
Reverse Logistics for Consumer Electronics: Forecasting
Failures, Managing Inventory, and Matching Warranties

by

Andre du Pin Calmon

Submitted to the Sloan School of Management
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Operations Research

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MASSACHUSETTS INSTITUTE
OF rECHNOLOLGY

JUN 22 2015

LIBRARIES

June 2015

@ Massachusetts Institute of Technology 2015. All rights reserved.

Signature redacted
A u th or . . .................. ..... ......... ..... . . . . . . . . . . . . . . .

Sloan School of Management
February 1, 2015

Certified by........

Abraham J.

Signature redacted
Stephen C. Graves

Siegel Professor of Management Science & Engineering Systems
Thesis Supervisor

Signature redacted
A ccepted by ............................................ **...... ** * .... .... ...

Dimitris Bertsimas
Boeing Professor of Operations Research
Co-Director, Operations Research Center





Reverse Logistics for Consumer Electronics: Forecasting Failures,

Managing Inventory, and Matching Warranties

by

Andre du Pin Calmon

Submitted to the Sloan School of Management
on February 1, 2015, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Operations Research

Abstract

The goal of this thesis is to describe, model, and optimize reverse logistics systems commonly
used in the Consumer Electronics industry. The context and motivation for this work stem
from a collaboration with an industrial partner, a Fortune 500 company that sells consumer
electronics and is one of the top retailers in its sector. The thesis is divided into three parts.

In the first part of the thesis we model and analyze the problem of forecasting failures of
new products. When a new device is introduced to the market there is limited information
available about its failure time distribution since most devices have yet to fail. However,
there is extensive failure time data for prior devices, as well as evidence that the failure
time distribution for new devices can be forecast from the data for prior devices. In this
setting, we propose two strategies for forecasting the failure distribution of new products
that leverages the censored failure observations for the new devices as well as this massive
amount of data collected for prior devices. We validate these strategies using data from our
industrial partner and using data from a social enterprise located in the Boston area.

The second part of the thesis concerns inventory management in a reverse logistics
system that supports the warranty returns and replacement for a consumer electronic device.
This system is a closed-loop supply chain since failed devices are refurbished and are kept
in inventory to be used as replacement devices or are sold through a side-sales channel.
Furthermore, managing inventory in this system is challenging due to the short life-cycle of
this type of device and the rapidly declining value for the inventory that could potentially
be sold. We propose a stochastic model that captures the dynamics of inventory of this
system, including the limited life-cycle and the declining value of inventory that can be sold
off. We characterize the structure of the optimal policy for this problem. In addition, we
introduce two heuristics: (i) a certainty-equivalent approximation, which leads to a simple
closed form policy; and (ii) a dual balancing heuristic, which results in a more tractable
newsvendor type model. We also develop a robust version of this model in order to obtain
bounds for the overall performance of the system. The performance of these heuristics is
analyzed using data from our industrial partner.

The final part of the thesis concerns the problem faced by a consumer electronics retailer
when matching devices in inventory to customers. More specifically, we analyze a setting
where there are two warranties in place: (i) the consumer warranty, offered by the retailer
to the consumer, and (ii) the Original Equipment Manufacturer (OEM) warranty, offered
by the OEM to the retailer. Both warranties are valid for a limited period (usually 12
months), and once warranties expire, the coverage to replace or repair a faulty device ends.
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Thus, a customer does not receive a replacement if he/she is out of consumer warranty, and
the retailer cannot send the device to the OEM for repairs if it is out of OEM warranty.
The retailer would ideally like to have the two warranties for a device being matched, i.e.,
the customer would have the same time left in his consumer warranty as the device would
have left in the OEM warranty. A mismatch between these warranties can incur costs to
the retailer beyond the usual processing costs of warranty requests. Namely, since a device
can fail multiple times during its lifecycle the replacement device sent to customers that file
warranty requests can lead to out-of-OEM-warranty returns. In order to mitigate the num-
ber of out-of-OEM-warranty returns, we propose an online algorithm to match customers
that have filed warranty claims to refurbished devices in inventory. The algorithm matches
the oldest devices in inventory to the oldest customers in each period. We characterize
the competitive ratio of this algorithm and, through numerical experiments using historical
data, demonstrate that it can significantly reduce out of warranty returns compared to our
partner's current strategy.

Thesis Supervisor: Stephen C. Graves
Title: Abraham J. Siegel Professor of Management Science & Engineering Systems
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Chapter 1

Introduction

In 2014, U.S. consumers paid over $20 billion dollars buying and extending warranties for

electronic devices they purchased'. In addition, costs related to warranty management are

a significant expense for most companies in the consumer electronics sector. For example,

Apple Inc., one of the largest players in this segment, spent $2.9 billion dollars in 2013

alone with warranty related costs 2. Furthermore, the repair and refurbishment of electronic

devices has become a key issue for government and industry, particularly because of the

environmental concerns related to disposing and managing the end-of-life of these devices.

Within this setting, the goal of this thesis is to describe, model, and optimize a type of

reverse logistics system commonly used in the consumer electronics industry for managing

device failures and customer warranty claims. We study three different facets of this type of

system and develop a theoretical framework that addresses key issues in each one of them.

Namely, the issues that we address are:

* Forecasting warranty claims: We model and analyze the problem of forecasting

failures of new products. When a new device is introduced to the market there is

limited information available about its failure time distribution since most devices

have yet to fail. However, many companies usually collect extensive failure time data

for prior devices, as well as evidence that the failure time distribution for new devices

can be forecast from the data for prior devices. In this setting, we propose two

strategies for forecasting the failure distribution of new products that leverages the

censored failure observations for the new devices as well as the potentially massive

1http://www.warrantyweek.com/archive/ww20141OO9.html
2 http://goo.gl/iIYFwg
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amount of data collected for prior devices. We validate these strategies using data

from our industrial partner and using data from a social enterprise located in the

Boston area.

* Inventory Management: we address inventory management in reverse logistics

systems that support the warranty returns and replacement for consumer electronic

devices. This type of system is a closed-loop supply chain since failed devices are

refurbished and are kept in inventory to be used as replacement devices or are sold

through a side-sales channel. Furthermore, managing inventory in this system is

challenging due to the short life-cycle of this type of device and the rapidly declining

value for the inventory that could potentially be sold. We propose a stochastic model

that captures the dynamics of inventory of this system, including the limited life-cycle

and the declining value of inventory that can be sold off. We characterize the structure

of the optimal policy for this problem. In addition, we introduce two heuristics: (i) a

certainty-equivalent approximation, which leads to a simple closed form policy; and

(ii) a dual balancing heuristic, which results in a more tractable newsvendor type

model. We also develop a robust version of this model in order to obtain bounds for

the overall performance of the system. The performance of these heuristics is analyzed

using data from our industrial partner.

* Warranty Matching: we analyze the problem faced by a consumer electronics re-

tailer when matching devices in inventory to customers. More specifically, we analyze

a setting where there are two warranties in place: (i) the consumer warranty, offered

by the retailer to the consumer, and (ii) the Original Equipment Manufacturer (OEM)

warranty, offered by the OEM to the retailer. Both warranties are valid for a limited

period (usually 12 months), and once warranties expire, the coverage to replace or

repair a faulty device ends. Thus, a customer does not receive a replacement if he/she

is out of consumer warranty, and the retailer cannot send the device to the OEM for

repairs if it is out of OEM warranty. The retailer would ideally like to have the two

warranties for a device being matched, i.e., the customer would have the same time

left in his consumer warranty as the device would have left in the OEM warranty. A

mismatch between these warranties can incur costs to the retailer beyond the usual

processing costs of warranty requests. Namely, since a device can fail multiple times

14



during its lifecycle the replacement device sent to customers that file warranty requests

can lead to out-of-OEM-warranty returns. In order to mitigate the number of out-

of-OEM-warranty returns, we propose an online algorithm to match customers that

have filed warranty claims to refurbished devices in inventory. The algorithm matches

the oldest devices in inventory to the oldest customers in each period. We character-

ize the competitive ratio of this algorithm and, through numerical experiments using

historical data, demonstrate that it can significantly reduce out of warranty returns

compared to our partner's current strategy.

Even though this work was developed with practical applications in mind, the theoretical

framework developed throughout this work stands on its own as a contribution to the

theory of closed-loop supply chains. Furthermore, since several companies, and e-tailers in

particular, use the same type of reverse operations strategy that we analyze, our findings

can find a broader application in the retail industry.

The remainder of this chapter will be structured as follows. In Section 1.1, we describe

the reverse operations at an industrial partner that played a central role in the development

of this work. In Section 1.2 we contextualize our contributions through a brief literature

review. Finally, Section 1.3 serves as an outline of the thesis and we summarize the main

results in each chapter.

1.1 Reverse-Logistics at our Industrial Partner

The practical backdrop for this work stems from a collaboration with an industrial partner,

a Fortune 100 company that is a Wireless Service Provider (WSP) and that is also one of

the top retailers in its sector. For this company, as for many other retail businesses, the

management of warranty claims and regret returns is a key issue. In fact, the volume of

warranty claims for products commercialized by our industrial partner is substantial (in the

order of thousands per day), and a significant portion of sold items are returned. Coupled

with the short life cycle of their products, usually less than one year, this leads to large levels

of inventory of refurbished products that suffer fast depreciation and that are expensive to

dispose.

This company uses a reverse logistics model that is similar to the one adopted by other

retailers, especially on-line retailers. In this model, there are two warranty contracts in place:

15



(i) the consumer warranty, and (ii) the Original Equipment Manufacturer (OEM) warranty.

The consumer warranty protects the consumer against any defects in the purchased product

and also provides the consumer a period for "regret returns". In addition, the consumer

warranty has strict requirements - when a warranty claim is filed, a new or refurbished item

is immediately shipped by our industrial partner to the consumer together with a pre-paid

shipping label so that the customer can return his original unit. Thus, a replacement item

is sent before the original item is received. The OEM warranty, on the other hand, is offered

by the OEM to the WSP, covering every device purchased from the OEM. This warranty

is slow - a defective product sent to the OEM takes weeks or months to be fixed and a

replacement device is not shipped immediately.

Because of the differences between the OEM and consumer warranty contracts, our

partner WSP has a reverse logistics facility that is dedicated to processing customer-regret

returns and customer warranty claims. This facility also holds inventory of refurbished

devices and can execute repairs if the defect in the returned product is small or not covered

by the OEM warranty. However, if the returned product has a defect that is covered by

the OEM warranty, the device is sent to the OEM for repair and refurbishment. Since this

reverse logistics facility uses repaired and refurbished devices to satisfy consumer warranty

claims, this system fits in the context of closed-loop supply chains (CLSCs).

If at any point in time the WSP deems that it has too much inventory of refurbished

devices, it can sell excess inventory through a side-sales channel. Thus, the key tradeoff for

managing inventory in this system is deciding between keeping a device in stock to satisfy

some future warranty claim, or selling the device through a side-sales channel. Managing

this trade-off is challenging due to three issues: (i) the non-stationary nature of the demand

for replacements; (ii) the short life-cycle of these devices; and (iii) the fast value depreciation

faced by the refurbished device in inventory that could potentially be sold.

Both the consumer warranty and the OEM warranty are valid for a limited period

(usually 12 months), and once warranties expire, the coverage to replace or repair a faulty

device ends. Namely, a customer does not receive a replacement if he/she is out of consumer

warranty, and the retailer cannot send the device to the OEM for repairs if it is out of OEM

warranty. In addition, the OEM warranty is associated to a specific device, while the

consumer warranty is specified to the consumer.

The WSP would ideally like to have the two warranties for a device being matched, i.e.,

16



the customer would have the same time left in his consumer warranty as the device would

have left in the OEM warranty. A mismatch between these warranties can incur costs to

the retailer beyond the usual processing costs of warranty requests. Namely, this extra-cost

is incurred when a customer still covered by the consumer warranty has a device that fails,

and this device is not covered by the OEM warranty. In this case, the WSP will then

either pay for the OEM to repair the device, which incurs additional costs to the system,

or it will scrap the device. At our partner WSP, these out-of-OEM-warranty devices are

a significant source of cost for their reverse operations. Furthermore, since a device can

fail multiple times during its lifecycle, the replacement device sent to customers that file

warranty requests can lead to out-of-OEM-warranty returns. Also, the OEM warranty does

not restart once a device is remanufactured and it is not paused while a device is in stock

at the WSP, such that "old" devices, with little OEM warranty left, can potentially be sent

to customers as replacements.

1.2 Literature Review

This thesis builds upon a vast body of knowledge that addresses closed-loop supply chains

(CLSC), reverse logistics, forecasting, and on-line algorithms. Although each of the follow-

ing chapters will have its own literature review, we provide a broad overview of prior work

in this area.

Two early examples of papers that consider the management of inventory of repaired and

refurbished items that influence this work are Simpson (1978) and Allen and D'Esopo (1968).

A more recent summary of research in this field can be found in Guide and Van Wassenhove

(2009), which presents an overview of the literature in CLSC and discuss future directions

of research.

Forecasting with censored or truncated observations has been an active area of research

for the last 50 years since the introduction of the Kaplan-Meier Estimator in Kaplan and

Meier (1958). Using the EM algorithm for incomplete data was introduced in Dempster

et al. (1977), and our strategy builds upon this work. Taylor (1995) introduces a semi-

parametric approach for maximum-likelihood information with censored data when failures

are exponentially distributed. A detailed discussion of the role of regularization for ob-

taining sparse representations was done in Tibshirani (1996), and an example of the use of
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regularization for quantile regression with censored data can be found in Lindgren (1997).

In the operations literature, Karim and Suzuki (2005) present a comprehensive literature

review on statistical methods for analyzing warranty claim data. To the best of our knowl-

edge, our work is the first to apply regularized regression for hazard rate estimations, and

to use this completely data-driven approach to forecasting failures in a closed-loop supply

chain context.

A detailed analysis of the importance and challenges related to forecasting warranty

claims at our partner WSP is explored in Petersen (2013). The forecasting part of this work

benefited from the same partnerships, discussions, and data as Petersen (2013) and, because

of this, shares many of its core ideas. However, while Petersen (2013) presents results and

strategies tailored to the WSP, this chapter frames the discussion in more generic terms,

and we believe our approach has a wide range of applications.

With regard to inventory management for warranty replacements, Huang et al. (2008)

offers a detailed overview of the literature in warranty management, and analyzes inventory

management when there is demand for both new and replacement items,without taking

into account remanufacturing. Khawam et al. (2007) use a simulation approach to obtain

inventory management policies for Hitachi. From a conceptual level, product warranty

management is discussed by Murthy and Blischke (1992). Also, the connection between the

warranty and logistics literature is discussed by Murthy et al. (2004), and the relationship

between warranty service and customer satisfaction is discussed. The impact of regret re-

turns on inventory management is analyzed in de Brito and van der Laan (2009) where the

authors highlight the effect of imperfect information about returns on inventory manage-

ment. Different models for remanufacturing products in a CLSC are analyzed in Savaskan

et al. (2004). Finally, our work fits in the wider field of perishable inventory systems, and

a review of the results in this area can be found in Nahmias (2011).

As for the theoretical tools that we use in this paper, Bertsekas (2005) presents an

overview of Dynamic Programming in the finite and infinite horizon setting, including

many examples in inventory management. Balancing policies have also been an active

area of study, and Levi et al. (2008) contains an application of this approach in inventory

management.

Research in matching items and individuals has also been very active during the last

50 years. One of the seminal works in this area is on the Hungarian algorithm, and can be
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found in Kuhn (1955). More recently, the problem of matching under preferences has played

a central role in economics and operations research. In particular stable matching problems,

which is discussed in Gusfield and Irving (1989), has been an area of extensive research. A

review of tools for analyzing on-line algorithms, which encompass the type of policies that

we use in the third part of the thesis, can be found in Albers (2003). Finally, the type of

matching problem that we consider in this thesis has yet to be covered in the literature, and

we believe that our application provides an interesting context for assignment and matching

algorithms.

1.3 Outline and Summary of Main Contributions

In this section we will briefly summarize three parts of the thesis. Each part corresponds

to a different aspect of managing the closed-loop reverse logistics system we examine in

this work. Chapter 2 addresses the problem of forecasting failures and estimating failure

age distributions in the context of our partner WSP. In Chapter 3, we present and analyze

a control model that captures the dynamics and key decisions of inventory in the reverse

supply-chain. Finally, in Chapter 4 we study the problem of assigning refurbished devices

in inventory to customers, and we analyze different assignment strategies

Each chapter is, for the most part, independent and can be read as an individual work.

The reader should feel free to dive into the chapter that is the most relevant to their interests.

Chapter 2: Data-Driven Failure Age Estimation

The closed loop nature of this reverse logistics system makes forecasting failures important

in order to determine the amount of inventory of replacement devices that should be kept in

stock. Furthermore, an effective forecasting strategy can help the WSP identify if a device

recently introduced into the market is having a higher than expected failure rate, allowing

for operational and strategic adjustments such as fixing the hardware/software of a device

or changing the way that it is marketed. However, forecasting failures at the beginning of

the life-cycle of a device can be challenging, since the number of observations is limited and

failure observations might be censored or truncated. For example, if t weeks have passed

after the launch of a device, then no customer has a device that is more than t weeks old, and

failures after this period are still unobserved. Because of this, traditional non-parametric
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approaches, such as the Kaplan-Meier estimator, are not sufficient for estimating the failure

distribution of a new device. On the other hand, the WSP has a large amount of historical

data available, since it collects detailed information about sales and failure times from the

different devices that it sells. In fact, since our partner WSP is one of the largest players

in this market, it has data from millions of customer purchases and failures.

In this setting, we propose and analyze two methods for estimating failure distribu-

tions of newly launched devices that leverages the historical data of failures from other

devices. The proposed strategies are based on a hazard rate model developed under the

assumption that customers in the same cohort have devices that fail according to the same

age-dependent failure distribution. A cohort is a pool of customers that share similar fea-

tures (e.g. phone model owned, data plan, etc.).

The first estimation strategy uses an Expectation-Maximization (EM) type algorithm

to estimate the parameters of a mixture model. Here, we assume that hazard rates of

devices in a new cohort are drawn from a mixture of scaled hazard rate distributions built

from historical data. Furthermore, since maximizing the likelihood function of a set of

observations is intractable, we use an EM approach to maximize a lower bound of the

likelihood and obtain an estimate of the parameters of the mixture model.

The second estimation strategy, which we call hazard rate regression, uses a model

selection method, where we assume a "basis" set of hazard rate distributions determined

from historical data. We then use a regularized regression to identify and fit the relevant

hazard rates distributions from the basis to the observed failures from the new cohort. This

allows for a sparse representation of the estimated hazard rate distribution, which can be

useful depending on the context of the estimation problem. For example, a sparse solution

can help identify which cohorts are the most similar and can help with an investigation of

the features that these cohorts have in common.

Both of these estimation strategies assume that the hazard rate distribution that is being

estimated can be described by a mixture of scaled versions of the hazard rate distributions

in the basis. Using data from our partner WSP we argue that this assumption holds in

practice. Furthermore, to the best of our knowledge, this type of approach is novel and has

not been studied before in the Operations Management community.

In the final part of this chapter, we describe how these estimation strategies can be used

to create a forecast of the volume of warranty requests received by our partner WSP, and
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introduce different metrics to measure the quality of the forecast. We also examine both

estimation strategies through a series of numerical experiments using data from our partner

WSP and using data from Project Repat, a Boston-based social enterprise that transforms

old t-shirts into quilts. Through these experiments, we observe that both the EM algorithm

and the Regression approach have a similar average performance, but the performance of

the regression approach has a lower variance. Furthermore, the regression approach leads

to sparser representation of the hazard rate distribution, while the estimate produced by

the EM algorithm is dense in the mixture parameters.

Chapter 3: Inventory Management in a Closed-Loop Supply Chain

The short life-cycle of devices sold by our partner WSP coupled with the fast value de-

preciation of these devices, makes managing inventory at the reverse logistics facility a

challenging problem. Furthermore, the demand for replacement devices is non-stationary,

and not all devices sent to the OEM can be refurbished. In this system, devices arrive in

inventory either as seed-stock from the OEM (usually 1% of sales) or as refurbished devices

corresponding to previous failures or regret returns. Devices leave inventory when they are

sent as replacements to customers that filed warranty claims, or through a side-sales channel

that the WSP uses to sell excess inventory.

The second part of the thesis proposes and analyzes two versions of the inventory man-

agement problem. First, we discuss a discrete-time deterministic version, for which hazard

rates are fixed fractions of sold devices that fail. We prove the optimal policy for this

case and also present a worst case analysis. The second version introduces a discrete-time

stochastic model, for which we prove the structure of the optimal policy and discuss a

heuristic for managing this system. These models depart from the other inventory man-

agement models in the literature since it incorporates the short life-cycle of devices, the

fast value depreciation of the devices as well as by making no assumptions on demand and

arrival distributions.

In the deterministic model, we assume that both the demand and the arrival processes

are deterministic and known. Since this problem has a finite horizon corresponding to the

life-cycle of the device, finding the optimal buying and selling quantities in each period is

equivalent to solving a linear optimization problem. Despite being an optimization problem

that can be solved efficiently using a numeric solver, we prove and discuss the structure
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of the optimal solution for this problem. There are a three main reasons why we do this:

(i) By proving the structure of the optimal policy we can make explicit the relationship

between the optimal policy and the dynamic cost structure of the problem; (ii) The results

from this analysis will be used to prove the optimal policy of the stochastic version of the

problem; (iii) The Certainty-Equivalent approximation of the stochastic problem is based

on the deterministic model.

We assume that the costs of purchasing a new device into inventory and the revenue

of selling a device in a side-sales channel are both non-increasing. Furthermore, we also

assume that the revenue obtained selling a refurbished device in a side-sales channel is

lower than the cost of sourcing a new device into inventory. Thus, in this setting, the

optimal sourcing strategy will be myopic in the sense that we only buy enough items to

satisfy the unmet demand for replacement devices in the current period. Conversely, the

optimal selling quantity in some time period will depend on the inventory level at the

beginning of the period and on the maximum total net demand in the interval between the

current period and the time when the cost of sourcing a new device falls below the current

price of a refurbished device in a side-sales channel. The maximum total net demand

in some interval is defined as the maximum cumulative difference between the demand

for replacement devices and the amount of devices that arrive from the OEM. Thus, the

maximum total net demand acts as a sell-down-to level. If inventory is above this level,

items will be sold until the number of items in inventory is equal to this level. Conversely,

if inventory is below this level, no items are sold.

We also address the question: If the hazard rate distribution is unknown, what is the

maximum number of new devices that will have to be purchased to support the reverse

chain? The answer to this question is useful for two main reasons. First, we can use

it to plan seed stock requirements, and guide operational decisions regarding refurbished

device management. In addition, it can be used to bound the operational cost of supporting

warranty of a new device, which is useful for planning considerations when releasing a new

device into the market. We answer this question by examining a model where an adversary

can choose the hazard rate distribution, and prove a tight worst case bound in this setting.

In the stochastic model, we assume that replacement requests are generated by the

hazard rate distribution discussed in the first part of the thesis. We prove the structure

of the optimal policy in this case, and show that it has the same sell-down-to structure
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as the optimal policy in the deterministic case. However, the optimal sell-down-to level in

every period depends on the distributions of the demand and arrival processes and cannot

be computed in closed-form. Because of this, we introduce two heuristics for managing

inventory.

The first heuristic is a certainty-equivalent approximation where we obtain a suboptimal

inventory control policy by approximating the uncertainty in the problem by its average

value. Since the volume of devices in the WSP's reverse logistics system is very large, this

heuristic works well in practice. We construct the certainty-equivalent approximation using

the hazard rate model discussed the first part of the thesis. In this case, the certainty-

equivalent approximation to the optimal policy still purchases items myopically, but uses

an approximation to calculate the sell-down-to-level in each time period.

The second heuristic is the cost-balancing policy that takes into account the uncertainty

of the demand and arrival process. More specifically, we solve a newsvendor-type problem

that balances the costs of selling too few or too many items. We find the optimal sell-down-

to level through a Sample Average Approximation (SAA), a well studied approach in the

Operations Management literature.

Through numerical experiments, we analyze the performance of these policies and sim-

ulate their sensitivity with respect to changes in different parameters of the system such

as number of devices, failure distribution, OEM lead time, seed-stock and the loss at the

OEM. As a benchmark, we compare the performance of these policies with the clairvoyant

policy, the policy that knows ex-ante the sample path of the device failures and the arrivals

from the OEM.

Next we compare the certainty equivalent policy with the cost-balancing policy for differ-

ent distributions of device failures. We observe that the cost-balancing policy usually leads

to a better performance than the certainty-equivalent approximation. However, when the

number of devices is large (which is the case for our partner WSP) the certainty-equivalent

approximation achieves a near-optimal performance and is sufficient for practical applica-

tions.

Finally, we analyze the performance of the different policies using real-world data from

a device sold by the WSP. This simulation incorporates learning, i.e., the methodology

discussed in the previous chapter is employed and the hazard rate distribution of the device

is updated as new information on failure rates becomes available. We observe that in
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practical settings both policies capture over 90% of the clairvoyant profit.

Chapter 4: Warranty Matching in a Closed-Loop Supply Chain

As mentioned in the introduction of this chapter, there are two warranties in place in this

system: (i) the consumer warranty (offered by the WSP to its consumers), and the (ii)

OEM warranty (offered by the OEM to the WSP). Ideally the two warranties would be

matched, i.e., the customer would have the same time left in his consumer warranty as

the device would have left in the OEM warranty. A mismatch between these warranties

incurs costs to the retailer beyond the usual processing costs of warranty requests. Namely,

this extra-cost is incurred when a customer still covered by the consumer warranty has a

device that fails, and this device is not covered by the OEM warranty. In this case, the

WSP will then either pay for the OEM to repair the device, which incurs additional costs

to the system, or it will scrap the device and the device leaves the system. At our partner

WSP, these out-of-OEM-warranty devices are a significant source of cost for their reverse

operations.

Since a device can fail multiple times during its lifecycle, the replacement device sent

to customers that file warranty requests can lead to out-of-OEM-warranty returns. Also,

the OEM warranty does not restart once a device is remanufactured and it is not paused

while a device is in stock at the WSP, such that "old" devices, with little OEM warranty

left, can potentially be sent to customers as replacements. At the WSP's reverse logistics

facility, devices in stock were matched at random to consumers that placed warranty claims.

More specifically, refurbished devices received from the OEM were not sorted by time left

in OEM warranty, and customer requests were also not sorted according to the time left in

their customer warranty. This would lead to "old" devices being sent to "young" customers,

creating a scenario where a customer with a few months left in its consumer warranty

receives a device with an expired OEM warranty. Conversely, this would also lead to cases

where "young" devices were sent to "old" customers, effectively wasting OEM warranty

coverage time.

Given this setting, in the third part of the thesis we model the problem of matching

devices to customers and analyze different assignment strategies and how they impact mis-

match costs and out-of-OEM-warranty returns. Note that the assignment strategy is crucial

in mitigating out-of-warranty returns, and simple strategies that do not take into account
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the closed-loop nature of the system can lead to a large average mismatch. For example,

a first-in-first out strategy for assigning replacement devices to customers, not taking into

account customer ages, might lead to large mismatches. Similarly, randomly assigning de-

vices to customers, which was the practice used by our partner WSP, might also lead to

large mismatches and, consequently, to poorly matched assignments.

The three assignment strategies that we focus on are:

* The Random assignment policy: where devices in inventory are randomly assigned to

customers that require replacement devices, ignoring the time remaining in both the

customer and device warranties. This was the policy used by the WSP at the time

that our collaboration began;

" The Youngest-Out-First (Myopic) policy: where in every time period devices in inven-

tory are assigned to customers as to minimize the mismatch in that specific period.

We prove that this is the optimal single-period assignment strategy in our formulation;

" The Oldest-Out-First policy: a policy that always assigns the oldest devices in inven-

tory to the oldest customers that require replacements.

Our first analysis involves assuming that the activation date of customers that need

replacements devices is random and we assume that failure ages of devices are i.i.d. Also,

we assume that the total number of device failures is constant in every period and given

by n, and that there are m > n devices in inventory at the reverse logistics facility in

every period. In this context, we prove distribution-free upper and lower bounds on the

expected mismatch cost for the random assignment policy. These bounds have a practical

interpretation and can help a plant manager decide if it is worth investing in a matching

policy other than random assignment.

We then consider the Youngest-Out-First policy, where customers and devices are sorted

by age and matched from youngest to oldest. We prove that, in the long-run and for a lead

time of 1, the mismatch cost of the YOF policy will be very close to 1. In fact, the distribution

of the mismatch cost will have an exponentially decreasing tail. However, this policy has

a major drawback. If we allow m and n to be random variables that change over time,

this policy may lead to an accumulation of "old" devices in the system, since it uses the

youngest first, and when n fluctuates, devices that are out of OEM warranty might be sent

to customers.
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In order to address this, we propose the Oldest-Out-First policy. This policy also sorts

devices and customers by age but, instead of matching them from youngest to oldest, it

matches them from oldest to youngest. The intuition behind this policy is that in the

long-run it is not worth allowing devices to "age" in inventory, even though using them

immediately is not the optimal short-term thing to do. We analyze this policy as an on-

line algorithm and, by assuming certain conditions for the system's behavior, we prove the

competitive ratio of this policy. The competitive ratio allows for a comparison between the

clairvoyant policy, i.e., the policy that "knows" all the information of the system, and the

oldest-out-first policy.

We evaluate these policies through numerical experiments that use data from our part-

ner WSP and also using a simulated scenario where failures are chosen from a pre-set

distribution. We compare the performance of these policies using two metrics:

" Average uncovered time per replacement device shipped: if a refurbished device of age

j is sent as a replacement to a customer of age i, the uncovered time of the customer

will be max(j - i, 0). Since we assume that both the customer warranty and the OEM

warranty have the same length, this represents the amount of time that a customer

is still covered by the customer warranty while the device he/she owns is not covered

by the OEM warranty. This is a measure of exposure of the WSP with regards to

out-of-warranty returns;

* Percentage of failures that are out-of-warranty: the percentage of all the failures that

happened when the customer was covered by the customer warranty but the device

that failed was not covered by the OEM warranty. In this case, the device is either

scrapped or the WSP has to pay for its repair/refurbishment.

In our experiments, we observe the OOF significantly decreases the average number

of uncovered weeks with respect to random matching, and that it performs better than

the Youngest-Out-First policy since "old devices" do not accumulate in stock over time.

We also observe that both the OOF and the Youngest-Out-First policy present significant

improvements over random matching due to the power of sorting requests and devices.
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Chapter 2

Data-Driven Failure Age

Estimation in a Closed Loop

Supply Chain

2.1 Introduction

One of the main challenges in supply chain management is forecasting demand, particularly

when introducing a new product into the market. In this chapter, we propose and analyze

a strategy for forecasting the demand for replacement devices in a large Wireless Service

Provider (WSP). More specifically, this WSP offers a warranty to their clients (usually

12 months in duration), and clients covered by the warranty that have devices that fail

are entitled to receive a replacement from the WSP. For the WSP, estimating the demand

for replacement devices is critical for planning the operations that support the customer

warranty.

If a customer covered by the WSP's customer warranty has a device that fails, he/she

receives a replacement which is shipped overnight from the WSP's reverse logistics facility.

The replacement device is usually not a new device, but a device that failed at an earlier

time and was refurbished. When a customer receives a replacement device, he/she ships

the broken device to the WSP (usually within one or two weeks), which then proceeds to

refurbish/repair the device (if possible) and stores it in inventory in order to use it as a

replacement device in the future. If the WSP finds that, at some point, it has too many
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refurbished devices in inventory, excess devices can be sold through a side-sales channel.

The closed loop nature of this reverse logistics system makes forecasting failures impor-

tant in order to determine the amount of inventory of replacement devices that should be

kept in stock. Furthermore, an effective forecasting strategy can help the WSP identify if

a device recently introduced into the market is having a higher than expected failure rate,

allowing for operational and strategic adjustments such as fixing the hardware/software of

a device or changing the way the devices are marketed. However, forecasting failures at the

beginning of the life-cycle of a device can be challenging, since the number of observations

is limited and failure observations might be censored or truncated. For example, if t weeks

have passed after the launch of a device, then no customer has a device that is more than

t weeks old, and failures after this period are still unobserved.

On the other hand, the WSP has a large amount of historical data available, since it

collects detailed information about sales and failure times from the different devices that it

sells. In fact, since our partner WSP is one of the largest players in this market, it has data

from millions of customer purchases and failures. Leveraging this information will play a

key role in the estimation strategies discussed in this chapter. Also, this company launches

around a dozen to two dozen new devices per year and, since the life-cycle of these devices

is between one and two years, it is usually managing replacement request from around 40

different devices.

In this chapter, we propose and analyze methods for estimating failure distributions of

newly launched devices that leverages the historical data of failures from other devices. The

proposed strategies are based on a hazard rate model developed under the assumption that

customers in the same cohort have devices that fail according to the same age-dependent

failure distribution. A cohort is a pool of customers that share similar features (e.g. phone

model owned, data plan, etc.). For example, a device model could be iPhone 5's sold in

August in Boston to customers in a certain type of plan.

We propose two different strategies for estimating the hazard rates of a new cohort

of customers. Both of these strategies use the hazard rates determined using historical

data from other cohorts containing different customers and/or devices. The first estimation

strategy uses an Expectation-Maximization (EM) type algorithm to estimate the parameters

of a mixture model. Here, we assume that hazard rates of devices in the new cohort are

drawn at random from a set of scaled hazard rate distributions built from historical data.
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The second estimation strategy uses a model selection method, where we assume a "basis"

set of hazard rate distributions determined from historical data. We then use a regularized

regression to identify and fit the relevant hazard rates distributions from the basis to the

observed failures from the new cohort. The practical performance of these two approaches

will be analyzed through numerical experiments that use data from our partner WSP.

Note that both these strategies are parametric, although the basis functions used are

all built from data. In fact, a pure non-parametric estimation strategy that deals with

censoring (such as the Kaplan-Meier estimator) would not be effective in this case, since all

failure observations of a recently launched device are truncated in the same time period.

A detailed analysis of the importance and challenges related to forecasting warranty

claims at our partner WSP is explored in Petersen (2013). This chapter benefited from the

same partnerships, discussions, and data as Petersen (2013) and, because of this, shares

many of its core ideas. However, while Petersen (2013) presents results and strategies

tailored to the WSP, this chapter frames the discussion in more generic terms, and we

believe our approach has a wide range of applications.

In fact, in Section 2.5.4, we present an application of our estimation strategy to Project

Repat, a social enterprise that transforms old t-shirts into quilts. In this case, the company

needed to forecast the volume of t-shirts that were sent by their customers in order to make

staffing decisions in their textile plant. Since customers first purchase the quilts on-line and

then mail their t-shirts to Project Repat using a pre-paid shipping label, the problem is

similar to the one faced by our partner WSP.

The remainder of this chapter is structured as follows. In Section 2.2 we introduce the

model for device failures and briefly discuss the Kaplan-Meier estimator, a non-parametric

approach for estimating hazard rates. In Section 2.3 we formalize our estimation problem

and its challenges. In Section 2.4 we present two distinct estimation strategies. The first

strategy is based on the EM algorithm, while the second strategy involves a regularized

regression. In Section 5 we present a few numerical experiments including one utilizing

data from our partner WSP. Finally, in Section 2.5.4 we discuss how this strategy was used

at Project Repat.
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2.2 Estimating Failure Rates

In this section, we will present a review of the literature on estimation with censored and

truncated data. We then describe the device failure process and introduce the notation that

will be used throughout this chapter. In the final part of this section, we review and discuss

the Kaplan-Meier (KM) estimator. As our goal is to estimate the distribution of failure

ages of devices at our partner WSP, we will frame our discussion within this context.

2.2.1 Literature Review

The history of methods for estimating failure or survival distributions of products, machines,

and subjects in clinical trials has a long history, dating back to seminal work of Greenwood

in the early 20th century, in Greenwood and others (1926). These methods attempt to

build a distribution for the occurrence time of an event (such as age of failure of a device

or death of a patient) based on a set of observations of the said event. As in most of the

literature, we will call the time at which an event occurs the failure time. In many practical

settings, these observations can be censored, i.e., there is no information available on the

exact time that a failure occurs, only that it is outside of some interval. For example, if

we are trying to estimate the failure time distribution of electronic devices sold at different

times during the last few months, we have censored observations in that we have yet to

observe the failure times for the devices that have yet to fail. All we can say is that their

failure times are at least as long as the devices' current ages.

The most popular non-parametric approach for estimating failure time distribution is

the Kaplan-Meier estimator, introduced in Kaplan and Meier (1958), and widely used in

practice. We will cover the KM estimator at the end of this section section.

There are also many parametric strategies for estimating failure distributions. One clas-

sic parametric approach is the Cox Proportional Hazards Model (Cox and Oakes (1984)),

where the hazard rate is assumed to be a scaled version of some baseline hazard function,

and the scaling parameter is a function of certain covariates. This approach is commonly

used in medical applications when analyzing the survival rate of a patient as a function

of characteristics the patient has, such as genetic factors or pre-existing conditions. Other

parametric strategies involve the Expectiation-Maximation (EM) type algorithms, and have

been used to estimate parameters of failure time distributions (McLachlan and Krishnan
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(2007)). An EM approach will be the cornerstone of one of the estimation strategies pro-

posed in Section 2.4.

Taylor (1995) introduces a semi-parametric approach for maximum-likelihood informa-

tion with censored data when failures are exponentially distributed. A detailed discussion

of the role of regularization for obtaining sparse representations was done in Tibshirani

(1996), and an example of the use of regularization for quantile regression with censored

data can be found in Lindgren (1997). Also, the use of Li penalized estimation is used in

the context of the Cox proportional hazards model to estimate hazard rates in Tibshirani

and others (1997) and in Goeman (2010). In the operations literature, Karim and Suzuki

(2005) present a comprehensive literature review on statistical methods for analyzing war-

ranty claim data. To the best of our knowledge, our work is the first to apply regularized

regression for hazard rate estimations that uses historical data to build a basis of hazard

rate distributions.

2.2.2 The device failure process

We assume that the failure age of a device can be described by a discrete failure distribution,

where, for t E Z+,

Pr(failure of device at age t) A pt.

It is also useful to describe the failure process in terms of hazard rates. The hazard rate at

age t is the probability that, conditioned on the non-failure up until the beginning of age t,

the device fails at age t. Thus,

Pr(failure at age t I survived to age t) ' ht.

The relationship between the hazard rate and the failure distribution is

ht Pt
1- k=1 Pk

Let the complementary cumulative distribution function (CCDF) be denoted by Ft. Then,

Ft = Pr(failure > age t) and the relationship between the hazard rate and the CCDF is

t

Pt = (1 - ht).
k=1
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Thus, note that P1 = hl and that, for t > 1,

t-1

pt = ht - fJ(i - hk). (2.1)
k=1

We also assume that a failure observation can be of two types: (i) an uncensored ob-

servation, i.e., the exact age that the device had when it failed is observed; (ii) a censored

observation, i.e., if a failure observation is censored at age t, we know that the failure age

of this device is strictly larger than t. Another critical assumption that we make is that

failure age and censoring are independent. In the WSP case, this is equivalent to assume

that sales date and failure date are independent. This assumption will be discussed in more

detail in Section 2.3.

2.2.3 The Kaplan-Meier estimator

The Kaplan-Meier (KM) estimator is the maximum likelihood non-parametric estimator

of a failure distribution when failure observations are censored. We will derive the KM

estimator for the case where failure ages are discrete. The extension to continuous time is

straight forward and can be found in Kaplan and Meier (1958).

We assume that we have two sets of samples in hand: (i) a set of uncensored failure

observations y = (yi, .. . , yT), where yt is the number of devices that failed at age t, and (ii)

a set of censored failure observations z = (Zi, .. . , zT), where zt is the number of observations

censored at age t, i.e. all that is known is that the failure of these devices will happen at

an age strictly larger than t. The total number of observations is ET_ 1 yi + z,. We also

assume that whether an observation is censored or not is independent of the failure age.

Under these assumptions, the probability of observing this set of samples for a given failure

distribution p = (pi, ... ,pT) is given by

L(p; y, z) = Pr(observing (y, z) I p)
T

- y 1JY.11 Pzi*

i=1

Where L(p; y, z) is the likelihood (in this case, also the probability) of observing the sample

y, z if the failure distribution were described by the vector p. Rewriting this expression in
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terms of the hazard rates, the likelihood becomes

T i1

L(h;y,z) =fJ hYi" 1-7(1 - h3 )Y. 7(1 - hj)zi
i=1 j=1 (j=1

(T 
T

be hi -( h(1 - hi)zi+Ej>iyj+zi (2.2)

Let ri A o yj+Z, be the population of devices at risk of failure at time i, i.e., the number

of observations with failure time greater or equal to i. Then the maximum-likelihood hazard

rate vector h* will be

T

h arg max yi log hi + (ri - yi) log(1 - hi) (2.3)
i=1

where this expression comes from taking the logarithm of the likelihood function. By taking

the derivative of the log-likelihood function, it is straightforward to see that the right-hand

side of (2.3) is maximized when

h* -

Thus, we have that the maximum-likelihood CCDF is

j=1

which is the commonly known Kaplan-Meier estimate of the CCDF.

If the probability distribution has a discrete support, the hazard rates can be interpreted

as transition probabilities in a Markov Chain with an absorbing state. This leads to a

natural interpretation of the KM estimator, where the estimate of the hazard rate for some

age t is the ratio between the transitions observed from the state "working at age t" to the

"failure" state and the total number of transitions observed out of the state "working at

age t".

For the estimation problem faced by our partner WSP, the KM estimator is not very

useful for estimating the failure distribution of a new device. When a new device is launched

to market, all failure observations are truncated, since the oldest device sold is no older than

the time past since the launch date. Thus, if the KM estimator were applied to this case,

it would not be possible to estimate the right tail of the failure distribution.
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However, historical failure data indicates that the failure distribution of devices sold

by the WSP have a similar shape. For example, consider the hazard rate distributions

estimated from four devices sold by the WSP depicted in Figure 2-11. These devices are from

different manufacturers and have different specifications: devices A and B have keyboards

while C and D do not; devices C and D have the same operations system, while A and B

have different ones; all devices have distinct CPUs; they use different wireless technologies.

Despite the differences between the devices in Figure 2-1, their failure distributions are

somewhat similar, resembling scaled versions of each other. There is a spike at the be-

ginning of the hazard rate distributions due to regret returns and dead-on-arrival failures.

Afterwards, the hazard rate is fairly constant up until one year, the time when most cus-

tomer warranties expire. After one year, there is a sharp decrease since only customers that

purchased extended warranties can exchange their devices.

Since failure distributions of different devices are similar, we propose estimation strate-

gies that leverage these similarities. Thus, when a new device is introduced into the market,

the "prior information" available from other devices will be used to estimate the right-tail

of the failure distribution of the new device. Before presenting our estimation strategies,

we will first set up the estimation problem in the next section.

2.3 Problem Set-Up

In our set-up, we assume the that customers are divided into cohorts. A cohort of customers

is a pool of customers that share similar features and whose devices fail according to the

same hazard rate. For example, features that define a cohort could include the type of

device that a customer owns,customer location, or the month that the customer purchased

a device. For our partner WSP, a pool of customers is given by all the customers that own

the same type of device, regardless of when the device was purchased. This is illustrated in

Figure 2-2. In the case of Project Repat, the other company we collaborated with, a cohort

is defined as all customers that purchased a product in a given week.

We assume that there is a maximum failure age T for devices, such that, for all practical

purposes, devices of age larger than T will never fail. This comes from the fact that the

'The failure dates in the data we obtained from the WSP corresponded to the dates when the failed
deVII- vic S wa r ved fom11 lie uusumer, not the date when failure claii was filed. Since the customer has a
few weeks to return the broken device, the real failure date was a few weeks earlier.
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Figure 2-1: Hazard Rates of four different devices sold by
given in weeks.

Age in Weeks

(d) Device D

the WSP. The age of failures is

WSP offers a warranty of at most two years, and customers that are not covered by a

warranty are not entitled to a replacement device. In practice, the choice of T depends on

the context of the estimation problem. We denote the "true" (initially unknown) hazard

rate, failure distribution, and CDF by h*, p*, and F*, respectively. Also, let i be the age of

the oldest device in the system. If i < T, there are no observations for failure times in the

interval [, T].

For example, if a new device is launched in January and the current month is April,

then i = 4 months, and there are no observations of failure times larger than 4 months.

This is problematic in the context of the WSP since, around this time, the WSP needs to

start making decisions as to how much stock of this device to carry in its reverse logistics

facility, as well as wether to take counter-measures if the failure rate of the device is too

high. If there is no information about failures larger than 4 months, making tactical and

strategic decisions might be difficult. Furthermore, the KM estimator does not provide

solace when i < T, since it is a non-parametric estimator and cannot provide information

on the right tail of the failure distribution. We overcome this issue in a data-driven way by
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sales in three different months for two devices.

using the failure distributions of devices already in the market as priors for the estimated

failure distribution.

We denote the estimate of the hazard rate of a cohort of customers given a set of uncen-

sored and censored failure observations y = (yi,... , yt) and z = (zi,... , zj), respectively,

by a vector h(y, z) = (hi(y, z),..., hf(y, z)). The estimate of the discrete failure distri-

bution from the observations y and z is given by p(y, z) = (pi(y, z),... ,pt(y, z)). The

corresponding estimate of the CDF is then F(y, z) = (F1(y, z),... , FT(y, z)), where

t
Ft(y, z) = pi (y, z).

i=1

and
t-1

pt(y, z) = ht(y, z) - j (1 - hk(y, z)). (2.4)
k=1

Ideally, we would like an estimation strategy such that if no observation is truncated, i.e.,

t= T, and if y and z are sampled from the failure distribution defined by the hazard rates

h*, we have
T

sup h,(y, z) - h*I -+0 almost surely as yt + z% -+ 0.
S i=1

The KM estimator satisfies this criteria when i = T and the number of observations goes to

infinity. This is clear from the Markov-Chain interpretation of the discrete hazard model,

since the horizon is finite and thus all failure "states" will be visited an infinite number of

times as the number of observations goes to infinity. However, as mentioned if t < T there

are no observations in the interval [t, T]. Also, at the WSP, censoring occurs since devices
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in a cohort are sold in different time periods and might not have failed up to the current

time period. More specifically, if we are in period t and a device sold in period s < t has not

yet failed, we only know that this device might fail with a failure age greater than t - s. In

addition, we assume that the time that a device is sold and its failure time are independent,

since all devices in a cohort fail according to the same hazard rate distribution.

Let {h 1,..., h} be a collection of m different hazard rate distributions, such that

(h ... , 4h) represents the hazard rates for some other cohort or device or a hazard

function built using expert opinion. We view this collection as a basis set for modeling the

population of possible hazard rate distributions. Furthermore, we allow for each element j
of the basis to be scaled by some positive parameter Aj, such that Aji h= (Aj h, . ., h)
and Aj hj < 1, Vi, j. We use the set of distributions as the basis in a mixture model for the

estimation of the true hazard distribution h*. Namely, we assume that each device in the

cohort will fail according to scaled basis element j with probability 9 . Hence, we have that

m

Pr(failure at age tisurvived > t) = h* = - A . hj.
j=1

Also,
m

Pr(failure at age > tIsurvived > t) = 1 - h* = - (1 - A h).
j=1

Note also that * - (1 - Aght) =jEm-(1 - A 'h ), as O = 1. The expression

for the failure probabilities also becomes slightly different than before. The probability of

failure of a device at age t in this case is

M t-1
Pr(failure at age t) = 9-A * 1(1 - A h))

j=1 i=1

In this setting, our goal is to estimate A* = (A*, -, A*) and 0* = (0, ... , 0*). With suffi-

cient data, this allows for a greater flexibility in the estimate. From a practical standpoint,

this also allows a practitioner to identify if the failure distribution of devices in some cohort

recently launched into the market is a more intense or subdued version of the hazard rate

distributions in the basis.

After observing failures described by the vectors y and z, let 0(y, z) be the estimate for

0* and A(y, z) be our estimate for A*. We consider an estimation strategy to be effective if,
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given a set of samples y and z of observations, we have

9j (y, z) -+ and Aj (y, z) -+ A*, Vj almost surely as y-+0 and z, -+ 00,
i=1 i=1

and also, for any (y, z) we want 0 Aj (x, y) .hj < 1, Vi, j, so that the resulting hazard rates

are feasible. Note that there is a straight forward equivalence between the hazard rates and

failure probabilities as shown in Equation 2.4.

Although this is a parametric approach, we make no explicit assumptions on the un-

derlying shape of the failure distribution. This is a departure from other models, such as

the Cox Proportional Hazards model and models that assume a specific underlying distri-

bution. In our case, the hazard rate distributions in the basis are completely determined

by historical data or are defined by the modeler. Although generic, this approach is only

adequate when there is an abundance of data and, of course, historical failure distributions

or expert opinion available that can be used as priors.

In many applications, such at our partner WSP, estimating a hazard rate distribution

as a mixture of the hazard rate distribution of other devices is also useful to identify which

manufacturers and/or features lead to large number of failures. For example, this estimation

strategy can help identify if devices with similar operating systems have similar hazard

functions. Additionally, this strategy can quickly help identify if a recently launched device

has an unusually high (or low failure rate).

In the next section, we will describe our estimation strategies and their strengths and

weaknesses.

2.4 Estimation Strategies

With the basis formed by the collection of hazard rate distributions {h1,....., "} that will

be used in our mixture model and the failure observations in hand, we are ready to present

the two strategies for estimating the hazard rates of devices in a cohort. Following a similar

notation as in Section 2.2.3, assume that the failure age of a cohort of devices has a finite

discrete support [1, T]. Also, assume that observations are truncated at some age f < T.

As before, we observe y (Y1I,.. . , ye), where yj represents the number of device failures at

age i, and we observe z (z1, ... , zT), where zi is the number of observations of age i yet to
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fail. Furthermore, let ri = Ei yj + zj be the number of devices of age i that are at risk,

i.e., devices that were observed to have a failure age greater or equal to i.

The first strategy we present is an Expectation-Maximization (EM) algorithm tailored

to this problem, where an estimate of the parameters 0* and A* is obtained by maximizing

a lower bound of the likelihood function for a set of observations (y, z). The EM algorithm

is a classic approach in statistical estimation, and a survey of this method can be found in

Dempster et al. (1977).

The second approach is a regularized regression approach, where we estimate the scaling

parameters by solving an optimization problem. This approach has the advantage that the

estimate of OJA will converge as the number of samples goes to infinity.

2.4.1 Estimation using an Expectation-Maximization Approach

As a first step towards developing the Expectation-Maximization approach for estimating

the failure rates, we will derive the log-likelihood function for a set of observations y, z.

Following Equation 2.2, and recalling that

Pr(failure at age t) = ;. (A j (I - A j))
j=1 i=1

we can write the likelihood of some sample y, z for mixing probabilities 0 (01.... ,m)

and scaling parameters A = (A 1,.. ., Am) as

L(0, A; y, z) = Pr(y, z|G, A),
t~Y m-1m izi

i=1 (j=1 k=1 (j=1 k=1

The log-likelihood then becomes

log(L(,A;y,z)) = y, log 9W- A/hjj- (1-Ajhj) +z log I - (1-Ajhj)
i=1 k=1 j=1 k=1

(2.5)

This expression is not necessarily concave and is analytically intractable. There are no

guarantees that there are unique vectors 0 and A that maximize this expression, nor that

39



optimal solutions can be described in closed form. In fact, if m is large, i.e., there is a large

number of hazard rate distributions in the basis, there may even be a subspace of parameters

that maximizes the log-likelihood. In this case, we say that the model is non-identifiable.

Also, note that even if the parameters 0 were known, maximizing the log-likelihood with

respect to A is still challenging since the expression is not concave.

On the other hand, instead of maximizing the likelihood in Equation 2.5 directly, assume

that we also had access to observations of two other sets of variables: {aij} and {/3 ,j},

where {ai, } corresponds to the fraction of uncensored failures observed for an age i that

were generated by basis element hi, while { 3j, 3 } corresponds to the fraction of censored

observations for an age i that were generated by basis hazard rates hi. Note that EM_ 1 ai =

1 and Em, 3i , = 1. In this case, the likelihood of y, z, {ajj} and {#3jj} in terms of A and

0 is denoted by L({ai,, 3ij, y, z10, A}) and is

t m /a /i i Oijzi

L(0, A; {aj, 3i,j}, y, z) = ( fj Ajhj - 17(1 - Ajh ) - (j1I(1-A3hI)
i=1 j=1 ( k=1 k=1

where the first term inside the product is the probability of ajjyj non-censored observation

from basis j and the second term is the probability of observing Oi,jzi censored observations

from basis j.

Since we cannot observe aij and /ij we formulate the estimation problem as maximizing

the expectation of the likelihood above. Namely, we can estimate 9 and A by solving

max E [L(9, A; {aij, Oij}, y, z) 1, A].
A,O

where the expectation is taken over {aij, ,j}. Unfortunately, this expression is still in-

tractable. In order to obtain a tractable formulation note that, from Jensen's inequality,

log (E [L(9, A; {aij, /ij}, y, z)I0, A]) > E [log (L(O, A; {a%,j, f3 ij}, y, z)) 90, A] ,

and we can attempt to maximize the right-hand-side of the expression above, obtaining a

lower bound for the expected likelihood E [L(9, A; {ai,, } y, z)j0, A3. The right hand side
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of the expression above is

E[log(L(9, A; {aj, /3 ,j}, y, z))JO, A] = E[Lo(9; {a # }, y, z)1, A]+E[LA(A; {a,j, 3 ,3j}, y, z)10, A]

(2.6)

where we define ij= E[aijyi 1, A], jj = E[I 3jz6i, A], and where LO and L, are

E[Lo(0; {aij, /ij}, y, z)10, A] = (pt,,+ ij) log(0j)
i=1 j=1

and

E[LA(0; { ai,j,i,j}, y, z) 1, A] = m i'j
i=1 j=1

M

i=1 j=1

log A 3 . fl(i - Ajh) + ', log 7(1 - Aj 3 k)
\ok=1 / (k=1 /

log (Aj hj + j:k, j+ ej -Yi~j log (1I - Aj h~j
(k=i

If the expected values {qijj,,j } were fixed, maximizing Equation 2.6 would be straightfor-

ward, since it is separable in 9 and A and is also convex in both arguments. In addition,

given 0 and A, we have that

9ij = E[ai ,yi 0, A] = yj - Pr(haz. rate is hi)|A, 6, failure age i, survived > i).

Using Bayes rule, we know that the probability that the basis is h given a device that

survived until the beginning of age i and fails with age i can be written as

Aj h6.
Pr(haz. rate is h3 )IA, 0, failure age i, survived > i) = . .

z m_1 AjhjO

Similarly, we have

Z, J = E[3i,jzi10, A] = zi - Pr(haz. rate is h)LA, 9, failure age i, survived > i).

and

(A - A) -Pr(haz. rate is h3 )IA, 0, fail > i, survived > i) = (IAjh')Oj
T(s - Ax z ) u

Thus, given the expected fractions {g i,j ,} it is straightforward to maximize Equation
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2.6 and, given 0 and A, it is easy to calculate {gij, 243}. This suggests a procedure where

we alternate between maximizing Equation 2.6 and calculating the expectations {gij, 23}.
This is the basis of the Expectation Maximization (EM) algorithm. This procedure is

outlined below:

1. Given y and z, define some initial values for 0 old and Aold and stopping criteria co and

2. (Expectation Step) Calculate yi-j, zij as

Aqldhjood (1 - Ac?1dh4)Ool1d

o d!Ym 1d (1 _ Aoldh s old

3. (Maximization Step) Define r =j gkj + 4jj. Also, let hN = mini{h}. Cal-

culate AT'C for every j by solving

i
A" = arg max g log (A3 hj) + (rij - pigj) log 1 - A h .

Aj<l/hmin i=1

Also, calculate 0"e" defined as

gnew _ i= I Pi' +z Egg
St

- i=1 Yi + ZiJ

4. If jOnew - 0old < EO and IIAnew - Aold CA stop and return the current estimates of

0 new and A"'e. If not, make old = one" and Aold = Anfw and repeat from Step 2.

In the procedure above, note that 9 new maximizes Equation 2.6. Also, we restrict

the maximum value of A1w in order to ensure feasibility of the resulting scaled hazard

rate distribution. The convergence of the previous algorithm follows directly from the

convergence of EM algorithms Wu (1983).

This proposed estimation method has a few limitations. First, even though the pro-

cedure itself converges, it does not necessarily guarantee convergence to the maximum-

likelihood estimate of 0 and A. Furthermore, it does not directly address potential iden-

tifiability problems in this model. Finally, the estimates for 0 and A may be dense, i.e.,

with most elements of both vectors being non-zero, which can make identifying the most

important elements in the basis difficult.
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2.4.2 Hazard Rate Regression

In this subsection, we will present and discuss an alternative approach for estimating the

parameters of the mixture model. Namely, we will calculate the empirical quantiles, use a

model selection procedure to identify relevant basis and, finally, use a regression to calculate

the weights in our model. From Section 2.2.3, we have that the non-parametric estimate of

the hazard rates for non-censored observations y and censored observations z is

hKM Yi

where r2 = y + z. We denote hKM ( M'..., hM). Also, from our probabilistic

model, we have that the hazard rate at some age i for a device is given by a scaled combi-

nation of basis hazard rates {h1,... , h'}, where each vector in this set has dimension T.

More specifically, each basis j is scaled by some factor A, and each device in the cohort

will fail according to basis j with probability 6,. In this case, the probability of failure of a

device that survived up until the beginning of age i fails with age i will be E' 1j A, h.

A first approach to estimate 0 and A would be to find parameters that minimizes the

distance

E=KMjAj (2.7)

where ||-1l1P, is the p-norm of the first t components of the vector. Namely, for some vector

Equation 2.7 is not convex due to the bilinear term. However, since in practice the goal is

often to identify relevant bases and then use the weighted model for forecasting, it might not

be necessary to learn 0 and A individually. If this is the case, we can define w = (wi,... , WM),

where wj = 0, -Aj. If we also consider feasibility constraints in order to ensure the resulting

estimated hazard vector is feasible, we can write the regression problem as

minimize Z=lwjh J - hKM

s.t. E g Whi < I, i = I, ... , T, (2.8)
j=1

w ;> ,Oj = 1 ... , m.
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Simply put, this approach finds a point in the cone generated by the basis hazard rates

that is a feasible hazard rate distribution and that minimizes the distance between the non-

parametric estimates of the hazard rates. Furthermore, if i = T as the number of samples

goes to infinity, ZI 1 A* h3 will converge to hKM. Since we assume that the original

samples were drawn from the mixture model in Section 2.3, we have that the solution of the

above, denoted by w*, will converge as well, such that EM w *h3 converges to E M AWh1 .

One major problem of this approach is that if i is small and m is large, the problem

could have multiple optimal solutions. In fact, there might be a subspace of solutions that

minimizes the norm, indicating that this model is unidentifiable. Furthermore, even if we

obtain a solution, the vector w might mostly have non-zero components, making it difficult

to identify the truly important basis in our estimation problem.

We can address the identifiability issue by regularizing the regression. This is done by

adding a term to the objective function, ensuring that it is strictly concave. Furthermore,

we can try to obtain a sparse solution w by penalizing or limiting the cardinality of this

vector. Obtaining a sparse solution can be useful depending on the context of the estimation

problem. For example, a sparse solution can help identify which cohorts are the most similar

and can help with an investigation of the features that these cohorts have in common.

Ideally, we would have a constraint of the type card(x) < c, where c is some number chosen

by the practitioner. However, adding this term is impractical since it destroys the convexity

of the problem.

One alternative that addresses both issues is using the 11 norm as a penalty function2 .

The 11 norm is the convex envelope of the cardinality function and, in practice, tends to

lead to sparse solutions in optimization problems as discussed in Tibshirani (1996). This

approach is commonly referred to as the LASSO regression. Thus, the penalty function

then becomes

minimize Eg mwjhi - hKM _

s.t. Z WA < 1, i - 1, ... , T, (2.9)
j=1

es > 0, j =ip, . .m.

2 The 11 norm of some vector x is simply Ei 1xi.
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where -y is some positive weight that is an input to the optimization. The larger the weight,

the larger the penalty on the norm of w. Note that the problem is now strictly convex and

has a unique optimal solution.

Finally, the optimization in Equation 2.9 is useful for model selection, i.e., for identifying

which of the basis hazard rates are the most relevant. Thus, the optimization is done through

the following steps:

1. Define a tolerance e > 0 and let d* be the optimal cost of the problem in Equation

2.8.

2. For some -y > 0 we solve the optimization problem and select the relevant basis, which

will usually be the basis elements for which the corresponding weight is non-zero.

3. With the relevant basis elements in hand, we discard the non-used basis and resolve

the problem in Equation 2.8 with -y = 0 using only the new set of basis. The new cost

is denoted by d'.

4. If dr < (1 + e)d*, stop. If not, decrease -y and return to Step 2.

The solution of the second step will be taken as our estimate of 9 A . In the next section

we will analyze through numerical experiments both of these approaches.

2.5 Forecasting and Numerical Experiments

In this section we will examine the performance of the EM algorithm and of the hazard rate

regression procedure proposed in the previous section through three sets of experiments.

The first set of experiments uses data from our partner WSP and the goal is to estimate the

amount of weekly customer warranty claims it receives for two different devices. The second

set of experiments corresponds to an artificial set-up where we compare, in a controlled

setting, the performance of the two estimation strategies. The final set of experiments is

based on data from Project Repat, a social enterprise in the Boston area that transforms

old t-shirts into quilts.

Before presenting the experiments, we will first discuss, using the context of our partner

WSP, how the estimate of the hazard rate distribution was used to forecast the number of

device failures and, therefore, the number of warranty claims.
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2.5.1 Forecasting

As discussed in Section 2.3, if the maximum warranty of a device is T periods in length, and

if we are i periods after the launch of the device, the oldest device in the market will be of age

i and there will be no failure observations in the interval [F, T]. The estimate of the hazard

rate distribution using information up until time i will be denoted by h' - (h, ... , hr).

Furthermore, assume that sales of devices happen in some interval [1, T,], such that

there are no sales after time T,. Let the sales in each period be described by a vector

s = (s1, ... , sTJ. For our experiments, we assume that this vector is known. This is not

true in practice, but the estimation of sales volume is beyond the scope of this chapter.

In this setup, we expect the last period in which failures occur to be T + T'. Hence,

we define Tmax = T + T, to be the length of time that the WSP has to manage warranty

claims for a device. Also, let the age distribution of devices in a cohort be given by x(t) =

(xi(t),... ,XT(t)) where xi(t) represents the amount of devices of age i in the cohort of

devices at the beginning of period t. Then, we have that xi(t) = st, Vt and that

E[xi+(t + 1)Ih] = (1 - h') -xi(t), Vi = 2, ... ,T;Vt = 1,...,Tmax.

Also, in the first period, x(1) = (s,0,... , 0). Furthermore, let the number of failures at

time t be given by a vector f(t) = (fi(t), . . ., fT(t)), where fi(t) is the number of failures

of age i at time t. Then, given an estimate h of the hazard rate distribution, we have

E[fj(t)iht] = ht - xi(t),Vi = 1, ... ,T;Vt = 1,... ,Tmax-i, (2.10)

and the expected number of failures at time t will be E hi -xi(t). In our experiments, we

take this expectation as the estimate of the failures.

One metric for the performance of an estimation strategy is to compare the estimates

of (f(1),... , f(Tmax)) to the true failures. A second metric that we use is comparing the

maximum distance between the estimated Cumulative Distribution Function (CDF) and the

true CDF. We define estimated CDF with information up until time i by F! = (F, .. ., FT),

where FT is

= 1 - (1-h7),
k=1
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and if the true CDF is F* = (F*,... ,F ), we have that the maximum distance is

max I - F*.

We call this distance the Kolmogorov-Smirnov (KS) distance, since it has the same form

of the Kolmogorov-Smirnov statistic for an empirical distribution. From a practical stand-

point, if all devices were sold on a single day, this distance would represent the maximum

error of the estimate of the cumulative number of failures of a device.

2.5.2 Forecasting Failures at the WSP

We consider the problem of estimating the weekly number of failures for two models of

devices sold by our partner WSP. The first device, which we call device A, was a device

marketed towards business customers and was one of the best-selling devices in this segment.

The second device, which we call device E, was a device marketed towards regular customers

and was one of the best-selling models in its launch year. Device E was also a device that

had an unusually high failure rate, higher than other models in the segment, and which led

to a stock-out of replacement devices at our partner WSP.

We take the hazard rate distributions estimated from 5 other devices as the set of basis

hazard rate distributions in our estimation. We have access to all failures of these devices so

that the hazard rate distributions of these devices were estimated using the KM estimator.

The 5 devices used as basis were made by 4 different manufacturers and had different

operating systems and physical characteristics than devices A and E. Since the number of

elements in the basis is small, we did not include a regularization term in the regression

estimation procedure. For the EM algorithm, the stopping criterium of the algorithm was

that the parameters did not change by more than 1%.

Our experiments consist of estimating the weekly number of failures for both of these

devices, considering that there are different number of weeks of information available, i.e.,

different values of i. We take T as 100 weeks and Tmax as 150 weeks, since more than 95%

of sales happen during the first 50 weeks from launch. Recall that if we are i weeks after

the launch of the device, the oldest device in the market is of age at most I and we have

no failure age observations in the range [F, T]. Thus, in the case, the information in the

interval [1,j] is used to estimate hT and, by assuming that the weekly sales of this device
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Figure 2-3: Estimate error of the total number of failures after 150 weeks as a % of the real

total failures and the KS distance for different amounts of data for device A.

is known, we create a forecast for the expected weekly failures from week 1 to week Tmrs

using Equation 2.10.

The results for the EM algorithm and for the hazard rate regression for device A are

depicted in Figure 2-3 and in Figures 2-8 and 2-9 in the Appendix of this chapter. Figure

2-3a shows the absolute error in the forecast of the total number of failures of device A for

s C [1,40]. Thus, if we are g weeks after launch, we have 1 weeks of information, and we

use this information to estimate the total volume of failures. In Figure 2-3b we depict the

KS distance between the estimate of the CDF and the true CDF of the device for different

amounts of information available. After receiving 25 weeks of failure data, both estimators

produce good results, having a maximum error around 10% and a KS distance of 0.1. Note

that 25 weeks is still at the beginning of the warranty life-cycle of the device, which is

usually around 100 weeks long. The performance of both estimation strategies for different

amounts of information can be visually compared in Figures 2-8 and 2-9 in the appendix of

this chapter.

The performance of the estimation strategies for device E, which had a higher than

expected failure rate, is depicted in Figures 2-4, 2-10 and 2-11. Once again we assume

that the device is launched on week 1 and we make the estimate assuming we are t weeks

after launch and only have information up until week i. In this case, the EM algorithm

failed to produce good forecast of the failures. This happened for a few reasons. First,

the hazard rate of device E was unusually larger than the hazard rates of other devices in

the basis. Furthermore, the EM algorithm does a local search, and does not guarantee a

quality estimate of the mixture parameters. On the other hand, the hazard rate regression
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Figure 2-4: Estimate Error of the total number of failures after 150 weeks as a % of the
real total failures and the KS distance for different amounts of data for device E.

estimation strategy produced estimates with KS distances that were consistently around

0.1, with only 22 weeks of data. In addition, with more than 22 weeks of data, the estimate

of the total number of failures is within 10% of the true total number of failures. This

indicates that it would have been indeed possible to detect early on the unusual failure rate

of this device, allowing for tactical decisions such as better management of inventory of

refurbished devices. Figures 2-10 and 2-11 illustrate the performance of the two estimation

strategies.

A tailored version of the estimation strategy was implemented at our partner WSP, and

the implementation is described in Petersen (2013). In addition, a plug-in was developed

for Microsoft Outlook and Excel that allowed managers at the reverse logistics facility to

forecast the amount of failures and also provided an estimate of inventory needs.

2.5.3 Simulation using computer generated data

The second set of experiments consists of comparing the EM algorithm and the hazard rate

regression in a controlled setting. More specifically, we assume that T = 200 and that all

members of a cohort enter the market at the same time. We consider a basis set of 30 hazard

rate distributions that will be used to estimate the hazard rate of a target new cohort. The

failure distributions of cohorts in the basis and the (initially unknown) failure distribution

of the new cohort are generated as follows:

1. Sample a and b from a Uniform distribution with parameters [1, T]. Furthermore,

sample some value p from a Uniform distribution with parameters [0, 1];
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2. The failure age distribution of the cohort is set to be a mixture of a Uniform random

variable with parameters [1, a] and an Exponential random variable with mean b. The

mixture probability is p.

The mixture of a uniform and exponential random variables are chosen to represents

two populations inside a cohort. It also generates a non-trivial failure distribution for

each cohort. We also assume that failure observations are censored, and that the censoring

random variable is uniform with parameter [0, T]. Thus, for each failure sample we generate

a corresponding censored variable such that, if the sampled failure age is x and the sampled

censoring variable is y, we observe min(x, y). We also assume that we know if an observation

is censored or not.

We assume that we do not have direct access to the hazard rate distributions in the basis,

and that the hazard rate distributions in the basis are estimated using the KM estimator for

100 (potentially censored) samples of the corresponding cohort's failure distribution. For

the new cohort, the target of the estimation problem, we also assume that there are 200

(potentially censored) failure observations.

We evaluate the performance of the two estimation strategies for different values of i.

Thus, if a sampled failure age for a member of the new cohort is x and the censoring variable

is y, we will observe min(x, y, f). For each value of i, we generate 100 different bases and

100 new cohorts using the sampling strategy described in the beginning of this subsection.

We then estimate the hazard rate distribution of the new cohorts and corresponding value

of i using both the EM algorithm and the regression approach. For the EM approach the

algorithm was interrupted if the parameters did not change by more than 1%. For the

regression approach we included a regularization component, and we set the tolerance to

be 5% of the non-regularized cost.

The results are summarized in Figure 2-5. In the box plot, the black line in the middle of

the box is the median of the sample, the top line is the 75% quantile and the bottom line is

the 25% quantile. The lines extend to 1.5 times the inter-quartile range. Note that that there

is no improvement for i larger than 10 (10% of the horizon), and both approaches produce

failure distribution estimates with a KS distance lower than 0.2. Thus, at 10 periods after

launch it would be possible to have a reasonable estimate of the failure distribution. Note

that the KS distance of the regression approach has a much lower variance than the EM

algorithm. This is because of the sensitivity of the EM algorithm to the initial parameters
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Figure 2-5: Box-plot of the KS distance between the true hazard rate and the estimated

hazard rate for different values of i. The distance is calculated for the horizon [1,100].

and the fact that it does not necessarily converge to the maximum-likelihood estimate of

the model parameters.

The regression approach, which included regularization with a 5% tolerance, also led

to sparser representations. None of the observations in the simulation used more than 22

elements of the basis and, the average number of basis selected was 7. On the other hand, in

the EM approach, in the majority of the simulations all elements of the basis had non-zero

weights.

2.5.4 Estimating returns at Project Repat

The third set of numerical experiments uses data from Project Repat, a social enterprise in

the Boston area that transforms old t-shirts into quilts. Their product is popular among col-

lege students and recent graduates that want to preserve their college (or fraternity/sorority)

t-shirts, and it is also popular among athletes, particularly runners, who collect t-shirts from

races. Depending on the season of the year, Project Repat can sell from hundreds to thou-

sands of quilts per week.

The dynamics of Project Repat's customer-facing operation is as follows: (i) customers

"purchase" and pay for a quilt on Project Repat's website; (ii) Project Repat registers the

order and send the customer a pre-paid envelope; (iii) The customer puts old t-shirts in

the envelope and sends it to Project Repat; (iv) The t-shirts are received, cut, sewn into a

quilt; and (v) the quilt is shipped to the customer.

Project Repat puts a high value on the social and environmental impact of their work.

Besides being a company that upcycles old t-shirts, Project Repat contracts all of its sewing
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to textile plants in the United States as an attempt to " repatriate the textile industry".

Finally, this company actively works with NGOs that employ individuals with disabilities

and that have limited employment opportunities.

A major issue in Project Repat's operations is forecasting the volume of envelopes with t-

shirts that they receive from the customers that purchased a quilt on-line. More specifically,

they use these forecasts to decide how many working-hours they should contract from textile

plants; and if the volume of work needed exceeds the minimum contracted, they have to

pay overtime.

In this context, we use the hazard rate regression strategy to estimate the lead time

between the customer receiving an envelope from Project Repat, and sending back their

old t-shirts. We model this lead-time as a random variable, having a similar interpretation

as the failure age. While before we were estimating the failure age of devices, here we

are estimating the customer lead time, i.e., how many days (or weeks) after purchasing a

product do customers send in their t-shirts.

The hazard rate of the amount of time until customers send in their t-shirts is depicted

in Figure 2-6a for three sample months. Note that these hazard rates appear to be scaled

versions of each other. Also, from the return data, we have that customers take between

2 and 3 weeks on average to send their t-shirts, if they send it in at all. However, the

lead-time is heavy tailed, and over 20% of customers that eventually send their t-shirts take

more than 5 to weeks send them.

In Figure 2-6b, we have the fraction of customers that never sent their t-shirts. This

seems to be the driving factor that makes hazard rates dissimilar. The fraction of orders
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mation available.

that never send t-shirts are driven by two factors: (i) seasonality effects - quilts purchased as

gifts have a lower percentage of returns; (ii) the promotion in place - coupons and discounts

attract customers with a lower return rate.

For our estimation, we define a cohort as the customers that purchase devices in a given

week. The goal is to estimate the weekly hazard rate of a customer sending in the t-shirts.

In our experiment, we use T = 24 weeks and use the empirical hazard rate from 35 different

weeks as the basis set. We chose 3 cohorts to estimate - each cohort is from a different

month, in order to ensure that they are not too similar, and they were all chosen from sales

after the cohort weeks in the basis.

We observe the performance of the estimation strategies for different amounts of infor-

mation available, i.e., different values of i. Thus, we assume we are f weeks after a cohort

purchased their quilts, and use the information from the interval [1, t] to estimate the lead-

time distribution. Note that, for all 3 cohorts, with two weeks of information (out of a

horizon of 140 weeks) the KS distance is less than 0.15 and, with three weeks of informa-

tion, the distance is less than 0.1. Since all customers in a cohort purchase a quilt at the

same time, the KS distance is the same as the maximum error of the aggregate estimate of

the number of t-shirts sent per week. The estimation procedure also led to sparse represen-

tations, and for all cohorts and values of i no estimate used more than 7 elements of the

basis.

This estimation procedure was built into a cloud-based forecasting tool that was given to

Project Repat. Through the tool, the company can forecast the volume of t-shirts received
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given open pending orders of each cohort in the system. Also, by analyzing the basis selected

by the estimation procedure, Project Repat can identify which weeks best represent a new

cohort, and use this to try to identify what influences the customer lead-time.

2.6 Conclusion

We proposed and analyzed two methods for estimating failure distributions of newly launched

devices that leverages the historical data of failures from other devices. The proposed strate-

gies are based on a hazard rate model developed under the assumption that customers in the

same cohort have devices that fail according to the same age-dependent failure distribution.

A cohort is a pool of customers that share similar features (e.g. phone model owned, data

plan, etc.).

The first estimation strategy used an Expectation-Maximization (EM) type algorithm

to estimate the parameters of a mixture model. Here, we assumed that hazard rates of

devices in a new cohort are drawn from a mixture of scaled hazard rate distributions built

from historical data. Furthermore, since maximizing the likelihood function of a set of

observations is intractable, we use an EM approach to maximize a lower bound of the

likelihood and obtain an estimate of the parameters of the mixture model.

The second estimation strategy, called hazard rate regression, uses a model selection

method, where we assumed a "basis" set of hazard rate distributions determined from

historical data. We then used a regularized regression to identify and fit the relevant hazard

rates distributions from the basis to the observed failures from the new cohort. This allows

for a sparse representation of the estimated hazard rate distribution, which can be useful

depending on the context of the estimation problem.

In the final part of this chapter, we described how these estimation strategies can be

used to create a forecast of the volume of warranty requests received by our partner WSP,

and introduced different metrics to measure the quality of the forecast. We also examined

both estimation strategies through a series of numerical experiments using data from our

partner WSP and using data from Project Repat, a Boston-based social enterprise that

transforms old t-shirts into quilts. Through these experiments, we observed that both the

EM algorithm and the Regression approach have a similar average performance, but the

performance of the regression approach has a lower variance. Furthermore, the regression
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approach leads to sparser representation of the hazard rate distribution, while the estimate

produced by the EM algorithm is dense in the mixture parameters.

There are a few open problems that we have yet to examine. First, a more thorough

theoretical characterization of the hazard rate regression procedure, and an analysis of its

connections with other estimation strategies may lead to a deeper understanding of its

advantages and disadvantages. A second problem is the connection between estimation

and inventory management. For example, in this setting, it is not clear if the presence of

censored information leads to policies that oversell items, or a policy that undersells items.

Finally, investigating how the basis in the estimation impacts overall estimation quality

can lead to a more precise guidelines for defining cohorts and selecting the basis used for

estimation.
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Chapter 3

Inventory Management in a

Closed-Loop Supply Chain

3.1 Introduction

The goal of this chapter is to describe, model, and optimize the inventory at our industrial

partner, a Wireless Service Provider (WSP) that is a Fortune 100 company. This WSP sells

consumer electronics and offers voice and data plans to its consumers. For this company,

as for many other retail businesses, the management of warranty claims and regret returns

is a key issue. In fact, the volume of warranty claims for products commercialized by our

industrial partner is substantial (in the order of thousands per day), and a significant portion

of sold items are returned. Coupled with the short life cycle of their products, usually less

than one year, this leads to large levels of inventory of refurbished products that are costly

to maintain and expensive to dispose.

Our industrial partner uses a reverse logistics model that is similar to the one adopted by

other retailers, especially on-line retailers. In this model, there are two warranty contracts in

place: the consumer warranty, and the Original Equipment Manufacturer (OEM) warranty.

The consumer warranty protects the consumer against any defects in the purchased product

and also provides the consumer a period for "regret returns". In addition, the consumer

warranty has strict requirements - when a warranty claim is filed, a new or refurbished item

is immediately shipped by our industrial partner to the consumer together with a pre-paid

shipping label so that the customer can return his original unit. Thus, a replacement item
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is sent before the original item is received. The OEM warranty, on the other hand, is offered

by the OEM to the WSP, covering every device purchased from the OEM. This warranty

is slow - a defective product sent to the OEM takes weeks or months to be fixed and a

replacement device is not shipped immediately.

Because of the differences between the OEM and consumer warranty contracts, our

partner WSP has a reverse logistics facility that is dedicated to processing customer-regret

returns and customer warranty claims. This facility can also execute repairs if the defect

in the returned product is small or not covered by the OEM warranty. However, if the

returned product has a defect that is covered by the OEM warranty, the device is sent to

the OEM for repair and refurbishment. Since this reverse logistics facility uses repaired and

refurbished devices to satisfy consumer warranty claims, this system fits in the context of

closed-loop supply chains (CLSCs).

The remainder of this chapter will address inventory management in the reverse logistics

facility. For such, we present a literature review and then proceed to discuss the problem

set-up and the different players in the system. We then introduce a discrete-time stochastic

model that captures the behavior and the dynamics of this system. We prove the structure

of the optimal policy for this problem, starting with a deterministic approximation and

proceeding to the stochastic case. We also propose a balancing approximation that allows

for a tractable calculation of inventory management policies. This results in a simpler, more

tractable newsvendor-type model. In the final part of the chapter the policies we propose

will be examined through numerical experiments.

3.2 Literature Review

This chapter builds upon a vast body of literature that addresses closed-loop supply chains

(CLSCs) and reverse logistics. Two early examples of papers that consider the management

of inventory of repaired/refurbished items are Simpson (1978) and Allen and D'Esopo (1968)

that study a finite horizon remanufacturing system. More recently, Guide and Van Wassen-

hove (2009) and Fleischmann et al. (1997) present an overview of the literature in CLSC

and discuss future directions of research. Also, Savaskan et al. (2004) discusses different

strategies for remanufacturing products in a CLSC context.

With regard to inventory management for warranty replacements, Huang et al. (2008)
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offers a detailed overview of the literature in warranty management, and analyzes inventory

management when there is demand for both new and replacement items, and assumes the

demand to be stochastic. However, it does not take into account remanufacturing. Khawam

et al. (2007) use a simulation approach to obtain inventory management policies for Hitachi.

In Toktay et al. (2000), a closed-loop queuing model that captures dynamics of recycling at

Kodak is proposed, and a control-policy for the procurement of components is proposed. In

Feinberg and Lewis (2005) and in Chen and Simchi-Levi (2009), the authors investigate the

case where demand can be positive or negative, being similar to the set-up in this problem,

although the authors do not consider time-varying costs.

From a conceptual level, product warranty management is discussed by Murthy and Blis-

chke (1992). Also, the connection between the warranty and logistics literature is discussed

by Murthy et al. (2004), as well as the relationship between warranty service and customer

satisfaction. The impact of regret returns on inventory management is analyzed in de Brito

and van der Laan (2009) where the authors highlight the effect of imperfect information

about returns on inventory management. Also, in Geyer et al. (2007), the cost-saving poten-

tial of remanufacturing systems is analyzed, although the inventory management problem

is not considered.

Our work also draws from the stream of literature that considers inventory management

in the presence of incomplete or censored demand information, specifically when ordering

quantities or inventory levels impact demand observations. Although this is a setting dif-

ferent than ours, since we consider a reverse logisics system where inventory levels do not

influence observations, many in this stream of literature have the same flavor as the results

in our work. In Chen and Plambeck (2008), the inventory management of non-perishable

goods when there is incomplete demand information is considered, and a policy for man-

aging inventory while learning about demand is studied. The newsvendor problem with

censored demand is studied in Godfrey and Powell (2001), and distribution free algorithm

for setting the ordering quantity is determined. An asymptotic analysis of inventory plan-

ning with censored demand is presented in Huh and Rusmevichientong (2009), and adaptive

data-driven inventory control strategies when there is censored information are proposed in

Huh et al. (2011).

Finally, our work also fits in the wider field of perishable inventory systems, and a review

of the results in this area can be found in Nahmias (2011). As for the theoretical tools that
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we use in this paper, Bertsekas (2005) presents an overview of Dynamic Programming in

the finite and infinite horizon setting, including many examples in inventory management.

Balancing policies have also been an active area of study, and Levi et al. (2007) contains

an application of this approach in inventory management.

3.3 Problem Description

There are three players in this reverse supply chain: the customer who purchases mobile

devices, the Wireless Service Provider (WSP), and the Original Equipment Manufacturer

(OEM). The forward supply chain between these players is structured as a traditional supply

chain. The customer purchases a mobile device from the WSP and either subscribes to a

wireless plan that includes voice and data services provided by the WSP or purchases access

to these services through a pre-paid card. The WSP, whom we focus on, is both a retailer

of mobile devices and a provider of wireless services to consumers. As mentioned in the

introduction, most of the revenue of the WSP comes from the services it provides, and one

of their corporate goals is to ensure that the time customers spend "disconnected" from

their network is minimized, since a disconnected customer means lost revenue and loss of

customer goodwill. The OEM, at the top of the forward chain, acts as a wholesaler, and

sells mobile devices in bulk to the WSP. The reverse supply chain, however, is a closed-loop

supply chain (CLSC). Before describing the dynamics of this CLSC, we will highlight the two

warranty contracts that are in place in this system, namely, the consumer warranty, offered

by the Wireless Service Provider (WSP) to the device user, and the Original Equipment

Manufacturer (OEM) warranty, offered by the OEM to the WSP.

3.3.1 The Consumer and the OEM warranties

The consumer warranty is designed to minimize the time a customer spends without a

working device. This warranty has a base length of 12 months, but can be extended if the

customer decides to purchase an extended warranty plan, usually an additional 12 months

of coverage. If a device presents a problem, the user contacts the WSP's call center where

a technician provides assistance and tries to resolve the issue. If the technician is unable

to solve the problem, or if a manufacturing defect is verified, a warranty claim is filed and

a replacement device is immediately shipped to the user. In most cases the user receives
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a replacement device in less than 72 hours from the time a warranty claim is received by

the WSP. In addition, the replacement device comes with a pre-paid shipping label so the

user can mail the defective device to the WSP's reverse logistics facility where the device

goes through testing and triage. A key feature of this system is that, whenever possible, the

replacement shipped to the consumer is a refurbished device of the same model of the device

that failed. More specifically, the replacement device is usually a remanufactured device

from some previous warranty claim or regret return. If there are no refurbished devices

available, the WSP will send the customer either a new device of the same model or, if no

new devices are available, will give the customer an upgrade, and will give the customer

a newer model. Giving customers an upgraded device is perceived as a "last resort" for

fulfilling warranty claims, since it creates an incentive for customers to file warranty claims

as an attempt to obtain a new device for free.

The consumer warranty contract also allows for regret returns, such that the user has

a "grace period" of a few weeks after purchasing a new mobile device where the device can

be returned to the retail site for a complete refund, net of a stocking fee. These returned

devices are shipped from the retail site to the same reverse logistics facility that manages

defective devices that originate from warranty claims.

The OEM warranty is designed to protect the WSP from manufacturing defects of

devices purchased from the OEM. This warranty usually has a 12 month duration and

starts when the WSP purchases the devices, usually in bulk, from the OEM. The warranty

asserts that the OEM is responsible for remanufacturing or replacing defective devices that

are sold to the WSP. Unlike the consumer warranty, the OEM warranty is not designed to

minimize the time that the WSP spends without a working device. However, this warranty

specifies a lead time for the OEM to remanufacture or replace the faulty device, usually a

few weeks. For some OEM's, this contract also stipulates a seed-stock of new devices that

the OEM provides to the WSP to be used as replacement devices for the initial warranty

claims and to cover other losses in this CLSC.

The WSP maintains an inventory of refurbished devices in a reverse logistics facility,

which is dedicated to processing customer regret returns and faulty devices originated from

warranty claims. This facility can also execute repairs if the defect in the returned product

is small or not covered by the OEM warranty. Since a large volume of warranty claims

are filed per day (usually over ten thousand), and a significant number of customers that
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purchase new devices regret their decision and return their device (usually between 5% and

10%), there are over one million devices in this facility at any given time.

The structure of the consumer and OEM warranties create management issues that

ultimately impact the reverse logistics operations of the WSP. An example of this friction

is no trouble found (NTF) devices, which are devices where the customer claims that there

is an issue with the device, but neither the WSP nor the OEM can replicate the problem.

In this case, both the OEM does not offer a replacement to the WSP, and the WSP might

not use this device as a replacement, since it cannot ensure perfect functionality. This

generates loss in the system and potential additional costs for the WSP. Another source

of friction that can lead to system loss are manufacturing defects that are detected by the

WSP and disputed by the OEM. Since there is a large volume of devices going through the

reverse logistics facility, there can be a large number of disputed claims, creating additional

overhead for the managers at the WSP.

3.3.2 Dynamics of the reverse logistics facility

The dynamics of this system are depicted in Figure 1. Grey arrows denote the flow of items

from customers into the system, dark arrows represent items leaving the system, and white

arrows correspond to the flow of items within the system. The dashed box outlines the

limits of the WSP's reverse-logistics facility that processes and stores returned items. The

device flow in this reverse supply chain is described below, following the numbers in Figure

1:

1. When a warranty claim is filed, the replacement is immediately shipped to the user

from the inventory within the WSP's reverse logistics facility, together with a pre-paid

shipping label for the return of the original product held by the customer. Note that

the customer receives a replacement before returning the original item.

2. Upon receipt of the replacement, the customer mails back the failed unit to the reverse

logistics facility.

3. A second source of products into the facility are regret returns. A customer can return

a product within a few weeks of purchase, and receive a full refund, possibly net of

a stocking fee. Customers that return an item through this channel do not receive a

new product.
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Figure 3-1: Dynamics of the CLSC. The dashed line outlines the reverse logistics facility.

4. Products received from warranty claims and regret returns go through a triage process

upon arrival at the facility and different tests are conducted. The triage process

generally leads to four possible outcomes: (i) no problem is found and the product is

sent to inventory after a refurbishment; (ii) there is a minor problem, and the device

is repaired at the facility; (iii) there is a major problem that is covered by the OEM

warranty, and a warranty claim is filed with the OEM; (iv) there is a major problem

that is not covered by the OEM warranty, and the defective device is either repaired

at the facility or disposed.

5. If the triage process determines that the defect is covered by the OEM warranty, the

device is shipped to the OEM for repair and refurbishment. It usually takes a few

weeks for the refurbished device (or a replacement) to return to the reverse logistics

facility. Also, when a product is launched, the OEM provides an initial seed stock

of new devices to our industrial partner, and these devices are kept in stock at the

reverse logistics facility.

6. The refurbished devices kept in stock by the reverse logistics facility can be sold

through side-sales channels. These channels include sales to other WSPs that sell

these devices in other markets, to companies that recycle components of these devices,

and also through certified pre-owned sales programs. Side-sales not only generate
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revenue, but also act as an inventory control mechanism, allowing the facility to

reduce inventory levels, especially towards the end of a products life cycle.

3.3.3 Demand, Costs, and Controls

Demand in this system corresponds to the demand for refurbished devices that will be sent

as replacements to users that filed a warranty claim. Refurbished devices enter inventory

either from the OEM or directly from the testing and repairs part of the facility. Since this

is a closed loop system, there is a correlation between the demand for refurbished devices

and the arrivals of refurbished devices in inventory. In addition, the loss in this loop, i.e.,

the number of devices that cannot be repaired, can be significant and might exceed 20% of

all devices that arrive at the facility. Loss can happen for multiple reasons. For example,

the consumer warranty might cover a wider range of defects than the OEM warranty or, as

mentioned before, the OEM and the WSP do not agree on the nature of a defect.

Due to the consumer warranty contract, every customer warranty claim is fulfilled im-

mediately, preferably using refurbished items. Backlogging is not allowed and if there are

no refurbished products in stock, the WSP will send the customer either a new or upgraded

device. Thus, the primary control that exists for managing inventory is the number of de-

vices that are sold through side sales channels, and the number of new devices brought into

the system either through direct purchases from the OEM or as seed stock. Furthermore,

the value of these refurbished devices depreciates quickly over time, hence there is a hold-

ing cost for units in inventory, corresponding to the opportunity cost of selling inventory

through a side channel. There is also a cost associated with not having enough inventory of

refurbished products since, in this case, a new device has to be purchased from the OEM

and shipped to the consumer or the consumer is given an upgrade. Balancing these two

costs in face of the non-stationarity of the demand for replacement devices, the short prod-

uct life-cycle of mobile devices, and the closed loop nature of this system is a significant

challenge when managing inventory in this system.

Another source of cost in the system are out-of-warranty returns, i.e., defective devices

with expired OEM warranty that are returned by consumers who are still covered by the

consumer warranty . This issue is particularly acute for devices that have a high failure rate

since, in this case, it is not unusual for users to file two or more warranty claims during the

period they are covered by the consumer warranty. Defective devices returned with expired
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OEM warranty have low salvage value and are costly to repair. Out-of-warranty returns are

also accentuated due to the fact that the OEM warranty of a device starts when the WSP

purchases it and is not interrupted while it is being remanufactured or when it is in stock

in the reverse logistics facility. Thus, devices "age" in inventory, and if an "old" device in

stock is sent to a "young" customer, i.e., a customer that is still in the beginning of its

consumer warranty contract, this device might fail again while the user is still covered by

the consumer warranty but the device has an expired OEM warranty.

3.4 Inventory Model

From a tactical perspective, there are two main decisions involved in managing this system:

(i) the decision of how many devices should be kept in the inventory located at the reverse

logistics facility, herein called the inventory management problem; and (ii) the decision of

which devices in inventory should be matched to which customers, herein called the warranty

matching problem. In order to obtain tractable policies for managing this supply chain, we

will uncouple these problems and address them separately. Although, uncoupling these two

decisions implies that the policies discussed in this chapter are not optimal in a system-

wide sense, it will lead to policies for which we can glean both theoretical and managerial

insights. Furthermore, the numerical experiments in the next chapter indicate that making

these decisions independently does not lead to a significant additional cost. In this section,

we will analyze two versions of the inventory management problem. First, we will discuss

a deterministic version, for which hazard rates are fixed fractions of sold devices that fail.

We will prove the optimal policy for this case and also present a worst case analysis. The

second version is the stochastic problem, for which we prove the structure of the optimal

policy and discuss a heuristic for managing this system.

3.4.1 Inventory Dynamics and Costs

The dynamics of the inventory at the reverse logistics facility is depicted schematically in

Figure 1. We assume that time is discrete and that, at each time instant t, the demand for

refurbished devices, i.e., the number of warranty claims, is described by d(t). The number

of refurbished devices that arrive to stock is given by a process a(t), and the inventory level

at the beginning of the period is x(t). The number of devices purchased at time t is denoted
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Figure 3-2: Inventory dynamics at the reverse logistics facility.

by u+(t), and devices sold at time t is denoted by u-(t). We assume that the cost, ct, of

purchasing a new device and the revenue, pt, obtained from selling a refurbished device

in the side-sales channel are non-increasing, such that ct > ct+1, and ,Pt > pt+1, Vt. In

addition, we assume that ct ;> pt, Vt, such that there are no strategic buying opportunities,

and a new device cannot be purchased and then sold at a later time for a profit.

Thus, the sequence of events in a period t is

1. The inventory level at the beginning of period t is x(t);

2. a(t) refurbished devices arrive in inventory;

3. The demand d(t) for replacement devices is received;

4. At least max(d(t) - a(t) - x(t), 0) are purchased and demand is satisfied due to the

assumption that no backlogging is allowed;

5. Up to max(x(t) + a(t) - d(t), 0) devices are sold.

6. The inventory at the end of the period is x(t + 1) = x(t) + a(t) - d(t) - u-(t) + u+(t).

Since this is a CLSC, the demand and arrival processes are correlated, non-stationary,

and their distributions might be unknown at the launch of the device. Together with the

requirement that no backlogging is allowed, deciding how many devices should be purchased

and sold can be challenging. With the notation and assumptions in hand, we are ready to

discuss the deterministic version of this problem.
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3.5 Deterministic Problem

In this section, we will assume that both the demand and the arrival processes are determin-

istic and known. For this simplified case, finding the optimal buying and selling quantities

in each period is equivalent to solving a Linear Program. More specifically, if we assume

that both the demand and the arrival processes are deterministic and known over a finite

horizon T, the optimal buying and selling quantities are the solution of the linear program

T-1

maximize EptU-(t) - ctu+(t)
t=o

s.t. X(t + 1) = x(t) + a(t) - d(t) - u~-(t) + u+ (t), Vt = 0 ... T - 1 (3.1)

x(O) = X,

x(t), u- (t), u+(t) > 0, Vt = 0 .. .T - 1

Despite being an optimization problem that can be solved efficiently using a numeric

solver, we will prove and discuss the structure of the optimal solution for this problem.

There are a three main reasons why we present this analysis: (i) By proving the structure

of the optimal policy we can make explicit the relationship between the optimal policy and

the dynamic cost structure of the problem; (ii) The results from this analysis will be used

to prove the optimal policy of the stochastic version of the problem; (iii) The Certainty-

Equivalent approximation of the stochastic problem is exactly the solution to Problem 3.1,

since we take the demand and arrival processes to be equal to their expected value.

The first step towards obtaining the optimal solution is proving that there will be an

optimal policy where, if we sell items at period t, we will only purchase more items once

the cost of a new item falls below pt. More specifically, if we sell at period t, we will only

buy again at or after period 9t, where 9t = max{slc, > pt}. The definition of t is depicted

in Figure 3-3. This is due to the monotonicity assumptions on ct and pt and is stated in

the following proposition.

Proposition 1. For some t, let 9t = max{sjc, > pt}. Then for the problem in Equation

3.1, there will be an optimal solution {u+ t(t), u- t(t)} where, for every t where u- t (t) > 0,

we have u+pt(s) = 0, Vs E [t, 't].

Proof. Assume an optimal solution {u+t (t), u- t (t) }. Now, let t be the last period where

uo~-pt(t) > 0, i.e, we are selling devices. If u+pt(s) > 0 for some s E [t, ]tI, construct
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Figure 3-3: Definition of t. The gray line represents {pt} while the black line represents

{ct}. Thus, as stated in Proposition 2, there will be an optimal solution where if items are

sold at time t, no items will be purchased at least until time 9(t).

a new solution, {f+(t),&-(s)}, where i--(t) = max(u- t (t) - u+(s),0), and ?+(s)

max(un+t (s) - u-pt(t),0). Note that at most one of u-(t) and fi+ (s) is positive. This

new solution is still feasible, since less devices are leaving the system and the cost difference

between these two solutions is

(pt- (t) - c.7+(s)) - (ptu-p(t) - cou+t(s)) = (pt - c,) max(-u+t (s), -u-p(t)),

= (c, - pt) min(upt(s), Opt(t)),

> 0.

Thus, the new solution has at least the same cost as before, and if c, > pt there is a strict

cost improvement. We can repeat the same procedure for {+(t), -(s)} and again for each

new solution that we obtain. Since this is a finite horizon problem, we will eventually obtain

a solution that satisfies the conditions of the proposition and has at least the same cost of

the original optimal solution. E

We can determine an optimal purchasing and selling quantity at any time t as a func-

tion of the inventory at the beginning of that period. Using the same notation as in the

previous proposition, we will denote the optimal buying and selling quantity at time t by

{u+t (t), u-t (t) }. Since the cost of sourcing a device to satisfy a warranty claim is non-

increasing, the optimal sourcing strategy will be myopic in the sense that we only buy

enough items to satisfy the unmet demand for replacement devices in the current period.

Conversely, the optimal selling quantity at some time t, u-(t), will depend on x(t) and on
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the maximum total net demand in the interval [t, 9t]. The maximum total net demand in

some interval [t, s] is denoted by v(t, s), and is defined as

r

v(t, s) = max d(i) - a(i). (3.2)

More specifically, if inventory x(t) is above v(t, t), we will sell items down to the level

v(t, 9t). Thus, the optimal selling quantity at time t does not depend on the demand and

arrival after 9t since the marginal price of sourcing a device after time t drops below the

marginal revenue of selling a device at time t.

Before we prove the optimal policy, we discuss one more auxiliary proposition. In this

proposition, we show that if items are sold at time t, additional items will not be sold before

time s*, defined as

s* = min s E [t, gt] d(i) - a(i) = v(t, t) . (3.3)
i=t

We will use this proposition to prove the feasibility of the dual solution to the LP in Equation

3.1.

Proposition 2. For some t, let s* be defined as in Equation 3.3. Then, there will be

an optimal solution {upt(t),u-,t(t)} that satisfies Proposition 1 where, if u-t(t) > 0,

UOpt(s) = 0 for s E [t + 1, s*]. Furthermore, x(-r + 1) = 0 for some r E [t + 1, 9t

Proof. Let t be a period where u-pt(t) > 0. Then, from Proposition 1, we have that

unpt (s) = 0,Vs E [t, 9t]. Thus, we can write the inventory for any s E [t, 9t] as

X(s + 1) = x(t) - d(s) - a(s) - Zu-pt(r).
(r=t r=t O

Also, from the definition of s*, we have

x(s* + 1) = x(t) - v(t, 9t) - u3-t (r).
r=t

Since uopt(t) > 0, Vt, and from the definition of v(t, 9t), note that

x(s) > x(s* + 1), Vs E [t, s*],
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and, therefore, x(s) > 0, Vs E [t,s*]. Now, assume that u;op(s) >0 for some s E [t 1,sf*.

Then, we could increase uopt(t) by some e > 0 reduce u- t(s) by e and preserve feasibility,

since the inequalities are strict. In addition, since prices are non-increasing, we obtain at

least the same profit as before. We can repeat this procedure for every period where items

are sold and obtain the result in the proposition.

Finally, assume, for contradiction, that x(T) > 0, VT E [t + 1, t + 1]. Then, in this case,

we could sell one extra unit in period t and preserve feasibility in the interval [t + 1, 9t].

Also, we improve the objective even if selling one extra unit in t implies the purchase of one

more unit after time 9t, we still improve the cost sine c, < Pt, VT > 9t.

In order to prove the optimal solution of this problem, we introduce the concept of an

event. We define an event as a time interval [t,s], t < s, such that x(t) = 0 , x(s) = 0,

and x(T) > 0, VT E (t, s). Thus, the interval starts with zero inventory, then has positive

inventory in each period, until the end of the interval. We can assume, without loss of

generality, that the initial inventory is 0, i.e., x(0) = 0. If xO > 0, then we can re-specify

the arrival in the first period as a(0) = a(0) + xo. Note that we can express any optimal

solution to the problem in Equation 3.1 as a sequence of events, as x(T) = 0 in any optimal

solution.

The next proposition states that there will be an optimal solution to the problem where

there will be at most a single buy or sale within each of this solution's events.

Proposition 3. Consider the optimal solution to the problem in Equation 3.1. Also, let

[t, s] be an event in this solution. Then, there is an optimal solution {ulpt (s), u-pt (s)} where

1. There is at most a single buy within the event [t, s], and if so, it will occur in period

s - 1; i.e., u +t(T) = 0, T E [t,s -2], and u+pt(s - 0;

2. There is an optimal solution with at most a single sale within the event [t, s];

3. There is an optimal solution with at most a single transaction (either a buy or a sale)

within the event [t, s].

Proof. For part 1 of the proposition, suppose that we have two buying instants, Ti < 72

in the interval [t, s]. In this case, we can defer the purchase of one unit from period T1 to

period 72 and maintain feasibility since we assume there is positive inventory. In addition,
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we potentially improve the objective function, since purchasing costs are non-increasing.

We can continue until the number of units purchased in period Ti goes to zero or until an

inventory x(r), r E (7i, r2) goes to zero. In both cases we have a contradiction - in the

former we have reduced the number of buy epochs by one, while in the latter [t, s] is no

longer an event. Hence, there will be a single buy event. Also, since delaying a purchase

is always no more expensive, through a similar argument we can show that the single buy

should be in period s - 1.

For part 2 of the proposition, assume that there are now two selling instants, 7i < T2

in the interval [t, s]. We can advance the sale of one unit from r2 to ri while preserving

feasibility since we assume positive inventory. Also, we potentially improve the objective,

since prices are non-increasing. We can repeat this procedure until the second sell epoch

goes to zero or until an inventory x(r), T E (Ti, r2) goes to zero. In both cases we have a

contradiction - in the former we have reduced the number of selling periods by one, while

in the latter [t, s] is no longer an event.

Finally, for part 3 of the proposition, consider an event [t, s]. From parts 1 and 2, we

know that there will be at most a single buy and a single sell event. Hence, assume that

there is a sell event at time T and a buy event at time s - 1. There are two possibilities:

" pr < c,_1: We can reduce the number of items sold at time r by one unit, which

allows us to reduce the number of items being purchased at time s - 1 by one unit.

These changes increase the objective by c,_1 - p, > 0. We can repeat this procedure

until there is at most one transaction, leading to a contradiction.

" pT > c,_1: We can increase the number of items sold at time r by one unit, which

requires that one more unit be bought at time s - 1. This increases the objective

function by pr - c,_i > 0. This solution remains feasible as we start with positive

inventory in the time interval. We would continue increasing the amount sold at time

T, until this forces the inventory at some point in (t,s) to be zero, at which point [t,s]

is not an event, and we obtain a contradiction.

Finally, we are ready to state and prove the optimal solution for this problem. We will

show that the following procedure yields an optimal solution:

The feasibility of this solution is stated in the following proposition.
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Algorithm 1 Procedure for obtaining the optimal solution to the problem in Equation 3.1

for t = 0,..., T - I do
Uo t(t) = max (xopt(t) - v(t, 9t) ,

UOpt(t) = max(d(t) - a(t) - xopt(t), 0),

xopt (t + 1) xopt (t) - d(t) + a(t) + uopt M Opt
end for

Proposition 4. Algorithm 1 generates a feasible solution to the problem described in

Equation 3.1. Furthermore, this solution satisfies Propositions 1 to 3.

Proof. In order to prove that {u+ t(t), u- t(t)} is feasible, note that

XOpt (t) + a(t) - d(t) + u+pt(t) - u-pt (t) =xopt(t) + a(t) - d(t) + max(d(t) - a(t) - xopt (t), 0)

- max (xopt (t) - V(t, t), 0),

max(xopt(t) + a(t) - d(t), 0) - max (x(t) - v(t, 9t), 0),

where we combine the first two terms to get the second line. Note that, by definition

v(t, 9t) = maxSE[t,,] E=t d(i) - a(i) > d(t) - a(t). Thus,

xOpt(t) + a(t) - d(t) + u+p(t) - u-t(t) max(xopt(t) + a(t) - d(t), 0) - max (xopt(t) - v(t, 9t), 0),

max(x0pt(t) + a(t) - d(t), 0) - max (xopt(t) - (d(t) - a(t)), 0)

-0.

Thus, xopt(t) > 0, Vt, and the solution is feasible.

Note that this solution satisfies Proposition 2 since if uopt (t) > 0, then xopt(t) > v(t, 9t)

and, from the definition of v(t, 9t), the inventory will never fall below 0 in the interval [t, gt].

Also, this solution satisfies Proposition 1 since we sell down to the level v(t, 9t), such that

the inventory at the beginning of period s* + 1 is 0.

The solution also satisfies Proposition 3. Assume that at time s we have xopt(s) = 0.

Then, let r > s be the first period where we buy or sell. If at time T we sell an item,

since the solution satisfies Propositions 1 and 2, we will only sell again after period s* and,

[t, s* + 1] will be an event. If we buy items at time r, since we have, from the definition of

the policy, that x(r + 1) = 0, and [t, r + 1] will be an event. Since we only buy or sell in

one period during this event, Proposition 3 is satisfied. E

74



The next proposition addresses the lengths of the events generated by this algorithm.

Proposition 5. If [t, s] is an event generated by Algorithm 1, then s < 9t + 1, where

9t = max{sjc, > pt}. Furthermore, if a purchase occurs in this event, it will happen at time

t, and if a sale occurs within this event, it will be at time s - 1.

Proof. Assume that x(t) = 0. Then, if d(t) - a(t) > 0, we will purchase d(t) - a(t) items,

i.e., uopt(t) = d(t) - a(t) and x(t + 1) = 0; as such we have s =t + 1 and [t, t + 1] will

be an event. If a(t) - d(t) > 0, but v(t, 9t) = maxreltg] ZE=t d(i) - a(i) > 0, then we will

not sell any units. In fact, no items will be sold or purchased in the interval [t, s*), since

v(t, 9t) > 0. At time s*, we will have that x(s*) - d(t) + a(t) < 0, i.e., inventory will be 0

or negative, and items might be purchased. In either case, x(s* + 1) = 0. Since s* < t, the

event will have length at most t + 1 - t.

Conversely, if a(t) - d(t) > 0 and v(t, 9t) < 0, then it must be that a(t) -d(t) > -v(t, t),

and -v(t, 9t) items will be sold. From Proposition 2, we have that x(s* + 1) = 0. Once

again, the event will have length at most 9t + 1 - t. If a(t) - d(t) > 0 and v(t, 9t) > 0,

then no items will be purchased or sold before time s*, and at time s* enough items will be

purchased to satisfy on hand demand, such that [t, s* + 1] will be an event El

With these propositions in hand, we are ready to prove that Algorithm 1 leads to an

optimal solution to the deterministic inventory management problem. This result is stated

and proved in the theorem below.

Theorem 6. The procedure described in Algorithm 1 generates an optimal solution for

the problem in Equation 3.1. Furthermore,this procedure will take O(T2 ) steps to find an

optimal policy.

Proof. The proof of the theorem will be done by first rewriting the optimization problem

(3.1) in a slightly different way and taking its dual. With the dual in hand, we will construct

a feasible solution to the dual that satisfies the complementary slackness conditions with the

solution {u pt(t), u- t (t) }, hence proving the optimality of the primal solution. We denote

the inventory at time t under this solution by xopt(t).

The first step is to rewrite the optimization problem. For such we assume, without loss
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of generality, that xo = 0, and we let 6(t) be the cumulative total net supply defined as

6(t) = a(s) - d(s), Vt
s=O

Then, in Equation 3.1, note that

x(t + 1) =x(t) + a(t) - d(t) + u+pt(t) - u-pt (t),

= a(s) - d(s) + u+ t(s) -- t(s),
s=O

t

= E~t + ocpt (S) - uOpt (S)-
s=O

Thus, this optimization problem can be rewritten as

T-1

maximize ptu-(t) - ctu+(t)
t=o

t

s.t. u-(s) - u+(s) < i(t), Vt = 0, ... , T -1 (P)
8=0

U- (t), U+ (t) > 0, Vt = 0 ... T - 1.

The dual of this problem is

T-1

minimize 5 3(t) q(t)
t=o

T-1

s.t. Pt < 5 q(s) < ct, Vt = 0 ... , T - 1 (D)
s=t

q(t) ;> 0, Vt = 0, ... , IT - 1

We can interpret the dual variable q(t) in the problem above marginal change in profit when

increasing or decreasing the total net-demand in one unit.

Consider the sequence of events generated by the algorithm. From the previous propo-

sition we know that, within each event, sales or purchases will happen in only one single

period. Also, let [s, t] be a buying event if, for some r E [s, t], we have unpt (r) > 0. Con-

versely, let [s, t] be a selling event if, for some T C [s, t], we have uopt (r) > 0. Also, from
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the nature of the algorithm, we have that inventory at time T will be 0, i.e., no inventory

is left over at the end of the horizon.

Now, consider the following candidate dual solution, {q*(t)}, defined as follows. Let

[s, T] be the last event in the interval [0, T]. Then, for r C [s, T - 1]

[CT1, if [s, T] is a buying event and T = T - 1

q*(T) ps, if [s, T] is a selling event and T = T - 1

10 otherwise.

Then, for any two sequential events [r, s] and [s, t], and for every T E [r, s), let q*(T) be

cs_1 - q*(t - 1), if [r, s] is a buying event and r = s - 1

q*(T) Pr - q*(t - 1), if [r, s] is a selling event and r = s - 1

0 otherwise.

Before proving the optimality of the above dual solution, let us briefly go over an intuitive

interpretation of its structure. Let us assume that at some time T contained in the event

[r, s] we change the arrivals from the OEM at by E units, and assume that E is small. Then,

using the definition of 6(k), we have that the change in the cost of the dual problem will be

T-1 (cES_, if [r, s] is a buying event,
E q*(k) =
k=r Epr, if [r, s] is a selling event.

Thus, if the marginal impact of changing the demand or arrivals in any time period will

either be the cost of a new device at the end of the event to which the time period belongs,

if it belongs to a buying event, or the side-sales price of a refurbished at the beginning of

the event, if it belongs to a sales event.

In order to prove that this solution is feasible, first note that, from Proposition 5, if

[r, s] is an event, then r < f, + 1, where f, = max{ricr > ps}, and we have that pr < c,-i.

Hence, we will have that ps :5 t=:- q*(t) < c, Vs.

Also, since the policy satisfies Proposition 1, we know that if [r, s] is a selling event and

that [s, t] is a buying event, it must be that pr > ct. Using this fact, and the fact that {ct}
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and {pt} are non-increasing, we obtain that for any two consecutive events [r, s] and [s, t],

q*(s - 1) pr - q*(t - 1) > p, - ct_1 > 0,

and q*(t) 0, Vt. Thus, {q*(t)} is a dual feasible solution.

We are now left to prove that {q*(t)} satisfies the complementary slackness conditions

with {uot(t), u-pt(t)}, i.e., we need to show that

q*(t) . (U t (s) - U+ t(s) - 6(t) = 0, Vt (3.4)

T-1

ut (t)o . t - E q*(s) =0, Vt (3.5)

T-1

Un+(t). ct - q*(s) =0, Vt (3.6)

Let xOpt(t) be the inventory under the policy {u+t(t), u- t(t)}. Thus, the first condition

can be rewritten as

q*(t) U - o~)-n+,ts - j (t) =q*(t) . (u- t(t) - u+ t(t) - 6(t) + d(t) - a(t)) , Vt,

= q*(t) . (-x(t + 1)), Vt.

Since q* (t) will only be positive if t + 1 is the boundary of an event and since, by definition,

if t + 1 is the boundary of an event then x0 pt(t + 1) = 0, we have that this condition is

satisfied for all t.

Now, the condition
T-1

uOpt(t) Pt - q*(s) = 0, Vt,
(P S=t

will be trivially satisfied if opt(t) = 0. If uopt(t) > 0, then, from Proposition 5, we have that

t is the beginning of some event [t, r], and that, by construction, ZT- q*(s) =q*(r1) = pt.

Thus, Pt - E _-1 q*(s) = 0 and the condition is satisfied.

Finally, the condition u,t(t) . (ct - t- q*(s)) = 0 will always be satisfied since, if

Unpt (t) > 0, then _=t' q*(s) = ct.

Thus, since we have a primal and dual feasible solutions that satisfy complementary
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slackness, the candidate solution {u+ t(t), u--t(t)} is an optimal solution to the problem in

Equation 3.1.

Since in the procedure described in the statement of the period we must calculate v(t, .t)

for every period, which will be a procedure that takes O(T) steps in each period, finding

the optimal solution takes O(T2) periods.

D

From a practical standpoint, if t is known, the exact values of p8, s E [s, 9t] and c8, s E

[s, t] do not need to be known in order to calculate the optimal sell-down-to level. For

example, if we assume that {pt, ct} depreciate at a factor of a per time period, we have that

9t can be found by solving

Pt = as-t ct,

and we have 9t = logQ(E-) = loga().

As another example, if the cost of purchasing a device is constant throughout its life-

cycle, then 9t = T - 1, Vt and the optimal solution does not depend on the exact values

of prices in the side-sales channel, only on the fact that prices are non-increasing. This

particular case is useful from a managerial standpoint since estimating the cost of sourcing

a new device and the revenue obtained from selling a refurbished device can be difficult in

practice. At our partner WSP, for example, side-sales can occur through auctions, generat-

ing price uncertainty. Additionally, estimating the cost of sourcing a new device to be used

as a replacement device is also ambiguous: is the cost the cost of purchasing a new device

from an OEM, or the opportunity cost of not having that device available in a retail store,

where it could be sold to a new customer? A policy that only requires a simple ordering of

costs and revenues and not a precise estimation bypasses this issue.

3.5.1 Deterministic demand and arrival processes

As discussed in the previous chapter, we assume that devices fail according to an age

dependent hazard rate model that is independent of a device's sales date, where age is

defined as the time a device has been with a customer. In addition, the hazard rates are

unknown at the launch of the device, although priors for the hazard rates can be constructed

using historical data. We denote the estimate of the hazard rate at time t for devices of age

s by h,(t). Thus, denoting all the information available at time t by .t, the hazard rate for
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age k is defined as

Pr(device fails in period s| device survived up to the beginning of period s, Ft) = h,(t).

Also, we denote the number of working devices of age s with customers at time t by w,(t),

such that the vector w(t) = (wo(t), ... , wt(t)) describes the number of "surviving" devices

of each age at time t. Thus, the expected number of device failures at time t is

E[# of failures at time t] = w,(t) - h,(t).
s=O

For the deterministic version of this problem, we model the demand process as being the

expected number of failures. In the Control Theory literature, this is referred to as a

certainty equivalent approximation and is discussed in Bertsekas (2005). Thus, we treat

the hazard rates as the actual fractions of total devices that fail. If there is information

available on the hazard rates up to time t < t, then the demand for refurbished devices is

described by the pair of equations

t
d(t) = ws(k) . hs(i), Vt,

k=O

WS+ 1(t + 1) = (1 - hs (i)) -w, (t), Vt.

We can generate the arrival process using a similar model, utilizing remanufacturing

rates at the OEM. If d(t) devices were sent to the OEM at time t, we assume that a fraction

r. of these devices will return after s periods. The arrival process then becomes

t
a(t) = ( rt-d(s).

s=O

In practice, there is loss in this process and not all devices shipped to the OEM can be

remanufactured, and thus we would expect that 1: ,r, < 1.

A strategic question that arises when managing the inventory of refurbished devices is:

If the hazard rates are unknown, what is the maximum number of new devices that will have

to be purchased to support the reverse chain? The answer to this question is useful for two

main reasons. First, we can use it to plan seed stock requirements, and guide operational
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decisions regarding refurbished device management. In addition, it can be used to bound

the operational cost of supporting warranty of a new device, which is useful for planning

considerations when releasing a new device into the market.

Since there is considerably less variability in the OEM remanufacturing process com-

pared to the demand process, we assume a fixed lead time of 1 at the OEM and an efficiency

of 0 < a < 1, i.e., a fraction of 1 - a of the devices sent to the OEM cannot be fixed. Thus,

the arrival simplifies to

- a(t) = a - d(t - 1).

Also, let ft be the fraction of devices that fail at age t, and let UT(t) be the number of

devices that enter the market at time t. Thus, the demand process can be written as

d(t) = E_0 fosW(t - s). Note that we can translate these fractions to deterministic hazard

rates, such that the hazard rate at time t is

ft

Finally, in order to answer the question, we assume that devices fail only once. The

case where multiple failures are allowed significantly complicates the analysis, and we leave

it as a possible extension. Thus, if "nature" can pick {ft} adversarialy, and if we assume

Sf, = /3 5 1, we obtain the following proposition.

Proposition 7. Let ft be the fraction of devices that fail at age t and T(t) the number of

devices sold at time t. Furthermore, let d(t) = _ fEt= (t - s) and a(t) = ad(t - 1), for

some lead time 1 and efficiency a. Then, if >k fk = K 1, we have

# of additional units needed to satisfy demand < 3 max Z>L(s) - aui(s - 1).
tE[O,T-1] s=0

Thus, the bound is independent of {ft}.

Proof. In the Appendix of this chapter.

As a simple example of how this proposition can be used, assume that sales decay

exponentially according to some rate -, such that T(t + 1) = yW(t). Then, assuming that

UY(t) = 0, Vt < 0, for some 0 < a < 1 and lead-time 1 we have
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t ( +

8-=0 uq+), if t < 1

Thus, this leads to

t . (),if a ;>
max {(s) - aw(s - ) <

tC[0,T-1] s=0 () (/yl) W(0), if a < y

Note that the "worst case" in terms of uncovered demand occurs either at t 1 because

there are no items arriving from the OEM, or at time T - 1, the end of the horizon, because

the arrivals from the OEM continue to lag the failures. By making T -+ o, we obtain the

bound
t 1 - min~y', a)

max :u(s) - aU(s - l)< a . T()te[O,T-1] =1 -

From the proposition then, the maximum number of devices that will need to be purchased

to satisfy warranty claims is -,mi3(aY) - Tli(0). Since, in this example, the total number

of devices that fail is 1 
1 ^,3wi(0), a fraction of at most 1 - min(a, .7 L) of devices that fail will

be replaced with new devices. If we assume a 85% efficiency at the OEM ( a = 0.85 ), a

5% decrease in sales per week (-y = 0.95), a 3 week lead time (1 = 3) , and that 15% of all

devices fail (3 = 0.15), the maximum number of devices needed is bounded by

1 - min(y', a) 1 - min(0.953 0.85)Smax 1: us) - aT(s - 1) < U - (0) = 0.15 ' T (O)
tc [O,T-1] l=y 1 - 0.95

which is about 0.43T(0).

3.6 Stochastic Problem

Although tractable, the deterministic approximation to the inventory management problem

presents a major limitation by not taking into account the variability of the demand and

arrival processes, leading to an inventory policy that we expect would oversell refurbished

items. In this section, we will analyze the stochastic version of this problem, where replace-

ment requests are generated by the hazard rate process discussed in the previous chapter.
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In addition, we will present a simple policy for managing inventory in face of stochastic

demand and discuss its connection to the optimal policy.

For an informational state Fr, and stochastic arrival and departure processes a(t) and

d(t), the optimal policy for managing inventory will be a solution to the optimization

problem

T-1

maximize E Eti(t),a(t)} [ptu (t) - ctu+(t) Fr]
t=o

s.t. x(t +-) =x(t) + a(t) - d(t) - u-(t) + u+(t), Vt= 0.. .T - 1 (3.7)

x(t), u-(t), u+(t) > 0, Vt = 0 ... T,

where, once again, the sequence {ct} and {pt} are non-increasing, and ct pt, Vt. Here,

the state of the system at time t is determined by six variables: (i) the current time t;

(ii) the on-hand inventory x(t); (iii) the information available about hazard distribution

Fr; and (iv) the realization of the net demand A(t) = d(t) - a(t), (v) the distribution of

ages of devices of customers/devices in the market, (vi) the different devices currently with

the OEM (on-order inventory) . However, in order to simplify notation, we will denote

the net inventory at time t by Y(t) = x(t) - A(t) (which can take a negative value), and

the optimal policy will be written as a function {u_-t(t,.t),u+(t, )}. The structure of

the optimal policy u*(t, t) is presented in the following proposition, while the proof is in

the appendix. The structure of the optimal policy is such that, in every period, we will

sell-down to some level O(t) that depends on the current informational state of the system.

Proposition 8. For some V(t) > 0, the optimal policy for the stochastic inventory model

in (3.7) is

Uopt (t, T) = max(-Y, 0),

op (t, Y) = max(Y - V(t), 0).

Where (t) 0 and only depends on the distribution of demand and arrivals, and on

the costs of the problem.

Proof. The proof is in the appendix of this chapter. D
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Receive seed-stock and Observe and satisfy demand
refurbished items from OEM (use new devices if needed)

Buy and/or sell items Update failure and return
distributions with new data

Decide how many Update forecasts of demand
items to buy/sell and arrivals from OEM

Figure 3-4: Reoptimization scheme for the inventory management problem.

Because the cost of purchasing a new device is non-increasing, an optimal policy only

purchases items to satisfy immediate demand needs when T < 0. When there are enough

items in inventory to satisfy immediate needs, there will be a sell-down-to level V(t) that is

time dependent, since the arrival and demand processes are not stationary. Note that the

structure of the optimal policy is the same as in the deterministic case and, once again, is

an artifact of the cost structure of this problem.

Calculating the sell-down-to levels is potentially difficult depending on the demand and

arrival processes and, in general, involves solving the dynamic programming problem. In

order to obtain a more tractable stochastic policy that is easy to implement in practice,

we consider two heuristics: (i) a certainty equivalent heuristic; and (ii) a cost-balancing

heuristic. They are described in the next two subsections. These heuristics can be used in

a reoptimization scheme as described in Figure 3-4

3.6.1 Certainty-Equivalent Approximation

A certainty-equivalent approximation to a stochastic optimization problem is a way to

obtain a suboptimal control policy by approximating the uncertainty in the problem by

its average value. Ideally, this approximation leads to a control strategy that is easier to

obtain (either numerically or analytically) than the optimal policy and has a near-optimal

performance. This type of approximation has a long history in Control Theory, as discussed

in Bertsekas (2005), originating from Linear Quadratic Control problems where in many
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cases the certainty-equivalent policy leads to the same control strategy as the optimal policy.

Since the volume of devices in the WSP's reverse logistics system is very large (usually

in the order of millions of devices), we expect that the coefficient of variation of replacement

requests per day will be low. If this is the case, we can employ the certainty equivalent

approximation by taking the demand for replacement devices and the arrival process of

devices in inventory as their average values. Then, we can use the results from Section 3.5

to calculate the optimal sell-down-to level.

We construct the certainty-equivalent approximation using the hazard rate model dis-

cussed in Chapter 2. In this case, the certainty-equivalent approximation to the optimal

policy still purchases items myopically, but uses an approximation to calculate the sell-down-

to-level in each time period. More specifically, in order to calculate the sell-down-to-level

we assume that, instead of having stochastic demand and arrival processes, the demand and

arrival processes are deterministic and equal to their average values.

Since we assume that devices of the same model fail according to the same hazard rate,

the certainty equivalent approximation takes hazard rates as fractions of total devices that

fail. Following the notation of Section 3.5.1, we have that the expected number of failures

at time t will be

E[# of failures at time t] = w,(t) - h,(t),
s=O

where w,(t) is the number of devices of age s with customers at time t and h,(t) is the

estimate of the hazard rate for devices of age s at time t. With this in hand, along with a

forecast of the number of devices that are added to the system in every time-period through

sales we can forecast the average number of devices that fail. Furthermore, if the lead time

of the customer and at the OEM are also stochastic, if we have an estimate of the repair

rate of the OEM, we can use the same procedure to estimate the number of arrivals.

The main limitation of this approach is that it does not take into account the variability

of the demand and arrival processes. If there is a large variability in the number of devices

that might fail on any given day, the certainty-equivalent approach will lead to a sell-down-to

value that is too low. More concretely, let E[d(t)] and E[a(t)] be, respectively, the expected

demand for replacement devices and arrivals from the OEM at time t. Then, following

the notation from the previous section, the certainty-equivalent sell-down-to level at time
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t, denoted by vc(t, ,t) will be

vc(t, 9t) = max E[d(k)] - E[atk)],
TE[t,st] k=t

where 9t = max{sc, > p>s}. Note that, from Jensen's Inequality, we have that

max 2 E[d(k)] - E[a(k)] < E max d(k) - a(k)

Thus, the sell-down-to-level generated by the certainty-equivalent policy might be too low.

Next, we introduce a policy that takes into account the stochastic variability of the demand

and arrival policies.

3.6.2 Cost-Balancing Approximation

The certainty-equivalent approximation assumes that the demand and arrival processes

are equal to their average, leading to an underestimate of the sell-down-to-level. We can

address this concern by taking the variability of the demand and arrival processes into

account. One way to do this is to analyze the distribution of the maximum net-demand.

Namely, at period t, we can use the distribution of v(t, 9t) and of the time period where the

maximum net-demand is achieved, denoted by s* as in Equation 3.3, in order to determine

the sell-down-to level. In practice, since the state of the system can be very largel, and

devices can fail multiple times, the distribution of v(t, 9t) and of s* can be calculated through

numerical simulations.

If the distribution of v(t, t) and of s* are known, an approximation to the optimal

number of items to be sold can be obtained by solving the newsvendor-type problem

min E [(c.- - pt)(v(t, 9t) - x(t) + u-(t))+ + (pt - p,-)(x(t) - u-(t) - v(t, st))+.
O<u-(t)<x(t)

In this formulation, c,; -pt represents the marginal underage cost of selling too many items

and having to buy additional new units at time s*, while pt - p; represents the overage

cost, i.e., the opportunity cost of not selling enough items.

We denote the solution to the optimization problem above by ii-(t) and it is obtained

There are anywhere from tens of thousands to millions of customers of different ages that own devices
of with varying ages as well.
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by differentiating the expression, setting it to 0, and observing if the unconstrained optimal

is withing the interval [0, x(t)]. Thus, if b(t) satisfies

E [(c,; - p,;)1(v(t, 9t) 5 (t))] = E[c,; - pt], (3.8)

then we have

i-(t) = max (x(t) - b (t), 0).

From a practical standpoint, the solution to Equation 3.8 can be obtained by simulation.

Namelylet v(t, t), s*,ii be N samples of the maximum-net-demand and of the time period

where it occurs. Then, the solution to Equation 3.8 can be approximated by finding the

smallest i9N(t) that satisfies

N N

N (cs ' - Pst j) 1(Vi(t, 90) < 'N (0)) > N Cs*t' - Pt - (3.9)

With the samples in hand, we can find i3N(t) through a simple linear search. This approach

is akin to Sample Average Approximation (SAA) methods commonly found in the literature

such as in Levi et al. (2007) and in Kleywegt et al. (2002).

Although this method does not ensure optimality, simulating the demand and arrival

paths tends to be simpler than using some search or approximate dynamic programming

method to find the optimal sell-down-to level in the stochastic setting. Furthermore, if there

is no uncertainty in the system, i.e., the demand and arrival processes are deterministic,

then i'N(t) will be the same as in the deterministic problem.

We call the policy based on the solving 3.8 the cost-balancing policy, since it balances

the costs of selling too few or too many items. In the next section we will compare its

performance with the certainty equivalent approximation through numerical experiments.

3.7 Numerical Experiments

In this section we will analyze the performance of the policies proposed in the previous

section through numerical experiments. We first analyze the certainty equivalent policy

where we calculate the sell-down-to level in every period by taking hazard rates as fractions

of devices that fail and use them to calculate the maximum net demand and, therefore,
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the sell-down-to level. We simulate the sensitivity of this policy to changes in different

parameters of the system such as number of devices, failure distribution, OEM lead time,

seed-stock and the loss at the OEM. As a benchmark, we compare the performance of

this policy with the clairvoyant policy, the policy that knows ex-ante the sample path of

the device failures and the arrivals from the OEM. We will use the total profit over the

simulation horizon as a performance metric in all our simulations. Thus, if the simulation

occurs for T time periods and we consider a sequence of costs of new devices {ct} and prices

of refurbished devices {pt}, then an inventory management policy that purchases a sequence

of {u+ (t) } new devices and sells {u- (t) } refurbished devices will generate a profit of

T-1

E ptu-(t) - ctu+(t).
t=O

Next we compare the certainty equivalent policy with the cost-balancing policy for differ-

ent distributions of device failures. We show that although the cost-balancing policy usually

leads to a better performance than the certainty-equivalent approximation, when the num-

ber of devices is large (which is the case for our partner WSP) the certainty-equivalent

approximation achieves a near-optimal performance and is sufficient for practical applica-

tions.

Finally, we analyze the performance of the different policies using real-world sales and

failure data of a device sold by the WSP. This simulation incorporates learning, i.e., the

methodology discussed in the previous chapter is employed and the hazard rate distribution

of the device is updated as new information on failure rates becomes available.

In order to simulate these different scenarios, a large-scale discrete-time simulator was

built using the Julia programming language. More details about Julia can be found in Lubin

and Dunning (2013). The simulator creates a virtual CLSC where each device and each

consumer is an individual object inside the simulation. Thus, each customer and device have

a unique id, and failure times, warranty lengths and lead-times can be individually defined

for each customer/device pair. Furthermore, the simulator allows for each individual device

to be stored in inventory at the OEM or at the WSP's reverse logistics facility. At each

time period, refurbished devices can be sold and new devices can be purchased from the

OEM.

The simulations were designed to be at the finest level of granularity as possible in
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order to keep the simulation as realistic as possible and also to allow for an easy integration

with databases and IT systems used to manage reverse operations in the real-world. In

addition, by using the Julia language, the simulator was designed to run on a cloud-based

environment and on multiple processors.

The variables that can be set by the user and the outputs of the simulator are described

in the list below:

* User-defined simulation parameters:

- Number of periods that the system will be simulated;

- Number of repetitions of the simulation;

- Market size, i.e., the total number of customers that purchase devices and will

be covered by the customer warranty;

- Time period in which each customer purchases a device, which corresponds to

the activation date of the customer warranty;

- Seed-stock level as a fraction of new devices sold

- Failure distribution of each device (alternatively, the user can directly input the

hazard rate distribution);

- Length of the Consumer Warranty;

- Length of the OEM warranty;

- OEM and consumer lead time (the lead times are assumed to be deterministic);

- Probability of a device not returning from the OEM;

- Sales price pt of a refurbished device in each time-period;

- Cost ct of a new device in each time-period;

- Failure distribution of refurbished devices (to model multiple device failures);

* User-Defined control parameters

- Control policy: clairvoyant, certainty-equivalent, or cost-balancing;

- Number of sample paths for the cost-balancing simulation;

- Matching Strategy of devices to customers (will be covered in the next chapter);

* The output statistics for each sample path are as follows:
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- Number of refurbished devices shipped to customers as a replacement device in

each time-period;

- Number of new devices shipped to customers as a replacement device in each

time-period;

- Inventory level in each time-period;

- Number of out-of-warranty returns in each time-period: these are customers that

are still covered by the customer warranty and that send in defective devices that

are out of OEM warranty;

- Seed stock received in each period;

- Sales of new devices sold in each period;

- Volume of side sales in each time period;

- Current forecast of device failures in the remaining time periods;

- Current forecast of device arrivals from the OEM in the remaining time periods;

- Profit in each time period;

- Arrivals from the OEM in each time period;

- Difference between time left in OEM warranty and time left in customer warranty

for each replacement device shipped.

Finally, when using pre-defined distributions, we assume that when a device is purchased

by a customer, the OEM warranty and the customer warranty start simultaneously at the

moment of purchase. However, the simulator does support a mismatch between these war-

ranties at the moment of purchase. Unless specifically stated, one-period in all simulations

corresponds to one day.

3.7.1 The certainty-equivalent heuristic

For all deterministic simulations, we assume that one period represents one day and that the

customer and a OEM warranties have a 12 month length. Thus, if a customer has a device

that fails and he is out of customer warranty, it will not be replaced. We also assume that

the demand for new devices is a random variable with the probability distribution in Figure

3-5a, such that each customer samples its purchasing date from this distribution. Since

we assume that the customer and device warranties start simultaneously when a customer
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Figure 3-5: Parameters of the simulation for the deterministic policy. We assume that the
failure distribution is exponential with mean 364 days. We also assume that sales only occur
during the first 6 months from launch.

acquires a new device, Figure 3-5a also represents the activation date probability of both

warranties for the customer-devices pair. In addition, the expected demand for new devices

will have the same shape as the curve in Figure 3-5a. We assume a total simulation horizon

of 2.5 years, and that the prices of new devices and refurbished devices decrease linearly

over time as depicted in Figure 3-5d. Finally, we assume that the failure distribution of

devices is Exponential with average 12 months. Thus, the hazard rate of devices is constant.

Approximately 63% of newly purchased devices will fail under warranty.

One stringent assumption we make for this set of simulations is that the devices fail

only once. Albeit unrealistic, this assumption allows us to ignore mismatches between

the consumer and OEM warranties, simplifying the simulation and allowing for a larger

number of simulated sample paths. In the next chapter, when we analyze strategies aimed

at matching devices and customers, we will loosen this assumption.

As a benchmark, we will use the clairvoyant policy, i.e., the policy that knows a priori
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when all the failures and returns will occur. We compare the profit per/device between the

clairvoyant policy and the certainty equivalent policy. We also analyze the ratio between

these two profits for each sample path. Note that the clairvoyant policy is the harshest

benchmark since there is no uncertainty. Comparing the clairvoyant policy with the optimal

policy would be ideal, but a good performance with respect to the clairvoyant policy suffices

to guarantee an adequate practical performance of this policy.

In Figure 3-6 we depict the performance of the certainty-equivalent for different numbers

of devices sold. We assume that seed-stock corresponds to 1% of sales, that the total lead-

time of the customer and the OEM is 15 days, and that the loss at the OEM is 20%. We

normalize the profit by the number of devices so that we can compare the profit (cost) per

device when the number of devices in the system changes. When the number of devices is

small (less than 3000), we observe that the performance of the certainty-equivalent policy

is, on average, less than 75% of the clairvoyant. This is expected, since there is a small

number of devices in the system, and there will be a relatively large coefficient of variation

in the system. As the number of devices in the system increases, the coefficient of variation

decreases (law of large numbers), and the certainty equivalent approximations improve. In

practice, the average number of devices of a given type sold by the WSP is in the order of

hundreds of thousands to millions of devices. Thus, if the assumption of stationarity of the

hazard rate of a device of a given model holds, the deterministic heuristic will work well in

practice.

Figure 3-7a depicts the profit per device sold as a function of the OEM lead-time. Note

that, as lead-time increases, the potential profit per device will decrease. This occurs for two

reasons. First, at the beginning of the sales-period, if the OEM lead-time is long enough,

there will be insufficient seed-stock to cover the incoming warranty requests and new devices

will have to be purchased. A second reason is that after the peak of warranty returns there

might be an opportunity to sell inventory but, since prices decrease over time, a delay in

devices arriving from the OEM leads to these devices being sold at a lower price. Thus,

reducing OEM lead-time can be an effective method for reducing costs in a reverse supply

chain system. At the limit, if the lead-time were zero and there were no loss at the OEM,

no inventory would be needed since devices would be remanufactured instantly.

In Figure 3-7b the profit-per-device as a function of the loss at the OEM is depicted. As

the loss at the OEM increases, the number of refurbished devices arriving from the OEM
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Figure 3-6: Comparison between the certainty equivalent and the clairvoyant policies as a

function of the number of devices sold. The error bars represent +/- 2 standard deviations

from the average. The average and errors are based on 300 sample paths. We assume that

the seed-stock corresponds to 5% of sales, lead-time is 15 days, and loss at OEM is 20%.
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Figure 3-7: Comparison between the certainty equivalent and the clairvoyant policies as a

function of: (a) the lead-time at the OEM and (b) the loss at the OEM. The error bars

represent +/- 2 standard deviations from the average. The average and errors are based

on 300 sample paths. We assume that the seed-stock corresponds to 5% of sales, there are

30,000 devices sold, and loss at OEM is 20%.
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Figure 3-8: Comparison between the certainty equivalent and the clairvoyant policies as

a function of seed-stock received from the OEM. The error bars represent +/- 2 standard

deviations from the average. The average and errors are based on 300 sample paths. We

assume that the OEM lead time is 21 days, there are 30,000 devices sold, and loss at OEM

is 20%.

reduces, such that additional new devices might have to be purchased to satisfy demand for

replacement devices. Furthermore, there will be potentially less inventory to sell through

side-sales, further reducing the profit per device.

Finally, in Figure 3-8 we have the profit-per-device as a function of the OEM seed-

stock. An increase in seed-stock counteracts the lead-time at the OEM at the beginning of

the horizon, and in the period when warranty claims are increasing in time. It also helps

counteract the loss at the OEM, keeping an adequate level of replacement devices.

Simulation using sales and failure data from the WSP

Using data from our partner WSP, we analyze the impact of the deterministic policy com-

pared to the clairvoyant policy when applied to one of their best-selling devices. More

specifically, for all devices of this model that the WSP sold, we had data of the sales date

of each device as well as the failure dates (if the device failed at all).

In this simulation, each period represents one day, and we assume the price of a new

device to be constant and equal to $100 throughout the life-cycle of the device. Also, we

assume that the price of a refurbished device in the side-sales channel to decrease linearly

from $100 to $10 over a horizon of T = 104 weeks. We assume a standard OEM and

consumer warranty length of 1 year. The aggregate lead-time of the customer and the

OEM was set to be deterministic and equal to 4 weeks.

Furthermore, we assume that the sales date of each device is "known" by the heuristic,
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but that the failure dates are not. Thus, we consider that the heuristic does not "know"

the hazard rate distribution of this device when it is launched into the market and that it

estimates the hazard rate distribution using the regression approach discussed in the last

chapter. In particular, we take the hazard rate distributions of five other devices to serve

as a basis in our estimation problem. The estimate of the hazard rates and, therefore, of

the expected demand and arrivals, is updated in every period as more failures are observed.

The performance of the certainty-equivalent policy is displayed in the table below, for

different loss levels at the OEM and different fractions of seed-stock as a fraction of sales.

Table 3.1: % of Clairvoyant Profit Captured by Deterministic Heuristic

Seed stock as % of sales

Loss at OEM 0% 1% 2% 3%
10% 92.9% 87.9% 50.5% 35.8%
20% 98% 97.3% 96% 87%
30% 99.3% 99% 98.9% 98.6%

Note that the certainty-equivalent policy performs worse than the clairvoyant case when

there is low loss at the OEM and a high seed stock level. This scenario represents a situation

where a large volume of items are sold in the side-sales channel, since there is low loss at

the OEM and plenty of seed stock. In this scenario, the deterministic policy ends up selling

too much inventory, leading to a poor performance. In practice, the WSP received about

1% of devices as seed-stock and the observed loss at the OEM is around 20%.

3.7.2 Cost-Balancing Heuristic

The cost-balancing heuristic uses the strategy described in Section 3.6.2 to approximate

the sell-down-to quantity in each period. Unlike the certainty equivalent approximation, it

takes into account the uncertainty in the demand and arrival processes. However, this comes

at the expense of complexity and, when using the sell-down-to policy, the distribution of

the demand and arrival processes must be known or, at least, simulated. In our numerical

experiments, we choose to simulate the distributions of device failures and arrivals through

a Monte-Carlo simulation. Thus, in every time period of the simulations in this section, the

sell-down-to level is calculated using the sample approximation described in Equation 3.9
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with 100 samples.

In order to explore the performance of this heuristic, we analyze the distribution of the

ratio of the profit generated by the cost-balancing heuristic and the clairvoyant policy for

multiple sample paths of different failure distributions. More specifically, we consider 300

sample paths of demands and arrivals. Since this simulation is costly from a computational

point of view, we simulated a smaller scale version of the system in the previous section.

Namely, instead of considering a time-period as being a day, we assume that it as a week.

Thus, we consider a 1 year OEM and customer warranty (52 weeks), and a volume of 5000

devices sold in the system. The sales pattern is generated by the same distribution as

the one in Figure 3-5a, and that the price structure is the same as in Figure 3-5d. We

also assume an OEM lead-time of 3 weeks, and OEM loss of 20%, and that the seed-stock

received from the OEM corresponds to 5% of sales. All these parameters were chosen to

resemble parameters actually used by our partner OEM.

The metric we use to contrast the cost-balancing policy and the certainty-equivalent

policy is the ratio between the profit obtained by one of the heuristics and the clairvoyant

policy. Thus, for each sample path of demand and arrivals, we calculate the difference

between the ratio obtained by each heuristic and the clairvoyant profit. The distribution

of these ratios suggests the "spread" of the suboptimality of each different heuristic. We

visualize these distributions using box plots2

If Figure 3-9 a comparison between the different heuristics is depicted for a Lognormal

failure distribution. The Lognormal distribution is a "heavy tailed" distribution with a

large variance. When the Lognormal has a small mean and variance, as depicted in Figure

3-9a, both heuristics perform very well. This is because there will be a large number of

failures and, given the seed-stock level, there will be few opportunities to sell devices in a

side-sales channel. When the mean and the variance are increased, as depicted in Figure

3-9b, the cost-balancing policy outperforms the certainty-equivalent policy. This happens

precisely because the cost-balancing policy takes into account the distribution of failures

and arrivals of devices in inventory, making better selling decisions when failures happen

according to a heavy-tail distribution.

Next, as depicted in Figure 3-10 we assume that the failure distribution is Uniform. In

Figure 3-10a all devices will fail at some point, leading to a scenario where few refurbished

2http://en.wikipedia.org/wiki/Box-plot
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devices are sold, and both heuristics perform near-optimal. When only half of devices fail

under warranty coverage, as depicted in Figure 3-10b, the certainty-equivalent heuristic and

the cost balancing heuristic are not statistically different. In this case, we have a relatively

small variability in weekly failures (other than the non-stationary failure average), and the

cost-balancing policy does not present an advantage over certainty-equivalent policy.

Finally, we consider the case where failure ages are exponentially distributed, having a

constant hazard rate. This is depicted in Figure 3-11. In this case, when the average of the

exponential distribution is large, both heuristics are, once again, statistically indistinguish-

able. Since the hazard rate is constant, the total number of devices that will fail in each
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period will have a small variability and both policies will have similar performances.

In these simulations, we are assuming that devices fail only once in order to simplify

our numerical experiments. If devices fail multiple times and if, in addition, we allow

for mismatches between the customer warranty and the OEM warranty, estimating the

average number of failures and arrivals from the OEM becomes a more challenging task.

In practice, the average of the demand and arrival paths can be approximated through

a Monte-Carlo simulation, using a strategy similar to the cost-balancing heuristic, and

described in Equation 3.9. Thus, in this case, the computational expense of both methods

is similar.

Simulation using sales and failure data from the WSP

Using the same data and simulation set-up described in section 3.7.1, we compare the cost-

balancing policy with the clairvoyant policy using data from one of their best-selling devices.

As before, we assume the price of a new device to be $100 throughout the life-cycle of the

devices and we assume that the price of a device in the side-sales channel decreases from

$100 to $10 over the horizon of T = 104 weeks. We assume that decisions are made on a

daily basis, such that the decision about the number of devices that can be purchased and

sold is made every day.

We once again assume that the hazard rate distribution is not known by the heuristic

and that it is estimated using the hazard rate regression approach discussed in the previous

chapter. With the hazard rate distribution estimate in hand, we use 100 samples to calculate
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the sell-down-to level every day. The results of the simulation are depicted in the table

below:

Table 3.2: % of Clairvoyant Profit Captured by Cost-Balancing Heuristic:

Seed stock as % of sales

Loss at OEM 0% 1% 2% 3%
10% 94.3% 90.4% 86.6% 64%
20% 98.2% 97.7% 96.8% 90.4%
30% 99.4% 99.2% 99% 98.7%

Note that the cost-balancing heuristic has a better performance than the deterministic

heuristic (shown in the previous section) since it takes into account uncertainty in the arrival

and demand processes. However, this difference is, in general, less than 5%. Also, the cost-

balancing policy performs better than the certainty equivalent case when there is low loss

at the OEM and a high seed stock level. In practice, the WSP usually observes a loss of

around 20% at the OEM and receives a red stock of 1% of sales.

3.8 Conclusion

In this chapter, we proposed and analyzed two models for an inventory management problem

commonly found in the reverse logistics operations of consumer electronics retailers. We

developed this work in the context of a large WSP, which is also one of the largest retailers

in its segment. The models that we propose take into account the closed-loop nature of

reverse logistics systems in this setting, as well as the short life-cycle of electronic and the

fast value depreciation that these devices suffer.

First, we introduced and examined a discrete-time deterministic model for this problem,

where the demand for replacement devices and the arrival of refurbished devices in inventory

are known. We proved the optimal policy for this case and also presented a worst case

analysis. Even though costs, demand, and arrivals change over time, the optimal policy

has a simple structure and can be easily implemented in practice. More specifically, the

optimal sourcing strategy will be myopic in the sense that we only buy enough items to

satisfy the unmet demand for replacement devices in the current period. Conversely, the

optimal selling quantity in some time period will depend on the inventory level at the

beginning of the period and on the maximum total net demand in the interval between the
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current period and the time when the cost of sourcing a new device falls below the current

price of a refurbished device in a side-sales channel. Thus, the maximum total net demand

acts as a sell-down-to level. If inventory is above this level, items will be sold until the

number of items in inventory is equal to this level. Conversely, if inventory is below this

level, no items are sold.

Next we introduced a discrete-time stochastic model, for which we proved the struc-

ture of the optimal policy and presented two heuristics. The first heuristic is a certainty-

equivalent approximation where we obtain a suboptimal inventory control policy by approx-

imating the uncertainty in the problem by its average value. Since the volume of devices in

the WSP's reverse logistics system is very large, this heuristic works well in practice. The

second heuristic is the cost-balancing policy that takes into account the uncertainty of the

demand and arrival process. More specifically, we solve a newsvendor-type problem that

balances the costs of selling too few or too many items. We find the optimal sell-down-

to level through a Sample Average Approximation (SAA), a well studied approach in the

Operations Management literature.

Through numerical experiments, we analyzed the performance of these policies and

simulated their sensitivity with respect to changes in different parameters of the system.

As a benchmark, we compared their performance with the clairvoyant policy, the policy that

knows ex-ante the sample path of the device failures and the arrivals from the OEM. We

observed that although the cost-balancing policy usually leads to a better performance than

the certainty-equivalent approximation, when the number of devices is large (which is the

case for our partner WSP) the certainty-equivalent approximation achieves a near-optimal

performance and is sufficient for practical applications.

Finally, we examined the performance of the different policies using real-world data

from a device sold by the WSP. This simulation incorporates learning, i.e., the methodology

discussed in the previous chapter is employed and the hazard rate distribution of the device

is updated as new information on failure rates becomes available. We observe that in

practical settings both policies capture over 90% of the clairvoyant profit.

There are a few open problems that were not addressed in this chapter. First, note that

many issues in this supply chain are caused by the fact that the consumer warranty and

the OEM warranty have different specifications. Namely, the consumer warranty requires

a fast replacement of a failed device, while the OEM warranty allows for a comparatively
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large lead time for the OEM to refurbish failed devices. Studying how to redesign these

contracts by taking into account the incentives and preferences of the consumer, the WSP

and the OEM can lead to novel insights about the management of warranty systems.

A second open problem is the analysis of inventory management policies that take into

account how much time customers and devices in inventory have left in their respective

warranties. Although matching customers and devices is the subject of the next chapter,

we did not jointly examine the closed-loop inventory management and matching problems.

Looking at these two problems together can lead to new policies for managing this system

that could have interesting theoretical properties.

3.9 Appendix: Proofs

Proof of Proposition 7

Proposition 7. Let ft be the fraction of devices that fail at age t and TU(t) the number

of devices sold at time t. Furthermore, let d(t) Et=0 fe7(t - s) and a(t) ad(t - 1), for

some lead time 1 and efficiency a. Then, if Ek f(k) = < 1, we have

t

# of additional units needed to satisfy demand< 3 max (s) - aW(s - 1).
te[O,T-1] S=0

Thus, the bound is independent of {ft}.

For failure rates {ft}, and given a lead time of 1 at the OEM and an efficiency of a, the

total number of new devices that will have to be purchased to satisfy demand is

k

v*(O) = max Zd(i) -a(i)
kE [0,T-1] i=O

k

max Zd(i) - ad(i - ).
kE[0,T-1] i=O

The demand process can be written as

t

d(t) = fEi(t - s).
s=0
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Thus, we have that

t 5 s-i

V*(O)= max frJ(s-r)--a fri(s- r),
tE [0,T- ] s=O r=O r=O

t t-s t-1 t-1-s

max 1ZfsZUJ(r)-afsJ l(r),
s=0 r=O s=0 r=0

t t-s

= max f: f: IY(r) - aU(r - l)
tEs[,T-1] s=0 r=

In order to find the worst case failure rate, i.e., the failure rate that maximizes v*(0),

consider the problem

maximize Z r) au(r -1)
s=0 r=W

subject to Eft < , ft > OVi.

The optimal cost will be simply 3 maxs<t (E-i 8i(r) - acT(r - 1)) and the optimal failure

rate will have only one non-zero component. Thus, we obtain the inequality

t-s

V*(0) 5 max # max E (r) - au(r - 1)
tE[O,T-11 3<t r=O

= max #3 ( (s) - a(s- l) .
tE[0,T-1] s=0/

Which is the bound in the proposition.

Proof of Proposition 8

The proof of the proposition will be done by backwards induction on t, and will share some

elements with the proof of the deterministic case. Since no backordering is allowed, we have

JT_1() = max -- +cT1u+ +PT-1U-, (3.10)

Jt(Y) = max -ctu+ + ptu + E [Jt+,(Y + U+ - U-)] , Vt E [0, T - 1]. (3.11)05Y+u+-u-

Note that the expectation in the second equation is taken over the demand and arrivals

in period t + 1 on-wards. The induction hypothesis are

102



1. Jt(T) is non-decreasing and concave;

2. The optimal ordering policy is, for some V(t) > 0,

UOPt(T, t) = max(-Y, 0) (3.12)

UOPt (T, t) = max (T - V (t), I0) (3.13)

For t = T - 1, we will by or sell all leftover items, such that V(T - 1) = 0 and all the

the induction hypothesis holds. Now, assume that the hypotheses hold for t + 1. For ease

of exposure, let u(t) be defined as the net number of devices purchased and sold, i.e.,

U(t) = U--(t) - U+(t

Then,

Jt() = max min(ctu, ptu) + E [Jt+l(T - u)] .O<x-u

which, by defining y = Y - u, can be rewritten as

Jt(T) = max min(ct(-y + -),pt(-y + T)) + E [Jt+1(y)].

Since the expression

min(ct (-y + Y), pt (-y + Y)) + E [Jt+l(y)]

is concave for all (y, Y), then partial maximization over y preserves concavity, and Jt (Y) will

be concave, satisfying the first induction hypothesis. Also, the marginal profit variation

of adding or removing an item from inventory at time t will always be less than ct, since

removing an item would incur a future cost of at most ct for any realization of the demand

and arrival processes, such that Jt(Y) < Ct.

For the second induction hypothesis, recall Equation (3.11) and note that, if Y < 0, we

have

Jt (f) = max ctu + E [Jt+i(Y - u)] .

Since, J'(Y) < ct+1 5 ct, the expression above is non-decreasing for u < 0, and u*(T, t) = Y.

Conversely, if Y > 0, we have that u*(T, t) > 0, since ctu + E [Jt+i(T - u)] is non-
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decreasing for u < 0. Therefore, the optimal policy and cost can be found by solving

Jt(T) = max ptu + E [Jt+1(Y - u)].

which, by once again making y = - u, we can rewrite as

Jt() =max ptT - pty + E [Jt+1(y)].

Let yU denote the unconstrained minimum of this optimization problem and let y* (T) denote

the constrained minimum. Then, we have that

I YY*(Y) =yU

10

if yU > Y

if 0 < yU <

if yU < 0

or, equivalently,

0

U*(T) =T --

if yU > Y

yU if 0 < yU <

if yU < 0

If we define V(t) = max(0, yu), we obtain

u*(x) -
if < 0

if i > 0

which satisfies the second induction hypothesis.
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Chapter 4

Warranty Matching in a

Closed-Loop Supply Chain

4.1 Introduction

In the previous chapter we addressed the issue of managing inventory in a reverse logistics

system that supports a warranty contract between a large Wireless Service Provider (WSP)

and its customers. The problem of managing inventory at the WSP's reverse logistics

facility was studied, and we analyzed various policies for buying and selling refurbished

devices. However, once an inventory management policy is fixed, it is still necessary to

assign inventory items to customer requests according to the warranties that are in place.

We investigate this challenge next.

More specifically, as described in detail in Section 3.1 of the previous chapter, there are

two warranties in place: (i) the consumer warranty, offered by the retailer to the consumer,

and (ii) the OEM warranty, offered by the OEM to the retailer. Although both warranties

have the goal of protecting the players in this supply chain against manufacturing defects,

they might have very different characteristics. For example, the consumer warranty might

guarantee an immediate replacement of the faulty device for a working (new or refurbished)

one, while the OEM warranty might require the vendor to wait for the device to be repaired,

such that a replacement device is not immediately sent to the retailer.

Both warranties are valid for a limited period (usually 12 months), and once warranties

expire, the coverage to replace or repair a faulty device ends. Namely, a customer does not
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receive a replacement if he is out of consumer warranty, and the retailer cannot send the

device to the OEM for repairs if it is out of OEM warranty. In addition, the OEM warranty

is associated to a specific device, while the consumer warranty is specified to the consumer.

The WSP would ideally like to have the two warranties for a device being matched, i.e.,

the customer would have the same time left in his consumer warranty as the device would

have left in the OEM warranty. A mismatch between these warranties can incur costs to

the retailer beyond the usual processing costs of warranty requests. Namely, this extra-cost

is incurred when a customer still covered by the consumer warranty has a device that fails,

and this device is not covered by the OEM warranty. In this case, the WSP will then either

pay for the OEM to repair the device, which incurs additional costs to the system, or it will

scrap the device and the device leaves the system. If the device leaves the system, it cannot

be used in the future as a replacement device and it also cannot be sold through the side-

sales channel. At our partner WSP, these out-of-OEM-warranty devices are a significant

source of cost for their reverse operations.

Since a device can fail multiple times during its lifecycle, and the failure rate of re-

furbished devices is about the same as for new devices, the replacement device sent to

customers that file warranty requests can lead to out-of-OEM-warranty returns. Also, the

OEM warranty does not restart once a device is remanufactured and it is not paused while

a device is in stock at the WSP, such that "old" devices, with little OEM warranty left,

can potentially be sent to customers as replacements. At the WSP's reverse logistics facil-

ity, devices in stock were matched at random to consumers that placed warranty claims.

More specifically, refurbished devices received from the OEM were not sorted by time left

in OEM warranty, and customer requests were also not sorted according to the time left in

their customer warranty. This would lead to "old" devices being sent to "young" customers,

creating a scenario where a customer with a few months left in its consumer warranty re-

ceives a device with an expired OEM warranty. Conversely, this would also lead to cases

where "young" devices were sent to "old" customers, effectively wasting OEM warranty

coverage time.

From a practical standpoint, our goal is to propose and analyze assignment strategies

that mitigate these out-of-OEM-warranty returns in this system, i.e., minimize the number

of replacement requests from customers still covered under the retailer warranty, but whose

failed device is not covered by the OEM warranty. For such, we will first discuss the drivers
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of out-of-OEM-warranty returns and then proceed to formulate the problem of assigning

devices in inventory to customers. The final parts of the chapter will be dedicated to

discussing and analyzing different strategies for assigning devices to customers.

4.1.1 A note on nomenclature

Throughout this chapter, we use the term old customers to refer to customers that have

little time left in their consumer warranty. Since the consumer warranty has, in general,

about a 1 year duration, an old customer can be thought of a customer with only 1 or

2 months left in his warranty. Conversely, young customers are customers that still have

most of their warranty left. Along these lines, when we refer to the customer's age, we are

referring to how long he is into the customer warranty.

Similarly, we refer to a device as an old device if it has little time left in the OEM

warranty. On the other hand young devices are new and have most of the OEM warranty

left. OEM warranties, at our partner WSP, usually lasted 1 year as well. Thus, if the

customer warranty has length T, and the OEM warranty has length Toem, then a customer

of age t has T, - t left in the customer warranty, and a device of age t has Toem - t left in

the OEM warranty.

4.1.2 What drives out-of-warranty returns?

Before formulating mathematically the assignment problem, we will discuss the drivers of

out-of-warranty returns from a conceptual level. This will help identify what are the drivers

of mismatches and, in a later section, will guide the development of a policy for matching

devices to customers. Specifically, assuming that the devices are homogeneous in the sense

that they all obey the same failure-rate distribution, we argue that the main drivers of

out-of-warranty returns are (i) the length of the sales period, i.e., the amount of time that

devices are being sold; (ii) the matching algorithm used to send devices to customers; (iii)

random fluctuations in sales and failures.

Sales Period

If all devices were sold on the same day, and assuming that both the OEM and the retailer

warranty start on that sales date, out-of-warranty returns in this system would not occur

since all devices and customers would have the same age. If the OEM and consumer
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warranties have the same duration, all devices would have the same amount of time left in

the OEM warranty as customers have in their warranty, and a mismatch will never happen.

However, an increase in the length of the sales period leads to devices of different ages

failing in the same time period. It also leads to refurbished devices of different ages arriving

from the OEM to inventory at the reverse logistics facility in the same time period. Thus,

the longer the sales period, the larger the possibility of mismatches being created.

As a simple example of this fact, assume that when a customer purchases a new device,

the device and the customer warranty start simultaneously. Also, assume that customers

have a deterministic failure rate of a per week, i.e., in each week a -100% of customers have

devices that fail, independent of the customer's age. Finally, assume that there is a lead

time of 1 weeks for refurbishing devices, i.e., after 1 weeks a broken device will be available

to be used as a replacement. To simplify our analysis, we assume that replacement devices

do not fail, i.e., devices can fail at most once. In this setting, consider two scenarios: (i) n

devices are sold in one day; (ii) n/T devices are sold each week over a period of T weeks.

In scenario (i), in week t there will be (1 - a)"an customers with failed devices that

require replacements. All of these customers will have the same age t. The replacement

requests from these customers will be satisfied from refurbished devices in inventory (as well

as from seed stock), and all devices in inventory will have the same age t as the customers,

since they are devices that failed at or before week t - 1 and were refurbished. Thus, for

any assignment strategy there will be no mismatch, since devices in inventory will have the

same age as customers requesting replacements.

For scenario (ii), since devices are sold during multiple weeks, failures will be composed

of a mix of devices from customers of different ages. More specifically, in week t > T, there

will be (1 - a)tsan/T failures from customers that purchased devices in week s E [1, T].

This is illustrated in Figure 4-1. There we assume that T = 6, n = 900, and a = 0.05.

Note that there will be a mix of devices of different ages in inventory and, depending on

the assignment strategy, there could be mismatches between customers and replacement

devices. Note that, the longer the sales period, the larger the mix of different devices in

inventory. Furthermore, recall that, in this case, the make up of refurbished inventory is a

translation of the failures shown in the right figure.
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Figure 4-1: Sales per week and failures per week for the example with deterministic sales

and returns. We assume that there are only 6 weeks of sales, 150 items are sold per week,
and each week 5% of customers have devices that fail. In (b), each color represents the

devices from a sales week. Note that the customers with devices that fail are a mix

Assignment Strategy

The assignment strategy is crucial in mitigating out-of-warranty returns, and simple strate-

gies that do not take into account the closed-loop nature of the system can lead to a large

average mismatch. For example, a first-in-first out strategy for assigning replacement de-

vices to customers, not taking into account customer ages, might lead to large mismatches.

Similarly, randomly assigning devices to customers, which was the practice used by our

partner WSP, might also lead to large mismatches and, consequently, to poorly matched

assignments.

In the next few sections of this chapter we will propose and analyze different assignment

policies. Namely, we will focus on three strategies:

" The Random assignment policy: where devices in inventory are randomly assigned to

customers that require replacement devices, ignoring the time remaining in both the

customer and device warranties;

" The Youngest-Out-First (Myopic) assignment policy: where in every time period de-

vices in inventory are assigned to customers so as to minimize the mismatch in that

specific period;

* The Oldest-Out-First policy: a policy that always assigns the oldest devices in inven-

tory to the oldest customers that require replacements.
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Random fluctuations in sales and failures

As discussed in Chapter 2, we assume that devices of the same type fail according to some

hazard rate distribution that is unknown at the beginning of a device's live-cycle. Since

devices fail at random times, the mix of the ages of devices that arrive in inventory and the

ages of customers requiring replacements depends on the failure distributions of devices.

In addition, there is also uncertainty regarding the volume of new customer-device pairs

entering the system in every time-period. Sales of new devices are affected by multiple

variables, such as quality of devices, marketing efforts, prices and discounts. This constantly

changes the volume of devices entering the market and, therefore, the mix of devices that

are failing in every time period.

The rest of the chapter is structured as follows. In Section 4.2, we present a literature

review. In Section 4.3, we formulate the matching problem. In Section 4.4, we analyze

different matching strategies assuming stationary distributions of failure ages. In section

4.5, we discuss in depth the oldest-out-first assignment strategy. Finally, in Section 4.6, we

evaluate the different policies through various numerical experiments.

4.2 Literature Review

Research in matching items and individuals has been very active during the last 50 years.

One of the seminal works in this area is on the Hungarian algorithm, and can be found in

Kuhn (1955). More recently, the problem of matching under preferences has played a central

role in economics and operations research. In particular the stable matching problem, which

is discussed in Gusfield and Irving (1989), has been an area of active research. A survey

on relationship between market design and matching problems can be found in Roth and

Sotomayor (1992), and an application to matching medical students to residency programs

is covered in Roth (2003).

In the operations management literature, matching problems have been studied in the

context of blood bank inventory management in Jennings (1973) and in Pegels and Jelmert

(1970). The role of matching strategies in kidney-exchange programs has also received

considerable attention. A framework for studying this problem from a game-theoretic point

of view can be found in Ashlagi et al. (2011) and, more recently, in Ashlagi et al. (2013).

Although we build upon these streams of research, our work considers a very different
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setting. First, we are analyzing a matching problem in the context of a closed-loop supply

chain. Furthermore, our set-up is dynamic, and decisions made in one period impact the

system's state in the future. Finally, our goal is not to find an allocation that is an equilib-

rium, but to find a cost minimizing match. Given these characteristics, our work also draws

from the literature on on-line allocation. An example of an on-line algorithm for minimum

metric bipartite matching is Meyerson et al. (2006). Also, in Bansal et al. (2007), an on-line

algorithm for bipartite matching and its competitive ratio are examined.

A review of tools for analyzing on-line algorithms, which encompass the type of policies

that we use in the third part of the thesis, can be found in Albers (2003). Finally, the type of

matching problem that we consider in this thesis has yet to be covered in the literature, and

we believe that our application provides an interesting context for assignment and matching

algorithms.

4.3 Problem Formulation

We will formulate the problem of assigning devices to customers as a discrete time problem

where, at the beginning of each discrete period, customers of different ages place requests

for replacement devices, and devices in inventory are assigned to these customers. In order

to maintain the mathematical description of the system as close as possible to real-world

reverse-logistics systems, we will assume that each customer and device has a unique numeric

identifier. From a practical perspective, the device identification number is its serial number,

while the customer identification number is his/her registration number. The set of all

device ids in the system at time t will be given by Dt, while the set of all unique customer

ids active in the system at time t will be given by Ct. Since customers own devices, we

will denote the set of customer-device pairs at time t by Et. Thus, if customer i E Ct owns

device j e Dt at time t, then (i, j) E St.

The pool of customers, devices, and customer-device assignments changes over time,

since customers and devices are constantly entering or leaving the system. In addition,

it also depends on the assignment strategy used in assigning customers to new and/or

replacement devices. The activation date, i.e., the date that the customer warranty starts,

will be given by a function z : {Ct} U {Dt} -+ N, such that if i E Ct, z(i) will be the start

date of i's customer warranty and if j C Dt, z(j) will be the start date of device j's OEM
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warranty. We assume that customers have a finite warranty with length given by T, such

that if, at time t, t - z(i) = T, i E Ct, then the customer will leave the active customer

pool at time t + 1. The set of customer-device pairs that leave the system due to expired

customer warranties will be given by EtP. Also, the set of new customer-device pairs that

enter the system through sales in the forward chain at time t is denoted by tnew.

The set with all devices ids in inventory at time t in the reverse-logistics facility will be

denoted by It. The set of devices in inventory also changes over time, and depends on the

remanufactured devices arriving from the OEM, on devices being sold through side-sales

channels, and on devices sent as replacements to customers. We will denote the set of device

ids that arrive in inventory from the OEM at time t by At and the ones that leave through

side sales channels or due to expired customer warranty (they belong to a customer-device

pair in gteXP) by Ot. Also, devices that are sent as replacements to customers at time t will

be denoted by Rt. Thus, the set of devices in inventory evolves according to the expression

It+i = It U At - Ot U Rt.

The set of customer-device pairs that fail at time t is given by Ft, such that if (i, j) E Ft

customer i that owns device j has a faulty device and needs a replacement. Also, let the set

of customer-device pairs created due to customers receiving replacements be SteP. Hence,

if customer-device (i, j) C F is matched to device k E Rt, then (i, k) E Et"P. Then, we can

write the evolution of Et as

et+l =t U Etew U *eP - Ft U xp.

Let the set of all customers that have devices that fail be given by Cf. Thus, i C C if

there exists some j E Dt such that (, j) E Ft. The cost of assigning a device j to a customer

i is given by a cost functional, c : {C} x {It} --+ R, defined as

c(i, j) = f(z(i) - z(j)), i c {C{'}, j E {It}, z(j) > z(i), (4.1)
z(i) > z(j).
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where f is some non-negative convex non-decreasing function, and E > 0. Compactly,

c(i, j) = max(f(z(i) - z(j)), E).

Thus, f grows with the difference of the age between the device and the customer and the

older the device and the younger the customer, the larger the cost of a mismatch. From

a practical standpoint, the function c(i, j) can be thought of as the expected uncovered

warranty cost, i.e., the expected future cost of sending replacement device j to customer i.

In this case, the cost E represents the expected future cost when device j has more time left

in the OEM warranty than customer i has left in the customer warranty.

The function f captures the cost to the WSP if a customer has a replacement device that

fails. If the WSP sends to consumer i a replacement device j with an activation date that is

after the consumer's activation date, i.e. z(j) > z(i), this means that the device is "younger"

than the consumer and, if it eventually fails, the device will be remanufactured through the

OEM warranty and the OEM will bare the cost of repair and refurbishment. Conversely, if

the activation date of the replacement device is before the consumer's activation date, i.e.

z(j) < z(i) , the device will be "older" than the consumer and there is a possibility that

the device will fail while the consumer is still covered by the consumer warranty but the

device is not covered by the OEM warranty. If this is the case, the retailer will still send

a replacement device from its reverse logistics center to customer i; but the failed device j

has no (or minimal) value. If the retailer wants to include device j in its inventory in the

reverse logistics center, this is no longer "costless" and the retailer will have to pay to get

device j repaired. If the retailer does not intend to return j to inventory, then it would

have liked to have sold the device (after it was repaired by the OEM) into a side channel.

However, this option is less attractive as the retailer has to pay to refurbish or repair device

j.

As z(i) - z(j) increases, the larger is the probability that, in the future, device j re-

turns with an expired OEM warranty, and the expected cost to the WSP increases. Given

estimates of failure rates of a device, the cost function f can represent the expected cost to

the system that a device, which is still under consumer warranty but out of OEM warranty,

will fail. As an example, let r be the marginal cost of refurbishing a device that is out of

OEM warranty, i.e., the additional cost to the WSP of having to deal with a device out
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of OEM warranty. Then, if the customer warranty and the OEM warranty have the same

length, we can set the cost f of sending device j to customer i, if z(j) < z(i), to be

f(z(i) - z(j)) = r - Pr(Device fails and failure time > z(i) - z(j) periods ).

In practice, for the WSP the value r is around $100, such that the expected cost of refurbish-

ing a device can be significant. If, for example, the failure age is exponentially distributed,

and both the customer warranty and the OEM warranty have length T, the cost would be

f(z(i) - z(j)) = r - (ez(j)-z(i) - e-T).

Within this setting, our goal is to minimize the total assignment cost over a finite hori-

zon corresponding to the life-cycle of the device. Our first step will be to formulate this

problem as a deterministic optimization, in which all the failures, devices, and customers

are deterministic and known for each period. We denote this optimization problem as the

clairvoyant formulation of the assignment problem since there is no uncertainty and all

information is known. We will use the clairvoyant formulation as a benchmark to which

other assignment strategies will be compared. More specifically, we will analyze the worst

case ratio between the cost obtained by an assignment strategy and the clairvoyant cost

over all possible sales, failures and arrivals of devices in inventory. Thus, if there is no

uncertainty in the device failures, in the new customers that enter the system, and in the

arrivals of devices in inventory, the clairvoyant formulation will be the assignment problem

below, where the binary decision variables are {yjj(t)}, and yij(t) will be 1 if device j is

assigned to customer i at time t. We call this problem the Clairvoyant Assignment Problem

(CAP).
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T

minimize E c(i, j) - yi (t)
t=1 iEC jELt

s.t. yi (t) < 1, Vj E It, Vt E [1, T]
iEC{

Z y% (t) = 1, Vi E Ctf, Vt E [1, T] (CAP)

Rt = {(i, j)Iyij (t) = 1}, Vt E [1, T]

1t+1 = It U At - Ot U t, Vt E [1, T]

Et+ = t St"" Erep- t U St* Vt E [1, T]

yik(t) E (0, 1}, Vi E Ctf, Vi (E _Tt, Vt E [ 1, T].

Even though this is a large scale optimization problem with potentially millions of deci-

sion variables, with no uncertainty in the system this problem can be solved in polynomial

time since it is essentially a large assignment problem that has a convex objective function.

Algorithms such as the Hungarian Algorithm will provide polynomial time guarantees to

this formulation. However, in practice, uncertainty is pervasive in this system. As discussed

in the previous chapter, there is considerable uncertainty regarding the failure times of de-

vices. In addition, there is uncertainty related to new customers entering the system, as

well as the arrival times of refurbished devices in inventory from the OEM.

Note that we assume an inventory management policy that determines the amount of

new devices that enter inventory and of refurbished devices that leave through side-sales

channels. Formulating the assignment and inventory management problems as a single

(potentially stochastic) optimization problem is challenging. For example, formulating an

adequate cost functional would require estimating not only the cost and prices of devices,

but also the financial cost of mismatched warranties. However, for the particular case where

the mismatch cost function is one-sided, i.e., there is only a cost to the system if the customer

that receives a replacement device has more time left in his customer warranty than the

replacement device has left in the OEM warranty, any optimal inventory management policy

will sell the oldest devices in inventory first. This also come from the fact that we assume

that the price of a device in the side-sales market does not depend on the age of the device

since once a device leaves the system through side-sales, it is no longer covered by the OEM

warranty.
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4.4 Assigning Devices to Customers: Stationary Distribu-

tions

In this section we will analyze different matching strategies assuming that the activation

date of customers that need replacement devices is random. We assume that failure ages

of devices are i.i.d. and given by a distribution F with support [0, T,], where T is the

length of both the OEM and customer warranties. We also assume that time is discrete

and that at least T periods have passed since the launch of the device. Thus, if a device

that fails at time t, the activation time of this device and its customer will be a random

variable A = t - X where X is the failure age and

Pr(A < t) = Pr(X > t - ) = 1 - F(t - f+ 1).

We assume that the total number of device failures is constant in every period and given

by n, and that there are m > n devices in inventory at the reverse logistics facility in every

period. We also assume that the lead time at the OEM is deterministic and equal to 1

periods, such that devices that fail in period t will be available in period t + 1. Finally, for

an assignment of device j to customer i, we assume that the cost c is linear in the amount of

uncovered warranty time and E = 0. Remembering that z(i) the activation date of customer

i and z(j) is the activation date of customer j, we have:

J z(i) - z(j), i e {C{}, j E {It}, z(j) > z(i),
C, 0, Z(i) > Z(j).2)

More compactly, c(i, j) max(z(i) - z(j), 0). Thus, if Xi is the failure age of the device of

customer i, and X, is the failure age of replacement device j, we have that z(i) = t - Xi

and z(j) = t - Xj - i- 1, where f is the amount of time device j has been in inventory,

and 1 is the lead time at the OEM. Then, if customer i has a failure at time t and receives

device j as a replacement, the expected assignment cost will be

E[c(i, j)] = max(z(i) - z(j), 0) = E[max(Xj + it+ 1 - Xj, 0)]

Studying this simple setting will allow us to identify what are the trade-offs between
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different policies and how they impact the distribution of device ages in inventory. We will

look at three policies in the setting: (i) random assignment, which is what is currently being

done at the reverse logistics facility; (ii) best assignment, which is a myopic strategy; and

(iii) oldest-out-first, where we use first the oldest devices in inventory , matching them to

the oldest customers.

4.4.1 Random Assignment

Due to the large volume of incoming refurbished devices and requests, our partner WSP does

not sort devices nor customer requests. Although they might prioritize the use of refurbished

devices in inventory instead of seed-stock received from the OEM (or vice-versa depending

on the situation), the assignment of devices to customers within each class of devices is done

in no particular order. In fact, refurbished devices received from the OEM are not sorted

by age and are usually mixed and placed in large boxes or containers in inventory. In order

to describe this scenario from a conceptual level, we will first look at the case where devices

in inventory are randomly assigned to replacement requests. This setting is not entirely

realistic, since we do not differentiate between seed-stock and refurbished devices but, as a

simplified model, will serve to analyze the potential downsides of random assignment.

Random Assignment when m = n

In this section, we assume that the number of items in inventory is the same as the number

of request, so that m = n. Assume that in some period t the customers that file warranty

claims are matched uniformly at random with the devices in inventory. Namely, customers

and devices are sampled randomly without replacement and matched. Since m = n, the

inventory will be renewed in every period, and since the failure ages of all devices and

customers are i.i.d., the distribution of device ages in inventory will be the same as incoming

requests, albeit shifted by the lead time 1. In this case, if Xi and Xj are two random failure

ages distributed according to a continuous distribution F, the average cost of the assignment

per device will be

E[c(i, j)] = Pr(Xi < Xj + l)E[f (Xj + 1 - Xi)Xi < Xj + l],Vi C C,j C It.
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If 1 = 0, for X and Y distributed according to F, we have that Pr(Y > X) = Pr(Y < X)

1/2 and

E[c(i, j)] =E[Y - X|Y > X]
2

1(E [Y - X|Y ;> X] + 1E [X - Y|X > Y])

1
I (E[max(Y - X, 0)] + E[max(X - Y, 0)])2

__1

1 (E[max(Y, X) - X] + E[max(-Y, -X)] + X)
2

__1

1 (E[max(Y, X)] - E[min(Y, X)]).
2

The second equality above comes from the fact that X and Y are i.i.d. and the third

equality comes from the fact that E[max(Y - X,0)] = Pr(Y > X)E[Y - XJY > X]. If, for

example, the ages of requests are distributed uniformly between [t, T + t] for some T > 0,

then

E[c(i,j)] = I - = - T
2 3 6

If the warranty is 12 months in length, then customers that receive replacements will have,

on average, 2 months of warranty coverage time during which the devices are not covered

by the OEM warranty.

For a linear cost function as in Equation (4.2), we can bound the expected age difference

caused by random matching for any discrete failure distribution with some support [0, T,].

This is shown in the result below.

Proposition 9. For any two discrete i.i.d. random variables X and Y with distribution

defined on a support [0, Tw], we have that

E[max(Y +l - X,0)] < T +.
-4

Proof. First, note that E[max(Y +l - X, 0)] < E[max(Y +l - X, l)] = E[max(Y - X, 0)]+l.

Now, if px = Pr(X = x) and the joint distribution is pxy = Pr(X x, Y = y) = pxpy, we
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have

T T

E[max(Y - X, 0)] < Z py - max(y - x, 0).
y=O x=O

Since PX,y Py,x, the r.h.s. of the expression above can be maximized by solving

T T

maximize E PXpy max(y - x, 0)
y=O x=O

s.t. >Px 1,
X

PX > OVx,y.

The solution to this optimization problem is p* = p* = 1/2 and p* = 0 for all other x

leading to a cost of T/4.

To prove this, assume a feasible solution to this problem which we denote by (Po. .. PT).

If this solution has only one non-zero component, then the cost will be 0, lower than the

proposed solution. Conversely, if {t} has more than one non-zero component, let pmax be

the largest component of {P}, and let xmax be the index of this component. Then,

PxPy max(y - x, 0) Pmax Px max(xmax - x, 0)
y,xEI X<Xmax

< Pmax E px -T
X<Xmax

= Pmax - (1 - pmax) T.

The last expression is maximized when pmax = 1/2 and, in this case, we obtain

p.py max(y - x, 0) < T
-4

Since the cost of the solution p = p*= 1/2 and p* = 0 for all other x is T/4, we are

done. E

This bound gives us a limit on how poorly a random assignment strategy can be in

a steady-state system. If T = 12, in this setting, for the piecewise linear cost function,

random assignment will lead to at most an average uncovered time of 3 months plus the
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lead time at the OEM. From a practical perspective, this bound can serve as a guide for

practitioners to identify if it is worth investing in the equipment or software to implement

more sophisticated matching/sorting strategies.

Random Assignment when m > n

In the multi-period setting we assume that when a customer purchases a device, the cus-

tomer warranty and the OEM warranty start at the same time. Also, the failure age of all

customers/devices is sampled from the same distribution. As mentioned in the beginning

of this section, we assume that there is a constant volume of n requests per day, and that

there are m > n items in inventory. In addition, we assume the lead-time at the OEM is

deterministic and equal to 1 periods.

In every period n devices with age randomly distributed between 0 and T will fail and

arrive in inventory. There will also be m - n devices in inventory carried over from previous

periods. The age of a device j E It will be the sum of two random variables: (i) the age of

the device when it arrived in inventory; (ii) how long it stayed in inventory. As mentioned

in the beginning of this section, we assume that all devices fail according to some c.d.f. F.

To model the time a device stays in inventory when using a random matching strategy,

we assume that devices in inventory are chosen uniformly at random and matched to an

incoming request. Since we assume that there are n requests per period and rn devices in

inventory, where rn > n, each device in inventory will be chosen with probability n/m, and

m - n devices carried over from one period to another. Thus, on average, a device will stay

m/n - 1 periods in inventory. Thus, we can model the time a device stays in inventory as

a Geometric random variable with support (0, 1, ... ) and parameter n/m.

The age of a device in inventory will then be given by the sum of two random variables

Y and Z, where Y ~ F is the age of devices that fail with customers, and Z is a geometric

random variable with parameter n/m and support (0,1,... ). With this in hand, we can

bound the expected assignment cost in each period, which is presented in the proposition

below.

Proposition 10. For any failure time distribution F defined on a finite support [0, Tw], if

the age of each customer i that needs a replacement in a period t is a continuous random

variable distributed according to F, and the ages of a device j in inventory is given by
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Y +1 -+ Z, where Y ~ X, and Z is is a geometric random variable with parameter n/m and

support (0, 1 ... .), then we have

TW M
E[c(i, j)] = E[max(Y + 1 + Z - X, 0)] K + 1 + - - 1.

4 n

Proof. We have

E[c(i, j)] E[max(Y + 1 + Z - X, 0)]

Ez[Exy[max(Y + 1 + z - X,0)|Z = z]].

For the inside expectation, we can use the same proof as in Proposition 9 and we have

E[c(i,j)] Ez[Tw/4 + + Z] = Tw/4 +1 + m/n - 1,

completing the proof. By construction, this bound is tight.

The term I - 1 can be interpreted as the safety stock kept in inventory as a fraction ofn

the total incoming warranty claims per period. Also, in the worst case setting, the average

mismatch for random assignment grows linearly with the safety stock .

Although a worst-case bound is useful to understand what would be the worst possible

mismatch when using a random assignment policy, a lower-bound on the average cost can

also help a practitioner decide if investing in a system that tries to improve the matching is

worthwhile or not. The next proposition introduces a lower bound using Jensen's inequality.

Proposition 11. For any age distribution F defined on a finite support [0, Tw], if the age

of each customer i that needs a replacement in a period t is a random variable distributed

according to F, and the ages of a device j in inventory is given by Y ++ Z, where Y - X,

and Z is a geometric random variable with parameter n/m and support (0, 1,. .. ), then we

have
M

E[c(i,j)] > 1 + E[Z] = 1 + 1.
n

Furthermore, there is a distribution that achieves this bound.
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Proof. Since the function max(x, 0) is convex, we have

E[max(Y + 1 + Z - X,0)] > max(E[Y + 1 + Z - X ],0)

= 1 + E[Z.

Where the last equality comes from the fact that X and Y are i.i.d. The bound is achieved

if the distribution F has zero variance, i.e., all the probability mass is concentrated in a

single point. E

With these results in hand, we now proceed to analyze the Youngest- Out-First assign-

ment policy, where devices in inventory and requests are sorted by age and matched youngest

to oldest.

4.4.2 Youngest-Out-First (Myopic Policy)

Another policy that can be used for assigning customers to devices is a Youngest- Out-First

(YOF) policy. In this policy, we sort all the m devices in inventory and sort all the n

customer requests by age, and assign the n youngest devices in inventory to the n customer

replacement requests from youngest to oldest. This assignment policy is depicted in Figure

4-2. Assuming that the cost of a match is given by c(i, j) for some device j and customer

i, this matching strategy will be optimal if m = n. This is shown in the proposition below.

Proposition 12. If m = n, the youngest-out-first policy is optimal.

Proof. For contradiction, assume that there is an optimal matching of devices to warranty

claims that has a total cost that is strictly less than the one generated by the youngest-out-

first policy. Since the matching is different than the one generated by the youngest-out-first

policy, there must be at least one "crossing", i.e., two devices in stock, il and i2 , of ages z(ii)

and z(i 2 ), that are each matched to warranty claims from customers ji and j2 of ages z(ji)

and z(j2) , respectively, and z(ii) < z(i2) and z(ji) > z(j2). The term "crossing" is used

here because if we arranged all the requests and devices in stock by age, and then looked at

the network formed by matching devices in stock to requests, we would have crossing edges

in any solution other than the one generated by the policy. Since c(i, j) is non-decreasing

and convex in z(i) - z(j), we can match i1 with j2 and i2 with ji, and potentially improve

the cost. To show this, let g(z(i) - z(j)) = max(f(z(i) - z(j)), 0) and let A= z(ji) - z(j2 ).
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Youngest-Out-First assignment

Customers

Devices in Carried over C U
inventory Care ovr M E

to next period . _ _

Figure 4-2: Depiction of the Youngest-Out-First assignment strategy. In this example,
m = 7 and n = 5. Customers and devices are sorted by age and matched youngest to
oldest. Unused devices in inventory are carried over to the next period and age. Note
that the only assignment that occurs a cost is the assignment of the device of age 8 to the
customer of age 7.

Then,

c(ii, ji) + c(i2 , j2) - c(i1, j2 ) - c(i 2,j1) =

= g(z(ii) - z(ji)) + g(z(i2) - z(j2)) - g(z(ii) - z(j2)) - g(z(i2) - z(jl))

= g(z(ii) - z(jl)) - g(z(i1) - z(ji) + Aj) + g(z(i2) - z(ji) + Aj) - g(z(i 2 ) - z(ji))

> g'(z(ii) - z(ji))(-Aj) + g'(z(i2) - z(ji))Aj

> 0.

The first inequality comes from the fact that g is convex (if g were not differentiable,

a subgradient can be used), and the last inequality comes from the fact that g is non-

decreasing and convex, such that g'(x) g'(y) for any x > y.

We can repeat this procedure iteratively for all the "crossings" (and crossings that can

be potentially added during the procedure), and eventually end in a solution where no

crossings exist, which is exactly the one generated by the policy, which is a contradiction.

Since inventory is renewed in each period, the proof is complete. E

In the single-period problem of assigning devices to customers, i.e., for the case where

T = 1, the Youngest-Out-First policy will be optimal. This is proved in the next proposition:
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Proposition 13. If m > n and T = 1. the youngest-out-first policy is optimal.

Proof. First, if m = n, the optimality of the YOF policy is asserted from the previous

proposition. Next, if m > n, i.e., for any subset of size n of the m devices in inventory

that we choose, the YOF policy generates the best assignment between the n devices in the

subset and the n customers.

Now, we can potentially reduce the assignment cost for any subset of n devices in

inventory that are chosen to be matched to the n customer requests using the following

procedure: (i) Choose the oldest device in the subset. (ii) If the oldest devices in the subset

is older than the youngest device outside of this subset, swap the two devices. If it is not

older, stop. (iii) With the new subset in hand, use the YOF policy to match devices in the

subset to customers. (iv) Return to step (i) and repeat the procedure until the n youngest

devices are in the subset. Note that step (ii) will potentially decrease the cost since the cost

function is increasing in the age of devices used. Furthermore, step (iv) also potentially

decreases the cost since the YOF policy is optimal when m = n. Since this procedure is

valid for any initial subset of n devices that is chosen, the proof is complete. E

For the multiperiod case and m > n, we will present two results regarding the stationary

age distribution of devices in inventory when the youngest-out-first policy is used. First,

we will prove that as t -+ oc there will be, with probability 1, at least m - n devices in

inventory with age greater than T., such that they will never be chosen by the youngest-

out-first policy since the incoming devices in inventory from the OEM will be younger than

the devices carried over from the previous period. This occurs because this policy uses the

youngest devices in inventory first, such that the old devices that arrive in inventory tend

to not be chosen and will age. Thus, there will be a time period f, where for any t > f

the policy will always choose the n devices that have just arrived in inventory to be used

as replacements since the devices carried over from the previous period will be older than

T + 1, which is the maximum value of the age distribution.

Based on this result, we proceed to prove a distribution-free bound on the tail of the

average mismatch between devices in inventory and incoming requests using the youngest-

out-first policy. Namely, for any failure distribution, as n increases the average mismatch

decays exponentially to zero.

We introduce some notation in order to capture the case where m > n. Let (X( 1 ,... , X )
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be the random vector representing the sorted ages of customers that file requests at time

t. Thus, X ( will be the i-th youngest customer. Also, let (Yl) ,. , Yr) be the ages

of devices in inventory at time t, after devices arrived from the OEM. We do not assume

that Xtj) and Yjj) are equally distributed, although we do assume that if a customer of

age X requires a replacement device at time t, then at time t + 1 there will be a device of

age X + 1 arriving in inventory. Finally, let ( ,.. , + 1) be the random vector

representing the sorted ages of devices arriving from the OEM at time t. Note that the

elements of (, 1V) + -...( nf) + 1) will be contained in the vector (Y1),... Y(m). Also,

note that -= X(, since the lead time is deterministic.
xt t-17

If we match devices from youngest to oldest, and if m > n, we have that limt" Ytj) >

T,,, + 1, Vj > n almost surely. This is proved in the proposition below.

Proposition 14. Using a youngest-out-first policy and assuming m > n, we have that

limt," Ytj) > TL, Vj > n almost surely. Furthermore, if P(t) = 1 - F(t), and for a lead

time of 1, then for any t > t we will have, with probability at least 1 - 1/n that there will

be at least m - n devices in inventory with age greater than Tw, where t is defined as

2 m - n log nt= - + +1
F(t - 1) ( n n)

Proof. Since we assume that customers that require replacement devices send to the retailer

broken devices of the same age as them, we have that Yt(n+1) < T only if in the interval

[0, t - 1] the total number of customers of age larger than T - 1 is less than m - n. Since in

each period the age of customers is independent, and letting P(t - 1) = 1 - F(t - 1) be the

probability of an arrival having age larger than t - 1, we have that, by the Borel-Cantelli

lemma, as t -+ oo, we will observe an infinite number of devices of age larger than T1, - 1.

Furthermore, the total number of arrivals of age larger than T up to time t is distributed

according to a Binomial random variable with n(t -1) trials and success probability P(t -1).

Remembering that the Chernoff bound for some binomial random with parameters p

and n trials is
(np - k) 2

Pr (:5 k successes in n trials ) < exp - ,n
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we obtain, in our case, that

Pr(Yt (n0 > T) > 1 - Pr( < rn - n successes in n(t - 1) trials)

> I - exp (n -(t - 1) - P(t - -) - (m - n))2
2n(t - l)F(t - 1)

Thus, the time period f where the probability that at least (m - n) devices in inventory are

older than T is at least 1 - 1/n can be obtained by finding the smallest f that satisfies

exp ((n . (t - 1) -P(t - 1) - (n - n))2 1
2n(t - 1)F(t - 1) -n

This inequality is satisfied for any

( m - n log n 2log n m - n (log n)2t > - - + - + + 2 +l
-F(t - 1) n n \/ n n n2

Using the triangle inequality and the fact that log n/n < 1/2, Vn > 1, we have

2 .(m-n + logn> m - n logn + 2logn m - n (log n) 2

n n n n n n n2

and we can set f as
- 2 (m-n + logn)

F(t - 1) n

such that for any t > f, at least (m - n) devices in inventory will have age of at least T"

with probability larger then 1 - 1/n. 0

With this result in hand, we can explicitly describe the limiting distribution of items

in inventory under this policy. As t -+ oc, we have from the previous proposition, that for

some i we will have Ytl > T, for all t > i and the youngest out first policy will only use

the n incoming devices from the OEM as replacements. Also, we defined f such that for

any t > I we will be in this regime, where only incoming refurbished devices are used, with

probability at least 1 - 1/n.

In order to obtain a distribution free bound on the average assignment cost in this case,

let F, be the empirical CDF for the ages of the n requests arriving in period t. More
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specifically,

Fn X(t) = (Xi < t).
i= 1

where 1 is the indicator function. Additionally, let Fj be the empirical CDF of the age

distribution of ages of devices arriving from the OEM at time t, minus the lead time. If

we assume that f is linear we can write the random empirical average uncovered time of

devices at time t as
in

E max( + 1 - X ), 0).
i=1

A distribution-free bound for the tail of this cost is given in the proposition below.

Proposition 15. The tail of the distribution of i _ max(X + 1 - X ),0) will be

Pr Emax (f((' + 1 - X('),0) ;> 6 < 2 exp -2n.

Proof. First, note that,

Zmax(0) + 1 - Xt ,0) < - X +1

Now, we leverage the results presented by Major (1978) and Levina and Bickel (2001)

regarding Mallow's metric. Namely, as noted in Levina and Bickel (2001), we have

f0 - X min I - X
n t t n (0i,...,Jn) t

where the minimum is over all permutations of (1, ... n, ). Also, as posed by Major (1978),

we have that this is exactly that Mallow's distance and

1 nf1
min - X = P- (s) - P-j1((s)Ids + 1.

n (i,...) t 0 '

Finally,

j|F)k(s) - F-(s)|ds + 1. = j PYn(s) - Fx,n(s)\ds + 1

T sup |yn( s) -Fxn(s)+ l
sE [O,TwI
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Thus, from the DvoretzkyKieferWolfowitz inequality, for any c > 1, we have

Pr Emax(Y + - X(, 0) ;> 2 exp -2n .

In practice, since hundreds of devices of a given type are received per day, sorting all

the devices will lead to a mismatch close to 1. For example, if we choose E = 1+ Tw/10, the

bound will be 2 exp(-0.02n). If we sort 200 devices per day, the probability of the average

mismatch being larger than 0.1T + 1 is smaller that 4%. Note that the bound is only valid

for E > 1.

4.4.3 Oldest-Out-First

The Oldest-Out-First (OOF) policy is similar to the youngest-out-first, with the exception

that the n oldest devices in inventory are sorted and matched to incoming requests instead

of the n youngest devices. The OOF policy is described below.

Algorithm 2 Oldest Out First Policy

for all t do
1) Sort warranty claims by age
2) Sort devices in stock by age
3) Match devices in stock to warranty claims from oldest to newest

end for

First, note that this policy will be ineffective if T << m/n, i.e., the support of the

distribution of customer ages is much smaller than the inventory turnover rate. This is

because devices age in inventory and since we are using the oldest devices first, we will be

unable to clear inventory of old devices. On the other hand, if M is not too much larger

than n, we will have a large inventory turn over, and no device will be "stuck" in inventory.

The next section will be dedicated to an in-depth analysis of the OOF policy.

4.5 Oldest-Out-First Policy in Depth

In this section we will analyze the Oldest-Out-First (OOF) policy in detail and prove the-

oretical guarantees on its performance. Note that the random matching policy, the YOF

policy, and the OOF policy can be interpreted as on-line algorithms since, at some time t,
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they only take into account the distribution of devices in inventory and the requests at time

t. More specifically, at time t they only take into account the set of customers that require

replacements, which we denoted by Cf and the current distribution of devices in inventory,

which we denote by It. We will determine the performance of the OOF policy by analyzing

its competitive ratio. The definition of the competitive ratio is given below.

Definition 16. Let A(Cf, It, At) be the cost of an algorithm that, at time t, assigns devices

to customers in the Clairvoyant Assignment Problem (CAP). Also, let C*({C{, It, At}) be

the solution of the CAP where the customer requests in each period given by {Cf }, inventory

in the beginning of each period is It and the arrivals from the OEM in each period is {At}.

Then, this algorithm is said to have a competitive ratio a if

max t A(Cf It, At)max =a.
{C{,Zt,At} C*({Cf, It, At})

The competitive ratio allows for a comparison between the clairvoyant policy, i.e., the

policy that "knows" all the information of the system, and an on-line policy. In our case,

the clairvoyant policy is the solution to the deterministic optimization problem C*. Thus,

we can interpret the competitive ratio as a game where, given an assignment policy, an

adversary chooses a realization of failures and arrivals that maximizes the ratio of the cost

of the assignment policy and the clairvoyant cost. Note that if we make 5= 0, it is possible

that the competitive ratio is infinity.

We now proceed to formulate the device assignment problem as a transportation prob-

lem, and then we propose and analyze the oldest-out-first policy, a heuristic for matching

devices in stock to customers introduced in the previous section.

4.5.1 The oldest-out-first policy

In order to analyze the OOF policy, we will formulate the assignment problem from the

previous section as a closed loop transportation problem, reducing the dimension of the

state by allowing the failure ages of customers (and, consequently, the ages of the devices

that they hold) to be ind'ependent in each period. Note that this assumption is not entirely

consistent with the original formulation of the CAP, where the same pool of customers is

carried over from one period to another. In our competitive analysis, this assumption gives

more "leverage" for the adversary to choose the age of incoming requests and of devices
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coming into inventory, giving an upper-bound on the competitive ratio for the OOF policy

applied to the CAP. However, this assumptions allows for a simpler formulation and analysis

of the OOF policy.

Let T be the maximum time length of a customer warranty, and let the warranty

requests at time t be denoted by a vector d(t) = (di(t),. . . , dTr (t)) where d,(t) represents

the number of requests from customers of age j, i.e., customers that are j time-periods into

their customer warranty at time t. The warranty claims are satisfied with devices from

stock. We will denote the devices in stock by a vector x(t) = (xi(t),...,xs(t)) where S is

the age of the oldest devices in inventory, and xi(t) is the number of devices in stock of age

i, i.e., devices that are i months into the OEM warranty. The refurbished items that arrive

from the OEM at time t are denoted by the vector a(t) = (al(t),..., as(t)). Also, we let

d(t) = Ekdk(t), (t) = EkXk(t), and d(t) = Ekak(t).

For this analysis, let I be the OEM lead time, and we assume that the maximum variation

of the number of warranty claims from one period to the next is bounded by Ad, i.e.,

jj(t + 1) - j(t) I <Ad.

Also, if we assume a lead time at the OEM of 1 periods, for any loss level at the OEM we

have that

d(t) - d(t) < 1 - Ad.

As mentioned in the previous section, since a significant fraction of refurbished devices

used to fulfill warranty requests fail again, and since faulty devices that are out of the OEM

warranty cannot be sent to the OEM for refurbishment, our goal is to match devices in stock

to customer warranty requests in order to minimize the total uncovered warranty cost over

a finite time horizon T. If a device of age j is sent to a customer of age i < j, there is a risk

that this device will fail when it is out of OEM warranty, but still covered under customer

warranty. In addition, as the difference j - i increases, the risk that this device will fail out

of OEM warranty increases and, therefore, the expected cost to the vendor also increases.

To capture this, we assume a cost function with the same structure as the cost in Equation

4.1, such that the cost of using a device in stock of age j to satisfy a warranty claim from

a customer of age i is given by a function c(i, j) that is convex and non-decreasing in the

difference j - i. As before, the cost c(i, j) can be thought of as the expected future cost for
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the vendor of sending a device of age j to a customer of age i. The maximum cost will be

denoted by cma, while the minimum cost, i.e., when i > j, will be denoted by cmin. Thus,

we assume that c(i,j) - Cmin, Vi > j.

Customers that file a warranty claim send their broken devices to the vendor and, if

the device is still covered under OEM warranty, the vendor sends the faulty device to the

OEM for refurbishment. In this section, we assume that there is always enough inventory

to satisfy all the warranty claims. More specifically, this means that the WSP is willing to

utilize new devices to guarantee that there is no backlog and, therefore, !(t) +d(t) > J(t), Vt.

Denoting by yi,j(t) the number of devices of age j that are used to satisfy customers of age

i, the clairvoyant allocation, i.e., the allocation if all the arrivals are known ahead of time

is the solution to the following optimization problem:

S W
minimize (i, j) yij(t)

t=1 j=1 i=1

subject to Ey (t) = dj(t), i = 1, ... , W

yj (t) > 0, Vi, j, t.

x (t) > 0,Vi, t.

We will now analyze the performance of the OOF policy as an on-line policy for this

problem. The intuition behind this policy is that, since devices in inventory are aging and

losing "OEM warranty months", if we use oldest devices first, over time we will not have

devices in inventory that are "too old". Additionally, the long-term benefit of using "old"

devices first outweighs the short term cost induced by potentially sending "old" devices to

"young" customers. If we used the optimal myopic strategy, which is to use the youngest

devices first, we could potentially end up with leftover old devices in inventory that continue

aging as time passes, eventually expiring their OEM warranty.

For the single period problem, i.e., when T = 1, the OOF policy has the following

property:

Proposition 17. If T = 1 and !(1) +(1) = d(1), then the oldest out first policy is optimal.
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Proof. If (1) + a(1) = d(1), then the number of incoming requests is the same as the

number of devices in inventory, such that there will be no leftover devices at the end of

the period. In this case, the OOF policy is the same as the Youngest-Out-First policy and

optimality follows directly from Proposition 12. D

The competitive ratio of the OOF policy for a single period is described in the propo-

sition below. Here, we assume that there is enough inventory to satisfy all the warranty

claims.

Proposition 18. For the single-period problem, let x, d, and a be the current inventory,

the current demand, and the replacements that arrive in the beginning of the period. Also,

assume that Ej xj+ E aj - Z, dj < Ax and that E dj = n. Then, if U = {x, a, d| I 3 xj+

Ej a, - Eg dj < Ax, EZ d3 = n} the oldest out first policy has a competitive ratio of

Cost of OOF given {x, a, d} acmin + (1 - a)cmaxmax<
{x,a,d}EU Clairvoyant cost given {x, a, d} - Cmin

where a - . Furthermore, this bound is tight.

Proof. The proof is in the appendix of this chapter. E

For the multi-period case, the competitive ratio of the OOF policy is given in the next

proposition. In order to obtain this ratio, we make two assumptions: (i) that the demand is

fairly smooth and does not change by more than Ad between two periods (i.e. a Lipschitz

continuity assumption); and (ii) the total number of devices in inventory in a period is

within a factor of m of the total demand in that same period. In practice, assuming a

hazard rate model for device failures, if sales are smooth (which is often the case), demand

for replacements will be fairly smooth. Similarly, the number of devices in inventory will

not become arbitrarily large since excess inventory can be sold. This ratio is tight for cases

where devices returning from the OEM into stock can have any age, but it is loose if we

assume that devices returning from the OEM are warranty requests from previous periods

that aged according to the lead time.

Proposition 19. Assume that

e E di(1) = n
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* {d(t)} E = {{d(t)} I dj(t + 1) - Zj dj(t)| Ad, Vt}

* For some m > 0, {x(t), d(t)} E S = {{x(t), d(t)} 0 < E xi(t) < m - di(t)}

Then, the oldest out first policy has a competitive ratio that satisfies the inequality

x(t)(t)u CycCost of OOF given {x(t), d(t)} <1-4+ Cmax - Cmin ( + 2Ad .l)
{xt)dt)u SClairvoyant cost given {x(t), d(t) } ~ Cmin

which does not depend on the horizon T.

Proof. The proof is in the appendix of this chapter. D

As an example of this ratio, let us assume that time is measured in weeks, and that

Ad = 0.05n, cmax = 3 cmin, m = 0.2, and 1 = 3 weeks. Then, the bound would be

cmax - Cmin . + 2AdlN = 2
Cmin n )

In addition, as expected, the bound increases with lead time and demand variation

ratio Ad/n. Also, it is worth noting that this bound does not depend on the horizon, so the

OOF policy cannot perform arbitrarily poorly. In the next section we will show, through

numerical experiments, the performance of the OOF policy. In practice, the OOF policy

mitigates significantly the number of uncovered months, especially in comparison to random

matching and to the myopic policy.

4.6 Numerical Experiments

In the previous sections we examined three different policies for assigning devices in in-

ventory to customers: (i) random assignment; (ii) the YOF policy and; (iii) the OOF

policy. We proved theoretical properties of these policies and also derived bounds for their

performance. In this section, we will compare and contrast these three approaches through

numerical experiments. In addition, at the end of this section, we will simulate the practical

performance of these policies using real-world data from our partner WSP.

Our simulations were done using an extended version of the simulator developed for

the numerical experiments in Chapter 3. More specifically, the simulator described in

Section 3.7 of Chapter 3 was adapted to include the customer-device assignment strategy
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as an additional input parameter and to allow for devices to fail multiple times. For the

simulations in the first subsection, we used the inventory management policy based on

the Certainty-Equivalent approximation described in Section 3.6.1 of the previous chapter.

Since we allow devices to fail multiple times, the average demand and arrival paths were

estimated in every time period through a Monte-Carlo simulation using 50 samples. For

the simulations in the second subsection, we used the clairvoyant policy, where the exact

dates of device failures and arrivals from the OEM are assumed to be known.

For the simulations in this section, one discrete period corresponds to one day. We

also assume that when a customer purchases a new device, both the OEM and customer

warranties start simultaneously. However, once a device fails and is sent to the OEM for

repair/refurbishment, the device keeps aging and "consuming" OEM warranty.

We will use two metrics for measuring the performance of the different assignment

policies:

9 Average uncovered time per replacement device shipped: if a refurbished device of age

3 is sent as a replacement to a customer of age i, the uncovered time of the customer

will be max(j - i, 0). Since we assume that both the customer warranty and the OEM

warranty have the same length, this represents the amount of time that a customer is

still covered by the customer warranty while the device he/she owns is not covered by

the OEM warranty. Since devices can fail multiple times, this is a measure of exposure

of the WSP with regards to out-of-warranty returns;

* Percentage of failures that are out-of-warranty: the percentage of all the failures that

happened when the customer was covered by the customer warranty but the device

that failed was not covered by the OEM warranty. In this case, the device is either

scrapped or the WSP has to pay for its repair/refurbishment.

In the remainder of this section we will look at two different sets of numerical experi-

ments. In the first set of experiments we extend the simulator developed in the previous

chapter to allow for the assignment policy to be an input to the simulation. We then

simulate the life-cycle of devices using different failure distributions and compare the per-

formance of the different policies. The second set of experiments uses real-world data from

our partner WSP. We use data from 3 devices to contrast the performance of the different

assignment strategies.
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(a) Sales period distribution. (b) Prices of new and refurbished devices

Figure 4-3: Parameters of the simulation. The failure distribution is exponential with mean

364 days. Sales only occur during the first 6 months from launch.

4.6.1 Comparing different policies

We assume a total simulation horizon of 2.5 years and that both the customer and the

OEM warranty have a length of 12 months. Thus, if a customer has a device that fails and

he is out of customer warranty, it will not be replaced. We also assume that devices can

fail multiple times, such that a replacement device sent to a customer can fail again. In

addition, we assume that new devices are sold according to the probability distribution in

4-3a such that each customer samples its purchasing date from this distribution. The prices

of new and refurbished devices will, unless explicitly stated, follow the pattern depicted

in Figure 4-3b, such that the price of both new and refurbished devices decrease linearly

over time. We assume a 3 week total lead time from when a device fails until it returns to

inventory (this includes both the customer and OEM lead times), and a 20% probability

that a device sent to the OEM cannot be repaired. We set the seed-stock level to be 5% of

devices sold.

For our first experiment, we assume that the failure age of devices are exponentially

distributed with average 12 months. Thus, the hazard rate of devices is constant and

approximately 63% of newly purchased devices will fail under warranty. We also assume

that 6000 devices are sold, and that the sales period of each new device sold is sampled from

the distribution in 3-5a. Although the volume of devices sold that we use is small compared

to real-world volumes (usually one or two orders of magnitude higher), this smaller scale

allows us to do a Monte-Carlo simulation of the life-cycle of the device. In this experiment,

we simulate the life-cycle of the device 100 times.

The results are depicted in Figure 4-4. The random assignment strategy leads to an
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Figure 4-4: Box-plots for the average uncovered days per replacement device shipped and

the percentage of failures that are out-of-warranty when assuming that the failure age is

an Exponential random variable with average 365 days. The data was generated from 100
simulations of the life-cycle of the device.

average of 18 days of uncovered time per device shipped, the YOF policy generates about

12 days, and the OOF policy only around 6 days, as shown in Figure 4-4a. This happens

because, over time, the OOF policy does not let old devices accumulate in inventory and

even if the policy is not optimal in a single period, it has a better performance than the

myopic policy in this multi-period setting. Furthermore, on average the number of out-of-

warranty failures in this experiment was about 1.4% of the total volume of failures, while

the YOF and the random matching policies were, respectively, 2.7% and 3.7%. This is

illustrated in Figure 4-4b. Since, in practice, the WSP deals with tens-of-thousands of

failures per day, the simulation indicates that changing the policy used to assign devices

to customers could lead to significant cost savings since, by using the OOF policy, the

WSP could refurbish/repair through the OEM warranty more devices than if a random

assignment strategy were used. These devices could then either be used as replacement or

sold through the side-sales channel.

For the second experiment, we assume that the failure age of devices follow a log-normal

distribution. This distribution has a high variance and is "heavy tailed". The results are

depicted in Figure 4-5. The OOF policy will still have a superior performance in both

metrics when compared to the YOF policy and the random matching policy. In this case,

the random assignment policy has an average of 2.4% of devices being out-of-warranty

failures, while for the OOF policy this decreases to an average of 1.25%.
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Figure 4-5: Box-plots for the average uncovered days per replacement device shipped and

the percentage of failures that are out-of-warranty when assuming that the failure age is a

Log-Normal random variable with parameters p = log(365) and a2 = log(120). The data

was generated from 100 simulations of the life-cycle of the device.

4.6.2 Experiment using real-world data from the WSP

Using data for two different devices sold by the WSP we compare, under a certainty-

equivalent inventory management policy, the performance of Random Assignment policy,

the YOF policy and the OOF policy. These two devices are from different manufacturers,

and use different operating systems. As in the previous subsection, when there are side-sales,

we assume that the oldest devices in inventory are sold first.

The data collected by the WSP contains individual sales and failure dates (if the device

fails) for every device sold. The sales and the hazard rate distributions for these two devices

are depicted in Figure 4-6. We did not have direct access to data from the OEM regarding

repair rate and loss. However, the managers at the WSP's reverse logistics measured that

the average aggregate customer and OEM lead-time is about 4 weeks. Furthermore, they

estimate that 20% of replacement requests received cannot be repaired. We used both of

these parameters in our simulation. As before, we assume a customer and OEM warranty

lengths of 12 months. We also assume that the cost of sourcing a new device and the price

of a refurbished device in a side-sales market behave according to Figure 4-3b. Finally, the

contract between the WSP and the OEMs for these devices sets the seed-stock level to be

1% of sales.

Our experiment consisted of a Monte-Carlo simulation where, for each device, we simu-

lated 30 life-cycles of sales and failures, assuming that 15,000 devices were sold per life-cycle.

The sales date of each device was sampled from the actual sales dates. The failure dates (if
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Figure 4-6: Sales and hazard rate distributions of two devices sold by the WSP.

a device failed at all) were drawn from the failure-time distribution. As a metric of perfor-

mance, we assume the average uncovered time per replacement device shipped. Finally, we

assume that a device can fail more than once throughout its life-cycle, and that refurbished

devices have the same failure distribution as new devices.

The outputs of the simulations are summarized in Figure 4-7. Note that the OOF

significantly decreases the average number of uncovered weeks with respect to random

matching, and that it performs better than myopic matching since "old devices" do not

accumulate in stock over time. Also, note that both the OOF and the myopic policy present

improvements over random matching due to the power of sorting requests and devices. The

difference between the performance for both devices can be explained by the different sales

patterns of the two devices, and the fact that a larger fraction of devices type B fail than

devices of type A.

4.7 Conclusion

In this chapter, we modeled and examined the problem of matching devices to customers in

a reverse logistics system when there are two warranties in place: (i) the consumer warranty

(offered by a WSP to its consumers), and the (ii) OEM warranty (offered by the OEM to the
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Figure 4-7: Box-plots for the average uncovered days per replacement device shipped using

data from the WSP. The data was generated from 30 simulations of the life-cycle of the

devices.

WSP). Ideally the two warranties would be matched, i.e., the customer would have the same

time left in his consumer warranty as the device would have left in the OEM warranty. A

mismatch between these warranties incurs costs to the retailer beyond the usual processing

costs of warranty requests. Namely, this extra-cost is incurred when a customer still covered

by the consumer warranty has a device that fails, and this device is not covered by the OEM

warranty.

Given this setting, we analyzed different assignment strategies and how they impact

mismatch costs and out-of-OEM-warranty returns. Namely, the three assignment strategies

that we focused on were:

" The Random assignment policy: where devices in inventory are randomly assigned to

customers that require replacement devices, ignoring the time remaining in both the

customer and device warranties. This was the policy used by the WSP at the time

that our collaboration began;

* The Youngest-Out-First (Myopic) policy: where in every time period devices in inven-

tory are assigned to customers as to minimize the mismatch in that specific period.

We prove that this is the optimal single-period assignment strategy in our formulation;

" The Oldest-Out-First policy: a policy that always assigns the oldest devices in inven-

tory to the oldest customers that require replacements.

Our first analysis of these policies involved assuming that the activation date of cus-

tomers that need replacements devices is random and that failure ages of devices are i.i.d.

Also, we assumed that the total number of device failures is constant in every period and
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given by n, and that there are m > n devices in inventory at the reverse logistics facility in

every period. In this context, we proved distribution-free upper and lower bounds on the

expected mismatch cost for the random assignment policy. These bounds have a practical

interpretation and can help a plant manager decide if it is worth investing in a matching

policy other than random assignment.

We then considered the Youngest-Out-First policy, where customers and devices are

sorted by age and matched from youngest to oldest. We proved that, in the long-run and

for a lead time of 1, the mismatch cost of the YOF policy will be very close to 1. In fact,

the distribution of the mismatch cost has an exponentially decreasing tail. However, we

argued that this policy has a major drawback. If we allow m and n to be random variables

that change over time, the YOF policy may lead to an accumulation of "old" devices in the

system, since it uses the youngest first, and when n fluctuates, devices that are out of OEM

warranty might be sent to customers.

We addressed this through the Oldest-Out-First policy. This policy also sorts devices

and customers by age but, instead of matching them from youngest to oldest, matched

them from oldest to youngest. The intuition behind this policy is that in the long-run it

is not worth allowing devices to "age" in inventory, even though using them immediately

is not the optimal short-term thing to do. By assuming certain conditions for the system's

behavior, we proved the competitive ratio of this policy.

We also evaluated these policies through numerical experiments that use data from our

partner WSP and also through simulations scenarios where failures are chosen from a pre-set

distribution. In our experiments, we observe the OOF significantly decreases the average

number of uncovered weeks with respect to random matching, and that it performs better

than myopic matching since "old devices" do not accumulate in stock over time. We also

observe that both the OOF and the myopic policy present vast improvements over random

matching due to the power of sorting requests and devices.

Finally there are a few promising research directions that we have yet to explore. First,

examining the optimal policy for the matching problem could lead to effective on-line match-

ing strategies with provable guarantees. Another unexplored area is the intersection between

inventory management and warranty matching. Finally, an analysis of strategies that only

require partial sorting of devices and customers may lead to assignment policies that are

simple to implement in practice and have a good performance.
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4.8 Appendix: Proofs

Proof of Proposition 18

Proposition. For the single-period problem, let x, d, and a be the current inventory, the

current demand, and the replacements that arrive in the beginning of the period. Also,

assume that Ej xjE. aj - Z dj 5 Ax and that J dj = n. Then, if U = {x, a, d Ej xj+

EZ a3 - Ej dj :5 Ax, EZ dj = n} the oldest out first policy has a competitive ratio of

Cost of OOF given {x, a, d} acmin + (1 - a)cmaxmax
{x,a,d}EU Clairvoyant cost given {x, a, d} Cmin

where a = (n-x)+ . Furthermore, this bound is tight.n

Proof. The proof will be done in two steps. First, we will explicitly construct an example

that achieves the competitive ratio and we will then show by contradiction that this is in

fact the largest possible competitive ratio.

Assume we have x + & = n + Ax units in inventory and that d = n. Also, we assume

without loss of generality, that ai = 0, Vi, i.e., no items arrive (or the items that would

arrive are already in inventory).

Assume that the age distribution of items in inventory is x = (nA,...,0, Ax), i.e.,

the only non-zero components of the inventory age distribution are x= d and xs = Ax.

Also, assume that all the demand for replacement devices is given by d = (n, 0,.... , 0). In

this case, the optimal single-period policy would allocate all the new devices to satisfy the

warranty requests, obtaining a total cost of cminm, while the OOF policy would use the

oldest devices first, and have a cost of cmax -min(n, Ax) + cmin(n - Ax)+. Note that we can

rewrite min(n, Ax) as

min(n, Ax) = n - (n - Ax)+.

Thus, the cost can be rewritten as

cmax min(n, Ax) + cmin(n - Ax)+ = cmax* (n - (n - Ax)+) + cmin(n - Ax)+.

The ratio between these two costs is

Cmax - (n - (n - Ax)+) + cmin(n - Ax)+ _ cmax (1 - (Ax) + Cmin (n-x)

cminn cmin
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This achieves the competitive ratio.

Now, for contradiction, assume that there is another combination of customer and device

ages that achieves a strictly larger competitive ratio than the distribution stated before.

Also, in accordance to the beginning of the chapter, let the set of customer be given Cf and

the set of devices in inventory be given by I. NIt must be that card(I) = card(Cf) + Ax,
or else we can increase the number of very old devices in stock and potentially increase the

cost of the oldest out first policy while potentially decreasing the optimal cost (since there

are optimal policy will have more options).

Consider the allocation generated by both the OOF and the optimal policy. With bot

allocations in hand, let lOOF be the set of devices used only by the OOF policy and not

by the optimal allocation, let 'OPT be the set of devices devices used only by the optimal

allocation and not by the OOF policy, let IBoth bet the devices used by both, and let INone

be the devices that neither of the allocations use. Note that all these sets are disjoints and

their union is I. Also, note that card(IoOF) = card(IoPT).

Finally, let CbPT be the set of warranty requests satisfied using devices from IOPT

and let Cf OPT be the complement of this set. The set with all warranty requests is C=

Cf U
OPT UCf OPT-

With these sets in hand, we can increase the competitive ratio through the following

procedure:

1. Shift the devices in 'QOF to the oldest age slot, obtaining a competitive ratio that is

at least as large as the original stock and warranty claims. This does not change the

cost of the optimal allocation;

2. For this new configuration, relocate the units of inventory in 'OPT to the youngest

time slot. Note that these devices will continue to not be used by the OOF policy,

and the optimal cost with this new configuration will potentially be smaller.

3. Reallocate the warranty claims in CbPT to the youngest arrival slot. This will po-

tentially increase the cost of the OOF policy, while not changing the optimal cost,

since these devices can still be satisfied with young devices from 'OPT. Thus, the

competitive ratio of this new allocation will be at least the same as before.

4. If 'Both = 0 we are done, since the new allocation has the competitive ratio from the

statement of the proposition - in this case it will simply be c.ax.
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5. In this new setting, if 'Both $ 0, consider a modified policy of the OOF, where the

devices in the set 'OOF are sent to the customers in CbPT and the remaining devices

are matched to the customers in Cf OPT using the OOF policy (or the youngest-out-

first, since the number of remaining devices is the same). Note that this increases

overall cost since, if we consider only the devices in 'Both U 'QOF to satisfy the n

requests, the OOF first assignment will be the same as the youngest-out-first, which

is optimal according to Proposition 12. Therefore, using the devices in 'QOF to satisfy

the customers in CbPT increases cost.

With the allocation in the last step of the above procedure, note that the allocation of

devices of the optimal policy from 'Both to Cf OPT will be the same as the allocation of the

rearranged OOF policy, since the number of devices in both sets is the same and will have

a total cost that we denote by /. Also, the number of devices in IOOF and 'OPT will be

Ax. Thus, this new competitive ratio can be bounded by:

Cost of OOF policy Cost of modified allocation policy cmaxAx +,3

Optimal Cost - Optimal Cost - cminAx + 3

Since cmax > cmin, the ratio is non-increasing in /. Since the minimum allocation cost for

the remaining devices is (n - Ax)cmin, we obtain

Cost of modified allocation policy cmaxAX + (n - Ax)cmin

Optimal Cost cmin n

which is exactly the competitive ratio we had before. Hence, we achieve a contradiction

and the proof is complete. E

Proof of Proposition 19

Proposition. Assume that

* Ej dj (1) = n

" {d(t)} E U = {{d(t)} Ej dj(t + 1) - EZ dj(t)l Ad,Vt}

* For some m > 0, {x(t), d(t)} E S = {{x(t), d(t)} 0 < E xj(t) m . dj(t)}
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Then, the oldest out first policy has a competitive ratio that satisfies the inequality

Cost of OOF given {x(t), d(t)} Cmax - Cminmax < +
{x(t),d(t)}u ns Clairvoyant cost given {x(t), d(t)} Cmin

which does not depend on the horizon T.

Proof. Assume some {x(t), d(t)}. If we uncouple the ages of devices in stock between

periods, and defining the variation of inventory between two periods by Ax(t) = (x(t) +

d(t - 1) - d(t))+, we have from the previous proposition that

max Cost of OOF given {x(t), d(t)}
{x(t),d(t)}U nS Clairvoyant cost given {x(t), d(t)}

<[_1 cmaxd(t) - (Cmax - Cmin)(d(t) - Ax(t))+
-zfT c mind(t)

K _t1 cmind(t) + (cmax - Cmin)AX(t)

T 1cmind(t)

=-1 + Cmax - cmin . ii-\X(t)
Cmin z_1 d(t)

From the assumption that x(t) < m - d(t) for some m and since (x(t) + d(t - 1) - d(t))+ <

x(t) + (d(t - 1) - d(t))+, we obtain

Cost of OOF given {x(t), d(t)}max < 1
{x(t),d(t)}ufns Clairvoyant cost given {ax(t), d(t)} -

Cmax - Cmin m + (d(t - 1) - d(t))+
Cmin ET d(t)

Once again using the triangle inequality, note that

t=o max(d(t - 1) - d(t), 0) t=1 max(d(t + 1) - d(t), 0)

zt= 1d(t) t=1d(t)

This expression can be bounded from above by solving

maximize ET-J max(d(t) - d(t + 1), 0)

ET_ 1d(t)

subject to Id(t) - d(t + 1)| Ad,Vt,

d(0) = N,

d(t) > 0, Vt.
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The solution, {d*(t)} to this optimization problem is

d*(t) max(d* (t - 1) - Ad, 0), Vt

= max(N - Ad - t, 0)

We can prove this by contradiction. Assume that we have some other solution with a

strictly larger cost than {d*}. Then, starting from d(T) and proceeding backwards over t,

we can decrease the value of each term as much as possible, increasing the numerator of

the objective function while decreasing the denominator. Thus, reduce the overall cost and

obtain the solution above, obtaining a contradiction. With the solution in hand, since the

d* (t) = 0 for large enough t, we have

T N 2

: d*(t) < 2Ad'
t=1

and

Zmax(d(t) - d(t + 1), 0) < N.
t=o

Therefore, the bound is

max Cost of OOF given (d(t),x(t)) _ cmax - Cmin ( + 2Ad.1) +
{d(t)}eU,{x(t)}ES Clairv. cost given (d(t),x(t)) Cmin N

and the proof is complete. LI

145



THIS PAGE INTENTIONALLY LEFT BLANK

146



Bibliography

Albers, Susanne. 2003. Online algorithms: a survey. Mathematical Programming 97(1-2)
3-26, 97(1-2).

Allen, Stephen G., Donato A. D'Esopo. 1968. An ordering policy for repairable stock items.
Operations Research 16(3) 669-674, 16(3).

Ashlagi, Itai, Felix Fischer, Ian A. Kash, Ariel D. Procaccia. 2013. Mix and match: A strat-
egyproof mechanism for multi-hospital kidney exchange. Games and Economic Behavior
Games and Economic Behavior.

Ashlagi, Itai, Duncan S. Gilchrist, Alvin E. Roth, Michael A. Rees. 2011. Nonsimultaneous
chains and dominos in kidney-paired donationrevisited. American Journal of Transplan-
tation 11(5) 984-994, 11(5).

Bansal, Nikhil, Niv Buchbinder, Anupam Gupta, Joseph Seffi Naor. 2007. An o (log2 k)-
competitive algorithm for metric bipartite matching. AlgorithmsESA 2007. Springer,
522-533, 522-533.

Bertsekas, Dimitri P. 2005. Dynamic Programming & Optimal Control, Vol. I. 3rd ed.
Athena Scientific, Athena Scientific.

Chen, Li, Erica L. Plambeck. 2008. Dynamic inventory management with learning about the
demand distribution and substitution probability. Manufacturing & Service Operations
Management 10(2) 236-256, 10(2).

Chen, Xin, David Simchi-Levi. 2009. A new approach for the stochastic cash balance
problem with fixed costs. Probability in the Engineering and Informational Sciences
23(04) 545-562, 23(04).

Cox, David Roxbee, David Oakes. 1984. Analysis of survival data, vol. 21. CRC Press,
CRC Press.

de Brito, Marisa P., Erwin A. van der Laan. 2009. Inventory control with product returns:
The impact of imperfect information. European Journal of Operational Research 194(1)
85-101, 194(1).

Dempster, Arthur P., Nan M. Laird, Donald B. Rubin. 1977. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B
(Methodological) 1-38 Journal of the Royal Statistical Society. Series B (Methodological).

Feinberg, Eugene A., Mark E. Lewis. 2005. Optimality of four-threshold policies in inven-
tory systems with customer returns and borrowing/storage options. Probability in the
Engineering and Informational Sciences 19(01) 45-71, 19(01).

147



Fleischmann, Moritz, Jacqueline M. Bloemhof-Ruwaard, Rommert Dekker, Erwin Van der
Laan, Jo AEE Van Nunen, Luk N. Van Wassenhove. 1997. Quantitative models for reverse
logistics: a review. European journal of operational research 103(1) 1-17, 103(1).

Geyer, Roland, Luk N Van Wassenhove, Atalay Atasu. 2007. The economics of remanu-
facturing under limited component durability and finite product life cycles. Management
Science 53(1) 88-100, 53(1).

Godfrey, Gregory A., Warren B. Powell. 2001. An adaptive, distribution-free algorithm
for the newsvendor problem with censored demands, with applications to inventory and
distribution. Management Science 47(8) 1101-1112, 47(8).

Goeman, Jelle J. 2010. Li penalized estimation in the cox proportional hazards model.
Biometrical Journal 52(1) 70-84, 52(1).

Greenwood, Major, others. 1926. A report on the natural duration of cancer. Reports on
Public Health and Medical Subjects. Ministry of Health (33), (33).

Guide, V. Daniel R, Luk N Van Wassenhove. 2009. OR FORUMthe evolution of closed-loop
supply chain research. Operations Research 57(1) 10-18, 57(1).

Gusfield, Dan, Robert W. Irving. 1989. The stable marriage problem: structure and algo-
rithms, vol. 54. MIT press Cambridge, MIT press Cambridge.

Huang, Wei, Vidyadhar Kulkarni, Jayashankar M Swaminathan. 2008. Managing the in-
ventory of an item with a replacement warranty. Management Science 54(8) 1441-1452,
54(8).

Huh, Woonghee Tim, Retsef Levi, Paat Rusmevichientong, James B. Orlin. 2011. Adaptive
data-driven inventory control with censored demand based on kaplan-meier estimator.
Operations Research 59(4) 929-941, 59(4).

Huh, Woonghee Tim, Paat Rusmevichientong. 2009. A nonparametric asymptotic analysis
of inventory planning with censored demand. Mathematics of Operations Research 34(1)
103-123, 34(1).

Jennings, John B. 1973. Blood bank inventory control. Management Science 19(6) 637-645,
19(6).

Kaplan, Edward L., Paul Meier. 1958. Nonparametric estimation from incomplete observa-
tions. Journal of the American statistical association 53(282) 457-481, 53(282).

Karim, Md Rezaul, Kazuyuki Suzuki. 2005. Analysis of warranty claim data: a literature
review. The International Journal of Quality & Reliability Management 22(7) 667-686,
22(7).

Khawam, John, Warren H Hausman, Dinah W Cheng. 2007. Warranty inventory optimiza-
tion for hitachi global storage technologies, inc. Interfaces 37(5) 455-471, 37(5).

Kleywegt, Anton J., Alexander Shapiro, Tito Homem-de Mello. 2002. The sample average
approximation method for stochastic discrete optimization. SIAM Journal on Optimiza-
tion 12(2) 479-502, 12(2).

148



Kuhn, Harold W. 1955. The hungarian method for the assignment problem. Naval research
logistics quarterly 2(1-2) 83-97, 2(1-2).

Levi, Retsef, Robin 0. Roundy, David B. Shmoys. 2007. Provably near-optimal sampling-
based policies for stochastic inventory control models. Mathematics of Operations Re-
search 32(4) 821-839, 32(4).

Levi, Retsef, Robin 0. Roundy, David B. Shmoys, Van Anh Truong. 2008. Approxima-
tion algorithms for capacitated stochastic inventory control models. Operations Research
56(5) 1184-1199, 56(5).

Levina, Elizaveta, Peter Bickel. 2001. The earth mover's distance is the mallows distance:
some insights from statistics. Computer Vision, 2001. ICCV 2001. Proceedings. Eighth
IEEE International Conference on, vol. 2. IEEE, 251-256, 251-256.

Lindgren, Anna. 1997. Quantile regression with censored data using generalized 11 mini-
mization. Computational Statistics & Data Analysis 23(4) 509-524, 23(4).

Lubin, Miles, Iain Dunning. 2013. Computing in operations research using julia.
arXiv:1312.1431 [cs, math] arXiv:1312.1431 [cs, math]. arXiv: 1312.1431.

Major, Pter. 1978. On the invariance principle for sums of independent identically dis-
tributed random variables. Journal of Multivariate Analysis 8(4) 487-517, 8(4).

McLachlan, Geoffrey, Thriyambakam Krishnan. 2007. The EM algorithm and extensions,
vol. 382. John Wiley & Sons, John Wiley & Sons.

Meyerson, Adam, Akash Nanavati, Laura Poplawski. 2006. Randomized online algorithms
for minimum metric bipartite matching. Proceedings of the seventeenth annual ACM-
SIAM symposium on Discrete algorithm. 954-959, 954-959.

Murthy, D.N.P., W.R. Blischke. 1992. Product warranty management III: A review of
mathematical models. European Journal of Operational Research 63(1) 1-34, 63(1).

Murthy, D.N.P, 0 Solem, T Roren. 2004. Product warranty logistics: Issues and challenges.
European Journal of Operational Research 156(1) 110-126, 156(1).

Nahmias, Steven. 2011. Perishable inventory systems, vol. 160. Springer, Springer.

Pegels, C. Carl, Andrew E. Jelmert. 1970. An evaluation of blood-inventory policies: a
markov chain application. Operations Research 18(6) 1087-1098, 18(6).

Petersen, Brian J. (Brian Jude). 2013. Reverse supply chain forecasting and decision model-
ing for improved inventory management. Thesis, Massachusetts Institute of Technology,
Massachusetts Institute of Technology.

Roth, Alvin E. 2003. The origins, history, and design of the resident match. JAMA 289(7)
909-912, 289(7).

Roth, Alvin E., Marilda A. Oliveira Sotomayor. 1992. Two-sided matching: A study in
game-theoretic modeling and analysis. 18, Cambridge University Press, Cambridge Uni-
versity Press.

149



Savaskan, R. Canan, Shantanu Bhattacharya, Luk N. van Wassenhove. 2004. Closed-loop
supply chain models with product remanufacturing. Management Science 50(2) 239-252,
50(2). ArticleType: research-article / Full publication date: Feb., 2004 / Copyright 2004
INFORMS.

Simpson, Vincent P. 1978. Optimum solution structure for a repairable inventory problem.
Operations Research 26(2). 270-281, 26(2).

Taylor, Jeremy MG. 1995. Semi-parametric estimation in failure time mixture models.
Biometrics 899-907Biometrics.

Tibshirani, Robert. 1996. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological) 267-288Journal of the Royal Statis-
tical Society. Series B (Methodological).

Tibshirani, Robert, others. 1997. The lasso method for variable selection in the cox model.
Statistics in medicine 16(4) 385-395, 16(4).

Toktay, L. Beril, Lawrence M. Wein, Stefanos A. Zenios. 2000. Inventory management of
remanufacturable products. Management science 46(11) 1412-1426, 46(11).

Wu, CF Jeff. 1983. On the convergence properties of the EM algorithm. The Annals of
statistics 95-103The Annals of statistics.

150


