
Anomaly Detection Methods for Unmanned Underwater Vehicle

Performance Data

by

William Ray Harris

B.S., Mathematics US Naval Academy (2013)

Submitted to the Sloan School of Management
in partial fulfillment of the requirements for the degree of

Master of Science in Operations Research

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MASSACHUSETTS INSTITUTE
OF TECHNOLOLGY

JUN 22 2015

LIBRARIES

June 2015

William Ray Harris, MMXV. All rights reserved.

The author hereby grants to MIT and The Charles Stark Draper Laboratory, Inc.
permission to reproduce and to distribute publicly paper and electronic copies of

this thesis document in whole or in part.

A uthor

C ertified by

C ertified by

MIT

Accepted by Sig

Signature redacted
Sloan School of Management

M<y 15, 2014

Signature redacted
Dr. Vichael J. Ricard

Laboratory Technical Staff
Charles Stark Draper Laboratory, Inc.

Thesis Supervisor

Signature redacted
Prof. Cynthia Rudin

Associate Professor of Statistics
CSAIL and Sloan School of Management

(5Tlis Supervisor

nature redacted
Pro . imitris Bertsimas

Boeing Professor of Operations Research
Co-Director, Operations Research Center

THIS PAGE INTENTIONALLY LEFT BLANK

2

Anomaly Detection Methods for Unmanned Underwater

Vehicle Performance Data

by

William Ray Harris

Submitted to the Sloan School of Management
on May 15, 2014, in partial fulfillment of the

requirements for the degree of
Master of Science in Operations Research

Abstract

This thesis considers the problem of detecting anomalies in performance data for
unmanned underwater vehicles(UUVs). UUVs collect a tremendous amount of data,
which operators are required to analyze between missions to determine if vehicle sys-
tems are functioning properly. Operators are typically under heavy time constraints
when performing this data analysis. The goal of this research is to provide opera-
tors with a post-mission data analysis tool that automatically identifies anomalous
features of performance data. Such anomalies are of interest because they are often
the result of an abnormal condition that may prevent the vehicle from performing
its programmed mission. In this thesis, we consider existing one-class classification
anomaly detection techniques since labeled training data from the anomalous class is
not readily available. Specifically, we focus on two anomaly detection techniques: (1)
Kernel Density Estimation (KDE) Anomaly Detection and (2) Local Outlier Factor.
Results are presented for selected UUV systems and data features, and initial find-
ings provide insight into the effectiveness of these algorithms. Lastly, we explore ways
to extend our KDE anomaly detection algorithm for various tasks, such as finding
anomalies in discrete data and identifying anomalous trends in time-series data.

Thesis Supervisor: Dr. Michael J. Ricard
Title: Laboratory Technical Staff
Charles Stark Draper Laboratory, Inc.

Thesis Supervisor: Prof. Cynthia Rudin
Title: Associate Professor of Statistics
MIT CSAIL and Sloan School of Management

3

THIS PAGE INTENTIONALLY LEFT BLANK

4

Acknowledgments

There are many to whom I owe thanks for both the completion of this thesis and

my experience at MIT. Firstly, I would like to thank Dr. Michael Ricard of Draper

Laboratory. His support over the past two years has been invaluable. His genuine

concern for my well-being and personal success has made my time at MIT a very

rewarding experience.

I would like to thank the Navy, Draper Laboratory, and the Operations Research

Center for giving me the opportunity to pursue a Master's degree. Studying oper-

ations research at MIT has been an amazing educational opportunity that I believe

will forever enrich my life and career.

I am also grateful to Dr. Cynthia Rudin for her guidance and support. She has

been a tremendous resource for all of the roadblocks that I encountered throughout

the completion of this thesis.

I would also like to thank employees of NUWC and WHOI for taking the time to

help me with my research. In particular, I would like to thank Tom Merchant and

Nathan Banks, along with others at NUWC for sharing their technical knowledge of

the UUVs that I researched for this thesis. I would also like to thank Tom Austin,

Mike Purcell, and Roger Stokey of WHOI for providing the data and software used

in this research, and also for sharing their technical knowledge of UUVs.

Lastly, I would not have had such a great experience at MIT without the love and

support of my family and friends. Classes at MIT were an enjoyable experience with

the help of my friends in the ORC. I would also like to thank Rob, Casey, and Amy,

my wonderful office mates at Draper Lab, for their friendship and support.

The views expressed in this thesis are those of the author and do not reflect the

official policy or position of Charles Stark Draper Laboratory, the United States Navy,

Department of Defense, or the U.S. Government.

William Ray Harris, ENS, USN 15 May 2015

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

Contents

1 Introduction

1.1 Motivation

1.2 General Problem Statement

1.3 Approach

1.4 Contributions

1.5 Thesis Organization.

2 UUV Background

2.1 R E M U S .

2.2 M A RV .

3 Anomaly Detection Overview

3.1 B ackground .

3.2 Characteristics of Anomaly Detection Problems

3.2.1 Types of Anomalies .

3.2.2 Nature of Data ..

3.2.3 Availability of Labeled Data

3.2.4 O utput .

3.2.5 Characteristics of UUV Anomaly Detection

4 One-Class Classification Methods

4.1 Statistical Methods .

4.1.1 Parametric Techniques .

7

15

15

16

17

17

18

19

19

22

25

25

26

27

30

31

33

33

37

37

38

. .

. .

.......................

. .

. .

4.1.2 Non-parametric Techniques 41

4.2 Distance Based Methods . 43

4.2.1 k-Nearest Neighbors . 44

4.2.2 Local Outlier Factor (LOF) 45

4.2.3 Clustering . 47

4.3 One-Class SVM . 50

4.4 Discussion . 53

5 Kernel Density Estimation: Parameter Selection & Decision Bound-

aries 57

5.1 Parameter Selection . 58

5.2 Computing Decision Boundaries . 61

5.3 Discussion . 64

6 Experimentation 67

6.1 Model Performance . 67

6.2 REMUS Pitch Data Analysis . 69

6.2.1 Model Selection . 72

6.2.2 R esults . 74

6.3 REMUS Thruster Data . 75

6.3.1 Model Selection . 78

6.3.2 R esults . 80

6.4 MARV Thruster Data . 81

6.4.1 Model Selection . 81

6.4.2 R esults . 82

6.5 Discussion . 83

7 Extending KDE Anomaly Detection Technique 85

7.1 Incorporating New Vehicle Data . 86

7.2 Discrete Data . 91

7.3 Reusing Models for New Vehicles . 94

8

7.4 D iscussion . 95

8 Conclusion 97

8.1 Summary of Results and Contributions 97

8.2 Future Work . 98

9

THIS PAGE INTENTIONALLY LEFT BLANK

10

List of Figures

2-1 REMUS 600 - Autonomous Underwater Vehicle[1] 21

2-2 REMUS 6000 - Autonomous Underwater Vehicle[1] 21

2-3 MARV - Autonomous Underwater Vehicle[2] 23

3-1 Illustration of point anomalies in artificially generated bivariate data 28

3-2 Illustration of contextual anomaly in artificially generated periodic data 29

3-3 Illustration of collective anomaly in artificially generated time-series data 30

4-1 Gaussian Model Based Anomaly Detection for Fabricated Data . . . 40

4-2 Kernel Density Estimate for univariate data 43

4-3 Illustration of data set suitable for Local Outlier Factor Anomaly De-

tection . 46

5-1 Kernel Density Estimate using Bowman & Azzalini Heuristic Band-

width for (a) Gaussian and (b) Mixture of Gaussians 61

5-2 KDE Approximation and Decision Boundary for Univariate Gaussian 64

5-3 Illustration of (a) KDE approximation for Multivariate PDF (b) Deci-

sion Boundary for Multivariate PDF 64

6-1 Example of (a) Normal Pitch Data and (b) Faulty Pitch Data 70

6-2 Performance Measures vs. log(a) for REMUS 600 Pitch Test Data

Features 73

6-3 Performance Measures on Pitch Test Data vs. ThresholdLOF for opti-

m al k . 74

6-4 F-Measure vs. k for ThresholdLOF 2 75

11

6-5 Pitch Data Decision Boundaries with (a) Training Data and a = 0.025

(b) Test Data and a = 0.025 (c) Training Data and a = 0.075 (d) Test

Data and a = 0.075 . 76

6-6 Example of (a) Normal Thruster Data and (b) Faulty Thruster Data 77

6-7 Performance Measures vs. log(a) for REMUS 600 Pitch Test Data

Features ... 78

6-8 Performance Measures on Thruster Test Data vs. ThresholdLOF for

optim al k. 79

6-9 Thruster Data Decision Boundaries with (a) Training Data and a =

0.075 (b) Test Data and a = 0.075 80

6-10 Performance Measures vs. log(a) for MARV Pitch Test Data Features 82

6-11 MARV Thruster Data Decision Boundaries with (a) Training Data and

a = 0.05 (b) Test Data and a = 0.05 83

7-1 Illustration of (a) Anomalous Trend in Feature 1 and (b) Bivariate

Data Set in Anomalous Trend Example 88

7-2 Decision Boundaries for Various Training Sets in Anomalous Trend

E xam ple . 89

7-3 Number of Anomalies per Window vs. Sliding Window index for

Anomalous Trend Example . 92

7-4 Histogram of REMUS 6000 Faults with Decision Boundary 93

7-5 REMUS 6000 Pitch Data Features with Previous REMUS 600 Decision

B oundary . 95

12

List of Tables

2.1 REMUS 600 and REMUS 6000 Vehicle Specifications 20

2.2 MARV Vehicle Specifications . 22

6.1 Decision Classification Table . 68

6.2 KDE & LOF Performance Measures for REMUS Pitch Data Experiment 75

6.3 KDE & LOF Performance Measures for REMUS Pitch Data Experiment 80

6.4 KDE & LOF Performance Measures for MARV Pitch Data Experiment 83

13

THIS PAGE INTENTIONALLY LEFT BLANK

14

Chapter 1

Introduction

1.1 Motivation

Unmanned underwater vehicles (UUVs) are utilized both commercially and by the

military for a variety of mission categories, including oceanography, mine counter-

measures (MCM), and intelligence, surveillance and reconnaissance (ISR) [6]. Many

of these mission categories require that UUVs traverse as much area as possible, and,

due to resource constraints, in a limited amount of time. As a result, UUV opera-

tors will typically seek to minimize the turnaround time between missions in order

to maximize the amount of time that a vehicle is in the water and performing its

programmed mission.

One constraint when attempting to minimize the turnaround time between sor-

ties is the need for operators to perform post-mission data analysis. UUVs collect

large amounts of data on every mission. The collected data often contains hundreds

of variables from a variety of different sensors, and each variable typically contains

thousands of time-series data points. Due to the limitations of underwater commu-

nications, operators are often unable to retrieve this data in real time. Thus, data

analysis must be performed post-mission, after the vehicle has come to the surface

and data has been uploaded.

Post-mission data analysis is performed to ensure that the vehicle is behaving

as expected. Operators must check that the vehicle has adequately performed its

15

programmed mission, and that the vehicle is in good working condition. The task

requires an experienced operator who can distinguish between "normal" and "faulty"

data. Due to time constraints and the volume of data, this can be a difficult task, even

for experienced UUV operators. In addition, it can be difficult to identify anomalous

long-term trends in performance data. For example, a certain system may experience

degradation over the period of 50 missions. This degradation may be difficult to

identify by operators analyzing data from individual missions.

We would like to be able to automate much of the post-mission data analysis

task and provide operators with a tool to help identify anomalous features of per-

formance data, since anomalous data may be indicative of problem with the vehicle.

The desired benefits of such a tool are as follows:

" Improved ability of detecting faults in UUV systems.

" Decreased turnaround time between sorties.

" Less operator experience required for post-mission data analysis.

In short, a reliable post-mission analysis tool means less resources (e.g. time, money)

being spent per UUV mission, and improved reliability of UUV performance.

1.2 General Problem Statement

This thesis considers the problem of detecting anomalies in UUV performance data.

Anomalies are defined as "patterns in data that do not conform to a well defined

notion of normal behavior"[9]. The assumption in this case is that anomalous data

is often indicative of a fault. We define fault, as in 122], to be "an abnormal condition

that can cause an element or an item to fail". By identifying anomalous data, we can

alert UUV operators towards potential faults.

Specifically, we focus on identifying anomalous features of continuous time-series

data. Our goal is to build a classifier, trained on historical data, that can distinguish

between "normal" and "anomalous" data instances. Our goal is to classify a particular

subsystem for a given mission as either anomalous or normal. For this thesis, the

16

term "normal" will always refer to expected or regular behavior with respect to data

instances. We will use the term Gaussian to referring to the probability distribution

commonly known as the normal distribution.

1.3 Approach

The problem of anomaly detection is heavily dependent on both the nature of avail-

able data and the types of anomalies to be detected [9]. In this thesis, we explore

existing anomaly detection techniques, and we discuss which methods can be effec-

tively applied to UUV performance data.

We will take a one-class classification approach to identifying anomalous data fea-

tures for a particular UUV subsystem for a given mission. One-class classification

anomaly detection techniques assume that all training data is from the same class

(e.g. the normal class)[9]. With this approach, we attempt to build a classifier based

on normal training data. One issue in this case is that we do not have readily available

training data. That is, we do not know whether or not UUV performance data for a

given mission contains unmodeled faults. The key assumption that we make is that

the majority of UUV missions that we use for training models do not contain faults

for the systems of interest.

As will be discussed in Chapter 4, we determine that anomaly detection using

kernel density estimation (KDE) is well suited for the problem of UUV anomaly de-

tection. Hence, we will primarily focus on the KDE anomaly detection algorithm for

our experimentation. The basic approach of this technique is to develop a probability

model for the data generating process of features of UUV performance data. We

classify future data instances as anomalous if they lie in areas of low probability of

our stochastic model.

1.4 Contributions

The contributions of this thesis are as follows:

17

1. A survey of one class classification methods that are applicable to the problem

of UUV anomaly detection.

2. A discussion of parameter selection for our KDE anomaly detection algorithm.

3. Development of an algorithm for computing decision boundaries based on our

KDE models.

4. Experimental results for selected data features for UUV subsystems. We com-

pare the KDE anomaly detection algorithm with another one-class classification

method called Local Outlier Factor (LOF).

5. A discussion of extending our KDE algorithm for various purposes, namely, (1)

detecting anomalies in discrete data, (2) incorporating new data into our KDE

models while accounting for potential anomalous trends, and (3) using previous

KDE models for new UUVs.

1.5 Thesis Organization

Chapter 2 of this thesis gives an overview of the UUVs and data sets that were

used in this research. Chapter 3 provides a description of the anomaly detection

problem in its most general form. In this chapter, we discuss the characteristics

of the UUV anomaly detection problem, and conclude that one-class classification

methods are suitable for this problem. In Chapter 4, we explore existing one-class

classification methods that may be suitable for UUV anomaly detection. In chapter

5, we discuss parameter selection for our KDE anomaly detection algorithm, and we

also demonstrate how to compute decision boundaries for our classifier. In Chapter 6,

we show experimental results for selected UUV subsystems and data features. Lastly,

Chapter 7 is a discussion of extending our KDE anomaly detection algorithm for

various purposes.

18

Chapter 2

UUV Background

The UUVs discussed in this thesis are the Remote Environmental Monitoring Unit

(REMUS) series of vehicles and the Mid-Sized Autonomous Reconfigurable Vehicle

(MARV). In this section, we will discuss the systems and sensor payloads of these

vehicles, as well as operational capabilities. We will also describe the data sets that

were available for this research.

2.1 REMUS

The REMUS series of vehicles was developed by Woods Hole Oceanographic Institute

(WHOI), and is currently manufactured by Hydroid, Inc. The goal of the REMUS

project was to develop a UUV that could collect accurate oceanographic measure-

ments over a wide area, at a small cost. The first REMUS was built in 1995[15].

Today, the REMUS series consists of the six types vehicles of varying sizes, spec-

ifications, and capabilities. In this research, we had access to data from two types of

vehicles, namely the REMUS 600 and the REMUS 6000. The specifications of these

two vehicles are given in table 2.1. The most notable difference is that the REMUS

6000 is larger, and capable of operating at depths of up to 6000 meters [15].

REMUS vehicles maneuver using a propeller and fins. They are powered by

rechargeable lithium ion batteries, which must either be recharged or replaced af-

ter a mission. There are several ways that a REMUS can obtain a position fix, which

19

Parameter REMUS 600 REMUS 6000
Diameter 12.75 inches 28 inches
Weight 530 lbs 1900 lbs

Max Depth 600 meters (1968.5 feet) 6000 meters
Max Endurance 70 hours 22 hours

Table 2.1: REMUS 600 and REMUS 6000 Vehicle Specifications

is an estimate of the vehicle's position in the water. The most accurate method is

through GPS, but this requires that the vehicle is on the surface since GPS signals

will not travel through water. When the vehicle is beneath the surface, it can recieve

an acoustic fix by measuring distances from underwater transponders. The position

of these transponders is known, and the vehicle can measure distance to and from

the transponders by measuring the time that an acoustic ping takes to reach the

transponder. Lastly, the vehicle can use dead reckoning using sensor measurements

from the Inertial Navigation System (INS) and Acoustic Doppler Current Profiling

(ADCP). Dead reckoning is the process of estimating the vehicles position by advanc-

ing position from a previous fix based on measurements of velocity and angle through

the water.

In addition to the INS and ADCP, the REMUS can be fitted with a variety of sen-

sors, depending on mission requirements. Sensors that are commonly utilized include

side scan sonar, conductivity & temperature, acoustic imaging, and sub-bottom pro-

filing sensors. The ability to customize the REMUS sensor payload allows the vehicle

to perform a variety of missions. These missions can be programmed on a laptop

computer using the REMUS Vehicle Interface Program (VIP). Typical REMUS ap-

plications include[16]:

" Mine Counter Measure Operations

" Hydrographic Surveying

" Search & Salvage Operations

" Scientific Sampling & Mapping

" Debris Field Mapping

20

Figure 2-1: REMUS 600 - Autonomous Underwater Vehicle[1]

Figure 2-2: REMUS 6000 - Autonomous Underwater Vehicle[1]

REMUS Data Sets

There are two collections of REMUS mission data that were obtained for this research.

The first collection is from three separate REMUS 600 vehicles that combined to per-

form 282 missions between 2011 and 2014. This mission data was obtained from the

Naval Undersea Warfare Center, Division Newport (NUWC-NPT). The second col-

lection of mission data is from two REMUS 6000 vehicles. The data covers 72 deep

water surveying missions conducted by WHOI operators in 2009.

The data available for each mission is similar for both the REMUS 600 and RE-

MUS 6000 collections. Each mission contains over 100 variables, and each variable

contains thousands of data points that are in time-series. Of these variables, we are

interested in those that a REMUS operator might analyze between missions to iden-

tify vehicle faults. According to REMUS operators at WHOI and NUWC-NPT, some

variables that are typically analyzed after each mission are thruster output, vehi-

cle control data (e.g. pitch, yaw, etc.), and navigation performance data (e.g.

frequency of acoustic fixes). Hence, we will focus on identifying anomalous missions

based on these variables.

In addition to the time-series data collected on each mission, the REMUS vehicle

21

_ _a

maintains a fault log. This log contains a record of events that the REMUS is pro-

grammed to identify during a mission. Some of these are normal occurrences, such

as the vehicle dropping an ascent weight before driving to the surface. Other events

are modeled faults, such as the vehicle not be able to dive below the surface of the

water. Again, for this thesis we are interested in identifying previously unmodeled

faults, and not those that are identified in the fault log.

2.2 MARV

The Mid-Sized Autonomous Reconfigurable Vehicle (MARV) was designed and manu-

factured by the Naval Undersea Warfare Center. The MARV first became operational

in 2004. The vehicle has similar systems, capabilities, and sensor payloads as the RE-

MUS. One notable advantage of the MARV vehicle is that it has thruster control

capabilities that allow the vehicle to hover. This allows the vehicle to remain in one

place, which is ideal for object inspection or stand-off reconnaissance. The vehicle

specifications for the MARV are given in table 2.2[7]. The vehicle is powered by a

rechargeable lithium ion battery.

Parameter MARV
Diameter 12.75 inches

Speed 2-5 knots
Max Depth 1500 feet
Endurance 10-24 hours

Table 2.2: MARV Vehicle Specifications

The MARV, like the REMUS, has a torpedo shape design (shown in figure 2-

3). Also, like the REMUS, the MARV can be fitted with a variety of different sen-

sors. Common sensor payloads include side-scan sonar, chemical sensors, bathymet-

ric sonar, and video cameras. Typical missions performed by the MARV include the

following[7]:

" Water Column Chemical Detection and Mapping

" Sonar Survey of Water Columns and Ocean Floor

22

* Object Inspection

e Stand-off Reconnaissance

MARV Data Set

The MARV data used in this research is from a collection of missions run by operators

at NUWC-NPT. The collection contains 128 missions from 2013. Like the REMUS

data, each mission contains over 100 variables with thousands of data points in time-

series. Each mission contains sensor data as well as vehicle health data (e.g. battery

status, thruster output, etc.).

Again, we will focus on variables that are typically analyzed for faults by operators

between missions. These include variables related to thruster performance, navigation

performance, and vehicle control.

Each MARV mission also generates a vehicle log and fault log. The vehicle log

contains a record of each action that the vehicle takes on a mission. For example, it

lists every change of direction and every acoustic fix that is obtained. The fault log,

unlike the REMUS fault log, only lists a select few casualties, and is usually empty

unless there is a fault that results in an aborted mission. Due to the fact that the

vehicle log contains a much larger amount of information than the REMUS fault log,

it is more difficult to pinpoint events that may be the cause of abnormal performance

data for the MARV.

Figure 2-3: MARV - Autonomous Underwater Vehicle[2]

23

THIS PAGE INTENTIONALLY LEFT BLANK

24

Chapter 3

Anomaly Detection Overview

This chapter provides an overview of the anomaly detection problem in its most

general form. We discuss characteristics of anomaly detection problems and determine

which existing techniques may be relevant to the problem of anomaly detection for

UUV performance data.

3.1 Background

Anomaly detection, or outlier detection, is an important and well-researched problem

with many applications. In existing literature, the terms anomaly and outlier are

often used interchangeably. Hodge and Austin [13] define anomaly as "an observation

that appears to deviate markedly from the other members of the sample in which

it occurs". For this thesis, we use the definition given by Chandola, et al., in [9],
"Anomalies are patterns in data that do not conform to a well defined notion of

normal behavior". Approaches to anomaly detection are similar, and often identical,

to those of novelty detection and noise detection.

Detecting anomalies is an important problem in many fields, since anomalous data

instances often represent events of significance. For UUVs, anomalous data is often

an indication of a mechanical fault or some other issue with the vehicle that would

require action from an operator. Another example would be an anomalous spending

patterns on a credit card. If a credit card is being used more frequently or in areas

25

outside of typical spending areas, it may be an indication of credit card fraud. Other

examples of anomaly detection applications include the following[13]:

" Intrusion Detection - Identifying potential security breaches on computer

networks.

" Activity Monitoring - Detecting fraud by monitoring relevant data (e.g. cell

phone data or trade data).

" Medical Condition Monitoring - Detecting health problems as they occur

(e.g. using heart-rate monitor data to detect heart problems).

* Image Analysis - Detecting features of interest in images (e.g. military targets

in satellite images).

* Text Data Analysis - Identifying novel topics or events from news articles or

other text data.

The unique attributes of each of these applications make the anomaly detection

problem difficult to solve in general. Most anomaly detection techniques are catered

toward a specific formulation of the problem. This formulation is determined by

certain characteristics of our data and the types of anomalies we are interested in

detecting. These characteristics are discussed in the following section.

3.2 Characteristics of Anomaly Detection Problems

Anomaly detection problems have been researched since as early as 1887 [101. Since

then, a large number of techniques have been introduced, researched, and tested. The

necessity for a broad spectrum of techniques is due to unique characteristics of each

application of anomaly detection.

In [9], Chandola, et al., list four aspects of anomaly detection problems that can

affect the applicability of existing techniques. These four characteristics are types

of anomalies that are of interest, the nature of input data, the availability of

data labels, and the output of detection. In this section, we will address each of

26

these characteristics separately and discuss the characteristics of anomaly detection

for UUV performance data.

3.2.1 Types of Anomalies

The first characteristic of an anomaly detection problem that we will address is

the type of anomalies that are of interest. There are three categories of anomalies

that we will discuss, namely point anomalies, contextual anomalies, and collective

anomalies[9].

Point Anomalies

A point anomaly is a single data instance that does not fit to the remainder of the

data. This is the simplest type of anomaly, and typically the easiest to detect.

Figure 3-1 shows a two-dimensional data set containing two point anomalies. The

normal data is generated from a bivariate Gaussian distribution, and the point anoma-

lies were inserted into areas of very low probability.

As an example for UUV data, consider sensor readings for a certain system, say

thruster output. If the sensor readings give a single measurement that is outside of

normal operational limits, then the measurement would be considered anomalous.

Such an anomaly may be due to a problem with thrusters, or due to a sensor that is

need of calibration. This is known as limit checking, and is the simplest method of

anomaly detection for univariate data.

Contextual Anomalies

A contextual anomaly is a data instance that, given one or more contextual attributes,

does not fit to the remainder of the data. Some examples of contextual attributes

are time in time series data, position in sequential data, and latitude and longitude

in spatial data. Having to account for contextual attributes makes the problem of

identifying contextual anomalies more complex than that of point anomalies.

A simple example of a contextual anomaly would be an inch of snowfall in Texas

27

[Normal data-
Point Anomalies

10

02 01 101

Feature 1

Figure 3-1: Illustration of point anomalies in artificially generated bivariate data

in April. An inch of snowfall is certainly not anomalous in many parts of the world

during the month of April. Additionally, an inch of snowfall in Texas may not be

considered anomalous in January. It is the combination of these contextual attributes

(location and month) that make such a data instance anomalous. For UUV data, an

example of a contextual anomaly would be a 10 degree roll angle while the vehicle

is maintaining a straight course. Such a roll angle might be normal if the vehicle is

making a turn, but, given the context, the measurement would be considered anoma-

lous and a possible indication of a fault.

Figure 3-2 illustrates a contextual anomaly. The data used in this plot is fabri-

cated, and is meant to represent time-series data with periodic behavior. The anoma-

lous data instance, marked in red, would be considered normal without context, since

there are a number of similar observations. In order to identify this point as anoma-

lous, we must account for the time-series aspect of the data.

28

T,

LL

I I I I I I

20 40 60 60 600 120 140 160

Time

Figure 3-2: Illustration of contextual anomaly in artificially generated periodic data

Collective Anomalies

Lastly, a collective anomaly is a collection of related data instances that is anoma-

lous with respect to the entire data set[9]. The individual data instances may not

be considered anomalous on their own. Like contextual anomalies, dealing with col-

lective anomalies is typically more complex, since we have to account for additional

information (i.e. the relationships between data instances).

An example of a collective anomaly for UUV data would be the absence of a depth

reading for a sequence of consecutive depth measurements. It is not uncommon for

a vehicle to lose bottom lock, which refers to the event when a vehicle is unable to

obtain sensor readings of the ocean floor. If the UUV loses bottom lock, the depth

measurement returns 0. Typically, the UUV will regain bottom lock relatively quickly.

In this case, we might consider a sequence of twenty consecutive depth readings of

0 as anomalous. Note that for this example it would be easy to transform certain

collective anomalies into point anomalies. Instead of measuring depth readings, we

29

-'Normal" Time-Senes Data
T Contextual Anomaly

could instead consider the number of observations since the previous non-zero obser-

vation. Under this transformation, a sequence of twenty consecutive depth readings

of zero would be a point anomaly.

Figure 3-3 illustrates a collective anomaly for fabricated time-series data. The

anomalous subset is a sequence that shows very little variance between consecutive

observations.

120

I-"Normal" Data-Collectve Anomaly

40

Time
100

Figure 3-3: Illustration of collective anomaly in artificially generated time-series data

3.2.2 Nature of Data

Another characteristic of an anomaly detection problems is the nature of the avail-

able data. We refer to each data point as a data instance, and each data instance

is made up of one more variables, or attributes. These variables may be continuous,

discrete, binary, or categorical. If data instances have one variable, they are said to

be univariate. Data instances with two or more variables are multivariate.

We must also consider the relationships between data instances. Two data in-

30

LL

0

.1

stances, say A and B, are said to be independent if the attributes of A are not affected

by the attributes of B, and vice versa. More formally, if A and B are generated by

some data generating process, then A and B are independent if

Pr(A U B) = Pr(A) * Pr(B).

That is, the joint probability of data instance A and B both appearing in our data set

is equal to the product of the marginal probability of A appearing and the marginal

probability of B appearing. Data instances are dependent if

Pr(A U B) # Pr(A) * Pr(B).

Time-series and sequential data tend to be highly dependent, since neighboring data

instances are typically related.

The applicability of anomaly detection techniques is highly dependent on the

nature of our data. Anomaly detection techniques may not be applicable for all types

of data. For example, nearest neighbor techniques, which will be discussed in the

following chapter, require a distance metric defined over the domain of our data set.

Distance metrics (e.g. Euclidean distance) are easy to define over continuous data, but

do not translate to categorical data. Furthermore, the majority of existing techniques

assume that data instances are independent. Identifying anomalies in dependent data

sets typically requires more sophisticated algorithms.

3.2.3 Availability of Labeled Data

Anomaly detection problems are also dependent on the availability of labeled training

data. A data instance can be labeled as "anomalous" or "normal". Obtaining labeled

training data may be difficult or impractical for a number of reasons. Labeling data

may be prohibitively expensive, due to time constraints or the size of a data set. An-

other difficulty may be in obtaining data that covers the range of possible anomalies,

particularly if anomalous data instances correspond to rare events. Depending on the

31

availability of labeled data, there are three approaches to anomaly detection, namely

supervised, semi-supervised, and unsupervised anomaly detection.

Supervised Anomaly Detection

Supervised anomaly detection methods require labeled training data from both the

"normal" and "anomalous" classes. The goal of supervised anomaly detection is

to build a classifier that can distinguish between these two classes. This is also

known as two-class classification, and is often done by building probability models

for each class. With this strategy, future instances are classified by comparing the

conditional probabilities that the instance belongs to each class. Another strategy is

to fit classifiers directly, without building probabilistic models. The support vector

machine is one such classifier, and does not require any assumptions about the data

generating process [171.

Utilizing supervised anomaly detection methods can be difficult. As previously

stated, obtaining sufficient labeled training data is often infeasible. Even with training

data from both classes there is often the issue of data imbalance. This occurs when

the training set contains many more instances from the "normal" class, and is often

the case for anomaly detection problems[11].

Semi-Supervised Anomaly Detection

Semi-Supervised anomaly detection methods require data from the "normal" class.

These methods are more widely applicable than supervised methods, since normal

data is often readily available for most applications. A common approach for semi-

supervised methods is to develop a probabilistic model for normal behavior, and

classify future instances as anomalous if they lie in regions of low probability.

Unsupervised Anomaly Detection

Lastly, Unsupervised anomaly detection methods can be used when labeled training

data is unavailable. The key assumption for unsupervised methods is that anomalous

32

data instances appear much less frequently than normal data instances in our training

set. As stated in [9], if this assumption does not hold true, then these methods can

lead to a very high false-alarm rate. These methods are widely applicable, since they

do not require labeled data.

3.2.4 Output

The last characteristic of an anomaly detection problem is the desired output to be

reported. Chandola, et. al, list two possible outputs: anomaly scores and labels[9].

An anomaly score is a numeric value assigned to a data instance that represents

the degree to which the instance is considered anomalous. Typically, higher scores are

used for anomalous data instances. An example would be if we create a probabilistic

model for normal data under a semi-supervised technique. Suppose we estimate a

probability density function, x, for normal data. A reasonable anomaly score for a

test point would be the inverse of the density function evaluated at that point. That

is, for a point, x, in our test data set, we have

1
score(x) = ^ .

An analyst might sort test data by anomaly score, and then select the instances with

the highest scores to analyze further.

The alternative is to output a label, either "anomalous" or "normal". This is

typically done by selecting a certain threshold for what is considered anomalous. For

many techniques, outputting a label is equivalent to setting a predetermined threshold

on anomaly scores. For other techniques, such as SVM, the relationship between an

anomaly score and a label is not as straightforward.

3.2.5 Characteristics of UUV Anomaly Detection

We now discuss the characteristics of the UUV anomaly detection problem that is of

interest in this thesis. These characteristics will allow us to narrow down potential

anomaly detection techniques that may be applicable to our data.

33

As stated in our problem statement in Chapter 1, the goal of this research is

to help operators identify faults in UUV systems that are previously unmodeled.

Specifically, we are interested in determining if systems are behaving normally over

an entire mission. As discussed in Chapter 2, most UUV performance data is time-

series, but we will not address the problem of finding anomalous sequences within

this time-series data. According to experienced operators, a vehicle will not typically

experience an unmodeled fault and then correct itself in the middle of the mission. For

example, if a part of the thruster system breaks, it will remain broken for the entire

mission. Instead, we will use features of performance data to identify anomalous

system behavior over the course of an entire mission. We must select appropriate

features that are indicative of system performance

Our problem is thus to find point anomalies, where our data are specific features

of performance data. Each point in our data set corresponds to a feature of time-

series data from an individual mission. As an example, suppose we are interested

in identifying anomalous thruster behavior. UUVs typically collect time series data

of thruster ouput and thruster goal over the course of a mission. A feature that we

could use is the average of the difference between thruster output and thruster goal.

If thruster data is collected from time t = 1 to T then the feature, Xi, of mission i is:

T

E T hruster Out put (t) - T hruster Goal (t)

For this problem, we do not have available labeled data. The UUVs of interest

do generate a fault log, which is typically an ad hoc list of faults that are previously

modeled. The vehicle is programmed to automatically identify these faults, and an

operator will be alerted to them by reading through the fault log after a mission.

Since we are interested in identifying unmodeled faults, we do not have the luxury of

using these fault logs to obtain labeled data. Furthermore, it would be implausible

to obtain sufficient labeled data for the following reasons:

34

* Unmodeled faults are rare relative to modeled faults and normal performance

data.

* Unmodeled faults are not well documented.

" Due to the complexity of UUV systems, there is a wide range of possible faults,

which may correspond to a wide range of anomalous data.

Due to the lack of labeled data, we will focus on unsupervised anomaly detection

methods. Due to the fact that operators are under a time-constraint when perform-

ing post-mission data analysis, we will focus on methods that output a label, rather

than an anomaly score. This will save operators the step of analyzing a sorted list of

anomaly scores.

In conclusion, our goal is to identify anomalous performance data by using fea-

tures of time-series data from individual missions. We are interested in methods that

output an anomaly label. Due to lack of available labeled data, we will use unsuper-

vised methods, and make the assumption that anomalies in our test set are rare. In

the following chapter, we will discuss one-class classification methods that could be

appropriate for this task.

35

THIS PAGE INTENTIONALLY LEFT BLANK

36

Chapter 4

One-Class Classification Methods

Based on the characteristics of the UUV anomaly detection problem, we have deter-

mined that one-class classification methods are most suitable for identifying anoma-

lous features of UUV data. In this chapter, we discuss specific one-class classification

methods that may be applicable, namely statistical methods, distance-based meth-

ods, and the one-class support vector machine.

These methods can be utilized for both semi-supervised and unsupervised anomaly

detection. In the semi-supervised case, we have labeled training data from the normal

class. In the unsupervised case, we have unlabeled data, but we rely on the assump-

tion that anomalous data instances are rare in our test set. As previously stated,

for this research we are assuming that unmodeled faults, which typically correspond

anomalous mission performance data, are rare events.

4.1 Statistical Methods

The general strategy with statistical anomaly detection techniques is to estimate

some probability distribution using historical data. The estimated distribution is

then used to make a decision on future data points. The key assumption for these

techniques, as stated in [9], is that "normal data instances occur in high probability

regions of a stochastic model, while anomalies occur in the low probability regions of

the stochastic model". These methods also rely on the assumption that normal data

37

instances are independent and identically distributed.

In this section, we will discuss both parametric and non-parametric techniques.

The key distinction is that parametric techniques require extra assumptions about

our data, namely that the data is generated from a family of probability distributions,

and that these distributions have a fixed number of parameters. If these assumptions

are correct, then parametric techniques will typically lead to better results. Non-

parametric techniques make no assumptions on the underlying distribution of our

data.

4.1.1 Parametric Techniques

With parametric techniques we make an assumption about the family of distributions

to which the data generating process of interest belongs. Our goal is to estimate a

probability density function, fX (x; E), where x is a data instance and e represents

the parameters of the density function. In other words, we attempt to estimate a

probability density function over x, parameterized by . We estimate 6 in one of

two ways.

First, we can estimate E by using the maximum likelihood estimate (MLE). This is

a function of our training data. The idea of MLE is to find the parameters that max-

imize the likelihood that our data was generated by fx(x; 0). Suppose our training

data consists of the instances xi E D. The maximum likelihood estimate, E(D)MLE

is given by:

E(D)MLE arg max 17 fx(xi 0).
E xicD

Alternatively, we can incorporate some prior knowledge about our data to find the

maximum a posteriori probability (MAP) estimate for 0. Suppose we have a prior

distribution on our parameters, say g(0). This prior distribution would typically be

developed from expert knowledge on the system of interest. From Bayes' theorem,

the maximum a posteriori probability estimate, OMAP is given by:

38

OMAP(D) = arg max 11 f(x))e xED P()

= argmax]1 f(xjjE))g(E)
e xiED

Using our estimated parameters, E, we can output an anomaly score for a test

instance, xi, corresponding to the inverse of the density function evaluated at xi. We

can label data instances as anomalous by setting a threshold on the anomaly score.

Typically, this threshold is determined by estimating of the frequency of anomalies

in our data. As an example, we consider Gaussian model based anomaly detection.

The advantage of MAP estimation is that it allows us to incorporate expert knowl-

edge into our probability models. If we have an appropriate prior for E, then MAP

estimation will likely lead to better results.

Gaussian Model

In this simple example, suppose we have n univariate data instances, {xi, X2, ... , }=
Dtraining. The assumption in Gaussian model based anomaly detection is that our

data is generated by a univariate Gaussian probability density function with param-

eters E = {p, a-}. For this example, we estimate our parameters, e = [A, &], using

maximum likelihood estimates. These estimates are given by:

$= [A,]=arg max H fx (xi; [Yo). (4.1)
[IptO xjED

As shown in [18], the values f and & that maximize equation 4.1 the sample mean

and sample standard deviation, respectively. That is,

39

n

Xi

n
n

(fi - A) 2
i=1

n

0.2

0018

0.16

C u

.

0.04

-2 0

ata points in test set
stimated PDF
ecision Boundary

-i -

Feature 1 (X)
10 12

Figure 4-1: Gaussian Model Based Anomaly Detection for Fabricated Data

Figure 4-1 shows an example for fabricated test data generated from a Gaussian

distribution with y = 4, and - = 2. We used maximum likelihood estimates to

compute A and & from our test data. For this example, we estimated that 10%

of our features are anomalous due to unmodeled faults. We thus compute a 90%

confidence interval for data points generated by our estimated PDF. Boundaries for

our confidence interval are given by Aftz*&, where z is the point where the cumulative

density function is equal to 010 = 0.05, that is F6(z) = 0.05. Once we have our

decision boundary, a test point Xtest is classified as anomalous if it lies outside of our

40

"'

-- 0
-E
-D(

computed confidence interval.

4.1.2 Non-parametric Techniques

With non-parametric techniques, we are not required to make an assumption about

the underlying distribution of our data. Similar to parametric techniques, we attempt

to estimate the distribution of the data generating process, and we classify test in-

stances as anomalous if they fall into regions of low probability. Two non-parametric

techniques that were explored in this research are histogram-based anomaly detection,

and anomaly detection using kernel density estimation.

Histogram-Based

Histogram-based anomaly detection is the simplest non-parametric technique avail-

able. For univariate data, this involves creating a histogram based on training data,

and classifying test instances as anomalous if they fall into bins with zero or few train-

ing instances. The key parameter in this case is the size of bins in our histogram. If

our bin size is too small, we are more likely to have normal instances fall into bins

with few or no training instances. This will lead to a high false alarm rate. On the

other hand, if the bin size is too large, we are more likely to have anomalous instances

fall into bins with a higher frequency of training data, leading to a higher rate of true

negatives[91.

One way to choose a bin size for histogram-based methods would be to estimate

the number of unmodeled faults in our training set. We could fix the threshold, start

with a large bin size, and decrease bin size until the number of anomalies classified in

our training set is approximately equal to our estimate of the number of unmodeled

faults. Alternatively, we could fix bin size and adjust our threshold until we achieve

the same number of faults in our training set.

41

Kernel Density Estimation

Kernel density estimation, also known as Parzen Windows Estimation, is a non-

parametric technique for estimating a data generating process. A kernel, K(-) is

any non-negative function that has mean zero and integrates to one. Two commonly

used kernels are the Gaussian kernel (KG) and the Epanechnikov kernel (KE). These

kernels are defined by the following equations:

1 -X)
KG () = exp(2

V2T 2
3

KE(X) - - 2
4

Given a set of training data, {Xi, ... , X}= Dtraining, and kernel, K(x), we estimate

the probability density function over x with the following equation:

n * h =1 h

where h is a smoothing parameter known as the bandwidth. We can also include h in

our characterization of our kernel function, by letting Kh(x) = -K(x/h). If we use

Kh, also known as a scaled kernel, our density estimate reduces to the following:

fx(x) = Kh(X - Xi)
n

i=1

In words, if we have n training data instances, our density estimate is the average of

n scaled kernel functions, one centered at each of the points in our training set[19j.

Figure 4-2 illustrates a KDE approximation for a univariate PDF. The estimated

PDF (black) is the sum of scaled kernel functions (blue) centered at our data (red).

Once we have an estimate for a probability density function, the problem of clas-

sifying anomalies is identical to that of parametric statistical methods. We classify

a test instance, xest, as anomalous if it lies in an area of low probability. In the

following chapter, we will explore methods for computing decision boundaries based

42

0.25

0.2

015

01

o.osI-

-KDE PDF Approximation
Data

-Scaled Kernel Functions

x

Figure 4-2: Kernel Density Estimate for univariate data

on PDFs estimated using kernel density estimation. We will also explore parameter

selection for bandwidth, h.

4.2 Distance Based Methods

Nearest neighbor and clustering algorithms are common in machine learning litera-

ture. In this section we will discuss how nearest neighbors and clustering algorithms

have been adapted for the purpose of one-class classification. Unlike statistical meth-

ods, these techniques do not involve stochastic modeling.

These techniques require a distance metric to be defined between two data in-

stances. The distance metric used in this research is Euclidean distance, de. For

instances xi, xj E D C R', Euclidean distance is defined as

43

0

1

d,(xi, xj) = (z - XI)2 + (X2 - X2) +_. . . (X -_)

- (X X-j) - (i - X).

Another commonly used distance metric is Mahalanobis, or statistical distance, which

takes into account correlation between variables. This is a useful distance metric if

we believe that our variables are highly correlated.118].

4.2.1 k-Nearest Neighbors

As stated in [9], k-nearest neighbor anomaly detection relies on the assumption that

"Normal data instances occur in dense neighborhoods, while anomalies occur far from

their closest neighbors". Incorporating k-nearest neighbors for one-class anomaly

detection requires the following steps[22]:

1. Store all data instances from training set, Dtraining.

2. Select parameter k and distance metric, d(xi, xj).

3. For each x E Dtraining, identify the k-nearest neighbors in Dtraining. We will

denote the set of k-nearest neighbors of xi as N(xi).

4. Compute an anomaly score for each instance x E Dtraining. The anomaly score

for instance xi is given by the averaged distance from xi to its k-nearest neigh-

bors:

anomaly score(xi) = d(xi, xj)

xjEN(xi)

5. Set a threshold, denoted thresholdkia, on anomaly scores. This is determined

by our belief of the frequency of faults in our test set. If we believe that a

fraction, p, of n missions in our test set contain unmodeled faults, then we

select thresholdkNN to be the (p *)h highest anomaly score. If we have

44

confirmed that our test set contains no unmodeled faults then we would select

thresholdkNN = max {anomaly score(xi) : xi E Dtest}.

6. For a test instance, Xtest e Dtest, identify the k-nearest neighbors within the

training set.

7. Compute the anomaly score for Xtest as in step 4:

anomaly score(xtest) = 1 d(Xtest, xj).
xjEN(xtest)

8. If anomaly score(xtest) > thresholdkNN, classify instance as anomalous. Oth-

erwise, classify as normal.

4.2.2 Local Outlier Factor (LOF)

One shortcoming of many distance based techniques, including k-nearest neighbors,

is that they only account for global density of our data set. For more complex real-

world data sets, our data may contain regions of higher variance. In this case, we

would also like to take into account local density when identifying point anomalies.

Consider figure 4-3, which contains two clusters of normal data, as well as a point

anomaly. The two clusters contain the same amount of data instances, but the bottom

left cluster has a much higher local density. The point anomaly would typically not

be identified by conventional k-nearest neighbors or clustering techniques, since it is

still closer to its nearest neighbors than instances in the top right cluster.

In 1999, Breunig et. al, developed a distance based anomaly detection technique,

similar to k-nearest neighbors, that takes into account local density[5]. This technique

is known as local outlier factor (LOF) anomaly detection. Implementing LOF for one-

class anomaly detection requires the following steps:

1. Store all data instances from training set, Dtraining.

2. Select parameter, k, and distance metric, d(xi, xj).

45

* Normal Data
- Point Anomaly a

0

0
0 *

0

0

0 *
0

0
0

0
0

0

0

01000
'be

00
0

0

-2 1 1 1 1 1
F1at3 4 1

Feature 1
8b 6 9 10

Figure 4-3: Illustration of data set suitable for Local Outlier Factor Anomaly Detec-
tion

3. For each x E Dtraining, identify the k-nearest neighbors in Dtraining. We will

denote the set of k-nearest neighbors of xi as N(xi).

4. For each xi E Dtraining, compute the local density of xi, which is given by:

Local Densityz(xi) =
radius of smallest hypersphere centered at xi containing N(xi)

k
max {d(xi, xj)Ixj C N(xi)}

5. For each xi E Dtraining, compute the local outlier factor of xi. This value will

serve as an anomaly score, and is given by:

46

LL

10 ,

a

LOF(i)' average local density of k-nearest neighbors of xi
local density(xi)

local density(xj)
xjEN(xi)

local density(xi)

6. Set a threshold, denoted thresholdLOF, on anomaly scores. Again, this is de-

termined by our belief of the frequency of faults in our test set. If we believe

that a fraction, p, of n missions in our test set contain unmodeled faults, then

we select thresholdLOF to be the (p * n)th highest local outlier factor.

7. For a test instance, xtest E Dtest, compute LOF(xtest), using Dtraining to identify

the k-nearest neighbors of xtest.

8. If LOF(xtet) > thresholdLOF, classify instance as anomalous. Otherwise, clas-

sify as normal.

4.2.3 Clustering

Clustering is the process of partitioning a data set so that similar objects are grouped

together. There is extensive literature available for a number of different clustering

techniques. Some common approaches to clustering include[18]:

" Model Based Clustering

" Affinity Propagation

" Spectral Clustering

" Hierarchical Clustering

" Divisive Clustering

We will not go into detail about various clustering algorithms in this thesis. In-

stead, we will discuss techniques for anomaly detection for data that have already

47

been clustered. In particular, we assume that our training data set, Dtraining, has

been partitioned into clusters, and our goal is to classify a test instance, Xtest.

Chandola, et al. distinguish between three different categories of cluster-based

anomaly detection. These distinctions are based on assumptions about anomalous

data instances. The assumptions of the three categories are as follows[9]

" Category 1: Normal data instances belong to clusters, whereas anomalies do

not belong to clusters, based on a given clustering algorithm that does not

require all data instances to belong to a cluster.

" Category 2: Normal data instances lie close to the nearest cluster centroid,

whereas anomalous data instances do not.

" Category 3: Normal data instances belong to large, dense clusters, while

anomalies belong to small and sparse clusters.

The first category requires a clustering algorithms that does not force all data in-

stances to belong to a cluster. The main idea is to use such a clustering algorithm on

the training data set together with the test data point (i.e. use clustering algorithm

on Dtraining U Xtest). If xt,,t does not belong to a cluster (or is the only point in a clus-

ter), then classify as anomalous. Otherwise, Xtest is classified as normal. An example

of such an algorithm would be hierarchical agglomerative clustering. This technique

begins with all data instances as individual clusters, then merges data points one at

a time based on a certain distance metric[18]. This category is not well-suited for our

problem, since it requires that training data is clustered along with test data. We

would prefer a technique in which clustering is done prior to having access to Xtest,

in order to save on computation time.

The second category of cluster based anomaly detection requires all data to belong

to a cluster. The typical approach would be to partition Dtraining into clusters, and

then classify xtest as anomalous if it outside a certain threshold distance from the

closest cluster centroid. This is a promising approach if we believe that our perfor-

mance data features form distinct clusters.

48

The third and final category of cluster based anomaly detection also requires an

algorithm that assigns each data point to a cluster. The basic approach in this cat-

egory is to classify data instances as anomalous if they belong to clusters whose size

or density is below a certain threshold. Similar to the second category, we would

cluster data in Dtraining first. We would then classify certain clusters as anomalous if

they lie outside of a threshold for size or density. Lastly, we would determine which

cluster xtest would belong, and classify as anomalous or normal based on the cluster

to which it belongs. An example of such a technique is Cluster-Based Local Outlier

Factor, proposed by He, et al., in 2003[12]. The technique incorporates both the size

of the cluster, and the local density of a data instance when computing an anomaly

score.

k-means clustering

We now outline a simple implementation of anomaly detection using k-means clus-

tering. This implementation falls into the second category of cluster based anomaly

detection. The steps are as follows:

1. Use k-means clustering to identify partition Dtraining into k clusters, denoted

C1,C2,...Ck.

2. For each cluster, Cj E {CI, c2, ... , Ck} compute cluster centroid, pj, given by

Ijti
xicjiA

3. For each xi E Dtraining, compute distance to closest centroid. This will be the

anomaly score for data point xi.

4. Set a threshold on anomaly scores based on the belief in the fraction of unmod-

eled faults in our training set. We will denote this value as thresholdcluster.

5. For test data instance, xtest, compute the distance to the closest cluster cen-

49

troid. If distance is greater than thTesholdciuster, classify xt,,t as anomalous.

Otherwise, classify xtest as normal.

4.3 One-Class SVM

The one-class support vector machine (SVM) is an approach that attempts to fit

a classifier directly to the training data, without any probabilistic assumptions or

decision theory applications. The assumption for this approach is that "a classifier

that can distinguish between normal and anomalous classes can be learnt in the given

feature space"[9]. In this section we will briefly describe the more traditional two-

class support vector machine, and explain how it has been adapted for the one-class

classification problem.

Two-Class SVM

The support vector machine is most commonly used for two-class classification. This

requires that we have labeled training data from two distinct classes (e.g. normal

class and anomalous class). The main idea is to find a separating hyperplane that

maximizes the margin, which is the distance between the hyperplane and the closest

data points. Suppose we have training, Dtraining = {(X1, yI),..., (Xn, yn)}, where

xi E Rd and yj E {-1, 1}. In this case, xi E Dtraining is a training instance and yj

is a class label (e.g. -1 normal, 1 = anomalous). Our goal is to find the optimal

hyperplane, given by w * x + wo = 0, where w E Rd, and wo E R. We can find an

optimal hyperplane by solving the following quadratic program:

1 2 n

minimize -wjj +C)(subject to:
2

i=1l

yi(w -ri + W) > 1 - j for i- = ,...,I n

j > 0 for i=-1, ...,In

50

The inclusion of C and slack variables i allows some points to be inside the margin.

If we increase C, we force more points to be on the correct side of the margin, at the

cost of having a smaller margin[18.

One interesting and useful result with support vector machines, is that the above

optimization problem can be rewritten in terms of dot products of our data instances.

This allows us to easily implement kernel functions. A kernel function, typically

denoted J'(x), implicitly maps our data instances into a higher dimensional inner

product space. Note that this is different than the kernel that we defined for kernel

density estimation. In this case, using a kernel function allows us to find an optimal

hyperplane in a higher dimensional space, which will appear as non-linear classifica-

tion boundary in Rd.

A commonly used kernel function is the radial basis kernel function, or RBF ker-

nel. The RBF kernel is given by

||z- - Xj 112
(zi) - (xj) = K(xi, xj) = exp(- 2a.2)

The RBF kernel is a similarity measure between data instances xi and x3 . By using

this kernel, we are implicitly mapping our data instances into an infinite dimensional

feature space, i.e. 4(xi) E R'. The fundamental concept is that we do not need

to calculate 1 (xi), since we are only concerned with dot products between vectors,

which is given by K(xi, xj)[18].

One-Class SVM (Sch6lkopf et al.)

In 1999, Sch6lkopf et al., adapted the support vector machine for one-class classification[20].

The main idea of their technique is to separate a majority of the training data from

the origin in some high-dimensional feature space by utilizing kernel functions. The

result gives a non-linear decision boundary in the original feature space that encapsu-

lates the majority of the training data. For training data instances, xi E Dtraining, and

kernel function 1 (x), the optimal hyperplane is found in feature space F by solving

the following quadratic program for decision variables p, , w, and wo:

51

1 12 1
minimize- -|wl2 + --- - - p subject to:

2 vnLd

(w - <b1(xi) + wo) > p - i for Zi = ,..,n

z > 0 for i =1,...n

Recall that for two-class SVM, the parameter C determined how strict we were in

requiring data instances to be on the correct side of the margin. For this implemen-

tation of one-class SVM, the parameter v sets an upper bound on the fraction of data

instances that lie outside of the decision boundary[201.

In order to implement one-class SVM for UUV performance data, we would first

select an appropriate kernel function (e.g. radial basis kernel). We would then solve

the dual form of the optimization problem above for dual variables, ac, and data

instances xi E Dtraining. A test data instance, Xtest, would be classified by using the

resulting decision function:

n

f (Xtest) = sgn((w * (xtest) + wo) - p) = sgn(E aiK(xi, xtest) - p)
i=1

If f(Xtest) = -1, then we classify xtest as anomalous. Otherwise, we classify xtest as

normal[20].

One-Class SVM (Tax & Duin)

In 2004, Tax and Duin developed another version of one-class SVM called Support

Vector Data Description (SVDD)21]. Rather than finding an optimal hyperplane,

Tax and Duin take the approach of finding an optimal hypersphere that encapsulates

the region of normal data. The hypersphere is characterized by center, a, and radius,

R. For training data instances xi c Dtraining, an optimal hypersphere can be found

by solving the quadratic program for decision variables R and a:

52

n

minimize R2 + C i subject to:
i=1

||xi - al 12 < R 2+(for i = 1, ..., n

- 2 0 for i=I,.,n

Similar to two-class SVM, the introduction of C and slack variables i allow us to

have data instances in our training set that lie outside of the hypersphere. For small

values of C, we will generally have more points outside of the decision boundary.

In order to classify a test data instance, xtest, we only need to compute the distance

from Xtest to the center of the hypersphere. If d(xtest, a) > R, then we classify Xtest as

anomalous. Otherwise, we classify xtet as normal. In [21], Tax and Duin also show

how to implement the radial basis kernel function, which allows to find a decision

boundary in our original feature space that is not necessarily a hypersphere[21].

4.4 Discussion

The focus of this section has been to explore one-class classification methods that

might be applicable to the problem of finding point anomalies among features of

UUV performance data. Each method shown above has certain positive and negative

characteristics. We now discuss these pros and cons and narrow down our focus to

two methods: Kernel Density Estimation and Local Outlier Factor.

First, parametric statistical methods allow us to make stronger predictions, but

only if certain assumptions about our data are correct. The key assumption that we

are required to make is that our data is generated from a certain family of distribu-

tions. If our assumption about the family of distributions is off, then our predictions

will suffer. Based on the available UUV data and features that are of interest, we

have determined that making an assumption about the family of distributions is not

preferable.

Non-parametric methods give us an alternative way to estimate the data gener-

53

ating process without making an assumption about the underlying distribution. For

this reason, we have determined that anomaly detection using kernel density estima-

tion is a promising technique. Estimating a probability distribution for our data is

intuitive, and also allows for useful visualizations for univariate and bivariate data.

Furthermore, having an estimate for a density function allows us to easily compute

decision boundaries (shown in Chapter 5). One drawback is that we are required to

specify a bandwidth parameter, h, beforehand. Anomaly detection with KDE will be

the primary focus of our experiments in Chapter 6.

Distance-based methods are also promising. Conventional k-nearest neighbors

techniques are very similar to kernel density estimation, in that anomalies will be

identified if they lie far from their nearest neighbors among training data. Nearest

neighbor methods, however, do not have the advantage of generating a probability

distribution, which, in our opinion, makes them less interpretable. Local outlier fac-

tor is an interesting technique, since it takes into account the local density of our data

set. We have noticed varying local densities in some of our data sets, and we have

thus chosen to implement LOF in our experiments in Chapter 6. One drawback of

LOF is having to choose parameters k and anomaly threshold. Unlike KDE, where we

have heuristics to help us choose the bandwidth parameter, for LOF it is difficult to

decide on a parameter k beforehand. Another drawback is that LOF, in comparison

to KDE, is much more of a "black box", meaning that the generated classifier may

be less interpretable to operators. The last distance based technique, clustering, is

not ideal, since we have not found that our data sets contain unique clusters.

Lastly, the one-class support vector machine allows us to fit a classifier without

any probabilistic assumptions. The method can be made robust to anomalies in our

test set by introducing slack variables into the optimization problem. Also, both

techniques that were discussed can be enhanced through the implementation of ker-

nel functions. The primary drawback of the one-class SVM is the interpretability of

the generated models. Using kernel functions is a neat trick, but we would also like

a method that can be easily understood by operators. Also, one-class SVM requires

several parameters (i.e. C, y, K(-, -)) that must be chosen beforehand.

54

In conclusion, we have determined that kernel density estimation and local outlier

factor provide the most upside for our given problem. These methods will be imple-

mented for UUV data, and we will compare their performance. First, we will explore

KDE further by looking at both heuristics for bandwidth selection and a method for

computing decision boundaries.

55

THIS PAGE INTENTIONALLY LEFT BLANK

56

Chapter 5

Kernel Density Estimation:

Parameter Selection & Decision

Boundaries

We have determined that anomaly detection using kernel density estimation is a suit-

able approach for attempting to identify point anomalies among features of UUV

performance data. In this chapter, we discuss methods for choosing our bandwidth

parameter, and we also discuss ways to compute decision boundaries for our classifier

based on our estimated probability density function.

Given that we have an appropriate feature space, there are primarily three chal-

lenges in implementing KDE for anomaly detection. The first is choosing an appropri-

ate kernel function, K(-). The second is selecting a bandwidth parameter, h, for our

kernel function. The last challenge is choosing an appropriate threshold for which to

distinguish between normal and anomalous data instances. For this research, we will

use the Gaussian kernel function described in Chapter 4. This is a commonly used

kernel, and allows us to use the heuristic described in the following section for choos-

ing a bandwidth parameter. Our discussion of bandwidth selection comes primarily

from Applied Smoothing Techniques for Data Analysis by Bowman and Azzalini [4].

For the remainder of this chapter, we will denote the true density function as f

and our estimated density function as f(-)

57

5.1 Parameter Selection

Recall that for kernel density estimation, our goal is to estimate the probability

density function for a data generating process. For data, Dtest, and kernel function,

K(x), our kernel density estimate, f(-), is given by

f(x) = - Xi)
n

xiEDtest

E KX -X

=nh ((h '

where Kh(x) = !K(x/h) is the scaled kernel function, and h is the bandwidth param-

eter. Higher values of h give us wider kernel functions, resulting in estimated PDFs

that are more smooth and less "peaky".

Selecting too large a bandwidth can lead to oversmoothing, and our resulting

estimated density function will underestimate f at peaks in the true density and

overestimate at points of low true density. This will likely result in regions of our fea-

ture space being labeled as normal that should be considered anomalous. Conversely,

having too small a bandwidth will result in an estimated density with many peaks.

Our resulting classifier may not fully capture regions of normality.

For our KDE implementations, we will use a heuristic developed by Bowman and

Azzalini for computing a bandwidth parameter based on training data. The goal of

this heuristic is to minimize the mean integrated squared error (MISE) between f(-)
and f(.). This is a measure of how effective f(-) is in estimating f(.). The MISE for

the univariate case is given by the following equation[4]:

MISE(f) =E [(f(x) - f (x))2dx] (5.1)

= JE[f(x)] - f (x)] dx + jvar (f(x))dx (5.2)

58

The expected value of f(x) is given by the following:

'ElfW)]= Kh(x - z)f(z)dz

This is the convolution of the true density function, f(-), with the scaled kernel

function, Kh. By taking a Taylor series expansion of E[f(y)], we get the following

approximation,

E[f(x)] f (h) + h f"(2), (5.3)
2

where ai denotes the variance of the kernel function. For our purposes, we will

choose a Gaussian kernel with unit variance, so Ui will reduce to 1. Through another

Taylor series expansion, Azzalini and Bowman show that the variance of the estimated

density can be approximated by

)1var f(x) f(x)a(K), (5.4)
nh

where a (K) f K2 (z)dz. An important result of 5.4 is that the variance of our

estimated density is inversely proportional to the sample size, n, of our training set.

By plugging in 5.3 and 5.4 into equation 5.1, we can approximate the mean inte-

grated squared error by the following equation:

4 1
MISE(f) -h f"(x) 2 dx + a(K)4 J nh

Using this approximation for the MISE, Azzalini and Bowman show that the

bandwidth parameter that minimizes the MISE (for UK 1) in the asymptotic sense

is

59

h ((K) (5.5)
ot (f)n

where 0(f) = f f"(x)2 dx[4]. As pointed out in [4], the expression for hopt given in

equation 5.5 is not immediately applicable, since it depends on the unknown distri-

bution, f(.), that we are trying to estimate. The heuristic given by Azzalini and

Bowman in [4] is to use the bandwidth, h, that minimizes MISE given that f(-) is

Gaussian. This clearly goes against our approach of attempting to estimate the true

density using non-parametric methods. However, this heuristic does give us an eas-

ily computable, and commonly used estimate for the bandwidth parameter. For the

univariate case, the optimal bandwidth is given by,

hopt = (3_ ,)9

where a is the standard deviation of our true density, which can be approximated by

a sample estimate. More generally, if our feature space is of dimension d, then the

optimal bandwidth parameter in dimension i is given by:

hi = (() i;- j

The value (') is the standard deviation in dimension i. This can be replaced by

a sample estimate for standard deviation. For our models, we will use the median

absolute deviation estimator[14]:

& - median(I x(- 0.6745

We will use this heuristic for computing our bandwidth parameter in our experi-

mentation in Chapter 6. One consequence of this heuristic is that it tends to induce

oversmoothing when the true distribution is non-Gaussian. Figure 5-1 demonstrates

60

this consequence. In figure 5-1 (a), the true distribution is Gaussian, and our es-

timated distribution (blue) provides a good approximation for the true distribution

(red). In (b), the true distribution is a mixture of Gaussians, and our KDE approx-

imation overestimates f(.) at troughs, and underestimates it at peaks in the true

distribution.

Estimated vs. True PDF for Univariae Gaussian

-Estimated PDF
-True PDF

-4 -3 -2 -1 0
X

1 2 3 4

0.2-

018-

0.16-

0.14-

0.12-

C 01-

o 0B -

0.06-

0.04-

Estuated vs Tmre PDF for mxture of Gaeussia

-skaePDF
--True PDF

-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure
for (a)

(a) (b)

5-1: Kernel Density Estimate using Bowman & Azzalini Heuristic Bandwidth
Gaussian and (b) Mixture of Gaussians

5.2 Computing Decision Boundaries

We now look at computing a decision boundary that distinguishes between normal

and anomalous regions of our feature space, based on our KDE model. As stated in

chapter 4, our assumption is that anomalies appear in regions of low probability in

our stochastic model.

Our goal is to find the regions of our feature space that contain the highest den-

sity. The threshold, a, will correspond to the integral of our estimated PDF over

the anomalous region. Hence, 1 - a will be the integral of the estimated PDF over

the normal region. We will denote the normal region as N. We will choose a based

61

04[

0.35-

0.3

0.15-

0.1

on our prior belief on the likelihood of an unmodeled fault. The idea is that if

IP(Unmodeled Fault) = a, then roughly 1 - ce% of our data will in the normal re-

gion. We would like to find region N that corresponds region of our feature space

with highest density that contains 1 - a% of the density. This also depends on the

assumption that unmodeled faults will not appears as dense clusters in our feature

space. If this assumption does not hold, then we may incorrectly classify anomalous

regions. More formally, our goal is to find N C Rd, where d is the dimension of our

feature space, such that

J f(x)dx = 1 - a, (5.6)

x C N

and

f(Xi) > f(X 2) Vxi C N, X 2 E N'.

Since f(x) is the normalized sum of many PDFs (i.e. kernel functions), evaluating

the integral in 5.6 and solving for N can be computationally expensive. Rather than

attempting to solve this problem directly, we will instead discretize our estimated

PDF and use numerical integration to find approximations for 5.6.

In order to find our decision boundary, we must first find a threshold on the value

of our PDF. We will denote this threshold as T1. Our goal is to find the value q, such

that 5.6 holds, where N = {x : f(x) > T1. Algorithm 1 below shows the pseudocode

for computing 1.

We compute the numerical approximation of the integral in Algorithm 1 using

the trapezoidal method. Rather than finding the limits of integration explicitly, we

can also set f(x) = 0 for all x such that f(x) < r at each iteration. Then we can

simply integrate over the entire PDF. This is equivalent to solving for the numerical

approximation of f f(x)dx, but saves us the step of finding the limits of integration.
xEN

We now illustrate the implementation of algorithm 1 by finding decision bound-

62

input : Discretized estimated PDF (f(x)), A., a
output: Value of PDF at decision boundary, denoted 1

'= 0;
Integral = 1;
while Integral > 1 - a do

N = {x :f(x) > rj}

Integral = Numerical approximation of f f(x)dx
xGN

end
Algorithm 1: Pseudocode for computing value of PDF at decision boundary

aries for fabricated univariate and bivariate data. Figure 5-2 illustrates a KDE ap-

proximation for a univariate standard Gaussian distribution. The KDE model was

computed using 100 random Gaussian data points. We have computed the PDF

threshold, q, shown by the horizontal black line, corresponding to a = 0.05. The

decision boundaries are shown in red. Computing this decision boundary is analo-

gous to finding a 95% confidence interval on a Gaussian distribution with mean 0 and

standard deviation 1. In our case, we find the decision boundary by estimating the

PDF and then using algorithm 1 to find the PDF threshold. As shown in figure 5-2,

our normal region is approximately the interval [-1.96,1.96], which corresponds to

the z-scores for a 95% confidence interval. This is an indication that our algorithm

for computing the decision boundary is behaving as expected.

Figure 5-3 (a) shows a KDE approximation for a bivariate PDF. The true PDF

is a mixture of Gaussians. In figure 5-3 (b), we have computed the PDF threshold

corresponding to a = 0.9. The blue points are data instances used to compute the

KDE approximation of the true PDF. The decision boundary (green) is shown by a

contour plot with a contour line at our PDF threshold. This illustrations shows that

we can effectively find disjoint normal regions.

63

Univariate KDE w/Decision Boundary

-Estima
.- Value

-- Decisi

X

ted PDF

DF at Decision Boundary
)n Boundary

Figure 5-2: KDE Approximation and Decision Boundary for Univariate Gaussian

Eutmalad Probabilty Deniy Function

0.02,

.0151

0.006

05

0

-5 1

- 15 45 -10 00

(a)

Contoix at Comput Dtwo Bounday

-Dciin Bonry,

-10 -8 -8 -4 -2 0 2 4 6

(b)

Figure 5-3: Illustration of (a) KDE approximation
Boundary for Multivariate PDF

for Multivariate PDF (b) Decision

5.3 Discussion

In this section, we have discussed parameter selection for implementing KDE anomaly

detection in practice. We have also shown how to compute decision boundaries in

order to distinguish between normal and anomalous regions of our feature space.

64

8 10

04 it

We have chosen to use the heuristic given by Azzalini and Bowman in [4] for

choosing our bandwidth parameter. This heuristic allows us to easily estimate the

bandwidth that minimizes the mean integrated squared error between our estimated

and true distributions. It is important to note, however, that this heuristic can lead

to oversmoothing if our data has a distribution that is clearly non-Gaussian.

We have also shown how to compute decision boundaries for our KDE anomaly

detection classifier. Note that we can implement the algorithm given in section 5.2 for

multivariate data of dimension greater than two. For univariate and bivariate data,

however, being able to easily plot a decision boundary may be useful for operators.

It will allow operators to visualize normal regions vs. anomalous regions, which may

provide useful insight into the systems of interest.

65

THIS PAGE INTENTIONALLY LEFT BLANK

66

Chapter 6

Experimentation

In this section, we describe anomaly detection experiments that were performed with

REMUS and MARV data. As discussed in chapter 4, the techniques that we will

utilize are kernel density estimation and local outlier factor. Our goal in this section

is to demonstrate implementations for these techniques, and to assess performance.

For these experiments, we have selected bivariate features in order to better illustrate

our models. The same methodology can be used for higher dimensional feature spaces.

6.1 Model Performance

One difficulty when working with unlabeled data is figuring out ways to assess the

performance of our algorithms. For supervised techniques, assessing performance is

relatively straight-forward since class labels can be compared to anomaly outputs

given by our anomaly detection algorithm. Since we do not have class labels readily

available, the problem is a little more complex.

Ultimately, we decided to go through a subset of the data and generate our own

labels. Our goal is to perform the same analysis that an operator would perform

between missions, but only for a particular system. This was done by analyzing time-

series data from the system of interest, and incorporating our own knowledge about

the system. For each mission, we labeled the system as "normal" or "faulty" based

on relevant time-series data. For missions that were labeled faulty, we checked the

67

fault log to determine if the irregular data was caused by a known fault. If the fault

log did not reveal a known a fault, the system for that mission was labeled as an

unmodeled fault.

We will further discuss our methods for labeling missions later on in this chapter,

since the methods are unique to each system. Note that we are not using labeled

data to train our models, for reasons discussed in Chapter 3. We have only generated

labeled data by hand for specific UUV systems in order to assess performance.

Given labeled data, we are now able to use standard performance measures, such

as accuracy, recall, and precision. Suppose we have a label y for each mission, where

I if mission i is "faulty"

0 if mission i is "normal"

Furthermore, suppose our anomaly detection algorithm generates a classifier f(xi)

j, where Qj is the output anomaly label for data instance xi. As in [18] we define

four types of decision classifications based on y and y, which are given in table 6.1.

The value N+ is the total number of faulty missions in our data set, and N+ is the

y= y= 0
1 True Positives (TP) False Positives (FP) N+
0 False Negatives (FN) True Negatives (TN) N_

N+ N_ N

Table 6.1: Decision Classification Table

total number of predicted anomalies as classified by f(.). The corresponding N_ and

AT values give the number of normal missions and the number of predicted normal

missions, respectively. The performance measures that are used are given by the

following equations [18]:

68

Recall =TP
N+

Precision TP
N+

Accuracy =TN+TP
N

2 * Recall * Precision
F - measure =

Recall + Precision

We can also interpret these performance measures as probabilities. The recall

corresponds to the probability that a randomly selected data point in the fault class

is correctly identified as anomalous in our model. The precision is the probability

that a randomly selected point that is classified as anomalous does indeed correspond

to a fault. The accuracy is simply the probability that a randomly selected point is

correctly classified by f(.).
Lastly, the F-measure is the harmonic mean of precision and recall. This is a

commonly used metric in information retrieval, and it gives us a single statistic that

encapsulates both precision and recall. The harmonic mean is used instead of the

arithmetic mean since the harmonic mean better accounts for imbalanced data. For

example, consider the case where we have only one mission out of 100 that we label

as a fault. If we (unwisely) select a classifier that classifies all of our data instances

as anomalous, then our recall is = 1 and our precision is 1. The arithmetic mean

gives of these two measures gives us 1+001 = 0.5. The F-measure, or harmonic2

mean, of this strategy gives 2*1*0.01 0.02, which is a much better evaluation of our0.01+ 1

classifier[18]. We will use the F-measure as the primary evaluation of our anomaly

detection algorithms.

6.2 REMUS Pitch Data Analysis

Our first experiment is identifying faulty pitch data in the REMUS 600 data set.

The first step is to generate labels for each mission in our test set, which will allow

69

us to assess performance. In order to classify missions as normal or anomalous, we

analyzed time series plots of pitch output and pitch goal. We classify a mission as a

fault if the pitch output appears to deviate significantly from the pitch goal.

Figure 6-1 shows examples of pitch data from two missions. Figure (a) illustrates

a mission in which the pitch remained in sync with the pitch goal for the entirety of

the mission. Figure (b) shows a mission in which the pitch goal continually increases,

while the pitch output remains constant. The mission from figure (a) was classified

as normal, while the mission corresponding to figure (b) was classified as anomalous.

After consulting the fault log from mission (b), we noted that the vehicle was stuck

on the surface, and unable to submerge for the entirety of the mission. Since the

anomalous data is explained in the fault log, we classify mission (b) as a modeled

fault.

PitchOs.Time Pichv.Time

Time (seconds)

Pitch Go vas. Time

C,

a.
-1

-2

.181

TM (seconds)

Pitc Go vs. Time

0i 3 00 2 00 -1 2@ 20

lie (seconds) Tune(seconds)

(a) (b)

Figure 6-1: Example of (a) Normal Pitch Data and (b) Faulty Pitch Data

70

After analyzing time series plots for each mission, we found that the REMUS 600

data contained 31 faults out of a total of 267 missions. Seven of these faults were not

explained by the corresponding mission fault log. These missions were classified as

unmodeled faults.

Experimental Procedure

The steps that were taken in this experiment are as follows:

1. Label each mission as anomalous or normal, as described above.

2. Compute features used for anomaly detection for each mission. Let P (t) be the

pitch output for mission i at time t. Let Gi(t) be the pitch goal for mission i at

time t. For this experiment we used the following two features:

x(1) mean(Pi t) - Gi(t))

T
E Pi (t) - Gi (t)

_t=1

T

x) standard deviation(P(t) - Gi(t))

T

((Pit) - Gi(t)) - i()2

T

3. Normalize data. Note that this is an optional step when implementing these

techniques. We choose to normalize our data in this experiment so that our

features are on the same scale.

4. Divide the data into a training set, Dtraining and Dtest. We used 2 of our data3

set for training.

5. Remove known faults from Dtraining, since we will not use missions with known

faults to generate our models for normal data. In practice, we will be able to

71

remove modeled faults because they appear in the fault log. Note that Dtraining

may still contain unmodeled faults. We will keep modeled faults in Dtet in

order to gauge classifier performance on all types of faults.

6. Use our trained model and corresponding anomaly detection algorithm to gen-

erate classifier, f(x).

7. Classify data instances in Dtest using j = f(xi).

8. Compute performance metrics by comparing yj and yj for each mission i in our

test set.

6.2.1 Model Selection

KDE Model

In chapter 5, we discussed heuristics for selecting the bandwidth parameter, h, for

kernel density estimation. We now look at how varying our threshold, a, affects our

performance metrics over the test set.

Figure 6-2 shows our KDE model performance on our training set. This was

obtained by finding decision boundaries corresponding to various confidence intervals

between 99.9% (a = 0.001) and 85% (a = 0.15). We achieve the highest F-measure

for a = 0.025 and a = 0.075.

One important observation is that our results are relatively constant (i.e. F-

measure ~ 0.6) for a values between 0.01 and 0.1. This tells us that we can still

achieve near optimal results for a range of a values. In practice, a must be selected

without having access to data labels, so having a range of a values that achieve good

results is crucial.

LOF Model

For our LOF experiment, we fit models of various k values and ThresholdLOF val-

ues. Recall that ThresholdLOF = n implies that our anomaly output threshold

corresponds to the nth highest anomaly score of data instances in our test set. We

72

Performance Measures vs. log(a) for Standardized Pitch Test Data
100

90-

80-

70-

60-

S50-

'40-

30- -F-measure
-Precision

20_ -Recall
-Accuracy

10-

97 -6 -5 -4 -3 -2 -
log(a)

Figure 6-2: Performance Measures vs. log(a) for REMUS 600 Pitch Test Data Fea-
tures

performed a grid search to find the optimal k and ThresholdLOF based on F-measure.

We find that we achieve the highest F-measure for k = 28 and ThresholdLOF E {2, 3}.

Figure 6-3 shows our performance measures for k = 28 for thresholds between 0 and

10.

One observation from figure 6-3 is that our results drop dramatically for slight

changes in ThresholdLOF. Changing our threshold from 2 to 3, our F-Measure drops

from 74% to around 40%. Again, in practice, we must select our parameters prior to

classifying test instances. Thus, unless we have a systematic and intelligent way to

determine our parameters beforehand, we will likely not achieve results that are close

to optimal. Figure 6-4 shows F-measure performance for constant ThresholdLOF as

a function of k. Again, we notice a lot of variation in our results.

73

Performance Measures vs. Threshold LOF for Standardized Pitch Test Data (k=28)

-F-measure
-Precision -
- Recall
-Accuracy _

1 2 3 4 5
ThresholdLOF

I 7 I 1 16 7 8 9 10

Figure 6-3: Performance Measures on Pitch Test Data vs. ThresholdLOF for optimal
k.

6.2.2 Results

We present results for selected KDE and LOF models. Table 6.2 shows performance

metrics for KDE models with a = 0.025 and a = 0.075 and for LOF model with

k = 28 and ThresholdLOF = 2. We find that the best LOF model outperforms our

KDE models in nearly every category. However, recall that we only fit KDE models

with constant bandwidth parameters, whereas we performed a grid search over all

LOF parameters.

Also, as previously noted, the performance of our LOF models varied significantly

with slight adjustments to our parameters. This would indicate that achieving good

performance with LOF would be much more difficult, since parameters would have

to specified without any information about performance over a labeled test set.

Another advantage of the KDE models is that we can easily illustrate decision

boundaries for bivariate data. Figure 6-5 shows our decision boundaries for a = 0.025

74

100

90

80

70

o 60

50

40

30

20C

F-Measure vs. k for Standardized Pitch Data (ThresholdLOF 2)
80

70-

60-

-50-

040-

U-
3 0

20-

10-

0 5 10 15 20 30 35 40 45 50
k

Figure 6-4: F-Measure vs. k for ThreshoidLoF = 2

KDE (a = 0.025) KDE (a = 0.075) LOF (Best Performance)
F-measure 0.67 0.67 0.74

Recall 0.50 0.58 0.58
Precision 1.0 0.78 1.0
Accuracy 0.90 0.88 0.90

Table 6.2: KDE & LOF Performance Measures for REMUS Pitch Data Experiment

and a = 0.075 with both training and test sets. As expected, our "normal" region is

slightly larger for a = 0.025.

6.3 REMUS Thruster Data

We now attempt to identify faults in REMUS thruster data. Again, our first step

is to label each mission as faulty or normal by analyzing time series data from each

mission. Figure 6-6 illustrates both normal time series data (a) and time series data

representing a faulty mission (b). For mission (a), the thruster rpm matches the

thruster goal for the entirety of the mission. For mission (b), however, the thruster

rpm goal reaches 1000, but the thruster rpm output cannot match this goal, and

remains around 800 rpms. This fault is not listed in the fault log, and we thus

classify the mission as an unmodeled fault. It is likely that the thruster rpm goal was

75

Training Data w/97.5% Confidence Region

-2

4

-6

-8

-5 -10 -5 0 5 10 1

(plh-pirh cmmand)

(a)

Training Daa w/92.5% Confdence Region
10 1

8 -Decision Boundary
Test Data Instances

4-

-2

-6-

-8

3 -
8

6

4

-6

6

-15 -10 -5 0 5 10 15

(pWc-pi*h command)

(c)

Scaterplot of teat pitch daa w/97.5% confidence region

-Decision Boundary
Faily Data Instance
Normal Data Instance

0

15 to . 0 5 10 15

(pWc-piVch comand

(b)

Scater plot of teat pitch data w/92.5% confidence region
10

-Decision Boundary
O .Faulty Data Instance

B Normal Data Instance
6

4

-6-

4-
15 -10 -5 0 5 15

(d)

Figure 6-5: Pitch Data Decision Boundaries with (a)
(b) Test Data and a = 0.025 (c) Training Data and
a = 0.075

Training Data and a = 0.025
a = 0.075 (d) Test Data and

erroneously set too high for several legs of the mission.

Our entire data set contains 32 faults, 16 modeled, and 16 unmodeled. Our test

set contains 5 unmodeled faults, which remain in the set when we generate our KDE

and LOF models.

76

-Decision Boundary
Test Data Instances

5

Thruster RPM vs. Time

I I I I i i

0 5 10 16M 200 26W 3000
Time (seconds)

Thruster RPM vs. Time

0 5W 100 15M 200 25W UO
Time (seconds)

i0M

a6W

ID

U

5W

Thruster RPM vs. Time

I I I I

0 100 200 3 40 60 60 700 H 90
Time (seconds)

Thruster RPM vs. Time

0 10 200

(a)

300 400 500 6M 700 80 9
Time (seconds)

(b)

Figure 6-6: Example of (a) Normal Thruster Data and (b) Faulty Thruster Data

Experimental Procedure

For this anomaly detection experiment, we follow the same procedure as with the

pitch data experiment. In this case, we use the following two features:

X(13;

2)
z;

= mean(R,(t) - Gi(t))
T

E Ri(t)-Gi(t)
t1

T

= standard deviation(Ri(t)

(6.1)

(6.2)

(6.3)- Gi(t))

EZ((Ri (t) - G2 (t)) - xi1)

T
(6.4)

77

WD

N

1000

(0

a
a

0

10M

|

1000

where R,(t) is the thruster RPM output at time t for mission i, and Gi(t) is the

thruster output goal at time t for mission i.

We again use the first 2 of missions for training data, and the remaining mis-3

sions for testing. Our goal is to assess performance of our models, and analyze how

parameter selection affects this performance.

6.3.1 Model Selection

KDE Model

For KDE anomaly detection, we vary a to assess performance for various anomaly

detection thresholds. Figure 6-7 shows how our performance metrics vary with respect

to a. We find that we achieve optimal F-measure for a = 0.075.

10

9

9

8

8

A 7

7

6

Performance Measures vs. log(a) for Standardized Thruster Test Data

551-

Figure
tures

-6 -5 -4
log(C)

-3 -2

6-7: Performance Measures vs. log(a) for REMUS 600 Pitch Test Data Fea-

As with the pitch data experiment, we find that we achieve near optimal results

for a relatively wide range of a values. In this case, we achieve an F-measure of

78

0-5-

0-

5-

0-

-F-measure
5- .- Precision

-Recall
-- Accuracy6

greater than 0.85 for a between 0.025 and 0.3.

LOF Model

For our LOF technique, we assess performance for various values of thresholdLOF and

k. We perform a grid search to find the model that achieves the best performance.

For our thruster data, we find that we achieve the highest F-measure for k = 20 and

thresholdLOF = 4.

Figure 6-8 illustrates our performance measures for optimal k and values of thresholdLOF

between 0 and 10. In this case, we find that performance remains near optimal for a

wide range of threshold values. However, like with the pitch data experiment, varying

k slightly leads in significantly worse performance. Again, this is problematic, since,

when applying this technique in the real world, we must decide on parameters for our

LOF model without knowledge of data labels or our test set.

Performance Measures vs. Threshold LOF for Standardized Thruster Test Data (k=20)
10

90-

80-

70

,R 60 -

50-F-measure
-Precision
-Recall

40- -Accuracy

30 -

0 1 2 3 4 5 6 7 8 9 10
ThresholdLOF

Figure 6-8: Performance Measures on Thruster Test Data vs. ThresholdLOF for
optimal k.

79

6.3.2 Results

We now present results for selected KDE and LOF models. Figure 6.3 shows perfor-

mance metrics for models that achieved the highest F-measure. For this experiment,

we find that our KDE model outperforms the LOF model.

KDE (a = 0.075) LOF (Best Performance)
F-measure 0.88 0.74

Recall 0.88 0.58
Precision 0.88 1.0
Accuracy 0.85 0.90

Table 6.3: KDE & LOF Performance Measures for REMUS Pitch Data Experiment

Figure 6-9 illustrates the decision boundaries corresponding to a = 0.075. This

corresponds to the best performing KDE anomaly detection model.

S4

r

-1

Trining Dlaw/92.5% Confidence Region

:5 -4 -3 -2 -1 0 1 2 3 4

Pri tnstu ==W

(a)

j4

I
22
6

-1

Tes Daa w 92.5% Confidence Regon

5 -4 3 -2 -1 0 I 2 3 4

lp--r eW bcmv~iAn

(b)

Figure 6-9: Thruster Data Decision Boundaries with (a) Training Data and a = 0.075
(b) Test Data and a = 0.075

80

-Deciion Boundary
Fautiy Data Instance
Normal Data instance

-Decision Boundary
Test Data Instances
Unmodeled Fauts

C

6.4 MARV Thruster Data

Our last anomaly detection experiment is on MARV thruster data. As discussed in

Chapter 2, the MARV data set contains performance data from 128 missions per-

formed by NUWC-NPT operators in 2013. After analyzing time series data from

each mission, we classified 27 out of 128 missions as faults. The analysis on the time

series data was done in a similar manner as in section 6.3 (i.e. by comparing thruster

rpm output and thruster rpm goal).

Experimental Procedure

The features used in this experiment are identical to those used in the REMUS

thruster data experiment. Our first feature is the arithmetic mean of difference be-

tween the thruster output and thruster goal, averaged over the entire mission (equa-

tion 6.2). The second feature is the standard deviation of the difference of the thruster

output and thruster goal (equation 6.4).

One difficulty when performing this experiment was differentiating between mod-

eled faults and unmodeled faults. In section 6.3, we described the MARV fault log,

and explained the difficulty in pinpointing events that cause abnormal performance

data. Because of this difficulty, we were not able to classify faults as modeled or

unmodeled. For this experiment, we left all anomalies in the test data and training

data. We used 2 of the mission data for training, and the rest for assessing model3

performance.

6.4.1 Model Selection

KDE Model

Again, we assess performance of our KDE model by computing performance metrics

over our test set. Figure 6.4 illustrates our performance metrics for various a values.

Optimal performance (F-measure = 0.88) is obtained for 0.05 < a < 0.2. As shown

in Figure 6-10, optimal or near optimal performance for a wide range of a values.

81

Performance Measures vs. log(a) for Standardized MARV Thruster Test Data
10

95-

90-

85-

80-

se 75-

70-

-F-measure
65 -Precision

60- -Recall
-Accuracy

55-

-6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1
log(a)

Figure 6-10: Performance Measures vs. log(a) for MARV Pitch Test Data Features

LOF Model

We again assess the performance of our LOF anomaly detection technique for various

values of thresholdLOF and k. By performing a grid search for integer values k E

{1, 2,... ,30} and thresholdLOF E {1, 2,..., 10}, we find that optimal performance

(F-Measure = 0.86) is achieved for k = 13 and thresholdLOF = 7.

As in previous experiments, we found that slight changes in our parameters can

lead to large deviations in classification performance. We omit plots for performance

measures since they are nearly identical to figures 6-4 and 6-3.

6.4.2 Results

We now present performance results for selected KDE and LOF models over our

MARV thruster data test set. Figure 6.4 shows that we achieve slightly better results

for our KDE model.

We now illustrate our decision boundaries for our optimal KDE model. Figure

82

KDE (a = 0.05) LOF (Best Performance)
F-measure 0.87 0.86

Recall 1.00 0.90
Precision 0.77 0.82
Accuracy 0.93 0.93

Table 6.4: KDE & LOF Performance Measures for MARV Pitch Data Experiment

6-11 shows our decision boundaries with both training set and test set for a = 0.05.

Trai*ing Data w/ 95.0% Confidence Region

-

-Decision Boundary
.4 Test Data Instances -

2 4 0-. 1 0

-3- Delaron Boundary

(a)

Figure 6-11: MARV Thruster Data Decision
a = 0.05 (b) Test Data and a = 0.05

ElI

I.i

-3

.4

Tet Data w 95.0% Confdence Region

5 -4 .3 .2 .1 0 1 2 3 4 5

(b)

Boundaries with (a) Training Data and

6.5 Discussion

In this chapter, we implemented anomaly detection using KDE and LOF techniques.

In order to assess the performance of our models, we generated labels for selected UUV

systems (i.e. thrusters and pitch control) for the REMUS 600 and MARV data sets.

The goal of these experiments was to compare the performance of these techniques

using real data sets, and to analyze how parameter selection affects performance.

For the REMUS pitch data experiment, the optimal LOF model slightly outper-

forms all of our KDE models. It is important to note, however, that for our KDE

83

Faudty Data Instance
Normal Data Instance

models, we only varied our detection threshold, and we used a constant bandwidth

parameter based on the heuristic discussed in Chapter 5. For our LOF implementa-

tions, we varied both the detection threshold and the k parameter. It is possible that

better results could be achieved for our KDE models by adjusting our bandwidth pa-

rameter. For both the MARV and REMUS 600 thruster data experiments, we found

that the KDE outperformed LOF.

Perhaps the most important takeaway from these experiments is that our KDE

models achieved near optimal performance for a wide range of a values. For LOF,

on the other hand, we found that results vary greatly with slight adjustments to our

parameters. This indicates that KDE would be more applicable in practice, since

parameters must be selected prior to classifying test data instances.

Lastly, we can also use the results of these experiments to make a recommendation

on a values to use in future implementations. In all experiments we achieved optimal

or near optimal results for a between 0.025 and 0.1.

84

Chapter 7

Extending KDE Anomaly Detection

Technique

Thus far, we have focused on the problem of identifying anomalous performance

data for a particular UUV mission. Our KDE anomaly detection technique seems

to be a reasonable approach to building a classifier that can automatically identify

such anomalies. In this chapter, we explore ways in which we can extend our KDE

anomaly detection approach to serve other purposes. In particular, we attempt to

answer the following questions:

1. Incorporating New Data: We would like to update our KDE model as we

receive more performance data from UUV missions. One issue with incorpo-

rating new data is that UUV systems may experience degradation over time.

This degredation will likely appear as an anomalous trend in certain features of

our data. If we update our KDE model after each mission, we may not identify

such anomalous trends. How can we smartly incorporate new vehicle data while

accounting for potential anomalous trends?

2. Discrete Data: We have utilized KDE for estimating the data generating

process for continuous data. Can we use similar anomaly detection methods for

discrete valued data?

3. Reusing KDE Models for Other Vehicles: Suppose that we have a new

85

UUV (or newly reconfigured UUV) without sufficient historical data to train a

KDE model. Can we use KDE models from other UUVs to identify anomalies

in these vehicles?

7.1 Incorporating New Vehicle Data

In this section, we discuss how we can smartly incorporate new data into our KDE

models. We can imagine a scenario in which we have a limited amount of histor-

ical data to train our KDE models. We would like to include more data into our

KDE model as UUVs complete more missions in order to improve upon our PDF

approximation.

Anomalous Trends

According to experienced UUV operators, there have been issues in the past with

UUV systems experiencing performance degradation over time. This may lead to

anomalous trends in our data features. When looking at data on a mission by mission

basis, these trends may not be readily apparent. However, when looking back over

the course of a number of missions, it becomes clear that a system is not behaving as

expected.

Normalization of Deviance

Furthermore, there have been occasions where operators become accustomed to sys-

tems that are performing sub-optimally. One case study that we explored in this re-

search is the Columbia Space Shuttle Disaster of 2003. The Space Shuttle Columbia

disintegrated while reentering the Earth's atmosphere, and it was later discovered

that the cause of the accident was due to damage to the shuttle's heat shield that

occurred during launch. Specifically, pieces the thermal insulation foam that covered

the external tank broke off during launch. A large piece of the insulation struck

the shuttle's left wing, causing damage to reinforced carbon-carbon panels[3]. This

damage allowed hot gasses to enter the shuttle during reentry, causing the vehicle to

86

disintegrate.

Although design requirements stated that foam shedding should not occur during

launch, several previous Columbia missions experienced a similar amount of foam

shedding. These previous missions, however, were deemed successful, as foam shed-

ding did not lead to significant damage. Over time, NASA engineers and manage-

ment became accustomed to foam shedding events, and dismissed them as "accepted

risk"[3]. This phenomenon of accepting events that should not occur was termed

"normalization of deviance" by sociologist Diane Vaughan.

The case of the space shuttle Columbia disaster, we believe, is relevant in the

problem of identifying anomalous trends in UUV mission performance data. The

foam shedding incidents that occurred can be viewed as "anomalies". Similar to

Columbia engineers, UUV operators can become accustomed to these anomalies that

occur when a system is not behaving as originally expected.

In order to ensure that anomalous trends do not become accepted as normal by

our KDE anomaly detection algorithm, we must be careful when incorporating new

performance data into our KDE approximations. In a scenario in which we have a

limited amount of data and only a few vehicles from which to build our KDE models,

an anomalous trend that is present in one or more vehicles may not be correctly iden-

tified. We now look at an example using fabricated data containing an anomalous

trend, and we discuss ways in which we can identify anomalous trends in test data

before we incorporate the data into our models.

Anomalous Trend Example

In this example, we use fabricated data to show how an anomalous trend might cause

our KDE model to incorrectly classify anomalous data instances. In this scenario,

suppose we have performance data from one vehicle, and we are using a bivariate

feature space to perform anomaly detection. We have used the first 50 missions,

consisting of normal operational data, to build our KDE model. An anomalous trend

begins at mission 100. Our normal data was generated using a bivariate Gaussian

distribution. Our anomalous data is generated from the same bivariate Guassian plus

87

some function of mission number. That is, for normal data points, x, and anomalous

data points, xa, we have

Xn

Xa ~M (p, E) + g(Mission Number),

where g(Mission Number) increases linearly with the mission number.

Figure 7-2 (a) shows feature 1 as a function of mission number. The first 100

missions (blue) are normal, and the last 100 missions (red) exhibit an anomalous

trend. Figure 7-1 (b) shows are bivariate feature space, again with normal data in

blue, and anomalous trend data in red.

3-

2-

0-

-1

Noma ua

-Normal Data -. .
Anomalous Trend Data

3-

(N

21L

OD 20 40 60 80 100 120 140 160 100 20
Mssion Number

(a)

Figure 7-1: Illustration of (a) Anomalous
Set in Anomalous Trend Example

-3---

Normal Data
Anomalous Trend -

-3 -2 A F 0 2 3 4
Feature 1

(b)

Trend in Feature 1 and (b) Bivariate Data

Since we have used relatively few missions (50) to generate our KDE model, we

would like to add more data as we receive it. In practice, if we classify a mission as

anomalous, an operator would check time-series plots to see if a fault has occurred.

However, if we are frequently updating our KDE model, our PDF estimate may

88

4

5

increase in the direction of our anomalous trend before we correctly identify the

trend. This is similar to the idea of "normalization of deviance", as our classifier will

learn to accept anomalous data as normal.

Figure 7-2 demonstrates this idea using our fabricated data. The figure shows how

our decision boundary gradually expands in the direction of the anomalous trend. The

initial decision boundary is based only on the normal data, while the larger decision

boundaries are based on normal data in addition to a subset of anomalous data.

Normal Data
- Data w/ Anomalous Trend . i. Boundary w/ Only Normal Data

-Decision Boundaries
2. Boundary w/ so Anomalies

4-3. Boundary w/ All data

LL

- e *. , .. *I, e I

-3 -2 -1 0 1 2 3 4 5 6

Feature 1

Figure 7-2: Decision Boundaries for Various Training Sets in Anomalous Trend Ex-
ample

89

Strategies for Accounting for Anomalous Trends

We now discuss strategies for incorporating new data into our models while accounting

for potential anomalous trends in the data.

1. Do not incoporate new data into our original KDE model: If we do not

update our original KDE model, then anomalous trends such as the one in the

example above will eventually be correctly classified as anomalous. Again, this

is not ideal, since we would like to improve upon our KDE model as we receive

new data. However, if we are confident that our original decision boundaries

provide an accurate representation of the normal region, then adding new data

may be unnecessary.

2. Perform KDE in a feature space in which anomalous trends appear

as outliers: One promising strategy would be to use alternative features that

account for trends in our data. For example, we could use an average of our

features of the course of, say, 5 or 10 missions. If we choose appropriate features,

then anomalous trends may appear as point anomalies in our new feature space.

3. Use a sliding window technique to track frequency of anomalies: The

last strategy that we explored in this research is using a sliding window technique

to track the number of anomalies over a certain period. Window based anomaly

detection techniques for sequential data are discussed by Chandola in [8]. The

idea is to extract fixed length "sliding" windows from a test sequence and assign

an anomaly score to each window.

We now illustrate how a sliding window technique could be implemented for

our anomalous trend example. We use a window length of 20, and index our

windows by k. The kth sliding window contains missions k through k + 19. We

assign an anomaly score to the kth window as Anomaly Score(k) = number of

anomalies identified in missions k through k+19. We can identify an anomalous

trend by setting a threshold on Anomaly Score(k). One way to set a threshold

on our anomaly score would be to pick the highest anomaly score for windows

90

in our test set. The idea is that if a data point never falls into a window with a

high anomaly score, then we can be relatively sure that the point is not apart

of anomalous trend.

Figure 7-3 shows the number of anomalies vs. our sliding window index for a

window length of 20. In this experiment, we added new data to our KDE model

after each sequence of 20 missions. As shown in the figure, our anomaly scores

typically grow as k increases, up until the point in which we add new data to

our KDE model. In practice, we would set a threshold on the anomaly score

of our sliding windows and classify a window as anomalous if the number of

anomalies in that window is above a certain number. In this example, if we

set a threshold of 5 on our anomaly score, then we would correctly identify the

anomalous trend by mission 125.

This method also provides an intuitive way to add new data to our KDE model.

If data point Xk is never contained in a window that is classified as anomalous,

then we can be relatively sure that the data point is not apart of an anomalous

trend. In which case, we would add data point Xk to our KDE model. In other

words, if our sliding window has passed point Xk and no anomalous window has

been identified, then we can add point Xk (and all points x3 for j < k) to our

KDE model.

7.2 Discrete Data

Thus far, we have focused on identifying point anomalies in continuous data. We now

briefly discuss how we can use a similar approach to identifying anomalies in discrete

data.

Examples of discrete UUV data in which we are interested in identifying anomalies

include:

9 The number of times a particular modeled fault occurs during a mission, as

contained in the fault log.

91

Number of Anomalies vs. Window Index (k) (Window Length = 20)

8

7

06

E
05
CW
0

4

E
Z3

1

'60 90 100 110 120 130 140
Window Index (k)

150 160 170 180

Figure 7-3: Number of Anomalies per Window vs. Sliding Window index
lous Trend Example

for Anoma-

* The number of days between unscheduled maintenance for a particular UUV

system.

" The number of mission failures that occur during a sequence of missions.

Note that for these examples, point anomalies can be identified through simple

limit checking. For example, suppose we are interested in the number of times a

particular modeled fault occurs during a mission. We would only identify a mission as

anomalous if this number exceeds a certain value. Furthermore, all of these examples

involve only univariate data. Thus, the problem of finding anomalies in discrete data

is equivalent to selecting a threshold on the value of a discrete univariate data point.

This is distinctly different than our KDE anomaly detection approach, where our goal

is to identify regions of normality in our feature space.

Our goal is to compute an upper (or lower) limit on values for discrete data of

interest, and classify points as anomalous if they exceed (or fall below) this threshold.

92

Data Added To
KDE Model

Data Added To
KDE Model

2

For the frequency of modeled faults during a mission and the number of mission

failures that occur during a sequence of missions, we would be interested in finding

an upper limit. For the number of days before schedule maintenance, we are interested

in computing a lower limit.

The simplest way to choose an upper limit would be to select the value that is in

the 100 * a percentile of our test data, where a is a prior belief in the likelihood of an

anomaly. Figure 7-4 illustrates a histogram of "Skipping Motor Cycle" faults from

REMUS 6000 missions. These frequencies were obtained by parsing REMUS fault

logs for each mission in the REMUS 6000 test set. For this example, a was chosen

to 0.1. The threshold was obtained by finding the mission in the 1 0 th percentile of

frequency of faults. Since there are 72 missions in our test set, the upper limit was

based on the mission with the 7th highest number of faults.

Histogram of "Skipping Motor Cycle" faults

12-

Normal Anomalous

10-

8- Dedsion Boundary

Q
Cr

U-

4

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Number of Faults

Figure 7-4: Histogram of REMUS 6000 Faults with Decision Boundary

93

7.3 Reusing Models for New Vehicles

The last question we attempt to answer in this chapter is whether or not we can

use previously developed KDE models to perform anomaly detection on a different

UUV. This would be of interest in a scenario in which we have a new or recently

reconfigured vehicle, and we do not have enough historical data to build a reliable

KDE approximation for a data generating process of interest.

In order to explore this question, we computed features of REMUS 6000 and

MARV data, and attempted to classify anomalous data instances based on the RE-

MUS 600 models developed in Chapter 6. In addition to computing these selected

features, we also analyzed time-series data from these vehicles to generate labels for

each mission.

When performing our experiments with REMUS 6000 and MARV data, it became

readily apparent that our features did not lie in the same regions as the features from

the REMUS 600. We began with the REMUS 6000 pitch data, computing the same

features as in Chapter 6 (i.e. mean(pitch-pitch goal) and standard deviation(pitch-

pitch goal)). We attempted to standardize these features by using the mean and

standard deviation obtained from the REMUS 600 data set. The features from the

REMUS 6000 missions, however, did not fall into the same region of our feature space,

and each mission was classified as anomalous.

As a secondary experiment, we attempted to standardize the REMUS 6000 data

using the mean and standard deviation of the REMUS 6000 data itself. This would

not be practical in a real-world scenario, as we would likely not have enough data to

get reliable estimates for the mean and standard deviation of our features. If we did

have sufficient data, we would simply use that data to build a KDE model for the

new vehicle. Nevertheless, we attempted to use the same classifier from the REMUS

600 pitch data to identify anomalies in REMUS 6000 pitch data.

Figure 7-5 shows our standardized REMUS 6000 pitch data features with the op-

timal REMUS 600 decision boundary found in Chapter 6.2. As illustrated in the

plot, the decision boundary does not provide a good representation of the normal

94

region of the REMUS 6000 data. We do classify several anomalies correctly, but our

normal region is far too large to be deemed a reliable classifier. These experiments

were reproduced for MARV thruster data, but results were even less promising.

0

REMUS 6000 Pitch Data with REMUS 600 Decision Boundary

-Decision Boundary
4 Normal Data

Anomalous Data

3

(pitch-pitch command)

Figure 7-5: REMUS
Boundary

6000 Pitch Data Features with Previous REMUS 600 Decision

7.4 Discussion

In this chapter, we discussed ways to extend our KDE anomaly detection approach for

various purposes. We first discussed strategies for incoporating new UUV performance

data to improve upon our KDE models while accounting for potential anomalous

trends in our data. We explored using a sliding window technique for identifying

these anomalous trends, and illustrated results using fabricated data.

We also discussed the problem of identifying point anomalies in discrete data. For

discrete UUV data, limit checking appears to be a simple, yet reliable way to classify

anomalous data.

95

2 3 4

Lastly, we explored the possibility of using performance data from one vehicle to

identify anomalies in another vehicle. We experiments used features from the REMUS

6000 and MARV data sets with decision boundaries computed from REMUS 600 data.

The results were not promising, as the data generating processes for the features of

interest were significantly different between the vehicles.

96

Chapter 8

Conclusion

The goal of this thesis is to describe a tool that can be used help UUV operators iden-

tify anomalous features of UUV performance data. These anomalies are of interest

because they are often the result of a fault, or an abnormal condition that can cause

an element of a UUV system to fail. Our approach was to use one-class classification

methods to build classifiers based on historical data. We make the assumption that

the majority of our training data comes from normal UUV operations.

Our primary approach was to use kernel density estimation to build a probabil-

ity model for data generating processes of interest. We classify future missions as

anomalous if data features from these missions lie in areas of low probability. Our

kernel density anomaly detection algorithm was compared with another method, local

outlier factor. In order to provide insight on the effectiveness of these algorithms, we

provided experimental results for selected UUV systems and data features.

8.1 Summary of Results and Contributions

Chapter 2 of this thesis provides background information on the UUVs and data sets

that were used in this research. We briefly describe the operational capabilities and

specifications for both the REMUS series of vehicles and the MARV vehicle. We also

describe the data sets that were obtained from WHOI and NUWC-NPT.

In chapter 3, we describe the anomaly detection problem in its most general form.

97

The purpose of this chapter was to discuss how the effectiveness of an anomaly de-

tection algorithm is largely dictated by the specific characteristics of our particular

problem and data sets. We provide analysis of the characteristics of the problem of

detecting anomalies in UUV performance data, and determine that one-class classifi-

cation methods are suitable for our research.

In chapter 4, we explore existing one-class classification methods that might be

suitable for UUV anomaly detection. In particular, we discuss statistical methods

(both parametric and non-parametric), distance based methods (e.g. k - nearest

neighbors and clustering), and the one-class support vector machine. We determine

that kernel density estimation and local outlier factor are the two most suitable ap-

proaches for our problem.

Chapter 5 is a discussion of parameter selection for kernel density estimation

anomaly detection. We discuss the Bowman and Azzalini heuristic for computing a

bandwidth parameter directly from our data. We also show how to compute decision

boundaries based on our KDE approximations.

Chapter 6 provides experimental results for KDE and LOF anomaly detection on

selected features of UUV performance data. In order to gauge the effectiveness of

these algorithms, we decided to go through time-series data from each mission in our

data sets and label each mission as anomalous or normal. We compute performance

metrics by comparing the output of our classifiers with the labels that we generated

by analyzing time-series plots.

In chapter 7, we discuss how we can extend our KDE anomaly detection approach

for other purposes. We explore methods for identifying potential anomalous trends

that may arise from the performance degradation of a particular UUV system. We

also discuss the problem of identifying anomalies in discrete data.

8.2 Future Work

One of the key characteristics of the UUV anomaly detection problem is that labeled

training data for both the normal and anomalous classes is not readily available. For

98

this reason, we took a one-class classification approach, and made the assumption

that anomalies in our training set are rare occurrences. One idea for future research

would be to determine if we can improve upon classification performance by using

two-class classification methods (e.g. two-class support vector machine, statistical

modeling for both normal and anomalous class, etc.). In order to test this, one would

need training data from the normal and anomalous class, which would require analyz-

ing a large amount of time-series data to generate labels. Our preliminary hypothesis

is that classification performance would not improve significantly through two-class

classification. In our research, we observed that anomalies are typically scattered

throughout our feature space with high variance. Thus, attempting to model the

anomalous class would likely be ineffective.

Another area for future research would be to improve upon the KDE anomaly

detection approach given in this thesis. Classification performance could perhaps

be improved by using more relevant features, or by using alternative methods for

bandwidth selection. Developing better features would likely require a higher level of

technical knowledge about the UUV systems of interest. One approach to bandwidth

selection that we did not have the time to explore in this research is using a variable

bandwidth parameter. With a variable bandwidth, the value of the bandwidth pa-

rameter is a function of the location of the kernel function in a feature space. Using

a variable bandwidth parameter could be beneficial if there are regions of our feature

space in which normal data exhibits less variance.

Lastly, future research could also include experimentation for other one-class clas-

sification methods discussed in Chapter 4.

99

THIS PAGE INTENTIONALLY LEFT BLANK

100

Bibliography

[11] Kongsberg maritime image gallery. http://www.km.kongsberg.com/ks/web/
nokbg0238.nsf/AllWeb/OC6E508198ADAA3EC125774C003C1A6F. Accessed:
2015-02-24.

[2] Richard Bashour, Michael Ansay, and Daniel French.
NUWC's mid-sized autonomous reconfigurable vehicle (MARV):
Sub surface ship launch & recovery of a UUV efforts.
https://www.navalengineers.org/SiteCollectionDocuments/2010December
2010. Accessed: 2015-02-24.

[31 Columbia Accident Investigation Board. Report of columbia accident investiga-
tion board, 2003.

[4] Adrian W. Bowman and Adelchi Azzalini. Applied Smoothing Techniques for
Data Analysis. Oxford University Press Inc., 1997.

[5] Markus M. Breunig, Hans-Peter Kriegel, and Raymond T. Ngand JAufrg Sander.
Lof: Identifying density-based local outliers. Proceedings of 2000 A CM SIGMOD
International Conference on Management of Data, pages 93-104, 2000.

[6] Robert W. Button, John Kamp, Thomas B. Curtin, and James Dryden. A
Survey of Missions for Unmanned Undersea Vehicles. RAND Corporation, Santa
Monica, CA, 2009.

[7] Naval Undersea Warfare Center. Unmanned undersea vehi-
cles. http://auvac.org/uploads/platformpdf/NUWC%20UUV%20-
%20Vehicles_2.pdf. Accessed: 2015-02-24.

[8] Varun Chandola. Anomaly Detection for Symbolic Sequences and Time Series
Data. PhD thesis, University of Minnesota, 2009.

[9] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A
survey. ACM Computing Surveys, September, 2009.

[10] F.Y. Edgeworth. On discordant observations. Philosophical Magazine, pages
364-375, 1887.

101

[11] Siong Thye Goh and Cynthia Rudin. Box drawings for learning with imbal-
anced data. Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 333-342, 2014.

[12] Zengyou He, Xiaofei Xu, and Shengchun Deng. Discovering cluster-based local
outliers. Pattern Recognition Letters, 24:1641-1650, 2003.

[13] V.J. Hodge and J. Austin. A survey of outlier detection methodologies. Artificial
Intelligence Review, pages 85-126, 2004.

[14] R.V. Hogg. Statistical robustness: One view of its use in applications today.
American Statistics, 33:108-116, 1979.

[15] Woods Hole Oceanographic Institute. Remus.
http://www.whoi.edu/main/remus. Accessed: 2015-02-24.

[161 Kongsberg Maritime. Autonomous underwater vehicles - AUVs.
www.km.kongsberg.com. Accessed: 2015-02-24.

[17] Tom M. Mitchell. Machine Learning. McGraw-Hill Science/Engineering/Math,
1997.

[18] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT
Press, 2012.

[19] Emmanuel Parzen. On the estimation of a probability density function and the
mode. Annals of Mathematical Statistics, 33:1065-1076, 1962.

[20] Bernhard Scholkopf, Robert Williamsonx, Alex Smolax, John Shawe-Taylory,
and John Platt. Support vector method for novelty detection. NIPS, 12:582-
588, 1999.

[21] David M.J. Tax and Robert P.W. Duin. Support vector data description. Ma-
chine Learning, 54:45-66, 2004.

[22] Andreas Theissler. Detecting Anomalies in Multivariate Time Series from Au-
tomotive Systems. PhD thesis, Brunel University, 2013.

102

