed to optimize with initial concentrations
of 4 of 0.015 M and 0.030 M and initial concentrations of 2 and EtsN ranging from 0.015 M to

0.075 M in increments of 0.015 M. As in the estimation of 43 and E.s3, the a priori estimates and
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uncertainties for A4 and FEa were specified as the results of the simultaneous parameter
estimation experiment found in Table 1.

In a final simultaneous experiment using the optimal parameters from the set of isolated
experiments, a 12-experiment factorial design was initially conducted with reaction times of 0.5
min, 10 min, and 20 min; temperatures of 40°C and 100°C; an initial concentration of 1 of 0.150
M; and 1.0 and 2.5 equivalents of 2 and EtsN. This experimental design was then supplemented
with six D-optimal experiments. V3 was specified as the final response covariance matrix from
the simultaneous parameter estimation experiments. To ensure that V, would be positive-
definite, the blocks along the diagonal of the initial V,, were specified as the optimal parameter

covariance matrices from the prior isolated experiments, with all other terms in V set equal to 0.

2.3.3. Synthesis and Isolation of Products

Products 3 and 4 were synthesized in the automated system described and shown in Figure
2.2.0.150 M 1 (corresponding to 2.0 g starting material) and 2.5 equivalents of 2 and Et3N were
reacted in ethanol for 49 s at 100°C. The reaction product was quenched online by TFA. An
aqueous extraction was performed offline to remove any salts formed from the quench, and the
organic product was dried in NaxSOs. After filtration, liquid solvents were removed under
vacuum to yield a white, crystalline product. This product was separated by dry loading onto 50
g of silica gel and eluting with a 4:1 solution of hexane:ethyl acetate to yield 4 in > 95% purity
and eluting with a 1:2 solution of hexane:ethyl acetate to yield 3 in > 95% purity. HPLC yields
of compounds 3 and 4 were 79.5% and 16.1%, respectively. Following workup, the isolated
yield of 3 was 69.9% and the isolated yield of 4 was 14.1%, based upon the moles of 1 reacted.
The isolated compound 3 was confirmed by HPLC, IR, 'H and '*C NMR, and GCMS. 4 was
confirmed by HPLC, IR, 'H NMR, and GCMS. Though 'H NMR and GCMS cannot be used to
distinguish the structures of 3 and 4, we inferred from literature'® that 3 was the compound
produced in the greatest quantity and the compound that gave greater selectivity at low
temperatures than at higher temperatures. 4 was also identified by HPLC as being notably less
polar than 3, which is consistent with the symmetric positioning of the electron-donating

nitrogen atoms in the structure of 4.
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4-(2-chloro-4-pyrimidinyl)-morpholine (3): 'H NMR(400 MHz, CDCls) § 8.08 (1 H, d,
J=6.0 Hz), 6.38 (1 H, d, J=6.0 Hz), 3.78 (4 H, t, ] = 5.0Hz), 3.65 (4 H, broad); '*C NMR(100
MHz, CDCl3) & 162.8, 159.7, 155.9, 101.3, 66.5, 44.6; IR vmax 2361, 1653, 1586, 1559, 1540,
1355, 1265, 1234, 1165, 1117, 979, 801 cm™'; GCMS m/z 52.0, 79.0, 114.0, 142.0, 167.9, 199.0:
HPLC elution time 275-280 s, Ameas = 328 nm.

4-(4-chloro-2-pyrimidinyl)-morpholine (4): 'H NMR(400 MHz, CDCls) & 8.27 (1 H, d,
J=5.5 Hz), 6.64 (1 H, d, J=5.0 Hz), 3.90-3.75 (8 H, m); IR vmax 2865, 2361, 2341, 1617, 1580,
1506, 1448, 1336, 1269, 1202, 1159, 1116, 983, 962, 780 cm™'; GCMS m/z 51.9, 78.9. 113.9,
141.9, 167.9, 199.0; HPLC elution time 405-410 s, Ameas = 284 nm.

Product § was synthesized neat in batch in an effort to achieve a high yield in a short perio
time. Such an approach was considered acceptable over a flow chemistry approach for two
primary reasons. First, as the proposed kinetic mechanism suggested, the yield of 5 was
maximized for arbitrarily high species concentrations and infinitely long residence times. In a
case such as this, the precise control of reaction conditions afforded by a regulated microreactor
system was of minimal benefit unless the reaction presented a concern to safety under
uncontrolled conditions. Secondly, as the production of 5 under neat conditions progressed. a
viscous slurry of reactants and products developed which would have been difficult to transport
in our flow system without risking unsafe pressure accumulation and/or clogging of the
microchannel.

Our batch synthesis of 5 began with 2.0 g of 1 reacted with 2 mL morpholine and 3 mL EtN
and reacted to yield 3.3 g of 5 at > 99% purity after 48 hr at room temperature. The isolated
product was confirmed by HPLC, IR, 'H and '*C NMR, and GCMS.

4,4'-(2,4-pyrimidinediyl)bis-morpholine (5): 'H NMR(300 MHz, CDCls) § 7.96 (1 H, d,
J=6.0 Hz), 5.86 (I H. d, J=6.0 Hz), 3.80-3.70 (12 H, m), 3.54 (4 H, t. J=5.0 Hz); 13C NMR(75
MHz, CDCl3) 6 162.8, 161.8, 157.0. 93.3, 67.1, 66.8, 44.5, 44.3; IR vmax 2852, 2361, 2341, 1582,
1558, 1472, 1438, 1263, 1237, 1001 cm™; GCMS m/z 67.1, 106.9, 134.9, 161.9, 192.8, 218.9,
249.8; HPLC elution time 180-210 s, Ameas = 284 nm.
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2.3.4. Automated Calibration of Analyzed Compounds

To conserve materials and minimize the amount of manual work invested in experimental
preparation, HPLC calibration curves for 1, 3, 4, and 5 in relation to the internal standard were
developed in an automated procedure. In the case of each calibration, a sample of the isolated
reactant or product was dissolved with the internal standard into a 10-mL solution of ethanol.
Each solution was then set up to be delivered via syringe pump to the micromixer, where it was
to be diluted with pure ethanol and injected online into the HPLC. The automated system
proceeded by manipulating flow rates of both the analyte and ethanol streams so as to generate a
correlation between the HPLC absorbance signal of the reactant or product and the absorbance of
the internal standard at various concentrations. We found this procedure to be effective in

eliminating the effect of flow rate oscillations in the final calibration curves.

2.4. RESULTS
2.4.1. Simultaneous Estimation of Kinetic Parameters

Table 2.1 lists the best-fit parameter estimates found by MLE at the conclusion of the initial
simultaneous parameter estimation factorial design. Along with each parameter estimate, the
calculated uncertainty is presented as +1 standard deviation. While estimates on the parameters
relating to ki and k2 showed reasonable precision, the infinite uncertainties in the parameters for
k3 and ks implied that very little information on these parameters had been gathered from the
results of the initial experimental design. Figure 2.3(a-d) shows the fit of the factorial design data
by the initial rate parameter estimates. That the fit passes visual inspection is a testament more to
the accuracy of temperature and residence time control in the microreactor system than it is the
choice of kinetic parameters. As the standard errors in Table 2.1 indicate, an extensive range of
parameters could have been found for 3 and ks which would have acceptably fit the data shown

in Figure 2.3.
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Table 2.1. Optimal kinetic parameter estimates and uncertainties* from simultaneous estimation approach.

Number of

Experiments logo(41) Eai logio(42) Exz logio(43) Eas logio(A44) Ea4
Initial 0.0 14.2 0.0 14.2 0.0 14.2 0.0 14.2
12 34+£06 26.6+32 33+06 31.0+£3.8 -6zxInff 52 + Inft -2 + Inft 27 £ Inft
13 33£05 264+27 33+£05 31.1+£29 11+£6 102 +43 11+29 100+ 210
14 32+£04 255+25 3.1+04 30128 62x12 679+84 3.0£3.0 44 £ 22
15 33+04 262+24 32+04 308+26 62+1.1 683+82 2.1+2.1 37+ 15
16 33£04 26.1+22 32+04 307+24 58+08 654+58 25+1.7 40+ 12
17 33£04 26.1+21 32+04 30623 58+08 655+55 2415 39+ 10
18 33+£03 263+£1.7 33+03 3L1+£19 59+£07 665+55 23+14 385+96
19 33+03 262+1.6 32+03 308+1.8 6.0+£07 672+49 18+1.0 351=x69
20 33+£03 264+1.7 33+03 312+19 58+£07 651+50 24=+10 392+70
21 33+£03 263+1.7 33+03 31119 58+06 658+40 24+09 39.1+6.1
22 33+03 262+1.7 33+03 31019 6.0+06 667+40 22+08 374+58
23 33+£02 265+1.5 33+03 314=x17 6.1+06 674+39 21+07 368+53
24 33+£02 265+15 33+02 31416 62+06 683+41 2.0+08 36.0+53
*-Uncertainties given as +1 standard deviation. 4, is in M"'s™! and Ej, is in kJ mol™.
F-Inf denotes an undefined uncertainty.
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Figure 2.3(a-d). Experimental and model-predicted reactant and product concentration profiles after initial
factorial design (12 automated experiments). Markers identify experimental data points. Lines indicate model
prediction.
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In order to minimize the uncertainty in the parameter estimates, the automated system
selected the next D-optimal experiment to be performed at the maximum allowable residence
time, temperature, concentrations of 1, and equivalents of 2. After the collection of this data
point, parameter estimates were again calculated, this time using the parameter estimates and
upper and lower bounds reported in Table 2.1 as inputs. Vs was also updated to agree with the
covariance of the measured concentrations of the starting material and three products after the
first 12 experiments. As Table 2.1 shows, significant improvements in the confidence of the
estimates for all eight parameters were achieved after completing this first D-optimal
experiment. In particular, uncertainties in the estimates of the pre-exponential factors and
activation energies pertaining to k3 and k4 were all quantifiable, albeit reflective of greater than
50% error in the optimal parameter estimates.

The procedure for selecting and performing D-optimal experiments was repeated in an
automated manner a total of 12 times (giving 24 experiments in total) before a user-specified
termination. After each experiment, the initial guess for the parameter values, the bounds on the
parameter values, and Vp were updated to agree with the results of the previous parameter
estimation. It is notable from Table 2.1 that the uncertainties in parameter estimates improved
greatly after experiments 13-18, but that the uncertainties improved only modestly from
experiments 19-24. The optimal parameter values also changed little for all four rate constants
from experiment 18 onward. Reasoning that further experimentation would only lead to modest
improvements in parameter estimates and confidence intervals, we chose to terminate the method
after experiment 24 and pursue a different approach to minimizing parameter uncertainty.

Figure 2.4(a-d) illustrates the agreement between the final best-fit model parameters and
experimental data after 24 experiments. The model-fit and experimental data agree well across
the range of temperatures tested and at short residence times. At long residence times, the model
accurately fits the yield of 5, but the conversion of 1 is overestimated and the yields of 3 and 4
are underestimated. We believe this to be a consequence of the peak resolution between 1 and 3
as measured by HPLC. A high conversion generally resulted in a strong 3 signal, which by
broadening overlapped the weak 1 signal and reduced the accuracy of detecting and quantifying
1 at low concentrations. This claim is supported by the observation that at conditions of high
conversion (temperatures at or above 80°C, excess initial concentrations of 2 and EtN), the

measured conversion of 1 reproducibly reaches a maximum of 96%-97% regardless of residence
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time. Providing that the SnAr reaction is irreversible, it is most likely that this replicated error
results from the repeated bias introduced in detecting the weak 1 signal in close proximity to the

strong 3 signal by HPLC.
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Figure 2.4(a-d). Experimental and model-predicted reactant and product concentration profiles after 24
automated experiments. Markers identify experimental data points. Lines indicate model prediction.

2.4.2. Estimation of Kinetic Parameters from Isolated Reactions

We proposed that parameter uncertainty could be reduced by decomposing the reactions in
Scheme 2.1 into a sequence of isolated reactions. These isolated reaction steps are presented in
Schemes 2.2, 2.3, and 2.4. The approach of isolating reaction steps is not uncommon to kinetic
parameter estimation and may be beneficial in cases where the path through intermediates taken
by the starting materials to reach the final product is unknown or ambiguous. In the case of the
synthesis of 5, we hypothesized that the large parameter uncertainties observed when attempting
to estimate all eight kinetic parameters simultaneously implied an ambiguity in being able to

identify whether the route from 1 to 5 went predominantly through the intermediate 3 or the

intermediate 4.
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Scheme 2.2. Reaction of 2,4-dichloropyrimidine and morpholine.
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Scheme 2.3. Reaction of 4-(2-chloro-4-pyrimidinyl)-morpholine and morpholine.
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Scheme 2.4. Reaction of 4-(4-chloro-2-pyrimidinyl)-morpholine and morpholine.

We sought first to optimize kinetic parameter estimates corresponding to k1 and k2 in Scheme
2.2. MAP estimation was employed for parameter estimation, with k3 and k4 constrained to their
prior optimal values. Table 2.2 demonstrates that the approach of only estimating the first four
kinetic parameters resulted in rapid convergence of the parameter values and substantial
reductions in uncertainties. Though the optimal kinetic parameters presented in Table 2.2 shifted
modestly from their prior MLE values, it is important to note that the posterior optimal values in
all four cases are within the prior one standard deviation confidence intervals for each parameter
found by the simultaneous parameter estimation approach. This observation would suggest that
the posterior estimates of the four kinetic parameters are consistent with the results of the
simultaneous parameter estimation experiment, though the posterior results have increased the
likelihood that the optimal kinetic parameters are within closer proximity to the true parameter

values.
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Table 2.2. Optimal kinetic parameter estimates and uncertainties* from isolated estimation of parameters A1,
E41, A2, and Eaa.

Eﬁi::’:;gfs logio(d)  Eu logi(d2)  En
Prior 33+02 265+15 33+02 31.4+1.6
8 33+£0.2 259+0.8 33+£02 31.1+09
9 3.3+0.1 260+0.7 33+0.1 31.3+0.7
10 3.4+0.1 26608 34+0.1 31.9+ 0.8
11 3.4+0.1 27.0+0.8 3.5+0.1 32.2+0.8
12 3.4+0.1 27.0+0.7 35+0.1 323+0.7

*-Uncertainties given as +1 standard deviation. A, is in M"'s™" and £, is in kJ mol"". Constrained values for
parameters were logio(43/M's™) = 6.2, Es3 = 68.3 kJ mol™, logio(44/M™'s™) = 2.0, Es = 36.0 kJ mol'.

A challenge often presented in complex reaction networks is the isolation of intermediate
products, such as 3 and 4 in Scheme 2.1. We already introduced the importance of selecting for
2-substituted pyrimidines as kinase inhibitors. In our kinetic investigation, it was similarly
important to optimize for the synthesis of both the 2-substituted and the 4-substituted
pyrimidines in order to isolate starting materials for the estimation of parameters in Schemes 2.3
and 2.4. Because 4 was known to be produced less favorably than 3, we designed a synthesis
which would maximize the yield of 4 at the maximum initial concentrations of 1 and 2.
Additionally, we required that our conversion of 1 exceed 99% to ensure that the starting

material would not be present to complicate the isolation of products 3 and 4:

(2.24)
max

s g L

¢,
Co
s.t. 0.5min <t _ <20 min

40°C < T <£100°C

C,=0.150 M
C,=0375M
¢,<0.01(C,)

It can be derived from the proposed kinetic model that Cio affects the absolute concentrations of
1, 3, 4, and § in the reaction but not the final product yields and selectivities. It followed that a
greater initial concentration of 1 would allow for shorter reaction times with no adverse effect on
the yield of 4. We also found that a ridge of solution values existed for the yield optimization
when C20 and trs were allowed to vary independently. Figure 2.5a illustrates this ridge of optimal

solutions at a temperature contour of 100°C, where the maximum yield is 17.1%. We reasoned
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from this ridge of optimality that an optimum yield of 4 could be obtained in a minimum reaction

time by specifying Cao at its upper bound of 0.375 M.
b)
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®©
o
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Figure 2.5. (a) Model predicted-yield of 4 with initial concentration Cio=0.150 M and T = 100°C based upon
optimal model parameters for k1 and k2 from Table 2.2 and for k3 and k4 from Table 2.1. The ridge of
maximum yield is at 17.1%. (b) Model predicted-yield of 4 with initial concentrations Cio=0.150 M and Cz =
0.375 M based upon optimal model parameters for k1 and k2 from Table 2.2 and for ks and k4 from Table 2.1.
The maximum predicted yield is 17.1% at #res =49 s and T = 100°C.

The formulation in Equation 2.24 generated a model-predicted optimal yield of 4 at a
residence time of 49 s and a temperature of 100°C. This optimum can be seen visually from the
contour plot shown in Figure 2.5b. To test the predictive capability of our model, we reacted
0.745 g of 1 at the optimized reaction conditions and analyzed reactant and product
concentrations by online HPLC. The experimental yields and conversion (in mass units) based
upon 0.745 g of 1 are compared in Table 2.3 to the predicted yields and conversion for the
optimal set of experimental conditions. It was observed that our model predictions for the yields
of 4 and 5 were fairly accurate, but that our model overestimated both the conversion of 1 and
the yield of 3. Following synthesis, 3 and 4 were each isolated by column chromatography, with
isolated yields reported in Table 2.3 in comparison to the model predictions and online HPLC
analysis. Isolated yields of both compounds from workup only were between 84% and 85% and,
consequently, the relative selectivity of 3 to 4 was the same for the isolated yields as was

measured by online analysis.
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Table 2.3. Model-predicted, HPLC, and isolated yields for 1, 3, 4, and 5 for tres = 49 s, T = 100°C, C10 = 0.150
M, and C20=0.375 M.

Product Distribution Model-predicted”  Measured by HPLC  Isolated after Workup

Clo = 0745 g
Output 1 (g) 0.001 0.028 -3
Output 3 (g) 0.821 0.794 0.698
Output 4 (g) 0.171 0.161 0.141
Output 5 (g) 0.006 0.008 -t
% Conversion 1 99.8 96.2 -3
mol/mol% Yield 3 822 79.5 69.9
mol/mol% Yield 4 17.1 16.1 14.1
mol/mol% Yield 5 0.5 0.6 -4
t-Model predictions were calculated using optimal model parameters for k; and 4> from Table 2.2 and for &3 and 44

from Table 2.1.
1-Workup of the product was not attempted.

Using the isolated product 3, we carried out the isolated reaction in Schemc 2.3 to cstimate
the parameters for A3 and Es3. Table 2.4 shows that greatly improved convergence of the
parameter confidence intervals for logio(43) and E43 was observed for the isolated conversion of
3 and 2 to 5 and that the standard errors on the estimates of the two parameters were reduced by
more than 50% in the eight experiments following the four-experiment factorial design. By
comparison, the final eight D-optimal experiments in the simultaneous estimation experiment
yielded an improvement in the uncertainties of the estimates of logio(43) and E43 of less than
30%. It was also observed that the optimal parameter estimates for 43 and E43 laid outside of the
2-standard deviation a priori confidence interval for the individual parameter estimates. Though
this would indicate an inconsistency between the simultaneous and isolated experiment data sets,
we believe the reported results to be acceptable on the basis that the path taken to a new set of
optimal parameters remained within the 95% prior confidence intervals for 43 and E43 through
the first eight experiments.

We next conducted the reaction of 4 with 2 (Scheme 2.4) for the estimation of A4 and FEa4.
Table 2.4 shows the convergence of the parameter estimates and single parameter confidence
intervals for logio(A44) and E4s over the course of 12 experiments. Both parameter standard errors
improved by more than 67% from the a priori uncertainty values. The optimal parameter
estimates for 44 and E4s were both found to be within the a priori 2-standard deviation single-

parameter confidence intervals.
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Table 2.4. Optimal kinetic parameter estimates from isolated estimation and uncertainties* of parameters As
and E43 and parameters As and Eaa.

Number of
Experiments

Prior 62+0.6 683+4.1 2008 36.0+53
62+0.5 683+£3.7 2.1+£0.5 37.2+3.1
60+05 672+35 22+05 38832
58+04 658+29 2704 424=x25
5604 643+29 27+03 429+273
53403 624+24 29+03 43919
51+£03 61.0+23 2.8+0.3 432122
49+03 597+18 2.8+0.3 43719
47+03 58.0+19 2.8+0.3 435+ 1.8
4802 59.0+1.7 3.0+02 447+1.7
*.Uncertainties given as =1 standard deviation. 43 is in M"'s™ and Ey is in kJ mol’.

logio(43) Eu3 logio(A44) Eua

oyl =EN=-RCCIEN G NV

We sought upon completion of the isolated experiments to reconcile our updated set of
parameters and uncertainties in a final set of MAP estimation experiments. Such experiments
were necessary to account for any interaction effects between species in the reaction network and
to correct for the uncertainty introduced from using lower purity chemicals in the isolated
reactions of 3 and 4 with 2. Optimizing over the same set of parameters but with the prior
estimates and uncertainties found from conducting the set of isolated experiments, we were able
to obtain rapid convergence of our parameter estimates with uncertainties greatly reduced over
the initial simultaneous estimation approach. The convergence of the parameter estimates from
experiments 12 through 18 of the culminating experiment are shown in Table 2.5. Optimal log-
pre-exponential terms were estimated to a standard deviation of 0.1 M-ls*! for k1 and k2 and to
+0.2 M's”! for k3 and ks. Likewise, standard errors for the activation energy terms were
estimated as £0.6 kJ mol"! for rate constants 1 and 2 and +1.6-1.7 kJ mol™! for rate constants 3
and 4. Figure 2.6(a-f) compares the predicted concentration profiles based upon the optimal
model parameters in comparison to the data for all experiments. The model-fit values appear to

agree with the experimental data.
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Table 2.5. Optimal kinetic parameter estimates and uncertainties from final simultaneous experiment in
isolated approach.

Number of
Exgle]:iriregts logio(1) Ea logo(42) Ex logio(45) En logio(A44) Eus
Prior 34£01 27.0+£07 35+0.1 323+0.7 48:0.2 590+17 3.0+0.2 44717
12 3501 273407 35+01 32107 50£02 604+17 32102 463+1.8
13 3.5+0.1  27.1£07 35+0.01 322406 4802 590+1.7 3.0+02 450=+1.7
14 34+0.1 27.0+£06 35+0.1 322+06 48+02 590+1.7 3.0+02 450+138
15 3401 270+06 35+0.1 321+£06 48=02 589+1.7 3.0+£02 450+1.8
16 34+01 270+06 35+0.01 32106 48+02 587+17 3.0+02 450+1.8
17 34+01 270£06 35+0.01 321+0.6 49+02 594+16 3.0+02 450+18
18 3.4+01 27.0£0.6 3.5+0.1 321+06 4902 600+1.6 3.0+0.2 450=1.7
*-Uncertainties given as +1 standard deviation. 4, is in M-'s"! and E., is in kJ mol"
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Figure 2.6(a-f). Experimental and model-predicted reactant and product concentration profiles after
completion of all experiments (including simultaneous and isolated approaches). Markers identify

64

experimental data points. Solid lines indicate model prediction.




In total, the procedure for first simultaneously estimating kinetic parameters then isolating
products and refining the kinetic parameters in isolated experimentation required 78 automated
experiments to complete (with 54 experiments dedicated to estimating each kinetic parameter)
and required 7 days of cumulative time. Less than 5 g of 1 were consumed for all experiments
and the synthesis and isolation of 3 and 4. A more streamlined workup and isolation routine in
the future would reduce the experiment time further, as workup and stock sample preparation
were the only steps carried out manually. The duration of the automated experiments was
primarily determined by the time required to reach steady-state for the longest residence time
experiments and the rate of convergence of the system, which was a function of both the
sensitivity of the experiments to the model parameters and the accuracy and precision of the

continuous flow method.

2.5. DISCUSSION

The complexity of many pharmaceutical syntheses dictates that reactions be parameterized
and optimized accurately and with minimal uncertainty when scaled to a production level. A
large degree of uncertainty introduces the potential for inaccurate reaction scale-up, leading to
lesser yields and/or increased formation of detrimental byproducts. In the initial simultaneous
parameter estimation experiments, we demonstrated an automated approach that, albeit accurate,
failed to reasonably minimize parameter uncertainty. The results suggested that although the
model predictions in Figures 2.3 and 2.4 appeared reasonable, there in truth may have been many
parameters within an error of as large as 20% yielding an acceptable fit of the experimental data.
Optimizing or predictably scaling-up a system while considering these large uncertainties in
kinetic parameters is infeasible.

We hypothesized from our initial results that the large uncertainties in the parameter estimates
derived from the correlation in the model parameters. From examination of Equations 2.15 and
2.16, we identified two key factors which we expected to contribute to the correlated
uncertainties between parameters. The first factor considered was the calculated response
covariance Vg, which indicates the variability in both the experiment and in the measurement of
the data. As continuous flow systems are excellent in their control of reaction conditions and
residence time, we proposed that the variability in the experimental setup was not the major

factor contributing to the large uncertainties. Alternatively, we considered the large uncertainties
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to be primarily a result of low parameter sensitivity across the range of experimental conditions.
To address this low sensitivity, we restructured the parameter estimation so as to estimate the
eight kinetic parameters from the isolated reactions in Schemes 2.2 through 2.4. From this
restructuring, we were able to achieve significantly reduced parameter uncertainties compared to
those in the simultaneous approach and confirm our notion that the originally high uncertainties
resulted from low parameter sensitivity.

In models with strong correlations among parameters, it is of interest to calculate multi-
parameter confidence regions, which show the dependence of the estimation of one parameter
upon another. These 1 — a joint confidence regions can be found for two or more parameters

from the inequality:'2°

(0-0,,) V;'(0-6,,)< N, F . (2.25)

opt Params 1@ =N e 3= s =N s
Joint-confidence regions for this study were found by calculating the probability value associated
with a multi-dimensional perturbation in @ away from 0,y The probability distribution followed
an F' cumulative distribution function with 1 — « confidence and Nparams and Nexpis - Nparams
degrees of freedom. As in the case of posterior confidence intervals, to find posterior joint
confidence intervals Vaur' had to be substituted for V.

Figure 2.7(a-d) shows the correlated uncertainty between pre-exponential factors and
activation energies after the simultancous parameter estimation experiment. An elongated
elliptical confidence region identifies two strongly correlated parameters and suggests that a
change in the optimal value of one parameter will be reflected in a change in the optimal value of
the other parameter. This is often the case in determining best-fit pre-exponential factors and
activation energies, which are coupled by respective rate constants. Figure 2.7(a-d) demonstrates
that, indeed, the pre-exponential terms and activation energies were strongly correlated for each
of the four rate constants estimated for the SNAr reaction. The joint confidence regions for A3 and
E43 and for A4 and E44 in particular indicated that the optimal parameter values existed beyond

what would have been expected had we only to considered the single-parameter uncertainties.
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Figure 2.7(a-d). 68% and 95% joint confidence regions for estimated parameters after 24 automated
experiments.

Figure 2.8(a-d) shows the final set of converged joint confidence regions corresponding to ki
through ks. The activation energies and pre-exponential factors, especially for k3 and k4, still
show strong correlation, although comparison to Figure 2.7(a-d) demonstrates that the isolated
experiment approach contributed greatly to minimizing the joint uncertainties between rate
constant parameters. Drawing upon our reasoning that the parameter uncertainties arise from the
inherent coupling of the system, we would expect to be able to reduce the size and aspect ratio of
the joint confidence ellipses by exploring more sensitive regions of the experimental space for

the reactions of 1, 3, and 4 with 2 than those considered for this automated study.
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Figure 2.8(a-d). 68% and 95% joint confidence regions for estimated parameters after all simultaneous and
isolated automated experiments.

The parameter correlation matrix provided a useful measure of the strength of correlation

between model parameters. Each element of the matrix was defined as:

(Ve),

(Vo). (Vo)

Entries of p with magnitude close to 1 indicated a strong correlation between the respective

P, (Vo) = (2.26)

parameters.
After the initial set of 24 simultaneous experiments, we calculated p as:

[ ¢ o, o, o, A é, o, &, ]
[ 1.000 0.998 0.977 0.972 0.005 0.010 0.060 0.052 ]
0.998 1.000 0.977 0.976 -0.005 0.000 0.069 0.061
0.977 0977 1.000 0.998 -0.024 -0.016 0.126 0.113
0.972 0976 0.998 1.000 -0.041 -0.034 0.142 0.130 2:27)
0.005 -0.005 -0.024 -0.041 1.000 1.000 -0.840 -0.850
0.010 0.000 -0.016 -0.034 1.000 1.000 -0.835 -0.846
0.060 0.069 0.126 0.142 -0.840 -0.835 1.000 0.999
0.052 0.061 0.113 0.130 -0.850 -0.846 0.999 1.000 |
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<
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From the structure of the Arrhenius equation, it is typical to expect a strong correlation between
the activation energy and the pre-exponential factor for the same rate constant. This high
correlation was indeed observed for the initial set of simultaneous experiments. In addition, the
correlation matrix for the first 24 experiments indicated strong correlation in the model between
ki and k2 and between k3 and k4. To justify this observation, we considered first that a change in
either k1 or k2 would result in a necessary change in k2 or ki to maintain the correct predicted
selectivity of 3 to 4 to support the experimental data. Furthermore, k3 and k4 had to offset one
another in order to describe the yield of S.

The effect of performing isolated parameter estimation experiments upon correlations
between model parameters for the SNAr case was measured quantitatively in the final correlation
matrix:

[ 6 6, 6, 0, 0, 0, 0, 6 |
1.000 0.997 0.976 0.968 -0.002 0.003 0.000 0.000
0.997 1.000 0976 0.973 -0.003 0.003 0.000 0.000
0976 0976 1.000 0.997 -0.006 -0.006 0.000 0.000
0.968 0973 0.997 1.000 -0.007 -0.007 0.000 0.000 (2.28)
-0.002 -0.003 -0.006 -0.007 1.000 1.000 -0.008 -0.008
-0.003 -0.003 -0.006 -0.007 1.000 1.000 -0.008 -0.008

0.000 0.000 0.000 0.000 -0.008 -0.008 1.000 1.000
| 0.000 0.000 0.000 0.000 -0.008 -0.008 1.000 1.000

-
—
NS
SN—
I
R S SSIES S S SRS N

Upon calculation of the final parameter correlation matrix, we observed that the isolated reaction
approach greatly reduced the correlation between k3 and k4 and that minimal correlation
remained between the first two rate constants and the last two rate constants. Strong correlations
still remained between all activation energies, their respective pre-exponential factors, and
between k1 and k2. To isolate the pre-exponential factors and activation energies, we would have
needed to conduct experiments at largely different reaction temperatures so as to increase the
model sensitivity to the activation energy parameters. Discerning better between k1 and k2 would
likely have required much higher temperatures than were achievable with ethanol as the solvent,
or instead the ability to run the reaction at much shorter residence times.

We suspected that the remaining parameter uncertainty after the set of posterior experiments
was a combination of lower sensitivity in discriminating between the activation energy and the

pre-exponential factor for each rate constant and of the inherent error in the system, estimated as
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V5. From the final calculated Vs, the error in measuring 1 was found to be £0.0064 M (£4.3%
based on C1o), with the errors in measuring 3, 4, and 5 calculating to £0.0026 M, £0.0019 M, and
+0.0011 M, respectively. These errors can be interpreted as the limiting precision of the kinetic
model, given uncertainties in flow rates, starting material purity, temperature control, and online
analysis. To achieve this limiting precision, one would need improve the sensitivity of the model
to each activation energy and pre-exponential factor. This could be accomplished either by
conducting experiments at more extreme temperatures, by increasing the feed concentrations of
starting reagents (to increase conversion to 5), or by incorporating quantum calculated pre-
exponential factors into the MAP estimation.

It is important to recognize that although the parameter estimation improved substantially by
analyzing isolated reactions under conditions of greater sensitivity, the method we have
employed still relies upon obtaining reasonable estimates of the rate parameters in the
simultaneous approach. By incorporating MAP estimation into the method, we demonstrated that
the information gained from the simultaneous approach could be incorporated as a priori
information in the isolated reaction approach to provide initial parameter estimates and to further
reduce parameter uncertainty. Additionally, the optimal parameters found in the simultaneous
experiment and for the isolated reaction in Scheme 2.2 proved to be necessary in finding

conditions at which an optimal yield of 4 could be obtained.

2.6. CONCLUSIONS

The advancement of continuous flow technology with online feedback has enabled the
development of automated systems capable of parameterizing and optimizing chemical syntheses
with little a priori reaction information. For appropriate reactions and conditions, such
automated systems have the potential to minimize consumption of valuable reagents while
providing the requisite information for reaction scale-up. Though these systems are quite
interesting for demonstration purposes, it is trivial to find cases in which the chemistry under
study is too complicated to be parameterized in a handful of flow experiments. Here we
demonstrated an automated platform and procedure that were both efficient in conserving
reagents and effective at parameterizing a complex reaction network.

As we reviewed the performance of this automated system, we identified several limitations

in the extension of this methodology to more challenging chemical syntheses. In terms of
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simplicity of use, the complexity of the physical system (specifically the number of pumps) grew
with the number of substrates or additives to be tested in the optimization, unless the user
manually changed reagents as in the procedure outlined in this chapter. Though low amounts of
material were consumed by mass, the amount of reagent consumption per data point (at least 1
mL reaction volume per 2 pL HPLC sample) would still be considered wasteful in
pharmaceutical development. In terms of versatility, the limited scope of optimizations or Kinetic
parameter studies that could be covered over a range of 60°C temperature and < | order of
magnitude reaction time and reagent concentrations greatly detracted from the utility of the
method. In identifying reaction kinetics or characterizing product formation, one would ideally
prefer to have as much flexibility as possible to manipulate experimental conditions in order to
maximize sensitivity. One way to greatly expand the versatility of such automated flow
platforms would be to incorporate discrete variables along with continuous variables into the

optimization. This is the essence of the work presented in the remaining chapters of this thesis.
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3. A SEGMENTED FLOW SYSTEM FOR ON-DEMAND SCREENING OF
DISCRETE AND CONTINUOUS VARIABLES

3.1. INTRODUCTION

It is generally the case in chemical synthesis that the interplay of multiple variables factors
significantly into the rate of product formation and the scalability of the reaction. To tease out
these relationships becomes a labor-intensive and time-consuming task—first sample
preparation, then reaction screening, then workup and analysis, then review of the data and
model fitting, then finally feedback to explore a new region of the experimental design space.
With the growth in popularity of HTE,®% many of these steps can now be automated and
streamlined, at the expense being able to manipulate key factors such as reaction time and
temperature—factors which are essential to the extraction of reaction kinetics for scale-up.
Though adaptations of 96-, 384-, and 1536-well plate systems work well for discovery, they also
become costly in substrate and catalyst usage when many unnecessary experiments are run in
parallel—in comparison to the careful selection of experiments designed to maximize
information as was demonstrated in Chapter 2.

Reaction screening “on-demand™ using an automated segmented flow system that mixes
reagents, reacts, and analyzes, would stand to offer substantial material savings over batch HTE.
The efficient mixing and heat transfer in microfluidic devices would further offer better
scalability of results. Though rich in potential, the development of a flow screening system with
the universality of batch HTE has in the past presented a number of challenges—the predominant
problems being dispersion in different mobile phases, carryover from one sample to the next, and
versatility in reagents and materials of construction. We sought to address these challenges with
development of an automated flow screening system versatile enough to screen a wide range of
organic syntheses at dynamic temperature, composition, and time conditions. The system was to
be fully automated and integrated into online analysis equipment, allowing chemists a “set-it-
and-forget-it” method for accurately characterizing reaction performance across scales.

Automated flow microreactor systems for HTE can be generally classified into parallel.
homogeneous isolated reagent, or segmented flow designs. Automated parallel microreactor
systems provide a rather intuitive means for screening various solid-phase heterogeneous

catalysts. Examples of the applications of automated parallel systems have included the
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enantioselective hydrogenation of methyl-2-acetamido acrylate,'* the partial oxidation of 1,3-
butadiene to furan,'®! and the selective catalytic reduction of NOx by propane.'*? Shi ef al. have
additionally presented a parallel capillary-based system for homogeneous catalyst screening.'??
The homogeneous system was capable of screening 20 Stille cross-coupling reactions
simultaneously with data analysis conducted by online GC. The demonstration succeeded in
identifying an optimal palladium precatalyst and arsine ligand that closely resembled that already
employed in literature. Library generation has been established in parallel systems for the
syntheses of pyrazoles,'* ciprofloxacin analogs,'® and sulfonamides.'*® Wang er al. have
presented a networked system of microfluidic channels for the parallel screening of 32 in situ
click chemistry reactions.'” A library of 20 azides was screened in the automated system, with
only 120 nL of each azide consumed per reaction. An integrated system such as this has the
potential for great economic upside when cost of reagents is a limiting factor in library
compilation.

Homogeneous isolated reagent and segmented flow methods of reaction and catalyst
screening have the potential for much higher throughput and smaller reaction volumes than
parallel microreactor schemes. These sequential reaction methods further allow for greater
flexibility in selecting reactive components. An example of the sequential reaction approach
using homogeneous isolated reagents for library development was demonstrated by Goodell ez
al.>* Reactants in this system were withdrawn from a reagent block by a liquid handler and
injected as isolated segments into a homogeneous solvent phase flowing through a microreactor.
In total, over 1000 reactions were screened and monitored by UPLC in order to generate a library
of functionalized bicycle[3.2.1]octanoid scaffold transformations. The most notable drawback of
the homogeneous flow approach is the axial dispersion introduced by laminar flow, which
presents the risk of cross-contamination between segmented reagents.

In large, segmented flow systems comprise the most versatile systems for continuous HTE.
Segmented flow, or Taylor flow, is the description given to two-phase flow in a microreactor in
which the continuous and dispersed phases form distinct, segmented droplets (slugs). The

formation of slugs is dependent upon the ratio of viscous stress to the interfacial tension stresses

between the two immiscible phases, a ratio given by the capillary number (Ca):'3%!3
ca=Y1 3.1)
o
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U in Equation 3.1 represents the fluid velocity, # is the fluid viscosity, and ¢ is the interfacial
tension between the two phases. Slugs form at low values of Ca, generally < 0.01. Much of the
interest in segmented microreactor flows over the last few years can be attributed to the
enhanced mixing within either phase of the two-phase system. This mixing is the result of
recirculating flows induced by the shear forces exerted on the slug against the microchannel
wall.'*® The relative motion of the internally recirculating slugs at turns in winding
microchannels even more greatly enhances chaotic advection within the dispersed phase and
allows for extremely short mixing timescales within the slugs.'*!

The narrow residence time distributions achievable in segmented flow have stimulated
interest in the two-phase flow technique as a means of continuously executing
compartmentalized reactions or crystallizations requiring precise residence time control. The
applications of segmented flow have in turn been expanded to HTE under the premise that
different reactions can be run in separate slugs flowing in series through the microreactor.’%-'%
Several different on-chip and off-chip techniques have been implemented for generating
nanoliter-scale slugs of reagents, the simplest on-chip method being via the injection of the
dispersed and continuous phases through two separate branches of a T-junction.'*>'*? Slugs of
the dispersed phase solvent are produced as a result of the shear and interfacial forces
experienced at the interface of the two fluids at the T. Flow focusing, in which two outer
continuous phase channels merge with an inner dispersed phase channel at a narrow orifice, has
additionally been employed to generate slugs on-chip.'?"-'*1%5 In on-chip techniques, slugs with
different reagent compositions are prepared by merging solutions at different flow rates at a
junction with the dispersed phase. #6147

As an alternative to passive techniques, active techniques for slug generation are available for
control of slug size and composition independent of the fluid properties. Examples of active
techniques include the use of valves, off-chip or on-chip, to create slugs of nanoliter

148.149 or to digitize slugs into smaller volumes that can be merged with different

precision
quantities of reagents.'”® The screening of many different substrates has required the preparation
of individual sample droplets off-line before on-chip introduction of other reactants or
catalysts.'”® Autosampling devices which extract different volumes of prepared reagent or
catalyst solutions and then inject these samples as immiscible slugs into a constantly-flowing

continuous phase greatly expedite this process. The automated system demonstrated by Garcia-
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Egido ef al. in the synthesis of a library of pyrazoles illustrates the versatility of the autosampling
technique. !

For reaction screening applications in particular, the ability to controllably add reagents into
slugs is essential to precise reaction time control. A simple approach to controlled reagent
addition online was proposed by Hatakeyama et al., who infused reagents via syringe pump
though a T-junction directly into a premade slug.”® With on-chip designs, the approach of adding
reagents at a T-junction can be enumerated several times to generate combinatorial screens of
reagents and slug volumes.'®® As an alternative to the continuous T-junction approach, multiple
reactant slugs may be generated and merged together on-demand, as was demonstrated by Niu ef
al.'*? In the example, a series of pillars were designed into the microfluidic device to enable
entrainment of a slug by surface tension, followed by merging with a second slug, and then
release of the newly combined slug because of the change in hydraulic pressure in the system.
This technology has further enabled controlled droplet dilution for a DNA-binding assay.'>®

Analysis of individual slugs has been performed either by observing each slug by
spectroscopy'>* or by direct analysis of the slugs by LC, GC, or MS.%*!°!13> Regardless of the
type of instrument employed for analysis, the instrument must have the capacity to handle small
volumes of fluid. For real-time screening and optimization, rapid feedback is also desirable.
Indexing of slugs has been achieved through the generation of pairs of slugs, with one slug
carrying the reactants and the other containing an indicator identifying the composition of its
partner.'>® [n addition to serving as a reference guide during analysis, indicator slugs have found
further application as sensors for possible inter-slug cross-contamination, which can be detected
during analysis of the index.”®

The enhanced mixing achievable in segmented flow greatly improves the accuracy and
versatility of continuous HTE, particularly in chemical synthesis applications. One example
segmented flow system was developed by Fang et al. for the purpose of screening acid catalysts
in a Friedel-Crafts reaction.'” The system incorporated a capillary microreactor, and online
analysis was performed by direct injection into a UPLC. Clausell-Tormos et al. applied
segmented flow to develop a library of inhibitors of the enzyme B-galactosidase.”® Samples were
originally prepared in a 96-well plate and then transferred via an autosampler into slugs to be
reacted in a microchannel. The developed system had the rather novel capability of allowing for

both the merging and the splitting of slugs, which respectively allowed for more robust reactant

75



combinations and replicate slugs to be tested. Florescence measurements were made online and
even allowed for reaction monitoring throughout the length of the reactor, potentially facilitating
future kinetics studies. Theberge et al. employed a segmented flow system for merging of three
different reactants in an Ugi-type multicomponent reaction, generating a library of small
molecules with the potential for thrombin inhibitory activity.'”’ Li ef al. presented an automated
segmented flow system for simultaneous reaction screening and optimization.’” Volumes of
reaction slugs in this study were nominally 140 nL, with 20 different reagent combinations
screened. Computer control of the system furthermore allowed for residence times and initial
reactant concentrations within each slug to be manipulated such that 1000 different reactant,
concentration, and residence time combinations were screened in total. Kreutz et al.’®

istrated  coupling of a genetic optimization algorithm to th
cocatalysts, and ligands for the oxidation of methane in a segmented flow system.

Commercial on-demand segmented flow screening systems have been introduced by the
Accendo Corporation. These systems allow users to screen up to 40 reagents sequentially in slug
flow through a tubular reactor with online detection by LC-MS. Slug volumes range on the order
of 20-900 pL, and the system throughput is maximized at the analysis of one slug every three
minutes. The systems operate by generating a three-phase segmented flow system comprising the
reaction volume, an immiscible phase of perfluoromethyldecalin, and a transport phase.
Screening modes, where each slug is analyzed independently, and prep modes, where the same
conditions can be repeated to generate greater amounts of material, are available. Though several
successful library syntheses have been reported with these commercial systems.'"''? recent
scrutiny has emerged regarding the accuracy of the use of these systems for scale-up. Accendo
has reported online the phenomenon of “incubation acceleration,” stating that slugs move faster
than predicted through the flow system as temperature increases.'>” A recent study by Hawbaker
et al. also illustrated the diffusion of reagents from the reaction phase along the wall contacting
the fluorinated phase and into the transport phase, leading to a loss in conversion as a function of
flow rate and tubing material.”>® These factors, along with a need to be able to modulate
temperature and flow rate and control reaction initiation and termination, motivated us to design

our own in-house system for automated on-demand reaction screening and optimization.
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3.2. METHOD

Our efforts in developing an on-demand microfluidic screening system focused on the use of
biphasic reaction segments (or slugs) for a more accurate representation of the batch reaction
upon scale-up without the complication of the effect of dispersion on the reaction yield. For ease
of reagent handling, we concentrated our efforts on screening liquid phase reactions—and hence
homogenous catalysts—only. Reagents which could be dissolved in the reaction solvent or a
suitable co-solvent were acceptable. We targeted optimizing with reaction volumes less than 20
pL. In general, the smaller the reaction volume, the better the mixing within the slug'® and the
greater the ratio of material sampled to material used for analysis. With smaller dimensions,
however, came greater challenges to the precision of reagent handling and slug detection. Many
of these challenges will be elaborated upon in the following sections.

Figure 3.1 overviews schematically the system constructed for automated and on-demand slug
preparation, reaction, analysis, and feedback. Compared to previous examples of screening
systems in literature, the system was found to be unique in its versatility for organic reactions
and its utility in accurately representing larger batch-scale chemistry. The integration of sensory
equipment and control software made the system simple to operate and fully automated, allowing
the experimenter to provide reagents, propose experiments or a range of conditions over which to
optimize, start the system, and return several hours later to retrieve reaction data. Slugs were
prepared individually by a liquid handling robot, introduced through a sample loop, and
transported by an inert carrier phase to a tubular reactor. An additional reagent could be added to
the slug online to initiate the reaction. After reaction, the slugs were quenched and sampled by an
online HPLC or LC/MS. With the assistance of an MINLP feedback algorithm (discussed in
Chapter 4), new reagents and reaction conditions were proposed for subsequent slugs based on
the yields of prior experiments. A full system diagram is presented in Figure 3.2, with
photographs of main system components including pumps, liquid handling, analysis, automation,

reaction, and sampling shown in Figure 3.3(a-b).
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Figure 3.1. Concept diagram for on-demand preparation, reaction, analysis, and feedback in an automated
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Figure 3.2. Schematic of automated flow system for alkylation reaction optimization.

Figure 3.3. Automated system hardware including (a) pumps, automated liquid handler, LC/MS, and
automation and (b) reactor and online sampling.
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3.2.1. Automated Reagent Handling

On-demand reagent sampling was accomplished using an automated liquid handling robot
(Gilson GX-271, Gilson, Inc.) controlled with LabView software. A syringe pump (Harvard PhD
2000) with a 100 pL glass syringe was connected to the liquid handler probe (needle) by
approximately 50 cm of 500 um PFA tubing filled with a selected transport fluid. To prepare a
slug, the liquid handler aspirated first a 30 uL volume of inert gas, followed by aliquots of the
chosen solvent, desired reactants, and the chosen solvent again. To minimize carryover during
this process, the liquid handler probe was dipped in a wash solution before each reagent
aspiration (the choice of wash solution depended upon the chemistry; both iPrOH and THF were
used in subsequent studies). Approximately 35 pL total liquid volume was aspirated. Following
sample aspiration, the sample was “stirred” three times in the probe under inert conditions by
pulling and pushing with the syringe pump 30 uL volume. All reagents were then transferred into
a 6 port-2 way injection valve (Cheminert 10S-0503H., Valco Instruments Co. Inc.) containing a
14-uL sample loop. Switching of the sample loop to the inject position created a 14-uL slug.

As reagent carryover from one slug to the next had the potential to significantly and adversely
affect the accuracy of the optimization, we included in the sampling procedure the preparation of
three blank slugs before every on-demand slug preparation. These served to clean the probe,
injection valve, sample loop, and reaction system of any residue from prior experiments. The
compositions of the three blank slugs changed depending upon the chemistry. In all cases, water
was used as the first blank slugto dissolve any inorganic material; subsequent slugs comprised
either THF and DMF or acetone and THF (in cases where the reaction solvent was fixed, use of
that solvent as the final blank slug was advantageous in case any blank material became
deposited on the reactor walls). In sequence, the liquid handler aspirated 20 pL inert gas,
followed by 60 pL of each wash solvent with injection. The sample injection valve and sample
loop were cleared following every injection by pulling a vacuum for 3 seconds on the outlet of
the valve. This was accomplished by switching on and off a solenoid 3-way valve (P/N 01540-
11, Cole-Parmer Instrument Company, LLC) connecting the house vacuum to a trap connected
to the outlet of the valve. Residual liquid drained from the trap at the end of the optimization.
Additionally, a 6-port, 2-way valve (Rheodyne MXP7960-000. IDEX Health & Science LLC)
installed on the transfer line between the syringe pump and the probe was used to refill the

transfer line with 80 pL fresh transfer fluid after every on-demand slug preparation. The line was

79



connected through an inline degasser (Agilent G1379B p-degasser) to a supply tank of transfer
fluid. This was found to both help minimize reagent carryover (from the material transferred to
the transfer fluid during aspiration and stirring) and reduce the frequency of gas bubble
formation in the transfer line. Gas bubbles in the transfer line were often problematic to ensuring
good sampling accuracy. To correct for any gas bubble formation resulting from the probe sitting
idle, the transfer line purge was repeated three times at the start of any optimization.

Accurate sampling also required knowledge of the physics of the liquid handling system.
Because this particular liquid handler was an air displacement model, the amount of volume
aspirated by the liquid handler changed as a function of reagent density. Ordinarily this would
not have presented a problem in sampling only one solution at a time or even multiple solutions
in the same solvent. However. in the studies presented herein it was common to sample multiple
reagents with very different densities, which required a correction factor be introduced on a per
reagent basis. Assuming that the gas volume was much greater than the liquid volume, we
estimated that the change in gas bubble volume and sample volume upon upward movement of
the transfer fluid could be expressed through a pressure balance as:

AV, AV, AV,

— = P& AL thg— (3-2)

where pr, pe. and p1 were the densities of the transfer fluid, gas, and sample 1, AVy, AV, and AV)
were the respective volume changes upon aspiration, and 4 and gc were the cross-sectional area
and the gravitational constant, respectively. With prand p1 >> p,, we arrived at the relationship:

— (3.3)
AV, p

which is well-known for the calibration of micropipettes.'® By the same analysis, the relative
aspirated volumes of samples 1 and 2 was expressed as:

An_p

3.4
AV, p G4

Hence the relative densities of the two reagents were needed to accurately sample reagent |
relative to reagent 2.

The minimum volume of a prepared slug was restricted both by the sampling accuracy and the
dead volume of the sample injection valve. At approximately 0.1% of the syringe volume, the

minimum sample accuracy was roughly 100 nL; thus reagent sampling of less than 1 uL implied
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greater than 10% error in the sample. Generally it was undesirable for quantitation to aspirate
reagent samples of less than 3 uL, though given that the target range for optimizations was
generally a factor of 5 (for instance 0.5% to 2.5% catalyst) sometimes as little as 2 uL reagent
was sampled with the acceptance that at the low end of the optimization this implied 5% error.
The total sample volume aspirated needed to fill both the dead volume of the injection valve
(estimated as 15-20 pL) and the 14-uL sample loop; hence nominally 35 uL of sample was
aspirated. As many as six reagents were mixed in the liquid handler for a single slug.

The ability to keep samples under inert atmosphere and relatively free of evaporation was an
important aspect to our optimization system, particularly for the case of catalyst screening. With
Patrick Heider, we designed a 3D-printed manifold that allowed for an inert gas blanket to be
maintained over air-sensitive reagents. The manifold is depicted in illustration and in application
in Figure 3.4(a-b), with SOLIDWORKS (Dassault Systémes) design specifications included in
Appendix B. Screw threads on the underside of the manifold allowed vials containing reagents in
solution to tighten against 15 mm PTFE-lined red rubber septa (W240594SP, Wheaton). A void
space was left open above the vials through which inert gas (nitrogen or argon) at low pressure
was supplied. 15 mm PTFE-lined red rubber septa were then inserted above the void space to
seal the top of the manifold. We found much greater success with the rubber septa than with
PTFE-lined silicone, as once a silicone septum was punctured, repeated exposure to organic
solvents would cause degradation of the silicone and introduce the risk of clogging the probe.
The red rubber septa were reusable for well over 100 injections before requiring replacement.
The manifold itself was printed by Solid Concepts, Inc., from PEEK HP3, which has excellent
chemical compatibility with nearly all organic reagents. For reactions in THF, the evaporation of
THF with such a device was of concern to the accuracy of our method. We found that reducing
the flow of inert gas with a bleed valve helped greatly to reduce evaporation, as did filling the
vial closest to the inert gas inlet with neat THF (such that the atmosphere inside of the manifold
would be THF saturated). Nonetheless, we were only able to run experiments for ~48 hr before
observing significant losses in accuracy on account of evaporation.

We did not test the long-term stability of air-sensitive catalysts in this design. Though we
observed stable performance for Suzuki-Miyaura cross-coupling reactions over a few days, the
catalysts used in the study were known to be very stable in solution already and stable in air

before activation. The manifold technique assisted greatly in facilitating engineering and
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troubleshooting of the rest of the system. However, it would be anticipated that now that a
system design has been established, a more generalizable solution may be to store the liquid
handler and reagents in an enclosed glove box or glove bag. This may also help streamline

catalyst preparation, without the need to degas individual solution vials.

Figure 3.4. Septum-sealed inert gas manifold for reagent storage under inert gas atmosphere, (a)
SOLIDWORKS rendering and (b) photograph of 3D-printed device.

3.2.2. Slug Transport and Reaction

We considered several strategies and combinations of materials for slug transport, including
methodologies for organic slugs dispersed in an aqueous carrier phase, organic or aqueous slugs
dispersed in a fluorinated carrier phase, and organic or aqueous slugs transported by a gas phase.
Though the former two strategies targeted minimization of reagent carryover based on the
preferential wetting of the carrier phase relative to the reaction slugs and allowed for more
straightforward implementation because of the incompressibility of the transport phase, we
concluded in both cases that the miscibility of reagents in either liquid-liquid system presented a
problem to accurate representation of batch kinetics. With an aqueous-organic system, it was
well understood that the partitioning of reagents between both phases would lead to inaccurate
and generally unpredictable reagent compositions within the organic slugs. This was thought to
be much less significant in fluorinated oil-organic systems, but recent studies have shown that
mixing of nonpolar organic reagents such as toluene and THF into fluorinated oils can be
appreciable even at room temperature,'®"'2 with the miscibility increasing with temperature.'®?
The problems associated with reagent solubility in fluorinated oils have led to more in depth

investigations into the accuracy of the Accendo Conjure system for screening Suzuki-Miyaura
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cross-coupling reactions.'*® Empirically, we observed 14 uL THF slugs, for example, to
completely dissolve in FC-70 and FC-3283 at temperatures above 80°C. Though most limiting,
miscibility was not the only negative factor brought about by the use of fluoroinated oils in the
screening of organic reactions. Fluorinated compounds are also excellent solvents of oxygen,
meaning considerable degassing was required for their use (not to mention polymers such as
Teflon AF are incompatible with perfluorinated reagents), and the immiscibility of these
compounds in aqueous environments caused nearly immediate damage to HPLC performance,
requiring backflushing of the column with THF for removal. Too fast an acceleration of flow rate
also caused “budding,” or the breaking off of pieces of slugs into the fluorinated oil (as was also
observed by Hawbaker et al.'®®). The density difference of most fluorinated oils relative to
organic solvents limited the maximum diameter of tubing that could be used to 500 pm before
gravity forces became comparable to surface tension forces.

The use of inert gases such as nitrogen or argon avoided all of the limitations listed above,
though wetting, gas compressibility, and gas permeability all became new problems to address.
We observed that in the uses of stainless steel, PEEK, and even PFA tubing led to significant
wetting for solvents such as THF, which in turn led to degradation of the slug along the tubing
wall. PDMS was not considered because of its incompatibility with organic reagents.
Considerable improvement was observed with 750 um inner diameter FEP as the tubing
material. Slugs were transported through the FEP tubing by an 8 pL stainless steel syringe
(Harvard Apparatus) containing 6.9 bar (100 psi) gas driven by syringe pump (Harvard PhD
2000). The compressibility of the gas mandated that for steady flow rates to be achieved,
constrictions in the flow path had to be limited to no less than 500 pm and the pressure be
maintained at or above 6.9 bar. A check valve was installed upstream of slug preparation and
injection to dampen the effect of pressure oscillations further. Sample loops and unions upstream
of the reactor were made from Teflon to ensure as little carryover as possible in the system. More
consistent gas-liquid flow was observed by use of a 1 mm inner diameter T-junction at the
reaction quench. Pressure in the system was controlled at 6.9 bar with an inert gas-regulated Parr
bomb, approximately 40 mL in volume. The bomb was drained during refill of the gas and
quench syringes by automatically opening a 6-port, 2 way valve (Rheodyne MXT715-000). To

minimize gas loss during regular system operation, 6.6 bar of backpressure (5.2 bar and 1.4 bar
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backpressure regulators, Upchurch Scientific) was applied to the gas vent of the Parr bomb
during regular system operation.

For reaction, the FEP tubing was inserted into a “pancake” reactor housing (Figure 3.5(a-b)),
comprising of an aluminum chuck with a 1.6 mm groove for the tubing, a raised lip with an O-
ring, and a sheet of polycarbonate which compressed against the O-ring to allow for
pressurization of the reactor to 6.9 bar. The custom reactor was designed in collaboration with
Andrea Adamo, Baris Unal, and Everett O’Neal. SOLIDWORKS design specifications are
provided in Appendix B. With this device, we were able to rapidly heat and cool the reactor
tubing between 30°C and 120°C and neutralize gas permeation out of the reactor—a factor which
accounted for up to a 20% difference in residence time at high temperature. Residence times in
the reactor were maintained between 1 min and 10 min (we empirically observed mixing to take
place on the order of 1-10 s) at gas flow rates of 15-250 uL/min. A thermocouple was introduced
through the gas supply line of the reactor and held in place on the aluminum surface by a thin
sheet of polycarbonate and thermal paste. The reactor was heated with four 50 W cartridge
heaters (McMaster-Carr Supply Company, two pairs spaced equally on opposite sides of the
device). A PID temperature controller (OMEGA CN9412) controlled the reactor temperature.
Reaction slugs were not introduced into the system unless the reactor temperature was within
1°C of the reaction set point temperature. Because acceleration of slugs was observed to occur
when trailing slugs entered the heated reactor (a consequence of surface-tension driven
thermocapillary flow'®?), blank slugs were not prepared and introduced until a reaction slug had

traversed a full reactor volume in the system (240 pL).

Figure 3.5. Pressure-sealed “pancake” reactor comprising a Teflon tube in an aluminum housing, (a)
SOLIDWORKS rendering and (b) photograph of packaged device with polycarbonate cover, FEP tubing,
and thermocouple.
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3.2.3. Online Injection

Considerable effort was dedicated to enabling online injection of one or more activating
reagents into flowing slugs. Having the capacity for online injection was essential to having
accurate reaction time control in the optimizations, as few chemistries are completely inactive at

1.,%¢ where

room temperature. Though we adopted an approach similar that used Hatakeyama ef a
the online reagent was introduced via syringe pump into a slug through a T-junction, we found
the repeatability of the online addition technique to be difficult to master without the proper
combination of hardware and materials. Any compressibility—from gas or from leaks—in the .
online injection stream led to backflow from the main system into the normally stagnant
injection line, causing inconsistent injections.

The online injection reagent was stored under an inert atmosphere and sampled by a 100 pL
or a 250 pL glass syringe (Gastight, Hamilton Company) syringe driven by a syringe pump
(Harvard PhD 2000). A 6-port, 2-way valve (Rheodyne MXP7960-000) was installed on the line
to allow switching between refill of the syringe and online injection. Under normal continuous
flow conditions, the valve was exclusively in the online injection position. Approximately 1 m of
250 um inner diameter PFA tubing connected the valve to a T-junction (500 um ID Teflon,
Upchurch Scientific), which intersected the main system 6 cm before the reactor inlet. As a slug
passed through the T-junction, the syringe pump infused a volume of 2-10 pL online injection
reagent into the slug. The flow rate of the injection was chosen such that the volume was infused
while 80% of the slug passed through the T-junction. Refractive index sensors (EE-SPX613,
Omron Corporation) were attached to the Teflon tubing before and after the T-junction to
correctly time the online reagent injection and to verify that the slug volume was within an
acceptable tolerance (+4.0 pL) following the online injection. This was intended as a verification
that no gas bubbles were introduced into the slug and that the slug had not broken apart
upstream.

Leaks and gas bubbles were consistent inhibitors of reliable online injection. To ensure
accuracy to 100-250 nL, the only chemically-suitable commercial options available for reagent
dosing were glass syringes, which were found to leak over the course of a few optimizations with
exposure to 6.9 bar pressure. The connection of the glass syringe to Teflon tubing was also often
a source of leaks. We found the use of female Luer connectors sold by Upchurch Scientific to be

most leak resistant, in comparison to the use of ¥-28-Luer adapters. Recently Hamilton began
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selling 4-28 male threaded syringes which may be even more leak free, but that was near the tail
end of this thesis. Use of the 6-port, 2-way valve for refilling was mandatory compared to a 3-
way solenoid valve because of the smaller dead volume and better pressure resistance. To avoid
the introduction of gas bubbles into the injection line, the entire refill line was purged when new
stock solutions were introduced by detaching and refilling the injection syringe. Naturally it was
desirable to make the connection between the syringe and the T-junction as short as possible. By
using a Teflon T-junction, less sticking and carryover of reagents were observed. A 500 um T-
junction was also required to prevent injected material or segments of slugs from becoming

trapped in the swept volume of the T.

3.2.4. Quenching and Online Analysis

Downstream of the reactor, slugs were quenched at room temperature with a continuously
flowing solution delivered via syringe pump (Harvard Apparatus PhD 2000 with 8 mL Harvard
stainless steel syringe) through a T-junction (I mm ID Teflon, Upchurch Scientific). A third
refractive index sensor was used downstream of the quench to time the HPLC sampling
accurately. Following sampling with a 30 pL sample loop in a 6-port, 2-way valve (Rheodyne
MXP7960-000), the sample was transported via syringe pump (Harvard Apparatus PhD 2000
with I mL Hamilton Gastight syringe) containing the quench solution to a second 6-port, 2-way
valve (Agilent G1158A) with a | pL. PPEK sample loop. An LC/MS (Agilent G1312B binary
pump, G1329B ALS, G1316A column compartment, G1365C multi-wavelength detector, 6120
quadrupole MS) method was remotely started with LabView software. The LC flow rate
increased from 0.5 mL/min (standby mode) to 3.5 mL/min (required for method), and the sample
was injected into the HPLC after 15 s. The sample passed through a 0.5 pm filter (Upchurch
Scientific), then was heated to 40°C, passed through a T-junction (250 pm stainless steel Valco),
and split by pressure difference between a 1.8 um particle diameter column (Agilent Zorbax SB-
Ci8 2.1 x 50 mm) and a 4.6 um particle diameter column (Agilent Zorbax SB-C18 2.1 x 50
mm). The sample from the 1.8 pm particle diameter column was detected by UV and passed to
the MS. A suitable HPLC method was found to be 9 min, which included a gradient ramp from
95/5 water/acetonitrile + 1% formic acid to 0/100 acetonitrile + 1% formic acid to 95/5

water/acetonitrile + 1% formic acid. Following UV analysis, the spectral baseline found by
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subtraction of a reference and ChemStation outputted an Excel data file which was retrieved by

LabView (ver. 8.6). The product yield was calculated in MATLAB (ver. R2011a).

3.2.5. Automation

Valve manipulation, HPLC method initiation, and analog input communication with the
refractive index sensors were accomplished using a Compact FieldPoint controller from National
Instruments (cFP-2020, cFP-RLY-425, cFP-Al-110). The entire system including pumps, liquid
handler, temperature control, refractive index monitoring, valving, remote triggering of the
HPLC gradient, and MATLAB optimization was controlled with LabView. With the exception
of drivers, which were obtained from suppliers or from National Instruments, the LabView
software was written completely in-house for the purpose of on-demand reaction screening. The
LabView routine comprised a central VI (“Master VI.vi”) that executed simultaneous loops for
flow rate manipulation, reaction preparation, temperature control, online monitoring, HPLC
sampling, HPLC analysis, and optimization. Data for individual slug experiments were recorded
in a single matrix in MATLAB (“slug_tracker™). These data were recorded every 20 s in the
form of text files documenting information about each slug experiment (concentrations, reagents,
set temperature, and set reaction time), status of the experiments (time spent by slug in system
and analysis and objective function value), system information (current flow and temperature
conditions), and analysis data. Indices of LabView and MATLAB functions are provided in

Appendix B.

3.3. EXPERIMENTAL

3.3.1. Reagent Stirring and Carryover

To test reagent stirring, a solution of 210 mg (0.20 M) 3-bromoquinoline in 5 mL. DMF
containing 80 mg (0.10 M) biphenyl and a solution of 80 mg (0.10 M) biphenyl in 5 mL DMF
were stored in test tubes in the liquid handler. The liquid handler sampled from the biphenyl
solution, the bromoquinoline/biphenyl solution, and the biphenyl solution again in differing
relative amounts summing to 30 pL, with 30 pL air bubbles before and after. In one experiment
the sample was injected immediately into the system as a slug, collected, and analyzed by HPLC.

In a second experiment, the sample was stirred in the liquid handler probe by pushing and
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pulling the liquid handler syringe via syringe pump multiple times, then the sample was injected
into the system, collected, and analyzed by HPLC. The resulting calibrations were compared.

Multiple tests of reagent carryover were conducted. In a test of the effect of pinched tubing on
reaction performance with a fluorinated carrier phase, the reaction in Scheme 2.1 was carried out
in slug flow. Isolated solutions were prepared of 225 mg 1 (0.30 M) and 16 mg veratrole in 5 mL
ethanol, 650 mg (1.50 M) 2 in 5 mL ethanol, and 750 mg (1.50 M) EtsN in 5 mL ethanol. The
solutions were stored in test tubes in the liquid handler along with a test tube of neat ethanol and
sampled as described in Section 3.2 to produce 10 uL (stirred) slugs. The slugs were flowed at
14.3 pL/min through 244 pL unheated Teflon tubing, followed by 99 pL of tubing at 40°C, and
finally 60 pL of unheated tubing. The slugs were collected at the outlet in a bath of isopropanol
and analyzed by HPLC. Two DMF blank slugs were introduced after each analytical slug. 0.04”
PEEK "-28 connectors (two T-junctions, one union) with flangeless ferrules were used for
connections. Following the first set of experiments, the ends of the segments of Teflon tubing
were cut, and the fittings were replaced with %-28 nuts with superflangeless ferrules. The
sampling procedure was repeated. A list of slug reaction conditions for both sets of experiments
is given in Table 3.1.

In a test of carryover in the gas flow system, neat 4-methoxybenzyl chloride and THF were
stored under nitrogen in the liquid handler. A slug comprising 1 M 4-methoxybenzy! chloride in
THF was prepared following the procedure described in Section 3.2, routed through the
screening system (without online injection) at 30°C and a residence time of 5 min, and analyzed
by LC/MS. Two subsequent slugs were then prepared with only THF as the reagent and routed
through the system at the same flow rate and temperature and analyzed by LC/MS. The

procedure was repeated 9 times.
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Table 3.1. Slug experimental conditions for 2,4-dichloropyrimidine-morpholine reaction test of carryover.

Experiment Conc. 1 in Slqg M) Conc. 2 and Et;N in Slu% (M) )
Flangeless
Ferrules
1 0.15 0.30
2 0.15 0.30
3 0.15 0.30
4 0.15 0.30
5 0.15 0.30
6 0.15 0.30
7 0.15 0.30
8 0.15 0.375
9 0.15 0.375
10 0.15 0.375
11 0.15 0.375
12 0.15 0.375
13 0.15 0.375
Superflangeless
Ferrules

1 0.15 0.0

2 0.15 0.0

3 0.15 0.15
4 0.15 0.15
S 0.15 0.375
6 0.15 0.375
7 0.15 0.375
8 0.15 0.30
9 0.15 0.30
10 0.15 0.30

3.3.2. “Pancake” Reactor Modeling

Considering the novelty of the “pancake” reactor design, we were interested in several factors
affecting the heating of slugs within the Teflon tube reactor, namely the evenness of heating
across the slug, the time for the slug temperature to equilibrate, and the temperature gradient
across the aluminum chuck. To assess the heating of a slug, we constructed a 2D simulation of a
microchannel cross section in COMSOL Multiphysics (Comsol Inc.) and simulated slug heating
in time. The full cross section geometry is shown in Figure 3.6a, with a zoomed in profile of the
microchannel shown in Figure 3.6b. The microchannel was assumed to be made of 750 pm FEP
tubing carrying (stagnant) THF. To simulate entrance of the slug, a thin thermal boundary layer
was assumed along the inner tubing wall with zero thermal conductivity before slug entrance and
the thermal conductivity of FEP after slug entrance. The tube was situated in a small pocket of
nitrogen against the aluminum chuck. A layer of polycarbonate was placed above the chuck, with

ambient nitrogen and another layer of polycarbonate placed above the reactor surface. To model
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ambient conditions, a pocket of air was added to the model above the outer polycarbonate
surface. An isothermal 373.15 K boundary condition was applied to all sides of the aluminum
surface, with the left and right edges of the polycarbonate, nitrogen, and air treated as periodic
boundary conditions. A heat flux of 10 W/m? K was assumed at the outermost air boundary.

Meshing was performed automatically by COMSOL. Up to 60 s were simulated in time at 0.2 s

time steps.
a) b)
Air
PC
N,
N,

/ FEP

PC L~ — THF
- Aluminum

Figure 3.6. (a) Geometry studied for COMSOL simulations of the pancake reactor and (b) zoomed in view of
the Teflon tube cross section. PC = polycarbonate.

Additionally, a 3D steady-state COMSOL simulation was constructed to model heat
distribution throughout the aluminum reactor block. Cartridge heaters with a power input of 6 W
were modeled in the simulation, which comprised a 10.3 cm x 10.3 cm x 2 cm aluminum block
with raised lip and two layers of polycarbonate separated by a headspace of nitrogen. A heat flux
of 10 W/m? K was assumed for all boundaries, aside from the insulated cartridge heaters, and
radiation with a surface emissivity of 0.09 and ambient temperature of 293.15 K was assumed. A

normal sized mesh was generated automatically by COMSOL.
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3.3.3. Comparison of Reaction Yield in Batch and in Slugs

For validation of the scalability of our method, we compared the results of Suzuki-Miyaura
cross-coupling reactions in batch to results from the segmented flow system. All reagents were
used as received. We began in batch with the cross-coupling in Scheme 3.1. A 2 mL solution
containing 187.1 mg 2-chlorobenzoxazole (6, 99%, Sigma-Aldrich), 378.5 mg 1-boc-2-
pyrroleboronic acid (7, 98%, Frontier Scientific), 23.4 mg XPhos-OMs precatalyst (L1-P1,
synthesized according to published procedure!®®), 25.7 mg naphthalene (99%, Sigma-Aldrich) as
the internal standard, and THF (anhydrous, >99.9%, inhibitor-free, Sigma-Aldrich) was prepared
under argon. To a 7 mL vial was charged 400 pL of the pre-made reagent solution, 600 pL THF,
and 500 pL 1 M aq. K3POs (>98%, Sigma-Aldrich), which had previously been degassed by
sonication under vacuum and stored under argon. The reaction was stirred under argon at 60°C
for 10 min, quenched with a 1:1 solution of acetonitrile and water, and analyzed by LC/MS. The

product 8 was isolated by column chromatography.

o Boc 2 mol% Pd Precatalyst Boc NH2
N L1-P1 (XPhos-OMs) N Pd\
) Cl+{ )—BOH) OMs
2:1 THF:1 M aq. KzPO,4 / U
(6) (7) 60°C Cy,P |Pr
0.167 M 0.25M 10 min L1= 'Pr
Per Vol Conc.  Per Vol Conc. iPr

Scheme 3.1. Suzuki-Miyaura cross-coupling of 2-chlorobenzoxazole and 1-boc-2-pyrroleboronic acid
catalyzed by XPhos-OMs precatalyst.

Similarly, we studied in batch the single-phase cross-coupling in Scheme 3.2. A 2 mL
solution containing 142.0 mg 2-chloropyridine (9, 99%, Sigma-Aldrich), 430.0 mg 7, 22.6 mg
L1-P1, 24.4 mg naphthalene as the internal standard, and THF was prepared under argon. To a 7
mL vial was charged 400 pL of the pre-made reagent solution, 600 pL THF, and 500 pL base.
Two base solutions were tested: 1 M 1,8-diazabicycloundec-7-ene (DBU, 98%, Sigma-Aldrich)
in 1:1 THF:H20 and 1 M aqg. K3POas. In both cases the reaction was stirred under argon at 60°C
for 10 min, quenched with a 1:1 solution of acetonitrile and water, and analyzed by LC/MS. The

product 10 was isolated by column chromatography after using K3POa as base.
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0.167 M 0.25 M 60°C
10 min

Scheme 3.2. Suzuki-Miyaura cross-coupling of 2-chloropyridine and 1-boc-2-pyrroleboronic acid catalyzed
by XPhos-OMs precatalyst.

The reactions in Scheme 3.1 and 3.2 were repeated in the flow reaction system. A stock
solution containing the aryl halide, boronic acid, precatalyst, and internal standard in THF was
stored under argon in the liquid handler along with a vial of neat THF and a vial of degassed
water. For Scheme 3.1, a 2 mL reagent solution was prepared containing 203.4 mg 6, 388.4 mg
7,23.8 mg L1-P1, and 21.7 mg naphthalene in THF. 14 pL slugs were prepared by sampling the
reagent solution and THF in a 1:1.5 ratio. For Scheme 3.2, a 5 mL reagent solution was prepared
containing 135.5 mg 9, 419.8 mg 7, 94.0 mg L1-P1, and 47.3 mg naphthalene in THF. 14 pL
slugs were prepared by sampling the reagent solution, THF, and water in a 1:0.875:0.625 ratio.
Base solutions (I M aq. K3PO4 or | M DBU in THF) were introduced online in a 1:2 ratio with
the slugs, forming 21 pL reaction segments. The segments reacted at 60°C for 10 min with argon

carrier gas and were analyzed by LC/MS.

3.4. RESULTS AND DISCUSSION

3.4.1. Reagent Stirring and Carryover

Examining the results of reagent calibrations with and without reagent stirring (Figure 3.7),
we observed substantial improvement in the system’s ability to quantitatively dose reagents with
the use of reagent stirring. Though all reagent concentration levels benefited in reproducibility
and accuracy from stirring, in particular the accuracy improved the most with the most 3-
bromoquinoline introduced in the sample. In general, the more stirring repeats, the more
improved the accuracy; however no significant improvement was seen after the use of three
back-and-forth stirring actions. This was reasoned optimal in an effort to conserve preparation
time. Though faster flow rates also led to faster mixing, flow rates greater than 250 pL/min
occasionally caused parts of the slug to break off in the transfer line, leading to cross-
contamination and a worse calibration performance. Hence 250 pL/min was reasoned to be the

optimal flow rate.
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Figure 3.7. Schematic of reagent sampling and stirring and effect upon calibration reproducibility.

The effectiveness of stirring relates to the mixing rates of slugs, discussed in Section 3.1. By
creating air or inert gas bubbles on either side of the sample slug, we were able to enhance
mixing in the sample using the same convective mixing strategy that is employed in slug flow.
This suggests an opportunity in HTE that to our knowledge has not been pursued—the controlled
mixing of reactants in a needle, followed by direct sampling by HPLC. Though this presents a
design challenge in terms of heating and pressure control, the ability to handle small volumes
accurately may make this concept an idea worth exploring further.

Carryover of reagents was of great concern in design of this system and was tested
intermittently at every stage of development. A key aspect of reaction carryover that we found
not to be accounted for clearly in literature was the limitation in reaction kinetic accuracy that
results from the use of blank slugs. Clearly blank slugs are beneficial in screening, as they
prevent reagents or catalysts from diffusing backwards into upstream experimental slugs,
potentially creating a false positive. However, the use of blank slugs alone for quantitative
accuracy in HTE systems is insufficient for the reason illustrated in Figure 3.8a. Note that if a
loss of material from an experimental slug is a regular enough occurrence to mandate the use of

blank slugs. the loss of material from a blank slug into a following experimental slug should
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happen approximately as often. This implies in the simplest case that a volume of reacting
material within the experimental slug is replaced with a volume of blank material from an
upstream slug, hence diluting the experimental slug. If obtaining accurate reaction kinetics or an

accurate yield were the goal of the experiment, the diluted slug is no longer a model for the

scaled-up batch reactor.
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Figure 3.8. (a) Illustration of the effect of pinched tubing upon slug dilution upstream and the effect of (b)
pinched and (c) new, un-pinched tubing upon reaction concentration and reproducibility. Black dotted line
represents predicted starting material concentration and blue solid line represents observed. The excess
conversion in (c) was attributed to not having a quench on the reactor outlet.

To address this problem, it was necessary to identify the source of reagent carryover in the
automated system. Though factors such as tubing wetting, material left on the outside of the
liquid handler probe or injection valve, and residual material in the HPLC sampling valve all
contributed some to carryover (hence many of the system design features discussed in Section
3.2), we found the largest source of carryover to be in constrictions of the flow path. As shown in
Figure 3.8a, our hypothesis was that slugs passing through flow constrictions were particularly
susceptible to “budding” because of the pressure oscillation introduced across the length of the
slug, and this resulted in small residues of slug material being left at tubing orifices. These
residues were then exchanged with subsequent slugs. Two strategies were employed to minimize
constrictions: first, connectors were chosen to most accurately match the inner diameter of the
tubing; and second, flangeless fittings (which crimp onto the tubing) were replaced with
superflangeless fittings (which have a metal ring that crimps onto the ferrule, leaving the tubing

generally undamaged).
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As evidenced by the data in Figure 3.8b and Figure 3.8 c, the reproducibility of results in
switching from flangeless to superflangeless fittings was greatly improved. Additionally, the
reaction conversion increased when superflangeless fittings were used. The data were compared
against the kinetics for the reaction of 1 evaluated in Chapter 2. We observed increased
conversion in all reaction cases with superflangeless fittings because of the lack of a quench and
online injection control in the test system. Later experiments with the gas phase system
demonstrated better the accuracy of the system with controlled reaction initiation/termination.

Finally, we considered in the gas phase system the amount of carryover with THF slugs. On
average, the LC area for 4-methoxybenzyl chloride was 6578 in the 1 M “experimental” slugs,
216 in the first subsequent THF slugs, and 116 in the second subsequent THF slugs. The percent
carryover was 3.3% % 0.6% in the first THF slugs and 1.8% =+ 0.6% in the second THF slugs
with a maximum carryover in the first THF slugs of 3.9% (twice). With added flushing of the
HPLC sample loop after this carryover experiment was performed, we believe the final system

carryover may now be even less than the 3.3% reported.

3.4.2. COMSOL Simulations of Heat Transfer in the Pancake Reactor

The thermal profile within a reactor channel and across the reactor as a whole were modeled
with  COMSOL simulations. We generally observed the reactor temperature to rapidly
equilibrate, with the formation of a modest temperature gradient across the Teflon tubing. The
gradient formed as a result of the absence of a heat-conductive material above the Teflon tubing.
Figure 3.9a illustrates that in the first 10 s of heating, this gradient was approximately 10°C from
bottom to top of the tubing at 100°C; however fluid inside of the tubing only experienced a 3°C
temperature gradient from top to bottom. The evolution of the temperature gradient within the
microfluidic channel is shown in Figure 3.9b at 5's, 10 s, 20 s, and 30 s time points. After 30 s,
the fluid inside the channel was found to be uniformly within 2°C of the set reactor temperature.
Thermal equilibration of the inner fluid was notably faster when the tubular reactor temperature
had equilibrated to the set point temperature (Figure 3.9(c-d)). Hence, experimentally the reactor
was required to equilibrate for a minimum of 30 s before introduction of a slug, at which point

the time for the slug to heat to within 1°C of the reactor set point temperature was less than 10 s.
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Figure 3.9. (a) Temperature profile for pancake reactor cross-section for 373.15 K aluminum block and 750
pm ID FEP tubing after 10 s. (b) Temperature of the center of the channel as a function of vertical position at
5 s (blue), 10 s (green), 20 s (red) and 30 s (aqua). (¢) Temperature profile for pancake reactor cross-section
for 373.15 K aluminum block and 750 pm ID FEP tubing after 10 s after allowing system to equilibrate for 30
s. (d) Temperature of the center of the channel as a function of vertical position at 5 s (blue), 10 s (green), 20 s

(red) and 30 s (aqua) after 30 s of equilibration.

Steady-state COMSOL simulations of the reactor module (Figure 3.10(a-b)) allowed for

validation of the assumption of an isothermal reactor surface and identification of the optimal

position of the 50 W maximum cartridge heaters. We found that four cartridge heaters supplying

heat in parallel were needed to distribute heat evenly across the reactor surface. Shown in Figure

3.10a, the placement of two cartridge heaters with 2.3 cm spacing on each opposite side of the

reactor block allowed for the reaction area to be heated to within 1°C of the desired set point

temperature. [llustrated in Figure 3.10b, the gradient across the center reactor cross section was

maintained within 0.5°C. Note that although the reactor heated the thin layer of polycarbonate

affixed to the reaction surface to within 1°C of set point, both the gas above the reaction surface

and the outer polycarbonate layer remained much cooler—as cool as 44°C on the outer edge of
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the device. We propose that further optimization of this design could allow for stackable reactors

operating in parallel, as temperatures in each reactor can be controlled independently.
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Figure 3.10. Pancake reactor temperature profile at 373.15 K for (a) surface of the aluminum chuck and (b)
cross-section of the chuck with cartridge heaters and polycarbonate covers.

3.4.3. Comparison of Reaction Yield in Batch and in Slugs

The batch synthesis in Scheme 3.1 yielded 81% of the product 8 by HPLC with agreeable
isolated yield. Attempts to make the product 8 at the same yield in flow were less successful, as
evidenced by Figure 3.11a. Slug flow yields for the synthesis of 8 varied in the range of 30-50%
despite the equivalent reaction time and temperature. A similar observation was made for the
synthesis of 10 with K5;POu as the base. Under batch conditions, 64% yield of 10 was observed
by HPLC; however the reaction yield was less than half in the segmented flow system. By
transitioning to single-phase reaction conditions with the use of DBU as the base, we were able
to synthesize 10 at 57% yield, similar to the results found with K3POs as the base. Unlike in the
use of an inorganic base, the use of the organic base DBU resulted in excellent agreement

between batch and slug flow yields (Figure 3.11b) and much improved consistency from one
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experiment to the next. Water was still found to be necessary for obtaining acceptable yields in

the DBU reaction as a source of hydroxide.
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Figure 3.11. Comparison of slug flow yields to batch yield for (a) reaction of 2-chlorobenzoxazole and 1-boc-
2-pyrroleboronic acid with aq. KsPO4 base and (b) reaction of 2-chloropyridine and 1-boc-2-pyrroleboronic
acid with DBU base.

We reasoned from our results and from the physics of the slug flow system that mass transfer
rates factored significantly into the agreement of yields between batch and flow syntheses. In
biphasic systems, we observed partitioning of the aqueous and organic phases to opposite ends of
the slug, creating only a single interface at which the reaction could occur. This occurred
regardless of the injection rate of the online base stream. Although the surface tension forces
contributed to mixing of the separate phases in these biphasic slugs, no mechanism was available
to disrupt and regenerate the aqueous-organic interface. This interface regeneration occurs
regularly in a stirred batch reactor or a flow system with static mixing elements, hence reducing
the mass transfer limitation. We found static mixing elements to not be an option in our
segmented flow system on account of the carryover introduced from breaking apart the slugs.
The partitioning of the two phases at the initial point of online injection led to the inconsistency
in yields in Figure 3.11a. For slugs where the aqueous and organic phases were more evenly
distributed and in smaller segments before phase separation, the yield improved relative to
having a single phase front-loaded or back-loaded in the slug.

By making the reaction medium homogeneous, the mixing across the slug was sufficient to
match the yield observed in batch. This particular DBU system was found to be comparable to

the more common THF/K3PO4 system in terms of yield and could be beneficial to continuous
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flow systems in general because of the absence of mass transfer limitations. We did not have
success with K‘BuOH as the base or with the DBU/water system with 7 (in the latter case 7 was
observed to hydrolyze rapidly in the presence of water). Thus the DBU system was less general
but still allowed for several Suzuki-Miyaura case studies to be explored in Chapter 6.

To improve mass transfer in the biphasic reaction segments, Abolhasani ef al. successfully
demonstrated the application of an oscillatory flow reactor (OFR).'® In OFR screening, a single
slug was moved forward and backward in a Teflon tube reactor by pushing and pulling on a gas-
filled syringe, causing the aqueous phase to pass through the organic phase and hence improve
mixing. This technology was applied to both Suzuki-Miyaura cross-coupling reactions and
Buchwald-Hartwig amination reactions, with agreeable yields found with batch. It is expected in
future work that this technology will be incorporated into the automated screening system
presented in this chapter to expand the generality of the on-demand screening method from

homogenous single-phase reactions to all liquid-phase reactions.

3.5. CONCLUSIONS

The literature of droplet and segmented flow screening systems is diverse in both application
and design. However, the subset of systems designed for truly on-demand reaction screening is
considerably more limited. The primary challenges presented in on-demand reaction preparation
are versatility, both in the scope of chemistries to be studied and in the range of variables that
can be accessed in a screen or optimization, and accuracy, which we found to be of particular
concern in the use of liquid-liquid screening systems for reaction modeling. The packaging of
maximal versatility and accuracy in a simple, easy to access automated platform presented a
challenge within itself.

While undoubtedly leaving room for improvement, the system presented in this chapter makes
great strides in reaction versatility and accuracy, all while allowing users a “set-it-and-forget-it”
approach to reaction characterization. The scope of chemistries available to the system is to our
knowledge unlimited, provided that reagents can be prepared into a single homogenous solution.
In forthcoming chapters, we illustrate that the system performs equally well screening across a
diverse array of organic solvents and generating accurate and reproducible results for palladium-

catalyzed cross-coupling reactions. Reagent volumes are confined to 15-20 pL slugs, and the
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amount of reaction material consumed per data point is reduced to 35:1 from the minimum 500:1
presented the continuous flow system in Chapter 2.

In continued work, it is expected that the incorporation of oscillatory slug flow into the
system will enable enhanced mixing in biphasic liquid-liquid reactions, allowing these to be
modeled as equally well as homogeneous chemistries. Better parallelization of reactor modules
and streamlined HPLC injections will accelerate the reaction cycle time well beyond the current
limitation of 10 min per experiment. Overall, on-demand reaction characterization will
ultimately allow users access to reaction libraries, kinetics, and optimized conditions at the press
of a button. Of course, all of these will require smarter computer software that compiles
information about the current chemistry in the context of other related chemical systems, as a
process chemist would draw upon in his or her reaction development work. To this eventual end.
Chapter 4 presents our development of a black box methodology for optimizing reactions for
both discrete variables and continuous variable conditions, offering a first step at solving such a

complex experimental design problem.
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4. AN ADAPTIVE RESPONSE SURFACE METHODOLOGY FOR
OPTIMIZATION OF DISCRETE AND CONTINUOUS VARIABLE
CHEMICAL SYSTEMS

4.1. INTRODUCTION

The optimization of chemical systems depends on manipulation of two classes of factors:
continuous variables (such as temperature, reaction time, or concentration) and discrete or
decision variables (such as choice of catalyst or solvent). Though often treated independently, it
is difficult in most synthetic chemistry applications—and certainly in optimization—to separate
discrete and continuous variable interactions. The best catalyst may depend on the loading at
which it is most active, or the best solvent may depend on molecular interactions which change
as a function of temperature or reagent composition.'®” The interplay of both discrete variables
and continuous variables therefore represents an NP-hard MINLP which, in the most complex of
cases, must be solved from kinetic models constructed for each distinct combination of discrete
variable factors. In this chapter we do not venture to solve such a daunting problem; rather we
ask whether a simple approach can be constructed for simultaneous optimization of discrete and
continuous variables in the case where no mechanistic shift occurs, yet the substitution of
discrete variables still has a significant effect upon reaction rate. Most importantly, no a priori
model is made available for the reaction kinetics, as is common in early-stage reaction discovery
and development, and the time and material spent optimizing for each discrete variable has to be
minimized without compromising our method’s ability to find the optimum.

In the absence of a model, the approximation of continuous variable interdependencies using
response surface methodology (RSM) is a popular strategy, first introduced by Box and
Hunter'®® and later the focus of many books and reviews.!%*!" In the simplest case, fractional or
full factorial design experiments are used to tease out relationships among independent factors.
More optimal designs can be constructed for estimation of interaction and quadratic effects of
variables upon a response—the most common of these designs being central composite
designs'”® and Box Behnken designs.'” Though abundant in academia and in industry, these
standardized designs have no built-in feedback methodology to increase resolution of an
optimum and become less and less efficient as the complexity of the experimental and/or

computational system increases.
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To rapidly optimize more complex black box systems, Box and Draper introduced
evolutionary operation (now more popularly referred to as sequential RSM),'”'7® for which the
goal was to construct a response surface around a proposed optimum, test the optimum and
model experimentally, and update the response surface in the subsequent iteration. Sequential
RSM has emerged as an effective strategy in application to black box optimization
problems.'”1717%180 T solve a complex optimization problem, sequential RSM is generally
coupled with adaptive RSM (ARSM). In ARSM, the response surface is broken into subspaces,
with regional optima compared against a common threshold to determine whether regions of the
experimental space can be disregarded in the optimization.'®' Original ARSM algorithms
formulated by merging central composite designs and Latin hypercube designs were proposed by
Wang and coworkers.'8!8> To accelerate convergence. optimal design of experiments criteria
such as minimization of the volume of the Fisher information matrix (D-optimality).
minimization of the diagonal elements of the Fisher information matrix (A-optimality), or
minimization of the variance on a specific point in the experimental design space (G-

optimality)'8*

can be incorporated into the sequential ARSM algorithm.

When integrated with a global search strategy such as branch-and-bound (B&B), sequential
ARSM lends itself well to optimization over black box MINLPs.!®>18¢ [n contrast to genetic and
evolutionary algorithms,''>'87-188 ARSM is faster,'®>!°" deterministic, and—as is advantageous in
reaction Kinetics—provides quantitative insight into the interaction of the response with each
factor or combination of factors.'”’ Much of the research in MINLP ARSM has focused on
optimization of surrogate models, which are response surface models fitted in place of expensive
computer simulations.'”>'> Several MINLP ARSM strategies have been published recently. For
example, Holmstrom et al. developed an algorithm which treated all variables in an MINLP,
including integer ones, as continuous variables and solved using a surrogate model with
feasibility checks at each iteration.'”® Rashid et al. explored optimization using radial basis
functions in MINLPs with nonlinear constraints.'”” Miiller et al. further introduced SO-MI,
which is a surrogate algorithm for global optimization for constrained MINLPs.'” Studies that
apply these methods to experimental situations data have been presented as well. In an
application to groundwater management, Hemker et al. explored the advantages of B&B with
surrogate models in comparison to genetic algorithms or implicit filtering.'®® For noisier

problems, Davis and lerapetritou introduced a kriging method with a B&B search that obtained
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predictions and approximated variances at each iteration of the search. The authors illustrated
application of the algorithm to chemical production in a continuous and binary variable
optimization problem.'*®

To our knowledge, little experimental work has been conducted in the application of these
strategies to experiments in chemical reaction kinetics, where interdependencies of discrete and
continuous variables may often be too complex or simply too expensive to explore via
construction of a complete reaction model. In this chapter, we demonstrate use of an adaptive
response surface approach in conjunction with feedback optimization by G-optimality to identify
the best discrete variable and reaction conditions, given the ability to conduct on-demand
experimentation as outlined in Chapter 3. We then validate the generality of our optimization
method, first through simulation, and then through experimental optimization of discrete
(solvent, catalyst, and ligand) and continuous (temperature, reaction time, and concentration)
variable selection in Chapters 5 and 6. We examine the ability of our method to optimize with a
constraint placed on the reaction yield, a nonlinear function of the reaction turnover number
(TON). Through simulation, we additionally demonstrate that in a high frequency of occurrence
the method correctly identifies the optimum in a limited number of iterations regardless of a
perturbation in the nominal reaction mechanism, making it suitable for cases of limited to no a

priori reaction knowledge.

4.2. METHOD

4.2.1. Approach to Real-Time Discrete and Continuous Variable Optimization

We began with interest in optimizing the generalized chemical reaction A + B > R over Nev
continuous variables and Nav discrete variables, which we proposed to be candidate catalysts for
the synthesis of R. A general formulation of the MINLP for optimization of the chemical system
was:

max,, f(xy) 4.1)
st g(x,y) <0

y, =1
x;e[-11] forj=1..N,
v, €{0,1}  fori=1,..,N,

103



where f(x,y) was the TON of the reaction—defined as moles product per mole of catalyst—and

the constraint g(x,y) was a constraint on the minimum yield (Cx/C.0) at the optimum:

g(xy)=7rY(x.y')-C,/C,,, where ¥ (xy') = max, , Cp /C (4.2)
st Zy‘ =1
x; e[-11] forj=1,.,N,
y, €{0,1} fori= L..,N,
The parameter y was adjustable in the range [0,1], with the choice of y = I implying

maximization with respect to yield and y = 0 implying unconstrained maximization of TON.

The response surface procedure employed in this study comprised both an initialization phase
and a feedback optimization phase. The decision diagram is shown in Figure 4.1. For
initialization, two sets of fractional factorial design experiments were conducted with all
candidate discrete variables. Each discrete variable was assigned a fractional factorial design that
spanned the continuous variable experimental space. The sum of all fractional factorial designs
minimally equaled a single-discrete-variable 2V" full factorial design. In this regard, completion
of the first fractional factorial designs allowed for calculation of a linear response surface with
respect to x and y and identification of preliminary optima Ji* = max[f{x,yi)]. A second set of
fractional factorial designs were then chosen in the quadrants of the experimental space
corresponding to the projected optimum for each discrete variable. These experiments allowed
for estimation of the quadratic dependencies among continuous variables by virtue of sampling

midpoints in the experimental design space.
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Figure 4.1. Real-time discrete and continuous variable optimization decision diagram.
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Following initialization, response surfaces were iteratively developed for candidate discrete
variables and discrete-variable-specific optima were predicted based on the response surfaces.
Using a procedure akin to B&B, discrete variables whose performance was worse than the lower
bound on the maximum of the leading discrete variable were fathomed from that iteration of the
optimization, and response surfaces were recalculated using only experimental data from the
remaining candidate discrete variables. Once a candidate set of discrete variables was
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determined, new experiments were chosen by G-optimality'’®> and the procedure repeated until

convergence to the final optimum.

4.2.2. Construction of Discrete Variable-Specific Response Surface Models

For the generalized bimolecular reaction A + B = R with constant kr = kr(catalyst type, Cea,
T), the production rate Cr/tres Was assumed to scale on the order of:
4.3

tC—R o ky, (catalyst, C,,. T)C3Ch *-3)

For simplicity, it was then assumed that kr(catalyst type, Cecar, T) could be separated into

Arrhenius and catalyst-specific terms:

k, (cata]yst, C.» T) oc (Cp A‘e_E},/RT)(ARe_E_m /RT) (4.4)

car” =i
giving an assumed scaling for Cr of:

C,, o A Aye Fatta X om on o g (4.5)

“BO™ cat” res

Taking the logarithm of all factors produced the linear relation:

In(C,) <In(4)+In (AR)—%(%]—%—R—(%)+mln(CAO)+nln(CBo) +pln (Cca,)+ln(tm)

4.6)

This introduced a set of continuous factors to vary for each discrete variable: 7", In(Cio), In(Cear),
and In(fres). Naturally the assumptions leading to Equation 4.6 ignored the possibility of more
complex kinetics, such as a Langmuir-Hinshelwood mechanism,'”® or the change in rate as the
starting reagents 4 and B were consumed. To correct for inaccuracies in our assumed scaling,
additional coefficients were introduced to weigh the In(ts) term and account for interactions and
quadratic functionality among all continuous variables. The final response surface model to fit

was of the form:
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(4.7)

n[\42

////

New N, N,
b= Z(cr’yi +a,-1y,x1)+zc}x/ Z
i=] J=2

=
where 5 was the response value and ai1, a’j, ci, and ¢, were coefficients to fit.

Optimal coefficients @ for the response surface model were found by weighted least-squares
regression of the scaled experiments X (including the linear, interaction, and quadratic terms of
discrete and continuous variables in Equation 4.7) and the vector of measured responses b. We
found empirically that the use of a weighting matrix W which biased the regression to most
closely fit the response surface at points where the yield of R was greatest gave the most accurate
optimization results. A convenient choice of W was thus the yield itself; giving:

I'CR]/CAOI 0 e 0 "‘

0 C _IC
v “R2( 402

0=(X'WX) X'Wb; W= . (4.8)
0 e 0 CRNN,” / CAo N oepis
Incidentally the choice of TON as the weighting also gave good performance, but the rate of

convergence in test cases was found to be slower than with the choice of yield as the weighting.

4.2.3. Optimization of Response Surface Models and Discrete Variable Fathoming

Optima for the each discrete variable were identified by converting Equation 4.7 to quadratic

form and populating the matrices A and ¢ with the optimal parameters 0:
J = max, b [x y]A[x y] +¢[x y] (4.9)

s‘t.ln}/+ln[Y(x,y)]—[b+]n(Cw,/CA“)]SO
x, € [—1,1] forj=1,..., N,
v, =1
v, =0 ifk=i

Calculation of In[Y(x’,y’)] was performed using the same quadratic model for 4, with linear

rescaling with respect to In(Cea/Ca0). The overall maximum, J*, corresponded to the maximum

over all Ji*.

To calculate the uncertainty on J*, the prediction covariance ¥, was estimated as:'?

., -1 T
=[x* y¥(X'V;'X) [x* y*] (4.10)
With many experiments at or near the optimum, an estimate for the scalar response covariance

Vs could have been obtained from the squared sum of residuals, as in Equation 2.12 in Chapter 2.
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However with very few experiments, we observed significant bias in a squared sum of residuals
estimate of Va. To reduce the amount of bias introduced by the manner in which experiments
were being selected, a jackknife resampling strategy was employed to generate the scalars Vi,
which were the response covariance values estimated with experiment # removed from the data
set:2%0

(6,/X,-b,) (8,/X, ~b,)

= 4.11)
" N, . .—N -1

expts params

X4, bu, and 8. were the matrix of scaled experimental conditions, vector of responses, and best-
fit response surface parameters calculated excluding experiment u, respectively. An overall

estimate of Vg was then found by:

N s pES 172 1 e 2 ’ (4.12)
Vs :Xf_iZ Va, —N—Z Vs,

exprs L u=l expts 1=]
and assumed to be uniform across all response surfaces. (Though this was clearly not the case, as
the algorithm advanced and conducted more experiments closer to the predicted optima, Vs
became more representative of the covariance near [x* y*].)

Given an estimate for the response covariance, a lower bound on J* was found from a

Student’s #-distribution and ¥, evaluated at the optimum:'?®

Ji _ (VB )1/2 (fl_a‘V:N(W_Nﬂmm ) (4.13)

a was chosen before experimentation as 0.05, corresponding to a 95% one-sided confidence level
on the lower bound of J*. For the least optimal discrete variable, a paired 2-sample ¢-test at 95%

confidence revealed whether J* was significantly less than the overall optimum J*:

Null Hypothesis: H, =J" —min (J: ) =0 (4.14)
H,=J -min(J)>0
J'—min(J;
star = ____l;l_ll/r;(_) >y =l V=N oxpts =N params
B

* 12 3 *
T =V Nt ) > min ()

J. > min (J,)
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This assumed a constant Vé for both discrete variable optima. Rejection of the null hypothesis

resulted in fathoming of discrete variable i from the current optimization step. and response
surfaces were recalculated excluding yi and any data points associated with variable i from the
model (though in instances where the number of candidate experiments was less than Nparams + 1,
it was possible to leave variable i and associated data points in the model to advance the
optimization). This process proceeded in a loop until all values of J* exceeded J.*. These
remaining discrete variables comprised the experimental set for which a new iteration of
experiments was generated.

To accelerate reduction of the discrete variable space and simultaneously maximize the
continuous variable information gained per experiment, new experiments were generated using a
modified G-optimality criterion:

G, =min[x y [x, *y, *](XITVH_IX1 )—] [x, * y, *]T +[x: y:](Xer,;lX] )_1 [x: y:]T (4.15)
sLX, e[——],l]

v =1

Y, =0ifizk
X\ was the matrix X augmented to include the candidate experiment [x y]. Equal weighting was
assigned to minimizing the error in the yield optimum and to minimizing the error in the
constrained TON optimum. [x;* y:*] was supplied as an initial guess to an SQP optimizer to
generate G; and the new G-optimal experimental conditions. These experiments were then
executed, and new response surfaces and estimates for Ji* were estimated accordingly.

To achieve convergence, we specified that linear improvement had to be observed both in the

predicted optimal TON (exp(J*)) and in the lower bound on the optimal TON (exp(J-*)) to

within 2% of the optimal value:

let J, be the the optimum through iteration ¢ (4.16)

. N, betweeng-2 and q ( c

g-1

*
pred g = N g-2 )+ Jq—Z

expls

between ¢-2 and ¢ -1
J

pred g—1 g1

and . <0.02
J

q g-1

* *

. pred q - q
if - ~

* *

l * _J* J* —J* ’
—pred. - —pred g1 —q-1 .
and LT gpg LR 1<0.02, terminate

-q Cal

108



Importantly, this criterion was independent of the number of remaining unfathomed solvents
(meaning multiple optima could be obtained within the convergence tolerance) and independent

of the scaling of /.

4.2.4. Real-Time Experimental Considerations

Some subtle changes were introduced to the algorithm in order to maximize the efficiency of
conducting real-time experiments. During the sequential ARSM procedure, new optimal
experimental conditions were calculated one experiment before the complete data set for a given
iteration was collected. This enabled new experimentation to begin during analysis of the last
experiment in an iteration, greatly minimizing experimental downtime. It was also a very
realistic possibility in practice that zero product yield and TON would be observed, which in this
algorithm’s logarithmic coordinate system would have produced an undefined objective value.
Through simulations, we found that assigning a yield of 0.1% to cases where the yield was in
truth zero imposed sufficient penalty on the optimization method, yet did not interfere with
prediction of the maximum. The detection limit by HPLC was also chosen to be within an order
of magnitude of 0.1% of the maximum in experiments. Optimal experiments were grouped by
temperature and randomized at each optimization iteration to minimize both experimental bias

and the time required for temperature re-equilibration.

4.3. RESULTS

Using optimization functions written in MATLAB and provided for reference in Appendix C,
we simulated the optimization of TON for batch reaction cases where catalyst selection

perturbed the reaction activation barrier. The stoichiometry was A + B > R with the rate law:

dacl;k _k,C.C, (4.17)

ko = C23 Aye (4.18)
4, =3.1x10" L** mol™* s™ (4.19)
E . =55 ki mol (4.20)

AR
We examined the algorithm’s ability to discriminate among eight catalysts with respective values
of E4i reported in Table 4.1. We assessed the optimization with respect to the continuous

variables temperature (7 = 30°C-110°C), reaction time (s = 1 min-10 min), and catalyst loading
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(Cear = 0.835 mM-4.175 mM), while C40 and Cso were maintained constant at 0.167 M and 0.250
M, respectively. An 8*2% fractional factorial design was selected for the initialization, and a
subsequent 8*2°2 fractional factorial design was constructed based on the initial linear model. As
the choice of a set of fractional factorial design experiments had the potential to bias the results
of a single simulation, we generated 10 randomized designs and recorded the mean and standard

deviation for each case study. Individual test case results have also been included in Appendix C.

Table 4.1. Simulated catalyst-specific activation energy correction factors (E.) in kJ mol™.

Catalyst  Test Case | Test Case 2 Test Case 3 Test Case 4
-5if T < 80°C
! 0.0 0.0 0.0 -5+ 0.3%(T-80) if T > 80°C
2 0.3 0.0 0.3 0.7
3 03 0.3 0.3 0.7
4 0.7 0.7 0.7 0.7
5 8.7 0.7 0.7 0.7
6 2.2 22 22 22
7 3.8 3.8 3.8 3.8
8 7.3 7.3 7.3 7.3

4.3.1. Test Case 1: The Effect of y upon Convergence

We investigated the effect of manipulation of y upon the accuracy and convergence speed of
the MINLP method. Cases where the optima lay at the lower bound of Cear (y = 0.90) and inside
the Cear constraint (y = 0.95 and 0.98) were considered. Overall, we observed excellent
agreement in our method with the true optima, both in the selection of catalyst 1 as the optimal
catalyst and in identification of the continuous variable optimal conditions. All simulations
identified catalyst | as optimal. Optimization with y = 0.90 (Table 4.2) identified the correct
continuous variable conditions as optimal in all instances. For y = 0.95 (Table 4.3), we observed
one instance where the algorithm converged to a sub-optimal loading of catalyst 1 of 1.6 mM,
whereas in all other instances the optimum was found between 1.305 mM and 1.357 mM
(compared to the true value of 1.309 mM). With y = 0.98 (Table 4.4), the optimum was found
within 2% accuracy in 8 of 10 simulations, with one case of sub-optimal convergence resulting
in over-estimation of the optimal catalyst loading and the other producing an underestimation.
Convergence of the algorithm was fast (fewer than 100 simulated data points were required for
all but two simulations) and improved slightly for the cases of y = 0.95 and y = 0.98 in
comparison to y = 0.90.

Maximal objective function values for the non-optimal discrete variables consistently under-

estimated the true maximum for the discrete variable. In the majority of cases the error between
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the true optimum and that estimated by the algorithm grew as the catalyst became less kinetically
favorable. This was a consequence of the assumption that response surfaces simply shifted up or
down for different discrete variable reaction rates, which was invalid when multiple reactions
proceeded to 100% conversion. Consequently, the estimated response surfaces were also
conservative in estimation of the yield constraint. Despite this over-simplification, our method
qualitatively succeeded in ranking the catalysts in agreement with reaction rate, suggesting that
the predicted optima for non-optimal discrete variables may still be useful in identifying
common trends among classes of variables.
Table 4.2. Optimization results for y = 0.90. Nexps = 83 + 23.

Catalyst  t.,(min)  T(°C) Cw(mM)  TON  TON Std.

True Optimum
1 10.0 110.0 0.835 180.7
2 10.0 110.0 0.835 177.5
3 10.0 110.0 0.835 177.5
4 10.0 110.0 1.065 139.0
5 10.0 110.0 1.065 139.0
6 10.0 110.0 2.732 54.2
7 10.0 110.0 4.175 332
8 10.0 110.0 4.175 213
Response Surface Optimum
1 10.0 110.0 0.835 180.9 0.3
2 10.0 110.0 0.935 161.0 12.5
3 10.0 110.0 0.938 160.2 92
4 10.0 110.0 1.265 120.6 13.0
5 10.0 110.0 1.406 109.6 16.7
6 10.0 110.0 3.591 419 8.6
7 10.0 110.0 4.041 27.7 4.5
8 9.8 110.0 4.175 13.6 34
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Table 4.3. Optimization results for y = 0.95. Newps = 66 + 6.

Catalyst  t,.; (min) 7(°C) Cew (MM) TON  TON Std.
True Optimum
1 10.0 110.0 1.309 119.5
2 10.0 110.0 1.580 98.9
3 10.0 110.0 1.580 98.9
4 10.0 110.0 2.031 77.0
5 10.0 110.0 2.031 77.0
6 10.0 110.0 4.175 36.9
7 10.0 110.0 4.175 33.2
8 10.0 110.0 4.175 21.3
Response Surface Optimum
1 10.0 110.0 1.353 116.2 7.0
2 10.0 110.0 1.865 86.6 13.1
3 10.0 110.0 1.832 87.0 9.2
4 10.0 110.0 2.614 63.6 14.0
5 10.0 110.0 2.686 61.5 12.7
6 10.0 110.0 4.175 33.6 2.0
7 10.0 110.0 4.146 28.0 3.9
8 10.0 110.0 4.077 16.3 4.7

Table 4.4. Optimization results for y = 0.98. Nexs = 74 £ 12.

Catalyst  ts(min)  T(°C) Cear (MM) TON  TON Std.
True Optimum
1 10.0 110.0 2.285 70.6
2 10.0 110.0 2.759 58.5
3 10.0 110.0 2.759 58.5
4 10.0 110.0 3.546 45.5
5 10.0 110.0 3.546 45.5
6 10.0 110.0 4.175 36.9
7 10.0 110.0 4.175 332
8 10.0 110.0 4.175 213
Response Surface Optimum
1 10.0 110.0 2.262 71.7 54
2 10.0 110.0 2.970 55.1 6.1
3 10.0 110.0 3.149 52.2 6.8
4 10.0 110.0 4.175 38.6 0.2
5 10.0 110.0 4.120 39.2 1.9
6 10.0 110.0 4.175 35.1 2.2
7 10.0 110.0 4.140 31.7 2.1
8 10.0 110.0 4.065 17.1 4.5




Illustrated in Figure 4.2(a-c), the trajectory followed by the optimization agreed with general
intuition—namely the system explored all corners of the experimental space to identify the
overall optimal yield, then optimized along the axis of catalyst loading to resolve the yield
constraint. For y = 0.90 (Figure 4.2a), experiments were concentrated at the minimum value of
Cear; for y = 0.95 (Figure 4.2b) and y = 0.98 (Figure 4.2¢) experiments progressed along the Cear
axis. As desired for the B&B style search, as the optimization progressed fewer experiments
were run with less kinetically favorable catalysts, with experiments near the end of the sequential
optimization run with exclusively catalyst 1. The elimination of fathomed discrete variables from
the response surface model coincided with a more accurate representation of the performance of

catalyst 1, hence improving resolution of the maximum yield and TON.
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Figure 4.2. Optimization trajectory for (a) y = 0.90, (b) y = 0.95, and (c) y = 0.98. Catalyst 1 is optimal in all
cases with 7= 110°C, #res = 10 min, and Cear = (a) 0.835 mM, (b) 1.311 mM, and (c) 2.507 mM.

4.3.2. Test Case 2: Optimization with Multiple Discrete Variable Optima

In kinetic problems where the rate is insensitive to the choice of discrete variable (for instance
as a consequence of a change in the rate-limiting step), a suitable algorithm would have to
identify both discrete variables as optimal. This test case hence presented a challenge to our
B&B-inspired algorithm, as too fast of a discrimination among like discrete variables would
imply a loss of information regarding the optimality of both catalysts 1 and 2. We considered for
this case situations where the optimum for Cea lay both on and off the constraint (y = 0.90 and
0.95).

Shown in Table 4.5, we observed 100% success in our algorithm’s ability to identify both 1
and 2 as co-optimal for y = 0.90. The optimal TON found over 10 simulations agreed with the

true value of 180.7 within a minimum standard deviation of 0.1 TON. In comparison to the first
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test case with only a single optimal catalyst, the convergence rate for this case was considerably
slower at 116 * 39 iterations. This was perhaps counterintuitive, because with more discrete
variables and associated experiments remaining in the experimental set, the number of degrees of
freedom in the system increased, implying a lesser estimate of the variance V. In truth, however,
the variance was generally greater for the optimization with two similar discrete variables
because the optimal response surface had to capture the behaviors of twice the original number
discrete variables using only an additional two model parameters.

For the case of y = 0.95 (Table 4.6), our method was able to identify catalysts 1 and 2 as co-
optimal in 9 of 10 cases. In all of the successful cases the optimal TON for both catalysts was
within 4% of the true value and was more often underestimated than overestimated. In the lone
unsuccessful case, catalyst 2 was identified with a maximum TON of 111, whereas the maximum
TON for catalyst 1 was only estimated as 100. As in earlier test cases, the difficulty in resolving
the constraint coincided with an over-approximation of the maximum reaction yield.
Convergence was much faster for y = 0.95, with the optimum found within 76 iterations on
average. The simulated experimental trajectories shown in Figure 4.3(a-b) show that, as in the
first test case, most experiments were conducted with the high-probability catalysts at the
maximum temperature and time. For y = 0.90 (Figure 4.3a), these experiments clustered more at
the minimum catalyst loading, whereas for y = 0.95 (Figure 4.3b) the simulated experiments

were run with Cear predominantly between 0.835 mM and 2.5 mM.
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Figure 4.3. Optimization trajectory for the case of two co-optimal catalysts. (a) y = 0.90: catalysts 1 and 2 are
co-optimal at T = 110°C, trs = 10.0 min, and Ccor = 0.835 mM. (b) y = 0.95: catalysts 1 and 2 are co-optimal at
T =110°C, tres = 10.0 min, and Cear = 1.320-1.326 mM.
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Table 4.5. Optimization results for y = 0.90. Nexps = 116 + 39.

Catalyst 1., (min) T(°C) Cea (MM) TON  TON Std.
True Optimum

1 10.0 110.0 0.835 180.7

2 10.0 110.0 0.835 180.7

3 10.0 110.0 0.835 177.5

4 10.0 110.0 1.065 139.0

5 10.0 110.0 1.065 139.0

6 10.0 110.0 2.732 54.2

7 10.0 110.0 4.175 332

8 10.0 110.0 4.175 21.3

Response Surface Optimum
1 10.0 110.0 0.835 180.8 0.2
2 10.0 110.0 0.835 180.8 0.1
3 10.0 110.0 0.875 170.4 5.0
4 10.0 110.0 1.240 123.0 17.1
5 10.0 110.0 1.217 125.7 18.3
6 9.9 110.0 3.825 38.5 9.8
7 9.8 110.0 4.079 30.3 42
8 9.8 110.0 3.946 18.6 4.0
Table 4.6. Optimization results for y = 0.95. Nexps = 76 £ 13,
Catalyst  fys (min) T (°C) Cea (mM) TON  TON Std.
True Optimum

1 10.0 110.0 1.309 119.5

2 10.0 110.0 1.309 119.5

3 10.0 110.0 1.580 98.9

4 10.0 110.0 2.031 77.0

5 10.0 110.0 2.031 77.0

6 10.0 110.0 4.175 36.9

7 10.0 110.0 4.175 33.2

8 10.0 110.0 4.175 21.3

Response Surface Optimum

1 10.0 110.0 1.349 116.4 6.0
2 10.0 110.0 1.338 117.2 2.9
3 10.0 110.0 1.741 90.7 6.8
4 10.0 110.0 2.504 65.1 12.6
5 10.0 110.0 2.639 62.6 13.9
6 10.0 110.0 4.175 354 1.2
7 9.8 110.0 4.175 26.6 4.1
8 9.7 110.0 4.175 15.5 53
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4.3.3. Test Case 3: Perturbations to the Reaction Pathway

In addition to the reaction of A + B = R with kinetics in Equations 4.17-4.20, we considered
cases where species B or C may be consumed by alternative pathways over the course of the
reaction. As a first case study, we introduced degradation of B as a parallel reaction step. The

degradation pathway was represented as B = S with kinetics:

d;s,l _kC, 4.21)
kg, = Ag et (4.22)
A, =1.0x10" s (4.23)
E ,, =100 kJ mol”! (4.24)

This pathway was intended to mimic the effect of protodeboronation in Suzuki-Miyaura cross-
coupling reactions. which often leads to significant degradation of the starting boronic acid at
high temperatures. In this case we selected y = 0.90.

From the results found in Table 4.7, we observed our algorithm to successfully identify both
the optimal catalyst | and the internal temperature and catalyst loading optima in all cases. The
optimization routine converged rapidly in an average of 66 simulated experiments. In 4 of the 10
cases, convergence was achieved in fewer than 64 iterations, meaning the algorithm found an
internal constrained optimum in fewer experiments than would be required to run a 2° full
factorial design for all 8 discrete variables. Good agreement was observed between the optimum
found in the black box routine (33.5 + 1.0 TON) and the true optimum (34.9 TON) given the
limited number of experiments.

Likewise we considered the consumption of R in a series reaction, which was expected to
produce an internal optimum for reaction time instead of temperature. In addition to A + B > R,

the reaction B + R = S, was introduced into the model with kinetics:

dc, (4.25)
e k., C,C,

kg, = Ag, e /M (4.26)

Ag, =3.1x10° Lmol™ s (4.27)

E s, =50 k] mol” (4.28)
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Again y was chosen as 0.90. Figure 4.4 illustrates the response surface for this case for catalyst 1

at the optimal catalyst concentration of 2.66 mM. This example is challenging from a response-

surface-based optimization perspective because of the ridge of near-optimal values that forms in

the temperature-residence time plane, much akin to that which was observed for the series

reaction in Chapter 2.

Table 4.7. Optimization results for parallel reactions A + B> R and B = Si. Newps =66 £ 5.

Catalyst Lres (min) T'(°C) C”-“’ (mM) TON  TON Std.
True Optimum
1 10.0 81.8 2.662 349
2 10.0 81.9 3.262 284
3 10.0 8§1.9 3.262 284
4 10.0 82.0 4.175 22.1
5 10.0 82.0 4.175 22.1
6 10.0 83.0 4.175 16.7
7 10.0 83.8 4.175 11.6
8 10.0 859 4.175 4.4
Response Surface Optimum
1 10.0 81.1 2.756 335 1.0
2 10.0 81.4 3.777 244 23
3 10.0 81.5 3.672 253 2.6
4 10.0 81.6 4.175 20.4 0.7
5 10.0 824 4.175 20.1 09
6 10.0 84.8 4.175 13.5 1.0
7 10.0 86.1 4.175 8.8 0.7
8 10.0 89.9 4.175 3.0 02
)
|
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Figure 4.4. TON response surface for the optimal conditions of catalyst 1 at 2.66 mM for the series reactions

A+B2>RandB+R = S..
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The optimization results presented in Table 4.8 are representative of the ridge in the response
surface solution. Statistically, the mean optimal reaction time of 3.1 min is substantially different
than the true optimum for this case at 2.1 min, but the mean optimal catalyst concentration and
objective function value are comparable (23.9 for the true objective value as compared to 23.1 +
2.5 for the ARSM algorithm). The optimal reaction time deviates significantly from the known
optimum on account of two different local optima being identified by the algorithm: one
optimum at tres = 2.2-2.5 min and 7 = 110°C, and the second optimum at fres = 10 min and 7 =
84.7°C. The best-fit response surfaces for either case are shown in Figure 4.5(a-b). Convergence
to the 7= 110°C optimum occurred in 9 of 10 cases, with an example response surface presented
in Figure 4.5a, evidently in good agreement with the true response surface. In the case of
convergence to the fres = 10 min optimum, the best-fit response surface was in fact bimodal, with
a flatter ridge of optimality than observed in Figures 4.4 and 4.5a. Because catalyst 1 was still
identified as optimal in this case, we suspect that this limitation is a reflection of the limited
robustness of the G-optimality criterion. More global sampling techniques will need to be
incorporated into the algorithm in future adaptations in order to minimize the probability of local
convergence.

Table 4.8. Optimization results for series reactions A + B> Rand B + R 2 S2. Negss = 65 + 6.

Catalyst 1., (min) T (°C) C.iy(mM)  TON  TON Std.

True Optimum
1 2.1 110.0 2.665 239
2 2.1 110.0 3.217 19.8
3 2.1 110.0 3.217 19.8
4 2.1 110.0 4.136 15.4
5 2.1 110.0 4.136 15.4
6 2.5 110.0 4175 11.9
7 29 110.0 4.175 8.8
8 3.8 110.0 4.175 4.0
Response Surface Optimum
1 3.1 107.4 2.789 23.1 2.5
2 32 107.5 3.263 19.3 1.1
3 3.2 107.5 3.319 19.0 1.2
4 3.1 107.5 4.143 14.8 0.5
5 23 110.0 4.109 15.0 0.9
6 23 110.0 4175 11.3 04
7 24 110.0 4.175 8.3 0.2
8 2.4 110.0 4.175 3.7 03
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Figure 4.5. TON response surface for the optimal conditions of catalyst 1 at 2.66 mM for the series reactions
A+ B = Rand B+ R = S: for cases of (a) convergence to the global optimum and (b) convergence to a sub-
optimal combination of temperature and reaction time.

Though limited in select test cases by local convergence, both of these examples illustrate the
strength of this optimization approach in resolving optima when the reaction mechanism is
perturbed. As seen in the case of series reactions, the response surfaces generated by the
algorithm are locally consistent with the true response surface, despite the few assumptions made
about the reaction model. In cases of process scale-up where it is be essential to know the effect
on production of a perturbations to one or more process variables, this sequential ARSM
algorithm provides insight in a limited number of experiments (on average 65-66 experiments for
the case studies above). Local rate of reaction information can also be extracted by taking the

derivative in time of the proposed response surface:

dC, < 0oC, dx,
dt _; ox, dt Gty
In [S—R] =x'Ax+c'x (4.30)

The correct choice of manipulated inputs would presumably allow mechanisms to be posed
based on similarity to known rate law behavior.
4.3.4. Test Case 4: Catalyst 1 Deactivation at High Temperature

Catalyst deactivation can factor significantly into organometallic reactions, particularly in

cases where the catalyst-ligand complex breaks down or changes ligated state. Unlike the first
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three test cases, the case where a single catalyst’s kinetics changed as a function of temperature
presented a challenge to our method’s assumption of shared continuous variable behavior across
all discrete variables. As shown in Table 4.9, the adaptive response surface algorithm struggled
significantly in the optimization of this set of test reaction kinetics; in fact in only 2 of 10
instances was catalyst | selected as the best catalyst. As an advantage of the methodology, the
algorithm succeeded in identifying the distinction in optimal temperature between catalyst | and
the other catalysts in all case studies examined. The optimal temperature found by the algorithm
for catalyst 1 ranged from 71°C-81°C, with the most accurate estimates of 79°C and 81°C
occurring in the cases where catalyst 1 was found to be optimal. However, in no case was the
optimal Ceas for catalyst 1 found to lie at the lower bound of 0.835 mM, as the maximal yield in
the two optimal cases was estimated as greater than 100%.
Table 4.9. Optimization results for case of catalyst 1 deactivation at T > 80°C. Negs = 151 + 83.

Catalyst  #,., (min) 7(°C) Cear (MM) TON  TON Std.

True Optimum
1 10.0 80.0 0.835 187.6
2 10.0 110.0 1.161 128.7
3 10.0 110.0 1.161 128.7
4 10.0 110.0 1.161 128.7
5 10.0 110.0 1.161 128.7
6 10.0 110.0 2.976 50.2
7 10.0 110.0 4.175 332
8 10.0 110.0 4.175 21.3
Response Surface Optimum
1 10.0 76.6 2.228 75.4 29.2
2 10.0 110.0 1.091 142.3 25.7
3 10.0 110.0 1.100 142.3 27.8
4 10.0 110.0 1.102 142.7 26.4
5 10.0 110.0 1.100 141.5 26.9
6 10.0 110.0 3.761 42.5 15.8
7 9.9 110.0 4.096 31.5 3.9
8 9.8 110.0 4.132 16.3 5.0

We suspected that the poor accuracy of the algorithm in this case resulted from the
assumption of a constant V}; across the experimental design space. A limitation of the G-optimal

design objective is that the uncertainty of predictions away from the optimum is untested; hence
no test was in place to assess the quality of the prediction of the optimum of catalyst 1 given the

results for the other seven (sub-optimal) catalysts. We addressed this problem by proposing a
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trust region for the prediction covariance. Rather than assuming a universal V., a discrete-

B®

variable specific V;&. was calculated by incorporating into the matrix X in Equation 4.10 only

experiments conducted with discrete variable i or within specified continuous variable bounds.
Only the columns of X corresponding to continuous variable-continuous variable interactions
and continuous variable-discrete variable i interactions were considered. Discrete variables
satisfying the requisite number of degrees of freedom were then fathomed sequentially based on

failure of an unpaired two-sample ¢-test at 95% confidence:

Null Hypothesis: H, =J, =J, =0 (4.31)
H,=J -J >0
t.\'lal = _‘]l*_—t]l > tcrll = tl—a v
etV ‘
V= % (Vl} . VI}’ )2 V2
B Bi
exprs N params (N expls N params )Re duced Model

We guessed initially trust region bounds of +10% on the continuous variable factors in the
estimation of VBI As shown in Table 4.10, a 10% tolerance did in fact improve the probability of

convergence to the optimal catalyst 1, albeit not as well as we had hoped. Though 7 of the 10
case studies identified catalyst 1 as optimal, only one identified an optimal TON of greater than
180. By reducing the volume of the trust region by a factor of 64 to £2.5% in each continuous
variable (Table 4.11), we found that we could increase the frequency of identification of catalyst
| as optimal to 80%, with half of these instances identifying the optimum Cear at 0.835 mM and
an optimal TON greater than 180. Coupling this algorithm to a more robust continuous variable
local search algorithm would likely increase the probability of finding the correct continuous

variable optimum once all other discrete variables have been fathomed. Interestingly, we learned
that the use of a trust-region based V&. did nothing to slow the overall convergence rate of our

algorithm; as a matter of fact on average the number of experiments required to converge to an
optimum decreased from 151 in the non-trust region case to 138 in the trust region case, though

substantial variability was observed from one simulation to the next.
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Table 4.10. Optimization results for case of catalyst 1 deactivation at T > 80°C, assuming a trust region on the
calculation of the prediction covariance of i of £0.9 min t-.s, £8°C T, and £0.33 mM Cear. Nexpis = 140 + 73.

Catalyst  fes(min)  T(°C)  Co(mM) TON TON Std.

True Optimum
1 10.0 80.0 0.835 187.6
2 10.0 110.0 1.161 128.7
3 10.0 110.0 1.161 128.7
4 10.0 110.0 1.161 128.7
5 10.0 110.0 1.161 128.7
6 10.0 110.0 2.976 50.2
7 10.0 110.0 4.175 332
8 10.0 110.0 4.175 213
Response Surface Optimum
1 10.0 77.2 1.367 116.7 26.9
2 10.0 110.0 1.632 104.9 36.7
3 10.0 110.0 1.636 105.2 37.7
4 10.0 110.0 1.579 107.7 35.0
5 10.0 110.0 1.481 110.3 313
6 10.0 110.0 3918 39.8 10.2
7 10.0 110.0 4.175 313 0.9
8 10.0 110.0 4.175 18.5 1.5

Table 4.11. Optimization results for case of catalyst 1 deactivation at T > 80°C, assuming a trust region on the
calculation of the prediction covariance of i of £0.22 min Z.s, £2°C T, and £0.08 mM Ccar. Nexpes = 136 + 33.

Catalyst .., (min) 7(°C) Cea (MM) TON  TON Std.

True Optimum
1 10.0 80.0 0.835 187.6
2 10.0 110.0 1.161 128.7
3 10.0 110.0 1.161 128.7
4 10.0 110.0 1.161 128.7
5 10.0 110.0 1.161 128.7
6 10.0 110.0 2.976 50.2
7 10.0 110.0 4.175 33.2
8 10.0 110.0 4.175 213
Response Surface Optimum
1 10.0 77.9 1.187 139.4 395
2 10.0 110.0 1.629 101.8 31.7
3 10.0 110.0 1.713 97.7 32.7
4 10.0 110.0 1.674 99.5 322
5 10.0 110.0 1.528 107.7 303
6 10.0 110.0 4.163 36.2 04
7 10.0 110.0 4.175 32.0 0.8
8 10.0 110.0 4.175 18.4 1.0
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These results suggest that algorithms which test the variance over a broader region of the
experimental design space—for example [-optimality-based design of experiments
algorithms?®*'—may be better suited for solving problems where changes in the discrete variable
effect significant change in the curvature of the response surface. Heuristics and rules must be
developed, however, for determination of the appropriate size of region over which the variance
can be safely computed. If we examine in Figure 4.6 the true response surface for the catalyst
deactivation example, we observe that the objective function value decreases sharply close to the
optimum, making the choice of an acceptable prediction covariance tolerance region all the more
complicated. It is likely that adaptive algorithms will be needed in the future to test both the
optimum and the size of the variance trust region, which can pose a challenge to the goal of

minimizing the number of real-time experiments needed to optimize the process.
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Figure 4.6. True response surface for catalyst 1 the case of catalyst 1 deactivation at T > 80°C at the minimum
Cear=0.835 mM. The optimum is at 7= 80°C and #.s = 10 min.

4.4. CONCLUSIONS

The optimization of chemical reaction networks without prior knowledge of the reaction
mechanism is generally slow on account of the interdependence and often inconvenient scaling
of independent and dependent continuous variables in the problem. Discrete factors such as
catalysts, ligands, and solvents only complicate the problem more by changing perhaps the rate
limiting step of the reaction or the mechanism altogether. In these instances, it may be truly

unfavorable to propose a model for all discrete variable cases, particularly when the number of
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model parameters is large, requiring that many expensive experiments be run to minimize
uncertainty in the proposed mode! or optimum.

An adaptive response surface technique, on the other hand, allows for correlations to be
identified rapidly among variables. These correlations can be used in some instances to identify
relationships that may not be evident without proposing the perfect mechanism or by simply
optimizing a single factor at a time. The generality of the method makes for a more versatile
approach to reaction optimization when only the reaction stoichiometry is known. Still, caution
must be taken in ARSM to test predictions rather than to simply propose numerical correlations.
With sequential ARSM, best-fit response surfaces can be tested iteratively to refine, for instance,
the maximum of an objective function or nonlinear constraints, and B&B strategies can be
imposed to preferentially refine more optimal response surfaces compared to other sub-optimal
surfaces.

The coupling of sequential ARSM to discrete and continuous variable optimization offers a
simple approach to preliminary reaction optimization, when the effects of many variables on a
synthesis are unknown. It is not a universal modeling tool, and as we have illustrated is not
immune to the pitfalls of traditional local black box optimization. However, considering the
complexity of most synthetic reaction models, the ability to optimize over an expansive set of
discrete variables and range of continuous variables with nonlinear constraints imposed—in
many cases in fewer than 200 experiments, easily examinable by today’s HTE equipment—is an
accomplishment that the discovery and development community should hope to embrace. Once
the optimal set of variables in a synthesis is chosen, more complete kinetic models can be
constructed for reaction scale-up as demonstrated in Chapter 2. As an unforeseen advantage of
this method, our simulation studies showed that qualitative relationships could be accurately
constructed among discrete variables. For example, the relative order of discrete variables in
terms of optimality was consistent with pre-defined kinetics in almost all cases, and even when
the method failed to produce the true optimum (particularly in the example of catalyst
deactivation), the algorithm results highlighted the unique property of a particular discrete
variable that were qualitatively consistent with the reaction kinetics, leaving open the potential to
probe these differences specifically in further experiments. These qualitative outcomes will be
explored extensively in Chapters 5 and 6, as they prove to provide insight into similar positive

attributes of discrete variables that will ultimately lead to improved mechanistic understanding.
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5. SIMULTANEOUS SOLVENT SCREENING AND REACTION
OPTIMIZATION FOR THE ALKYLATION OF 1,2-
DIAMINOCYCLOHEXANE

5.1. INTRODUCTION

Among the discrete variable factors that profoundly affect reaction activation and kinetics,
medium effects stand out as perhaps the most universal factor to examine, yet remain perhaps the
most perplexing effects to rationalize and quantify. The reason for this complication is that the
reaction solvent has an integral role in every aspect of the reaction, from the diffusion barrier that
two molecules must traverse to react, to the formation and stability of a solvent cage around the
two molecules, to the stabilization of the reaction transition state.?’? Aspects such as the polarity
of the solvent are known to play a critical role in activation-limited reactions,***> but specific
attributes of the solvent that promote reactivity or selectivity are impossible to isolate because of
the numerous macroscopic and microscopic properties that change in switching a reaction from
one solvent to another.2% A change in solvent could imply a change in reaction mechanism (such
as a change from Sn1 to Sx2) or a change in the rate-limiting step of more complex reaction
pathways.2%

For nucleophilic substitution reactions, it has been widely established that the reaction rate
depends both on the solvent dielectric constant and the hydrogen-bond donating capacity of the
medium. Hughes and Ingold*”® were the first to identify that the solvent electronics work to
stabilize the transition state in the case of formation of a charged intermediate, hence the
acceleration of Sn1 reactions in polar media. For an uncharged transition state, as is the case in
Sn2, polar protic and polar aprotic solvents produce opposite trends with increasing dipole
strength, with aprotic solvents accelerating the reaction and protic solvents, by virtue of sharing
hydrogen atoms with the nucleophile, inhibiting the reaction as polarity increases.”’”>*” Though
easy to generalize, the properties that define polarity differ from case study to case study. The
dielectric constant (¢) may be the most referenced metric associated with polarity, but this
property alone often fails to describe the observed trends in reactivity in solution. Other metrics
such as dipole moment (ud), molecular size, surface tension, the electrostatic factor (gua), and
hydrogen-bond donor ability have been used independently or collectively to try to rationalize
the observed medium effects of the reaction, with empirical correlations fit retroactively to

justify proposed reaction mechanisms or rate-limiting steps.?*
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It would be ideal to have an intelligent system that could assess quantitatively the relative
reactivity of reagents in different media and relate qualitative insights back to the reaction
mechanism. Naturally this would be an advantageous application of feedback reaction screening

in flow. The scientific literature abounds in examples of high-throughput reaction screening with

dispersed phase reactions carried by inert fluorinated oils in PDMS devices.?7-#%:101-103.106.210

Though applicable to biological, crystal growth, and simplified chemical reaction studies, these

211

systems—through miscibility and lack of chemical compatibility”''—are unable to withstand the

161162 particularly at high

reagents and solvents most common in organic synthesis,
temperatures.'®® The optimization of organic solvent selection in segmented flow has therefore
only been studied in limited examples and independently of manipulation of other reaction

3, we introduced a sy

-3

conditions.'!"!12 In Chapter

s

carrier phase and FEP tubing, provided scalable results for reactions in common organic
solvents. Additionally, Chapter 4 developed an optimization method which could be employed
with the automated screening system to optimize for reaction conditions simultaneously with
solvent selection. By employing the system and algorithm together, we proposed that the rate
acceleration caused by a given solvent could be not only optimized, but rationalized in terms of
continuous factors such as temperature and concentration.

In this chapter, we demonstrate the utility of the automated system in solvent optimization for
the synthesis of an asymmetric-catalyst building block. Shown in Scheme 5.1, the addition of 4-
methoxybenzyl chloride to frans-1,2-diaminocyclohexane (11) yields the mono-alkylated
product 12, which can be consumed by over-alkylation at either amine position. The rate of
alkylation depends on the relative orientation of the two nitrogen atoms in solution, which is
controlled both by solvent electronics and by the strain on the cyclohexyl ring. Selective
alkylation of polyamines has traditionally been done very slowly in batch (at 0-23°C with
limiting equivalents of the alkyl-halide)?'>"? or inefficiently with protection-deprotection of one
or both primary amines.?'*2!7 Qur study herein illustrates that through optimal selection of
solvent and tuning of the continuous variables temperature, reaction time, and equivalents 4-
methoxybenzyl chloride; the rate of formation of 12 can be controlled to generate high yield in a

sub-10 minute reaction time.
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Scheme 5.1. Optimization conditions for the mono-alkylation of frans-1,2-diaminocyclohexane.

5.2. METHOD

Following the optimization method outlined in Chapter 4, we began with a three-step
sequential optimization routine comprising an initial fractional factorial design, a fractional
factorial design targeted in the experimental design space where the optimum was predicted, and
a sequential RSM optimization algorithm, which minimized the uncertainty on the estimated
maxima for each solvent by G-optimality. No trust region was specified for the prediction
covariance. In this example, we also did not impose a weighting on the least-squares regression,
nor did we unbias the response covariance by jackknifing or eliminate the experiments
associated with fathomed variables from the data set. Hence, to rectify errors in fitting the final
response surface, a quasi-Newton gradient and line search around the most likely optimum
(optima) was performed for the remaining solvent(s) following termination of the RSM
algorithm. Response surfaces were constructed for each solvent with the independent variables
In(tres), T', and In(Co se08nct) and dependent variable In(yield) (implying y = 1).

The quasi-Newton search comprised a gradient estimation and a back-stepping line search, the
search direction for which was calculated using the estimated gradient and a BFGS
approximation for the Hessian. The search initialized at x;*. To estimate a gradient, a randomly
chosen 23! fractional factorial design was executed around x;* at vertex points given by x;* +
Ax, where Ax was a user-defined tolerance on the desired optimization accuracy. For continuous
variables where (xi*); £ Ax; exceeded a constraint, the new x; was set equal to the constraint. x;*
was also examined experimentally, and a gradient was calculated from all experiments run
throughout the optimization within x;* + 1.05*Ax. A new estimate of J;* was calculated based on
the linearized response surface within xi* + Ax, with uncertainty AJi*:

w==(r)

l—a.v=N, expls _Npamrru )
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V= was the prediction covariance estimated over only x;* + 1.05*Ax. The confidence parameter
a was chosen to be 0.16, corresponding to a one-sided single-standard deviation confidence
level. The (uphill) search direction p was evaluated from the gradient g and approximate Hessian
H:

p,=H'g, (5.2)

H' was initialized as the inverse of Hessian estimated from the optimal response surface, and an

update for H'! was calculated following the BFGS approximation:?'®

1

T ryy- r - * Tyyr-
[s;y,+y,/ 0}y, |s;s, H'y,s.+sy/H]

H' =H'+ :
g+! q o 2 T (5.3)
(sf]y q) $4¥4
s, =—0p, 5.4)
yq = gq+l _gq (5'5)
New experiments along a line search were selected with the scaling factor J according to:
X, :x: +6p, (5.6)

For (x:); in violation of a constraint, (x;); was chosen equal to the constraint. 0 was halved
iteratively until the subsequent experiment would not be a replicate of the constrained
experiment.

The objective function value found at x;, b, was evaluated statistically against the uncertainty
in Ji* to determine if the line search experiment was a candidate optimum. A paired #-test was

employed with the criterion:

J—AT b (5.7)

Satisfaction of this criterion implied that x; was not a candidate optimum, and hence & was
reduced to d/2 and a new line search experiment commenced. In the event that x; could not be
disregarded as an optimum, a gradient was calculated around x; with a randomly-selected 2*!
fractional factorial design. A new candidate optimum, J;’, was established in the region x; + Ax

with variance V. J;" was compared to J;* with an unpaired 2-sample ¢-test:
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Null Hypothesis: H, =J' —=J" =0 (5-8)

H,=J -J >0
J' =T
t stat — >1 erit tl—a v
V. +V,. '
B v, +V,.)
| V2
J! + J*

'
N -N ov N, expts N, ey

expis
Rejection of the null hypothesis established x; as the new optimum x;*, and a new search
direction was calculated following Equations 5.2-5.5. Failure to reject the null hypothesis
resulted in a continuation of the line search with & was reduced to ¢/2. When the step size was
small enough such that dpg < Ax for all (xi);, the optimization terminated and J* was recorded as

the optimum for solvent i with uncertainty AJi*.

5.3. EXPERIMENTAL

5.3.1. Procedure for On-Demand Solvent Screening

A tank of nitrogen (>99.998%, Airgas) supplied both the main process flow and provided an
inert gas blanket for the reagents. Ten organic solvents from generally distinct solvent classes
were considered for the optimization: acetonitrile (MeCN), dichloroethane (DCE), DMC, DMF,
DMSO, dimethoxyethane (DME), iPrOH, pyridine, THF, and toluene. All solvents were
purchased anhydrous and used as received from Sigma-Aldrich, purged with nitrogen, and stored
in 7 mL vials under the septum-sealed manifold. 4-methoxybenzyl chloride (98% containing
K2COs as stabilizer, Sigma-Aldrich) was purged with nitrogen and stored in a 7 mL vial under
the manifold. A 5 mL solution of 2.22 g 11 (98%, Sigma-Aldrich), 1.97 g EtsN (=99%, Sigma-
Aldrich), and 135 mg naphthalene (99%, Sigma-Aldrich) was prepared and stored under
nitrogen. The online addition line was purged and filled with the solution of 11.

To prepare a slug, the liquid handler aspirated first a 30 uL volume of nitrogen from an empty
vial under the nitrogen manifold, followed by aliquots of a chosen solvent, 4-methoxybenzy!
chloride. and the chosen solvent again. To minimize carryover during this process, the liquid
handler probe was dipped in a wash solution of /PrOH before each reagent aspiration. 35 pL total

liquid volume was nominally aspirated, although the relative volume of 4-methoxybenzyl
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chloride to solvent was corrected by the density ratio between the two reagents. Following
sample aspiration, the sample was “stirred” three times in the probe under nitrogen by pulling
and pushing with the syringe pump 30 pLL volume. The reaction samples were introduced as 14-
pL slugs into the microfluidic system. Each slug was transported by 6.9 bar nitrogen gas
supplied from a syringe pump and was mixed online with 2.1 pL of the solution of 11, Et;N, and
naphthalene, before being carried to the reactor.

Downstream of the reactor, slugs were quenched at room temperature with a continuously
flowing solution of 10% acetic acid in acetonitrile. Following sampling with a 30 puL sample
loop, the sample was transported via syringe pump in a solution of 10% acetic acid in acetonitrile
to a 2 uL sample loop. The sample was observed by reversed-phase LC/MS with split 4.6 um
particle diameter and 1.8 um particle diameter columns. The preduct 12 was detected by UV at

270 nm. A complete list of experiments and results can be found in Appendix D.

5.3.2. Preparation of (N-4-methoxybenzyl)-(1R,2R)-(-)-diaminocyclohexane
(1R,2R-(-)-12)

All reagents were used as received. (1R,2R)-(-)-1,2-diaminocyclohexane (1R,2R-(-)-11)
(410.9 mg, 98% purity, 99% ee, Sigma-Aldrich), EtsN (358.6 mg, >99%, Sigma-Aldrich),
naphthalene (29.1 mg, Sigma-Aldrich), and DMSO (5 mL, anhydrous >99.9% Sigma-Aldrich)
were stirred in a 25 mL round-bottomed flask. To the flask was added 4-methoxybenzyl chloride
(1064.6 mg, 6.80 mmol, 2 equiv, 98% w/ K2COs as stabilizer Sigma-Aldrich). The flask was
heated to 78°C and stirred for 7.5 min. The reaction was quenched with 4 M aq. NaOH (5 mL) at
room temperature, and analysis was taken by HPLC showing 61% yield of 12. The resulting
solution was extracted 5 times with 40 mL ethyl acetate. The collected organic product was then
extracted once with 50 mL 4 M NaOH, and the subsequent aqueous product was extracted twice
with 25 mL ethyl acetate. The cumulative extracted organic product was then extracted again
with 50 mL 4 M NaOH, and the subsequent aqueous product was extracted again twice with 25
mL ethyl acetate. The cumulative organic product was dried with Na2SOs, filtered, and the
solvent was removed by rotary evaporation to yield an orange oil. This oil was purified using
column chromatography with silica gel. The column mobile phase was increased from
DCM/0.1% EtsN to DCM/8% MeOH/0.1% Et:N to yield an isolated sample of the product

1R,2R-(-)-12. The solvents were removed by rotary evaporation, and the resulting product was
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washed 5 times with 5 mL ethyl acetate followed by rotary evaporation to remove excess EtsN.
The product was then dissolved in DCM, precipitated with hexane, filtered, and dried under
vacuum, yielding the product 1R2R-(-)-12 (500.9 mg, 2.14 mmol, 59% yield) as a white
powder. 'H and '*C NMR spectra are included in Appendix D.

Product characterization: 'H NMR (400 MHz, CDCl3): 6 = 7.36 (d, J = 8.6 Hz, 2H), 6.88
(d. J=8.7 Hz, 2H), 4.23 (s, 2H), 4.11 = 3.74 (dd, J = 115.5, J = 12.9, 2H), 3.79 (s, 3H), 2.81 (td,
J=112, 4.1 Hz, 1H), 2.53 (td, J = 10.9, 3.9 Hz, 1H), 2.18 (dd, J = 12.1 Hz, 2H), 1.75 (dd, J =
25.0, 11.7 Hz, 2H), 1.54 — 1.14 (m, 5H). 3C NMR (101 MHz, CDCl3): & = 159.28, 130.12,
129.52, 114.15, 59.67, 55.37, 54.76, 49.57, 31.65, 30.32, 24.68, 24.36. HRMS (ESI) m/z
235.1805 (calculated for C14H22N20 235.1805 [M+H]").

5.3.3. Automated Reagent Calibration

A solution of 0.542 M 12 and 0.0433 M naphthalene in DMSO and a solution of 0.0474 M
naphthalene in DMSO were stored under nitrogen in the liquid handler. Two replicates each of
slugs containing 0 M, 0.13 M, 0.26 M, 0.39 M, and 0.52 M 12 were prepared following the same
procedure as in the optimization, routed through the screening system (without online injection)
at 30°C and a residence time of 5 min, and analyzed by LC/MS. A calibration was constructed
based on integrated peak absorbance measurements of the desired product and naphthalene at

270 nm. The calibrated slope was Cprod = 6.98*Cnaphthalene*Aproa’/Anaphlhalene with R2 =(.987.

5.4. RESULTS

Optimizing in the range of conditions given in Scheme 5.1, two initial sets of 20 fractional
factorial design slugs (four slugs for each of ten solvents) identified seven candidate solvents to
continue exploring in the first iteration of the sequential RSM algorithm. DMSO was predicted
to be the most favorable solvent for producing 12 in high yield, with MeCN, DME, and DMC
considered the three least favorable solvents for the reaction. These three solvents were fathomed
in the next optimization iteration. A comparison of predicted optima and observed optima
through 40 total experiments is shown in Table 5.1. The large uncertainty in the predicted
maximum yields was attributed to the inefficiency of a combinatorial factorial design approach
in refining a complex response surface. However, by assuming similar trends among the

continuous variables, our method was able to predict higher yields for solvents in other regions
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of the experimental space that were not considered during the fractional factorial design of
experiments. For that reason, THF, with a maximum observed yield of only 36% in four slugs,

ranked above DMC, with a maximum observed yield of 57%.

Table 5.1. Observed maxima and maxima predicted by a linear response surface model through 40 fractional
factorial design experiments. Dashed border represents solvents below minimum yield tolerance.

Observed Maximum Predicted Maximum

Solvent lres (S) T(OC) C(),Me()/gn('/ (M) Yield Lyes (S) T(OC) Co,Me()/3,1('/ (M) Yield
DMSO 600 69 1.00 63% 144 64 1.00 197%=+ 121%
DMF 600 69 1.00 56% 159 76 1.00 106%
DCE 190 120 1.00 53% 176 89 1.00 85%
Pyridine 190 120 1.00 51% 168 84 1.00 82%
iPrOH 600 120 0.44 43% 216 120 1.00 77%
THF 600 120 0.44 36% 216 120 1.00 77%
_Tohxeﬂe_ _ 190 120 044 4% _e0_ 77 _ 1e00_ 77% |
DMC 600 120 1.00 57% 216 120 1.00 67%
DME 190 120 0.44 42% 170 85 1.00 65%
MeCN 600 120 1.00 47% 199 107 1.00 62%

Using the sequential RSM algorithm, our system subsequently ran through several iterations
of response surface refinement and discrete variable elimination until linear convergence of the
uncertainty in the maximum was achieved. This refinement required only an additional 27
experiments but was able to reduce the number of solvents under consideration from seven down
to one, the optimal solvent being DMSO. Figures 5.1a and 5.1b illustrate the steady improvement
of the observed yield over the course of the experimental design and the convergence of the
predicted yields for all ten solvents, respectively. As the search progressed, a greater number of
experiments were conducted with the polar aprotic solvents DMSO, DMF, and pyridine,
improving the response surfaces and refining the estimated maxima for these solvents in
preference to less favorable discrete variables. This resulted in rapid reduction in the uncertainty
on the optimum yield from 121% to 10%. Shown in Figure 5.1c, experiments clustered at the
corners of the continuous variable space (owing to the factorial design initialization) and in the
interior of the space near the eventual temperature and reaction time optima for DMSO, DMF,

and pyridine.

132



(a) Observed Yield Evolution: Step 3 (b) Predicted Yield Evolution: Step 3
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Figure 5.1. (a) Evolution in observed yield as a function of solvent during a 27-experiment sequential RSM
optimization. (b) Evolution in predicted yield as a function of solvent during the same RSM optimization. (c)
Optimization trajectory and observed yield for fractional factorial design and RSM experiments. (d)
Optimization trajectory and observed yield for quasi-Newton gradient search with DMSO.

Review of the predicted optima for each solvent following the sequential RSM optimization
(Table 5.2) revealed much improved agreement with experimentally observed optima. The
optimal reaction conditions were predicted for DMSO at a moderate temperature and reaction
time (78°C and 444 s) with the maximum equivalents of 4-methoxybenzyl chloride. These
conditions provided a starting point for a quasi-Newton optimization of the yield of the reaction
in DMSO with respect to the three continuous variables. As shown in Figure 5.1d, this
optimization resulted in re-convergence to the sequential RSM optimum within the statistical
noise of the system. The final optimized yield was found to be 62.1 = 0.2% with optimal
conditions tres = 444 + 15 s, T =78 + 2°C, Co.meosnct = 1.00 £ 0.02 M, and DMSO as the solvent.
93 slug experiments were required collectively to find the discrete and continuous variable

optimum. To validate the scalability of the method, we synthesized 0.5 g of the enantiospecific
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product 1R,2R-(-)-12 in batch at the aforementioned optimal conditions (Scheme 5.2). The scale-
up yielded 61% product by HPLC, with an isolated yield of 59% and 99% ee.

o
MeO 1r »NH,

1RsNH2 10M
. » g
ZR"'/NH2 0.5 M Et3N 2R ,lu/\©\
DMSO
OMe

(1R.2R()-11) 78°C (1R2R-(-)-12)
0.5M 7.5 min 59% Yield

Scheme 5.2. Mono-alkylation of (7R,2R)-(-)-1,2-diaminocyclohexane.

Table 5.2. Observed maxima and maxima predicted by a linear response surface model through 67 fractional
factorial and sequential RSM experiments. Dashed border represents solvents below minimum yield

tolerance.
Observed Maximum Predicted Maximum
Solvent Lres (S) T(°0) Corteonnci (M) Yield tres (S) T (°C)  Comteonncr (M) Yield
_DI\iSO 600 85 1.00 64% 444 78 1.00 70%+ 10% |
DMF- i 600 101 1.00 59% 404 95 1.00 60%
Pyridine 340 78 1.00 53% 449 76 1.00 59%
DCE 190 120 1.00 53% 349 120 0.91 56%
THF 161 120 1.00 43% 349 120 0.91 55%
DMC 600 120 1.00 57% 349 120 0.91 52%
MeCN 600 120 1.00 47% 380 104 0.96 47%
iPrOH 161 120 1.00 49% 349 120 0.91 47%
DME 190 120 0.44 42% 349 120 0.91 41%
Toluene 190 120 0.44 44% 368 110 0.95 39%

5.5. DISCUSSION

Based on the predicted optima in Table 5.2 and the generated response surfaces (illustrated at
the respective optimal temperatures for each solvent in Figure 5.2), we observed that a higher
yield of the mono-alkylated product correlated strongly with the aprotic solvent polarity, with
DMSO, DMF, and pyridine outperforming the other seven solvents. In the cases of all three
favorable solvents and MeCN, increasing temperature led to over-alkylation and reduced
selectivity. We reasoned this enhanced rate of alkylation derived from better stabilization of the
dipolar transition state in polar aprotic solvents, as compared to other solvent classes. While in
batch experimentation or combinatorial screening careful tuning and control of the reaction

temperature and time would present a challenge to identifying conditions where good product
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selectivity could be achieved in polar aprotic solvents, our system was able to rapidly identify
conditions where mono-alkylation was most favorable, preventing the need for use of slow-

reacting nonpolar solvents in the synthesis of 12.

Dimethyl Sulfoxide, 78°C N,N-Dimethylformamide, 95°C Pyridine, 76°C 1,2-Dichloroethane, 120°C
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Figure 5.2. Quadratic response surfaces for the predicted mono-alkylation yield of product 12. Response
surfaces were calculated at the optimal temperature for each solvent at termination of the sequential RSM
optimization.

We compared the optimal predicted yields found from the sequential RSM optimization to
two common metrics of solvent polarity: the solvent dielectric constant (Figure 5.3a) and the
solvent hydrogen bond basicity (Figure 5.3b). Good qualitative agreement between the predicted
maximum yield and the solvent dielectric constant was observed for the solvents DMSO, DMF,
iPrOH, DME, and toluene; however the remaining five solvents deviated greatly from the
reaction performance predicted by the dielectric constant alone. Seeking better rationalization for
the solvent performances in our system, we considered a recent study by Lebleu ef al. which
demonstrated that selective mono-methylation of primary amines could be achieved with a good

H-bond donating solvent.?'> Comparing our optimization results to the hydrogen-bond basicities
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of the solvents in our study, we as well observed good correlation in the predicted reaction yield
with the H-bond donating capacity of our solvent (DCE being a lone outlier). Knowing that
chiral diamines like the product 12 were themselves good H-bond donors,?*® we hypothesized
that the basicity of the solvent worked to counteract the nucleophilicity of 12, leading to a

decreased rate of over-alkylation. Though based strictly on correlation, this hypothesis could

inspire attempts to optimize over stronger H-bond donating solvents in future studies.
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Figure 5.3. (a) Correlation of the maximum mono-alkylation yield predicted following the sequential RSM
optimization to the solvent dielectric constant (g), corrected for the predicted optimal temperature.??'2? (b)
Correlation of the maximum mono-alkylation yield predicted following the sequential RSM optimization to
the solvent hydrogen bond basicity (pKus), corrected for the predicted optimal temperature.?+>3? For cases

where AS° was not available in literature, pKus(T) was estimated using pKus(25°C) and the AS° of a
comparable molecule: for iPrOH, 1-propanol;*** for DCE and DME, 1,3-dichloropropane and 1,4-dioxane,
respectively.???

5.6. CONCLUSIONS

The ability to screen discrete variables while simultaneously optimizing continuous variables
offers new possibilities that have, to a large extent, been unutilized in batch HTE. The use of a
smart search algorithm, for instance, has been shown to greatly reduce the number of
experiments and amount of uncertainty on the optimum relative to what would be achievable for
a traditional design of experiments in the confines of a 96-well-plate. From the response surfaces
found through feedback, quantitative information was gained with regard to the change in
reaction yield as a function of a perturbation-in one or more process variables. The accuracy of a
greater than 300-fold scale-up from 16 pL slugs to a 5 mL batch synthesis demonstrated the
utility of microscale reaction modeling.

Overall, this case study illustrates how intelligent experimentation, along with the

introduction of a greater diversity of model variables, may ultimately allow greater insight into
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the chemistry than a vast library of high-throughput experimental studies. The significant
relationships affecting yield or reaction kinetics are easiest to identify when a model relating all
variables is repeatedly proposed, tested, and refined. By refining the solvent response surface
model in this chapter, we were able to identify relationships between discrete and continuous
variables that were consistent with scientific literature but non-trivial to quantify prior to
experimentation. This is the first step in the direction of an automated platform capable of
identifying the relationships needed to build insight into reaction mechanisms and to identify
structural or reactive properties shared by optimal discrete variables. In Chapter 6, we
demonstrate that similar understanding can be built from analysis of ligand and palladium

precursor effects in Suzuki-Miyaura cross-coupling reactions.
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6. OPTIMIZATION AND KINETIC INVESTIGATIONS OF SUZUKI-
MIYAURA CROSS-COUPLING REACTIONS

6.1. INTRODUCTION

The Suzuki-Miyaura cross-coupling reaction has enjoyed much fanfare in recent decades on
account of the reaction’s mild conditions, high functional group tolerance, and general
accessibility through the use of relatively stable and easy-to-handle organoboron reagents.?3423
The coupling of an aryl halide to a boronic acid to form a new C-C bond holds widespread

8 and has drawn significant

applicability in the pharmaceutical and fine chemical industries®?
interest as a tool for fast scale-up from process chemistry to production in the realm of
continuous manufacturing.?*’ Yet as ubiquitous as the Suzuki-Miyaura cross-coupling may be in
organic synthesis, a somewhat fundamental mystery has always remained unsolved: how to
choose the right catalyst/ligand system for a given pair of coupling partners. Though generations
of catalyst precursors and ligands have been developed and iteratively improved to produce more
generalizable results, higher yields, and better turnover numbers (TONs),2*-24 it has always
been to the experimentalist to instinctively or methodically identify the optimal catalytic system,
while at the same time evaluating dependences on factors such as temperature, reaction time, and
concentration.

The emergence of HTE® has to an extent simplified the chore of optimization, enabling as
many as 1532 cross-coupling reactions to be examined in a single automated experiment in a
matter of hours.®* While this high-throughput approach is impressive in its enumerative power,
the amount of information that can be gleaned from such a strategy is still limited by virtue of
having to run all experiments at a fixed temperature and time, the reliance upon diffusion for
mixing, and the high probability that experiments are not “intelligently” chosen to be run where
the optimum is most likely to be found (which, in fairness to the experimentalist, cannot be
expected to be known before the experiment begins). Those who have invested strictly in the
HTE approach also must consider the colossal magnitude of numbers involved the screening of
transition-metal catalyzed reactions. Murray e al.?*’ estimated that even in a simplified case
there may be greater than 50 million unique combinations of discrete and continuous variable

factors to consider in a typical Suzuki-Miyaura cross-coupling reaction. If each of these sets of
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conditions were screened with 1 mg of substrate, more than 50 kg of material would be needed to
complete an optimization.

To combat the curse of dimensionality, strategies for optimal catalyst and reaction condition
selection have focused upon the use of principle component analysis (PCA) and design of
experiments (DoE) to select the most representative discrete and continuous variables to choose
in more selective cross-coupling experiments.2*#24° PCA allows for quantification of the relative
effects of ligands?**2? based upon shared physical characteristics such as cone or bite angle,”*>
255 allowing researchers to identify representative ligands that can be sampled to estimate the
effect of the principle component on the reaction output. This approach comes with the
disadvantage of having to characterize and map the ligands a priori, and as is the case with all
discrete to continuous variable transformations, can easily fail by virtue of oversimplifying the
properties essential to good catalytic performance with a given substrate or within a specific
medium. Such properties can be factored into consideration using a feedback approach to select
the optimal catalyst-ligand system for a reaction, as was accomplished for solvent selection in
Chapter 5. With slug flow microfluidics we can also simultaneously minimize the amounts of
expensive starting materials, transition metals, and ligands consumed during a given study.
Based upon the success of our method in Chapter 5, we were also interested to explore whether
our automated system could be used to tease out important mechanistic relationships that could
contribute to better understanding of the Suzuki-Miyaura cross-coupling reaction.

We had particular interest in studying the coupling of aryl halides and boronic acids in the
presence of the organic base DBU. This reaction has compelling implications for flow chemistry,
as reaction yields can be achieved without mass transfer limitation that are comparable to the use
of inorganic bases such as K3sPOu (see Section 3.4.3). The general optimization is presented in
Scheme 6.1. We considered a fixed ratio of 5:1 THF to water (the water being necessary for the
generation of OH" ions) and temperatures and residence times ranging from 30-110°C and from
1-10 min. respectively. We sought to optimize the catalyst loading by way of maximizing the
TON for the reaction. However, simply maximizing TON presented a problem in that a high
TON could be achieved with relatively little yield; to avoid this. we stipulated in the optimization
routine that the maximum TON be identified subject to the yield being within 90% of the overall

maximum.
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Scheme 6.1. Optimization scheme for Suzuki-Miyaura cross-couplings in the presence of DBU and
THF/Water.

We considered for optimization the family of palladacycle-ligand precatalyst systems
developed by Buchwald and coworkers (Figure 6.1).2*>2>® These precatalysts have been found to
be both air and moisture stable, with precatalysts of the form P1 stable for more extensive
periods of time in solution and more conducive to the incorporation of bulky ligands.?** Upon
exposure to base, P1 and P2 rapidly undergo deprotonation and reductive elimination. This rapid
reduction to the active Pd’-ligand complex, accelerated by the strongly electron withdrawing
methane sulfonate and chloride groups, makes this family of precatalysts highly effective in
Suzuki-Miyaura cross-coupling reactions, particularly in the presence of boronic acids which are
prone to rapid protodeboronation.?**2%” The monoligated complex that forms upon activation of
P1 or P2 is particularly favorable for oxidative addition of aryl chlorides.?*® Methylated and

phenylated variants of P1 have also been synthesized to prevent the formation of NH-

aminobiphenyls during catalyst activation.'®®

Precatalysts
/NHZ /NH2
) ows -
L OMs L Cl
Ligands
Cy, iPr PCy>0Me PCy,0-iPr PPh2 PPh2 L5
|Pr lPr- PBu; L7
(XPhos) (SPhos) (RuPhos) (XantPhos)

Figure 6.1. Precatalysts and ligands for Suzuki-Miyaura reaction optimization.
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6.2. METHOD

Following the optimization method described in Chapter 4, the reactions were optimized for
product yield with respect to total amount of ligand, which for all studies with 1:1 palladacycle-
ligand solutions equaled the catalytic TON. The constraint parameter y was chosen as 0.90. The
reaction TON was chosen as the weighting factor in the least squares regression for all examples
except for the optimization of 2-chloropyridine and 1-boc-2-pyrroleboronic acid. In the latter
case the reaction yield was chosen as the weighting factor. No trust region was specified for the
prediction covariance in these examples.

Full catalyst-ligand optimization studies commenced with a randomized 6-experiment
fractional factorial design, followed by a second refined 16-experiment fractional factorial
design. The ligand equivalent optimization study commenced with a randomized 12-experiment
fractional factorial design, followed by a second refined 12-experiment fractional factorial
design. To prevent a loss in accuracy from solvent evaporation, optimization studies were
terminated at a maximum of 96 experiments, regardless of whether the termination criteria

presented in Chapter 4 had been satisfied. Optimization routines were executed in MATLAB.

6.3. EXPERIMENTAL

6.3.1. General Solution Preparation Procedure

The precatalyst-ligand complexes used in this study were synthesized and isolated by Yiming
Wang following the procedure published by Bruno et al.**> All other reagents were used as
received. Reagent solutions were prepared under ambient conditions but transferred to nitrogen-
backfilled vials and stored under argon in the inert gas manifold. These solutions were prepared
fresh for each optimization or kinetic parameter ramp. A 5 mL aryl halide and (the internal
standard) naphthalene solution was prepared by diluting with THF to 1.4 M aryl halide and 0.4
M naphthalene and transferring the solution to a 7 mL vial. A 5 mL boronic acid or boronic
pinacol ester solution was prepared by diluting with THF to 1.0 M and transferring the solution
to a 7 mL vial. Eight palladacycle-ligand combinations were considered: P1-L1, P2-L1, P1-L2,
P1-L3, P1-L4, P1-L5, P1-L6, and P1-L7. Individual 2 mL precatalyst solutions were prepared
by charging the solid to a tapered 2 mL vial, then dosing with 2 mL THF to yield a 0.018 M

solution. A solution of makeup THF was transferred to a 7 mL vial. A solution of water,
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degassed with sonication and backfilled under nitrogen, was transferred to a 7 mL vial. A 10 mL
DBU solution was prepared by diluting 2.5 ¢ DBU to 1.66 M in THF and transferring the
solution to a 20 mL scintillation vial. The online injection line and syringe were purged with this
DBU solution. For the ligand equivalent optimization only. individual ligand solutions
containing L1 and L5-HBF4 were prepared by charging the solid to a tapered 2 mL vial, then
dosing with 2 mL THF to yield a 0.05 M solution. A solution of L7-HBF4 was prepared by
charging the solid to a tapered 2 mL vial, then dosing with 2 mL degassed water to yield a 0.05

M solution.

6.3.2. Automated Reaction Optimization and Screening

A tank of argon (>99.997%, Airgas) supplied both the main process flow and provided an
inert gas blanket for the reagents. To prepare a slug, the liquid handler aspirated first a 30 pL
volume of argon from an empty vial under the argon manifold, followed by aliquots of THF, aryl
halide, excess ligand (if needed), precatalyst, boronic acid or boronic acid pinacol ester, water,
and THF again. To minimize carryover during this process, the liquid handler probe was dipped
in a wash solution of THF before each reagent aspiration. 35 pL total liquid volume was
nominally aspirated. Following sample aspiration, the sample was “stirred” three times in the
probe under argon by pulling and pushing with the syringe pump 30 pL volume. The reaction
samples were introduced as 14-uL slugs into the microfluidic system. The slugs were transported
at 6.9 bar by argon gas driven by a syringe pump and mixed online with 3.5 uL. DBU in THF
before reaction in a heated FEP tube reactor. Reacting slugs comprised 0.167 M aryl halide,
0.250 M boronic acid, 0.333 M DBU, and 0.5-2.5 mol% precatalyst. Temperatures ranged 30-
110°C and reaction times ranged 1-10 min. Each slug was quenched with a 1:1 solution of water
and acetone, with 1 pL sampled for analysis by LC/MS. The sample was split in the HPLC
between a 1.8 pum analytical column and a 4.6 pum pressure resistance column. Product
quantitation was performed by UV at pre-determined wavelengths of 230, 254, 270, 285, 300, or
340 nm. Before each experiment, blank slugs of water, acetone, and THF were prepared and
injected into the system. A complete list of experiments, measured product yields and TONs, and

sample preparation procedures can be found in Appendix E.
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6.3.3. Automated Boronic Acid and Ester Degradation Studies

The system was set up as described above. To prepare a slug, the liquid handler aspirated first
a 30 pL volume of argon from an empty vial under the argon manifold, followed by aliquots of
THF, naphthalene. boronic acid or boronic acid pinacol ester, water, and THF again. The sample
was rinsed, stirred, and injected into the system as previously described. The slugs were mixed
online with 3.5 uLL DBU in THF before reaction at 110°C. Each slug was quenched with
acetonitrile (to prevent additional water-induced protodeboronation), with 1 pL sampled for
analysis by LC/MS. The HPLC method was as previously described. The boronic acid
concentration was quantified by UV at 300 nm and compared to the absorbance found after
flowing the boronic acid and naphthalene through the system in the absence of water or DBU for

5 min at 30°C.

6.4. RESULTS

6.4.1. Optimization of TON in Suzuki-Miyaura Cross-Coupling Systems

We first considered with our system the coupling of 3-bromoquinoline (13) with 3,5-
dimethylisoxazole-4-boronic acid pinacol ester (14) (Scheme 6.2). The system began by
searching the extremes of the experimental space for temperature, reaction time, and catalyst
loading before moving to interior of the experimental space and disregarding L6 as a candidate
optimal ligand. Subsequent experiments led to further reduction in the number of possible
optimal palladacycle-ligand combinations until only P1-L4 remained under consideration after
78 experimental slugs. Further experiments were employed to reduce the uncertainty on the
optimal yield (98% 15 at the maximum temperature of 110°C, residence time of 10 min, and
precatalyst loading of 2.5%) and the optimal TON (74 at 110°C, 10 min, and 1.2% precatalyst).
The experimental trajectory progressed much in similarity to the simulations in Section 4.3.1. As
observed in Figure 6.2, most of the automated system’s effort focused on resolving the cutoff at
which 90% of the maximum yield could be achieved with a reduced loading of P1-L4, just as a
traditional process chemist would have identified the best temperature, reaction time, and

catalyst and tuned the catalyst loading to improve TON.
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Scheme 6.2. Optimum for the Suzuki-Miyaura cross-coupling of 3-bromoquinoline and 3,5-
dimethylisoxazole-4-boronic acid pinacol ester.
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Figure 6.2. Automated optimization trajectory for the synthesis of 15.

Confident in our system’s ability to rapidly identify the best catalytic system and experimental
variables, we challenged the system by switching from the aryl bromide to 3-chloropyridine (16)
(Scheme 6.3). The reaction of 16 with 14 was considerably slower and gave poor yields when
P1-L4 was selected as the precatalyst. Among the eight candidate palladacycle-ligand pairs, the
system identified P1-L5 as a suitable catalyst system, generating 42% yield of 17 in 10 min at
110°C and 2.1% Pd loading. By contrast, selection of P1-L5 was only found to produce a
maximum yield of 3%. We were also surprised to see the trialkylphosphine ligand L5
outperform dialkylbiarylphosphine ligands L1-L3. Further analysis of the optimization results
revealed that although the use of P1-L1 at reduced temperatures gave the product 17 in moderate
vield, P1-LS once activated at 110°C appreciably outperformed the maximum yield achievable

with P1-L1 at all temperatures.
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Scheme 6.3. Optimum for the Suzuki-Miyaura cross-coupling of 3-chloropyridine and 3,5-dimethylisoxazole-
4-boronic acid pinacol ester.

Alternatively, we considered the cross-coupling of 16 with benzofuran-2-boronic acid (18)
(Scheme 6.4). Unlike in the two prior cases, the maximum TON for the production of 19 was
found to occur at a shortened residence time of 3.9 min, with 1.2% P1-L1 catalyst at 110°C.
Review of the optimization trajectory (Figure 6.3) showed that for this case the automated
system conducted a sweep of moderate residence times and catalyst loadings at 110°C before
converging upon an optimum. Experiments were also conducted at 10 min residence times with
P1-L1 over a range of catalyst loadings, but no improvements in TON were observed beyond
that which could be achieved in a sub-4 minute reaction. The dialkylbiarylphosphine ligands L1-
L3 faired particularly well in this example, all generating maximum yields of greater than 75%.
Catalyst systems of the other four ligands, including L4 and L5, were fathomed from the

optimization early and found to be unlikely to produce yields in excess of 40%.
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Figure 6.3. Automated optimization trajectory for the synthesis of 19.
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Scheme 6.4. Optimum for the Suzuki-Miyaura cross-coupling of 3-chloropyridine and benzofuran-2-boronic
acid.

Intrigued by the shift in the continuous variable optimum from substitution of a boronic acid
pinacol ester for a boronic acid, we attempted what was anticipated to be an even faster and more
unstable reaction of 2-chloropyridine (9) and 1-boc-2-pyrroleboronic acid (7) (Scheme 6.5). As
was reasonable from conversion from the meta-substituted to the ortho-substituted pyridine, the
reaction completed to 90% yield in less than 5 min, with an optimum of 1.0% P1-L1 at 97°C.
Like in the case of synthesizing 19, the dialkylbiarylphosphine ligands L1-L3 were distinguished
by the optimization system as providing significantly higher yields (greater than 88%) and TONs
in comparison to other considered ligands. Illustrated in Figure 6.4, the experimental trajectory in
this case extensively searched the experimental design space before convergence to the interior

reaction time-temperature-catalyst loading optimum.
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Figure 6.4. Automated optimization trajectory for the synthesis of 10.
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Scheme 6.5. Optimum for the Suzuki-Miyaura cross-coupling of 2-chloropyridine and 1-boc-2-pyrroleboronic
acid.

Given that no upper or lower bound constraint was active upon convergence to the optimum
in Scheme 6.5, we questioned the validity of the proposed optimum and proceeded to conduct a
series of automated experiments to synthesize 10 in slug flow at different reaction times and
temperatures at 1.0% loading of P1-L1. Figure 6.5a shows the response surface estimated by the
optimization algorithm, and Figure 6.5b overlays the results of the P1-L1 screening experiments
upon the predicted yields from the response surface model at 80°C, 97°C, and 110°C. The
response surface predictions agree closely with the screening results near the optimum of 4.7 min
and 97°C and capture the reduced TON at both long residence times and high temperature and
short residence times and low temperature. A consequence of the adaptive response surface
algorithm is that farther away from the optimum (for instance at 80°C) the approximated

response surface does not capture accurately the slower activation time of the reaction.
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Figure 6.5. (a) Predicted response surface for the synthesis of 10 with 1.0% P1-L1 precatalyst. (b)
Comparison of automated screening experiments (markers) on the predicted yield based on the best-fit
response surface (solid line) for the synthesis of 10 at same coniditons.
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6.4.2. Optimization of Ligand Equivalents

We postulated that the reactions of 16 may be accelerated by adding excess ligand to solution.
To study the effect of adding excess ligand, we employed the same automated system and
characterized the reaction of 16 with 3,5-dimethylisoxazoleboronic acid (20) (Scheme 6.6). As a
simplification, we considered only the precatalyst P1 and the ligands L1, LS, and L7, and
examined the effect of manipulating temperature and excess equivalents ligand (from 0.0 to 2.0)
at 10 min reaction time and 1.4% precatalyst-ligand loading. As in the cross-coupling of 16 with
the boronic acid pinacol ester, the optimization algorithm rapidly identified P1-L5 as the best
catalytic system at 110°C. Shown in Figure 6.6(a-b), the reaction yield improved overall in the
range of 0.2-0.8 excess ligand equivalents but decreased significantly with the use of 2 excess
ligand equivalents for all precatalysts. On a per-ligand basis, it was found to be non-optimal to
introduce excess L5-HBFs to the P1-L5 system. For both L1 and L7 the automated system
postulated only 0.3 excess ligand equivalents as optimal both on a per ligand basis and for the

overall reaction yield.

o 1.4% P1-L5 o)
m . HE B(OH), 0 eQUw..excess.LS HBE N | N
N o5 2 equiv DBU in THF »
5:1 THF:H,0 N
1.5 equiv 110°C TON = 34, Yield = 47%
(16) (20) 10 min (17)

Scheme 6.6. Optimum for the Suzuki-Miyaura cross-coupling of 3-chloropyridine and 3,5-dimethylisoxazole-
4-boronic acid.
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Figure 6.6. Automated optimization trajectory for the synthesis of 17 by reaction of 16 and 20. (a) TON
optimization profile with respect to ligand equivalents. (b) Yield optimization profile.
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6.5. DISCUSSION

6.5.1. Mechanistic Insights

The Suzuki-Miyaura reaction mechanism has been studied extensively,?**%! and though the
role of the base in the transmetallation step is still controversial,”**2% the catalytic cycle
generally proceeds as illustrated in Figure 6.7. The Pd’-ligand complex is generated from the
activation of the Pd" precatalyst and undergoes oxidative addition of the aryl halide. This is
followed by transmetallation and then by reductive elimination to generate the product and
regenerate Pd’. Faster uptake of the aryl halide into the catalytic cycle makes the transmetallation
step rate-limiting. Substrates which are poor oxidants, such as aryl chlorides or unactivated aryl
bromides, limit the oxidative addition step of the cycle and can therefore change the rate limiting
step from transmetallation to oxidative addition.®® For sterically bulky ligands and aryl
chlorides, the monoligated palladium species is preferential for oxidative addition to the

palladium, with inhibitory reaction kinetics observed with increasing ligand concentration.2%¢-267

Pd" Precursor-L

Activation

Ar1 -Ar2 PdO_L AI'1-X

Reductive Oxidative
Elimiation Addition

{

Pd'-L L‘IIDd"-Ar1

|
Ar? X
Transmetallation

X-B(OR), ArZ-B(OR)z
+ Base

Figure 6.7. Generalized catalytic cycle for the Suzuki-Miyaura cross-coupling of an aryl halide and an aryl
boronic acid.
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The results of our optimization study suggest such a transition in rate-limiting step when
converting from the aryl bromide 13 to the aryl chloride 16. From Table 6.1, which summarizes
the maximum yield and TON predicted by the automated system for the Suzuki-Miyaura
reaction case studies, we observed a significant decline in turnover rate with L4 using the
chloride substrate, whereas the optimal performance for the other ligands in the study only
declined slightly or improved, as in the case of LS. This suggested that L4 accelerated the rate of
transmetallation upon fast uptake of the bromide into the catalytic cycle, but with the chloride the
slow rate of oxidative addition offset the effectiveness of the bidentate ligand. By contrast,
trialkylphosphine ligands L5 and L7 and dialkylbiarylphosphine ligands L1-L3. by nature of
being good electron donors, continued to promote oxidative addition even in the presence of the
chloride substrate. Though it was speculated that the coordination of multi
center may contribute to the enhanced performance of L1, L5, and L7, optimization of the
synthesis of 17 with the boronic acid substrate showed no improved reaction rate per unit ligand.
This would seem to support the optimality of a monoligated palladium species. The decrease in
reaction yield observed with a large excess of ligand suggests that the excess ligand competes

with the aryl halide to bind to the palladium center, further retarding the reaction.

Table 6.1 Optimal yield and TON found by automated optimization of Suzuki-Miyaura case studies. Yields
for syntheses of 10, 15, and 19 are based on conversion of the aryl halide.

Precat-

. 13+14> 15 16 +14> 17 16+ 18> 19 9+7-2>10
ngand
Max Yield Max TON | Max Yield Max TON | Max Yield Max TON | Max Yield Max TON

P1-L1 85% 39 45% 18 97% 75 99% 89
P2-L1 22% 9 8% 3 78% 41 88% 42
P1-L2 50% 20 30% 12 81% 44 95% 65
P1-L3 71% 28 35% 14 87% 52 90% 62
P1-L4 98% 74 3% 1 4% 2 73% 29
P1-L5 52% 21 47% 20 6% 2 54% 32
P1-L6 9% 4 1% 1 29% 11 34% 19
P1-L7 81% 32 25% 10 40% 20 27% 16

6.5.2. Unstable Reactants and Products, and the Correlation to Ligand Selection

In the shift from the boronic pinacol ester 14 to the boronic acids 18 and 10, a clear transition
was observed in the preference of dialkylbiarylphosphine ligands L1-L3 over other ligands
considered in the study. In both boronic acid cases we also observed optimality in the reaction
residence time at less than 5 min (as compared to the maximum of 10 min for the boronic pinacol

ester 14), and in the case of the synthesis of 10 the optimal yield and TON were both achieved at
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less than 100°C with L1. For this last case, the optimal reaction conditions for all palladacycle-
ligand combinations listed in Table 6.2 also showed a distinct segregation in the optimality of
ligands L1-L3 in comparison to the other ligands in the study. Whereas catalysts bound to less
sterically-hindered alkyl or aryl ligands were observed most optimal at the maximum
temperature and short reaction times, L1-L3 were found to be optimal in the range of 85-97°C
and at moderately longer reaction times of 4-6 min.

Table 6.2. Optimal TON conditions for the reaction of 9 and 7 to produce 10. P1-L1 was found to be optimal
in 97 experiments.

Pnrecat- lres T Cat. Loading TON
.Lﬁand (min) (°C) (mol%)
P1-L1 4.7 97.2 1.012 88.7
P2-L1 6.1 88.2 2.088 422
P1-L2 6.2 85.9 1.381 65.0
P1-L3 43 95.5 1.442 61.7
P1-L4 10.0 79.6 2.500 29.0
P1-L5 1.5 110.0 1.707 31.7
P1-L6 1.7 110.0 1.790 18.8
P1-L7 24 110.0 1.760 15.6

We attributed the preferences for dialkylbiarylphosphine ligands in these cases to the
competing rates of catalyst activation and reagent degradation. Both 18 and 10 were expected to
undergo rapid protodeboronation upon exposure to base at high temperature. Using the
automated system, we studied the kinetics of the degradation of 18 by co-flowing slugs of 0.250
M boronic acid with 0.333 M DBU in 5:1 THF-water. As illustrated in Figure 6.8, the loss of 18
to protodeboronation at 110°C was indeed significant, with only 20% of the original boronic acid
remaining after 5 min—hence the requirement for fast activation kinetics of the catalyst. We then
questioned whether controlled release of the boronic acid—by virtue of starting with the boronic
pinacol ester—would neutralize the advantage of using ligands L1-L3 in this case study. In
collaboration with Yiming Wang, the boronic acid pinacol ester of 18 was synthesized and
studied kinetically in comparison to 18. Sure enough, the amount of 18 present starting with the
boronic acid pinacol ester 21 was observed to remain between 50% and 90% over the course of
10 min. Reaction of 21 with 16 in the presence of 1.2% P1-LS (Scheme 6.8) was observed to
give a much-improved yield of 85% in 10 min at 110°C, whereas the yield found from use of P1-

L1 with the ester remained consistent with the previous optimization at 87%.
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Scheme 6.7. Suzuki-Miyaura cross-coupling of 3-chloropyridine and benzofuran-2-boronic acid pinacol ester.
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Figure 6.8. Observed HPLC concentration of 18 at 110°C starting with benzofuran-2-boronic acid (18) and
benzofuran-2-boronic acid pinacol ester (21).

The optimal synthesis of 10 involved a three-component competition between activation of
the catalyst complex, the protodeboronation of 7, and the instability of the product. Based on the
similarity of the optimal response surface (Figure 6.5a) to the simulation results in Figure 4.4, it
was evident in this situation that the primary competition was between catalyst activation and
product instability. Here the true advantage of a feedback flow optimization system was realized,
as ligands were discriminated based on catalyst activity while the system simultaneously
pinpointed a controlled reaction time and temperature for maximum product yield. As in the
prior boronic acid case, the dialkylbiarylphosphine ligands were found to be more efficient than
L4 and trialkylphosphine ligands L5-L7. P1 also outperformed P2 in this and all other cases,

consistent with the observations of Bruno et al.2*
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6.6. CONCLUSIONS

With the integration of automation and online analytics into cross-coupling reactions in flow,
we have demonstrated a systematic methodology for both optimizing reactions and extracting
key mechanistic insights. In 1-2 days of automated experiments, a single Suzuki-Miyaura cross-
coupling reaction can now be assessed, optimized, and debugged, with precious resources such
as the substrate, palladium, and ligand consumed in milligram quantities over the span of the full
optimization. The reproducible results generated by the system further allow for the opportunity
to test hypotheses and draw unbiased conclusions about rate-limiting reaction steps and process
variables.

Our studies herein have shown the importance of dialkylbiarylphosphine ligands in promoting
high catalytic turnover in the presence of aryl chloride substrates and unstable boronic acids and
products. With boronic acid pinacol esters, where the rate of hydrolysis to the boronic acid can
be limiting, the advantage of using the dialkylbiarylphosphine ligand may be neutralized. The
same observation applies for the substitution of aryl bromides for aryl chlorides, where the
reaction can transition to being oxidative addition-limited to transmetallation-limited.
Heuristically, the data of these case studies show that the choice of the P1-L1 precatalyst is
favorable in most cases, but optimality can certainly not be guaranteed without a comprehensive
search of all palladium precursor-ligand combinations.

Given the abundance of reaction insights that can be gleaned from the simultaneous study of
only a few discrete and continuous variables, it can only be anticipated that future studies
incorporating more variables—for instance candidate bases, solvents, and further manipulation
of reagent equivalents—will allow even more extensive insight into design of the catalytic
system for improved performance. These investigations will require both more intelligent ways
of exploring discrete variables (compared to enumeration) and ways to incorporate learning from
one optimization to the next. It was limiting in these optimization studies to repeatedly start with
a design of experiments initialization and no prior preferentiality among different precatalysts
and ligands. Future revitalizations of this work will in turn bring together chemoinformatics,
PCA, and Bayesian statistics to prioritize discrete and continuous variables given the chemical
properties of the substrates to greatly expedite the optimization of library syntheses and the
resolution of more complex reaction mechanisms. It is clear that one day these automated tools

will be working alongside the experimentalist solve chemistry’s most challenging problems.
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7. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

7.1. INTRODUCTION

The increased role of automation in chemical discovery and development has aroused the
interests and sparked the curiosities of academics and industrials alike. In 2013, Elvira et al.
posed seven goals of microfluidic research, and in doing so placed specific emphasis upon the

advancement of automation.2%8

With regard to automated reaction optimization, the authors
challenged the microfluidic community to be able use integrated flow devices to map reactions
and products finely over an exhaustive range of experimental conditions. This challenge
resonated with us, not because the goal was insurmountable, but because the overarching goal of
automated flow systems in this thesis has always been to find a way to make process
development and scale-up faster, not bigger. An essential part of intelligence is the ability to
maximize the use of resources and solve problems as directly as possible; likewise automation
should be a tool that thinks and assists in that process. Put differently: if hiring a researcher to
work in a chemistry lab, would we hire the one who can run the most experiments in the shortest
time, or the one who draws upon past knowledge and inferences to make the smartest decision
on what experiment to run next? It would only seem logical to have the same expectations for
automated systems.

In another article in 2014, Peplow posed the idea of the robo-chemist,>*® a machine that could
one day synthesize any compound automatically at the touch of a button. Current research is
already underway build such a machine for different classes of reactions.?’*2”? For discovery
chemists, an automated synthesis tool would open the door to billions upon billions of yet-
unsynthesized molecules. Chemists and engineers concerned with scale-up, however, should
recognize that making the molecules may be a much simpler task than making the molecules in a
cost-effective, scalable manner. The incorporation of flow chemistry offers one very viable
option to facilitating scalability of small scale syntheses, for all of the reasons presented in
Chapter 1. The need for smarter algorithms and analytical tools that can mine through past data
and collect new data is, however, a recurrent theme that will need to be addressed to make
automated synthesis a reality.

By bringing together discrete and continuous variables in automated optimization, we have

illustrated a tool with the potential both to screen a diverse array of chemistries—as required for
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automated synthesis—and learn about the chemistry—as required for accelerated reaction
characterization and scale-up. The challenges posed by the Elvira ef al. and Peplow articles, in
truth, are not for a system that maps the reaction space fully or makes every conceivable
molecule; rather they are challenges for chemists and engineers to look critically at organic
chemistry and question what radical changes can be made that will ultimately reshape the way
materials are made and drugs are designed. The key takeaways from both articles are that
synthetic chemistry is constantly searching for generalizable methods that access a more diverse
scope of molecules and conditions in higher throughput. We have shown through examples how
feedback optimization of complex chemical systems offers one contribution in advancement this

ongoing goal.

7.2. SUMMARY OF THESIS CONTRIBUTIONS

Several goals were introduced at the beginning of this thesis, which constituted both physical
and conceptual advances to the field of feedback automation:

e Expansion of the scope of automated kinetic parameter estimation

e Design and implementation of an automated segmented flow system capable of
screening a diverse range of liquid-phase reactions

e Implementation of an algorithm that solves in real-time the MINLP of simultaneous
discrete variable screening and continuous variable screening optimization

e Application of the screening system to simultaneous ligand, catalyst, and solvent
selection and reaction optimization

e Demonstration of scale-up of optimized reaction conditions

In large, the goal was to develop tools that would simplify and accelerate reaction development
for a wide range of flow chemistry applications.

We began by exploring estimation of reaction kinetics in a series-parallel SnAr reaction
pathway, which in determining four sets of pre-exponential factors and activation energies
pushed the limits of what could be achieved with continuous variable feedback optimization. We
demonstrated in this example the impressive accuracy of flow systems; however it was also clear
that the sensitivity of the continuous flow system design to changes in the model parameters was
insufficient to estimate all Kinetic parameters with low uncertainty. Rather than estimating all

model parameters simultaneously, we found that decoupling the system by studying the kinetics
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of isolated reaction steps greatly reduced model uncertainty, with the limitation that
intermediates had to be synthesized and isolated. Using the preliminary kinetics from the flow
system, we were able to optimize the production of the unfavorable intermediate and use both
reaction intermediates as starting materials in later parameter estimation studies.

The limitation posed by optimization over exclusively continuous variables motivated design
and construction of a new system that would allow for optimization over both discrete variables
and continuous variables. To accomplish this goal, we constructed a segmented flow
microfluidic system that with the service of a liquid handling robot enabled different reactants,
catalysts, and solvents to be paired together, mixed and reacted in a microfluidic slug, and
analyzed online with feedback. We overcame numerous design challenges in producing a
versatile system. Reagents were sampled and mixed accurately by aspirating and withdrawing
samples repeatedly under an inert atmosphere. Transport of the slug was accomplished most
effectively and with minimal carryover with the use of a compressed inert gas flowing through in
an FEP tube. A custom-designed aluminum chuck with a groove for the FEP tube that sealed
with polycarbonate to 6.9 bar prevented gas permeation from the system and promoted rapid
heating and cooling. Automated syringe pumps connected to the flow system at T-junctions
allowed reagents to be added to the slugs online for reaction initiation and quenching. Splitting
of the slug into a 1 pL sample that was further partitioned in an online LC/MS enabled on-
demand reaction analysis. The control to execute reactions on-demand was achieved with
LabView. Studies showed the system to be reproducible over the course of many repeated
experiments and to have a slug-to-slug carryover of approximately 3%.

Though the system as designed was advantageous for HTE, we sought as well to incorporate
automated feedback into the optimization of reactions. As an initial attempt at black box
optimization of discrete and continuous variable reaction systems, we developed and assessed a
sequential response-surface based optimization algorithm. The algorithm employed a design of
experiments approach to preliminarily characterize the experimental design space, then
constructed response surface models for the performance of the objective with respect to linear,
interaction, and quadratic effects in the continuous variables. Discrete variable response surfaces
shared these common response surface terms but were distinguished with intercept and
temperature-specific terms. Using the best-fit response surfaces, a lower bound on the overall

optimum was established at each optimization iteration; discrete variables which were not
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predicted to outperform this lower bound were fathomed from the next optimization iteration,
akin to B&B. The response surfaces were then re-adapted for the exclusion of these discrete
variables. To minimize the uncertainty on the optimum the fastest, a G-optimality criterion was
implemented to select new on-demand experiments. This algorithm was demonstrated to be
successful in a great majority of bimolecular, parallel, and series reaction pathway examples. We
found the local search aspect of the G-optimality criterion to be limiting depending on the quality
of the design of experiments initialization, and the method struggled when one discrete variable
reaction rate law differed from the others.

The system and numerical methodology was applied to systems for solvent optimization and
catalyst-ligand optimization. We considered optimal solvent selection for the benzylation of
trans-1,2-diaminocylohexane, which is difficult to control in batch because of the propensity to
over-alkylate at either amine position. Using the segmented flow system and the developed
algorithm, we identified the solvent (DMSO) and reaction conditions that would allow for
controlled alkylation at a single amine position and used these conditions in scale-up to make
500 mg product in batch. Similarly, we explored the optimization of several examples of single-
phase Suzuki-Miyaura cross-coupling reactions with respect to the palladacycle-ligand complex
and the reaction conditions. Generally, we found our method advantageous in rapidly identifying
conditions where catalyst TON could be maximized given a constraint on yield. We observed
cases where ligands which performed well with one substrate failed with the next, where the
optimal ligand at one temperature was not optimal at a different temperature, and where an
internal temperature-reaction time-catalyst loading optimum was found.

What we did not necessarily anticipate in accomplishing these goals was the learning with
regard to the chemistry that would come from each reaction study. By merging discrete and
continuous variables, we were able to explore to a greater depth the similarities and differences
among optimal solutions. In the solvent optimization case, our system and response surface
approach in a relatively limited number of experiments identified commonalities among
preferential solvents that we later correlated back to solvent polarity and, more specifically,
solvent hydrogen bond basicity. Similar discoveries were made in the Suzuki-Miyaura case
studies. Depending on the choice of aryl halide, we observed transitioning of the rate limiting
reaction step from oxidative addition to transmetallation, as evidenced by ligand preference and

optimal TON. Using our system, we were able to construct kinetic profiles for the evolution of a
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boronic acid and boronic acid pinacol ester, allowing visualization of the effect of
protodeboronation on reaction yield. From the optimal response surface, we were also able to
diagnose the competing effects of product degradation and catalyst activation and justify without
bias the advantages of using dialkylbiarylphosphine ligands in the case of an unstable boronic
acid and Suzuki-Miyaura product.

Though these are the primary thesis contributions, it would be unfortunate to overlook the
other contributions this research has made in the directions of flow chemistry and automation. It
was only a few years ago that automation was a luxury in process development, designed for
demonstration purposes in specialized cases. Now the use of automation is prolific in flow

chemistry examples,?’327

simply because it enables experiments to run longer, makes analysis
easier—especially at hazardous conditions—, and allows researchers more time to focus on more
challenging chemistry or process engineering tasks. By collaborating actively with process
chemists, we are also finding ways to engineer systems in flow without having to manipulate the
underlying chemistry, a key aspect that will have to progress forward in order for flow chemistry
to gain greater acceptance in both academic and industrial labs. Essential to that goal is the
increased versatility of reactors, reagent delivery, and online analytical methods, all of which

have been addressed to some extent in this thesis.

7.3. FUTURE RESEARCH DIRECTIONS

Relating back to the introduction of this chapter, continued work in automated feedback
reaction systems will, in the most general sense, focus upon throughput acceleration and
increased versatility, all while attempting to bring greater accessibility to the chemists and
engineers looking to use the technology. Whether nanomolar reagent thresholds, sub-hour
optimization times, or complete online scale-up and isolation of product are needed in future
years will be determined by the demands of the pharmaceutical and fine chemical industries. In
all of these cases, it will be important to balance the collection of large quantities of data with the
quality and scalability of the data collected.

In terms of immediate enhancements to be made to the system presented in this thesis, further
exploration into the optimization of multi-phase reactions (in particular liquid-liquid) is needed.
This will require use of oscillatory slug flow as presented in a recently.'®® Future investigations

will as well focus on the handling of less stable starting reagents—perhaps those with half-lives
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of a few hours or less or ones which are insoluble at high concentration. Use of a glove box or
glove bag for inert sample preparation will be far more robust than the manifold presented in
Chapter 3. Additionally, it will be advantageous to provide active cooling to reagents in the
liquid handler or to the online addition reagent for extended thermal stability. Technologies also
exist for gravimetric handling of solid reagents. Though these may not be able to dose accurately
to the microgram scale, as needed for individual slugs, it may be possible to incorporate this
technology into the formation of small on-demand reaction batches that could turn into multiple
slug injections, still accelerating sample preparation. Of course the incorporation of online
analysis such as FTIR could greatly accelerate reaction modeling on a case-by-case basis.

We have postulated one algorithmic approach for simultaneous discrete and continuous
variable optimization. Surely many other approaches exist, including pattern search methods and
evolutionary methods.?”?%" Even in the subset of optimal experimental design methodologies, it
would be intriguing to explore by comparison other optimality approaches such as D-optimality
or [-optimality, which has a similar objective to G-optimality but examines the collective
uncertainty of multiple points.?”' Perhaps these strategies will be less subjective to convergence
to local minima or more robust to variations in reaction mechanisms. Ultimately it will be
important to examine the best way to optimize multiple classes of discrete variables. In the
simplest case, all possible combinations of discrete variables could be tested in enumeration, as
was presented with palladacycle-ligand pairs in Chapter 6. But it may well be the case that this is
an inefficient approach, and an experimental design approach more along the lines of a Latin
Hypercube for the pairing of different discrete variables may result in accelerated
convergence.'®3

Though these are worthy explorations in themselves, the true test of this method will come in
the conceptual advances it will facilitate. More facile flow mechanistic studies are now enabled
with this system, given the user’s ability to characterize the reaction with respect to both discrete
and continuous variables. Kinetic explorations like those in Chapter 2 are certainly attainable,
and time- and temperature-course data have been shown to be collected automatically in Chapter
6. In the long term, it is easy to foresee research in this field expanding into in silico reaction
modeling and chemoinformatics, as it will be essential in time savings for the feedback algorithm
to be able to discern the common attributes shared by more optimal discrete variables and

identify other unscreened discrete variables which share those optimal attributes. Collaborations

159



between programmers and process and medicinal chemists will help immensely in bringing the
software to the intelligence level of a “robo-chemist.” On-demand library development and
product isolation are also achievable with this system with collection and purification of
individual slugs by preparatory HPLC, leading to the possibility of biological assays of flow-
synthesized compounds.??!

In summary, the outlook for automated, segmented flow reaction optimization systems is
positive, given the need both in academia and industry for tools that can rapidly and accurately
characterize reactions using minimal amounts of material. Attention must always be paid to the
versatility of the systems in terms of reagent tolerance and the sensitivity achievable for
measured responses to manipulation in the process variables. In terms of automation and
simplicity, the adage “set it and forget it” is a foremost goal to have in mind. It is with the
continued advancement of automated reaction characterization systems that researchers will

begin to gain much faster insight into reaction mechanisms, sparking faster reaction optimization

and scale-up, and truly achieving the vision of “accelerated reaction development.”
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8. NOMENCLATURE

Table 8.1. Table of Latin nomenclature.

Symbol  Definition

A Matrix of response surface parameters

A Cross-sectional area

Ai Pre-exponential factor for discrete variable i

Ar Pre-exponential factor for &z

Agr Pre-exponential factor for kg

As2 Pre-exponential factor for kg,

A Pre-exponential factor for rate constant &,

aij Response surface model parameter

a’i Response surface model parameter

b Vector of measured responses

b, Vector of measured responses with experiment # removed from data set
by, Measured objective function (response) value for experiment u
b Model-predicted response

Coreonnci | Initial concentration of 4-methoxybenzyl chloride

Cao Initial concentration of limiting reagent A

Claou Initial concentration of limiting reagent 4 in experiment u
Chro Initial concentration of reagent B

Cear Catalyst concentration

Cr Outlet concentration of desired product R

Cru Outlet concentration of desired product R in experiment u
Csi Outlet concentration of undesired product S|

C. Vector of concentrations Ci,

Ciu Model-predicted concentration of species 1, 3, 4, and 5 in experiment u
C. Vector of predicted concentrations C,

c Vector of response surface parameters

Ci Response surface model parameter

c’i Response surface model parameter

Ca Capillary number

Ey4 Activation energy for discrete variable i

Ear Nominal activation energy for Az

Ear Activation energy for rate constant &,

Ean Activation energy for kg

E4sn Activation energy for kg

Fau v F distribution with « confidence and vi and v» degrees of freedom
I Objective function

fi Rate of formation for species i

Gi G-optimal value for discrete variable i

g Inequality constraint

g Gravitational constant

g, Gradient at iteration g

Ho Null hypothesis

H, Alternative hypothesis

H, Hessian at iteration g

J* Maximal maximum of f for all discrete variables

J* Lower bound on J*

Jopreaq® Predicted J.* through iteration ¢

Jq* J-* through iteration ¢

Ji’ Optimal predicted response value at candidate optimum x;
Ji* Maximum of f for discrete variable y,
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Table 8.1. (cont.) Table of Latin nomenclature.

Symbol Definition

Jn* Minimal maximum of /for all discrete variables
Jpred.q® Predicted J* through iteration g
Jg* J* through iteration ¢

ke Rate constant for A + B 2 R

kr Rate constant for reaction r

ks Rate constant for B = S,

ksa Rate constant forB+R =2 S,

m Rate law power dependence of Cyq

Nev Number of continuous variables

N Number of discrete variables

Nexprs Number of experiments

Nexprs” Number of experiments used to calculate J;’

Nexpes ™ Number of experiments used to calculate J;*

Nparams Number of parameters

Nprior Number of prior experiments

Niyesp Number of measurcd respoinscs

n Rate law power dependence of Cho
p Rate law power dependence of Cy

Py Search direction for line search at iteration g

q Optimization iteration index

R Gas constant (8.314 J/mol K)

st Covariance of responses / and j

S¢ Scaled search direction at iteration g

T Reaction temperature

T* Scaling temperature for parameter optimization

t Time (instantaneous)

teru Critical t-statistic

Ires Residence time

tytan Calculated t-statistic

lar Student’s t value for 1- « confidence and v degrees of freedom
U Bulk fluid velocity

u Vector of experimental conditions

Vaur a posteriori parameter covariance matrix

\7:] Response covariance matrix

Vi Scalar response covariance

V. Prediction covariance

V.H,, Prediction covariance for discrete variable i

Viu Response covariance with experiment ¥ removed from data set
vy Prediction covariance matrix at candidate optimum x;

Vi« Prediction covariance matrix at the optimum x*

Vu a priori parameter covariance matrix

W Weighting matrix for least-squares regression

W, Weighting matrix for experiment uz in MLE

X Matrix of scaled experimental conditions (also sensitivity matrix)
X1 Matrix of scaled experimental conditions augmented with new candidate experiment
Xy Sensitivity coefficient matrix for experiment u

X’ Matrix of scaled experimental conditions with experiment « removed from data set
X Vector of scaled continuous variables

xX* Optimal vector of continuous variables for f

x’ Optimal vector of continuous variables at yield optimum
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Table 8.1. (cont.) Table of Latin nomenclature.

Symbol  Definition

Xi Vector of scaled continuous variables for solvent i

(xi)j Continous variable ; for solvent i

b Optimal vector of continuous variables at yield optimum for discrete variable i
Xi* Optimal vector of continuous variables for ffor discrete variable i

(xi%); Optimal continous variable j for solvent i
X; Continuous variable j

Y Yield objective function

y Vector of scaled discrete variables

y* Optimal vector of discrete variables for f

y’ Optimal vector of discrete variables at yield optimum

yi* Optimal vector of discrete variables for f for discrete variable i

Y’ Optimal vector of discrete variables at yield optimum for discrete variable i
Vi Discrete variable i

Yq Gradient difference at iteration g

Z Fisher information matrix

Table 8.2. Table of Greek nomenclature.

Symbol  Definition

a Rejection confidence level specified for Student’s ¢-test

y Fraction of maximum yield that satisfies yield constraint of turnover number optimum
AJ* Error on the optimal response for solvent i

AV, Change in gas volume

AV Aspirated volume fluid i

AVy Change in transfer fluid volume

Ax Tolerance on the vector of optimal continuous variables

Ax; Tolerance on the optimum for continuous variable j

o Line search step size

€ Dielectric constant

n Viscosity

0 Vector of model parameters

O, Optimal vector of model parameters

0. Vector of optimal model parameters with experiment # removed from data set
&, Model parameter p

n a priori vector of optimal model parameters

Hd Dipole moment

P Correlation matrix

Pe Density of gas

pi Density of fluid i

DOy Transfer fluid density

a Interfacial tension

163



(D

)

3)

4

&)

(6)

(7

®

&)

(10)

(1
(12)

(13)

164

9. REFERENCES

"Tufts Center for the Study of Drug Development. Cost to Develop and Win Marketing
Approval for a New Drug Is $2.6 Billion." 2014.

Poechlauer, P.; Manley, J.; Broxterman, R.; Gregertsen, B.; Ridemark, M. "Continuous
Processing in the Manufacture of Active Pharmaceutical Ingredients and Finished Dosage
Forms: An Industry Perspective." Org. Process Res. Dev. 2012, 16, 1586.

Baxendale, I. R.; Braatz, R. D.; Hodnett, B. K.; Jensen, K. F.; Johnson, M. D.; Sharratt,
P.; Sherlock, J.-P.; Florence, A. J. "Achieving Continuous Manufacturing: Technologies
and Approaches for Synthesis, Workup, and Isolation of Drug Substance. May 20-21,
2014 Continuous Manufacturing Symposium." J. Pharm. Sci. 2015, 104, 781.

Anderson, N. G. "Using Continuous Processes to Increase Production." Org. Process
Res. Dev. 2012, 16, 852.

Sahoo. H. R.; Kralj, J. G.; Jensen, K. F. "Multistep Continuous-Flow Microchemical
Synthesis Involving Multiple Reactions and Separations.” Angew. Chem.-Int. Edit. 2007,
46, 5704.

Pellegatti, L.; Sedelmeier, J. "Synthesis of Vildagliptin Utilizing Continuous Flow and
Batch Technologies." Org. Process Res. Dev. 2015.

Johnson, M. D.; May, S. A.; Calvin, J. R.; Remacle, J.; Stout, J. R.; Diseroad, W. D.;
Zaborenko, N.; Haeberle, B. D.; Sun, W.-M.; Miller, M. T.; Brennan, J. "Development
and Scale-Up of a Continuous, High-Pressure, Asymmetric Hydrogenation Reaction,
Workup, and Isolation." Org. Process Res. Dev. 2012, 16, 1017.

Kockmann, N.; Roberge, D. M. "Harsh Reaction Conditions in Continuous-Flow
Microreactors for Pharmaceutical Production." Chem. Eng. Technol. 2009, 32, 1682.

Newman, S. G.; Jensen, K. F. "The Role of Flow in Green Chemistry and Engineering."
Green Chem. 2013, 15, 1456.

Vaccaro, L.; Lanari, D.; Marrocchi, A.; Strappaveccia, G. "Flow Approaches towards
Sustainability." Green Chem. 2014, 16, 3680.

Ley, S. V. "On Being Green: Can Flow Chemistry Help?" Chem. Rec. 2012, 12, 378.

Poechlauer, P.; Colberg, J.; Fisher, E.; Jansen, M.; Johnson, M. D.; Koenig, S. G.;
Lawler, M.; Laporte, T.; Manley, J.; Martin, B.; O’Kearney-McMullan, A.
"Pharmaceutical Roundtable Study Demonstrates the Value of Continuous

Manufacturing in the Design of Greener Processes." Org. Process Res. Dev. 2013, 17,
1472.

Hartman, R. L.; McMullen, J. P.; Jensen, K. F. "Deciding Whether To Go with the Flow:
Evaluating the Merits of Flow Reactors for Synthesis." Angew. Chem.-Int. Edit. 2011, 50,
7502.



(14)

(15)

(16)

a7

(18)

(19)

(20)

3y

(22)

(23)

(24)

(25)

(26)

27)

Murphy, E. R.; Martinelli, J. R.; Zaborenko, N.; Buchwald, S. L.; Jensen, K. F.
"Accelerating Reactions with Microreactors at Elevated Temperatures and Pressures:
Profiling Aminocarbonylation Reactions." Angew. Chem.-Int. Edit. 2007, 46, 1734.

Snead, D. R.; Jamison, T. F. "A Three-Minute Synthesis and Purification of Ibuprofen:
Pushing the Limits of Continuous-Flow Processing." Angew. Chem.-Int. Edit. 2015, 54,
983.

Hessel, V.; Kralisch, D.; Kockmann, N.; Noel, T.; Wang, Q. "Novel Process Windows
for Enabling, Accelerating, and Uplifting Flow Chemistry." ChemSusChem 2013, 6, 746.

Mascia, S.; Heider, P. L.; Zhang, H. T.; Lakerveld, R.; Benyahia, B.; Barton, P. L.;
Braatz, R. D.; Cooney, C. L.; Evans, J. M. B.; Jamison, T. F.; Jensen, K. F.; Myerson, A.
S.: Trout, B. L. "End-to-End Continuous Manufacturing of Pharmaceuticals: Integrated
Synthesis, Purification, and Final Dosage Formation." Angew. Chem.-Int. Edit. 2013, 52,
12359.

Jensen, K. F. "Microreaction Engineering - Is Small Better?" Chem. Eng. Sci. 2001, 56,
293.

Jensen, K. F. "Silicon-Based Microchemical Systems: Characteristics and Applications."
MRS Bull. 2006, 31, 101.

Hartman, R. L.; Jensen, K. F. "Microchemical Systems for Continuous-Flow Synthesis."
Lab Chip 2009, 9, 2495.

Jensen, K. F.; Reizman, B. J.; Newman, S. G. "Tools for Chemical Synthesis in
Microsystems." Lab Chip 2014, 14, 3206.

McMullen, J. P.; Stone, M. T.; Buchwald, S. L.; Jensen, K. F. "An Integrated
Microreactor System for Self-Optimization of a Heck Reaction: From Micro- to
Mesoscale Flow Systems." Angew. Chem.-Int. Edit. 2010, 49, 7076.

McMullen, J. P.; Jensen, K. F. "Rapid Determination of Reaction Kinetics with an
Automated Microfluidic System." Org. Process Res. Dev. 2011, 15, 398.

Zhang, Y. J.; Born, S. C.; Jensen, K. F. "Scale-Up Investigation of the Continuous Phase-
Transfer-Catalyzed Hypochlorite Oxidation of Alcohols and Aldehydes." Org. Process
Res. Dev. 2014, 18, 1476.

Zaborenko, N.; Bedore, M. W.; Jamison, T. F.; Jensen, K. F. "Kinetic and Scale-Up
Investigations of Epoxide Aminolysis in Microreactors at High Temperatures and
Pressures." Org. Process Res. Dev. 2011, 15, 131.

Woitalka, A.; Kuhn, S.; Jensen, K. F. "Scalability of Mass Transfer in Liquid-Liquid
Flow." Chem. Eng. Sci. 2014, 116, 1.

Nagy, K. D.; Shen, B.; Jamison, T. F.; Jensen, K. F. "Mixing and Dispersion in Small-
Scale Flow Systems." Org. Process Res. Dev. 2012.

165



(28)

(29)

(30)

@31

(32)

(33)

(34)

(35)

(36)

37

(38)

(39)

(40)

(41)

166

Keybl, J.; Jensen, K. F. "Microreactor System for High-Pressure Continuous Flow
Homogeneous Catalysis Measurements." Ind. Eng. Chem. Res. 2011, 50, 11013.

Moore, J. S.; Jensen, K. F. ""Batch" Kinetics in Flow: Online IR Analysis and
Continuous Control." Angew. Chem.-Int. Edit. 2014, 53, 470.

Reizman, B. J.; Jensen, K. F. "An Automated Continuous-Flow Platform for the
Estimation of Multistep Reaction Kinetics." Org. Process Res. Dev. 2012, 16, 1770.

Heublein, N.; Moore, J. S.; Smith, C. D.; Jensen, K. F. "Investigation of Petasis and Ugi
Reactions in Series in an Automated Microreactor System." RSC Adv. 2014, 4, 63627.

Born, S. C.; Jensen, K. F. "Risk Evaluation for the Use of Azide Reagents in
Pharmaceutical Development: DPPA On-Demand." Abstr. Pap. Am. Chem. S. 2013, 245.

Chambers, R. D.; Fox, M. A_; Sandford, G.; Trmcic, J.; Goeta, A. "Elemental Fluorine -
Part 20. Direct Fluorination of Deactivated Aromatic Systems Using Microreactor

Chambers, R. D.; Sandford, G.; Trmcic, J.; Okazoe, T. "Elemental Fluorine. Part 21.
Direct Fluorination of Benzaldehyde Derivatives." Org. Process Res. Dev. 2008, 12, 339.

Navarrini, W.; Venturini, F.; Tortelli, V.; Basak, S.; Pimparkar, K. P.; Adamo, A.;
Jensen, K. F. "Direct Fluorination of Carbon Monoxide in Microreactors." .J. Fluorine
Chem. 2012, 142, 19.

de Mas, N.; Gunther, A.; Schmidt, M. A.; Jensen, K. F. "Increasing Productivity of
Microreactors for Fast Gas-Liquid Reactions: The Case of Direct Fluorination of
Toluene." Ind. Eng. Chem. Res. 2009, 48, 1428.

Ducry, L.; Roberge, D. M. "Controlled Autocatalytic Nitration of Phenol in a
Microreactor." Angew. Chem.-Int. Edit. 2005, 44, 7972.

Pelleter, J.; Renaud, F. "Facile, Fast and Safe Process Development of Nitration and
Bromination Reactions Using Continuous Flow Reactors." Org. Process Res. Dev. 2009,
13, 698.

Murray, P. R. D.; Browne, D. L.; Pastre, J. C.; Butters, C.: Guthrie. D.: Ley, S. V.
"Continuous Flow-Processing of Organometallic Reagents Using an Advanced Peristaltic
Pumping System and the Telescoped Flow Synthesis of (E/Z)-Tamoxifen." Org. Process
Res. Dev. 2013, 17, 1192.

Munoz, J. D.; Alcazar, J.; de la Hoz, A.; Diaz-Ortiz, A. "Application of Flow Chemistry
to the Reduction of Nitriles to Aldehydes." Tetrahedron Lett. 2011, 52, 6058.

Ducry, L.; Roberge, D. M. "DIBAL-H Reduction of Methyl Butyrate into Butyraldehyde
Using Microreactors." Org. Process Res. Dev. 2008, 12, 163.



(42)

(43)

(44)

45)

(46)

(47)

(48)

(49)

(50)

(D

(52)

(53)

(54)

Wu, J.; Yang, X. Q.; He, Z.; Mao, X. W.; Hatton, T. A.; Jamison, T. F. "Continuous Flow
Synthesis of Ketones from Carbon Dioxide and Organolithium or Grignard Reagents."
Angew. Chem.-Int. Edit. 2014, 53, 8416.

Nagaki, A.; Takahashi, Y.; Yoshida, J. I. "Extremely Fast Gas/Liquid Reactions in Flow
Microreactors: Carboxylation of Short-Lived Organolithiums." Chem.-Eur. J. 2014, 20,
7931.

Shu, W.; Pellegatti, L.; Oberli, M. A.; Buchwald, S. L. "Continuous-Flow Synthesis of
Biaryls Enabled by Multistep Solid-Handling in a Lithiation/Borylation/Suzuki-Miyaura
Cross-Coupling Sequence." Angew. Chem.-Int. Edit. 2011, 50, 10665.

Tomida, Y.; Nagaki, A.; Yoshida, J. "Asymmetric Carbolithiation of Conjugated Enynes:
A Flow Microreactor Enables the Use of Configurationally Unstable Intermediates before
They Epimerize." J. Am. Chem. Soc. 2011, 133, 3744.

Deng, Q. L.; Shen, R. W.; Ding, R.; Zhang, L. X. "Generation of Ethynyl-Grignard
Reagent in a Falling Film Microreactor: An Expeditious Flow Synthesis of Propargylic
Alcohols and Analogues." Adv. Synth. Catal. 2014, 356, 2931.

He, Z.; Jamison, T. F. "Continuous-Flow Synthesis of Functionalized Phenols by Aerobic
Oxidation of Grignard Reagents." Angew. Chem.-Int. Edit. 2014, 53, 3353.

Marre, S.; Park, J.; Rempel, J.; Guan, J.; Bawendi, M. G.; Jensen, K. F. "Supercritical
Continuous-Microflow Synthesis of Narrow Size Distribution Quantum Dots." Adv.
Mater. 2008, 20, 4830.

Nishiyama, Y.; Mori, R.; Nishida, K.; Tanimoto, H.; Morimoto, T.; Kakiuchi, K.
"Diastereodifferentiating 2+2 Photocycloaddition of a Chiral Cyclohexenone with

Cyclopentene in Supercritical Carbon Dioxide Using a Flow Microreactor." J. Flow
Chem. 2014, 4, 185.

Trachsel, F.; Tidona, B.; Desportes, S.; von Rohr, P. R. "Solid Catalyzed Hydrogenation
in a Si/Glass Microreactor Using Supercritical CO2 as the Reaction Solvent." J.
Supercrit. Fluid 2009, 48, 146.

McMullen, J. P.; Jensen, K. F. "An Automated Microfluidic System for Online
Optimization in Chemical Synthesis." Org. Process Res. Dev. 2010, 14, 1169.

Silva, B. V.; Violante, F. A.; Pinto, A. C.; Santos, L. S. "The Mechanism of Sandmeyer's
Cyclization Reaction by Electrospray lonization Mass Spectrometry." Rapid Commun.
Mass Sp. 2011, 25, 423.

Browne, D. L.; Wright, S.; Deadman, B. J.; Dunnage, S.; Baxendale, 1. R.; Turner, R. M_;
Ley, S. V. "Continuous Flow Reaction Monitoring Using an On-Line Miniature Mass
Spectrometer." Rapid Commun. Mass Sp. 2012, 26, 1999.

Goodell, J. R.; McMullen, J. P.; Zaborenko, N.: Maloney, J. R.; Ho. C. X.; Jensen, K. F.:
Porco, J. A.; Beeler, A. B. "Development of an Automated Microfluidic Reaction

167



(55)

(56)

(62)

(63)

(64)

(65)

(66)

168

Platform for Multidimensional Screening: Reaction Discovery Employing
Bicyclo[3.2.1]octanoid Scaffolds." J. Org. Chem. 2009, 74, 6169.

Sans, V.; Glatzel, S.; Douglas, F. J.; Maclaren, D. A.; Lapkin, A.; Cronin, L. "Non-
Equilibrium Dynamic Control of Gold Nanoparticle and Hyper-Branched Nanogold
Assemblies." Chem. Sci. 2014, 5, 1153.

Carter, C. F.; Lange, H.; Ley, S. V.; Baxendale, 1. R.; Wittkamp, B.; Goode, J. G.; Gaunt,
N. L. "ReactlR Flow Cell: A New Analytical Tool for Continuous Flow Chemical
Processing." Org. Process Res. Dev. 2010, 14, 393.

Qian, Z.; Baxendale, I. R.; Ley, S. V. "A Continuous Flow Process Using a Sequence of
Microreactors with In-Line IR Analysis for the Preparation of N,N-Diethyl-4-(3-
Fluorophenylpiperidin-4-ylidenemethyl)benzamide as a Potent and Highly Selective 6-
Opioid Receptor Agonist." Chem.-Eur. J. 2010, 16, 12342.

N 78] T < Thnmann |4 |y LY, ) PRI

onr . NMA cbnsmmndnd Al
wvivuiv, J. OJ., Juibdoll, Ihe . Auwitialcu  vidiuau

jectory Method for Reaction
Optimization in a Microfluidic System using Online IR Analysis." Org. Process Res.
Dev. 2012, 16, 1409.

Liu, X.; Unal, B.; Jensen, K. F. "Heterogeneous Catalysis with Continuous Flow
Microreactors." Cat. Sci. Tec. 2012, 2, 2134.

Mozharov, S.; Nordon, A.; Littlejohn, D.; Wiles, C.; Watts, P.; Dallin, P.; Girkin, J. M.
"Improved Method for Kinetic Studies in Microreactors Using Flow Manipulation and
Noninvasive Raman Spectrometry." J. Am. Chem. Soc. 2011, 133, 3601.

Sans, V.; Porwol, L.; Dragone, V.; Cronin, L. "A Self Optimizing Synthetic Organic
Reactor System Using Real-Time In-Line NMR Spectroscopy." Chem. Sci. 2015, 6,
1258.

Davies, 1. W.; Welch, C. J. "Looking Forward in Pharmaceutical Process Chemistry."
Science 2009, 325, 701.

Santanilla, A. B.; Regalado, E. L.; Pereira, T.; Shevlin, M.; Bateman, K.; Campeau, L.
C.; Schneeweis, J.; Berritt, S.; Shi, Z. C.; Nantermet, P.; Liu, Y.; Helmy, R.; Welch, C. J.;
Vachal, P.; Davies, [. W.; Cernak, T.; Dreher, S. D. "Nanomole-Scale High-Throughput
Chemistry for the Synthesis of Complex Molecules." Science 2015, 347, 49.

Shultz, C. S.; Krska, S. W. "Unlocking the Potential of Asymmetric Hydrogenation at
Merck." Accounts Chem. Res. 2007, 40, 1320.

Rubin, A. E.; Tummala, S.; Both, D. A.; Wang, C. C.; Delaney, E. J. "Emerging
Technologies Supporting Chemical Process R&D and Their Increasing Impact on
Productivity in the Pharmaceutical Industry." Chem. Rev. 2006, 106, 2794.

Schmink, J. R.; Bellomo, A.; Berritt, S. "Scientist-Led High-Throughput Experimentation
(HTE) and Its Utility in Academia and Industry." Aldrichim. Acta 2013, 46, 71.



(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)
(77)

(78)

(79)

Preshlock, S. M.; Ghaffari, B.; Maligres, P. E.; Krska, S. W.; Maleczka, R. E.; Smith, M.
R. "High-Throughput Optimization of Ir-Catalyzed C-H Borylation: A Tutorial for
Practical Applications." J. Am. Chem. Soc. 2013, 135, 7572.

Bellomo, A.; Celebi-Olcum, N.; Bu, X.; Rivera, N.; Ruck, R. T.; Welch, C. J.; Houk, K.
N.; Dreher, S. D. "Rapid Catalyst Identification for the Synthesis of the Pyrimidinone
Core of HIV Integrase Inhibitors." Angew. Chem.-Int. Edit. 2012, 51, 6912.

Friedman, M.; Savage, L. J. Techniques of Statistical Analysis; McGraw-Hill: New York,
1947.

Wissmann, P. J.; Grover, M. A. "Optimization of a Chemical Vapor Deposition Process
Using Sequential Experimental Design." Ind. Eng. Chem. Res. 2010, 49, 5694.

de Castro, A. M.; Castilho, L. R.; Freire, D. M. G. "Multivariate Optimization and
Supplementation Strategies for the Simultaneous Production of Amylases, Cellulases,

Xylanases, and Proteases by Aspergillus awamori Under Solid-State Fermentation
Conditions." Appl. Biochem. Biotech. 2015, 175, 1588.

Kaith, B. S.; Sharma, R.; Kalia, S.; Bhatti, M. S. "Response Surface Methodology and
Optimized Synthesis of Guar Gum-Based Hydrogels with Enhanced Swelling Capacity."
RSC Adv. 2014, 4, 40339.

Casciato, M. J.; Kim, S.; Lu, J. C.; Hess, D. W.; Grover, M. A. "Optimization of a
Carbon Dioxide-Assisted Nanoparticle Deposition Process Using Sequential
Experimental Design with Adaptive Design Space." Ind. Eng. Chem. Res. 2012, 51,
4363.

Coetzer, R. L. J.; Morgan, D. H.; Maumela, H. "Optimization of a Catalyst System
through the Sequential Application of Experimental Design Techniques." J. Appl. Stat.
2008, 35, 131.

Duarte, A. R. C.; Unal, B.; Mano, J. F.; Reis, R. L.; Jensen, K. F. "Microfluidic
Production of Perfluorocarbon-Alginate Core—Shell Microparticles for Ultrasound
Therapeutic Applications." Langmuir 2014, 30, 12391.

Lee, W.-H. Ph.D., Massachusetts Institute of Technology, 2014.

Newman, S. G.; Gu, L.; Lesniak, C.; Victor, G.; Meschke, F.; Abahmaneb, L.; Jensen, K.
F. "Rapid Wolff-Kishner Reductions in a Silicon Carbide Microreactor." Green Chem.
2014, /6, 176.

Welch, C. J.; Gong, X. Y.; Schafer, W.; Pratt, E. C.; Brkovic, T.; Pirzada, Z.; Cuff, J. F.;
Kosjek, B. "MISER Chromatography (Multiple Injections in a Single Experimental Run):
The Chromatogram is the Graph." Tetrahedron-Asymmetr. 2010, 21, 1674.

Siegle, A. F.; Trapp, O. "Development of a Straightforward and Robust Technique to
Implement Hadamard Encoded Multiplexing to High-Performance Liquid
Chromatography." Anal. Chem. 2014, 86, 10828.

169



(80)
81)

(82)

(83)

(84)

(85)

(86)

(87)

(88)

(89)

(90)

oD

(92)

(93)

170

McMullen, J. P. Ph.D., Massachusetts Institute of Technology, 2010.

Krishnadasan, S.; Brown, R. J. C.; Demello, A. J.; Demello, J. C. "Intelligent Routes to
the Controlled Synthesis of Nanoparticles." Lab Chip 2007, 7, 1434.

Huyer, W.; Neumaier, A. "SNOBFIT--Stable Noisy Optimization by Branch and Fit."
ACM T. Math Software 2008, 35, 9.

Nelder, J. A.; Mead, R. "A Simplex Method for Function Minimization." Comput. J.
1965, 7, 308.

Parrott, A. J.; Bourne, R. A.; Akien, G. R.; Irvine, D. J.; Poliakoff, M. "Self-Optimizing
Continuous Reactions in Supercritical Carbon Dioxide." Angew. Chem.-Int. Edit. 2011,
50, 3788.

Bourne, R. A.: Skilton, R. A.; Parrott, A. J.; Irvine, D. J.; Poliakoff, M. "Adaptive
Process Optimization for Continuous Methylation of Alcohols in Supercritical Carbon
Dioxide." Org. Process Res. Dev. 2011, 15, 932.

Jumbam, D. N.; Skilton, R. A.; Parrott, A. J.; Bourne, R. A.; Poliakoff, M. "The Effect of
Self-Optimisation Targets on the Methylation of Alcohols Using Dimethyl Carbonate in
Supercritical CO2." J. Flow Chem. 2012, 2, 24.

Skilton, R. A.; Parrott, A. J.; George, M. W.; Poliakoff, M.; Bourne, R. A. "Real-Time
Feedback Control Using Online Attenuated Total Reflection Fourier Transform Infrared
(ATR FT-IR) Spectroscopy for Continuous Flow Optimization and Process Knowledge."
Appl. Spectrosc. 2013, 67, 1127.

Skilton, R. A.; Bourne, R. A.; Amara, Z.; Horvath, R.; Jin, J.; Scully, M. J.; Streng, E.;
Tang, S. L. Y.;: Summers, P. A.; Wang, J.; Perez, E.; Asfaw, N.; Aydos, G. L. P.; Dupont,
J.; Comak, G.; George, M. W.; Poliakoff, M. "Remote-Controlled Experiments with
Cloud Chemistry." Nat. Chem. 2015, 7, 1.

Routh, M. W.; Swartz, P. A.; Denton, M. B. "Performance of the Super Modified
Simplex." Anal. Chem. 1977, 49, 1422.

Fabry, D. C.; Sugiono, E.; Rueping, M. "Self-Optimizing Reactor Systems: Algorithms.
On-Line Analytics, Setups, and Strategies for Accelerating Continuous Flow Process
Optimization." Isr. J. Chem. 2014, 54, 341.

Armijo, L. "Minimization of Functions Having Lipschitz Continuous First Partial
Derivatives." Pac. J. Math. 1966, 16, 1.

Box, G. E. P.; Hill, W. J. "Discrimination among Mechanistic Models." Technometrics
1967, 9, 57.

Box, G. E. P.; Draper, N. R. "Baysian Estimation of Common Parameters from Several
Responses." Biometrika 1965, 52, 355.



(94)

(95)

(96)

97)

(98)

(99)

(100)

(101)

(102)

(103)

(104)

(105)

(106)

Box, G. E. P.; Lucas, H. L. "Design of Experiments in Non-Linear Situations."
Biometrika 1959, 46, 77.

Song, H.; Chen, D. L.; Ismagilov, R. F. "Reactions in Droplets in Microflulidic
Channels." Angew. Chem.-Int. Edit. 2006, 45, 7336.

Hatakeyama, T.; Chen, D. L.; Ismagilov, R. F. "Microgram-Scale Testing of Reaction
Conditions in Solution Using Nanoliter Plugs in Microfluidics with Detection by
MALDI-MS." J. Am. Chem. Soc. 2006, 128, 2518.

Li, L.; Mustafi, D.; Fu, Q.; Tereshko, V.; Chen, D. L. L.; Tice, J. D.; Ismagilov, R. F.
"Nanoliter Microfluidic Hybrid Method for Simultaneous Screening and Optimization
Validated with Crystallization of Membrane Proteins." Proc. Natl. Acad. Sci. U. S. A.
2006, 103, 19243.

Kreutz, J. E.; Shukhaev, A.; Du, W. B.; Druskin, S.; Daugulis, O.; Ismagilov, R. F.
"Evolution of Catalysts Directed by Genetic Algorithms in a Plug-Based Microfluidic
Device Tested with Oxidation of Methane by Oxygen." J. Am. Chem. Soc. 2010, 132,
3128.

Clausell-Tormos, J.; Griffiths, A. D.; Merten, C. A. "An Automated Two-Phase
Microfluidic System for Kinetic Analyses and the Screening of Compound Libraries."
Lab Chip 2010, 10, 1302.

Theberge, A. B.; Mayot, E.; El Harrak, A.; Kleinschmidt, F.; Huck, W. T. S.; Griffiths,
A. D. "Microfluidic Platform for Combinatorial Synthesis in Picolitre Droplets." Lab
Chip 2012, 12, 1320.

Kaminski, T. S.; Jakiela, S.; Czekalska, M. A.; Postek, W.; Garstecki, P. "Automated
Generation of Libraries of nL Droplets." Lab Chip 2012, 12, 3995.

Niu, X.; deMello, A. J. "Building Droplet-Based Microfluidic Systems for Biological
Analysis." Biochem. Soc. T. 2012, 40, 615.

Zec, H.; Rane, T. D.; Wang, T.-H. "Microfluidic Platform for On-Demand Generation of
Spatially Indexed Combinatorial Droplets." Lab Chip 2012, 12, 3055.

Dressler, O. J.; Maceiczyk, R. M.; Chang, S. I.; deMello, A. J. "Droplet-Based
Microfluidics Enabling Impact on Drug Discovery." J. Biomol. Screen. 2014, 19, 483.

Kuster, S. K.; Pabst, M.; Zenobi, R.; Dittrich, P. S. "Screening for Protein
Phosphorylation Using Nanoscale Reactions on Microdroplet Arrays." Angew. Chem.-Int.
Edit. 2015, 54, 1671.

Jeong, H.-H.; Jin, S. H.; Lee, B. J.; Kim, T.; Lee, C.-S. "Microfluidic Static Droplet
Array for Analyzing Microbial Communication on a Population Gradient." Lab Chip
2015, 75, 889.

171



(107)

(108)

(109)

(110)

(111)

(112)

(113)

(114)

(115)

(116)

(117)

(118)

172

Bogdan, A. R.; Sach, N. W. "The Use of Copper Flow Reactor Technology for the
Continuous Synthesis of 1,4-Disubstituted 1,2,3-Triazoles." Adv. Synth. Catal. 2009, 351,
849.

Bogdan, A. R.; James, K. "Efficient Access to New Chemical Space Through Flow-
Construction of Druglike Macrocycles Through Copper-Surface-Catalyzed Azide-Alkyne
Cycloaddition Reactions." Chem.-Eur. J. 2010, 16, 14506.

Bogdan, A. R.; James, K. "Synthesis of 5-lodo-1,2,3-Triazole-Containing Macrocycles
Using Copper Flow Reactor Technology." Org. Lett. 2011, 13, 4060.

Hochlowski, J. E.; Searle, P. A.; Tu, N. P.; Pan, J. Y.; Spanton, S. G.; Djuric, S. W. "An
Integrated Synthesis-Purification System to Accelerate the Generation of Compounds in
Pharmaceutical Discovery." J. Flow Chem. 2011, 1, 56.

Lange, P. P.; Bogdan, A. R.; James, K. "A New Flow Methodology for the Expedient

Aagio AF M T 2l n YV A el ~fea A 12 tia n o ] N1y 284 D

Qe amtls LTV T 3l YA aan oA T, C....il 77 g4 277
DY HUILSID Ul IJTUETL/IAC O=AIHHIIVINTUUNZINCS. AUV, Oyrirt. Cutdl. &4Vla, JJ4, L0 1

2
J.
Lange, P. P.; James, K. "Rapid Access to Compound Libraries through Flow Technology:

Fully Automated Synthesis of a 3-Aminoindolizine Library via Orthogonal
Diversification." ACS Comb. Sci. 2012, 14, 570.

Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Machine Learning;
Addison-Wesley Pub. Co.: Reading, MA, 1989.

Zhang, Q.; Liu, Y.; Gao, F.; Ding, Q.; Cho, C.; Hur, W.; Jin, Y. H.; Uno, T.: Joazeiro, C.
A. P.; Gray, N. "Discovery of EGFR Selective 4,6-Disubstituted Pyrimidines from a
Combinatorial Kinase-Directed Heterocycle Library." J. Am. Chem. Soc. 2006, 128,
2182.

Anderson, M.; Beattie, J. F.; Breault, G. A.; Breed, J.; Byth, K. F.; Culshaw, J. D.;
Ellston, R. P. A.; Green, S.: Minshull, C. A.; Norman, R. A.; Pauptit, R. A.; Stanway, J.;
Thomas, A. P.; Jewsbury, P. J. "Imidazo[1,2-a]pyridines: A Potent and Selective Class of
Cyclin-Dependent Kinase Inhibitors Identified through Structure-Based Hybridisation."
Bioorg. Med. Chem. Lett. 2003, 13, 3021.

Cumming, J. G.; McKenzie, C. L.; Bowden, S. G.; Campbell, D.; Masters, D. J.; Breed,
J.; Jewsbury, P. J. "Novel, Potent and Selective Anilinoquinazoline and
Anilinopyrimidine Inhibitors of p38 MAP Kinase." Bioorg. Med. Chem. Lett. 2004, 14,
5389.

Tavares, F. X.; Boucheron, J. A.; Dickerson, S. H.; Griffin, R. J.; Preugschat, F.;
Thomson, S. A.; Wang, T. Y.; Zhou, H. Q. "N-Phenyl-4-Pyrazolo[ 1,5-b]Pyridazin-3-
Ylpyrimidin-2-Amines as Potent and Selective Inhibitors of Glycogen Synthase Kinase 3
with Good Cellular Efficacy." J. Med. Chem. 2004, 47, 4716.

Wang, S. D.; Meades, C.; Wood, G.; Osnowski, A.; Anderson, S.; Yuill, R.; Thomas, M.;
Mezna, M.; Jackson, W.; Midgley, C.; Griffiths, G.; Fleming, 1.; Green, S.; McNae, |.;



(119)

(120)

(121)

(122)

(123)

(124)

(125)
(126)

(127)

(128)

(129)

(130)

(131)

(132)

Wu, S. Y.; Mclnnes, C.; Zheleva, D.; Walkinshaw, M. D.; Fischer, P. M. "2-Anilino-4-
(Thiazol-5-yl)pyrimidine CDK Inhibitors: Synthesis, SAR Analysis, X-Ray
Crystallography, and Biological Activity." J. Med. Chem. 2004, 47, 1662.

Zagulyaeva, O. A.; Bukhatkina, N. V.; Mamaev, V. P. "Relative Reactivity of Chlorine
Atoms in 2,4-Dichloropyrimidine during Reactions with Ammonia and Amines in
Isooctane and Ethanol." Zhurnal Org. Khimii 1978, 14, 409.

Liu, M.; Wang, S. Y.; Clampit, J. E.; Gum, R. J.; Haasch, D. L.; Rondinone, C. M;
Trevillyan, J. M.; Abad-Zapatero, C.; Fry, E. H.; Sham, H. L.; Liu, G. "Discovery of a
New Class of 4-Anilinopyrimidines as Potent c-Jun N-terminal Kinase Inhibitors:
Synthesis and SAR Studies." Bioorg. Med. Chem. Lett. 2007, 17, 668.

Delcorona, L.; Signorelli, G.; Manzardo, S.; Pinzetta, A.; Coppi, G. "Synthesis and
Invitro Study of Platelet Antiaggregant Activity of 2(4)-Inidazol-1-yl-4(2)-
Cycloalkylamino Pyrimidines." Eur. J. Med. Chem. 1991, 26, 729.

Melander, L. "On the Mechanism of Electrophilic Aromatic Substitution - an
Investigation by Means of the Effect of Isotopic Mass on Reaction Velocity." Ark. Kemi
1950, 2, 211.

Bunnett, J. F.; Zahler, R. E. "Aromatic Nucleophilic Substitution Reactions." Chem. Rev.
1951, 49, 273.

Bunnett, J. F. "Mechanism and Reactivity in Aromatic Nucleophilic Substitution
Reactions." Q. Rev. Chem. Soc. 1958, 12, 1.

Levenspiel, O. Chemical Reaction Engineering; 3rd ed.; Wiley: New York, 1999.

Beck, J. V.; Amold, K. J. Parameter Estimation in Engineering and Science; Wiley: New
York, 1977.

Steinfeld, J. 1., Francisco, J. S., and Hase W. L. Chemical Kinetics and Dynamics; 2™ ed.;
Prentice Hall: Upper Saddle River, N.J., 1999.

Draper, N. R.; Smith, H. Applied Regression Analysis; Wiley: New York, 1981.

Zaborenko, N.; Murphy, E. R.; Kralj, J. G.; Jensen, K. F. "Synthesis and Kinetics of
Highly Energetic Intermediates by Micromixers: Direct Multistep Synthesis of Sodium
Nitrotetrazolate." Ind. Eng. Chem. Res. 2010, 49, 4132.

Allwardt, A.; Holzmuller-Laue, S.; Wendler, C.; Stoll, N. "A High Parallel Reaction
System for Efficient Catalyst Research." Catal. Today 2008, 137, 11.

Mills, P. L.; Nicole, J. F. "A Novel Reactor for High-Throughput Screening of Gas-Solid
Catalyzed Reactions." Chem. Eng. Sci. 2004, 59, 5345.

Richter, A.; Langpape, M.; Kolf, S.; Grubert, G.; Eckelt, R.; Radnik, J.; Schneider, A.;
Pohl. M. M.; Fricke, R. "Combinatorial Preparation and High-Throughput Catalytic Tests
of Multi-Component deNO(x) Catalysts." Appl. Catal. B-Environ. 2002, 36, 261.

173



(133)

(134)

(135)

(136)

~~
W
~J
~

(138)

(139)

(140)

(141)

(142)

(143)

(144)

(145)

174

Shi, G. Y.; Hong, F.; Liang, Q. S.; Fang, H.; Nelson, S.; Weber, S. G. "Capillary-Based,
Serial-Loading, Parallel Microreactor for Catalyst Screening." Anal. Chem. 2006, 78,
1972.

Fernandez-Suarez, M.; Wong, S. Y. F.; Warrington, B. H. "Synthesis of a Three-Member
Array of Cycloadducts in a Glass Microchip under Pressure Driven Flow." Lab Chip
2002, 2, 170.

Schwalbe, T.; Kadzimirsz, D.; Jas, G. "Synthesis of a Library of Ciprofloxacin
Analogues by Means of Sequential Organic Synthesis in Microreactors.” QSAR Comb.
Sci. 2005, 24, 758.

Griffiths-Jones, C. M.; Hopkin, M. D.; Jonsson, D.; Ley, S. V.; Tapolczay, D. J.;
Vickerstaffe, E.; Ladlow, M. "Fully Automated Flow-Through Synthesis of Secondary
Sulfonamides in a Binary Reactor System." J. Comb. Chem. 2007, 9, 422.

Waoang 1. Q
vy

v 3. ey D.T:a D T.D
atig, J., OuUl, J., violridiid, v. 1., i, N, g5 1

NMacharla U/ l\/l C.Wallh 1T . Tan 1T n

liac o . Qoo
IVipS, 1vl. L., DNUIU, 11, ., 1DVHE, 11, I\,

L~
"Integrated Microfluidics for Paralle] Screening of an In Situ Click Chemistry Library."
Angew. Chem.-Int. Edit. 2006, 45, 5276.

Gunther, A.; Khan, S. A.; Thalmann, M.; Trachsel, F.; Jensen, K. F. "Transport and
Reaction in Microscale Segmented Gas-Liquid Flow." Lab Chip 2004, 4, 278.

Tice, J. D.; Lyon, A. D.; Ismagilov, R. F. "Effects of Viscosity on Droplet Formation and
Mixing in Microfluidic Channels." Anal. Chim. Acta 2004, 507, 73.

Song, H.: Bringer, M. R.; Tice, J. D.; Gerdts, C. J.; Ismagilov, R. F. "Experimental Test
of Scaling of Mixing by Chaotic Advection in Droplets Moving through Microfluidic
Channels." Appl. Phys. Lett. 2003, 83, 4664.

Gunther, A.; Jhunjhunwala, M.; Thalmann, M.; Schmidt, M. A.; Jensen, K. F.
"Micromixing of Miscible Liquids in Segmented Gas-Liquid Flow." Langmuir 2005, 21,
1547.

Thorsen, T.; Roberts, R. W.; Arnold, F. H.; Quake, S. R. "Dynamic Pattern Formation in
a Vesicle-Generating Microfluidic Device." Phys. Rev. Lett. 2001, 86, 4163.

Nisisako, T.; Torii, T.; Higuchi, T. "Droplet Formation in a Microchannel Network." Lab
Chip 2002, 2, 24.

Anna, S. L.; Bontoux, N.; Stone, H. A. "Formation of Dispersions Using "Flow
Focusing" in Microchannels." Appl. Phys. Lett. 2003, 82, 364.

Xu, Q. Y.; Nakajima, M. "The Generation of Highly Monodisperse Droplets through the
Breakup of Hydrodynamically Focused Microthread in a Microfluidic Device." Appl.
Phys. Lett. 2004, 85, 3726.



(146)

(147)

(148)

(149)

(150)

(151)

(152)

(153)

(154)

(155)

(156)

(157)
(158)

(159)

(160)

Zheng, B.; Roach, L. S.; Ismagilov, R. F. "Screening of Protein Crystallization
Conditions on a Microfluidic Chip Using Nanoliter-Size Droplets." J. Am. Chem. Soc.
2003, 725, 11170.

Shestopalov, 1.; Tice, J. D.; Ismagilov, R. F. "Multi-Step Synthesis of Nanoparticles
Performed on Millisecond Time Scale in a Microfluidic Droplet-Based System." Lab
Chip 2004, 4, 316.

Churski, K.; Korczyk, P.; Garstecki, P. "High-Throughput Automated Droplet
Microfluidic System for Screening of Reaction Conditions." Lab Chip 2010, 10, 816.

Churski, K.; Nowacki, M.; Korczyk, P. M.; Garstecki, P. "Simple Modular Systems for
Generation of Droplets on Demand." Lab Chip 2013, 13, 3689.

Li, L.; Boedicker, J. Q.; Ismagilov, R. F. "Using a Multijunction Microfluidic Device to
Inject Substrate into an Array of Preformed Plugs without Cross-Contamination:
Comparing Theory and Experiments." Anal. Chem. 2007, 79, 2756.

Garcia-Egido, E.; Spikmans, V.; Wong, S. Y. F.; Warrington, B. H. "Synthesis and
Analysis of Combinatorial Libraries Performed in an Automated Micro Reactor System."
Lab Chip 2003, 3, 73.

Niu, X.; Gulati, S.; Edel, J. B.; deMello, A. J. "Pillar-Induced Droplet Merging in
Microfluidic Circuits." Lab Chip 2008, &, 1837.

Niu, X. Z.; Gielen, F.; Edel, J. B.; deMello, A. J. "A Microdroplet Dilutor for High-
Throughput Screening." Nat. Chem. 2011, 3, 437.

Song, H.; Ismagilov, R. F. "Millisecond Kinetics on a Microfluidic Chip Using
Nanoliters of Reagents." J. Am. Chem. Soc. 2003, 125, 14613.

Fang, H.; Xiao, Q.; Wu, F.; Floreancig, P. E.; Weber, S. G. "Rapid Catalyst Screening by
a Continuous-Flow Microreactor Interfaced with Ultra-High-Pressure Liquid
Chromatography." J. Org. Chem. 2010, 75, 5619.

Zheng, B.; Tice, J. D.; Ismagilov, R. F. "Formation of Droplets of in Microfluidic
Channels Alternating Composition and Applications to Indexing of Concentrations in
Droplet-Based Assays." Anal. Chem. 2004, 76, 4977.

"Accendo Corporation Segment Insights: Product Incubation Acceleration." 2010.

Hawbaker, N.; Wittgrove, E.; Christensen, B.; Sach, N.; Blackmond, D. G. "Dispersion in
Compartmentalized Flow Systems: Influence of Flow Patterns on Reactivity." Org.
Process Res. Dev. 2015.

El-Ali, J.; Gaudet, S.; Gunther, A.; Sorger, P. K.; Jensen, K. F. "Cell Stimulus and Lysis
in a Microfluidic Device with Segmented Gas-Liquid Flow." Anal. Chem. 2005, 77,
3629.

"Gilson Guide to Pipetting." 2005.

175



(161)

(162)

(163)

(164)

—~
—
@)
n

N

(166)

(167)

(168)

(169)

(170)

(171)

(172)

(173)

(174)

(175)

176

Lee, T. G.; Kim, S. Y.; Song, K. H.; Choe, J.; Kim, J. H. "Liquid-Liquid Equilibria for
the Ternary Systems of Perfluorohexane or Perfluamine plus Hydrofluoroether plus
Tetrahydrofuran at 298.15 K or 273.15 K." J. Chem. & Eng. Data 2013, 58, 2035.

Eum, K. W.; Gu, H.; Lee, T. G.; Choe, J.; Lee, K.; Song, K. H. "Liquid-Liquid Equilibria
for the Ternary Systems of Perfluorohexane plus Methyl Nonafluorobutyl Ether plus
Toluene,+1,4-Dioxane, or plus Dimethylformamide at 298.15 K." J. Chem. & Eng. Data
2013, 58, 915.

Gladysz, J. A.; Curran, D. P.; Horvath, 1. T. Handbook of Fluorous Chemistry;
Weinheim, Wiley-VCH, 2004.

Burns, M. A.; Mastrangelo, C. H.; Sammarco, T. S.; Man, F. P.; Webster, J. R.; Johnsons,
B. N.; Foerster, B.; Jones, D.; Fields, Y.; Kaiser, A. R.;: Burke, D. T. "Microfabricated
Structures for Integrated DNA Analysis." Proc. Natl. Acad. Sci. 1996, 93, 5556.

. M M IMNI_Quilagtitr it
Bruno, N. C.; |Niljianskul, N.; Buchwald, S. L. N-Substitute

]
=

ad
Aminobiphenylpalladium Methanesulfonate Precatalysts and Their Use in C—C and C-N
Cross-Couplings." J. Org. Chem. 2014, 79, 4161.

Abolhasani, M.; Bruno, N. C.; Jensen, K. F. "Oscillatroy Three-Phase Flow Reactor for
Studies of Bi-Phasic Catalytic Reactions." Chem. Commun. 2015, Accepted.

Afagh, N. A.; Yudin, A. K. "Chemoselectivity and the Curious Reactivity Preferences of
Functional Groups." Angew. Chem.-Int. Edit. 2010, 49, 262.

Box. G. E. P.; Hunter, J. S. "Multi-Factor Experimental Designs for Exploring Response
Surfaces." Ann. Math. Stat. 1957, 28, 195.

Myers, R. H. Response Surface Methodology; Allyn and Bacon: Boston, 1971.

Myers, R. H.; Montgomery, D. C.; Vining, G. G.; Borror, C. M.; Kowalski, S. M.
"Response Surface Methodology: A Retrospective and Literature Survey." .J. Qual.
Technol. 2004, 36, 53.

Myers, R. H.; Montgomery, D. C. Response Surface Methodology: Process and Product
Optimization Using Designed Experiments; Wiley: New York, 1995.

Box, G. E. P.; Draper, N. R. Response Surfaces, Mixtures, and Ridge Analyses; Wiley-
Interscience: Hoboken, N.J., 2007.

Atkinson, A. C.; Donev, A. N. Optimum Experimental Design; Clarendon Press; Oxford
University Press: Oxford, New York, 1992.

Bezerra, M. A.; Santelli, R. E.; Oliveira, E. P.; Villar, L. S.; Escaleira, L. A. "Response
Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry."
Talanta 2008, 76, 965.

Box, G. E. P.; Wilson, K. B. "On the Experimental Attainment of Optimum Conditions."
J. Roy. Stat. Soc. B1951, 13, 1.



(176)

(177)

(178)

(179)

(180)

(181)

(182)

(183)

(184)

(185)

(186)

(187)
(188)

(189)

(190)

(191)

Box, G. E.; Behnken, D. W. "Some New Three Level Designs for the Study of
Quantitative Variables." Technometrics 1960, 2, 455.

Box, G. E. P.; Draper, N. R. Evolutionary Operation: A Statistical Method for Process
Improvement; Wiley: New York, 1969.

Box, G. E. "Evolutionary Operation: A Method for Increasing Industrial Productivity."
Appl. Stat. 1957, 81.

Box, G. E.; Draper, N. R. Empirical Model-Building and Response Surfaces; John Wiley
& Sons, 1987.

Khuri, A. 1.; Cornell, J. A. Response Surfaces: Designs and Analyses; M. Dekker: New
York, 1987.

Alaeddini, A.; Murat, A.; Yang, K.; Ankenman, B. "An Efficient Adaptive Sequential
Methodology for Expensive Response Surface Optimization." Qual. Reliab. Eng. Int.
2013, 29, 799.

Wang, G. G.; Dong, Z.; Aitchison, P. "Adaptive Response Surface Method--A Global
Optimization Scheme for Approximation-Based Design Problems." Eng. Optimiz. 2001,
33, 707.

Wang, G. G. "Adaptive Response Surface Method Using Inherited Latin Hypercube
Design Points." J. Mech. Design 2003, 125, 210.

Steinberg, D. M.; Hunter, W. G. "Experimental-Design - Review and Comment."
Technometrics 1984, 26, 71.

Belotti, P.; Kirches, C.; Leyffer, S.; Linderoth, J.; Luedtke, J.; Mahajan, A. "Mixed-
Integer Nonlinear Optimization." Acta Numer. 2013, 22, 1.

Floudas, C. A.; Gounaris, C. E. "A Review of Recent Advances in Global Optimization."
J. Global Optim. 2009, 45, 3.

Holland, J. H. "Genetic Algorithms." Sci.Am. 1992, 267, 66.

Geem, Z. W.; Kim, J. H.; Loganathan, G. V. "A New Heuristic Optimization Algorithm:
Harmony Search." Simulation 2001, 76, 60.

Hemker, T.; Fowler, K. R.; Farthing, M. W.; von Stryk, O. "A Mixed-Integer Simulation-
Based Optimization Approach with Surrogate Functions in Water Resources
Management." Optim Eng 2008, 9, 341.

Muller, J.: Shoemaker, C. A.; Piche, R. "SO-MI: A Surrogate Model Algorithm for
Computationally Expensive Nonlinear Mixed-Integer Black-Box Global Optimization
Problems." Comput. Oper. Res. 2013, 40, 1383.

Jones, D. R.; Schonlau. M.; Welch, W. J. "Efficient Global Optimization of Expensive
Black-Box Functions." J. Global Optim. 1998, 13, 455.

177



(192)

(193)

(194)

(195)

(196)

(197)

(198)

(199)

(200)

(201)

(202)

(203)

(204)

(205)

(206)

(207)

178

Sacks, J.; Schiller, S. B.; Welch, W. J. "Designs for Computer Experiments."
Technometrics 1989, 31, 41.

Jones, D. R. "A Taxonomy of Global Optimization Methods Based on Response
Surfaces." J. Global Optim. 2001, 21, 345.

Forrester, A. I. J.; Keane, A. J. "Recent Advances in Surrogate-Based Optimization."
Prof. Aerosp. Sci. 2009, 45, 50.

Queipo, N. V.; Haftka, R. T.; Shyy, W.; Goel, T.; Vaidyanathan, R.; Tucker, P. K.
"Surrogate-Based Analysis and Optimization." Prof. Aerosp. Sci. 2005, 41, 1.

Holmstrom, K.; Quttineh, N.-H.; Edvall, M. "An Adaptive Radial Basis Algorithm
(ARBF) for Expensive Black-Box Mixed-Integer Constrained Global Optimization."
Optim Eng 2008, 9, 311.

Rashid, K.; Ambani, S.; Cetinkaya, E. "An Adaptive Multiquadric Radial Basis Function
Method for Expensive Biack-Box Mixed-Integer Nonlinear Constrained Optimization."
Eng. Optimiz. 2013, 45, 185.

Davis, E.; lerapetritou, M. "A Kriging Based Method for the Solution of Mixed-Integer
Nonlinear Programs Containing Black-Box Functions." J. Global Optim. 2009, 43, 191.

Dumesic, J. A.; Rudd, D. F.; Aparicio, L. M.; Rekoske, J. E.; Trevino, A. A. The
Microkinetics of Heterogeneous Catalysis; American Chemical Society: Washington,
D.C., 1993.

Quenouille, M. H. "Approximate Tests of Correlation in Time-Series." J. Roy. Stat. Soc.
B 1949, /1, 68.

Jones, B.; Goos. P. "I-Optimal Versus D-Optimal Split-Plot Response Surface Designs."
J. Qual. Technol. 2012, 44, 85.

Pilling, M. J.; Seakins, P. W. Reaction Kinetics; Oxford University Press: New York,
1995.

Hughes, E. D.; Ingold, C. K. "Mechanism of Substitution at a Saturated Carbon Atom.
Part IV. A Discussion of Constitutional and Solvent Effects on the Mechanism, Kinetics,
Velocity, and Orientation of Substitution." .J. Chem. Soc. 1935, 244.

Reichardt, C. "Empirical Parameters of Polarity of Solvents." Angew. Chem.-Int. Edit.
1965, 4, 29.

Miller, J.; Parker, A. J. "Dipolar Aprotic Solvents in Bimolecular Aromatic Nucleophilic
Substitution Reactions." J. 4m. Chem. Soc. 1961, 83, 117.

Connors, K. A. Chemical Kinetics: The Study of Reaction Rates in Solution; VCH: New
York, 1990.

Parker, A. J. "Protic-Dipolar Aprotic Solvent Effects on Rates of Bimolecular Reactions.”
Chem. Rev. 1969, 69, 1.



(208)

(209)

(210)

Q11)

Q212)

(213)

(214)

(215)

216)

217

(218)

(219)

(220)

21)

(222)

Parker, A. J.; Mayer, U.; Schmid, R.; Gutmann, V. "Correlation of Solvent Effects on
Rates of Solvolysis and SN2 Reactions." J. Org. Chem. 1978, 43, 1843.

Reichardt, C.; Welton, T. Solvents and Solvent Effects in Organic Chemistry; 4th ed.;
Wiley-VCH: Weinheim, 2010.

Theberge, A. B.; Whyte, G.; Frenzel, M.; Fidalgo, L. M.; Wootton, R. C. R.; Huck, W. T.
S. "Suzuki-Miyaura Coupling Reactions in Aqueous Microdroplets with Catalytically
Active Fluorous Interfaces." Chem. Commun. 2009, 6225.

Lee, J. N.; Park, C.; Whitesides, G. M. "Solvent Compatibility of
Poly(dimethylsiloxane)-Based Microfluidic Devices." Anal. Chem. 2003, 75, 6544.

Salvatore, R. N.; Nagle, A. S.; Jung, K. W. "Cesium Effect: High Chemoselectivity in
Direct N-Alkylation of Amines." J. Org. Chem. 2002, 67, 674.

Fu, X. K.; Gong, C. B.; Ma, X. B.; Wen, S. Y. "A New Simple Route to N-Substituted 2-
Aminoethylphosphonic Acids." Synthetic Commun. 1998, 28, 2659.

Mitchell, J. M.; Finney, N. S. "An Efficient Method for the Preparation of N,N-
Disubstituted 1,2-Diamines." Tetrahedron Lett. 2000, 41, 8431.

Kaik, M.; Gawronski, J. "Facile Monoprotection of trans-1,2-Diaminocyclohexane."
Tetrahedron-Asymmetr. 2003, 14, 1559.

Suez, G.; Bloch, V.; Nisnevich, G.; Gandelman, M. "Design and Development of
Bioinspired Guanine-Based Organic Catalyst for Asymmetric Catalysis." Eur. J. Org.
Chem. 2012, 2118.

Xu, B.: Li, L.; Gou, S. "A chiral Primary-Tertiary-1,2-Diamine as an Efficient Catalyst in
Asymmetric Aldehyde—Ketone or Ketone—Ketone Aldol Reactions." Tetrahedron-
Asymmetr. 2013, 24, 1556.

Beers, K. J. Numerical Methods for Chemical Engineering: Applications in Matlab;
Cambridge University Press: New York, 2007.

Lebleu, T.; Ma, X. L.; Maddaluno, J.; Legros, J. "Selective Monomethylation of Primary
Amines with Simple Electrophiles." Chem. Commun. 2014, 50, 1836.

Doyle, A. G.; Jacobsen, E. N. "Small-Molecule H-Bond Donors in Asymmetric
Catalysis." Chem. Rev. 2007, 107, 5713.

CRC Handbook of Chemistry and Physics; 95th Edition ed.; CRC Press: Cleveland, OH,
2015.

Rivas, M. A_; Iglesias, T. P. "On Permittivity and Density of the Systems {Triglyme plus
(Dimethyl or Diethyl Carbonate)} and Formulation of Delta Epsilon in Terms of Volume
or Mole Fraction." J. Chem. Thermodynamics 2008, 40, 1120.

179



(223)

(224)

(225)

(226)

(227)

(228)

(229)

(230)

(231)

(232)

(233)

(234)

(235)

(236)

(237)

180

Marcheselli, L.; Pistoni, G.; Tagliazucchi, M.; Tassi, L.; Tosi, G. "N,N-
Dimethylformamide + 1,2-Dimethoxyethane Binary Mixtures. The Static Dielectric
Constant from 40 to 80.degree.C." J. Chem. & Eng. Data 1993, 38, 204.

Laurence, C.; Gal, J.-F. Lewis Basicity and Affinity Scales: Data and Measurement,
Hoboken, N.J., Wiley, 2009.

Laurence, C.; Berthelot, M. "Observations on the Strength of Hydrogen Bonding."
Perspect. Drug Discov. 2000, 18, 39.

Lequestel, J. Y.; Laurence, C.; Lachkar, A.; Helbert, M.; Berthelot, M. "Hydrogen-Bond
Basicity of Secondary and Tertiary Amides, Carbamates, Ureas and Lactams." .J. Chem.
Soc.-Perkin Transactions 2 1992, 2091.

Berthelot, M.; Laurence, C.; Safar, M.; Besseau, F. "Hydrogen-Bond Basicity pK(HB)
Scale of Six-Membered Aromatic N-Heterocycles." J. Chem. Soc.-Perkin Transactions 2

Nnno NoN

1998, 283.

Ouvrard, C.; Berthelot, M.; Laurence, C. "The First Basicity Scale of Fluoro-, Chloro-,
Bromo- and lodo-Alkanes: Some Cross-Comparisons with Simple Alkyl Derivatives of
Other Elements.”" J. Chem. Soc.-Perkin Transactions 2 1999, 1357.

Berthelot, M.; Besseau, F.; Laurence, C. "The Hydrogen-Bond Basicity pK(HB) Scale of
Peroxides and Ethers." Eur. J. Org. Chem. 1998, 925.

Besseau, F.; Laurence, C.; Berthelot, M. "Hydrogen-Bond Basicity of Esters, Lactones
and Carbonates." .J. Chem. Soc.-Perkin Transactions 2 1994, 485.

Laurence, C.; Berthelot, M.; Helbert, M.; Sraidi, K. "lst Measurement of the Hydrogen-
Bond Basicity of Monomeric Water, Phenols, and Weakly Basic Alcohols." J. Phys.
Chem. 1989, 93, 3799,

Besseau, F.; Laurence, C.; Berthelot, M. "The pK(HB) Scale of Pi Bases." B. Soc. Chim.
Fr. 1996, 133, 381.

van der Spoel, D.; van Maaren, P. J.; Larsson, P.; Timneanu, N. "Thermodynamics of
Hydrogen Bonding in Hydrophilic and Hydrophobic Media." .J. Phys. Chem. B 2006,
110, 4393.

Miyaura, N.; Suzuki, A. "Palladium-Catalyzed Cross-Coupling Reactions of
Organoboron Compounds." Chem. Rev. 1995, 95, 2457.

Bellina, F.; Carpita, A.; Rossi. R. "Palladium Catalysts for the Suzuki Cross-Coupling
Reaction: An Overview of Recent Advances." Synthesis-Stutigart 2004, 2419.

Miyaura, N. In Metal-Catalyzed Cross-Coupling Reactions; Wiley-VCH Verlag GmbH:
2008, p 41.

Hartwig, J. F. "Carbon-Heteroatom Bond Formation Catalysed by Organometallic
Complexes." Nature 2008, 455, 314.



(238)

(239)
(240)

(241)

(242)

(243)

(244)

(245)

(246)

(247)

(248)

(249)

(250)

(251)

Seechurn, C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. "Palladium-Catalyzed Cross-
Coupling: A Historical Contextual Perspective to the 2010 Nobel Prize." Angew. Chem.-
Int. Edit. 2012, 51, 5062.

Noel, T.; Buchwald, S. L. "Cross-Coupling in Flow." Chem. Soc. Rev. 2011, 40, 5010.

Marion, N.; Nolan, S. P. "Well-Defined N-Heterocyclic Carbenes-Palladium(ll)
Precatalysts for Cross-Coupling Reactions." Accounts Chem. Res. 2008, 41, 1440.

Kataoka, N.; Shelby, Q.; Stambuli, J. P.; Hartwig, J. F. "Air Stable, Sterically Hindered
Ferrocenyl Dialkylphosphines for Palladium-Catalyzed C-C, C-N, and C-O Bond-
Forming Cross-Couplings." J. Org. Chem. 2002, 67, 5553.

Martin, R.; Buchwald, S. L. "Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling
Reactions Employing Dialkylbiaryl Phosphine Ligands." Accounts Chem. Res. 2008, 41,
1461.

Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. "Catalysts for Suzuki-
Miyaura Coupling Processes: Scope and Studies of the Effect of Ligand Structure." J.
Am. Chem. Soc. 2005, 127, 4685.

Biscoe, M. R_; Fors, B. P.; Buchwald, S. L. "A New Class of Easily Activated Palladium
Precatalysts for Facile C-N Cross-Coupling Reactions and the Low Temperature
Oxidative Addition of Aryl Chlorides." J. Am. Chem. Soc. 2008, 130, 6686.

Bruno, N. C.; Tudge, M. T.; Buchwald, S. L. "Design and Preparation of New Palladium
Precatalysts for C-C and C-N Cross-Coupling Reactions." Chem. Sci. 2013, 4, 916.

Fu, G. C. "The Development of Versatile Methods for Palladium-Catalyzed Coupling
Reactions of Aryl Electrophiles through the Use of P(t-Bu)(3) and PCy3 as Ligands."
Accounts Chem. Res. 2008, 41, 1555.

Murray, P. M.; Tyler, S. N. G.; Moseley, J. D. "Beyond the Numbers: Charting Chemical
Reaction Space." Org. Process Res. Dev. 2013, 17, 40.

Carlson, R.; Carlson, J. E. "Principal Properties and Designs for Discrete Variations."
Org. Process Res. Dev. 2005, 9, 680.

Moseley, J. D.; Murray, P. M. "Ligand and Solvent Selection in Challenging Catalytic
Reactions." J. Chem. Technol. Biot. 2014, 89, 623.

Jover, J.; Fey, N.; Harvey, J. N.; Lloyd-Jones, G. C.; Orpen, A. G.; Owen-Smith, G. J. J.;
Murray, P.; Hose, D. R. J.; Osborne, R.; Purdie, M. "Expansion of the Ligand Knowledge
Base for Chelating P,P-Donor Ligands (LKB-PP)." Organometallics 2012, 31, 5302.

Jover, J.; Fey, N.; Harvey, J. N.; Lloyd-Jones, G. C.; Orpen, A. G.; Owen-Smith, G. J. J.;
Murray, P.; Hose, D. R. J.; Osborne, R.; Purdie, M. "Expansion of the Ligand Knowledge
Base for Monodentate P-Donor Ligands (LKB-P)." Organometallics 2010, 29, 6245.

181



(252)

(253)

(254)

(255)

(256)

(257)

(258)

(259)

(260)

261)

(262)

(263)

(264)

(265)

182

Fey, N.; Haddow, M. F.; Harvey, J. N.; McMullin, C. L.; Orpen, A. G. "A Ligand
Knowledge Base for Carbenes (LKB-C): Maps of Ligand Space." Dalton T. 2009, 8183.

Tolman, C. A. "Steric Effects of Phosphorus Ligands in Organometallic Chemistry and
Homogeneous Catalysis." Chem. Rev. 1977, 77, 313.

Bunten, K. A.; Chen, L. Z.; Fernandez, A. L.; Poe, A. J. "Cone Angles: Tolman's and
Plato's." Coordin. Chem. Rev. 2002, 233, 41.

Freixa, Z.; van Leeuwen, P. "Bite Angle Effects in Diphosphine Metal Catalysts: Steric
or Electronic?" Dalton T. 2003, 1890.

Kinzel, T.; Zhang, Y.; Buchwald, S. L. "A New Palladium Precatalyst Allows for the Fast
Suzuki-Miyaura Coupling Reactions of Unstable Polyfluorophenyl and 2-Heteroaryl
Boronic Acids." J. Am. Chem. Soc. 2010, 132, 14073.

Bruno, N. C.; Buchwald, S. L. "Synthesis and Application of Palladium Precatalysts that
Accommodate Extremely Bulky Di-tert-butylphosphino Biaryl Ligands." Org. Lett. 2013,
15, 2876.

Christmann, U.; Vilar, R. "Monoligated Palladium Species as Catalysts in Cross-
Coupling Reactions." Angew. Chem.-Int. Edit. 2005, 44, 366.

Barrios-Landeros, F.; Hartwig, J. F. "Distinct Mechanisms for the Oxidative Addition of
Chloro-, Bromo-, and lodoarenes to a Bisphosphine Palladium(0) Complex with
Hindered Ligands." J. Am. Chem. Soc. 2005, 127, 6944.

Garcia-Melchor, M.; Braga, A. A. C.; Lledos, A.; Ujaque, G.; Maseras, F.
"Computational Perspective on Pd-Catalyzed C-C Cross-Coupling Reaction
Mechanisms." Accounts Chem. Res. 2013, 46, 2626.

Braga, A. A. C.; Ujaque, G.; Maseras, F. "A DFT Study of the Full Catalytic Cycle of the
Suzuki-Miyaura Cross-Coupling on a Model System." Organometallics 2006, 25, 3647.

Dufert, M. A.; Billingsley, K. L.; Buchwald, S. L. "Suzuki-Miyaura Cross-Coupling of
Unprotected, Nitrogen-Rich  Heterocycles: Substrate Scope and Mechanistic
Investigation." J. Am. Chem. Soc. 2013, 135, 12877.

Braga, A. A. C.; Morgon, N. H.; Ujaque, G.; Maseras, F. "Computational
Characterization of the Role of the Base in the Suzuki-Miyaura Cross-Coupling
Reaction." J. Am. Chem. Soc. 2005, 127, 9298.

Amatore, C.; Jutand, A.; Le Duc, G. "Kinetic Data for the Transmetalation/Reductive
Elimination in Palladium-Catalyzed Suzuki-Miyaura Reactions: Unexpected Triple Role
of Hydroxide lons Used as Base." Chem.-Eur. J. 2011, 17, 2492.

Lennox, A. J. J.; Lloyd-Jones, G. C. "Transmetalation in the Suzuki-Miyaura Coupling:
The Fork in the Trail." Angew. Chem.-Int. Edit. 2013, 52, 7362.



(266)

(267)

(268)

(269)
(270)

71)
(272)

(273)

274)

(275)

(276)

(277)

(278)

Barrios-Landeros, F.; Carrow, B. P.; Hartwig, J. F. "Effect of Ligand Steric Properties
and Halide Identity on the Mechanism for Oxidative Addition of Haloarenes to
Trialkylphosphine Pd(0) Complexes." J. Am. Chem. Soc. 2009, 131, 8141.

Schoenebeck, F.; Houk, K. N. "Ligand-Controlled Regioselectivity in Palladium-
Catalyzed Cross Coupling Reactions." J. Am. Chem. Soc. 2010, 132, 2496.

Elvira, K. S.; Solvas, X. C. I.; Wootton, R. C. R.; deMello, A. J. "The Past, Present and
Potential for Microfluidic Reactor Technology in Chemical Synthesis." Nat. Chem. 2013,
5, 905.

Peplow, M. "The Robo-Chemist." Nature 2014, 512, 20.

Li, J. Q.; Ballmer, S. G.; Gillis, E. P.; Fujii, S.; Schmidt, M. J.; Palazzolo, A. M. E.;
Lehmann, J. W.; Morehouse, G. F.; Burke, M. D. "Synthesis of Many Different Types of
Organic Small Molecules Using One Automated Process." Science 2015, 347, 1221.

Seeberger, P. H. "Automated Oligosaccharide Synthesis." Chem. Soc. Rev. 2008, 37, 19.

Coles, S. J; Frey, J. G.; Bird, C. L.; Whitby, R. J.; Day, A. E. "First Steps towards
Semantic Descriptions of Electronic Laboratory Notebook Records." J. Cheminform.
2013, 5.

Heider, P. L.; Born, S. C.; Basak, S.; Benyahia, B.; Lakerveld, R.; Zhang, H. T.; Hogan,
R.; Buchbinder, L.; Wolfe, A.; Mascia, S.; Evans, J. M. B.; Jamison, T. F.; Jensen, K. F.
"Development of a Multi-Step Synthesis and Workup Sequence for an Integrated,
Continuous Manufacturing Process of a Pharmaceutical." Org. Process Res. Dev. 2014,
18, 402.

O'Neal, E. J.; Jensen, K. F. "Continuous Nanofiltration and Recycle of a Metathesis
Catalyst in a Microflow System." ChemCatChem 2014, 6, 3004.

Simon, M. D.; Heider, P. L.; Adamo, A.; Vinogradov, A. A.; Mong, S. K.; Li, X. Y.;
Berger, T.; Policarpo, R. L.; Zhang, C.; Zou, Y. K.; Liao, X. L.; Spokoyny, A. M.;
Jensen, K. F.; Pentelute, B. L. "Rapid Flow- Based Peptide Synthesis." ChemBioChem
2014, 15,713.

Ley, S. V.; Fitzpatrick, D. E.; Ingham, R. J.; Myers, R. M. "Organic Synthesis: March of
the Machines." Angew. Chem.-Int. Edit. 2015, 54, 3449.

Griffin, J. D.; Fowler, K. R.; Gray, G. A.; Hemker, T.; Parno, M. D. "Derivative-Free
Optimization via Evolutionary Algorithms Guiding Local Search (EAGLS) for MINLP."
Pac. J. Optim. 2011, 7, 425.

Pickett, S. D.; Green, D. V. S.; Hunt, D. L.; Pardoe, D. A.; Hughes, I. "Automated Lead
Optimization of MMP-12 Inhibitors Using a Genetic Algorithm." 4ACS Med. Chem. Lett.
2011, 2, 28.

183



(279)

(280)

(281)

184

Singh, J.; Ator, M. A.; Jaeger, E. P.; Allen, M. P.; Whipple, D. A.; Soloweij, J. E.;
Chowdhary, S.; Treasurywala, A. M. "Application of Genetic Algorithms to
Combinatorial Synthesis: A Computational Approach to Lead lIdentification and Lead
Optimization." J. Am. Chem. Soc. 1996, 118, 1669.

Wolf, D.; Buyevskaya, O. V.; Baerns, M. "An Evolutionary Approach in the
Combinatorial Selection and Optimization of Catalytic Materials." Appl. Catal. A-Gen.
2000, 200, 63.

Werner, M.; Kuratli, C.; Martin, R. E.; Hochstrasser, R.; Wechsler, D.; Enderle, T.;
Alanine, A. 1.; Vogel, H. "Seamless Integration of Dose-Response Screening and Flow

Chemistry: Efficient Generation of Structure-Activity Relationship Data of beta-
Secretase (BACE1) Inhibitors." Angew. Chem.-Int. Edit. 2014, 53, 1704.



APPENDIX A. CHAPTER 2 SUPPORTING INFORMATION

A.1. EXPERIMENTAL DATA

Table Al. List of experimental conditions and measured outlet concentrations for initial simultaneous
parameter estimation.

Expt ., (min) 7(°C) Cio (M) Equiv. 2 C (M) C; (M) Cs (M) Cs (M)
1 1.0 80 0.150 1.0 0.0437 0.0922 0.0168 0.0001
2 10 80 0.150 2.0 0.0056 0.1247 0.0205 0.0022
3 1.0 40 0.150 1.0 0.0783 0.0639 0.0096 0.0001
4 0.5 40 0.150 1.0 0.1040 0.0407 0.0060 0.0000
5 1.0 40 0.150 2.0 0.0480 0.0907 0.0134 0.0000
6 10 40 0.150 1.0 0.0216 0.1139 0.0160 0.0002
7 0.5 40 0.150 2.0 0.0696 0.0706 0.0105 0.0000
8 0.5 80 0.150 2.0 0.0192 0.1101 0.0203 0.0001
9 0.5 80 0.150 1.0 0.0598 0.0766 0.0141 0.0000
10 1.0 80 0.150 2.0 0.0090 0.1189 0.0219 0.0002
11 10 40 0.150 2.0 0.0048 0.1265 0.0181 0.0003
12 10 80 0.150 1.0 0.0129 0.1178 0.0201 0.0006
13 20 100 0.150 2.5 0.0042 0.1113 0.0191 0.0185
14 20 80 0.150 2.5 0.0049 0.1195 0.0198 0.0067
15 20 100 0.150 25 0.0041 0.1133 0.0195 0.0177
16 20 80 0.150 2.5 0.0050 0.1208 0.0201 0.0068
17 20 100 0.150 2.5 0.0051 0.1106 0.0192 0.0181
18 0.5 100 0.150 1.5 0.0194 0.1078 0.0220 0.0003
19 20 60 0.150 2.5 0.0059 0.1239 0.0196 0.0026

20 20 40 0.150 2.5 0.0000 0.1256 0.0183 0.0005
21 20 80 0.150 2.5 0.0047 0.1184 0.0198 0.0066
22 20 100 0.150 2.5 0.0048 0.1093 0.0198 0.0183
23 0.5 100 0.150 1.5 0.0192 0.1077 0.0222 0.0003
24 20 100 0.150 2.5 0.0047 0.1086 0.0195 0.0187

Table A2. List of experimental conditions and measured outlet concentrations for isolated estimation of 4,
Ea1, A2, and E 2.

Expt  fws (min)  T(°C) Cw(M)  Equiv.2  C; (M) C; (M) Cs (M) Cs (M)
1 0.5 100 0.150 1.0 0.0425 0.0895 0.0193 0.0000
2 0.5 100 0.150 2.0 0.0069 0.1166 0.0247 0.0003
3 1.0 100 0.150 2.0 0.0056 0.1172 0.0242 0.0013
4 0.5 40 0.150 1.0 0.1012 0.0435 0.0065 0.0000
5 1.0 100 0.150 1.0 0.0283 0.1012 0.0208 0.0004
6 1.0 40 0.150 1.0 0.0784 0.0651 0.0098 0.0000
7 0.5 40 0.150 2.0 0.0675 0.0738 0.0108 0.0000
8 1.0 40 0.150 2.0 0.0405 0.0970 0.0144 0.0000
9 0.5 100 0.150 1.5 0.0182 0.1100 0.0227 0.0002
10 1.0 40 0.150 2.5 0.0305 0.1054 0.0159 0.0000
1 1.0 40 0.150 2.5 0.0281 0.1071 0.0161 0.0002
12 0.5 100 0.150 1.5 0.0186 0.1085 0.0226 0.0002
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Table A3. List of experimental conditions and measured outlet concentrations for isolated estimation of A3
and E..

Expt  f. (min) 7 (°C) Cio (M) Equiv. 2 Ci (M) C3; (M) Cs (M) Cs (M)

1 20 80 0.050 2.5 0.0489 0.0009
2 10 100 0.050 25 0.0482 0.0011
3 10 80 0.050 25 0.0489 0.0005
4 20 100 0.050 2.5 0.0472 0.0025
5 20 100 0.050 25 0.0476 0.0025
6 20 80 0.050 2.5 0.0489 0.0009
7 20 100 0.050 25 0.0473 0.0025
8 20 80 0.050 25 0.0486 0.0009
9 20 100 0.050 25 0.0470 0.0024
10 20 80 0.050 25 0.0488 0.0009
11 20 100 0.050 25 0.0477 0.0024
12 20 80 0.050 2.5 0.0490 0.0009

Table A4. List of experimental conditions and measured outlet concentrations for isolated estimation of A4

and Eaa.

Expt tres (Min) 7(°C) Cio (M) Equiv. 2 Ci (M) C3 (M) Cy (M) Cs (M)
1 20 100 0.030 2.5 0.0287 0.0014
2 10 100 0.030 2.5 0.0298 0.0007
3 20 80 0.030 2.5 0.0299 0.0006
4 10 80 0.030 2.5 0.0299 0.0004
5 20 100 0.030 2.5 0.0287 0.0013
6 20 80 0.030 2.5 0.0299 0.0006
7 20 100 0.030 2.5 0.0294 0.0014
8 20 80 0.030 2.5 0.0298 0.0007
9 20 100 0.030 2.5 0.0293 0.0013
10 20 80 0.030 2.5 0.0297 0.0006
11 20 100 0.030 2.5 0.0291 0.0014
12 20 80 0.030 2.5 0.0302 0.0006
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Table AS. List of experimental conditions and measured outlet concentrations for final simultaneous
parameter estimation.

Expt  fe(min)  T(CC)  Co(M) Equiv.2 G (M) G (M) GM) G (M)
1 0.5 40 0.150 1.0 0.1062 0.0397 0.0057 0.0003
2 10 40 0.150 1.0 0.0248 0.1104 0.0162 0.0003
3 20 40 0.150 2.5 0.0043 0.1261 0.0179 0.0009
4 20 100 0.150 2.5 0.0043 0.1119 0.0179 0.0162
5 0.5 100 0.150 1.0 0.0410 0.0887 0.0177 0.0009
6 20 40 0.150 1.0 0.0145 0.1182 0.0170 0.0004
7 10 40 0.150 2.5 0.0057 0.1261 0.0181 0.0006
8 10 100 0.150 1.0 0.0072 0.1199 0.0220 0.0020
9 10 100 0.150 2.5 0.0050 0.1171 0.0195 0.0084
10 0.5 40 0.150 2.5 0.0539 0.0842 0.0126 0.0006
11 0.5 100 0.150 2.5 0.0049 0.1186 0.0237 0.0009
12 20 100 0.150 1.0 0.0052 0.1209 0.0209 0.0031
13 0.5 100 0.150 1.0 0.0471 0.0874 0.0175 0.0002
14 0.5 100 0.150 1.0 0.0475 0.0854 0.0176 0.0003
15 0.5 100 0.150 1.0 0.0455 0.0870 0.0177 0.0002
16 20 100 0.150 2.5 0.0046 0.1115 0.0176 0.0165
17 20 80 0.150 2.5 0.0054 0.1223 0.0191 0.0062
18 20 80 0.150 2.5 0.0044 0.1199 0.0187 0.0061
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APPENDIX B. CHAPTER 3 SUPPORTING INFORMATION
B.1. AUTOMATED SCREENING SYSTEM STANDARD OPERATING PROCEDURE

B.1.1. HPLC Initialization

Power on all modules of the Agilent LC/MS. Ensure that the water and acetonitrile liquid
volumes are adequate and that ~96 psi nitrogen is flowing to the MS. Open ChemStation. If the
most recent method in the ChemStation queue was one which received samples from the Agilent
automated liquid handler (rather than manual injections), follow steps 1-6 below:

1. Load the method BJR_SLUGFLOW_3 MANUAL.M.

2. Configure ChemStation to run a single sample injection

t Timinntinm Qariens
L 111jCCLiONn SOUr

| AP thn Seianfiae cmrrman Frominn smm iz | BN
L ULV TTOLLTIVUET SUUITLL 1TUIILL THlaltual W

3. Und

4. Start a single run. It is okay to stop the run any time after time = 0.

5. Under Instrument > Select Injection Source, change the injection source back from ALS to

manual. Save the method.

6. Start a single run. It is okay to stop the run any time after time = 0.
Load the method BJR_SLUGFLOW_3 MANUAL.M and sequence BJR_SLUGFLOW.S.
Under Sequence > Sequence Parameters, verify that the subdirectory is consistent with the path
for HPLC chromatograms in the LabView Master VI.vi. Assign the sequence a prefix that is
alphanumerically after all previous stored files in the subdirectory (for instance with the time
stamp YYMMDD). Exit this window and configure ChemStation to run a sequence injection.
Change the instrument, including the MS, from standby mode to on by pressing the green power
button beneath the MS icon (Note: pressing only the power button under the MWD icon will
leave the MS in standby mode and not initiate the method). Press the button on the ChemStation
interface to start the sequence. You will be automatically prompted to approve that the files are
being written to a previously existing subdirectory. Choose yes. You will then be prompted to
specify a blank run. Select by file and choose BLANK_SLUGFLOW_3 MANUALL.D. (If this
blank becomes outdated or a new method is used, simply in single sample mode execute a new
blank run and point the blank subtraction macro to the data file generated by that blank). The
LC/MS should now be ready for use.
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B.1.2. System Initialization

Ensure that power is being supplied to all units. The LabView Real-time Controller should be
receiving 15-20 V power, relays should be receiving 4 V power, and solenoid valves should be
receiving 12 V power. Ensure that the transfer line refill tank and quench refill tank are
adequately filled. Replace and fill the rinse solutions in positions 1-4 of the liquid handler. If
necessary, empty the contents of the trap at the outlet of the injection valve. Prepare a fresh
solution of the online injection fluid. Confirming that the system is depressurized or that the
online injection valve is switched to the refill position (by convention, position 2 on all valves is
denoted as ‘into the system’, so ‘refill’ is position 1), remove the glass syringe from the online
injection line, and purge and refill the syringe with the online injection fluid. Replace the syringe
in the line and verify that the online injection valve is back to remote control, as should be all
other valves. Take the remaining stock solution and submerge the refill tubing from the online
injection valve into the online injection fluid. Insert the inert gas purge needle into the stock
solution above the liquid level. Pressurize the system by opening the-tank of inert gas supplied to
the system. The pressure gauge on the bomb at the outlet of the system should rapidly equilibrate
to 100 psi; if not, verify that the gas pressure out of the inert gas regulator is sufficient at >100
psi and that there are no leaks in the system. Pressurize the manifold by opening the tank of inert
gas supplied to the manifold (the pressure should be maintained at 3 psi). Open the vacuum line
supplied to the solenoid valve connected to the injection valve trap (note that the solenoid valve
should be configured that the vacuum is only applied when the solenoid valve switches to the
open position).

Prepare screening solutions as desired and store in the liquid handler, preferably beneath the
inert gas manifold. These solutions must be prepared concentrated enough such that it is feasible
to dilute all solutions to make slugs of the desired compositions. On the main computer, open the
file Reagent Table.xIsx and input relevant data about the starting reagents and expected products
on the Reagent List sheet. For the starting reagents, molar masses, concentrations (in g/L),
internal standard concentrations (in g/L), densities, and sample locations must be supplied.
HPLC retention times, wavelengths, and calibrations may optionally be supplied. For products,
HPLC retention times, wavelengths, and calibrations must be supplied. The desired product for
optimization must be denoted as type R in the reagent type column (there should only be one R).

Other important types are | for internal standard (there should only be one I) and X for the online
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injection solution (there should only be one X). Other classes of reagents and the calibration
column have been incorporated for future development. On the Initial Slugs sheet, specify any
specific experiments to run by reagent numbers, concentrations, reaction time, and temperature.
This is only required if not running an optimization. Save any changes to the file Reagent
Table.xIsx. Ensure that the reagent table path on Master VI.vi points to this file. For
optimizations, open slug_optimization_phase 1.m and program the continuous and discrete
variable inputs to read into the optimization. The entries for each row of the continuous variable
matrix cv are [(min) (max) (default value) (+ tolerance for prediction covariance) (optimize? |
for yes, 0 for no)]. Assumable values for discrete variables are listed as a row in the matrix dv.
The rows of the matrix cor are discrete variables that correlate with given optimized discrete
variables. The columns of cor align 1:1 with the columns of dv (ie dv(1) will always be paired
with the variables in the first column of cor), with the last column of cor specifying the row of dv
to correlate to. I_cv and I_dv are the interaction terms to be considered between continuous and
continuous variables and discrete and continuous variables, respectively. The rows/columns of
I_cv correspond 1:1 to the optimized variables cv. The rows of I_dv correspond 1:1 to the
optimized discrete variables and the columns of 1_dv correspond to the optimized continuous
variables. Gamma is as defined in Chapter 4, the minimum fraction of the maximum yield for a
feasible TON. Save any changes to this file.

Prime the system by opening Automatic Refill-Carrier and Base (Flush Base Line).vi and
inputting the syringe volumes, the volume of solutions to push in to waste, and the current fill
volumes of the syringes. Run this vi. Once complete, open the file Master VI.vi. Update all paths
for output data so that these do not overwrite old data. Mark the Reset Syringe Volumes box as
yes and input new carrier and base syringe fill volumes. Check the box for Optimize as yes if
optimization is desired and as no otherwise. All other values should nominally stay as default,
but may be manipulated for a new reactor volume, longer HPLC method time, etc. Run the VI to
begin. After the set of experiments is complete, the temperature set point should automatically
return to zero. The pumps and Master VI.vi will automatically shut off after an optimization, but
both will remain on in the case of on-demand screening in case more experiments are desired.
The vacuum should be turned off manually, and the LC/MS should be shut down by stopping the
current sequence and pressing the power off button beneath the MS icon. The valve on the gas

supply to the system should be closed.
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Master VI

B.1.3. List of LabView Files

This is the main vi for optimization and screening. The vi calls all MATLAB functions

and executes multiple parallel loops which update slug status with time, update flow rate

and manage syringe refills, prepare slugs, inject reagent online, interpret online slug

sensor measurements, sample slugs by HPLC, interpret the HPLC data files, control

temperature, record data, and optimize.

Inputs:

o

Reset Syringe Fill Volume (yes for new fill volumes, no for read in old fill
volumes from Path for Syringe Fill Volumes)

Optimize? (yes for optimization, no for only automated screening)

Distance to Online Base (system volume from injection valve to online injection
point; default 69.0 uL)

Distance to Base Phase Sensor (system volume from injection valve to online
injection sensor; default 50.0 pL)

Init Carrier Fill Volume (if Reset Syringe Fill Volume is yes, new fill volume for
carrier syringe)

Init Base Fill Volume (if Reset Syringe Fill Volume is yes, new fill volume for
base syringe)

Distance to Pre-Reactor Phase Sensor (system volume from injection valve to pre-
reactor sensor; default 85.0 uL)

Gilson Control VISA (COM port for Gilson GX-271; default is COM1)
Entrance Volume (system volume from injection valve to reactor inlet; default
100.0 pL)

HPLC Warmup Time (time from HPLC triggering to sample injection into HPLC;
default 20.0 s)

Analysis Time (time from sample injection into HPLC to end of HPLC method;
default 8.75 min)

Withdraw Flow Rate (flow rate for sample aspiration in liquid handler; default

100.0 pL/min)
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Injection Flow Rate (flow rate for injection of sample into liquid handler injection
valve; default 250.0 pL/min)

Reactor Volume (volume of reactor; default 240.0 pL)

Transfer Fluid Density (density of fluid in liquid handler transfer line; default
889.0 g/L)

Rinse Volume (volume of rinse solvent to sample for each blank slug; default
60.0 uL)

Quench Volume (system volume from reactor outlet to sampling loop; default
88.0 ul)

LC Valve to Valve Volume (volume from sampling loop to HPLC sample loop;
default 60.0 uL)

Injection Volume (volume of liquid handler injection valve sample loop; default
14.0 pL)

Buffer Volume (volume before reactor at which point the flow rate must be set to
the reactor flow rate; default 70.0 uL)

Slug Volume Tolerance (maximum error in the slug volume registered by the pre-
reactor phase sensor for the slug to be considered acceptable; default 4.0 pL)
Wait Time for Report (time for HPLC report generation after method completion;
default 20.0 s)

Distance to HPLC sensor (system volume from injection valve to pre-HPLC
phase sensor; default 390.0 pL)

Slug Volume Threshold (minimum volume considered acceptable for a slug to be
recognized by a phase sensor; default 2.0 ulL)

Time Between HPLC Injections (time after HPLC method is complete to wait
before a new HPLC method can initiate; default 60.0 s)

Slug Matching Tolerance ((+) maximum system volume considered acceptable
for a slug to be recognized be a phase sensor; default 15.0 uL)

Slug Volume Threshold with Quench (minimum volume considered acceptable

for a slug to be recognized by the pre-HPLC phase sensor; default 15.0 pL)



o HPLC Slug Matching Tolerance ((+) maximum system volume considered
acceptable for a slug to be recognized by the pre-HPLC phase sensor; default 25.0
uL)

o Maximum Carrier Flow (maximum slug flow rate; default 250.0 pL/min)

o Minimum Carrier Flow (minimum slug flow rate; default 15.0 uL/min)

o Temperature Tolerance (maximum temperature deviation from set point allowed
for slug injection into system; default 1.0°C)

o T Control VISA (COM port for temperature controller; default COM9)

o Reagent Table Path (path to Excel reagent table file)

o Slug Info File (path for slug composition data)

o Slug Status File (path for slug status in system and objective function data)

o System Status File (path for system conditions (flow rate, temperature) data)

o Data Analysis File (path for worked up HPLC data and output reaction
concentrations)

o Path for HPLC Chromatograms (path for ChemStation data files)

o Path for Syringe Fill Volumes (path for stored syringe fill volumes)

o Matlab Data File (path for storing MATLAB workspace)

Automatic Refill-Carrier and Base (Flush Base Line)

Refills both the carrier and online injection line. Purges online injection line into the
system. Uses phase sensors to check that system is primed. Creates three blank slugs to
clean system after purging with online injection stream. Opens and closes valve on
pressure bomb to drain collected liquid to waste.
Inputs:
o Carrier Syringe Vol (total volume of carrier syringe; default 8.000 mL)
o Carrier Push-in Vol (volume to push to waste of carrier line before refill; default
1.0 mL)
o Carrier Fill Vol (current fill volume of the carrier syringe)
o Base Syringe Vol (total volume of online injection syringe: default 0.250 mL)
o Base Push-in Vol (volume to push to waste of online injection line before refill;
default 0.200 mL)

o Base Fill Vol (current fill volume of the online injection syringe)
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o Distance to Online Base (system volume from injection valve to online injection
point; default is 69.0 uL)
Agilent Start Method
- Sends contact closure command to Agilent HPLC to begin method
Automatic Refill Carrier and Base
- Refills carrier and online injection line but doesn’t purge online injection line or
introduce blank rinse slugs. Uses phase sensors to check that system is primed. Opens
and closes valve on pressure bomb to drain collected liquid to waste.
Automatic Refill LC
- Purges and refills transfer quench line between system sampling loop downstream of
reactor and HPLC injection valve. Primes syringe.
Base Phase Sensor Detect Prime
- Checks that online injection line is primed.
Calibration v2
- Structured like Master VI.vi, reads reagent table, identifies reagents to be calibrated, and
builds a list of slug experiments with the number of calibration discretizations and
replicates specified by user. Outputs least-squares regression. Note: this file was last
updated Dec. 2014 and doesn’t include some of the most recent corrections to Master
VLvi.
GGSIOC
- Gilson GSIOC communication library.
Gilson 271 Driver
- Driver for GX-271 liquid handler.
Gilson Move to Drain and Dispense Sample
- Moves liquid handler probe to waste vial. Injects into waste vial.
Gilson Dip Needle
- Dips liquid handler probe into a vial, pauses, and removes probe.
Gilson Home Device
- Homes liquid handler.
Gilson Injection Valve

- Switches liquid handler injection valve from load position to inject position.
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Gilson LC Valve
- Switches post-reactor sampling valve from sampling position to bypass position.
Gilson Load into Needle
- Reads in reagents to sample in a slug. Creates blank slugs and injects. Samples all
reagents sequentially (with gas bubbles and rinses where appropriate). Stirs sample.
Injects into injection valve.
Gilson Move to Injection Valve and Dispense Sample
- Moves probe to injection valve. Injects into injection valve.
Gilson Move to Well and Inject Probe
- Moves probe to target vial. Dips probe into vial.
Gilson Move to Well and Withdraw Sample
- Moves probe to target vial. Dips probe into vial and aspirates. Removes probe from vial.
Gilson Static Rinse and Drain Loop Only
- Moves probe to wash solution. Dips probe into wash and aspirates. Removes probe and
injects wash solution into injection valve. Switches valve to inject to create blank slug.
Gilson Stir
- Stirs sample in probe by withdrawing and infusing with liquid handler syringe.
Gilson Withdraw into Needle and Inject Hold Needle
- Samples regents and stirs. Injects sample into injection valve. Holds probe in injection
valve.
Harvard Change
- Changes syringe pump flow rate.
Harvard Infuse
- Infuses syringe pump to target volume at target flow rate.
Harvard Initialize Injection Base
- Sets syringe diameter, flow rate, and target volume for online injection.
Harvard Inject Base
- Infuses online injection syringe pump to target volume.
Harvard Refill

- Withdraws syringe pump to target volume at target flow rate.
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Harvard Reset Volume
- Sets syringe pump target volume.
Harvard Stop
- Stops syringe pump.
Master VI from Restart with Matlab
- Functions identically to Master VI.vi. Reads in old MATLAB file and initializes system
with same variable values. Useful in the event of a crash.
Omega T Controller No Loop 3
- Sends the temperature set point to the OMEGA PID controller. Returns the read value
and the measured temperature.
Phase Sensor Detect Equilibration
- Uses pre-HPLC phase sensor to check if both quench and gas streams are flowing and
thus system is primed.
Prime LH Pump
- Moves liquid handler probe to injection valve. Refills liquid handler syringe and purges
line though the injection valve to waste.
pump22~1
- Harvard PhD pump library
Vacuum On
- Opens solenoid valve for a few seconds to pull vacuum on the injection valve waste line.
Closes valve.
Valve Switch

- Switches 6-port/2-way valve from refill to infuse.

B.1.4. List of MATLAB Files

(Thank you to Connor Coley for helping compile this list)
Start_slug_tracker
- Inputs the reagent table file and initializes the slug tracker matrix and index
- Beginning of the file includes columns of all variables to track during operation (in

slug tracker)
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Start_reagent_table
- Inputs the same reagent table file, but outputs reagent_table and reagent_table_index,
which contains all of the reagent information in the excel file
- Identifies the internal standard and decides which reagents to run a calibration with
Slug_analysis
- Updates the slug tracker matrix based on the time spent in the HPLC
Slug_analysis_complete
- Identifies whether the HPLC analysis is done
Slug_analysis_write
- Records the HPLC data for each slug to the specified file ana_path
Slug_area
- Calculates the peak areas and concentrations for each slug based on the HPLC output
- Rejects slugs if it cannot retrieve the HPLC file
- Rejects slugs if the internal standard area is not >50% of that expected from previous
calibration
Slug_build_prior_opt
- Compiles the final optimization results into a single row with experimental conditions
Slug_calib_ana
- Updates slug tracker for the calibration VI to include HPLC data from slug_calib_area()
and calculate a calibration coefficient, either assuming a linear or quadratic relationship
Slug_calib_area
- Calculates the concentration and area of a slug for the calibration reagents
Slug_calib_inject
- Determines whether a slug can be injected into the system based on slug_tracker during
calibration
Slug_calibration
- Equivalent of start_slug_tracker() for the calibration VI
- Creates a slug_tracker matrix with specific columns to record relevant calibration params
Slug_complete
- Checks whether analysis for a slug is complete, and marks it complete it slug_tracker if

SO
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Slug_distance

- Figures out the distance (in uL) how far the slug has traveled

- Takes into account that the flow rate is temperature-dependent (esp. in the reactor)
Slug_exp_cond

- For the optimization, condenses slug tracker information into a format suitable for an
input file for the optimization procedure

- Outputs exp_cond (list of experimental conditions), and B (list of objective function
values)

Slug_flowrate

- Takes in slug tracker and figures out what the flow rate should be, both in and out of the
reactor

- Decides if the flow rate needs to be changed (and signals so pump can be changed)

- Inputs the sizes of each zone of the system, the buffer size (to equilibrate)

- Before the reactor, the flow rate is halfway between the max and min allowed rate to
allow time for mixing; in the reactor, the flow rate is specified by the residence time;
after the reactor, the flow rate is halfway between the max and min allowed

- When no slugs are in system, the flow rate is the minimum flow rate to minimize waste

Slug_in_prep

- Figures out if there is a slug to be made, and outputs a matrix comp that lists the volumes
and indices that the liquid handler must use

- Prep_slug is the row number in slug tracker that is in-progress

- First calculates what the volume of the slug must be taking into account online reagent
addition, then finds the volume of each reagent, then finds the needed make-up volume

- Tracks the total concentration of the internal standard

Slug_inj_check

- Determines whether a slug is within 1.5*match_tol of the online injection point distance
so that the syringe pump can be prepared for injection

- Outputs 0 to LabView if nothing needs to be injected, >0 otherwise

Slug_inj_fail
- Determines if the slug has gone past the sensor distance + tolerance but has not been

seen, the slug is flagged as failed
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Slug_inj_online
- Calculates the amount of online-reagent to add and updates slug_tracker to note that
online-reagents have been added
- Also corrects all upstream slugs’ distances by the volume added
Slug_inject_lc
- Determines if the slug is at a distance where HPLC injection should begin (incl. warmup
time)
Slug_inject_sys
- Goes through each criterion to see if a slug should be held in the injection valve for
longer
- Criteria are (i) hold on system placed by HPLC (ii) hold for refilling syringes (iii)
temperature out of tolerance (iv) flowrates exceeding maximum or below minimum (v)
slugs wouldn’t have enough time in reactor or before HPLC
- Outputs 1 if the slug is ready for injection
Slug_injected
- Flags aslug in slug_tracker to note that it has been injected into the system
Slug_injected_lc
- Flags aslug in slug_tracker to note that it has been injected into the HPLC
Slug_load
- Interprets the comp matrix and reformats for the Gilson Load Needle sub-VI
Slug_match
- Called when the phase sensor sees a slug, and checks to see if any slugs are the match_tol
of the sensor; if so, updates that slug’s distance in slug tracker to the distance of the
sensor
Slug_match_lc
- Similar to slug_match(), checks that the slug volume is acceptable before injection into
HPLC
Slug_objective
- Calculates the function objective value based on HPLC peak areas and concentrations

- Contains the objective function (hard-coded)
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Slug_optimization_phase 1 _suzuki
- See Appendix C
Slug_optimization_phase_2 suzuki
- See Appendix C
Slug_optimization_phase_3 suzuki
- See Appendix C
Slug_optimization_phase_4
- Conducts gradient-based linesearch initialized with Hessian from phase 3. Determines if
convergence criteria are satisfied
Slug_optimization_phase update
- Determines if the minimum number of experiments for the current phase are complete; if
s0, increments the phase number
Slug_predictor
- Outputs slug_event, which lists the important future times at which events will happen
(e.g., flow rate change or slug injection into HPLC)
Slug_read_syringe_vol
- Reads the syringe volumes out of fill_vol path
Slug_refill
- Checks whether a refill is needed for any of the syringes
- Updates the syringe volumes after refill
- Will queue up a hold on the system if there are slugs currently in the system (that is
activated once the last slug leaves)
Slug_start_prep
- Determines whether it is ok to start making a slug
- Ensures there won’t be multiple slugs in the reactor (to avoid thermocapillary flow
problem) and if the system is being held for refill
Slug_temp

- Finds the set point temperature based on slug tracker
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Slug_tracker_augment

- Adds a fully-populated row (or rows) to slug tracker

- Also calculates the minimum number of experiments until the next optimization
experiment, used by slug optimization_phase_update()

Slug_tracker_rebuild

- Takes in data files from previous runs and recreates the slug tracker matrix

- Note: could also just reload the .mat file saved by LabView instead of using this function
Slug_volume

- Calculate the volume of the slug measured by the phase sensor, based on flow rate

- Slug voll reports the most recent slug
Slug_volume_ps

- Determines whether the volume found by slug volume() is above the minimum
acceptable volume for a slug; if so, reports that the slug has been matched

Slug_volume_react

- Matches the slug and checks that it is large enough

- Ifit is above the threshold but outside the acceptable tolerance, it flags this as a failed
slug

Slug_write

- Records the data for all of the slugs (currently every 20 seconds)

- Writes to files slug path, data regarding the slug composition and setpoints, status_path,
yes/no indicators and distance, and system_path, current temperature and flow rate at
various times

Slug_write_init
- Does the same thing as slug_write() but also writes the headers for each column
Slug_write_syringe
- Records the volumes of each syringe
Slug_x_linear_dependence
- Checks whether there is linear dependence in experimental conditions
- Not called by LabView, just an auxiliary function for analysis
Slug_x_matrix

- See Appendix C
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B.2. DEVICES

B.2.1. Vial Manifold
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Figure B.1. SOLIDWORKS drawing of vial manifold. SOLIDWORKS file available on KFJSERVER.
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B.2.2. Pancake Reactor
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Figure B.2. SOLIDWORKS drawing of pancake reactor. SOLIDWORKS file available on KFJSERVER.
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APPENDIX C. CHAPTER 4 SUPPORTING INFORMATION

C.1. OPTIMIZATION SCRIPTS

Included below, the three main optimization scripts along with slug_X_matrix.m progress
through  the three stages of the adaptive response  surface  method.
Slug_optimization phase 1 _suzuki.m requires the user to input all discrete and continuous
variables in the optimization and specify over what continuous range the optimization takes
place. The function then constructs an initial fractional factorial design consistent with the
number of interaction terms in the model. Slug_optimization_phase 2 suzuki.m receives the
matrices of variables passed from phase 1 of the optimization, along with experimental
conditions and objective function values from the initial fractional factorial design. This function
then estimates the optimum for all discrete variables assuming a linear model and constructs a
new set of fractional factorial design experiments in the quadrant of the continuous variable
space where the optimum is predicted. Slug_optimization_phase 3_suzuki.m similarly receives
the matrices of variables, prior experiments, objective function values, and prior estimates of the
optimum and uncertainty. The phase 3 function generates a quadratic response surface model
that is optimized to solve for the optimum yield and constrained optimum TON. Discrete
variables are fathomed iteratively by a r-test, and a new model is constructed after each variable
elimination. Finally, new G-optimal experiments are proposed to minimize uncertainty on the
remaining candidate discrete variable optima. The function outputs the final optimum TON and
yield and associated conditions if termination criteria are satisfied. In phase 2 and phase 3,
slug_ X matrix.m is called to construct the matrix of scaled variables X from the matrix of

experimental conditions.

C.1.1. Optimization Phase 1

function
[cv,cv_scale,N_cv,index_cv,dv,N_dv,index_dv,non_opt,indexinon_opt,cor,index_cor,I_cv,I_dv,gamma,
exp_condl] = slug_optimization phase_1 suzuki ()

$SLUG_OPTIMIZATION PHASE_1_SUZUKI Compiles list of optimized and non-optimized

%*continuous and discrete variables. Generates a set of fractional factorial

%design experiments to be optimized spanning full continuous variable space.

A R Rt R e R R LR

% Submitted by Brandon Reizman

i May 15, 2015
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% Inputs:

% None

% Outputs:

% cv is the matrix of continuous variables

% cv_scale is the matrix of scaled continuous variables

% N_cv is the number of continuous variables to optimize

% index _cv is the identifier assigned to each continuous variable

% dv is the matrix of discrete variables

% N dv is the number of discrete variables to optimize

% index _dv is the identifier assigned to each discrete variable

% non_opt is the matrix of continuous variables not to be optimized
% index non_opt is the identifier assigned to non-optimized continuous variables

o

cor is the matrix of non-optimized discrete variables

% index_cor is the identifier assigned toc each non-optimized discrete variable

% I_cv is the matrix of interaction terms between continuous variables

% I_dv is the matrix of interaction terms between discrete and continuous variables
% gamma is the fractional yield threshold for optimal TON

% exp_condl is the matrix of experiments to run

%

333023200 AR AT ELLLLRLLLLLLSLLL LSRR LNLS

¢ Start by reading in all continuous variables in form

¢ [(min) (max) (default) (+/- prediction covariance tolerance) (optimize? 1 yes or 0 no) ]
% Res Time

cv(l,:) = [60 600 180 540 1];

index_cv(l) ={'Res Time'};

% Temperature

cv(2,:) = [30 110 60 80 1]:

index _cv(2) ={'Temp'};

% CBO

cv(3,:) = [0.167*0.005 0.167*0.025 0.167*0.02 0.167*0.02 1];

index_cv (3) ={'Reag 2 Conc'};

Q

% Base Conc

cv(4,:) = [0.333 0.333 0.333 0.01 0];
index_cv(4) ={'Base Conc'};

% CAQ

cv(5,:) = [0.167 0.167 0.167 0.01 0];
index_cv(5) ={'Reag 1 Conc'};

% CCO

cv(6,:) = [0.25 0.25 0.25 0.01 0];
index_cv(€) ={'Reag 3 Conc'};

% CDO

cv(7,:) = [9.24 9.24 9.24 0.01 0];
index_cv(7) ={'Reag 4 Conc'};

% CEOQ

cv(8,:) = [0.0 0.0 0.0 0.01 0];
index_cv(8) ={'Reag 5 Conc'};

% Precat Conc
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cv(9,:) = [0.0 0.0 0.0 0.01 0}
index_cv(9) ={('Precat Conc'};

% Slug Vol

cv(10,:) = [35 35 35 1 0];
index_cv (10) ={'Slug Vol'};:

% Read in discrete variables [{list of possible values})
% Reagent 2

dv(l,:) = [1 2 3 456 7 8];

index_dv(l) ={'Reagent 2'};

% Read in correlated variables [{list of possible values) {corresponding discrete variable

number}]

cor(l,:) = [49*cnes(size(dv(l,:))) 1]:
index_cor(1l) ={'Reagent 1'};

cor(2,:) = [55*ones(size(dv(l,:))) 1];

index_cor(2) ={'Reagent 3'};
cor(3,:) = [30*%ones(size(dv(1l,:))) 1]:

index_cor (3) ={'Reagent 4'};

cor(4,:) = [30*ones(size(dv(l,:))) 1];
index_cor (4) ={'Reagent 5'};
cor(5,:) = [19*ones(size(dv(1l,:))) 11;

index_cor(5) ={'Makeup'};

Read in continuous variable interaction terms to consider (columns are
% continous variables)

I cv=1[111; 011; 00 1);

% Read in discrete variable interaction terms to consider (columns are
% continous variables)
I dv = [010];

% Cutoff for yield in catalyst optimization

gamma = 0.90;
R R e T e

% Sort cv
[cv,sort_cv] = sortrows(-cv,length(cv(l,:)));
CcV = -cv;

index_cv = index_cv(sort_cv);

% Count continuous variables
N_cv = sum(cv(:,end));

% Randomize continuous variables

new_stream = RandStream.create('mt19937ar', 'seed',sum(100*clock));

RandStream.setDefaultStream(new stream) ;
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r = rand(N_cv,1);

[sorted,order] = sort(r):;
cv(l:N_cv,:) = cv(order,:);
index_cv(1l,1:N_cv) = index cv(l,order');

I dv = I dv(l,order);

for i = 1:N_cv
for j = i:N cv
I _cv_order (order (i) ,order(j)) = I_cv(i,]);
if I_cv_order(order(i),order(j)) == 1

if order (i) > order (j)

I_cv_order (order(i),order(j)) = 0;
I_cv_order(order(j),order(i)) = 1;
end
end
end
end
I cv = I_cv_order;
% Create scaled continuous variable matrix
cv_scale = cv;
% Apply proper scaling
for i = l:length(cv(:,1))
if strcmp(index_cv{i}, 'Res Time') ==
cv_scale(i,1:3) = log(cv(i,1l:3)):
elseif strcmp(index cvi{i}, 'Temp') == 1
cv_scale(i,1:3) = (cv(i,1:3) + 273.15)."-1;
elseif strcmp(index_cv{i},'BaSe Conc') == 1
cv_scale(i,1:3) = log(cv(i,1:3));
elseif strncmp(index cv{i}, 'Reag',4) == 1
cv_scale(i,1:3) = log(cv(i,1:3));
end

end

% Count discrete variables

N dv = length(dv(l,:));

% Randomize discrete variables

l:length(dv(:,1))

for i
r = rand(size(dv(i,:)));
[sorted,order] = sort(r);

dv(i,:) = dv(i,order);
for j = l:length(cor(:,1))
if cor(j,end) == i
cor(j,l:end-1) = cor(j,order);
end
end

end
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% Generate initial factorial design matrix

min_designl = N_cv + N_dv + 1;

min_design2 = (N_cv - sum(I_dv)) + N_dv + N_dv*sum(I_dv) + sum(sum(I_cwv)) + 1;

% 8ize of first fractional factorial design

designl = N_dv;

Size of first and second fractional factorial designs

design2 = 2*designl;

fraction = N_cv;

while designl <= min_designl || design2 <= min_design2

% Increase fractional factorial size
fraction = fraction - 1;

designl = 2" (N_cv - fraction)*N_dv;
design2 = 2*designl;

end

% Build generator string

gen_str = [sprintf('')];

for i = 1:N_cv + N_dv - fraction
gen_str = [gen_str char(96+i) ' '];

end

for j = l:fraction

if fraction »>= 2

for 1 = j:N_cv - fraction + j
gen_str = [gen_str char(96+i)];
end
for i = j + N_cv:j + N_cv + floor (N dv/2 - 1) -1
gen_str = [gen_str char(96+i)];
end
else

for i = j:N_cv - fraction + j
gen_str = [gen_str char(96+i)];
end
end
gen_str = [gen_str ' '];

end

% Create fractional factorial design
exp_cond_scalel = fracfact(gen_str);
exp_cond_scale_row = 0;

for i = l:length(exp_cond_scalel(:,1))

if sum(exp_cond_scalel(i,N_cv+l:end)) == =N dv + 2

exp_cond_scale_row = exp_cond_scale_row + 1;

index = find(exp_cond scalel(i,N cv + 1:N_cv + N_dv) == 1),

exp_cond_scale (exp_cond_scale_row, :)
end

end
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% Block randomize experiments

exp_cond_scale(:,end + 1) = rand(length(exp_cond scale(:,1)),1);

exp_cond_scale = sortrows (exp_cond_scale, length(exp_cond_scale(l,:)));

exp_cond_scale(:,end) = [ 1;
Group by temperature
col T = find(strcmp(deblank (index _cv), 'Temp') == 1);

for i = l:length(exp_cond scale(:,1))-1

swap_row = find(exp_cond_scale(itl:end,col_T) == exp_cond_scale(i,col_T),1,'first');

if isempty(swap_row) == 0
exp_cond_scale_swap = exp_cond_scale;
exp_cond_scale(i+l,:) = exp_cond_scale_swap (i+swap_row, :
exp cond_scale(i+swap_row,:) = exp _cond_scale_swap (it+l,:
end

end

x_opt_ub = ones(1,N_cv);

x_opt_lb = -l*ones (1,N_cv);

% Generate initial matrix of conditions
for i = 1l:length(exp cond_scale(l,:})
if i <= N_cv
for row = l:length(exp_cond_scale(:,1))

if exp cond scale(row,i) ==

exp_cond_scale(row,i) = x_opt_lb(l,i)*(cv_scale(i,2) - cv_scale(i,1))/2 +

mean([cv_scale(i,1) cv_scale(i,2)]);

else

exp_cond_scale (row,i) = x_opt_ub(l,i)*(cv_scale(i,2) - cv_scale(i,1))/2 + mean([cv_scale(di,1)

cv_scale(i,2)]);
end
end
else

for row = 1l:length(exp_cond_scale(:,1))

exp cond_scale(row,i) = dv(i - N_cv,exp_cond_scale(row,i));

end
end

end

% Apply proper scaling

exp_condl = exp_cond_scale;
for i = 1:N_cv
if strcmp(deblank(index_cv(i)), 'Res Time') == 1
exp_condl(:,i) = exp(exp cond_scale(:,i));
elseif strcmp(deblank(index cv(i)),'Temp') == 1
exp_condl(:,i) = exp_cond_scale(:,i)."=-1 - 273.15;
elseif strcmp(deblank(index_cv(i)),'Base Conc') == 1
exp_condl(:,1i) = exp(exp_cond_scale(:,1));
elseif strncmp(deblank(index cv(i)),'Reag’',4) == 1
exp condl(:,1i) = exp(exp_cond_scale(:,1i));
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end

end

% Include non-optimized continuous variables
non_opt = find(cv(:,end) == 0);
index_non_opt = index_cv(non_opt);
for i = length(non_opt):-1:1
index_cv(non_opt(i)) = [ ];
exp_condl(:,N_cv + length(dv(:,1)) + i) = cv(non_opt(i),3);:

end

% Include correlated discrete variables
for i = l:length(cor(:,1))
dv_row = cor(i,end);

for row = 1l:length(exp_condl(:,1))

j = find(dv(dv_row,:) == exp_condl (row,N_cv + dv_row),1);
exp_condl (row,N_cv + length(dv(:,1)) + length(non_opt) + i) = cor(i,j);
end
end
end
C.1.2. Optimization Phase 2
function

[X,col_index,theta,viB,vvJ,x_maxJ,J_maxJ,x_maxY,Y_maxY,J_opt,J_opt_lb,dJ,dv_fathom,exp_condl] =
slug_optimization_pha3872fsuzuki(cv,cv_scale,N_cv,index_cv,dv,N_dV,non_opt,index_non_opt,cor,

I cv,I_dv,gamma,exp cond,B)

#SLUG_OPTIMIZATION PHASE_ 2 SUZUKI Generates a linearized model and an updated

tset of targeted fractional factorial design experiments

A Rt i i It

%

% Submitted by Brandon Reizman

% May 15, 2015

% Inputs:

% cv is the matrix of continuous variables

% cv_scale is the matrix of scaled continuous variables

% N_cv is the number of continuous variables to optimize

% index_cv is the identifier assigned to each continuous variable

% dv is the matrix of discrete variables

% N_dv is the number of discrete variables to optimize

% non_opt is the matrix of continuous variables not to be optimized

% index non_opt is the identifier assigned to non-optimized continuous variables
% cor is the matrix of non-optimized discrete variables

% I_cv is the matrix of interaction terms between continuous variables

3% I_dv is the matrix of interaction terms between discrete and continuous variables
% gamma is the fractional yield threshold for optimal TON

% exp_cond is the matrix of experiments previously run
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% B is the vector of objective function values for exp_cond

% Outputs:

% X is the matrix of scaled experimental conditions

% col_index is the matrix identifying the columns of X

% theta is the optimal parameter vector

% V_B is the estimated response covariance

% V_J is the prediction covariance at the optimum

3 % maxJ is the optimal scaled experimental conditions for each discrete variable
% J_maxJ is the optimal objective function value for each discrete variable

% %x_maxY is the optimal scaled experimental conditions for yield for each variable
% Y maxY is the optimal objective function value for yield for each variable

% J_opt is the matrix of optimal values

% J_opt_lb is the matrix of 95% confidence lower bounds on the optimal cost

% dJ is the matrix of errors in J_opt

% dv_fathom is the list of fathomed discrete variables

% exp_condl is the matrix of experiments to run

R R e R A R A e R e e e A R A R e R R R L R R R S A R R R R L L ]

% Scale exp_cond
exp_cond_scale = exp_cond;

for i = 1l:N_cv

if strcmp(deblank (index_cv(i)), 'Res Time') == 1
exp_cond_scale(:,i) = log(exp_cond(:,1i));
elseif strcmp(deblank(index _cv(i)), 'Temp') == 1
exp_cond_scale(:,i) = (exp_cond(:,i) + 273.15)."-1;
elseif strcmp (deblank(index_cv(i)),'Base Conc') == 1
exp_cond_scale(:,i) = log(exp_cond scale(:,1i));
elseif strcmp (deblank(index cv(i)),'Reag 1 Conc') == 1
exp_cond_scale(:,i) = log(exp_cond scale(:,1)):
elseif strcmp (deblank (index_cv(i)), 'Reag 2: Conct)y == 1
exp_cond_scale(:,i) = log(exp_cond_scale(:,i));
end
end
% Build X matrix
[X,col_index] =
slug_X matrix{cv_scale,N_cv,dv,N_dv,eye(length(I_cv(:,1))),zeros(size(I_dv)),exp_cond scale, 'off’
)i
% Find starting material index
for i = l:size(non_opt,1)
if strcmp(deblank(index_non_opt(i)),'Reag 1 Conc') == 1

sm_index = i + N_cv;
sm_conc = cv(sm_index,3);
end

end
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% Find loading index

for i = 1:N_cv

[
[
[

if strcmp(deblank (index cv(i)),'Reag 2 Conc')
loading index = i;
end

end

% log catalyst loading

ln_loading = exp_cond scale(:,loading_index);

% Log(yield)
1n_yield = B + ln_loading - log(sm_conc);

Wl = eye(length(B));

for i = 1:length(B)
Wl(i,i) = exp(ln_yield(i))/sum(exp(ln_yield));
FW1(i,i) = exp(B(i))/sum(exp(B)):;

end

% Find best fit parameters

theta = (X"*W1*X)\(X'*W1*B);

¥ Weighting matrix

W = eye(length(B));

% Residuals

e = B - X*theta;

% Jackknife estimation of response covariance
for i = l:length (B)

Xi = X([1l:i=1,i+1l:end],:):
B([l:i-1,i+1:end]);
Wi = Wl([1l:i-1,i+1:end],[1:i=1,i+1:end]);

w
-
]

thetai = (Xi'*Wi*Xi)\(Xi'*Wi*Bi);
ei = Bi - Xi*thetai;
V_Bi(i,1l) = ei'*ei/(length(Bi) - length(thetai));
end
V_B_jack = mean(sqrt(V_Bi))"2;
V_B = (length(B) - 1)/length(B)*sum(({sqgrt(V_Bi) - sqgrt(V_B_jack))."2);

% This is true if using same model for yield and TON

V_yield = V_B;

% Find current minimum

options = optimset('TolFun',le-10, 'Tol¥X',le-10, 'TolCon',le=10,"'Display','off', 'Algorithm', "SQP"');
Aeq = zeros(N_dv,N_cv + N_dv);

for i = 1:N_dv

Aeq(i,N_cv + i) = 1;
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end

% Build A and c (with current values)
c = zeros(N_cv + N_dv,1);
A = zeros(N_cv + N_dv,N_cv + N_dv);
for i = l:length(theta)

[row,col] = find(col_index == i);

if isempty (row) ==

if row s= col
c(row,1l) = theta(i);

else

A(row,col) 0.5*theta (i) ;

A(col,row) = 0.5*theta(i);
end
else
col = find(col_index_square == i};
A{col,col) = theta(i);

end

end

% Yield optimization
for i = 1:N_dv
% Constrain discrete variables
Beq = zeros(N_dv,1);
Beg(i,1) = 1;
% Maximize response surface function
[x,Y,exitflag,output,lambda,gradient,hessian] =
fmincon{@maxY,[zeros(N_cv,l);Beq],[],[],Aeq,Beq,[~1*ones(N_cv,l);zeros(N_dv,l)],ones(N_cv +
N_dv,1),[],options,loading_index,A,c,cv_scale,sm_conc);
x maxY(i,:) = x;
Y max¥(i,l) = -¥;

end

% Find maximum for all cases
[Y opt,dv_id] = max (Y maxy¥);

yield opt = x maxY(dv_id,:);

% Optimum prediction covariance
for i = 1l:length(theta)
[row,col] = find(col_index == i);
if isempty(col) ==
row = find(col_index_square == i);
X _prime(l,i) = yield opt(row)"2;
else
if row == col
X _prime(l,i) = yield opt(row);
else

X_prime(l,i) = yield opt(row)*yield opt(col);
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end
end
end

V_Y = X _prime* (X'*X)"-1*X_prime'*V_yield;

TON optimization
for i = 1:N_dv
% Constrain discrete variables
Beq = zeros(N_dv,1):
Beg(i,1l) = 1;
% Maximize TON subject to yield <= gamma*max (yield)
[x,J,exitflag,output, lambda,gradient,hessian] = fmincon(@maxJ,x maxY(i,:)"',[],[],Aeq,Beq, [~
l*ones (N_cv,1) ;zeros (N_dv,1)],ones(N_cv +
N _dv,1),@maxJ _nlcon,options,loading_index,A,c,gamma,max (Y max¥(:,1)),cv_scale,sm _conc);
if exitflag <= 0
X = x maxy(i,:);

J = maxJ(x',loading_index,A, c,gamma,x_maxY(i,:),cv_scale,sm_conc);

end

X maxJ(i,:) = x;

J_maxJ(i,1l) = -J;

H inv(N_cv*(i-1)+1:N_cv*i,1:N_cv) = hessian(l:N_cv,1:N_cv)"-1;

end

% Find maximum for all cases
[J_max,dv_id] = max(J _maxJ):
X_opt = x_maxJ(dv_id,:)";

J_opt = [length(exp_cond(:,1)) J_max]:

% Optimum prediction covariance
for i = 1l:length(theta)
[row,col] = find(col_index == i);
if isempty(col) ==
row = find(col_index_square == i);
X _prime(l,i) = x_opt{row)"2;
else
if row == col
X prime(l,1i) = x_opt(row);
else
X _prime(l,i) = x_opt(row)*x_opt(col);
end
end
end
% Prediction covariance
V_J = X prime* (X'*X)"-1*X prime'*V_B;
% Optimum lower bound
J_max_1lb = J_opt(end,2) - sqrt(V_J)*tinv(1-0.05,length(B) - length(theta));
J_opt_1lb = [length(exp_cond(:,1)) J _max 1lb];

214



dJ = [length(exp_cond(:,1)) (J opt(end,2) - J opt_lb(end,2))];

% Check of any discrete variable can be fathomed (if J_int < J_opt lb)
dv_fathom row = 0;

dv_fathom = [ ];

% New centered design
®_opt_ub = zeros (N_dv,length(theta));
x_opt_1lb = zeros(N_dv,length(theta));
for dv_id = 1:N_dv

for i = 1:N_cv

if x_maxJ(dv_id,i) >= 0

®_opt_ub(dv_id,col_index(i,i)) = 1;
x_opt_lb(dv_id,col_index(i,i)) = 0;
else
x_opt_ub(dv_id,col_index(i,i)) = 0;
x_opt_1lb(dv_id,col index(i,i)) = -1;
end
end
x_opt_ub(dv_id,col_index(N_cv + dv_id,N_cv + dv_id)) = 1;
x_opt_lb(dv_id,col_index(N_cv + dv_id,N_cv + dv_id)) = 1;

end

% Generate new factorial design matrix

fraction = ceil (N_cv - log(length(exp_cond(:,1))/N_dv)/log(2));

% Bulld generator string
gen_str = [sprintf('')];

for i = 1:N_cv + N_dv - fraction

gen_str = [gen_str char(96 + i) ' '];
end
for j = l:fraction

gen_str = [gen_str '-'];

if fraction >= 2
for i = j:N_cv - fraction + j
gen_str = [gen_str char(96+i)];
end
for i = j + N_cv:j + N_cv + floor(N_dv/2 - 2) - 1
gen_str = [gen_str char (96+i)];
end
else
for i = j:N_cv - fraction + j
gen_str = [gen_str char(96+i)];
end
end
gen_str = [gen_str ' '];

end
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% Create fractional factorial design
exp cond_scalel = fracfact(gen_str);
exp_cond_scale_row = 0;
for i = l:length(exp_cond_scalel(:,1))
if sum(exp_cond_scalel (i,N_cv+l:end)) == -N_dv + 2
exp_cond_scale_row = exp_cond_scale_row + 1;
index = find(exp_cond_scalel(i,N_cv + 1:N_cv + N _dv) == 1);
exp_cond_scale? (exp_cond_scale_row,:) = [0.5%exp_cond scalel(i,1:N_cv)+1.5 index];
end

end

% Generate matrix of conditions
for i = l:length(exp_cond scale2(1l,:))
if i <= N_cv
col = col_index(i,i);
for row = l:length(exp _cond_scale2(:,1))
if exp_cond_scale2(row,i) == 1

dv_row = exp_cond_scale2 (row,N_cv + 1);

exp_cond_scale2 (row,i) = x_opt_lb(dv_row,col)* (cv_scale(i,2) - cv_scale(i,1))/2 +
mean ([cv_scale(i, 1) cv_scale(i,2)]);
else

dv_row = exp_cond_scale2(row,N_cv + 1);
exp_cond_scale2(row,i) = x_opt_ub(dv_row,col)*(cv_scale(i,2) - cv_scale(i 1)) /2 +
mean([cv_scale(i,l) cv_scale(i,2)]);
end
end
else
for row = l:length({exp cond_scale2(:,1))
exp_cond_scale2(row,i) = dv(i - N_cv,exp_cond_scaleZ(row,i));
end
end

end

% Block randomize experiments
new_stream = RandStream.create('mtl9937ar’','seed',sum(100*clock)};
RandStream.setGlobalStream(new_stream);
exp_cond scale2(:,end + 1) = rand(length(exp_cond_scale2(:,1)),1);
exp_cond_scale2 = sortrows{exp_cond_scale2,length(exp_cond_scale2(1l,:)))};
exp_cond_scale2(:,end) = [ ];
% Group by temperature
col T = find(strcmp(deblank(index_cv),'Temp') == 1);
for i = l:length(exp_cond_scale2(:,1))-1
swap_row = find(exp_condiscaleZ(i+1:end,col_T) == exp_cond_scaleZ(i,colYT),1,'first');
if isempty (swap_row) == 0
exp_cond_scale_swap = exp_cond_scale2;
exp_cond_scale2(i+l,:) = exp_cond_scale_swap (i+swap_row,:);
exp_cond_scale2(i+swap_row,:) = exp_cond_scale_swap(itl,:}:

end
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end

% Apply proper scaling

exp_condl = exp cond_scale2;

for i = 1:N_cv
if strcmp(deblank (index cv(i)), 'Res Time') == 1
exp_condl(:,i) = exp(exp_cond_scale2(:,1));
elseif strcmp(deblank(index _cv(i)), 'Temp') ==
exp_condl(:,i) = exp cond scale2(:,i).”-1 - 273.15;
elseif strecmp(deblank(index _cv(i)), 'Base Conc') == 1
exp_condl(:,i) = exp(exp_cond_scale2(:,1));
elseif strcmp(deblank(index_cv(i)), 'Reag 1 Conc') == 1
exp_condl(:,i) = exp(exp_cond scale2(:,i));
elseif strcmp(deblank(index _cv(i)),'Reag 2 Conc') == 1
exp_condl(:,i) = exp(exp_cond scale2(:,1i));
end
end

% Include non-optimized continuous variables
for i = l:length(non_opt)
exp_condl(:,N_cv + length(dv(:,1)}) + i) = cv(non_opt(i),3);

end

% Include correlated discrete variables
for i = l:length(cor(:,1)
dv_row = cor(i,end);

for row = 1l:length(exp_condl(:,1))

j = find(dv(dv_row,:) == exp_condl (row,N cv + dv_row),1);
exp_condl (row,N_cv + length(dv(:,1)) + length(non_opt) + i) = cor(i,j);
end
end
end
function [Cineq,Ceq] = maxJ_nlcon(x,loading_index,A,c,gamma,Yi,cv_scale,sm_conc)

% Constraints for TON maximization

% Response surface prediction

Y = -maxY¥(x,loading index,A,c,cv_scale,sm_conc);

% Inequality

Cinegq = -Y + Yi + log(gamma) ;
5 Equality

Ceq = [ ];

end
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function [J,g] = maxJ{x,loading_index,A,c,gamma,Yi,cv_scale,sm_conc)

% Objective function for TON maximization

2

% Objective Function

d = =g VEATY = ' K]

% Gradient

if nargout > 1

g = (_2*XI*A_ C')';
end
end
function [Y,g] = maxY(x,loading_index,A,c,cv_scale,sm_conc)

% Objective function for yield maximization

% log catalyst loading
1n_loading = (x(loading_index) + 1)*(cvﬁscale(loading_index,2) - cv_scale(loading_index,l))/2 +

cv_scale(loading_index,1);

% Objective Function

Y = -x'"*A*x - c'*x - 1ln_loading + log(sm_conc):

% Gradient
if nargout > 1

g = {=2*x"*A = g")";

g(loading_index) = g(loading_index) - (cv_scale(loading_index,2) -
cv_scale(loading_index,1))/2;

end

end

C.1.3. Optimization Phase 3

function
[X,col_index,col_index_square,theta,V_B,V_J,H_inv,x_maxJ,J_maxJ,x_max¥,Y maxY¥,J_opt,J_opt_lb,dJ,
x_mindJ,dJ_mindJ,dv_fathom,exp_condl,optim_phase,final opt] =
slug_optimization_phase_3_suzuki (cv,cv_scale,N_cv, index_cv,dv,N_dv,non_opt,index_non_opt,cor,
I cv,I dv,gamma,J opt prior,J opt_lb prior,dJ prior,exp_cond,B)
%SLUG_OPTIMIZATION PHASE 3 SUZUKI Generates a quadratic response surface

3model, optimizes, determines which discrete variables to fathom, and finds

%the next g-optimal experiment to run for all non-fathomed discrete variables
5335253325555 55 355530 EL AL B AL L AR LLLLLERRT LY

%

% Submitted by Brandon Reizman

% May 15, 2015

% Inputs:

% cv is the matrix of continuous variables
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OQutputs:

cv_scale is the matrix of scaled continuous variables

N_cv is the number of continuous variables to optimize

index_cv is the identifier assigned to each continuous variable

dv is the matrix of discrete variables

N_dv is the number of discrete variables to optimize

non_opt is the matrix of continuous variables not to be optimized

cor is the matrix of non-optimized discrete variables

I_cv is the matrix of interaction terms between continuous variables

I_dv is the matrix of interaction terms between discrete and continuous variables

gamma is the tolerance on maximum yield for TON

J opt_prior is the prior optimum values

J_opt_lb prior is the prior optimum lower bound values

dJ_prior is the prior error in J_opt

exp_cond is the matrix of experiments previously run

B is the vector of objective function values for exp cond

¥ is the matrix of scaled experimental conditiocns

col _index is the matrix identifying the columns of X

col_index square is the matrix identifying the squared term columns of X

theta is the optimal parameter vector
V_B is the estimated response covariance

V_J is the prediction covariance at the optimum

H_inv is the inverse of the objective function Hessian at the optimum

x_maxJ is the optimal scaled experimental conditions for each discrete variable

J_maxJ is the optimal objective function value for each discrete variable

x_maxY is the optimal scaled experimental conditions for yield

Y maxY is the optimal objective function value for yield

J_opt is the matrix of optimal values

J_opt_1lb is the matrix of 95% confidence lower bound on the optimum

dJ is the matrix of errors in J_opt

x_mindJ is the experimental conditions which minimize uncertainty in J for each

discrete wvariable

©

a
k.

dJ_mindJ is the minimum uncertainty for each x_mindJ
dv_fathom is the list of fathomed discrete variables

exp_condl is the matrix of experiments to run

optim_phase is the phase of the optimization (3 if repeat,

4 if move on)

final opt is the list of optimal conditions (both yield and TON)

BEFEEEERTLLEILTLIBILLLBLIRLALLLILBELELLLIIILILRLILILILLIBLRLRTIBLLLRLY

Scale exp_cond

exp_cond_scale = exp_ cond;

for i = 1:N_cv

if strcmp (deblank (index_cv(i)), 'Res Time') == 1
exp cond _scale(:,i) = log(exp_cond_scale(:,1));
elseif strcmp (deblank (index_cv(i)),'Temp') == 1
exp_cond_scale(:,i) = (exp_cond_scale(:,i) + 273.15)."-1;
elseif strcmp(deblank(index_cv(i)),'Base Conc') == 1
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exp_cond_scale(:,i) = log(exp_cond scale(:,1));

elseif strcmp(deblank(index cv(i)),'Reag 1 Conc') == 1
exp_cond_scale(:,i) = log(exp_cond_scale(:,1)):
elseif strcmp(deblank(index cv(i)),'Reag 2 Conc') == 1
exp_cond_scale(:,i) = log(exp_cond_scale(:,1i));

end

end

% Find starting material index

for i = l:size(non_opt,1)

1]
]
[y

if strcmp (deblank(index_non_opt(i)),'Reag 1l Conc')
sm_index = i + N_cv;
sm_conc = cv(sm_index,3);

end

end

elim_row = 0;

dv_update = dv;

N_dv_update = N_dv;
exp_cond_scale_update = exp cond scale;
exp_cond_update = exp_ cond;

B_update = B;

dv_fathom = [ ];

dv_fathom change = 1;

exp_cond2 = [ ];:

% Loop until no more fathomed discrete variables are in reduced model

while dv_fathom change ==

x_maxY¥ = zeros (N_dv_update,N_cv + N_dv_update);
Y max¥ = zeros (N_dv_update,l);

x_maxJ = zeros (N_dv_update,N_cv + N_dv_update);
J_maxJ = zeros (N_dv_update,l);

X prime = [ ];

dv_fathom_change = 0;

% Build X matrix
[X,col_index,col_index_square] =

slug X matrix(cv_scale,N_cv,dv_update,N_dv_update,I_cv,I_dv,exp cond_scale_update, 'on');
% Find loading index

for i = 1:N_cv

Il
]
[y

if strcmp(deblank(index_cv(i)), 'Reag 2 Conc')
loading index = i;
end

end

% log catalyst loading
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ln 1

% lo

1n_y

Wl =

for

end

% Fi
thet

% Re

e =

% Ja
Xi =
Bi =
Wi =
thet
ei =
V_Bi

for

end

cading = exp_cond_scale update(:,loading_index);

g yield

ield = B_update + ln_loading - log(sm_conc);

eye (length (B_update) ) ;

i = l:length(B_update)

Wl(i,i) = exp(ln_yield(i))/sum(exp(ln_yield)):
Wl(i,i) = exp(B_update(i))/sum(exp (B _update));

nd best fit parameters
a = (X'*Wl*){)\(X‘*Wl*B_update)i
siduals

B _update - X*theta;

ckknife estimation of response covariance
[1:
[ 1:
[1;
ai = [ 1;
[1:
=111
i = 1l:length(B_update)
Xi = X([1l:i-1,i+1:end],:);
Bi = B_update([l:i-1,i+1l:end]);
Wi = Wl([l:i-1,i+l:end],[1l:i-1,i+1l:end]);
thetai = (Xi'*Wi*Xi)\(Xi'*Wi*Bi);
ei = Bi - Xi*thetai:
V_Bi(i,1l) = ei'*ei/(length(Bi) - length(thetai));

V_B_jack = mean(sgrt(V_Bi))"2;

V_B

= (length(B_update) - 1)/length(B_update)*sum((sqrt(V_Bi) - sqgrt(V_B_jack))."2);

% This is true if using same model for yield and TON

V_yi

% Fi
opti

eld = V_B;

nd current minimum

ons = optimset('TolFun',le-10, 'TolX',le-10, 'TolCon', le-

10, 'Display', 'off', 'Algorithm', 'SQP');

Req

for

end

= zeros(N_dv_update,N_cv + N_dv_update);
i = 1:N_dv_update

Aeq(i,N_cv + i) = 1;

% Build A and ¢ (with current values)

c =

zeros (N_cv + N_dv_update,1);
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A = zeros(N_cv + N_dv_update,N_cv + N_dv_update);
for i = l:length(theta)
[row,col] = find(col_index == i);
if isempty(row) ==
if row == col
c(row,1l) = theta(i);
else
A(row,col) = 0.5*theta(i);
A(col,row) = 0.5*theta(i);
end
else
col = find(col_index_square == i);
A(col,col) = theta(i);
end

end

% Yield optimization
for i = 1:N_dv_update
% Constrain discrete variables
Beq = zeros(N_dv_update,l);
Beg(i,1l) = 1;
% Maximize response surface function
[x,Y,exitflag, output, lambda,gradient,hessian] =
fmincon (@maxY, [zeros (N_cv,1) ;Beq], [], [],Aeq,Beq, [-1*ones (N_cv, 1) ;zeros (N_dv_update,1)],ones (N_cv
+ N_dv_update,l),[],options,loading_index,A,c,cv_scale,sm_conc);
x_maxY(i,:) = x;
Y maxY(i,l) = -Y;
end
% Find maximum for all cases
[Y_opt,dv_id] = max(Y_maxY);

yield_opt = x_max¥(dv_id,:);

% Optimum prediction covariance
for i = 1l:1length(theta)
[row,col] = find(col_index == i);
if isempty(col) == 1
row = find(col_index_square == 1i);
X _prime(1l,i) = yield opt(row)"2;
else

if row == col

X prime(l,1i) yield opt (row):
else
X _prime(l,i) = yield opt(row)*yield opt(col);
end
end
end

V_Y = X _prime* (X'*V_yield”-1*X)"-1*X prime';
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% TON optimization
for i = 1:N_dv_update
% Constrain discrete variables
Beq = zeros(N_dv_update,l);
Beg(i,1l) = 1;
% Maximize TON subject to yield <= gamma*max (yield)
[x,J,exitflag,output,lambda,gradient,hessian] =
fmincon(@maxJ,xgmaxY(i,:)‘,[],[],Aeq,Beq,I—l*ones(N_cv,l);zeros(N_dv_update,l)],ones(N_cv +
N_dv_update,l},@maxJ_nlcon,options,loading_index,A,c,gamma,max(Y_maxY(:,1)),cviscale,sm_conc):
if exitflag <= 0
X = x max¥(i,:);

J = maxJ(x',loading_index,A,c,gamma,x_maxY(i,:),cv_scale,sm_conc);

end

x maxJ(i,:) = x;

J_maxJ(i,1l) = -J;

H_inv(N_cv*(i-1)+1:N_cv*i,1:N_cv) = hessian(1:N_cv,1:N_cv)"-1;

end

% Find maximum for all cases
[J_max,J_opt_dv_id] = max(J_maxJ);
x_opt = x_maxJ(J_opt_dv_id,:);

J_opt = [J_opt_prior; length(exp cond(:,1)) J max];

clear V_J mat N_J
% Estimation of prediction covariance for each discrete variable
for j = 1:N_dv_update
% Scale optimum for discrete variable
X _keep = [ ];
col keep = [ ];
x_opt = x_maxJd(j,:);
for i = l:length(theta)
[row,col] = find(col index == i);

if isempty(col) ==

row = find(col_ index_square == i);
X_prime(1l,i) = x_opt(row)"2;
col_keep = [col_keep; i];

else

if max([row col]) <= N_cv

col_keep = [col_keep; i];
elseif col == N _cv + jJ
col_keep = [col_keep; i];
end
if row == col
X_prime(l,i) = x_opt(row);
else
X prime(l,i) = X_opt (row) *x_opt (col):
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end
end

end

if J_maxJ(j,l) == max(J_maxJ)

% Overall prediction covariance
V_J mat(j,1) = X_prime* (X'*V_B"-1*X)"-1*X_prime';

N_J(j,1) = length(B);:

else

% Trust-region prediction covariance
for i = 1:N_cv
exp_cond_scale_j(1,i) = x_maxJ(j,i)*(cv_scale(i,2) - cv_scale(i,1))/2 +
mean([cv_scale(i,1l) cv_scale(i,2)]);

end

% Apply proper scaling

exp_cond_j = exp_cond_scale_j;
for i = 1:N_cv
if strcmp(deblank (index _cv(i)),'Res Time') ==
exp_cond_j(:,i) = exp(exp_cond_scale j(:,1i));
elseif strcmp(deblank(index cv(i)),'Temp') == 1
exp_cond_j(:,i) = exp cond_scale_j(:,i)."-1 - 273.15;
elseif strcmp(deblank (index cv(i)),'Base Conc') ==
exp_cond_j(:,i) = exp(exp_cond scale_j(:,1i));
elseif strcmp (deblank (index _cv(i)),'Reag 1 Conc') == 1
exp_cond_j(:,1) = exp(exp_cond_scale_j(:,1))7

elseif strcmp(deblank(index cv(i)),'Reag 2 Conc') ==
exp_cond_j(:,i) = exp(exp_cond _scale_j(:,1i)):
end

end

t Find experiments run with discrete variable or within cv tolerance
for i = l:length(X(:,1))
if abs (exp_cond_update(i,1:N_cv) - exp_cond_j) < cv(1l:N_cv,4)'
X _keep = [X_keep; il;
elseif exp_cond_update(i,N_cv + 1) == dv_update(j)
X_keep = [X_keep; 1i];
end
end
if length(X_keep) > length(col_keep)
V_J mat(j,1l) = X_prime(col_keep)* (X(X_keep,col_keep)'*V_B"-
1*X (X_keep,col_keep)) "-1*X_prime (col_keep)';
else
V_J_mat(j,1) = NaN;

end
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N J(j,1) = length(X keep):
end
end

V_J = V_J_mat (J_opt_dv_id,1);

% Optimum lower bound

J_max_1lb = J opt(end,2) - sqgrt(V_J)*tinv(1-0.05,length(B _update) - length(theta));
J_max_ub = J opt(end,2) + sqrt(V_J)*tinv(1-0.05,length(B_update) - length(theta)):
J_opt_lb = [J_opt_lb_prior; length(exp cond(:,1)) J max_lb];

dJ = [dJ_prior; length(exp_cond(:,1)) (J opt(end,2) - J opt_lb(end,2))];

dv_fathom_row = length(dv_fathom);

clear J _maxJ_rows

J_maxJ_rows = find(N_J > length(col_keep));
[J_maxJ_min_sort,sort_order] = sort(J maxJ(J_maxJ_rows));

sort_order row = 0;

% Scan through eligible discrete variables, see if any can be fathomed

while dv_fathom change == 0 && sort_order_ row ~= length(sort_order)

sort_order row = sort_order_row + 1;

i = J maxJ_rows(sort_order (sort_order_row));

% Unpaired, 2 sample t-test
dof = (V_J mat(i,1l) + V_J mat(J opt_dv_id,1))"2/(V_J_mat(i,1)"2/(N_J(i) -
length(col_keep)) + V_J mat(J_opt_dv_id,1)"2/(length(B) - length(theta)));
t_stat = (J maxJ(J_opt_dv_id,1) - J maxJ(i,1))/sqrt(V_J mat(J_opt_dv_id,1) +
V_J mat(i,1));
if t_stat > tinv(1-0.05,dof)
dv_fathom row = dv_fathom row + 1;
dv_fathom change = 1;
dv_fathom(dv_fathom_row,1) = dv_update(l,i);
dv fathom J = J maxJ(i,1l);

end

end

% Exit loop if max number of discrete variables has been fathomed

if isempty(elim_row) == 1
break

end

elim row = [ ];

exp_cond_scale_update2 = exp_cond_scale_update;

B_update2 = B_update;

% New dv vector is dv_update

dv_update_keep = [ 1;
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for dv_id = 1:N_dv_update
if ismember (dv_update (dv_id),dv_fathom) == 0
dv_update_keep = [dv_update_keep dv_id];
end
end
dv_update prior = dv_update;
dv_update = dv_update(dv_update_keep);
N_dv_update = length(dv_update);

% Remove fathomed rows from exp_cond

for i = l:length(exp_cond scale_update2(:,1))

if ismember (exp_cond scale update2(i,N_cv + 1),dv_fathom) == 1
dv_id = find(dv == exp_cond_scale_update2(i,N_cv + 1));
dv_update_id = find(dv_update_prior == exp_cond_scale_update2(i,N_cv + 1));

if isempty(dv_update_id) ==

x maxJ final(dv_id,:) x_maxJ (dv_update_id,1:N_cv);

]

J_maxJ_final (dv_id, :) J maxJ (dv_update_id, :);

x_maxY final(dv_id,:) = x_maxY(dv_update_id,1:N_cv);

¥ max¥ final(dv_id,:)

Y _maxY (dv_update_id,:);

end

* Propose new X matrix with variable eliminated
exp_cond_scale_update = [ ];
B_update = [ ]:
for j = l:length(exp cond_scale_update2(:,1))
if ismember (j,elim row) ~= 1 & j ~= i
exp_cond_scale_update = [exp_cond_scale_update; exp_cond_scale_update2(j,:)];
B_update = [B_update; B_update2(j,:)]:
end
end
[X_update, col_index_update,col_index_square_update] =

slug X matrix(cv_scale,N_cv,dv_update,N_dv_update,I cv,I_dv,exp_cond scale update,'on');

Wl = eye(length(B_update));

for k = l:length(B_update)
Wl(k,k) = exp(ln_yield(k))/sum(exp(ln_yield)):
tW1l(k,k) = exp(B update (k))/sum(exp(B_update));

end

if abs(det (X_update'*X update)) > 1 && size(X_update,l) - 1 > size(X_update,2)
% Remove row from X
elim row = [elim row;i];
end
end

end

exp_cond_scale_update2(elim_row,:) = [ ];
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B_updateZ(elim row,:) = [ ];

exp_cond_scale_update = exp cond scale update2;

B_update = B_update2;

X = slug X matrix(cv_scale,N_cv,dv_update,N_dv_update,Il_cv,I_dv,exp_cond_scale_update, 'on');

exp_cond_update (elim row,:) = [ 1;

end

% New optimization finds experimental conditions which best test the
% current optimum for all unfathomed discrete variables
% Find current minimum
Aeq = zeros (N_dv_update,N_cv + N_dv_update);
for i = 1:N_dv update
Aeq(i,N_cv + i) = 1;

end

options = optimset ('TolFun',le-10, 'TolX',le-10, 'TolCon',1le-10, 'Display', 'off', 'Algorithm', 'SQP");

for i = 1:N_dv_update
if isempty(find(dv_fathom == dv_update(l,i))) == 1
% Constrain discrete variables
Beg = zeros(N_dv_update,l);
Beg(i,1l) = 1;
% Find x which maximizes change in J
[%x,min_dJ] = fmincon(@mindJ,x maxJ(i,:)',[],[],Req,Beq, [~

l*ones(Nicv,ll;zeros(N_dv_update,lj],ones(N_cv +

N_dv_update,l),[],options,x maxJ(i,:)',x max¥(i,:)"',X,V_B,theta,V_yield,theta,col_index,col index
_square) ;
x_mindJ(i,:) = x';
dJ_mindJ(i,1l) = min dJ;
else
x_mindJ(i,:) = zeros(l,N_cv + N_dv_update);
dJ_mindJ(i,1) = 0;
end
end

% Check for linearly improving exp(J_opt)

if length(J_opt(:,1)) >= 4

J_opt_predl = (exp(J_opt(end-2,2)) - exp(J_opt(end-1,2)))/(exp(J_opt(end-2,1)) -
exp (J_opt(end-1,1))) *(exp(J_opt(end,l)) - exp(J_opt(end-2,1))) + exp(J_opt(end-2,2));

J_opt_errorl = abs((J_opt_predl - exp(J_opt(end,2)))/exp(J_opt(end,2)));

J_opt_pred2 = (exp(J_opt(end-3,2)) - exp(J_opt(end-2,2)))/(exp(J_opt(end-3,1)) -
exp (J_opt{end-2,1))) * (exp(J_opt(end-1,1)) - exp(J_opt(end-3,1))) + exp(J_opt(end-3,2));

J_opt_error2 = abs((J_opt_pred2 - exp(J_opt(end-1,2)))/exp(J_opt{end-1,2)));
else

J_opt_predl = [ ];

J_opt_errorl = [ ];

J_opt_pred2 = [ ];
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J_opt_error2 = [ ];

end

% Check for linearly improving exp(J_opt lb)
if length(J _opt_lb(:,1)) >= 4

J_opt_lb_predl = (exp(J_opt_lb(end-2,2)) - exp(J_opt_lb(end-1,2)))/(exp(J_opt_lb(end-2,1)) -
exp(J_opt_lb(end-1,1)))* (exp(J_opt_lb(end,1)) - exp(J_opt_lb(end-2,1))) + exp(J_opt_lb(end-2,2));

J_opt_lb_errorl = abs((J_opt_lb_predl - exp(J_opt_lb(end,2)))/exp(J_opt_lb(end,2)));

J_opt_1lb _pred2 = (exp(J_opt_lb(end-3,2)) - exp(J_opt_lb(end-2,2)))/(exp(J_opt_lb(end-3,1)) -
exp(J_opt_lb(end-2,1))) * (exp(J_opt_lb(end-1,1)) - exp(J_opt_lb(end-3,1))) + exp(J_opt_lb(end-
3,2));

J_opt_lb_error2 = abs((J_opt_lb_pred2 - exp(J_opt_lb(end-1,2)))/exp(J_opt_lb(end-1,2)));
else

J_opt_lb_predl = [ 1;

J_opt_lb_errorl = [ ];

J_opt_lb_pred2 = [ ];

J _opt_lb_error2 = [ ];

end

% If uncertainty is improving linearly, terminate

if (J_opt_lb_errorl < 0.02 & J opt_lb_error2 < 0.02 & J_opt_errorl < 0.02 & J_opt_error2 < 0.02)
optim_phase = 4;

for j = l:length(dv_update)
for i = 1:N_cv + 1
if i <= N_cv
exp_cond_scale2 (2*j-1,i) = x_maxJ(j,i)*(cv_scale(i,2) - cv_scale(i,1))/2 +
mean([cv_scale(i,1l) cv_scale(i,2)]);
exp_cond_scale2(2*j,i) = x max¥(j,i)*{cv_scale(i,2) - cv_scale(i,1))/2 +
mean([cv_scale(i,1l) cv_scale(i,2)]);
else
exp_cond_scale2 (2*j-1:2*j,1i) = dv_update(l,3);
end
end

end
else

% Generate matrix of g-optimal conditions
for i = l:length(x_mindJ(1,:))
if i <= N_cv
exp_cond_scale2(:,i} = x_mindJ(:,1i)*(cv_scale(i,2) - cv_scale(i,1))/2 +
mean ([cv_scale(i,1l) cv_scale(i,2)]);
else
for row = l:length(x mindJ(:,1))
if abs (x_mindJ(row,i) - 1) < le-6

exp_cond_scale2 (row,N_cv + 1) = dv_update(l,i - N_cv);
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end
end
end
end
% Don't update optim_phase

optim phase = 3;
end

for row = length(exp_cond _scale2(:,1)):-1:1
if exp_cond_scaleZ(row,N_cv + 1) <1
exp_cond_scale2 (row,:) = [ 1;
end

end

if isempty(exp cond2) ~= 1
exp_cond_scale? = [exp_cond_scale2; exp_cond2(:,1:N _cv + 1)];

end

% Block randomize experiments
if optim _phase ~= 4
new_stream = RandStream.create('mtl9937ar', 'seed',sum(100*clock));
RandStream.setGlobalStream(new stream);
exp_cond_scale2(:,end + 1) = rand(length(exp_cond _scale2(:,1)),1);
exp_cond_scale2 = sortrows (exp_cond_scale2, length(exp_cond_scale2(l,:)));
exp_cond_scale2(:,end) = [ ];
% Group by temperature
col T = find(strcmp(deblank(index_cv), 'Temp') == 1);
for i = l:length(exp_cond_scale2(:,1))-1
swap_row = find(exp_cond_scale2(i+l:end,col_T) == exp_cond scale2(i,col _T),1,'first')}
if isempty (swap_row) == 0
exp_cond_scale_swap = exp_cond_scale2;
exp_cond_scale2 (i+l,:) = exp_cond_scale_swap(it+swap_row, :);
exp_cond_scale2 (i+swap_row,:) = exp_cond_scale_swap (i+l,:);
end
end

end

% Apply proper scaling

exp_condl = exp _cond_scaleZ;

for i = 1:N_cv
if strcmp(deblank(index cv(i)), 'Res Time') == 1
exp condl(:,i) = exp(exp_cond _scale2(:,1i));
elseif strcmp(deblank(index cv(i)), 'Temp') == 1
exp_condl(:,i) = exp_cond_scale2(:,i)."=-1 - 273.15;
elseif strcmp(deblank(index cv(i)),'Base Conc') == 1
exp_condl(:,1i) = exp(exp_cond scale2(:,1i));
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elseif strcmp(deblank(index_cv(i)),'Reag 1 Conc') == 1

exp_condl(:,i) = exp(exp_cond _scale2(:,i));
elseif strcmp(deblank(index_cv(i)), 'Reag 2 Conc') == 1
exp_condl(:,i) = exp(exp_cond_scale2(:,1i));

end
end
% Include non-optimized continuous variables
for i = l:length(non_opt)

exp_condl(:,N_cv + length(dv(:,1)) + i) = cv(non_opt(i),3):

end

% Include correlated discrete variables
for i = l:length(cor(:,1))
dv_row = cor(i,end);
for row = l:length(exp_condl(:,1))
j = find(dv(dv_row,:) == exp_condl (row,N_cv + dv_row));
exp_condl (row,N_cv + length(dv(:,1)) + length(non_opt) + i) = cor(i,j);
end

end

% Termination criterion
if optim_phase == 4

final opt = slug build prior opt(N_cv,exp_condl};
else

final opt = [ ];

end

for dv_update_id = l:length(dv_update)

dv_id = find(dv_update (dv_update_id) == dv};
x maxJ_final(dv_id,:) = x_maxJ(dv_update_id,1:N_cv);
J maxJ_final(dv_id,:) = J _maxJ(dv_update_id,:);

x_maxY_final (dv_id,:) = x_maxY¥(dv_update_id,1:N_cv);
Y max¥ final(dv_id,:) = Y _maxY¥(dv_update_id,:);

end

x_maxJ = x _maxJ_final;
J_maxJ = J_maxJ_final;
X_max¥ = x_max¥ final;

Y max¥ = Y _max¥ final;

end

function [Cineq,Ceq] = maxJ_nlcon(x,loadinq_index,A,c,gamma,Yi,cv_scale,sm_conc}

9

% Constraints for TON maximization

% Response surface prediction

Y = —maxY(x,loading_index,A,c,cv_scale,sm_conc);
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Inequality

Cineq = -Y + Yi + log(gamma);

5 Equality

Ceq = [ );

end

function [J,g] = maxJ(x,loadingAindex,A,c,gamma,Yi,cv_scale,sm_conc)

% Objective function for TON maximization

% Objective Function

J = —x"*A*x - ¢c'*x;

% Gradient

if nargout > 1

g = (=2*x"*A - eryirs
end
end
function [(Y,g) = max¥(x,loading_index,A,c,cv_scale,sm_conc)

% Objective function for yield maximization

% log catalyst loading
1n_loading = (x({loading_index) + 1)*(cv_scale(loading_index,2) - cv_scale(loading_index,1))/2 +

cv_scale(leoading_index,1);

% Objective Function
Y = -x'"*A*x - ¢'*x - 1ln_loading + log(sm_conc);
% Gradient
if nargout > 1

g = (=2*x'"*A = ¢')"';

g (loading_index) = g(loading_index) - (cv_scale(loading_index,2) -
cv_scale(loading_index,1))/2;

end

end

function [min_dJ] =
mindJ(x,x_opt,yield_opt,X,V_B,theta,V_yield, theta yield,col_index,col_index square)

G-optimal experimental design criterion

% Augment X matrix and rewrite x_opt and yield opt
%1 = zeros(l,length(theta));
x1 opt = zeros(1l,length(theta));
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yieldl opt = zeros(1l,length(theta_yield)):
for i = 1l:length(theta)

[row,ceol] = find(col_index == i);
if isempty(row) == 0
if row == col
x1(1,i) = x(row,1);
x1_opt(l,i) = x_opt(row,1l);
yieldl opt(l,i) = yield opt(row,1);
else
x1(1,i) = x(row,1l)*x{col,l);
x1 opt(l,i) = x_opt(row,1l)*x _opt(col,l);

yieldl opt(1l,i) = yield opt(row,1)*yield opt(col,1);
end
else
col = find(col_index_square == i);
x1(1,i) = x(col,1)"2;

x1l _opt(l,i) = x_opt(col,1l)"2;
yieldl opt(1l,i) = yield opt(col,1)"2;
end
end
X1l = [X; x1);

% G-optimal objective

min_dJ = x1_opt* (X1'*V_B"-1*X1)"-1*x1 opt' + yieldl opt*(X1'*V_yield"-1*X1)"-1*yieldl opt';

end

C.1.4. Construction of X Matrix

function [X,col_index,col_index_square] =

slug_X matrix(cv_scale,N_cv,dv,N _dv,I _cv,I_dv,exp_cond_scale,squared_terms)

$SLUG_X MATRIX builds the matrix X from a matrix of experimental conditions.
FEEREEIEE AR RRLRESRTRRLLTELLALBRRLLIRLLLIRLIDRADRILLIBRRLRIRRABBRBERY

%

% Submitted by Brandon Reizman
% May 15, 2015

% Inputs:

% cv_scale is the matrix of scaled continuous variables

% N _cv is the number of continuous variables to optimize

% dv is the matrix of discrete variables

% N _dv is the number of discrete variables to optimize

% I_cv is the matrix of interaction terms between continuous variables
% I_dv is the matrix of interaction terms between discrete and continuous variables
% exp_cond_scale is the matrix of scaled experimental conditions

% squared_terms is 'on' if quadratic terms are included in the model

% Outputs:

% X is the matrix of scaled experimental conditions

o

col_index is the matrix identifying the columns of X

232



E col _index is the matrix identifying the squared term columns of X

o
o
o
o
o
e
o
oe
A
o
o
o
P
pos
pevs
o
o
oe
oe
e
o
o
o
op
i
o
o
o
o
o
o

R R A R A R TR R AL T

% Build X matrix
X_length = 0;
dv_id = length(dv(:,1));
for i = 1:N_cv + N_dv
if 1 <= N_cv
for row = 1l:length(exp_cond scale(:,1))
% (Value - Avg. Value)/ (Max Value - Min Value)
X(row,1) = 2*(exp_cond_scale(row,i) - mean([cv_scale(i,1)
cv_scale(i,2)]))/(cv_scale(i,2) - cv_scale(i,1l));
end
X_length = X length + 1;
col_index(i,i) = X_length;
else
X_length = X length + 1;
for row = l:length(exp cond scale(:,1))
if exp_cond_scale(row,N_cv + dv_id) == dv(dv_id,i - N_cv);

1;

¥ (row,¥_length)
else

0;

X (row,X_length)
end
end
col_index(i,i) = X_length;
end

end

% Continuous variable interaction terms
for i = 1:N_cv
for j =i + 1:N_cv
if T ew{i,j) == 1
X_length = X_length + 1;
col_index(i,j) = X_length;
X(:,%_length) = X(:,1i).*X(:,3);
end
end

end

% Discrete variable interaction terms
for i = 1l:length(dv(:,1))
for j = 1:N_cv
if I dvi(i,j) == 1
for k = N_cv + 1:N_cv + N_dv
X _length = X_length + 1;
col_index(j,k) = X _length;
X(:,X_length) = X(:,3).*X(:,k);
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end
end
end

end

% Squared variable terms
if strcmp(squared_terms,'on') == 1
for i = 1:N_cv
if T ev(i,i) == 1
X_length = X_length + 1;
col index square(i,l) = X_length;
X(:,¥%X_length) = X(:,1)."2; ‘ \
else .
col_index_square(i,1) = 0;
end
end

end

% This is to prevent linear dependence. Any variable with interaction in
% discrete variable will have to be removed from X
X elim = [];
for j = 1:N_cv
for i = l:length(dv(:,1))
if I_dv(i,]j) ==1
X _elim = [X_elim j]:
col_store = col_index(j,3);
col_index(j,Jj) = 0;
for k = 1:N_cv + N_dv
for m = k:N_cv + N_dv
if col_index(k,m) > col_store
col _index(k,m) = col_index(k,m) - 1;
end
end
end
if strcmp(squared_terms, 'on') == 1
for k = 1:N ¢w
if col_index_square (k,1) > j
col_index_square(k,1) = col_index_ square(k,1) - 1;
end
end
end
end
end
end

X(:,X_elim) = [];

% This prevents linear dependence in squared terms

if strcmp(squared terms,'on') == 1
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for j = 1:N_cv
if col_index_square(j) > 0
if abs(X(:,col_index_square(j)) - cnes(length(X(:,1)),1)) <= 0.1
X(:,col_index_ square(j)) = [1;
for k = j+1:N_cv
if col_index_ square(k,l) > col_index square(j,1)
col_index_square(k,1) = col_index_square(k,1) - 1;
end
end
col_index_square(j,l) = 0;
end
end
end

end

% For calculating intercept
% Don't calculate intercept if there are discrete variables. The column for
% each discrete variable is effectively the intercept for that variable
if N_dv ==
X = [ones(size(X(:,1))) X]:
for i = 1:N_cv + N_dv
for j = i:N_cv + N_dv
if col_index(i,j) ~= 0
col_index(i,j) = col_index(i,j) + 1;
end
end
if strcmp(squared terms,'on') ~= 1
if col_index_square(i) ~= 0
col_index_square{i) = col_index square (i) + 1;
end
end
end

end
if strcmp(squared_terms, 'on') ~=1
col index_square = [ ];

end

end
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C.2. SIMULATION DATA

Table C.1. Predicted optimal conditions and TON for kinetics of Case Study 1 with y = 0.90.

Catalyst 1o (Min) 7 (°C) Ceo (mM) TON
Test 1 )
1 10.0 110.0 0.835 180.7
2 10.0 110.0 0.949 157.9
3 10.0 110.0 0.926 161.7
4 10.0 110.0 1.156 130.0
5 10.0 110.0 1.321 113.9
6 10.0 110.0 2.827 533
7 10.0 110.0 4.175 30.7
8 10.0 110.0 4.175 16.0
Test 2
1 10.0 110.0 0.835 180.7
2 10.0 110.0 0.848 175.1
3 10.0 110.0 0.974 154.2
4 10.0 110.0 1.219 123.8
5 10.0 110.0 1.560 96.8
6 10.0 110.0 2.788 543
7 10.0 110.0 4.175 22.7
8 10.0 110.0 4.175 15.9
Test 3
1 10.0 110.0 0.835 180.9
2 10.0 110.0 1.035 145.7
3 10.0 110.0 0.987 152.3
4 10.0 110.0 1.543 98.8
5 10.0 110.0 1.619 94.3
6 10.0 110.0 3.623 42.2
7 9.8 110.0 4.175 23.0
8 8.8 110.0 4.175 8.8
Test 4
1 10.0 110.0 0.835 181.7
2 10.0 1100 0.851 175.5
3 10.0 110.0 0.876 170.6
4 10.0 110.0 1.059 141.4
5 10.0 110.0 1.164 128.9
6 10.0 110.0 4.175 30.7
7 10.0 110.0 4175 33.1
8 10.0 110.0 4.175 9.2
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Table C.1. (cont.) Predicted optimal conditions and TON for Kinetics of Case Study 1 with y = 0.90.

Catalyst les (min) T (°C) Cear (MM) TON
Test 5

1 10.0 110.0 0.835 180.7

2 10.0 110.0 0919 162.8

3 10.0 110.0 0.873 170.6

4 10.0 110.0 1.373 110.0

5 10.0 110.0 1.222 123.1

6 10.0 110.0 3.995 379

7 10.0 110.0 4.175 31.6

8 10.0 110.0 4.175 16.1
Test 6

1 10.0 110.0 0.835 180.7

2 10.0 110.0 1.082 138.9

3 10.0 110.0 0.935 160.8

4 10.0 110.0 1.455 103.8

5 10.0 110.0 1.438 104.9

6 10.0 110.0 4,175 353

7 10.0 110.0 4.175 22.3

8 10.0 110.0 4.175 12.0
Test 7

1 10.0 110.0 0.835 180.7

2 10.0 110.0 0.893 167.0

3 10.0 110.0 0.871 171.1

4 10.0 110.0 1.214 123.9

5 10.0 110.0 1.139 131.7

6 10.0 110.0 4.175 343

7 10.0 110.0 4.175 28.2

8 10.0 110.0 4.175 13.1
Test 8

1 10.0 110.0 0.835 180.7

2 10.0 110.0 0.861 173.1

3 10.0 110.0 1.010 149.0

4 10.0 110.0 1.202 125.8

5 10.0 110.0 1.703 89.0

6 10.0 110.0 2.949 46.2

7 10.0 110.0 2.834 31.7

8 10.0 110.0 4.175 18.7
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Table C.1. (cont.) Predicted optimal conditions and TON for Kinetics of Case Study 1 with y = 0.90.

Catalyst tres (Min) 7(°C) Cear (MM) TON
Test 9

1 10.0 110.0 0.835 181.2

2 10.0 110.0 0.920 162.2

3 10.0 110.0 0.907 164.8

4 10.0 110.0 1.153 129.9

5 10.0 110.0 1.208 124.2

6 10.0 110.0 4.175 34.4

7 10.0 110.0 4.175 22.8

8 9.5 110.0 4.175 10.2
Test 10

1 10.0 110.0 0.835 180.6

2 10.0 110.0 0.987 152.2

3 10.0 110.0 1.023 147.1

4 10.0 110.0 1.276 118.6

5 10.0 110.0 1.687 89.6

6 10.0 110.0 3.031 50.0

7 10.0 110.0 4.175 30.9

8 10.0 110.0 4.175 15.8

Table C.2. Predicted optimal conditions and TON for kinetics of Case Study 1 with y = 0.95.

Catalyst 1res (Min) 17 (°C) Cewr (MM) TON
Test |
I 10.0 110.0 1.312 119.3
2 10.0 110.0 1.696 92.6
3 10.0 110.0 1.780 88.5
4 10.0 110.0 2.182 72.3
5 10.0 110.0 ' 2.097 75.1
6 10.0 110.0 4.175 32.9
7 10.0 110.0 4.175 23.2
8 10.0 110.0 4.175 10.4
Test 2
1 10.0 110.0 1.357 115.5
2 10.0 110.0 1.809 87.1
3 10.0 110.0 1.694 92.8
4 10.0 110.0 3.287 479
5 10.0 110.0 2.955 53.3
6 10.0 110.0 4.175 34,7
7 10.0 110.0 4.175 28.3
8 10.0 110.0 4.175 20.2
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Table C.2. (cont.) Predicted optimal conditions and TON for kinetics of Case Study 1 with y =0.95.

Catalyst Lres (Min) 7 (°C) Cwr (MM) TON
Test 3
1 10.0 110.0 1.308 119.5
2 10.0 110.0 2.155 73.6
3 10.0 110.0 1.980 79.9
4 10.0 110.0 2.568 61.8
5 10.0 110.0 3.104 513
6 10.0 110.0 4.175 36.8
7 10.0 110.0 4.175 27.7
8 10.0 110.0 3.931 20.0
Test 4
1 10.0 110.0 1.305 119.8
2 10.0 110.0 1.971 80.2
3 10.0 110.0 2.188 72.5
4 10.0 110.0 4.175 37.7
5 10.0 110.0 2.667 59.6
6 10.0 110.0 4.175 34.7
7 10.0 110.0 3.890 22.6
8 10.0 110.0 3.434 18.8
Test 5
1 10.0 110.0 1.310 1194
2 10.0 110.0 1.561 100.5
3 10.0 110.0 1.686 93.1
4 10.0 110.0 2.217 71.0
5 10.0 110.0 2.157 72.9
6 10.0 110.0 4.175 34.7
7 10.0 110.0 4.175 31.8
8 10.0 110.0 4.175 10.7
Test 6
1 10.0 110.0 1.631 97.1
2 10.0 110.0 2.687 59.3
3 10.0 110.0 2.185 72.5
4 10.0 110.0 2.550 62.2
5 10.0 110.0 3.922 40.8
6 10.0 110.0 4.175 30.7
7 10.0 110.0 4.175 28.0
8 10.0 110.0 4.175 9.2
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Table C.2. (cont.) Predicted optimal conditions and TON for kinetics of Case Study 1 with y =0.95.

Catalyst lres (min) 7 (°C) Cewr (MM) TON
Test 7
1 10.0 110.0 1.311 119.3
2 10.0 110.0 1.774 88.8
3 10.0 110.0 1.852 85.2
4 10.0 110.0 2.174 72.6
5 10.0 110.0 2.324 68.1
6 10.0 110.0 4.175 33.0
7 10.0 110.0 4.175 33.0
8 10.0 110.0 4.175 15.6
Test 8
1 10.0 110.0 1.308 119.5
2 10.0 110.0 1.546 101.4
3 10.0 110.0 1.606 97.6
4 10.0 110.0 2.117 74.4
5 10.0 110.0 2.031 77.4
6 10.0 110.0 4.175 33.8
7 10.0 110.0 4.175 30.6
8 10.0 110.0 4.175 21.2
Test 9
1 10.0 110.0 1.382 113.6
2 10.0 110.0 1.608 97.8
3 10.0 110.0 1.653 95.2
4 10.0 110.0 1.886 83.3
5 10.0 110.0 2.283 68.9
6 10.0 110.0 4.175 34.3
7 10.0 110.0 4.175 31.8
8 10.0 110.0 4.175 21.2
Test 10
1 10.0 110.0 1.311 119.2
2 10.0 110.0 1.848 85.2
3 10.0 110.0 1.692 92.9
4 10.0 110.0 2.989 52.8
5 10.0 110.0 3.320 47.5
6 10.0 110.0 4.175 30.0
7 9.7 110.0 4.175 22.9
8 9.9 110.0 4.175 15.6
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Table C.3. Predicted optimal conditions and TON for Kinetics of Case Study 1 with y = 0.98.

Catalyst Lys (Min) 7(°C) Cear (MM) TON
Test 1
1 10.0 110.0 2.285 70.6
2 10.0 110.0 3.283 494
3 10.0 110.0 3.247 49.9
4 10.0 110.0 4.175 383
5 10.0 110.0 4.175 38.7
6 10.0 110.0 4.175 36.6
7 10.0 110.0 4.175 31.6
8 10.0 110.0 4175 21.0
Test 2
1 10.0 110.0 2.255 71.7
2 10.0 110.0 2.733 59.2
3 10.0 110.0 2.630 61.4
4 10.0 110.0 4.175 38.5
5 10.0 110.0 3.622 44.7
6 10.0 110.0 4.175 36.0
7 10.0 110.0 4.175 29.4
8 10.0 110.0 4.175 21.2
Test 3
1 10.0 110.0 2.286 70.6
2 10.0 110.0 2.782 58.1
3 10.0 110.0 2.741 58.9
4 10.0 110.0 4.175 38.6
5 10.0 110.0 4.175 38.6
6 10.0 110.0 4.175 349
7 10.0 110.0 4.017 33.5
8 10.0 110.0 3.861 18.5
Test 4
1 10.0 110.0 2.285 70.6
2 10.0 110.0 2.592 623
3 10.0 110.0 2.750 58.8
4 10.0 110.0 4.175 38.5
5 10.0 110.0 4.175 38.6
6 10.0 110.0 4.175 36.5
7 10.0 110.0 3.986 33.6
8 10.0 110.0 3.740 22.8
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Table C.3. (cont.) Predicted optimal conditions and TON for kinetics of Case Study 1 with y = 0.98.

Catalyst Lres (Min) T (°C) Cewr (MM) TON
Test 5
1 10.0 110.0 2.282 70.7
2 10.0 110.0 2.715 59.5
3 10.0 110.0 3.540 45.8
4 10.0 110.0 4.175 38.6
5 10.0 110.0 4.175 38.6
6 10.0 110.0 4.175 29.9
7 10.0 110.0 4.175 33.0
8 9.8 110.0 4.175 15.6
Test 6
1 10.0 110.0 2.224 72.5
2 10.0 110.0 2.599 62.1
3 10.0 110.0 3.883 41.8
4 10.0 110.0 4.175 38.8
5 10.0 110.0 4.175 38.7
6 10.0 110.0 4.175 36.8
7 10.0 110.0 4.175 33.1
8 10.0 110.0 4.175 93
Test 7
1 10.0 110.0 2.285 70.6
2 10.0 110.0 3.095 52.3
3 10.0 110.0 2.954 54.8
4 10.0 110.0 4.175 38.6
5 10.0 110.0 4.175 38.8
6 10.0 110.0 4.175 36.1
7 10.0 110.0 4.175 29.5
8 10.0 110.0 4.175 15.7
Test §
1 10.0 110.0 2.342 68.9
2 10.0 110.0 3.572 45.5
3 10.0 110.0 3.535 45.9
4 10.0 110.0 4.175 38.5
5 10.0 110.0 4.175 38.5
6 10.0 110.0 4.175 34.2
7 10.0 110.0 4.175 323
8 10.0 110.0 4.175 10.7
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Table C.3. (cont.) Predicted optimal conditions and TON for kinetics of Case Study 1 with y = 0.98.

Catalyst  fus (min) T (°C) Cea (MM) TON

Test 9
1 10.0 110.0 1.871 85.7
2 10.0 110.0 2.906 55.6
3 10.0 110.0 2.828 57.1
4 10.0 110.0 4.175 38.8
5 10.0 110.0 4.175 38.2
6 10.0 110.0 4.175 36.7
7 10.0 110.0 4.175 27.6
8 10.0 110.0 3.821 20.3

Test 10
1 10.0 110.0 2.507 64.8
2 10.0 110.0 3.419 47.4
3 10.0 110.0 3.380 47.9
4 10.0 110.0 4.175 38.5
5 10.0 110.0 4.175 38.8
6 10.0 110.0 4.175 33.6
7 10.0 110.0 4.175 33.1
8 10.0 110.0 4.175 16.2

Table C.4. Predicted optimal conditions and TON for kinetics of Case Study 2 with y = 0.90.

Catalyst tyes (Min) 7(°C) Cear (MM) TON

Test 1
1 10.0 110.0 0.835 180.8
2 10.0 110.0 0.835 180.7
3 10.0 110.0 0.864 172.1
4 10.0 110.0 1.184 126.4
5 10.0 110.0 1.088 137.1
6 10.0 110.0 4.175 34.6
7 10.0 110.0 4.175 31.6
8 10.0 110.0 4.175 21.2

Test 2
1 10.0 110.0 0.835 180.8
2 10.0 110.0 0.835 180.7
3 10.0 110.0 0.885 168.5
4 10.0 110.0 1.172 128.0
5 10.0 110.0 1.186 126.3
6 10.0 110.0 2.684 56.0
7 10.0 110.0 4.175 28.6
8 10.0 110.0 3.172 20.2
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Table C.4. (cont.) Predicted optimal conditions and TON for Kinetics of Case Study 2 with y = 0.90.

Catalyst t,os (Min) 7 (°C) Cear (MM) TON
Test 3
1 10.0 110.0 0.835 180.9
2 10.0 110.0 0.835 180.8
3 10.0 110.0 0.838 177.0
4 10.0 110.0 0.926 160.5
5 10.0 110.0 0.953 156.2
6 94 110.0 4.175 29.5
7 8.0 110.0 4.175 22.1
8 7.7 110.0 4.175 15.8
Test 4
1 10.0 110.0 0.835 181.2
2 10.0 110.0 0.835 180.9
3 10.0 110.0 0.904 165.4
4 10.0 110.0 1.506 100.0
5 10.0 110.0 1.400 107.6
6 10.0 110.0 4.175 33.6
7 10.0 110.0 4.175 32.4
8 10.0 110.0 4.175 16.8
Test 5
| 10.0 110.0 0.835 180.8
2 10.0 110.0 0.835 180.7
3 10.0 110.0 0.903 165.3
4 10.0 110.0 1.230 121.8
5 10.0 110.0 1.255 119.7
6 10.0 110.0 4.175 353
7 10.0 110.0 4.175 28.7
8 10.0 110.0 4.175 21.2
Test 6
1 10.0 110.0 0.835 180.7
2 10.0 110.0 0.835 180.7
3 10.0 110.0 0.846 175.6
4 10.0 110.0 1.441 103.8
5 10.0 110.0 1.000 148.9
6 10.0 110.0 4.175 29.9
7 10.0 110.0 3.450 36.9
8 10.0 110.0 2.886 22.6
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Table C.4. (cont.) Predicted optimal conditions and TON for kinetics of Case Study 2 with y = 0.90.

Catalyst Lyes (Min) 7 (°C) Coar (mM) TON
Test 7
1 10.0 110.0 0.835 181.0
2 10.0 110.0 0.835 180.9
3 10.0 110.0 0.874 170.6
4 10.0 110.0 1.227 122.1
5 10.0 110.0 1.275 117.9
6 10.0 110.0 2.653 56.7
7 10.0 110.0 4.175 33.1
8 10.0 110.0 4.175 8.9
Test 8
1 10.0 110.0 0.835 180.7
2 10.0 110.0 0.835 180.7
3 10.0 110.0 0.910 164.5
4 10.0 110.0 1.363 111.0
5 10.0 110.0 1.545 98.3
6 10.0 110.0 4.175 349
7 10.0 110.0 4.175 33.1
8 10.0 110.0 4.175 19.6
Test 9
1 10.0 110.0 0.835 180.9
2 10.0 110.0 0.835 180.7
3 10.0 110.0 0.890 167.8
4 10.0 110.0 1.108 135.3
5 10.0 110.0 1.343 112.2
6 10.0 110.0 3.692 38.5
7 10.0 110.0 3.936 25.7
3 10.0 110.0 4.175 18.3
Test 10
1 10.0 110.0 0.835 180.6
2 10.0 110.0 0.835 180.8
3 10.0 110.0 0.835 177.6
4 10.0 110.0 1.242 120.9
5 10.0 110.0 1.130 132.7
6 10.0 110.0 4.175 359
7 10.0 110.0 4.175 309
8 10.0 110.0 4.175 21.2
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Table C.5. Predicted optimal conditions and TON for Kinetics of Case Study 2 with y =0.95.

Catalyst tres (Min) T (°C) Cear (MM) TON
Test 1
1 10.0 110.0 1.577 100.2
2 10.0 110.0 1.409 111.9
3 10.0 110.0 2.010 78.9
4 10.0 110.0 2.606 60.7
5 10.0 110.0 2917 54.3
6 10.0 110.0 4.175 355
7 10.0 110.0 4.175 23.6
8 10.0 110.0 4.175 10.5
Test 2
1 10.0 110.0 1.338 117.0
2 10.0 110.0 1.306 119.9
3 10.0 110.0 1.748 89.5
4 10.0 110.0 2.334 67.2
5 10.0 110.0 4.175 36.6
6 10.0 110.0 4.175 36.7
7 10.0 110.0 4.175 274
8 10.0 110.0 4.175 8.8
Test 3
1 10.0 110.0 1.300 120.2
2 10.0 110.0 1.313 119.0
3 10.0 110.0 1.588 98.6
4 10.0 110.0 2.691 58.4
5 10.0 110.0 2.079 75.4
6 10.0 110.0 4.175 36.8
7 9.1 110.0 4.175 22.2
8 7.9 110.0 4.175 9.9
Test 4
1 10.0 110.0 1.343 116.7
2 10.0 110.0 1.360 115.2
3 10.0 110.0 1.885 83.2
4 10.0 110.0 1.936 81.1
5 10.0 110.0 3.024 52.0
6 10.0 110.0 4.175 34.2
7 10.0 110.0 4.175 30.6
8 10.0 110.0 4.175 15.5
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Table C.5. (cont.) Predicted optimal conditions and TON for Kinetics of Case Study 2 with y = 0.95,

Catalyst tyes (Min) T (°C) Ciw (mM) TON
Test 5
1 10.0 110.0 1.325 118.1
2 10.0 110.0 1.306 119.8
3 10.0 110.0 1.755 894
4 10.0 110.0 2.663 58.9
5 10.0 110.0 2.826 55.7
6 10.0 110.0 4175 36.8
7 9.4 110.0 4.175 225
8 9.7 110.0 4.175 21.2
Test 6
1 10.0 110.0 1.286 121.6
2 10.0 110.0 1.307 119.7
3 10.0 110.0 1.696 92.5
4 10.0 110.0 3.187 49.5
5 10.0 110.0 2.265 69.5
6 10.0 110.0 4.175 33.6
7 10.0 110.0 4.175 33.1
8 10.0 110.0 4175 21.2
Test 7
1 10.0 110.0 1.359 115.3
2 10.0 110.0 1.388 113.0
3 10.0 110.0 1.622 96.8
4 10.0 110.0 2.378 66.2
5 10.0 110.0 2.280 69.0
6 10.0 110.0 4.175 342
7 10.0 110.0 4.175 28.5
8 10.0 110.0 4.175 21.2
Test 8
1 10.0 110.0 1.305 119.9
2 10.0 110.0 1.322 118.3
3 10.0 110.0 1.576 99.5
4 10.0 110.0 1.796 87.4
5 10.0 110.0 1.872 83.9
6 10.0 110.0 4.175 34.6
7 10.0 110.0 4.175 24.8
8 9.7 110.0 4.175 10.1
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Table C.5. (cont.) Predicted optimal conditions and TON for kinetics of Case Study 2 with y = 0.95.

Catalyst Lres (Min) T (°C) Cewr (MM) TON
Test 9

1 10.0 110.0 1.334 117.4

2 10.0 110.0 1.344 116.3

3 10.0 110.0 1.854 84.8

4 10.0 110.0 3.278 48.7

5 10.0 110.0 2.174 72.6

6 10.0 110.0 4.175 36.2

7 10.0 110.0 4.175 31.3

8 10.0 110.0 4.175 20.6
Test 10

1 10.0 110.0 1.326 118.0

2 10.0 110.0 1.320 118.6

3 10.0 110.0 1.681 93.5

4 10.0 110.0 2.171 72.5

S 10.0 110.0 2.776 56.9

6 10.0 110.0 4.175 355

7 9.3 110.0 4.175 22.2

8 9.5 110.0 4.175 16.0

Table C.6. Predicted optimal conditions and TON for Kkinetics of Case Study 3 with competing reaction B >

St

Catalyst tres (MiN) 7 (°C) Cear (MM) TON

Test 1
1 10.0 81.7 2.807 32.8
2 10.0 81.7 3.542 26.2
3 10.0 823 3.970 23.4
4 10.0 82.1 4.175 20.7
5 10.0 833 4.175 20.6
6 10.0 82.6 4.175 13.8
7 10.0 83.8 4.175 9.4
8 10.0 90.3 4.175 2.9

Test 2
1 10.0 80.7 2.595 34.9
2 10.0 81.8 4.175 20.2
3 10.0 80.8 3.865 23.5
4 10.0 81.1 4.175 19.9
5 10.0 84.2 4.175 18.4
6 10.0 86.7 4.175 12.2
7 10.0 86.3 4.175 7.6
8 10.0 93.5 4.175 2.8
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Table C.6. (cont.) Predicted optimal conditions and TON for kinetics of Case Study 3 with competing reaction

B S
Catalyst Lyes (Min) 7(°C) Ceor (mMM) TON
Test 3
l 10.0 79.8 2.592 35.2
2 10.0 80.9 3.903 23.5
3 10.0 81.1 3.291 27.8
4 10.0 81.4 4.175 20.2
5 10.0 82.0 4175 19.6
6 10.0 85.0 4.175 13.1
7 10.0 85.2 4.175 7.7
8 10.0 90.0 4.175 3.1
Test 4
1 10.0 81.0 2.741 33.6
2 10.0 80.7 3.780 24.5
3 10.0 79.6 3.308 27.9
4 10.0 81.6 4.175 20.1
5 10.0 82.6 4.175 21.3
6 10.0 85.5 4.175 14.5
7 10.0 87.4 4.175 9.3
8 10.0 90.2 4.175 3.0
Test 5
1 10.0 81.9 2.903 32.3
2 10.0 81.5 3.494 26.5
3 10.0 83.6 3.497 26.5
4 10.0 80.4 4.175 21.5
5 10.0 829 4.175 19.8
6 10.0 86.7 4.175 14.9
7 10.0 88.1 4.175 8.1
8 10.0 87.4 4.175 33
Test 6
1 10.0 82.4 2.860 32.6
2 10.0 81.3 3.506 26.3
3 10.0 81.4 3.742 24.8
4 10.0 80.4 4.175 19.8
5 10.0 80.8 4.175 20.3
6 10.0 83.0 4.175 13.0
7 10.0 87.1 4.175 9.2
8 10.0 89.6 4.175 3.0
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Table C.6. (cont.) Predicted optimal conditions and TON for kinetics of Case Study 3 with competing reaction

B~ S.
Catalyst tres (Min) 7 (°C) Cewr (MM) TON
Test 7
1 10.0 81.5 2.805 32.9
2 10.0 82.0 4.175 22.1
3 10.0 82.1 3.695 25.1
4 10.0 82.0 4.175 20.1
5 10.0 81.9 4.175 20.1
6 10.0 84.0 4.175 15.2
7 10.0 86.3 4.175 9.5
8 10.0 87.4 4.175 32
Test 8
| 10.0 81.4 2.806 32.8
2 10.0 81.4 3.538 25.8
3 10.0 82.1 3.061 29.6
4 10.0 80.8 4.175 20.9
5 10.0 819 4.175 19.9
6 10.0 853 4.175 13.1
7 10.0 87.9 4.175 9.4
8 10.0 91.8 4.175 3.2
Test 9
1 10.0 804 2.754 33.3
2 10.0 81.5 3.486 26.5
3 10.0 80.7 4.117 22.5
4 10.0 83.7 4.175 21.6
5 10.0 829 4.175 21.4
6 10.0 834 4.175 13.0
7 10.0 85.5 4.175 9.3
8 10.0 90.3 4.175 3.0
Test 10
1 10.0 80.7 2.696 34.3
2 10.0 81.5 4.175 22.0
3 10.0 81.1 4175 21.8
4 10.0 82.2 4.175 19.5
5 10.0 81.3 4.175 19.3
6 10.0 86.1 4175 12.5
7 10.0 83.9 4.175 8.9
8 10.0 88.3 4.175 2.7
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Table C.7. Predicted optimal conditions and TON for kinetics of Case Study 3 with competing reaction B + R

2> S
Catalyst tres (Min) 7 (°C) Cea (mM) TON
Test 1
1 2.3 109.7 2.582 243
2 2.3 110.0 3.159 19.8
3 2.3 110.0 3.041 20.7
4 2.3 110.0 3.940 15.9
5 23 110.0 3.608 17.4
6 2.3 110.0 4.175 11.5
7 2.3 110.0 4.175 8.5
8 23 110.0 4.175 3.8
Test 2
1 2.5 110.0 2.701 233
2 2.4 110.0 3.461 18.2
3 2.5 110.0 3.426 18.4
4 23 110.0 4.175 15.0
5 2.3 110.0 4.084 15.5
6 2.3 110.0 4175 11.6
7 23 110.0 4.175 8.5
8 23 110.0 4.175 3.7
Test 3
1 2.3 110.0 2.778 22.8
2 2.3 110.0 3.170 20.0
3 23 110.0 3.496 18.1
4 22 110.0 4.086 15.5
5 2.2 110.0 4.175 14.9
6 2.4 110.0 4.175 11.4
7 2.4 110.0 4.175 8.6
8 2.4 110.0 4175 3.7
Test 4
1 2.6 110.0 2.534 24.7
2 2.6 110.0 3.107 20.3
3 2.6 110.0 3213 19.7
4 2.5 110.0 4.175 14.2
5 2.5 110.0 4.175 14.9
6 2.5 110.0 4.175 11.2
7 2.6 110.0 4.175 8.3
8 2.6 110.0 4.175 4.0
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Table C.7. (cont.) Predicted optimal conditions and TON for kinetics of Case Study 3 with competing reaction

B+R= S..
Catalyst Lres (Min) 7 (°C) Cear (MM) TON
Test 5
I 2.4 110.0 2.569 24.5
2 2.4 110.0 3.085 20.4
3 2.4 110.0 3.272 19.3
4 2.3 110.0 4.175 14.5
5 2.3 110.0 4.175 15.1
6 2.3 110.0 4.175 11.2
7 2.4 110.0 4.175 8.2
8 2.4 110.0 4.175 3.1
Test 6
1 2.2 110.0 4.175 16.9
2 2.6 110.0 3.624 17.4
3 2.5 110.0 3.743 16.9
4 2.2 110.0 4.175 14.6
5 23 110.0 4.175 14.7
6 2.5 110.0 4.175 11.4
7 2.5 110.0 4.175 8.2
8 2.5 110.0 4.175 33
Test 7
1 2.3 110.0 2.504 25.1
2 2.3 110.0 3.110 20.2
3 23 110.0 3.490 18.0
4 2.2 110.0 4.175 14.9
5 2.2 110.0 4.175 14.8
6 2.3 110.0 4.175 11.6
7 24 110.0 4.175 8.2
8 2.4 110.0 4.175 4.2
Test 8
1 2.4 110.0 2.580 24 .4
2 2.4 110.0 3.434 18.4
3 2.4 110.0 3.218 19.5
4 2.4 110.0 4.175 14.5
5 24 110.0 4.175 149
6 2.5 110.0 4.175 114
7 2.5 110.0 4.175 8.2
8 2.6 110.0 4.175 4.0
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Table C.7. (cont.) Predicted optimal conditions and TON for Kinetics of Case Study 3 with competing reaction

B+R=2S..
Catalyst tyes (Min) 7(°C) Cea (MM) TON
Test 9

1 10.0 84.8 2.886 21.0
2 10.0 85.1 3.311 18.4
3 10.0 85.3 3.221 18.9
4 10.0 85.4 4.175 14.4
5 1.8 110.0 4.175 13.8
6 2.0 110.0 4.175 11.6
7 2.4 110.0 4.175 8.2
8 2.4 110.0 4.175 3.6

Test 10
1 2.3 110.0 2.579 24.5
2 24 110.0 3.164 19.9
3 2.4 110.0 3.071 20.5
4 2.3 110.0 4.175 14.7
5 2.3 110.0 4.175 14.3
6 2.3 110.0 4.175 10.3
7 2.4 110.0 4.175 8.1
8 2.5 110.0 4,175 3.5

Table C.8. Predicted optimal conditions and TON for kinetics of Case Study 4 with no prediction covariance
trust region.

Catalyst Lres (MiN) 7(°C) Cea (MM) TON
Test 1
1 10.0 78.6 1.085 142.5
2 10.0 110.0 1.514 102.1
3 10.0 110.0 1.690 91.0
4 10.0 110.0 1.224 126.3
5 10.0 110.0 1.789 86.0
6 10.0 110.0 4.175 354
7 10.0 110.0 4175 30.3
8 10.0 110.0 4.175 9.3
Test 2
1 10.0 71.8 2.154 67.9
2 10.0 110.0 0.939 155.7
3 10.0 110.0 0.938 155.9
4 10.0 110.0 0.938 155.8
5 10.0 110.0 0.939 155.6
6 10.0 110.0 4.175 34.5
7 10.0 110.0 4.175 325
8 10.0 110.0 4.175 20.2
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Table C.8. (cont.) Predicted optimal conditions and TON for kinetics of Case Study 4 with no prediction
covariance trust region.

Catalyst L5 (min) 7(°C) Cew (MM) TON
Test 3
1 10.0 76.3 1.969 79.6
2 10.0 110.0 0.936 156.2
3 10.0 110.0 0.940 155.5
4 10.0 110.0 0.941 155.4
5 10.0 110.0 0.940 155.6
6 10.0 110.0 4.175 354
7 10.0 110.0 4.175 323
8 10.0 110.0 4.175 16.1
Test 4
i 10.0 78.5 1.858 824
2 10.0 110.0 1.019 144.4
3 10.0 110.0 0.941 155.4
4 10.0 110.0 1.077 137.4
5 10.0 110.0 1.030 143.1
6 10.0 110.0 4.175 36.5
7 10.0 110.0 4.175 30.6
8 10.0 110.0 4.175 17.5
Test 5
1 10.0 76.7 2.937 52.2
2 10.0 110.0 0.944 155.0
3 10.0 110.0 0.944 155.0
4 10.0 110.0 0.944 155.0
5 10.0 110.0 0.939 155.8
6 10.0 110.0 3.501 43.6
7 10.0 110.0 4.175 28.9
8 10.0 110.0 4175 21.2
Test 6
1 10.0 81.1 1.485 104.3
2 10.0 110.0 1.803 87.1
3 10.0 110.0 1.781 88.1
4 10.0 110.0 2.145 73.3
5 10.0 110.0 1.604 96.7
6 10.0 110.0 3.352 44.1
7 10.0 110.0 3.388 38.5
8 10.0 110.0 3.749 22.5
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Table C.8. (cont.) Predicted optimal conditions and TON for Kinetics of Case Study 4 with no prediction
covariance trust region.

Catalyst tres (Min) 7(°C) Ceo (mM) TON

Test 7
1 10.0 78.0 3.097 48.6
2 10.0 110.0 0.948 154.4
3 10.0 110.0 0.951 154.0
4 10.0 110.0 0.944 155.1
5 10.0 110.0 0.951 154.0
6 10.0 110.0 4.175 359
7 8.6 110.0 4.175 23.1
8 83 110.0 4.175 9.1

Test 8
1 10.0 721 2.226 67.4
2 10.0 110.0 0.932 156.8
3 10.0 110.0 0.934 156.5
4 10.0 110.0 0.934 156.5
5 10.0 110.0 0.932 156.8
6 10.0 110.0 4.011 37.6
7 10.0 110.0 4.175 323
8 10.0 110.0 4.175 16.7

Test 9
1 10.0 76.1 2.526 58.3
2 10.0 110.0 0.937 156.0
3 10.0 110.0 0.937 155.9
4 10.0 110.0 0.936 156.2
5 10.0 110.0 0.936 156.2
6 10.0 110.0 1.693 86.4
7 10.0 110.0 4.175 33.1
8 10.0 110.0 4.175 19.4

Test 10
1 10.0 77.0 2.943 51.2
2 10.0 110.0 0.939 155.7
3 10.0 110.0 0.942 155.3
4 10.0 110.0 0.940 155.6
5 10.0 110.0 0.940 155.6
6 10.0 110.0 4175 355
7 10.0 110.0 4.175 33.2
8 10.0 110.0 4175 10.6

255



Table C.9. Predicted optimal conditions and TON for kinetics of Case Study 4 with 10% prediction
covariance trust region.

Catalyst Lres (MiN) 7(°C) Cew (MM) TON
Test 1
1 10.0 79.9 0.835 182.1
2 10.0 110.0 2.746 57.3
3 10.0 110.0 2.901 54.3
4 10.0 110.0 2.940 53.9
5 10.0 110.0 1.906 81.9
6 10.0 110.0 4.175 36.4
7 10.0 110.0 4.175 314
8 10.0 110.0 4.175 18.1
Test 2
1 10.0 73.2 1.617 92.8
2 10.0 110.0 0.949 154.4
3 10.0 110.0 0.921 158.9
4 10.0 110.0 0.945 155.0
5 10.0 110.0 0.954 153.5
6 10.0 110.0 2.145 68.4
7 10.0 110.0 4.175 33.2
8 10.0 110.0 4.175 17.1
Test 3
1 10.0 75.2 1.803 859
2 10.0 110.0 0.949 154.3
3 10.0 110.0 0.937 156.3
4 10.0 110.0 0.954 153.5
5 10.0 110.0 0.954 153.5
6 10.0 110.0 4.175 36.1
7 10.0 110.0 4.175 31.1
8 10.0 110.0 4.175 19.6
Test 4
1 10.0 79.4 1.351 114.2
2 10.0 110.0 1.841 84.4
3 10.0 110.0 1.907 81.0
4 9.6 110.0 1.741 89.2
5 10.0 110.0 1.958 79.3
6 10.0 110.0 4175 36.4
7 10.0 110.0 4.175 31.7
8 10.0 110.0 4.175 16.8

256



Table C.9. (cont.) Predicted optimal conditions and TON for Kinetics of Case Study 4 with 10% prediction
covariance trust region.

Catalyst 1,0y (Min) T(°C) Ceor (MM) TON
Test 5
1 10.0 80.4 1.278 119.5
2 10.0 110.0 1.585 96.8
3 10.0 110.0 1.875 83.1
4 10.0 110.0 1.729 89.6
5 9.7 110.0 1.485 103.0
6 10.0 110.0 4.175 36.3
7 10.0 110.0 4.175 30.8
8 10.0 110.0 4.175 17.5
Test 6
1 10.0 73.1 1.622 92.4
2 10.0 110.0 0.939 155.7
3 10.0 110.0 0.937 156.1
4 10.0 110.0 0.939 155.6
5 10.0 110.0 0.939 155.7
6 10.0 110.0 3.635 41.3
7 10.0 110.0 4.175 31.2
8 10.0 110.0 4.175 20.5
Test 7
1 10.0 77.6 1.269 122.1
2 10.0 110.0 1.468 104.3
3 10.0 110.0 1.683 91.1
4 10.0 110.0 1.500 102.5
5 10.0 110.0 1.510 102.0
6 10.0 110.0 4.175 35.9
7 10.0 110.0 4.175 29.9
8 10.0 110.0 4.175 18.1
Test 8
1 10.0 78.0 1.274 121.1
2 10.0 110.0 2.024 77.2
3 10.0 110.0 1.624 95.3
4 10.0 110.0 1.559 99.4
5 10.0 110.0 1.755 88.4
6 10.0 110.0 4.175 345
7 10.0 110.0 4.175 30.8
8 10.0 110.0 4.175 21.2
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Table C.9. (cont.) Predicted optimal conditions and TON for kinetics of Case Study 4 with 10% prediction
covariance trust region.

Catalyst Lyes (Min) 7(°C) Ceo (MM) TON
Test 9

1 10.0 77.7 1.362 114.3

2 10.0 110.0 1.727 89.3

3 10.0 110.0 1.606 96.1

4 10.0 110.0 1.677 91.7

5 10.0 110.0 1.740 88.7

6 10.0 110.0 4.175 36.8

7 10.0 110.0 4.175 32.2

8 10.0 110.0 4.175 17.8
Test 10

1 10.0 77.6 1.262 122.5

2 10.0 110.0 2.086 75.3

3 10.0 110.0 1.969 79.8

4 10.0 110.0 1.804 86.6

5 10.0 110.0 1.607 96.5

6 10.0 110.0 4.175 36.3

7 10.0 110.0 4.175 30.8

8 10.0 110.0 4.175 18.7

Table C.10. Predicted optimal conditions and TON for kinetics of Case Study 4 with 2.5% prediction
covariance trust region.

Catalyst Lres (min) T (°C) Cewr (MM) TON
Test 1
1 10.0 79.1 1.261 121.9
2 10.0 110.0 1.657 93.2
3 10.0 110.0 1.731 89.4
4 10.0 110.0 1.496 102.8
5 10.0 110.0 1.417 108.5
6 10.0 110.0 4.175 353
7 10.0 110.0 4.175 31.8
8 10.0 110.0 4.175 19.5
Test 2
1 10.0 79.3 0.835 181.0
2 10.0 110.0 1.437 106.8
3 10.0 110.0 2.104 74.1
4 10.0 110.0 1.985 78.4
5 10.0 110.0 2.029 76.7
6 10.0 110.0 4175 36.3
7 10.0 110.0 4175 32.7
8 10.0 110.0 4.175 17.2
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Table C.10. (cont.) Predicted optimal conditions and TON for Kinetics of Case Study 4 with 2.5% prediction
covariance trust region.

Catalyst tres (Min) 7 (°C) Ceat (MM) TON
Test 3

1 10.0 78.3 1.110 141.2

2 10.0 110.0 2.099 74.3

3 10.0 110.0 2.055 75.9

4 10.0 110.0 1.899 81.2

5 10.0 110.0 1.845 83.6

6 10.0 110.0 4.175 36.4

7 10.0 110.0 4.175 32.6

8 10.0 110.0 4175 19.5
Test 4

1 10.0 78.8 0.835 182.6

2 10.0 110.0 2.163 72.4

3 10.0 110.0 2.114 73.9

4 10.0 110.0 1.912 81.4

5 10.0 110.0 1.334 114.1

6 10.0 110.0 4.175 36.3

7 10.0 110.0 4.175 325

8 10.0 110.0 4.175 18.3
Test 5

1 10.0 74.9 1.638 93.0

2 10.0 110.0 0.941 155.5

3 10.0 110.0 0.939 155.8

4 10.0 110.0 0.932 157.0

5 10.0 110.0 0.940 155.5

6 10.0 110.0 4.175 36.5

7 10.0 110.0 4.175 333

8 10.0 110.0 4,175 19.2
Test 6

1 10.0 80.9 1.385 112.2

2 10.0 110.0 1.565 98.4

3 10.0 110.0 1.744 88.9

4 10.0 110.0 1.796 86.4

5 10.0 110.0 1.466 104.9

6 10.0 110.0 4.058 36.6

7 10.0 110.0 4.175 32.2

8 10.0 110.0 4.175 19.4
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Table C.10. (cont.) Predicted optimal conditions and TON for kinetics of Case Study 4 with 2.5% prediction
covariance trust region.

Catalyst tres (Min) 7 (°C) Cewr (MM) TON
Test 7
1 10.0 77.8 0.835 183.0
2 10.0 110.0 2.016 76.8
3 10.0 110.0 1.559 98.3
4 10.0 110.0 1.648 93.1
5 10.0 110.0 1.554 98.5
6 10.0 110.0 4.175 36.4
7 10.0 110.0 4.175 30.8
8 10.0 110.0 4.175 17.1
Test 8
1 10.0 79.5 1.412 109.3
2 10.0 110.0 2.087 74.8
3 10.0 110.0 2.384 66.0
4 10.0 110.0 2.553 61.7
5 10.0 110.0 2.426 64.8
6 10.0 110.0 4.175 35.6
7 10.0 110.0 4.175 30.8
8 10.0 110.0 4.175 16.8
Test 9
1 10.0 77.6 0.835 181.7
2 10.0 110.0 1.395 109.0
3 10.0 110.0 1.569 97.4
4 10.0 110.0 1.587 96.6
5 10.0 110.0 1.335 113.7
6 10.0 110.0 4.175 36.6
7 10.0 110.0 4.175 31.4
8 10.0 110.0 4.175 18.3
Test 10
1 10.0 73.0 1.729 87.9
2 10.0 110.0 0.932 156.8
3 10.0 110.0 0.931 156.9
4 10.0 110.0 0.932 156.8
5 10.0 110.0 0.931 157.0
6 10.0 110.0 4.175 36.3
7 10.0 110.0 4.175 32.1
8 10.0 110.0 4.175 18.3
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APPENDIX D. CHAPTER 5 SUPPORTING INFORMATION

Table D.1. Observed yields for conditions screened during first fractional factorial design.

D.1. EXPERIMENTAL DATA

Experiment Solvent tres (S) 7(°C) Corteopnct (M) Yield
1 {PrOH 60 30.0 0.999 2.4%
2 THF 60 30.0 0.999 1.8%
3 Toluene 600 30.0 0.998 9.7%
4 MeCN 60 30.0 0.206 2.0%
5 DMF 600 30.0 0.206 6.1%
6 DMSO 600 30.0 0.999 52.2%
7 Pyridine 60 30.0 0.206 8.5%
8 DMC 60 30.0 0.206 1.0%
9 DME 600 30.0 1.000 5.4%
10 DCE 600 30.0 0.206 2.7%
11 DMSO 60 120.0 0.206 28.4%
12 iPrOH 600 120.0 0.206 23.5%
13 MeCN 600 120.0 1.000 46.6%
14 Pyridine 600 120.0 0.999 47.2%
15 DMC 600 120.0 0.999 56.8%
16 THF 600 120.0 0.206 27.7%
17 Toluene 60 120.0 0.206 9.3%
18 DMF 60 120.0 0.999 36.4%
19 DME 60 120.0 0.206 8.7%

20 DCE 60 120.0 1.000 44.6%
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Table D.2. Observed yields for conditions screened during second fractional factorial design.

Experiment Solvent Lres (8) T (°C) Conteonncr (M) Yield
21 DMC 600 120.0 0.999 45.5%
22 DCE 190 120.0 1.000 53.4%
23 i{PrOH 600 120.0 0.444 43.2%
24 MeCN 600 120.0 1.000 36.1%
25 THF 600 120.0 0.444 35.7%
26 DME 190 120.0 0.445 42.3%
27 Pyridine 190 120.0 0.999 51.5%
28 DMSO 190 120.0 0.445 52.2%
29 Toluene 190 120.0 0.444 43.7%
30 DMF 190 120.0 0.444 48.9%
31 DMF 600 69.2 0.999 56.2%
32 DCE 600 69.2 0.444 35.9%
33 THF 190 69.2 0.999 29.9%
34 MeCN 190 69.2 0.444 34.2%
35 Pyridine 600 69.2 0.444 30.5%
36 DME 600 69.2 1.000 41.5%
37 DMC 190 69.2 0.444 16.2%
38 Toluene 600 69.2 0.998 41.9%
39 iPrOH 190 69.2 0.999 33.6%
40 DMSO 600 69.2 0.999 62.9%
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Table D.3. Observed yields for conditions screened during response surface optimization with G-optimal
design of experiments criterion.

Experiment Solvent Ly (S) 7 (°C) Conrteosncr (M) Yield
41 DMSO 77 46.4 0.999 36.0%
42 DCE 137 63.6 1.000 24.0%
43 THF 161 120.0 0.999 43.2%
44 Pyridine 94 61.1 0.999 33.0%
45 iPrOH 161 120.0 0.999 48.7%
46 DMF 100 52.1 0.999 31.4%
47 Toluene 91 59.4 0.998 9.9%
48 DMSO 265 90.6 0.999 57.2%
49 DMF 429 120.0 0.999 48.7%
50 DMSO 391 102.8 0.999 59.3%
51 DMSO 323 58.8 0.333 31.4%
52 DCE 326 120.0 0.429 34.8%
53 DMF 229 98.9 0.364 46.1%
54 DMF 600 101.0 0.999 58.6%
55 DCE 419 120.0 1.000 47.7%
56 Pyridine 600 45.0 0.999 44.0%
57 DMSO 600 87.8 0.999 60.7%
58 DMF 431 94.3 0.999 52.3%
59 DMSO 600 85.2 0.999 64.3%
60 Pyridine 455 73.2 0.999 53.1%
61 DMSO 319 74.9 0.999 53.9%
62 Pyridine 340 77.7 0.999 53.5%
63 DMF 332 93.1 0.999 54.4%
64 DMF 340 96.0 0.778 54.9%
65 iPrOH 188 120.0 0.667 23.7%
66 DMSO 514 75.6 0.682 59.4%
67 DMSO 600 79.8 0.999 62.9%
68 DMSO 516 81.1 0.999 62.6%

263



Table D.4. Observed yields for conditions screened during quasi-Newton gradient-based search.

Experiment Solvent Lres (S) T (°C) Costeonnct (M) Yield
69 DMSO 444 78.1 0.999 61.1%
70 DMSO 459 76.1 0.983 60.7%
71 DMSO 429 76.1 0.999 62.2%
72 DMSO 429 80.1 0.983 61.5%
73 DMSO 459 80.1 0.999 60.4%
74 DMSO 189 76.2 0.999 62.8%
75 DMSO 204 74.2 0.983 56.7%
76 DMSO 174 74.2 0.999 60.6%
77 DMSO 204 78.2 0.999 59.2%
78 DMSO 189 76.2 0.999 54.8%
79 DMSO 174 78.2 0.983 59.8%
80 DMSO 290 77.2 0.999 64.1%
81 DMSO 305 75.2 0.983 65.8%
82 DMSO 275 75.2 0.999 57.1%
83 DMSO 305 79.2 0.999 62.4%
84 DMSO 275 79.2 0.983 59.3%
85 DMSO 290 77.2 0.999 58.3%
86 DMSO 359 77.6 0.999 63.2%
87 DMSO 374 75.6 0.983 61.3%
88 DMSO 344 75.6 0.999 62.5%
89 DMSO 359 77.6 0.999 60.9%
90 DMSO 344 79.6 0.983 60.3%
91 DMSO 374 79.6 0.999 63.8%
92 DMSO 399 77.8 0.999 60.3%
93 DMSO 421 78.0 0.999 61.5%
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D.2. NMR SPECTRA
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Figure D.1. (N-4-methoxybenzyl)-(1R,2R)~(-)-diaminocyclohexane '"H NMR (400 MHz, CDCls)
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Figure D.2. (N-4-methoxybenzyl)-(1R,2R)-(-)-diaminocyclohexane *C NMR (101 MHz, CDCL)
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APPENDIX E. CHAPTER 6 SUPPORTING INFORMATION
E.1. EXPERIMENTAL DATA

E.1.1. Reaction of 13 and 14

A5 mL volumetric aryl halide and naphthalene solution was prepared by diluting 1450.2 mg
13 and 340.3 mg naphthalene with THF and transferring the solution to a 7 mL vial. A 5 mL
volumetric boronic acid pinacol ester solution was prepared by diluting 1152.1 mg 14 with THF
and transferring the solution to a 7 mL vial. Individual 2 mL precatalyst-ligand solutions were
prepared by charging the solid to a tapered 2 mL vial, then dosing with 2 mL THF. Catalyst
masses were 29.637 mg P1-L1, 28.163 mg P2-L1, 28.591 mg P1-L2, 30.022 mg P1-L3, 33.195

an n 1 n AN Om

mg P1-L4, 25.235 mg P1-L5, 21.491 mg Pi-L6, and 20.850 mg Pi-L7. A 10 mL voiumeiric

(1)<}

DBU solution was prepared by diluting 2.5203 g DBU in THF and transferring the solution to a
20 mL scintillation vial. Solution volumes were automatically sampled to achieve 0.167 M aryl
halide, 0.250 M boronic acid pinacol ester, 0.333 M DBU, 0.000835-0.004175 M precatalyst-
ligand, and a 5:1 THF-water ratio in the reacting slugs. The product 15 was detected by UV at
340 nm. Reaction data are presented in Table E.l. Optimization results are presented in Table
E.2.

Table E.1. Experimental data for reaction optimization of 13 and 14. Yields based on conversion of 13.

Experiment Precat;Ligand tres (S) 7 (°C) Cat. Loading (mol%) TON Yield (%)

1 P1-L3 600.0 30.0 0.498 1.2 0.6
2 P1-Leé 600.0 30.0 2.515 0.2 0.6
3 P1-L4 60.0 30.0 2.508 0.2 0.6
4 P1-L1 60.0 30.0 0.513 1.2 0.6
5 P1-L2 600.0 30.0 2513 0.2 0.6
6 P1-LS 60.0 30.0 0.508 1.2 0.6
7 P1-L7 600.0 30.0 0.506 1.2 0.6
8 P2-L1 60.0 30.0 2.509 0.2 0.6
9 P2-L1 600.0 110.0 0.496 9.2 4.6
10 P1-L4 600.0 110.0 0.512 91.2 46.7
11 P1-Lé6 60.0 110.0 0.498 1.2 0.6
12 P1-L1 600.0 110.0 2.509 25.8 64.8
13 P1-L5 600.0 110.0 2512 18.0 45.2
14 P1-L7 60.0 110.0 2.499 36.4 91.1
15 P1-L2 60.0 110.0 0.508 18.2 9.2
16 P1-L3 60.0 110.0 2.489 23.5 58.6
17 P1-L7 189.7 65.3 1.123 0.5 0.6
18 P1-L1 189.7 65.3 1.106 24.2 26.8
19 P1-Lé6 600.0 65.3 2.515 0.2 0.6
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Table E.1. (cont.) Experimental data for reaction optimization of 13 and 14. Yields based on conversion of 13.

Experiment Precat-Ligand Lyes (S) T (°C) Cat. Loadi%(mol%) TON Yield (%)
20 P2-L1 189.7 65.3 2.509 9.0 22.7
21 P1-L4 189.7 65.3 2.508 22.8 57.2
22 P1-L5 189.7 65.3 1.106 0.5 0.6
23 P1-L3 600.0 65.3 1.106 5.5 6.0
24 P1-L2 600.0 65.3 1.129 7.2 8.1
25 P1-L4 600.0 110.0 1.106 88.9 98.3
26 P1-L1 600.0 110.0 2.509 29.5 73.9
27 P1-L2 189.7 110.0 2.513 22.7 57.0
28 P1-L6 189.7 110.0 1.127 7.1 8.0
29 P1-L7 600.0 110.0 2.499 323 80.8
30 P1-L3 189.7 110.0 2.489 23.3 57.9
31 P1-L5 600.0 110.0 2.512 20.4 513
32 P2-L1 600.0 110.0 1.131 16.2 18.3
33 Pi1-L4 600.0 30.0 0.512 1.2 0.6
34 P1-L5 600.0 30.0 0.508 1.2 0.6
35 P1-L1 600.0 30.0 0.513 1.2 0.6
36 P2-L1 600.0 30.0 0.496 1.2 0.6
37 P1-L2 60.0 110.0 2.513 17.9 45.1
38 P1-L3 60.0 110.0 2.489 33.6 83.5
39 P1-L6 60.0 110.0 2.515 3.7 9.2
40 P1-L7 60.0 110.0 2.499 36.8 92.0
41 P1-L4 60.0 67.5 2.508 14.4 36.0
42 P1-L5 60.0 66.7 2.512 0.2 0.6
43 P1-L3 60.0 67.0 2.489 10.6 26.3
44 P1-L7 60.0 66.8 2.499 1.5 3.9
45 P1-L1 60.0 66.3 2.509 5.3 13.4
46 P2-L1 60.0 67.0 2.509 4.8 12.1
47 P1-L7 155.6 110.0 2.499 35.0 87.5
48 P1-L5 109.3 110.0 2.482 17.0 42.1
49 P2-L1 104.5 110.0 2.509 12.2 30.6
50 P1-L1 109.2 110.0 2.482 32.1 79.8
51 P1-L3 166.5 110.0 2.489 26.4 65.6
52 P1-L4 60.0 110.0 0.512 21.6 11.1
53 P1-L7 60.0 110.0 0.506 1.2 0.6
54 P1-L3 60.0 110.0 0.498 471 23.4
55 P1-L1 60.0 110.0 0.513 43.1 22.1
56 P1-L4 60.0 110.0 0.512 18.3 9.4
57 P1-L3 600.0 110.0 0.968 26.4 25.5
58 P1-L1 600.0 110.0 0.971 459 44.6
59 P1-L5 600.0 110.0 0.957 43.7 41.8
60 P1-L4 600.0 110.0 1.268 78.0 98.9
61 P1-L7 600.0 110.0 0.814 50.2 40.9
62 P1-L4 161.7 110.0 2.104 43.0 90.5
63 P1-L1 146.1 110.0 2.509 29.8 74.9
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Table E.1. (cont.) Experimental data for reaction optimization of 13 and 14. Yields based on conversion of 13.

Experiment  Precat-Ligand Lres (8) T(°C) Cat. Loading (mol%) TON Yield (%)
gan 2 (imo

64 P1-L3 185.5 110.0 2.489 27.1 67.6
65 P1-L7 176.5 110.0 2.499 29.6 73.9
66 P1-L1 60.0 110.0 2.266 39.9 90.4
67 P1-L4 60.0 110.0 1.915 37.0 70.8

68 P1-L7 60.0 110.0 2.303 37.7 86.9
69 P1-L3 60.0 110.0 2.323 29.8 69.3
70 P1-L4 600.0 110.0 2.508 33.2 88.4
71 P1-1L4 600.0 110.0 2.508 344 86.2
72 P1-L4 600.0 67.3 1.214 26.3 319
73 P1-L4 600.0 68.7 1.268 17.3 22.0
74 P1-L4 199.3 110.0 1.241 62.2 77.1

75 P1-L1 202.8 110.0 1.592 48.0 76.3

76 P1-L4 600.0 110.0 1.160 70.1 813
77 P1-L4 600.0 110.0 1.160 76.9 89.1

78 P1-L4 600.0 110.0 1.106 70.3 77.7
79 P1-L4 600.0 110.0 1.106 90.3 99.9
80 P1-L4 600.0 110.0 1.187 65.4 77.6
81 P1-L4 600.0 110.0 1.106 78.6 86.9
82 P1-L4 600.0 66.3 0.998 21.7 21.6
83 P1-L4 600.0 67.6 0.998 19.4 19.3
84 P1-L4 600.0 110.0 1.241 75.9 94.2
85 P1-L4 600.0 110.0 1.268 68.1 86.4
86 P1-L4 600.0 110.0 1.187 70.9 84.1

87 P1-L4 189.1 110.0 2.508 424 106.3
88 P1-L4 600.0 110.0 1.268 70.6 89.5
89 P1-L4 199.8 110.0 2.508 36.1 90.4
90 P1-L4 199.6 110.0 2.508 35.7 89.6
91 P1-L4 600.0 110.0 1.241 66.8 82.8
92 P1-L4 600.0 110.0 1.025 78.9 80.8
93 P1-L4 600.0 110.0 1.079 87.4 94.3
94 P1-L4 600.0 110.0 1.133 72.1 81.7
95 P1-L4 600.0 110.0 1.052 70.4 74.0
96 P1-L4 600.0 110.0 1.106 76.7 84.8
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Table E.2. Optimal yield and TON conditions for optimization of 13 and 14. Yields based on conversion of 13.

Yield Maximum TON Maximum
Pfecat- tres T Cat. Loading Yield bres T Cat. Loading TON
ﬂand (s) (°C) (mol%) (%) (s) (°C) (mol%)
P1-L1 242 .8 110.0 2.152 84.7 242.8 110.0 2.152 393
P2-L1 96.0 110.0 2.500 21.9 96.0 110.0 2.500 8.7
P1-L2 82.0 110.0 2.500 49.7 82.0 110.0 2.500 19.9
P1-L3 60.0 110.0 2.500 71.0 60.0 110.0 2.500 28.4
P1-L4 206.9 110.0 2.500 98.1 600.0 110.0 1.195 73.9
P1-L5 60.0 110.0 2.500 52.2 60.0 110.0 2.500 20.9
P1-L6 101.5 110.0 2.500 9.1 101.5 110.0 2.500 3.6
P1-L7 94.8 110.0 2.500 81.0 94.8 110.0 2.500 324

E.1.2. Calibration of 17

The product 17 was synthesized in batch and isolated by column chromatography. A 5 ml
volumetric solution was prepared by diluting 182.2 mg 17 and 35.9 mg naphthalene with THF
and transferring the solution to a 7 mL vial. A 5 ml internal standard solution was prepared by
diluting 32.8 mg naphthalene with THF and transferring the solution to a 7 mL vial. Both
solutions were stored under argon in the liquid handler. Using the automated sample preparation
procedure as described previously, two replicates each of slugs containing 0, 0.033, 0.067, 0. 100,
0.133, and 0.167 M 17 were prepared and introduced into the system. The slugs were transported
by compressed argon at 30°C and 5 min residence time through the FEP reactor and sampled by
LC/MS. A calibration was constructed based on integrated peak absorbance measurements of 17
and naphthalene at 270 nm. The calibrated slope was Cprod = 1.26054* Cnaphihatene™ Aprod! Anaphthalene
with R? = 0.996.

E.1.3. Reaction of 16 and 14

A 5 mL volumetric aryl halide and naphthalene solution was prepared by diluting 815.2 mg
16 and 336.4 mg naphthalene with THF and transferring the solution to a 7 mL vial. A’ 5 mL
volumetric boronic acid pinacol ester solution was prepared by diluting 1176.5 mg 14 with THF
and transferring the solution to a 7 mL vial. Individual 2 mL precatalyst-ligand solutions were
prepared by charging the solid to a tapered 2 mL vial, then dosing with 2 mL THF. Catalyst
masses were 31.057 mg P1-L1, 27.263 mg P2-L1, 29.287 mg P1-L2, 29.242 mg P1-L3, 34.030
mg P1-L4, 25.335 mg P1-L5, 22.442 mg P1-L6. and 21.001 mg P1-L7. A 10 mL volumetric
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DBU solution was prepared by diluting 2.5343 g DBU in THF and transferring the solution to a
20 mL scintillation vial. Solution volumes were automatically sampled to achieve 0.167 M aryl
halide, 0.250 M boronic acid pinacol ester, 0.333 M DBU, 0.000835-0.004175 M precatalyst-
ligand, and a 5:1 THF-water ratio in the reacting slugs. The product 17 was detected by UV at
270 nm. Reaction data are presented in Table E.3. Optimization results are presented in Table
E.4.

Table E.3. Experimental data for reaction optimization of 16 and 14.

Experiment Precat-Liﬁand Lres (S) 7 (°C) Cat. Loading (mol%) TON Yield (%)

1 P1-Leé 600.0 110.0 2.490 0.1 0.1

2 P1-L5S 60.0 110.0 0.510 03 0.1

3 P1-L4 60.0 110.0 0.498 0.3 0.1

4 P1-L7 600.0 110.0 2.489 2.7 6.7

S ri-Li 60.0 116.0 2510 3.0 7.6

6 P1-L2 60.0 110.0 2516 5.2 13.0
7 P1-L3 600.0 110.0 0.512 03 0.1

8 P2-L1 600.0 110.0 0.507 03 0.1

9 P1-L5 600.0 30.0 2.492 0.1 0.1

10 P1-L4 600.0 30.0 2.516 0.2 0.6

11 P1-L7 60.0 30.0 0.509 0.3 0.1

12 P1-Lé6 60.0 30.0 0.492 0.3 0.1

13 P1-L1 600.0 30.0 0.509 0.3 0.1

14 P1-L3 60.0 30.0 2.505 0.1 0.1

15 P2-L1 60.0 30.0 2.509 0.1 0.1

16 P1-L2 600.0 30.0 0.492 0.3 0.1

17 P2-L1 60.0 65.3 1.121 0.4 0.4
18 P1-L4 189.7 65.3 2.516 0.4 1.2

19 P1-LS 60.0 65.3 2.492 0.1 0.1

20 P1-L1 189.7 65.3 1.131 6.1 6.9
21 P1-Lé 60.0 65.3 1.122 0.1 0.1
22 P1-L2 189.7 65.3 1.128 9.3 10.5
23 P1-L7 60.0 65.3 1.131 0.1 0.1

24 P1-L3 60.0 65.3 2.505 5.5 13.9
25 P1-L6 189.7 110.0 2.490 0.1 0.1
26 P1-L5 189.7 110.0 L.111 8.6 9.5
27 P1-L2 60.0 110.0 2.516 54 13.7
28 P1-L3 189.7 110.0 1.131 11.0 12.4
29 P2-L1 189.7 110.0 2.509 2.5 6.1
30 P1-L1 60.0 110.0 2516 6.4 16.0
31 P1-L4 60.0 110.0 1.106 04 0.4
32 P1-L7 189.7 110.0 2.489 55 13.7
33 P1-L2 339.6 110.0 2516 7.6 19.2
34 P1-L4 351.3 110.0 2516 1.1 2.9
35 P1-LS 370.2 110.0 2.492 13.2 32.9
36 P1-L1 340.3 110.0 2.516 7.7 19.3
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Table E.3. (cont.) Experimental data for reaction optimization of 16 and 14.

Experiment Precat;Ligand Les (8) T (°C) Cat. Loadimi(mol%) TON Yield (%)
37 P1-L7 600.0 33.8 2.489 0.1 0.1
38 P2-L1 600.0 334 2.509 0.6 1.4
39 P1-L3 600.0 30.0 2.047 0.1 0.1
40 P1-L6 600.0 30.0 2.490 0.1 0.1
41 P1-L7 149.0 110.0 2.489 13.2 32.9
42 P1-L5 156.7 110.0 2.492 7.7 19.2
43 P1-L3 162.3 110.0 2.505 7.9 20.0
44 P1-L1 172.3 107.8 2.516 9.4 23.6
45 P1-L2 177.6 95.1 2.516 6.1 15.4
46 P1-L1 222.1 110.0 0.792 12.9 10.2
47 P1-L2 192.5 110.0 2.169 6.4 13.8
48 P1-L7 155.6 110.0 1.923 33 6.4
49 P1-L5 184.7 110.0 2.011 10.8 21.7
50 P1-L3 262.1 56.1 0.754 8.4 6.3
51 P1-L3 203.4 81.9 2.505 8.5 21.2
52 P1-L2 190.0 93.8 2.516 6.7 16.8
53 P1-L5 184.5 110.0 2.492 8.6 21.3
54 P1-L1 213.2 110.0 2.516 11.6 29.1
55 P1-L7 157.7 110.0 2.489 3.2 8.0
56 P1-L1 261.0 110.0 2.516 12.3 30.9
57 P1-L5 206.5 110.0 2.492 11.5 28.8
58 P1-L7 166.9 110.0 2.489 5.1 12.7
59 Pi1-L3 198.4 100.7 2.505 8.2 20.5
60 P1-L2 600.0 110.0 1.938 9.9 19.1
61 P1-L3 600.0 110.0 1.993 11.1 22.1
62 P1-L1 600.0 110.0 1.781 15.8 28.2
63 P1-L5 600.0 110.0 1.951 18.3 35.8
64 P1-L5 600.0 110.0 1.951 18.1 354
65 P1-L1 600.0 110.0 1.385 17.4 24.1
66 P1-L3 375.4 97.2 1.940 10.5 20.3
67 P1-L3 600.0 103.3 2.505 10.5 26.4
68 P1-L1 600.0 110.0 2.516 15.4 38.7
69 P1-L5 600.0 110.0 2.011 23.4 47.0
70 P1-L5S 600.0 110.0 2.492 19.8 493
71 P1-L1 60.0 30.0 2.516 0.1 0.1
72 P1-L1 60.0 30.0 2.516 0.2 0.5
73 P1-L5 600.0 110.0 2.492 22.4 55.9
74 P1-L1 600.0 47.1 2.516 19.7 49.7
75 P1-L5 600.0 71.0 2.492 0.1 0.1
76 P1-L5 600.0 110.0 2.492 19.8 49.4
77 P1-L2 600.0 39.8 2.516 0.5 1.3
78 P1-L3 600.0 38.1 2.505 2.1 5.4
79 P1-L1 600.0 61.0 2.516 6.7 16.8
80 P1-L3 600.0 69.4 2.505 11.5 28.9
81 P1-L1 600.0 63.0 2.516 7.4 18.7
82 P1-L1 600.0 110.0 2.516 6.6 16.6
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Table E.3. (cont.) Experimental data for reaction optimization of 16 and 14.

Experiment Precat-Lig@ Lres (8) T (°C) Cat. Loading (mol%) TON Yield (%)
83 P1-L5 600.0 110.0 2.492 21.4 534
84 P1-L5 600.0 110.0 2.492 18.1 45.1
85 P1-L3 600.0 110.0 2.505 11.8 29.6
86 P1-L5 600.0 110.0 1.711 17.9 30.6
87 P1-L1 600.0 110.0 2516 8.1 20.4
88 P1-L5 600.0 110.0 2.492 19.3 48.3
89 P1-L1 600.0 110.0 2.516 8.1 20.4
90 P1-L1 600.0 110.0 2516 83 20.9
91 P1-L5 600.0 110.0 2.492 213 53.1
92 P1-L5 600.0 110.0 1.771 22.9 40.7
93 P1-L1 600.0 30.0 2.488 1.2 2.9
94 P1-L1 600.0 30.0 2.488 1.5 3.7
95 P1-L5 600.0 110.0 2.492 20.7 51.7
96 P1-L5 600.0 110.0 1.921 24.1 46.3
Table E.4. Optimal yield and TON conditions for optimization of 16 and 14.
Yield Maximum TON Maximum
Pfecat- tres T Cat. Loading Yield trex T Cat. Loading TON
_L:gand (s) (°C) (mol%) (%) (s) (°C) (mol%)
P1-L1 600.0 78.5 2.500 44.4 600.0 78.5 2.500 17.8
P2-L1 600.0 96.4 2.500 7.2 600.0 96.4 2.500 2.9
P1-L2 600.0 87.6 2.500 29.9 600.0 87.6 2.500 12.0
P1-L3 600.0 85.9 2.500 344 600.0 85.9 2.500 13.7
P1-L4 600.0 90.9 2.500 32 600.0 90.9 2.500 1.3
P1-L5 600.0 110.0 2.500 46.5 600.0 110.0 2.061 20.3
P1-L6 600.0 36.4 2.500 1.4 600.0 36.4 2.500 0.6
P1-L7 600.0 110.0 2.500 24.6 600.0 110.0 2.500 9.9

A 5 mL volumetric aryl halide and naphthalene solution was prepared by diluting 829.4 mg
16 and 325.2 mg naphthalene with THF and transferring the solution to a 7 mL vial. A 5 mL
volumetric boronic acid solution was prepared by diluting 863.5 mg 18 with THF and
transferring the solution to a 7 mL vial. Individual 2 mL precatalyst-ligand solutions were
prepared by charging the solid to a tapered 2 mL vial, then dosing with 2 mL THF. Catalyst
masses were 31.128 mg P1-L1, 28.858 mg P2-L1, 28.706 mg P1-L2, 30.302 mg P1-L3, 35.144
mg P1-L4, 25.230 mg P1-LS, 22.442 mg P1-L6, and 20.658 mg P1-L7. A 10 mL volumetric
DBU solution was prepared by diluting 2.5373 g DBU in THF and transferring the solution to a
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20 mL scintillation vial. Solution volumes were automatically sampled to achieve 0.167 M aryl
halide, 0.250 M boronic acid, 0.333 M DBU, 0.000835-0.004175 M precatalyst-ligand, and a 5:1

THF-water ratio in the reacting slugs. The product 19 was detected by UV at 340 nm. Reaction

data are presented in Table E.5. Optimization results are presented in Table E.6.

Table E.5. Experimental data for reaction optimization of 16 and 18. Yields based on conversion of 16.

Experiment Precat-Ligand tres (8) 7 (°C) Cat. Loaﬂi& (mol%) TON Yield (%
1 P1-L4 60.0 30.0 2.513 0.1 0.2
2 P1-L2 600.0 30.0 2.494 0.1 0.2
3 P1-L1 60.0 30.0 0.510 0.3 0.2
4 P1-L5 600.0 30.0 2511 0.1 0.2
5 P1-L6 60.0 30.0 0.499 0.3 0.2
6 P1-L7 600.0 30.0 0.501 0.3 0.2
7 P1-L3 60.0 30.0 2.512 0.1 0.2
8 P2-L1 600.0 30.0 0.509 0.3 0.2
9 P2-L.1 60.0 110.0 2.515 32.7 823
10 P1-L5 60.0 110.0 0.508 0.3 0.2
11 P1-L4 600.0 110.0 0.514 0.3 0.2
12 P1-L6 600.0 110.0 2.496 0.1 0.2
13 P1-L3 600.0 110.0 0.503 50.4 253
14 P1-L7 60.0 110.0 2.504 16.8 42.1
15 P1-L2 60.0 110.0 0.510 46.2 23.5
16 P1-L1 600.0 110.0 2.493 36.5 91.0
17 P1-L3 189.7 110.0 1.117 77.2 86.2
18 P2-L1 189.7 110.0 2515 34.2 86.1
19 P1-L6 189.7 110.0 2.496 0.1 0.2

20 P1-L5 60.0 110.0 1.106 4.0 4.4
21 P1-L1 189.7 110.0 2.493 31.5 78.6
22 P1-L4 189.7 110.0 1.114 2.6 2.9
23 P1-L2 60.0 110.0 2.494 34.6 86.4
24 P1-L6 60.0 65.3 1.109 0.1 0.2
25 P1-L7 60.0 110.0 2.504 19.8 49.7
26 P1-L2 189.7 65.3 1.106 39 43
27 P1-L5 189.7 65.3 2511 2.0 5.1
28 P1-L1 60.0 65.3 1.105 6.9 7.6
29 P1-L3 60.0 65.3 2.512 8.8 22.0
30 P1-L7 189.7 65.3 1.113 0.7 0.8
31 P1-L4 60.0 65.3 2513 0.3 0.7
32 P2-L1 60.0 65.3 1.130 6.1 6.9
33 P1-L4 600.0 105.1 2.513 1.6 4.1
34 P1-L1 600.0 110.0 2.352 325 76.4
35 P1-L.2 600.0 110.0 2.438 329 80.1
36 P1-L3 600.0 110.0 2.317 37.6 87.1
37 P2-L1 600.0 110.0 2.345 342 80.1
38 P1-L7 600.0 110.0 2.393 20.8 49.7
39 P1-L5 600.0 71.7 1.196 0.1 0.2
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Table E.S. (cont.) Experimental data for reaction optimization of 16 and 18. Yields based on conversion of 16.

Experiment Precat-Ligand Lres (S) T (°C) Cat. Loading (mol%) TON Yield (%)

40 P1-LS 600.0 48.3 0.748 0.2 0.2

4] P1-L7 1243 110.0 1113 9.8 10.9
42 P1-L2 202.9 110.0 1.219 51.2 62.4
43 P2-L1 160.9 110.0 1.074 55.4 59.5
44 P1-L1 123.2 110.0 1.105 77.4 85.5
45 P1-L3 600.0 83.8 1.061 48.5 515
46 P2-L1 60.0 110.0 1.413 31.0 43.8
47 P1-L7 60.0 110.0 1.419 24.7 35.0
48 P1-L2 60.0 110.0 1.672 52.9 88.5
49 P1-L3 60.0 110.0 1.312 59.6 78.2
50 P1-L1 60.0 110.0 1.417 61.6 87.2
51 P1-L2 186.8 110.0 2.494 30.2 75.2
52 P1-L1 149.9 110.0 2.493 31.9 79.6
53 P2-L1 186.8 103.6 2515 33.1 83.1
54 P1-L3 179.9 110.0 2512 34.3 86.2
55 P1-L1 60.0 110.0 1.502 56.4 84.7
56 P1-L2 60.0 110.0 1.927 43.5 83.9
57 P1-L3 137.9 110.0 1.312 60.4 79.2
58 P1-L3 60.0 110.0 1.647 493 81.2
59 P1-L1 177.6 110.0 1.048 77.2 80.9
60 P1-L2 188.8 110.0 1.446 49.3 71.3
61 P1-L3 211.9 110.0 1.368 59.7 81.7
62 P1-L2 239.7 110.0 1.332 51.0 68.0
63 P1-L1 2533 110.0 1.048 82.7 86.7
64 P1-L1 108.9 110.0 1.275 65.1 83.0
65 P1-L3 92.2 110.0 1.787 50.3 89.9
66 P1-L2 66.6 110.0 2.409 35.7 86.1
67 P1-L3 192.1 110.0 1.731 48.0 83.0
68 P1-L1 2213 110.0 1.077 75.7 815
69 P1-L2 192.7 110.0 1.871 414 71.5
70 P1-L1 180.1 110.0 1.303 64.9 84.6
71 P1-L2 144.0 110.0 1.899 44.4 84.3
72 P1-L3 146.6 110.0 2.038 429 87.4
73 P1-L1 60.0 110.0 2.493 343 85.6
74 P1-L3 101.5 110.0 1.926 46.8 90.1
75 P1-L2 60.0 110.0 2.126 38.2 81.2
76 P1-L1 218.5 110.0 1.105 80.6 89.1
77 P1-L2 135.7 110.0 1.814 40.4 733
78 P1-L1 600.0 110.0 0.935 853 79.7
79 P1-L3 147.9 110.0 1.591 51.9 82.6
80 P1-L2 162.9 110.0 1.701 39.9 67.8
81 P1-L3 162.1 110.0 1.675 53.6 89.8
82 P1-L1 600.0 110.0 1.218 74.1 90.3
83 P1-L3 600.0 110.0 1.424 49.1 69.9
84 P1-L2 600.0 110.0 1.417 66.2 93.8
85 P1-L3 60.0 110.0 1.926 453 873
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Table E.S. (cont.) Experimental data for reaction optimization of 16 and 18. Yields based on conversion of 16.

Experiment Precat-Ligand Lres (S) T (°C) Cat. Loadini(mol%) TON Yield (%)

87 P1-L2 60.0 110.0 1.757 442 71.7
88 P1-L3 600.0 110.0 1.787 452 80.8
89 P1-L2 600.0 110.0 1.616 52.1 84.2
90 P1-L1 600.0 110.0 1.303 64.2 83.7
91 P1-L1 600.0 110.0 1.218 65.2 79.4
92 P1-L2 600.0 110.0 1.587 47.1 74.8
93 P1-L3 600.0 110.0 1.787 43.5 77.8
94 P1-L3 60.0 40.2 0.503 0.3 0.2
95 P1-L3 60.0 40.1 0.503 03 0.2
96 P1-L3 229.2 110.0 1.619 494 79.9

Table E.6. Optimal yield and TON conditions for optimization of 16 and 18. Yields based on conversion of 16.

Yield Maximum TON Maximum
Precat- tres T Cat. Loading Yield Pres T Cat. Loading TON
ﬂand (s) °0) (mol%) (%) (s) (°C) (mol%)
P1-L1 198.1 110.0 1.697 97.3 233.2 110.0 1.170 74.9
P2-L1 186.2 110.0 1.909 77.9 186.2 110.0 1.909 40.8
P1-L2 60.0 110.0 1.853 814 60.0 110.0 1.853 439
P1-L3 198.1 110.0 1.697 874 198.1 110.0 1.697 51.5
P1-L4 600.0 89.1 2.330 3.5 600.0 89.1 2.330 1.5
P1-L5 600.0 86.7 2.383 5.8 600.0 86.7 2.383 2.4
P1-Lé 600.0 30.0 2.500 28.6 600.0 30.0 2.500 11.5
P1-L7 165.6 110.0 2.009 40.2 165.6 110.0 2.009 20.0

E.1.5. Reaction of 9 and 7

A 5 mL volumetric aryl halide and naphthalene solution was prepared by diluting 816.4 mg 9
and 327.1 mg naphthalene with THF and transferring the solution to a 7 mL vial. A’ 5 mL
volumetric boronic acid solution was prepared by diluting 1079.4 mg 7 with THF and
transferring the solution to a 7 mL vial. Individual 2 mL precatalyst-ligand solutions were
prepared by charging the solid to a tapered 2 mL vial, then dosing with 2 mL THF. Catalyst
masses were 29.622 mg P1-L1, 27.872 mg P2-L1, 28.706 mg P1-L2, 29.369 mg P1-L3, 34.043
mg P1-L4, 25.128 mg P1-L5, 23.247 mg P1-L6. and 20.128 mg P1-L7. A 10 mL volumetric
DBU solution was prepared by diluting 2.5024 ¢ DBU in THF and transferring the solution to a
20 mL scintillation vial. Solution volumes were automatically sampled to achieve 0.167 M aryl
halide, 0.250 M boronic acid, 0.333 M DBU, 0.000835-0.004175 M precatalyst-ligand, and a 5:1
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THF-water ratio in the reacting slugs. The product 10 was detected by UV at 340 nm. Reaction
data are presented in Table E.7. Optimization results are presented in Table E.8. Screening

results at 80°C, 97°C, and 110°C are presented in Table E.9.

Table E.7. Experimental data for reaction optimization of 9 and 7. Yields based on conversion of 9.

Experiment Precat-Egand Lres (S) T (°C) Cat. Loading (mol%) TON Yield (%)

1 P1-Lé6 600.0 110.0 2.504 11.7 294
2 P1-LS 600.0 110.0 2.499 214 53.6
3 P1-L7 60.0 110.0 2491 9.5 23.7
4 P1-L3 60.0 110.0 0.502 129.2 64.8
5 P2-L1 600.0 110.0 0.506 99.3 50.3
6 P1-L2 600.0 110.0 0.511 107.8 55.1
7 Pi-L4 60.0 110.0 0.489 324 15.8
8 P1-L1 60.0 110.0 2.501 37.6 94.1
9 P1-L1 600.0 30.0 0.500 29 1.5

10 P1-Lé6 60.0 30.0 0.501 0.2 0.1

11 P2-L1 60.0 30.0 2.508 1.6 4.0

12 P1-L7 600.0 30.0 0.503 0.2 0.1

13 P1-L5 60.0 30.0 0.500 0.2 0.1

14 P1-L4 600.0 30.0 2492 4.6 1.5
15 P1-L2 60.0 30.0 2.507 0.0 0.1

16 P1-L3 600.0 30.0 2.510 2.7 6.9

17 P2-L1 600.0 65.3 2.508 38.1 95.5
18 P1-L1 600.0 65.3 1.120 65.3 73.1
19 P1-Lé 189.7 65.3 1.127 1.3 1.4
20 P1-L4 600.0 65.3 2.492 29.7 74.1
21 P1-L2 189.7 65.3 2.507 36.4 91.3
22 P1-L7 600.0 65.3 1.126 0.7 0.8
23 P1-L3 189.7 65.3 1.123 60.8 68.3
24 P1-LS 189.7 65.3 1.131 1.3 1.5
25 P1-L1 189.7 110.0 2.501 349 87.2
26 P1-L4 189.7 110.0 1.124 50.6 56.9
27 Pl1-Leé 600.0 110.0 2.504 16.1 40.4
28 P1-L3 600.0 110.0 2.510 32.8 822
29 P1-L7 189.7 110.0 2.491 11.6 28.8
30 P1-L2 600.0 110.0 1.120 72.2 80.9
31 P1-L5§ 600.0 110.0 2.499 25.7 64.3
32 P2-L1 189.7 110.0 1.109 80.6 89.4
33 P1-L5 114.7 110.0 1.079 314 339
34 P1-L6 114.7 110.0 1.077 214 23.0
35 P1-L7 250.1 110.0 0.982 26.8 26.3
36 P2-L1 150.3 71.6 1.037 27.7 28.7
37 P1-L2 145.8 81.2 1.071 74.9 80.2
38 P1-L4 226.1 69.5 1.148 8.1 9.2
39 P1-L3 326.4 109.2 0.932 96.1 89.6
40 P1-L1 168.9 89.8 0.858 100.7 86.4
41 P1-L1 600.0 61.9 2.501 37.8 94.4
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Table E.7. (cont.) Experimental data for reaction optimization of 9 and 7. Yields based on conversion of 9.

Experiment Precatﬂgfmd tres (S) T (°C) Cat. Loading (mol%) TON Yield (%)
42 P1-L2 227.6 101.6 2.507 33.6 84.1
43 P1-L4 600.0 83.7 2.492 359 89.4
44 P1-L5 60.0 108.5 2.499 19.4 48.4
45 P1-L3 600.0 75.7 2.510 36.1 90.5
46 P2-L1 182.6 104.0 2.508 34.1 85.5
47 P1-L2 600.0 61.5 1.387 59.5 82.6
48 P1-L1 600.0 106.8 1.215 72.5 88.1
49 P1-L3 600.0 84.7 1.793 48.3 86.5
50 P2-L1 600.0 96.5 1.977 41.3 81.8
51 P1-L5 600.0 110.0 1.236 34.8 43.0
52 P1-L2 600.0 73.7 2.507 35.1 88.0
53 P1-L3 1344 110.0 1.530 55.8 85.3
54 P2-L1 196.1 91.7 2.050 42.1 86.2
55 P1-L1 227.9 106.5 0.786 108.5 85.3
56 P2-L1 260.4 88.2 2.098 40.0 83.9
57 P1-L2 600.0 80.8 1.996 47.6 95.0
58 P1-L3 169.1 98.5 2.056 394 81.0
59 P1-L1 236.9 105.3 0.739 106.8 78.9
60 P1-L1 60.0 70.4 1.715 39.1 67.0
61 P1-L3 60.0 82.1 2.295 40.0 91.8
62 P1-L2 60.0 85.6 2.507 345 86.6
63 P1-L1 600.0 97.7 0.715 115.4 82.5
64 P1-L2 600.0 72.8 1.314 66.2 87.0
65 P1-L3 319.6 94.9 1.171 71.4 83.6
66 P1-L1 299.9 73.5 2.501 399 99.8
67 P1-L3 237.1 95.6 1.554 514 79.9
68 P1-L2 600.0 87.0 1.801 46.9 84.6
69 P1-1.2 196.0 110.0 1412 59.9 84.5
70 P1-L1 202.8 108.8 1.358 49.5 67.3
71 P1-L2 205.1 76.3 1.655 50.0 82.7
72 P1-L1 2229 74.7 1.572 51.9 81.6
73 P1-L1 167.6 73.2 2.287 38.4 87.9
74 P1-L2 200.4 75.8 1.947 50.7 98.7
75 P1-L2 600.0 84.2 2.507 355 88.9
76 P1-L3 600.0 98.2 2.510 33.0 82.8
77 P1-L1 600.0 97.7 2.501 33.5 83.8
78 P1-L2 600.0 70.7 1.144 69.3 79.3
79 P1-L3 149.9 93.0 2.510 33.6 84.2
80 P1-L1 600.0 96.7 0.739 105.3 77.8
81 P1-L3 216.2 105.7 1.386 61.7 85.6
82 Pi-L1 600.0 97.3 0.715 118.5 84.7
83 P1-L1 600.0 88.6 0977 87.6 85.6
84 P1-L2 600.0 77.4 1.193 66.2 78.9
85 P1-L2 600.0 77.2 1.314 67.3 88.4
86 P1-L3 126.4 97.6 2.510 28.9 72.6
87 P1-L2 276.4 69.3 2.507 39.7 99.5
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Table E.7. (cont.) Experimental data for reaction optimization of 9 and 7. Yields based on conversion of 9.

Experiment Precat-Ligand tres (S) 7 (°C) Cat. Loading (mol%) TON Yield (%)

88 P1-L1 60.0 110.0 0.643 129.4 83.2
89 P1-L1 60.0 110.0 0.667 105.1 70.1
90 P1-L2 258.2 71.6 2.507 33.7 84.5
91 P1-L2 211.7 104.7 1.193 65.2 77.8
92 P1-L1 1133 110.0 1.120 814 91.1
93 P1-L2 600.0 58.7 2.507 344 86.3
94 P1-L1 60.0 110.0 1.096 86.3 94.5
95 P1-L1 154.1 110.0 1.096 80.9 88.6
96 P1-L2 600.0 72.4 2.507 33.7 844
97 P1-L1 60.0 110.0 0.977 55.5 54.2

Table E.8. Optimal yield and TON conditions for optimization of 9 and 7. Yields based on conversion of 9.

Yicld Maximum TON Maximum
Pfecat- tres T Cat. Loading Yield Tres T Cat. Loading TON

ﬂand (s) (°C) (mol%) (%) (s) (°C) (mol%)
P1-L1 2125 85.1 2.401 99.7 282.5 97.2 1.012 88.7
P2-L1 366.8 88.2 2.088 88.1 366.8 88.2 2.088 422
P1-L2 307.5 78.0 2.500 95.8 373.9 85.9 1.381 65.0
P1-L3 235.8 92.1 1.983 90.4 256.0 95.5 1.442 61.7
P1-L4 600.0 79.6 2.500 72.6 600.0 79.6 2.500 29.0
P1-LS 91.6 110.0 1.707 54.1 91.6 110.0 1.707 31.7
P1-L6 100.9 110.0 1.790 33.7 100.9 110.0 1.790 18.8
P1-L7 143.4 110.0 1.760 274 143.4 110.0 1.760 15.6
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Table E.9. Experimental data for screening of 9 and 7. Yields based on conversion of 9.

Experiment Precat-Liggnd Lres (S) T (°C) Cat. Loading (mol%) TON Yield (%)

1 P1-L1 150.0 80.0 1.018 61.5 62.6
2 P1-L1 600.0 80.0 1.018 81.7 83.2
3 P1-L1 282.0 80.0 1.018 74.8 76.2
4 P1-L1 600.0 80.0 1.018 83.5 85.0
5 P1-L1 282.0 97.0 1.018 86.7 883
6 P1-L1 282.0 97.0 1.018 89.0 90.6
7 P1-L1 450.0 97.0 1.018 86.3 87.8
8 P1-L1 600.0 97.0 1.018 83.7 85.2
9 P1-L1 600.0 110.0 1.018 82.9 84.4
10 P1-L1 282.0 110.0 1.018 85.0 86.5
11 P1-L1 150.0 110.0 1.018 87.9 89.5
12 P1-L1 450.0 110.0 1.018 82.0 83.5
13 P1-L1 450.0 80.0 1.018 78.0 79.4
14 P1-L1 450.0 80.0 1.018 71.5 78.9
15 P1-L1 282.0 80.0 1.018 71.6 72.9
16 P1-L1 150.0 80.0 1.018 60.6 61.7
17 P1-L1 600.0 97.0 1.018 853 86.8
18 P1-L1 450.0 97.0 1.018 92.8 94.4
19 P1-L1 150.0 97.0 1.018 84.9 86.4
20 P1-L1 150.0 97.0 1.018 87.5 89.0
21 P1-L1 282.0 110.0 1.018 85.4 86.9
22 P1-L1 150.0 110.0 1.018 86.0 87.5
23 P1-L1 600.0 110.0 1.018 78.6 80.0
24 P1-L1 450.0 110.0 1.018 84.5 86.0

E.1.6. Reaction of 16 and 20

A 5 mL volumetric aryl halide and naphthalene solution was prepared by diluting 816.0 mg
16 and 326.9 mg naphthalene with THF and transferring the solution to a 7 mL vial. A 5 mL
volumetric boronic acid solution was prepared by diluting 726.7 mg 20 with THF and
transferring the solution to a 7 mL vial. Individual 2 mL precatalyst-ligand solutions were
prepared by charging the solid to a tapered 2 mL vial, then dosing with 2 mL THF. Catalyst
masses were 29.516 mg P1-L1, 23.738 mg P1-L5, and 20.394 mg P1-L7. Individual 2 mL
ligand solutions were prepared by charging the solid to a tapered 2 mL vial, then dosing with 2
mL THF or water. Ligand masses were 49.629 mg L1 (in THF), 39.050 mg L5-HBF4 (in THF),
and 29.177 mg L7-HBF: (in water). A 10 mL volumetric DBU solution was prepared by diluting
2.5126 g DBU in THF and transferring the solution to a 20 mL scintillation vial. Solution

volumes were automatically sampled to achieve 0.167 M aryl halide, 0.250 M boronic acid,

279



0.333 M DBU, 0.0023 M precatalyst-ligand, 0.0000-0.0046 M excess ligand, and a 5:1 THF-
water ratio in the reacting slugs. The product 17 was detected by UV at 270 nm. Reaction data

are presented in Table E.10. Optimization results are presented in Table E.11.

Table E.10. Experimental data for reaction optimization of 16 and 20.

Experiment Precat-Ligand T (°C) Excess Ligand Equiv. TON Yield (%)
1 P1-L5 110.0 2.0 3.8 16.1
2 P1-L1 110.0 2.0 6.9 29.0
3 P1-L5 110.0 0.0 25.4 35.7
4 P1-L7 110.0 2.1 2.0 8.1
5 P1-L1 110.0 0.0 17.5 24.5
6 P1-L7 110.0 0.0 10.1 14.1
7 P1-L5 30.0 2.0 0.0 0.1
8 P1-L1 30.0 2.0 2.8 11.7
9 P1-L7 30.0 2.1 0.0 0.1
10 P1-L5 30.0 0.0 0.1 0.1
11 P1-L7 30.0 0.0 0.1 0.1
12 P1-L1 30.0 0.0 8.6 12.0
13 P1-L7 65.3 0.8 0.1 0.1
14 P1-L1 65.3 0.8 9.6 23.6
15 P1-L5 65.3 0.0 0.1 0.1
16 P1-L1 65.3 0.0 14.1 19.6
17 P1-L7 65.3 0.0 0.1 0.1
18 P1-L5 65.3 0.8 0.1 0.1
19 P1-L5 110.0 0.8 21.9 54.0
20 P1-L5 110.0 0.0 28.8 40.5
21 P1-L1 110.0 0.8 14.9 36.4
22 P1-L7 110.0 0.8 8.4 204
23 P1-L1 110.0 0.0 21.7 30.4
24 P1-L7 110.0 0.0 9.7 13.6
25 P1-L5 110.0 0.6 20.9 46.5
26 P1-L1 110.0 0.7 11.4 27.0
27 P1-L5 110.0 0.5 23.8 49.2
28 P1-L5 110.0 0.5 21.6 444
29 P1-L5 110.0 04 22.9 454
30 P1-L5 110.0 0.2 24.5 42.4
31 P1-L5 110.0 0.0 33.0 46.4
32 P1-L5 110.0 0.0 359 50.4
33 P1-L5 110.0 0.0 37.8 53.1
34 P1-L5 110.0 0.0 41.1 57.9
35 P1-L5 110.0 0.0 345 48.5
36 P1-L5 110.0 0.0 39.8 56.0
37 P1-L5 110.0 0.0 37.0 52.0
38 P1-L5 110.0 0.0 37.2 52.4
39 P1-L5 110.0 0.0 324 45.6
40 P1-L5 110.0 0.0 32.7 46.0
41 P1-L5 110.0 0.0 30.9 434
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Table E.11. Optimal yield and TON conditions for optimization of 16 and 20.

Yield Maximum TON Maximum (Per Ligand Equiv)
Pfecat- T Exces.s Ligand  Yield T Excegs Ligand TON
ﬂand (°C) Equivalents (%) (°C) Equivalents
P1-L1 110.0 0.276 314 1100 0.276 17.9
P1-L5 110.0 0.225 50.0 1100 0.000 34.4
P1-L7 110.0 0.328 159 110.0 0.328 8.7

E.1.7. Time-Course Evolution of 18 and Reaction of 16 and 21

A 5 mL volumetric aryl halide and naphthalene solution was prepared by diluting 809.2 mg
16 and 347.4 mg naphthalene with THF and transferring the solution to a 7 mL vial. A 5 mL
volumetric naphthalene solution was prepared by diluting 329.3 mg naphthalene with THF and
transferring the solution to a 7 mL vial. A 5 mL volumetric boronic acid solution was prepared
by diluting 848.3 mg 18 with THF and transferring the solution to a 7 mL vial. A 5 mL
volumetric boronic acid pinacol ester solution was prepared by diluting 1215.5 mg 21 with THF
and transferring the solution to a 7 mL vial. Individual 2 mL precatalyst-ligand solutions were
prepared by charging the solid to a tapered 2 mL vial, then dosing with 2 mL THF. Catalyst
masses were 30.409 mg P1-L1 and 25.430 mg P1-L5. A 10 mL volumetric DBU solution was
prepared by diluting 2.5235 g DBU in THF and transferring the solution to a 20 mL scintillation
vial. For reaction of 16 and 21, solution volumes were automatically sampled to achieve 0.167 M
aryl halide, 0.250 M 21, 0.333 M DBU, 0.0020 M precatalyst-ligand, and a 5:1 THF-water ratio.
The product 19 was detected by UV at 340 nm. The yield with P1-L1 was 87%. The yield with
P1-L5 was 85%. For the time-course study of the boronic acid. solution volumes were
automatically sampled to achieve 0.250 M 18 or 21, 0.333 M DBU, and a 5:1 THF-water ratio.
The slugs were transported at 110°C, with the boronic acid 18 detected by UV at 300 nm.
Solution volumes were also automatically sampled to achieve 0.050 M naphthalene, 0.250 M 18
or 21, 0.333 M DBU, and a 5:1 THF-water ratio. The slugs were transported at 110°C, with the
boronic acid 18 detected by UV at 300 nm. The results were compared to slugs comprising 0.050
M naphthalene, 0.250 M 18 or 21, and 100% THF flowed at 30°C.
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E.2. NMR SPECTRA
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Figure E.1. 3-(3,5-dimethyl-4-isoxazolyl)-pyridine (17) '"H NMR (400 MHz, CDCL)
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