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Abstract

Two parallel research efforts were pursued.

First, we conducted a systematic exploration of how the genomic landscape of cancer shapes
and is shaped by anti-tumor immunity. Using large-scale genomic data sets of solid tissue tumor
biopsies, we quantified the cytolytic activity of the local immune infiltrate and identified
associated properties across 18 tumor types. The number of predicted MHC Class I-associated
neoantigens was correlated with cytolytic activity and was lower than expected in colorectal
and other tumors, suggesting immune-mediated elimination. We identified recurrently
mutated genes that showed positive association with cytolytic activity, including beta-2-
microglobulin (B2M), HLA-A, -B and -C and Caspase 8 (CASP8), highlighting loss of antigen
presentation and blockade of extrinsic apoptosis as key strategies of resistance to cytolytic
activity. Genetic amplifications were also associated with high cytolytic activity, including
immunosuppressive factors such as PDL1/2 and ALOX12B/15B. Our genetic findings thus
provide evidence for immunoediting in tumors and uncover mechanisms of tumor-intrinsic
resistance to cytolytic activity.

Second, we combined measurements of protein production and degradation and mRNA
dynamics so as to build a quantitative genomic model of the differential regulation of gene
expression in lipopolysaccharide-stimulated mouse dendritic cells. Changes in mRNA
abundance play a dominant role in determining most dynamic fold changes in protein levels.
Conversely, the preexisting proteome of proteins performing basic cellular functions is
remodeled primarily through changes in protein production or degradation, accounting for
more than half of the absolute change in protein molecules in the cell. Thus, the proteome is
regulated by transcriptional induction for newly activated cellular functions and by protein life-
cycle changes for remodeling of preexisting functions.
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Title: Associate Professor of Department of Medicine, Harvard Medical School
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Introduction

Recent impressive achievements in cancer immunotherapy are redefining cancer survivability

and reshaping the landscape of cancer research. Key advances include the "checkpoint"

blockade drugs, like Ipilimumab (targeting CTLA-4) and Nivolimab (targeting PD-1), as well as

chimeric antigen receptor T cells (CAR-T cells). The checkpoint blockade drugs have produced

15-50% response rates in metastatic melanoma and metastatic lung cancer, malignancies that

have traditionally been resistant to nearly all forms of treatment (Hamid et al., 2013; Hodi et

al., 2010; Pazdur). Given these successes, it is likely that tumor-immune axis will become an

intensely studied research topic during the next decade. To move forward efficiently, we need

new unbiased approaches to determine what drives anti-tumor immune responses and what

tumors do to avoid them.

Our understanding of tumor immunity today is the result of decades of research centered

mostly on mouse models, cell lines, serology, and immunostaining. These studies have

uncovered processes that drive immune responses, such as MHC-mediated presentation of

abnormal antigens to T cells (as through viral infection (Saiki et al., 1996), ectopic gene

expression (Andersen et al., 2012), or mutational antigens (Linnemann et al., 2015)), damage

and stress signaling (as from necrosis (Vakkila and Lotze, 2004) or expression of stress ligands

(Groh et al., 1999; Textor et al., 2011)), and paracrine signaling networks (Lin and Karin, 2007).

Furthermore, they have revealed a wide array of mechanisms by which tumors can evade or

suppress anti-tumor immunity including "repolarization" of the tumor microenvironment with

suppressive immune cell types (e.g. regulatory T cells (Liyanage et al., 2002) and myeloid-
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derived cells (Biswas et al., 2006; Mantovani et al., 2008)), the loss of normal antigen

presentation (Khong and Restifo, 2002), and the manipulation of immune-modulatory receptors

on leukocytes (most famously, PD1 (Hirano et al., 2005) and CTLA-4 (Leach et al., 1996)).

Despite this rich literature, it is still not clear which of these processes are most important in

human cancer and whether any important components are being missed.

One important complementary approach will likely be the genomic analysis of tumor biopsies,

which can yield unbiased and unanticipated insights. The traditional cancer community has

effectively capitalized on biopsy genomics, building a successful genomics-to-bedside pipeline.

For instance, recurrent mutations were observed in the kinase BRAF in 2002 (Davies et al.,

2002). Just ten years later, small molecules targeting BRAF were clinically available and

providing objective responses in 65% of melanoma patients (Robert et al., 2015). In the case of

the gene ALK, recurrent alterations were observed in lung cancer in 2007 (Soda et al., 2007),

and just six years later, a drug targeting ALK-positive lung tumors was FDA-approved (DiGiulio,

2013). With the arrival of The Cancer Genome Atlas, a collection of biopsy data of

unprecedented breadth and depth, the field is poised to continue their success in illuminating

the broken circuitry of cancer. The question is whether researchers studying tumor immunity

can similarly benefit from these data.

Gene expression as a tool for inferring the roles of immune infiltrates

So far, tumor immunologists applying genome-wide approaches have mostly focused on gene

expression data, using this data as a window into which immune cell types infiltrate the tumor

microenvironment and how their presence might affect patient survival. One of the most
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influential researchers in this arena is Jerome Galon. In a 2006 paper, Galon and colleagues

profiled the expression of 18 immune genes across 75 colorectal patients (Galon et al., 2006).

While not quite yet "genome-wide", this analysis identified a signature of "TH1" genes (TH1 is a

class of helper T cells that guard against intracellular pathogens) strongly associated with

improved survival (though the top genes, CD8A, GNLY, and GZMB, are more strongly associated

with CD8+ T cell in our own analyses). Following up with immunostaining in 415 individuals, the

T cell signature out-performed standard histological staging. The authors argued that this

suggested immune-mediated rejection of persistent tumor cells after resection. Following this,

other groups focused on how gene expression in the tumor stroma might contribute to patient

survival. Park and colleagues tackled the question directly by using laser capture micro-

dissection to physically separate tumor and stromal cells in breast cancer (Finak et al., 2008).

Their genome-wide expression analysis of the stromal tissues revealed clusters of immune

genes as being most strongly associated with survival, leading to a simple signature for positive

prognosis dominated by marker genes for effector lymphocytes, such as CD8A and GZMA

(though they, like Galon, called this a TH1 signature).

Others sought to streamline the analysis of stromal signatures in unfractionated heterogeneous

tissue biopsies, such as those available from TCGA. Yoshihara et al. mined the Gene Expression

Omnibus for stroma-specific and immune-specific genes (Yoshihara et al., 2013), building these

into indices of stromal and immune abundance using ssGSEA enrichment tool (Barbie et al.,

2009), and validating them on the TCGA cohort by showing anti-correlation (r=-0.74) with DNA

copy number-based purity estimates determined by the Absolute algorithm (Carter et al.,

2012). While this analysis indicated surprisingly high levels of immune infiltration in kidney clear
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cell tumors, the notion of an "immune" signature was probably not precise enough to be highly

useful - notably, no associations with survival were presented. Fortunately, around this time,

Galon and colleagues worked to define gene expression signatures that could be used to

support inference on the relevant infiltrating cell types. First curating gene expression profiles

for diverse immune cell types as well as other stromal and epithelial cell types present in the

colorectal microenvironment, they found marker genes and analyzed their expression in 105

colon cancer biopsies profiled by whole-genome microarray (Bindea et al., 2013). As previous, a

cluster of T cell genes (broadly associated with cytotoxic T cells, y5 T cells, and TH1 cells)

predicted improved survival; follow-up qPCR on 81 representative genes in a larger cohort of

153 samples showed genes GZMA, PRF1, CD8A, GNLY, GZMH, CXCL13, IFNG, CXCR6, LTK, and

CCR2 to be the best individual predictors. Since many of these genes encode the cytolytic

effector molecules of T cells, the results further vouched for productive protective immunity in

colorectal cancer.

More recently, it has been possible to query gene expression signatures specifically for what

they predict about immunotherapy response. In 2013, Ji et al. analyzed microarray gene

expression data from lpilimumab (CTLA-4 blockade) responders and non-responders and found

"Cytotoxic T lymphocyte-mediated apoptosis of target cells" to be the most significantly

enriched biological process in responders pre-treatment (Ji et al., 2012). Comparing pre- and

post-treatment biopsies to determine which genes were most up-regulated in responders, T

cell effector processes were again implicated with CD8A, GZMA, GZMK, and GZMH among the

top 15 genes. These results suggested that the therapy was most effective in patients with pre-

existing immune responses and confirmed that the drug worked by up-regulating these
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responses. Results from the new PD1 and PDL1 trials in 2014 provided another opportunity to

examine the gene expression correlates of immunotherapy, though among the major papers

publishing on these data (Herbst et al., 2014; Powles et al., 2014; Tumeh et al., 2014), only Hodi

and colleagues employed gene expression profiling (albeit on a limited set of 100 immune

genes). Hodi found that PD-L1 expression, along with a signature of "TH1" genes (GZMB, CD8A,

CD27, CXCR3, CTLA4, CD45RO; again, probably more suggestive of CD8+ T cells than TH1) were

predictive of therapy response to the PDL-1 inhibitor MPDL3280A. Meanwhile, the genes most

upregulated in productive response were also associated with effector T cells (GZMA, PRF1, and

TNF). Thus, the gene expression correlates of PD-L1 blockade appeared to directly mirror those

of CTLA-4.

The need to look beyond gene expression data

One drawback to these analyses was that the high level of correlation among immune genes

made it difficult to pinpoint exactly which process was contributing to the observed protective

effect. For instance, even with a carefully curated collection of immune gene expression

profiles, Galon could not clearly determine whether it was CD8+ T cells, y5 T cells, or TH1 cells

driving his signal. Thus, while useful for biomarker discovery, these gene expression analyses

were not well-equipped to reveal novel mechanistic insights. Furthermore, meaning could only

be derived by showing associations with external clinical data, greatly limiting the number of

hypotheses that could be explored.
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Cancer genetic alterations, such as somatic point mutations and copy number alterations,

represent another important dimension to biopsy data that had not been extensively analyzed

in the context of immunity. Mutations, particularly point mutations, can be extremely

informative because frequencies and patterns can imply importance even in the absence of

clinical data and because they can implicate causative roles for specific genes and pathways.

Furthermore, we know that many of the most important phenotypic changes that allow tumors

to grow (Hanahan and Weinberg, 2011) and to resist therapy (Lo, 2012) are effected by

mutations. Thus, careful analysis of cancer genetic alterations can provide an unbiased glimpse

of cancer's strategy playbook.

To harness this power, the cancer community has invested considerable effort in building

informatics tools that leverage mutational profiles. Importantly, significance of a gene can be

captured by determining how much more frequently it is mutated than expected given the

neutral mutation rate (a measure of the selective force favoring the variant). Advanced

algorithms have been developed to extract hits from point mutation data (Hodis et al., 2012;

Lawrence et al., 2013), other data types (Landau et al., 2014; Zack et al., 2013), and

combinations of data types (Akavia et al., 2010) leading to therapeutic advances (Davies et al.,

2002; Levine et al., 2005; Parsons et al., 2008); however, these approaches have not been

optimized to find alterations that relate to immunity.

Immuno-editing model bridges host immunity and the cancer genome

The "immuno-editing" model, first proposed by Robert Schreiber in 2002 (Dunn et al., 2002),

suggests that host immunity should leave an identifiable footprint on the cancer genome. This
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model envisions three principal phases to cancer's relationship with the immune system -

elimination, equilibrium, and escape. During the elimination phase, the host immune system

first becomes aware of the tumor, and active killing of tumor cells may occur, possibly resulting

in complete elimination of the tumor. At equilibrium, the tumor develops countermeasures that

partially neutralize the anti-tumor response. Finally, during escape, the tumor outstrips any

remaining potency left in the immune response (or learns to manipulate immune signaling to

support its own agenda), resulting in uncontrolled tumor outgrowth. Notably, both the

elimination and escape phases imply that tumoral alterations influence the immune micro-

environment. During the elimination phase, alterations might initially alert the immune system

that the cancer cells are abnormal (as through the expression of stress ligands, ectopic gene

expression, mutational epitopes, etc.). During the escape phase, these alterations might

provide the mechanism(s) by which the tumor avoids immune destruction (e.g., disruption of

normal antigen presentation).

The immune-editing concept has been around since the 1970s (then known as "immune-

surveillance") (Burnet, 1971), but it was not until the mid-1990s that experimental results

began to consistently indicate the existence of immune-mediated tumor elimination. The first

major study was one that showed that interferon gamma knockout mice were significantly

inferior to controls in their ability to control tumors produced by the mutagen

methylcholanthrene (MCA). Following this result, other knockout mice were developed. Since

perforin was known to be one of the key proteins used by effector lymphocytes to kill target

cells, a PRF1V mouse was developed and shown to be similarly deficient in its ability to control

the MCA-induced tumors. Most critical, however, was the development RAG1 and RAG2
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knockout mice. RAG1 and RAG2 are genes necessary for B and T cells to develop adaptive

responses (via VDJ recombination), so when it was found that RAG2-/- mice are also poor

controllers of MCA tumors (Shankaran et al., 2001), it was the most compelling evidence yet for

immune control of cancer and further suggested that immune control was at least partially

mediated through the recognition of cancer-specific epitopes.

Evidence that elimination also occurs in humans came from epidemiological studies showing

that immunocompromised patients were at greater risk for developing (non-viral) cancers (one

well-controlled analysis of 5,692 renal transplant recipients under long-term

immunosuppressive regimens showed >2-fold increases in the incidences of multiple tumor

types (Birkeland et al., 1995)) and that patients with abundant T cell infiltrates (as measured by

histopathology) had improved prognosis (Fridman et al., 2012). A medical case in 2010 showed

a concrete case in which a kidney transplant recipient developed a melanoma derived from the

donor (Strauss and Thomas, 2010). Alive and well, the donor presumably had trace melanoma

cells remaining his body, even though he had been clinically free of disease for 32 years. The

outgrowth of the tumor in an immunosuppressed host suggested that the extended

"equilibrium" phase in the donor was immune-mediated. This case, along with several others

documenting spontaneous remissions from melanoma (Savarrio et al., 1999) provided evidence

for immune-editing in humans.

The existence of productive endogenous anti-tumor immunity in humans suggests that there

may be genetic signatures associated with immunity arising because they 1) drive the response

or 2) provide resistance to it. Robert Schreiber further motivated these ideas through
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experiments detailing how tumors change when passaged through immune-competent host

mice. First, he showed that tumors grown in RAG2-1- were rejected when transplanted into wild

type mice (Shankaran et al., 2001). Conversely, if the tumors were grown in wild type mice and

transplanted to other wild type mice, they flourished. The implication was that tumors grown in

immune-competent mice adapted to have reduced immunogenicity (or directly immune-

suppressive), whereas such selection did not occur in the absence of productive adaptive

immunity. Schreiber then explored whether these changes were evident at the genomic level

(Matsushita et al., 2012). According to well-established immuno-biology, when proteins are

digested in the proteasome they are converted to short peptides (give range), a small fraction

of which (~0.5% (Yewdell and Bennink, 1999)) avidly bind the MHC antigen presentation

machinery; T cells scan for peptides that are non-self. Hypothesizing that mutational epitopes

were driving the T cell response in MCA mouse tumors, Schreiber and colleagues collected

whole-exome sequencing for a tumor from a RAG2-/- mouse and ranked mutations by their

ability to produce MHC-binding non-self peptides (using an established prediction algorithm

(Nielsen et al., 2007a)). When they transplanted this tumor line into immune-competent mice,

they were able to observe specific T cell responses against their top-predicted epitope as well

as the selective outgrowth of subclones lacking the mutation responsible for the epitope (a

non-silent point mutation in spectrin-32). This study gave direct evidence for how genetic

alterations might drive immune responses and how the corresponding immune-mediated

selection pressure can influence which alterations are accepted or rejected in an evolving

tumor.
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Efforts to leverage genetic alterations in the context of tumor immunity

Motivated by the immune-editing concept, some tumor immunologists have explored how

genetic changes in human tumor biopsies might inform mechanism. In early, targeted (not

genome-wide) studies, researchers identified mutations in the invariant chain of MHC Class I

(p2-microglobulin) (Hicklin et al., 1998), in the Fas death receptor (Gronbmk et al., 1998;

Landowski et al., 1997; Shin et al., 1999), and in other genes in the extrinsic apoptosis pathway

(Shin et al., 2002a; Shin et al., 2002b). These alterations appeared to be immune escape

variants that enabled tumors to avoid detection of T cells (via deficient antigen presentation) or

avoid FasL-mediated cytotoxicity by killer lymphocytes. In one notable study from by Restifo

and colleagues in 2005 (Chang et al., 2005), researchers collected biopsies from five melanoma

patients with initial responses to a T cell-based immunotherapy. Amazingly, all five patients had

mutations in 2M, the invariant chain of the MHC Class I antigen presentation molecule (and

interestingly, 3 of the five had the same CT dinucleotide deletion frameshift). Nonetheless,

most of these reports were anecdotal in nature, not reaching the sample sizes necessary to

implicate positive selection statistically. Furthermore, their targeted nature meant that they

were not well-equipped to discover new biology. A genome-wide context was missing.

Galon and colleagues brought such analysis to the next level, systematically characterizing copy

number alterations affecting cytokine loci in colorectal cancer (Mlecnik et al., 2014). While not

quite genome-wide (only copy loci containing known cytokines were examined), this study

identified amplifications and deletions associated with lymph node metastasis, non-metastatic

disease, and risk of relapse. Unfortunately, these results were difficult to evaluate as they were

presented without p-values or commentary on whether the observed events were broad
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(involving large chromosomal regions containing many genes, thus nominating many potential

drivers other than the cytokine in question) or focal (involving just the cytokine and its

immediate neighboring genes). Around this time, Rutledge et al. published a cleaner

glioblastoma-focused analysis (Rutledge et al., 2013), which asked whether point mutations and

copy number alterations in known significantly mutated genes were associated with the level of

T cell infiltration (as assessed by histology). This analysis was motivated by the notion that

these mutational features defined molecular classes of glioblastoma that may have different

immunological properties. Among the 171 samples (from the TCGA collection), the authors

found positive T cell associations for RB1 and NF1 point mutations as well as for EGFR and PTEN

copy number alterations, though the associations were barely significant, even without

correction for multiple hypotheses. Nonetheless, the approach was straight-forward and novel

and could easily be applied to much larger TCGA sample sets to achieve greater power. Given

the recent identification of HLA genes as being significantly mutated (according to MutSigCV) in

lung squamous cell carcinoma (Cancer Genome Atlas Research Network, 2012) and gastric cell

carcinoma (Cancer Genome Atlas Research Network, 2014), we noted that an expanded

analysis would be poised to uncover other putative escape variants.

More recently, Holt and colleagues investigated how the cancer genome might be contributing

to these immune responses (rather than providing a mechanism of escape), exploring

Schreiber's idea that cancer immunogenicity may be driven in part by mutational epitopes

(Brown et al., 2014). Holt profiled tumors from six TCGA tumor types, determining which non-

silent mutations in each tumor were likely to bind the corresponding patient's HLA, thereby

yielding accessible peptide epitopes (neoAgs). They found a strong association between the
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epitope count and the level of CD8A expression (used to mark CD8+ T cells; p=2.0x10 6 ) as well

as a modest protective effect on survival (p=0.02). Very recently (after the publication of the

work presented in this thesis document), Chan and colleagues showed that the count of

predicted neoAgs was predictive of PD1 response in lung cancer arguing that the re-activation

of neoAg-specific T cells may be the basis of therapy response (Rizvi et al., 2015). In the vein of

Rutledge et al., Chan looked for genes that were more frequently mutated in responders or

non-responders, but did not uncover significant hits (likely due to the small sample size; NR=14,

NNR=17).

The need for a more comprehensive genomic analysis of tumor immunity

We decided that there was a need for a more systematic analysis of the connection between

immune activity and the cancer genome. Even with a number of papers already published using

TCGA data, publications from the consortium had mostly overlooked tumor immunity. In 2012,

two years after dramatic melanoma responses were observed to CTLA-4 blockade (Hodi et al.,

2010), the official TCGA publication on melanoma did not make any comment regarding

immunity (Hodis et al., 2012). After the even more impressive responses to PD1 blockade in

2012 (Topalian et al., 2012), TCGA released a 2013 perspective paper omitting immunity from

its list of 12 proposed focus areas for future pan-cancer research (Weinstein et al., 2013). Thus,

we perceived a gap between what current cancer genomics analyses were providing and the

current trends in cancer therapeutics.

We envisioned that there were several different modes of interaction that could potentially

yield observable statistically significant associations between the cancer genome and host
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immunity. First, like Holt and colleagues (Brown et al., 2014), we hypothesized that

immunogenic factors, including (but not limited to) the count of mutational epitopes, would be

positively associated with the level of anti-tumor immunity across a cohort of histologically

similar tumors. Second, we predicted that tumors with high levels of anti-tumor immunity

would be enriched with compensatory escape mutations in specific genes (such as those

uncovered by Restifo and colleagues (Chang et al., 2005)) enabling them to persist in the

otherwise hostile immune environment. Third, we recognized that some escape mutations

would have strong extrinsic effects on the tumor microenvironment, thereby reversing the

conditions promoting their emergence. Thus, with sufficient effect size, this last class of lesions

would be enriched in tumors with the lowest level of anti-tumor immune activity.

To enable this line of investigation, we needed a measure for the level of anti-tumor immunity

in a tumor. Though our understanding of anti-tumor immune responses is still evolving, it has

become evident that these responses are typically ultimately mediated by effector CD8+

lymphocytes or other closely related effector lymphocytes (NK cells, NKT cells, y6 T cells, or

possibly TH1 cells). In a recent meta-analysis of 62 published articles covering 14 different tumor

types, immunohistochemical detection of CD8+ T cells was positively associated with prognosis

95% of the time (Fridman et al., 2012).

Cytolytic lymphocytes share an expression program notable for the activation of genes

encoding effector molecules, including granzymes, perforin, and Fas ligand that directly

mediate target cell death (Russell and Ley, 2002). This gene expression signature has repeatedly

emerged as the best immunological prognostic marker in multiple tumor types (Bindea et al.,
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2013; Donson et al., 2012; Finak et al., 2008; Galon et al., 2006), consistent with the notion that

their expression reflects protective anti-tumor immune processes. Furthermore, these genes

are among those most strongly induced in anti-CTLA-4 and anti-PDL1-responsive tumors and

are among best for predicting response for both drugs (Herbst et al., 2014; Ji et al., 2012).

Therefore, we developed a simple metric based on the two highly expressed and well-

documented effector genes, GZMA and PRF1 (expressed in transcripts per million , combined by

geometric mean, and referred to as "Cytolytic Activity" or "CYT").

Employing the analysis approach described above, we systematically surveyed what alterations

were most strongly associated with immunity in 18 TCGA tumor types, focusing first on those

that might drive immune responses and then on those that might enable immune evasion

(published (Rooney et al., 2015) and discussed (Burgess, 2015)). We found that neoAgs were

significantly positively associated with the level of cytolytic activity in nearly half the tumors

types we analyzed. Importantly, mutational signatures suggest that these antigenic mutations

are depleted from the cancer genome consistent with T cell-mediated elimination. Meanwhile,

viral infection associated with increased cytolytic activity in only several tumor types, and

cancer-testis antigens (long considered the most likely instigators of anti-tumor immune

responses (Scanlan et al., 2002)) never showed an association. Analysis of point-mutated genes

showed that highly infiltrated tumors have increased rates of alteration in the antigen

presentation machinery and in genes supporting the extrinsic apoptosis pathway. In addition to

these proof-of-principle hits, we nominated novel escape variants. Analysis of copy number

alterations similarly revealed expected regulators, such as PD-L1, as well as several other less

anticipated hits, like the ALOX gene family.
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While these results require further experimental investigation and validation, they provide

additional compelling evidence for the immune-editing of tumors, implicate a set of highly

immune-reactive tumor types (including colorectal, uterine, and head/neck), and highlight a set

of escape variants that could potentially serve as therapeutic targets or as markers for

monitoring immunotherapy response. Most importantly, the analysis provides proof of concept

for an integrative immuno-genomics cancer research approach, which we hope will influence

the design of future cancer studies.

25





Results

A metric for immune cytolytic activity based on gene expression in TCGA tumors

To study immune effector activity in solid tumors, we focused on cytotoxic T cells (CTL) and

natural killer cells (NK) because of their potent ability to kill tumor cells and numerous studies

showing that effector T cells at the tumor site predict favorable outcome across many cancers

(Pages et al., 2005; Sato et al., 2005; Schumacher et al., 2001). Using RNA-Seq data from

thousands of TCGA solid tumor biopsies, we devised a simple and quantitative measure of

immune cytolytic activity ('CYT') based on transcript levels of two key cytolytic effectors,

granzyme A (GZMA) and perforin (PRF1), which are dramatically upregulated upon CD8+ T cell

activation (Johnson et al., 2003) and during productive clinical responses to anti-CTLA-4 and

anti-PD-L1 immunotherapies (Ji et al., 2012) (Herbst et al., 2014). Consistent with their

coordinated roles, GZMA and PRF1 were tightly co-expressed in TCGA samples (Figure SlA,

Figure S11) and showed CTL-specific expression in panels of human cell types (Figure SiC,

Figure SiD), thus serving as highly specific markers in heterogeneous tumor samples.

We found that the levels of cytolytic activity were highest in kidney clear cell carcinomas and

cervical cancers, lowest in glioma and prostate cancers, and average (albeit skewed to high

levels) in melanoma (Figure 1A; Table SlA, B). Most normal tissues (from TCGA or the

Genotype-Tissue Expression (GTEx) project (GTEx Consortium, 2013a)) showed definitively

lower (6 tissues) or equal (7 tissues) cytolytic activity compared to their corresponding tumors,

but two showed definitively higher activity (lung and colon).
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Of note, CYT in colorectal tumors increased considerably given high microsatellite instability

(MSI) (Figure SlE) (Schwitalle et al., 2008). The differences in cytolytic activities across tumor

types and compared to normal tissues are likely to reflect a combination of tissue- and tumor-

specific mechanisms that regulate local immunity.

Cytolytic activity is associated with counter-regulatory immune responses and improved

prognosis

To determine whether cytolytic activity is associated with other immune cell types and

functions, we calculated the enrichment of 15 immune cell type and function gene sets in the

same samples (Table SiC; expression data from Fantom5 project (Fantom Consortium et al.,

2014)). While CYT showed moderate correlation with B cells and weak correlation with

macrophages, it showed strong correlation with: (i) CTL markers, as expected; (ii) plasmacytoid

dendritic cells; (iii) counter-regulatory Tregs and known T-cell co-inhibitory receptors, as seen in

chronic inflammatory conditions (Figure SiF) (Lund et al., 2008). We note that expression of the

pre-defined gene sets was similarly enriched in most tumor and normal tissues, with some

notable differences (Figure S1G), and not typically connected to tumor stage (Figure SiH,

Figure S11). Finally, when we looked for CYT correlations with any transcript (filtering out CTL

and NK genes), we found that CYT was best correlated with immunosuppressive factors

(Spranger et al., 2013), such as PDCD1LG2 (PDL2), IDO1/2, DOK3 (Lemay et al., 2000), GMCSF

receptor (CSF2RA, CSF2RB) and the ClQ complex (Figure 1B). In addition, it was also associated

with interferon-stimulated chemokines (CXCL9, CLCL10, and CXCL11) that attract T cells, as

observed previously (Bindea et al., 2013). We conclude that tumors can differ dramatically in
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their infiltrate levels and composition, and that cytolytic activity is associated with counter-

regulatory activities that limit the immune response.

When we used CYT and these other metrics to identify predictors of survival (controlling for

tumor histology and stage), we found that high-CYT (and other T cell markers) is associated with

a modest but significant pan-cancer survival benefit (Figure SJ). While no individual immune

cell type metrics were associated with poorer prognosis, higher expression of macrophage

markers relative to other markers was consistently linked with poor prognosis, while higher

expression of CYT or CTL markers was correlated with improved prognosis (Figure SlJ).

Tumor cytolytic activity is associated with oncogenic viruses in some tumors

Viruses account for a subset of malignancies and are also known to activate high affinity

antigen-specific CTLs against non-self viral antigens. Thus, we tested for correlation of cytolytic

activity levels with transcripts from oncogenic viruses - including Epstein Barr virus (EBV),

hepatitis B and C (HBV and HCV), human papilloma virus (HPV), Kaposi sarcoma virus (KSV), and

polyoma viruses (Table S2A). Consistent with previous analysis of TCGA data (Tang et al., 2013),

HPV infection was most abundant in cervical cancer (91%), but also frequent in head and neck

cancer (12%; with more men than women, OR=4.9; p=8.5e-4) and bladder cancer (2%). We also

observed occasional cases in colorectal, kidney clear cell, glioma, lung squamous cell carcinoma,

and uterine cancer (Figure 2A).
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Only stomach cancer demonstrated definitive instances of EBV infection (8%; Table S2A), which

was associated with high expression of specific EBV genes EBER-1 and RPMS1 (Figure S2A).

Asian patients, known to exhibit increased rates of stomach cancer (Jemal et al., 2007), were

not more likely than other stomach cancer patients to harbor EBV (p=0.63). Consistent with a

role for viral infection in the induction of CTLs, >2-fold increases in cytolytic activity were

observed in EBV+ vs. EBV- stomach cancers and HPV+ vs. HPV- head and neck cancers, bladder

cancers, uterine cancers and possibly cervical cancers (Figure 2B). Strikingly, all the gene sets

that were most tightly associated with EBV infection in stomach cancer related to T cell

activation (Table S2B).

HBV and HCV were primarily observed in liver cancer (25% and 5%, respectively), as expected,

with occasional instances of HBV infection in diverse tumor types. The extra hepatic cases do

not exhibit hepatic gene expression signatures, suggesting that these are not the result of

metastases (Figure S2B). We also observed singleton cases of Kaposi sarcoma virus (lung

squamous cell carcinoma and stomach cancer), BK polyoma (bladder cancer), and Merkel cell

polyoma (ovarian cancer). While we did observe type I interferon activation and B cell

infiltration for HCV+ liver cancer (Figure S2C), these viruses did not show an identifiable

association with cytolytic activity.

To probe indirectly for the presence of viruses, we looked for associations between CYT and

two other correlates of viral infection, HLA genotype and APOBEC activity. While association

with HLA genotype was not observed for a single tumor type (although there was a pan-cancer
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association with HLA-A31; Figure S2D), we did detect association with high APOBEC activity in

tumors with viral involvement (head and neck, cervical) and those without known viral

involvement (breast, bladder) (Figure S2E), suggesting potential for unknown virus infections in

some tumors.

Cytolytic cells are likely to be targeting tumor neoantigens

With recent studies from our group and others showing the presence of neoepitope-specific T

cells in patients (Fritsch et al., 2014), we tested for CYT association with the overall rate of

mutation and the rate of mutations predicted to yield a neoepitopes (i.e., an expressed peptide

capable of binding each patient's imputed HLA alleles) (Figure S3A, S3B, Table S3). On average,

50% of non-silent mutations yielded 1 predicted neoepitope, and 39% of these impacted a

substantially expressed gene (median expression 10 TPM in the given tissue type). Despite

considerable inter-tumoral heterogeneity (Table S4A), both metrics exhibited significant

positive association with CYT in multiple tumor types, most notably uterine cancer, breast

cancer, stomach cancer, cervical cancer, and lung adenocarcinoma (Figure 3A, 3B). Consistent

with a smoking etiology, lung adenocarcinomas from ever-smokers demonstrated significantly

higher CYT than those from never-smokers (p=0.003) (Figure S3C). Melanoma mutations

exhibited a likely association with CYT. Associations of mutations or neoepitopes with CYT were

matched by correlations for other T cell markers, but less so with interferon-responsive genes

(Figure S3D, S3E). These data are consistent with neoepitopes driving CYT for many tumor

types.

33



EBV-
as

0

.5
C0

20 50 100 200 500 1000 2000 5000

Total mutation count

Lung adeno

stoma(

Hea eck, HPV-

Breast tenne

Melanoma

Thyroid Bladder

1 2 5 10 20 50 100 200 500

Mutations yielding predicted
HLA-binding peptides

EBV-

30 -

25 -

20 -

15 -

10

5-

Cervical HPV'

Lung adeno

Lung squamous ach

Colorectal

Uterine

Btadder Melanur

Glhoma
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However, since the per-sample rate of neoepitope yielding mutations closely tracks with the

overall rate of mutation (Spearman rho=0.91; Figure S3F), CYT may be driven by mutation rate

rather than neoepitopes. To test a role for neoepitopes, we reasoned that T cell-mediated

immune surveillance would lead to elimination of immunogenic sub-clones expressing

neoepitopes. To quantify neoepitope depletion, we determined how the rate of predicted

neoepitopes generated per non-silent point mutation deviated from a null model based on the

observed mutation rate of silent point mutations. We found that colorectal cancer and kidney

clear cell cancer demonstrated dramatic depletions of neoepitopes (Figure 3C; associated gene

expression changes, Table S4B). Because neoepitope predictions are dependent on HLA

genotypes, we reasoned that random shuffling of HLA genotypes would abrogate the depletion

signal (Figure S3G). As expected, depletion was eliminated for colorectal cancer and kidney

clear cell cancer (and we note that the residual enrichment for other tumor types may reflect

degeneracy of peptide binding across HLA alleles). These findings are consistent with a model in

which immune surveillance activities cull subclones expressing immunogenic antigens.

We conclude that neoepitopes are likely to be driving cytolytic activity in a number of tumors,

and that the resulting antigen-specific CTLs can eliminate tumor clones harboring these

neoepitopes.

Ectopic gene expression, endogenous retroviruses and necrosis associated with CYT

Another potential source of tumor antigens is a unique set of genes, known as cancer testis (CT)

antigens, which are not expressed in healthy tissues, except germ cells, but are aberrantly
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expressed in tumors and associated with antigen-specific responses in patients harboring these

tumors. Ectopic expression is likely due to disturbances in genomic methylation and

reactivation of stem-like expression programs that may contribute to tumorigenicity (Simpson

et al., 2005). Using a set of 276 known CT genes (Almeida et al., 2009), we used GTEx to identify

a subset of 60 that are transcriptionally silent in normal non-germline tissues. Ectopic

expression was observed for most tumor types, especially melanoma, head and neck, lung,

liver, stomach, and ovarian cancer (Figure S4A; Table S4A). In no tumor type was there a clear

positive association between the CYT and the count of expressed CT antigens (Figure S4B). We

queried individual CT antigens for correlation with CYT (Table S5A), and observed positive

associations for CSAG2 in breast cancer (p=1.2e-15), head and neck cancer (p=1.9e-7), kidney

clear cell cancer (p=9.9e-5), and other tumor types. Associations for canonical antigens, such as

NY-ESO-1 (CTAG1), were less consistent. We hypothesized that T cell surveillance would lead to

CT antigen silencing through chromosomal deletions, but compelling evidence for this was not

observed (Figure S4C).

Endogenous retroviruses (ERVs) are another class of germline-encoded elements that may be

re-activated in tumors, and we considered whether these might also contribute to anti-tumor

immunity. TLR7 or RAG knockouts in mice develop uncontrolled ERV expression, ERV infectivity,

and ERV insertion-driven tumors (Young et al., 2012; Yu et al., 2012) yet little is known about

ERV-immune and ERV-cancer interactions in humans. Given reports that these elements are

transcriptionally and sometimes even translationally active in humans (Boller et al., 1997;

Schmitt et al., 2013), we considered the possibility that they trigger immune sensing in tumors.

36



Therefore, we mapped TCGA RNA-Seq data to a recently published annotation of 66 expressed

ERV family members (Table S5B, Figure S4D) and assessed associations with cytolytic activity

(Mayer et al., 2011). By comparing GTEx and TCGA tissue controls to TCGA tumor samples, we

observed numerous instances of ERVs demonstrating re-activation in tumors, including one

instance of an ERVH-2 element exceeding 2,700 reads per million in a stomach adenocarcinoma

(Figure S4E). From these data we surprisingly discovered a conservative set of three tumor-

specific endogenous retroviruses ('TSERVs') all with minimal to undetectable expression in

normal tissues and elevated expression in tumor tissues (Figure 4A). Assessing the gene

expression correlates of each TSERV in the tumor type exhibiting highest expression, we

observed that immune pathways were typically the most significantly enriched (Table S5C).

Many ERVs, in addition to the TSERVs, demonstrated association with CYT in multiple tumor

types (Figure 4B). While we cannot determine whether ERVs activate immunity or inflammation

triggers ERVs (Manghera and Douville, 2013), we conclude that ERVs are highly dysregulated in

tumors and speculate that they may yield tumor-specific peptide epitopes (Boller et al., 1997)

or act as immunological adjuvants to activate local immunity (Yu et al., 2012).

Another potential source of antigens and immunostimulatory ligands is dying cells. Thus, we

explored the potential role for necrosis in driving CYT and immune infiltration in general. Rates

of necrosis were highest in glioblastoma (Figure S4F) and showed modest positive association

(p<0.05) with CYT in glioblastoma, bladder, and ovarian cancer; but notably, association with

macrophage markers was consistently stronger (Figure S4G).
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Figure 4. Endogenous retroviruses tied to local immunity
(A) RNA-Seq-derived ERV expression in reads per million (RPM) across 18 TCGA tumor types and 27 non-tumor

tissue types (from TCGA and GTEX) for three elements found to be tumor-specific. The expression ranges

(minimum value to maximum value) are highlighted in orange (for tumor tissues) or green (for non-tumor tissues).

(B) Spearman-rank correlations between CYT and ERV expression. Gray squares indicate non-significant association

(unadjusted p>O.OS) and blank squares indicate no over-expression of the given ERV in the given tumor type

(expression strictly below the normal tissue maximum). Asterisks (*) denote Bonferroni-significant associations
(adj. p<0.05). See also Figure S4 and Table S5.
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Mutations in specific driver genes were enriched in tumors with higher cytolytic activity

We hypothesized that high cytolytic activity could select for tumors with somatic mutations

that render them resistant to immune attack. We therefore asked whether CYT is associated

with mutations in 373 'driver' genes that are frequently mutated in cancer based on analysis of

TCGA exome sequencing data (q<0.1 by MutSigCV (Lawrence et al., 2013); Table S6A). Using a

regression-based approach to look for pan-cancer association of these mutated genes with CYT,

controlling for tumor type and background mutation rate, we found 35 genes (adjusted p<0.1;

Figure 5A, Figure S5A, Table S6B). In contrast, synonymous somatic mutations were not

associated with CYT (adj. pmin=0.09). Of the top 10 CYT-associated mutations, 8 were also

associated with an independent marker of CTLs (CD8a; 10% FDR; Figure S5B), demonstrating

the robustness of our CYT metric. Of the individual tumor types, uterine, stomach and

colorectal had the most associations (15, 11, 6 respectively) while kidney clear cell and ovarian,

which showed markedly higher CYT compared to normal tissue, had just one each, and lung

adenocarcinoma had none. Strikingly, somatic mutations, except TP53, were all positively

associated with CYT, consistent with a model in which tumors develop resistance mutations

under selection pressure.

We note that while we predicted that cytolytic activity would have the strongest impact on the

mutation landscape, we also identified gene mutations strongly associated with other immune

cell types/functions (adj. p<.01; Figure S5B), including STKil and VHL with reduced

macrophage signature, BRAF with increased expression of costimulatory genes, and AXIN2,

SNX25 and others with the differential enrichment score of CD8+ T compared to Treg.
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Figure 5. Gene mutations associated with high or low immune cytolytic activity

(A) Only genes showing pan-cancer significance (adj. p<0.1, red for positive, blue for negative and grey for non-

significant association) for non-silent mutation association with CYT are shown in top row. Additional rows,

clustered by similarity, show independent significant (unadjusted p<0.05) enrichment upon sub-analysis. The black

wedges represent the share of samples exhibiting mutation. Bar plot indicates unadjusted pan-cancer p-values for

mutational association with CYT, dashed lines indicating thresholds yielding 1% and 10% FDRs. (B) Association

between CASP8 mutational status and FASLG (left axis) and TRAIL (right axis) gene expression (TPM) for tumor

types demonstrating at least 5 instances of nonsynonymous CASP8 mutation. Light and dark bars correspond to

wild type and (nonsynonymous) mutant samples, respectively. Box plots as in Figure 1. P-values are calculated by

Wilcoxon rank-sum test. See also Figure S5 and Table S6.
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Higher CYT was associated with mutations in genes involved in antigen-presentation, extrinsic

apoptosis and innate immune sensing

Several themes emerged when we considered the known functions of the identified genes.

First, the most enriched gene, CASP8 (adj. p=8.8e-7), is a critical player in the extrinsic apoptosis

pathway and was enriched in head and neck cancer, colorectal cancer, lung squamous cell

carcinoma, and uterine cancer (where it showed a maximal mutation frequency of 7.0%). The

pattern of mutation was diffuse and suggested loss of function (Figure S5C), a potential

mechanism by which a tumor cell could evade FasL- or TRAIL-induced apoptosis. Between FasL

and TRAIL, FasL is most correlated with CASP8 mutations and thus more consistent with such a

hypothesis (Figure 5B). A study in mice indeed demonstrated that blockade of CASP8 results in

tumor escape from CTLs (Medema et al., 1999), and our result indicates that this may be a

common mechanism in human tumors (that may evade CTLs or NK cells). Interestingly, four

additional genes with significant but less definitive statistical enrichment also had well-

established roles in regulating extrinsic apoptosis. These include, CNKSR1 (Garimella et al.,

2014), MET (Fan et al., 2001; Garofalo et al., 2009), CSNK2A1 (Ravi and Bedi, 2002) (Izeradjene

et al., 2005) (Llobet et al., 2008; Wang et al., 2006), and PIK3CA (Saturno et al., 2013; Song et

al., 2010). PIK3CA mutations, which were often the well-known activating alterations E545K and

H1047R (Samuels and Ericson, 2006), showed their strongest enrichment in stomach cancer,

demonstrating a 20% mutation rate and a strong positive association with EBV infection

(p=2.9e-10). As in the case of CASP8, mutations in each of these genes were more closely

associated with FASL expression than TRAIL expression. We conclude that loss of the extrinsic
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apoptosis pathway may represent a general mechanism for tumors to escape immune cytolytic

activity.

Second, the invariant chain of MHC Class I, B2M, was the next most strongly enriched gene (adj.

p=7.le-3), showing independently significant association in uterine, breast, colorectal cancer,

and stomach cancer, which exhibited the highest rate, 5.7%. The most frequent event was the

same CT dinucleotide deletion observed previously in melanoma patients relapsing from T cell-

based immunotherapy (Chang et al., 2005). The MHC Class I locus itself was also significant

(Table S6C; HLA-A, -B, -C mutations considered jointly, adj. p=5.3e-2). HLA-A and HLA-B alleles

were mutated about 3 times as frequently as HLA-C alleles. No specific alleles showed strong

evidence for being especially frequently mutated. The tumor types with the highest rates of

HLA mutation, stomach cancer (14%), cervical cancer (12%), and head and neck cancer (11%),

were also among those with frequent viral involvement. However, viral infection was not

significantly associated with HLA mutation in any of them (Table S6D). Given the requirement

of MHC Class I and B2M in presenting tumor antigens to cytotoxic CD8 T cells, we consider the

enrichment of MHC Class I and B2M mutations in high-CYT tumors (Khong and Restifo, 2002) as

an independent and strong validation of CYT as a measure of cytolytic activity. While MHC Class

I genes were not significantly mutated pan-cancer, class 11 gene mutations, considered

collectively, were positively associated with CYT (unadj. p=0.017) with independent significance

in bladder cancer (unadj. p=0.0084).
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Other hits included the CT antigens MORC4 (Liggins et al., 2007) and SSX5 (Ayyoub et al., 2004)

and genes with roles in innate immune sensing, including DDX3X (Oshiumi et al., 2010) and

ARID2 (Yan et al., 2005). We also note that mutant TP53 is negatively correlated with CYT,

which may be explained either by a role for p53 in regulating immunity (e.g., loss of p53-

regulated stress ligands that induce cytoxicity, (Textor et al., 2011) or from absence of viral

infection (consistent with p53 mutations being anti-correlated with viral infection in stomach

(p=2.3e-5) and head and neck cancer (p=2.6e-4); Table S6D).

Because MSI-high colorectal tumors are known to be immunogenic (Kloor et al., 2010), we also

considered whether MSI-high tumors were enriched for mutations in particular genes with

respect to MSI-low and microsatellite stable (MSS) tumors. Mirroring the CYT analysis, CASP8

and MHC Class I mutations were the most enriched mutations in MSI-high tumors (p adj. = 1.5e-

5 and 1.4e-12, respectively), with COL5A1, SMC1A, CIC, ARID2, CNKSR1, and DNMT3A also

significant (adj. p < 0.05) (Table S6E).

Finally, we note that some candidate genes with well-known immune function (Table S6A) did

not show association with CYT. However, enrichment in the expression of immune-related

genes were observed in tumors with mutations in some of these genes (TNFRSF14, CLEC4E,

CD1D, 1L32; Table S6F).
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Loci containing known immune regulators show copy number alterations associated with CYT

We also considered the possibility that specific regions of the genome may be preferentially

focally amplified or deleted (based on a dataset of TCGA samples profiled with SNP6.0 arrays) in

high- or low- CYT tumors. As with the point mutation analysis, we looked for pan-cancer CYT

association with copy number alterations (CNAs) using regression and controlling for cancer

subtype and background mutation rate (of amplifications and deletions). This approach yielded

13 significantly amplified regions (with 3 adjacent to each other on 6q) and 1 significantly

deleted region (FDR=10%) (Figure 6A, Table S7). Although CNAs include variable segments of a

chromosomal region and do not typically identify causative genes, many of the identified

regions harbored plausible candidates.

On chromosomes 9 and 8, we found two well-known targets of cancer immunotherapy. First,

amplification of 9p23-p24.2 (Figure 6B), a region including PDL1 (CD274) and PDL2

(PDCD1LG2),was positively associated with CYT in lung squamous cell carcinoma, head and neck

cancer, cervical cancer, stomach cancer, and colorectal cancer (Figure 6E). While tumor cells

and tumor infiltrating leukocytes are known to express these ligands, our results suggest that

tumor-expressed ligands affect tumor fitness in the presence of cytolytic activity. Second,

8p11.21-8p11.23 (Figure S6A) showed increased probability of amplification in low-CYT tumors

(pan-cancer and breast) and is adjacent to IDO1 and ID02, enzymes that degrade extracellular

tryptophan and create a potent immunosuppressive microenvironment, which may explain the

associated reduction in CYT (Uyttenhove et al., 2003).
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Figure 6. Amplifications and deletions are associated with cytolytic activity in tumors
(A) The significance of association between CYT and amplification (orange) and between CYT and deletion (green)

for all genic loci. Upward lines show unadjusted p-values for instances in which the lesion was positively associated
with CYT, and downward lines show unadjusted p-values for instances in which the lesion was negatively
associated with CYT. Dotted lines represent the significance cutoff yielding 1% and 10% FDRs (and also appear in
parts B-E). Labels on the right side mark events significant at the 10% FDR, plus B2M. Potential driver genes appear

in parentheses. (B) Locus zoom on the 9p24.2-p23 amplification, each bar corresponding to a single gene. Labeled
genes include those with driver potential or those on the locus boundary. (C) Locus zoom on the region containing

B2M, which was not genome-wide significant. (D) Locus zoom on the 17p13.1 amplification. (E) Significant

associations between CNAs and CYT on the pan-cancer and cancer-specific level (as in Figure 5). Pan-cancer
significance was defined at a 10% FDR, and significance for individual tumor types was defined at unadjusted
p<0.05. Positive association is indicated with red circles, negative with blue circles, and non-association with gray

circles. Black wedges indicate the share of samples exhibiting the event (ie. non-zero GISTIC score at the locus).
Bar plot indicates unadjusted pan-cancer p-values for CNAs, sorted by significance, with dashed lines indicating

thresholds yielding 1% and 10% FDRs. See also Figure S6 and Table S7.
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In addition, potential new targets were identified. These included 17p13.1, which was

preferentially amplified in low-CYT tumors (Figure 6D), including breast and ovarian. The peak

genes, ALOX12B/ALOX15B (12/15-LO) regulate immunity in many ways, including blocking the

uptake of apoptotic cells by inflammatory monocytes in a manner that decreases antigen

presentation to T cells (Uderhardt et al., 2012), which may explain the observed decrease in

CYT. Further supporting this model, the amplification was associated with higher necrosis in

breast (p=0.002) and kidney clear cell cancer (p=0.0002), though not ovarian cancer. Other

peaks included ones near TNFRSF1A and PRDM1 (Figure S6A) as well as a suggestive, but not

genome-wide significant enrichment at B2M (Figure 6C). In considering how other enrichment

signatures might associate with CNAs (Figure S6B), we observed a dramatic positive association

between increased MHC Class I expression and amplification of the MHC Class II complex (adj.

p<5e-4).
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Discussion

Based on the notion that effective natural anti-tumor immunity requires a cytolytic immune

response (Figure 7A), we quantified cytolytic activity using a simple expression metric of

effector molecules that mediate cytolysis. Our analysis was designed to address which genetic

and environmental factors drive tumor-associated cytolytic activity, and how this cytolytic

activity selects for genetic resistance in tumors. Our results suggest that neoantigens and

viruses are likely to drive cytolytic activity, and reveal known and novel mutations that enable

tumors to resist immune attack.

We considered several explanations for the elevated immune cytolytic activity observed in

some tumors (Figure 7A). First, we asked whether neoantigens play a role. These are a

compelling set of antigens because of their absence from the thymus and thus lack of central

tolerance that would normally delete cognate high-affinity T cells. Indeed, we found that

neoantigen load positively associated with cytolytic activity across multiple tumor types, and

that neoantigens appear to be depleted in tumors relative to their expected numbers based on

the silent mutation rate, consistent with the notion of immunoediting (Schreiber et al., 2011).

Second, when we analyzed CT antigens that are expressed selectively in tumors, we could not

detect a positive correlation between the number of expressed CT genes and cytolytic activity.

In addition, CT antigen genes were not contained within deletions associated with CYT, contrary

to what would be expected if there were immune pressure on CT antigens. Although we did not

uncover a role for CT antigens in spontaneous immunity (perhaps because our methods were

not optimized to detect CT depletion), we did highlight a subset of 60 CT antigens that are
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Figure 7. Proposed model for evolution of tumor-immune associations
(A) As the tumor develops, we propose that intrinsic tumor factors - such as mutated neoantigens or viruses -
induce local immune infiltrates (blue circles) that include cytolytic effector cells (expressing GZMA/PRF1; red
circles) that kill tumors (daggers). These factors are expected to be positively correlated with CYT across tumors.
(B,C) Under pressure from cytolytic immune cells, subclones with resistance mutations will grow out over time. (B)

One subset of these mutations would enable tumors to evade killing, but does not impact the infiltrate, and are
positively correlated with CYT (i.e. higher infiltrate samples are enriched for these mutations). (C) Another subset
suppresses the immune infiltrate (i.e. lower infiltrate samples are enriched for these mutations), and is negatively
correlated with CYT. Notably, p53 mutations and ALOX amplifications were also significantly negatively associated
with CD8A, suggesting a reduction in cell numbers and not just activity. See also Figure S7 and Table S8.
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highly tumor-specific and may be (or are already) excellent targets for immunotherapy,

including vaccines, adoptive T cell transfer or CAR-T therapy. Third, we asked whether viruses

could be inducers of immune responses. In some tumors, we observed that cytolytic activity

does indeed associate with the presence of exogenous or endogenous viruses, and we expect

that some viruses would trigger immunity through RNA and DNA sensors and generate

immunogenic antigens for the adaptive immune response.

To learn more about how tumors adapt to attack by cytolytic immune cells, we also searched

for enrichment of somatic genetic alterations in tumors with high versus low cytolytic activity.

As expected, we observed enrichment of mutations in antigen presentation machinery (thus

validating our cytolytic metric), including HLA and B2M, as well as extrinsic apoptosis genes,

such as CASP8, that would prevent cytolytic cells from killing tumors via FasL-Fas interactions. In

addition, we found cytolytic activity correlating with amplifications in regions containing genes

that function in immunosuppression, such as PDL1/2. Most of the identified mutations -

including HLA, B2M and CASP8 - were positively correlated with CYT and are likely to represent

autonomous escape mechanisms (Figure 7B). In addition, we identified a smaller number of

mutations that correlated negatively with cytolytic activity -- including IDO1 and ID02, p53, and

the ALOX locus - and may represent non-autonomous mechanisms of suppressing immunity

(Figure 7C). Finally, we were surprised that CYT-associated genetic lesions represent -10% of

drivers, and these genes had largely not been studied in the context of immunity. However,

given the importance of immune responses in controlling tumor progression (Pages et al.,

2005), tumors may have evolved several mechanisms of evasion.
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Our approach has allowed us to positively identify the subset of tumor types that are sensitive

to spontaneous cytolytic activity (Figure S7, Table S8). If we consider positive correlation of

HLA, B2M or CASP8 mutations with CYT as a 'signature' of selection pressure by the immune

system, we find that colorectal, uterine, stomach, head and neck, cervical, lung squamous and

breast tumors are most susceptible to immune elimination. If we further consider depletion of

neoepitopes as an independent signature of selection, we identify colorectal as well as kidney

clear cell cancer as immune-susceptible tumors. For these tumor types, we thus suggest that

spontaneous tumor immunity can delete tumor cells.

For several tumor types, we did not find evidence for immunoediting. This could be due to:

insufficient power to detect associations in tumors with low rates of spontaneous immunity,

non-genetic evasion mechanisms that we cannot detect, or true absence of immune cytolytic

activity (perhaps for thyroid and prostate cancers, for example).

Finally, the mutations associated with cytolytic activity reveal potential genetic biomarkers for

predicting outcome and candidate targets for immunotherapy. To assess the utility of these

markers, one would need to genotype tumors for the 35 identified genes at clonal or subclonal

levels, and test if pre-treatment or post-treatment mutations predict refractoriness or relapse

in response to cytolytic immunotherapy. We predict that the presence of these mutations

(assuming they do not lead to complete loss of susceptibility) indicates that re-activation of CD8

T cells would be therapeutically effective. In addition, we identified new candidates for

therapeutic development, including the ALOX enzymes and their products, the PIK3CA protein

that is enriched in activating mutations in high-CYT stnmach cancers, and FASI which mav b
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useful to upregulate in T cells to enhance the anti-tumor activity of adoptively transferred T

cells.

Analysis of TCGA samples has revealed environmental and genetic mechanisms that impact

tumor-immune interactions. While we chose to focus on cytolytic activity because of its central

role in tumor elimination and the feasibility of monitoring its activity, we did not consider other

tumoricidal activities (such as antibody-dependent cell-mediated cytotoxicity) because we are

not aware of transcript-based markers for these activities. In addition, the CYT metric we used

is transcript-based and thus may not reflect changes in cytolytic activity due to post-

transcriptional regulation, and is a snapshot in time that may miss previous activity that

impacted tumor growth. We anticipate that improved experimental measurements of anti-

tumor immune activity will further reveal the genetic and epigenetic changes that underlie co-

evolution of tumor cells and immune cells.
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Methods

Selection of tumor types

Tumor types were selected for analysis based on publication availability as determined by The

Cancer Genome Atlas (TCGA) embargo dates in September 2014, excluding non-solid tumor

types. The analyzed tumor types and their corresponding project codes were urothelial bladder

cancer (BLCA), breast cancer (BRCA), cervical cancer (CESC), colon and rectal adenocarcinoma

(COAD and READ, a.k.a. CRC), glioblastoma multiforme (GBM), head and neck squamous cell

carcinoma (HNSC), clear cell kidney carcinoma (KIRC), papillary kidney carcinoma (KIRP), lower

grade glioma (LGG), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung

squamous cell carcinoma (LUSC), ovarian serous cystadenocarcinoma (OV), prostate

adenocarcinoma (PRAD), cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD),

papillary thyroid carcinoma (THCA), and uterine corpus endometrial carcinoma (UCEC). Clinical

data for these samples were accessed through the TCGA Portal (National Institute of Health) ftp

on March 26, 2014 (https://tcga-

data.nci.nih.gov/tcgafiles/ftp auth/distro ftpusers/anonymous/tumor/<turmortvpe>/bcr/nationwid

echildrens.org/bio/clin/nationwidechildrens.org <tumortVpe>.bio.Level 2.X.X.X/). These data

included assessment of histological subtype, tumor stage, specimen characteristics (such as

percent necrosis), patient survival, and smoking history. Analyzed samples represent untreated

primary tumors, except for melanoma, which includes untreated metastases. Melanoma

metastases to lymph nodes were excluded from all analyses. Patients that received some form

of neo-adjuvant therapy were excluded.
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Data types, sources, and initial processing

Different types of data were considered: gene expression (RNA-Seq and array-based), viral

expression, endogenous retrovirus expression, HLA type (and mutational status), point

mutation (as identified by whole exome sequencing (WES)), neopeptide HLA-binder predictions,

copy number alteration (CNA) data, and reference gene expression profiles. These data were

obtained from TCGA (http://cancergenome.nih.gov/), the Genotype-Tissue Expression project

(GTEx) (GTEx Consortium, 2013a), Fantom5 (Fantom Consortium et al., 2014), and/or the

Cancer Cell Line Encyclopedia (CCLE) (Barretina et al., 2012). Some data were accessed and

used directly, and some required post-processing to generate, as described below.

Clinical data

Clinical data for each tumor type were accessed from the TCGA public access web portal on

March 26, 2014. These data included assessment of histological subtype, microsattelite

instability status, tumor stage, specimen characteristics (such as percent necrosis), patient

survival, and smoking history.

RNA-Seg- based gene expression data

TCGA gene expression data (90% tumor biopsies, 10% solid tissue controls) were obtained

through GDAC Firehose (Broad Institute TCGA Genome Data Analysis Center, 2014) and

included all available "Level_3" gene-level data (a mix of Illumina HiSeq and Illumina GA data).

Samples from Genotype-Tissue Expression project (GTEx) were accessed through the GTEx web

portal in November 2013 (GTEx Consortium, 2013b). For both data sets, raw read counts were

tallied per gene symbol and divided by the gene symbol's maximum transcript length to
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represent coverage depth. Transcript lengths and mappings between gene symbols and

transcript IDs were obtained from UCSC Genome Browser's table "knownisoforms" (hg19

version) (Karolchik et al., 2004). For each sample, the corresponding coverage estimates across

all genes were rescaled to sum to a total depth of 1e6, such that expression estimates may be

interpreted as Transcripts Per Million transcripts (TPM). A listing of patient IDs for TCGA tumor

samples can be found in Table SlA, which also lists the histological subtype of each tumor, if

defined. A listing of IDs for TCGA normal and GTEx samples can be found in Table S1B, which

also indicates tissue type/lineage designations for these samples.

RNA-Seq-based sequence data

TCGA data were accessed from CGHub and included TCGA .bam files with "RNA-Seq" indicated

in the library strategy field. Because this data set was too large to store locally, analyses were

conducted "on-the-fly." Therefore, analyses based on the TCGA RNA-Seq sequence data do not

always comprise the same samples set (reflecting the ongoing additional of samples to CGHub).

RNA-Seq .bams for GTEx were downloaded from Short Read Archive (SRP012682,

corresponding to dbGap phs000424) on July 1, 2014. Table SlA and S1B list the samples used in

each analysis.

Microarray-based gene expression data

While RNA-Seq-based gene expression data were used for most analyses, microarray-based

data were used for assessing the baseline expression of GZMA and PRF1 in non-TCGA cancer

cell lines. Data were obtained through the CCLE web portal

(http://www.broadinstitute.org/ccle/home; file: CCLEExpression_2012-2009-2029.res), and
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probes 205488_at and 1553681_a_at were used to represent GZMA and PRF1, respectively

(Affymetrix U133+2 platform; RMA processing).

CAGE cell type expression profiles

Human cell type gene expression profiles were downloaded from the Fantom5 website on

October 8, 2014:

http://fantom.gsc.riken.jp/5/datafiles/latest/extra/CAGEpeaks/hgl9.cagepeaktpmann.osc.

txt.gz

Point mutation data

When possible, data was obtained from TumorPortal (Lawrence et al., 2014), which supplies

the following ".maf" (Mutation Annotation Format) file:

http://cancergenome.broadinstitute.org/data/perttypemafs/PanCan.maf. When a patient

was not present in this .maf, mutation data were obtained from Cyriac Kandoth's Synapse

workspace syn1729383 (https://www.synapse.org/#!Synapse:synl729383; corresponding paper

(Kandoth et al., 2013)). When a patient was not available in the previous sources, data were

obtained from the TCGA Data Portal (National Institute of Health) from the files:
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When not available in the previous sources, data for liver cancer patients was obtained from

the GDAC Firehose standard analysis pipeline (Broad Institute TCGA Genome Data Analysis

Center, 2014) (accessed August 8, 2014). Finally, data from the recent TCGA stomach

adenocarcinoma analysis (Cancer Genome Atlas Research Network, 2014) (https://tcga-

data.nci.nih.gov/docs/publications/stad 2014/; file: "Public Mutations") were included and used

preferentially when a patient was already in one of the above sets.

Several possible mutation-calling artifacts were identified for the genes ZNF43, XYLT2, PAX6,

PAFAH1B1, ALPK2. In each case, the gene had a reported indel appearing in multiple subjects at

the edge of a homopolymer stretch. These events were manually excised from the maf.

HLA type, HLA mutations, and predicted neo-antigen binders

Whole exome sequencing data (.bam's) were downloaded from CGHub (University of California,

2012) for all samples for which a tumor and normal sample were available for a given patient

(hg19-mapped .bam's were used when available; all files included unmapped reads). The 4-digit

HLA type for each sample was inferred using the POLYSOLVER (POLYmorphic loci reSOLVER)

tool which uses a normal tissue .bam file as input and employs a Bayesian classifier to

determine genotype (Shukla et al, manuscript in review, Nature Biotechnology). The algorithm

selects and aligns putative HLA reads to an imputed library of full-length genomic HLA allele

sequences. The alignments then serve as a basis for the inference step that incorporates the

number and base qualities of aligned reads, the empirical library insert size distribution and

population-based allele frequencies.
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Because standard mutation calling algorithms are not well-equipped to deal with highly variant

regions such as the MHC loci, mutations in class I HLA genes were determined using the

POLYSOLVER-based mutation detection pipeline (Shukla et al, manuscript in review, Nature

Biotechnology) that takes a tumor/germline exome pair as input, and first characterizes the HLA

alleles in the individual by applying POLYSOLVER on the germline data. Putative HLA reads from

both the tumor and germline exomes are then aligned to the inferred alleles separately and

likely erroneous alignments are filtered out. Somatic changes are subsequently identified by

comparative evaluation of the aligned tumor and germline files using the Mutect (Cibulskis et

al., 2013) and Strelka (Saunders et al., 2012) tools. Since CGHub contains .bam files that have

not yet been processed into .maf's by the TCGA Data Coordinating Center, there are more

patients with HLA mutation calls than patients appearing in the general mutation .maf.

Individual-specific HLA-binding peptides were identified by a neo-antigen prediction pipeline

(Rajasagi et al., 2014) that uses all detected somatic mutations for the individual (obtained from

the general mutation .maf). Binding affinities of all possible 9 and 10-mer mutant peptides to

the corresponding POLYSOLVER-inferred HLA alleles were predicted using NetMHCpan (v2.4)

(Nielsen et al., 2007b).

Viral expression

Variant sequences for ten putative oncoviruses were accessed from NCBI Nucleotide

(http://www.ncbi.nlm.nih.gov/nucleotide/) using the following search terms:

Retrieved
Virus Query Count

JC polyomnavirus JC Polyomavirus[Organism] AND "complete 564
genome" AND 5000:5400[Sequence Length]
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BK polyomavirus
BK Polyomavirus[Organism] AND "complete
genome" AND 5000:5400[Sequence Length]

282

KI polyomavirus KI Polyomavirus[Organism] AND "complete genome" 10
AND 5000:5400[Sequence Length]

U polyomavirus WU Polyomavirus[Organism] AND "complete 80
WU pgenome" AND 5000:5400[Sequence Length]

Merkel cell Merkel cell polyomavirus[Organism] AND "complete 42
polyomavirus genome" AND 5200:5700[Sequence Length]

Human Human papillomavirus AND "complete genome" 741
papillomavirus AND 5000:10000[Sequence Length]

Epstein-Barr virus Human herpesvirus 4[Organism] AND "complete 9
genome" AND 150000:200000[Sequence Length]

Kaposi sarcoma virus Human herpesvirus 8[Organism] AND "complete 4
genome" AND 130000:140000[Sequence Length]

Hepatitis B virus Hepatitis B virus[Organism] AND "complete 4834
genome" AND 2800:3500[Sequence Length]

Hepatitis C virus Hepatitis C virus[Organism] AND "complete
genome" AND 9000:10000[Sequence Length] 912

These sequences were then filtered using Tandem Repeat Finder (Benson, 1999) using options

"2 7 7 80 10 24 50 -m -h" to mask low-complexity sequences. These sequences, as well as a

decoy fasta of homopolymer repeats, were concatenated into a single fasta and converted into

a bowtie2 (Langmead and Salzberg, 2012) search index. TCGA RNA-Seq .bam files were

downloaded from CGHub, and the unmapped reads were mapped using bowtie2 and search

parameters "-q --end-to-end -k 1 --no-unal". Because the read mapping pipeline used to

generate the .bam's hosted at CGHub does not produced files fully consistent with SAM format

(Li et al., 2009), it was not possible to revert the .bam's to paired mate-1 and mate-2 .fastq files

(UNC Lineberger Comprehensive Cancer Center, 2013). Therefore, reads were mapped in
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single-end mode, and it was considered after-the-fact whether reads with the same name suffix

had both aligned to the same virus. For consistency, the same approach was used for mapping

the GTEx RNA-Seq data. For the TCGA data, fragment ends had been sequenced to 48 or 76

bases, and each .bam contained 114,000,000-181,000,000 mapped read ends (IQR). For GTEx,

fragment ends had been sequenced to 76 bases, and each .bam contained 63,000,000-

110,000,000 mapped read ends (IQR). Due to lags in sample processing in TCGA and GTEx, the

counts of processed RNA-Seq .bam's do not exactly match the corresponding counts of samples

with full-transcriptome expression estimates (described above). TableSlA and TableS1B list the

samples for which viral expression was quantified.

Upon pilot analysis, the requirement that both read ends successfully map appeared to be

inadequately sensitive; therefore, the paired-end nature of the data was ignored for the

purposes of the viral analysis. To guard against false positives caused by spurious read mapping,

non-zero viral expression calls were contingent on reads mapping to multiple loci in the viral

reference sequence. For a given virus, the specific operation was to 1) identify all viral

reference sequence covered by at least one read and 2) determine whether the count of

unique 20mers within that sequence (as calculated using Jellyfish (Marcais and Kingsford,

2011)) is greater than 300 (it was not possible to simply measure the length of covered

sequence because multiple fastas were used to represent each virus). Given successful

clearance of this robustness test, viral expression was quantified by taking the count of read

ends mapping to each virus (summing across the variant sequences for the virus) and dividing

by the total count of human genome-mapped read ends in the original .bam. This number was

multiplied by 1e6 in order to express viral titer as viral Reads Per Million reads mapped to the
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human genome (RPM). "Positivity" for viral infection was determined based on whether the

expression exceeded the maximum observed in the GTEx normal, with the assumption that

very low levels may simply reflect the trace presence of previously exposed leukocytes in the

tissue sample. We acknowledge that these are conservative assessments and may miss some

cases of viral infection that are transcriptionally silent. A table of expression values from both

studies can be found in Table S2A.

Endogenous retrovirus (ERV) expression

A list of GenBank accessions corresponding to transcriptionally active endogenous retroviruses

was obtained (Mayer et al., 2011) and contained sequences representing 66 ERV species. These

were converted into a bowtie2 index, and .bams from TCGA and GTEx were remapped to this

index (preserving both mapped and unmapped reads) using the same bowtie2 search

parameters used in the viral analysis. Paired read ends were assigned to the same ERV

sequence if there was one that provided an acceptable alignment for both; otherwise, the

reads ends were aligned individually. When multiple ERV sequences provided an equally good

match, ties were broken at random. ERV expression was quantified in RPM in the same manner

used in the viral analysis (Table S5B).

Copy number events

GISTIC2 (Mermel et al., 2011) "Level 4" copy number calls for each patient were accessed from

GDAC Firehose in March 2014. GISTIC2 uses data from copy number arrays (in this instance,

Affymetrix Genome-Wide Human SNP 6.0 arrays) to identify regions of copy number variation

across the genome. The files accessed through GDAC Firehose contained a score for each gene
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representing whether that gene was in a region that was focally amplified or deleted in the

given tumor (larger events, such as whole genome amplifications, were ignored). Values of zero

indicate that there is no evidence of copy number alteration for the given gene, whereas

positive and negative values represent amplification and deletion, respectively. Even though

each tumor subclone contains an integral copy number for each locus in the genome, biopsies

potentially contain multiple tumor subpopulations as well as stromal tissues; therefore, the

reported values in the GISTIC2 output are continuous rather than integral. Since stromal

contamination (which would presumably correlate with CYT) tends to regress the signal toward

zero, each sample was rescaled so that the median non-zero event amplitude was 1.

Data Analysis

Definition of cytolytic activity metric "CYT"

Cytolytic Activity Metric (CYT) was obtained by calculating the geometric mean of GZMA and

PRF1 expression (as measured in TPM) per sample. The geometric mean was preferred to the

arithmetic mean because it is not arbitrarily affected by the expression scales of the two genes

being averaged. Because the geometric mean function requires a log transformation, 0.01 was

added to each expression value before transformation in order to avoid logging zero. In order

to assure robust statistical results, some analyses (association with genetic alterations) included

an additional rank-transformation (across samples) to the CYT values, which was rescaled such

that the values were uniformly distributed between 0 and 100. GZMA and PRF1 were selected
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based evidence that they were specific to killer lymphocytes (a point on which GZMB and FASL,

other well-known effector genes, failed).

Definition and analysis of cell type expression markers and immune meta-genes

Cap analysis of gene expression (CAGE) data from Fantom5 were used to define a set of

transcriptomic markers for immune cell subtypes of interest. We note that "regulatory T cells"

in Fantom5 were represented by CD4+CD25hiCD45ra- cells. We further note that "myeloid

dendritic cells" (mDCs) in Fantom5 were monocyte-derived rather than primary and were

therefore not used. Data were collapsed to the gene symbol level using summation. For each

gene in each cell type, a median expression level was calculated over the given replicates (an

offset of 5 TPM was added to all expression values). To determine a specificity ratio for

markers, the expression of each gene was compared to maximum expression of the gene in the

other immune cell types (listed in Table S1C; B, Treg, NK, CD8 T cell, neutrophil, macrophage,

pDC) as well as all non-hematopoietic, non-cancer cell types in FANTOM5. This specificity ratio

had to be at least 2 to consider a gene as a marker for a cell type, with up to 10 markers per cell

type. Because the Fantom5 project did not include activated/effector CD8+ T cells, many of the

genes initially identified as NK-specific within Fantom5 were actually shared between NK cells

and activated CD8+ T cells when we considered data from the DMAP human blood profiling

project (http://www.broadinstitute.org/dmap) (Novershtern et al., 2011). Therefore, we used

data from the DMAP project to find the genes most highly expressed in NK cells (median of

types "Al", "A2", "A3", and "A4") vs. activated/effector CD8 T cells (median of types "T cell 1",

and "T cell3"), identified the top 20, and then obtained a revised NK marker gene list by

intersecting the FANTOM NK markers with the DMAP NK markers. We note, however, that even
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these genes exhibited a substantial degree of expression in activated CTLs, consistent with the

lack of known highly-specific NK markers.

Several other meta-genes were defined. Sets of co-inhibitory and co-stimulatory receptors

expressed on T cells and antigen presenting cells (APCs) were defined based on a recent review

(Chen and Flies, 2013). Type I and Type Il-specific interferon response genes were defined

based on recent study comparing responses of macrophages to these two stimuli (Liu et al.,

2012) (Supplementary Table 1 of referenced). HLA Class I genes were defined as HLA-A, B2M,

and TAP1. The final set of selected markers can be found in Table SiC.

The enrichment of a cell type meta-gene in a given sample was then calculated using single

sample gene set enrichment analysis (ssGSEA) (Barbie et al., 2009) as used before to analyze

TCGA samples for immune/stromal infiltrates and implemented in the 'GSVA' R package

(Hanzelmann et al., 2013), with subsequent z-scoring across samples. Note that these

enrichments should not be interpreted as deconvolutions of actual cell type proportions. In

several instances in which CYT was directly compared to the ssGSEA enrichments, CYT was also

calculated according to the ssGSEA approach (rather than geometric mean) in order to make a

fair comparison. These include Figure SlF (cell type enrichments vs. CYT), Figure SiG (tumor-

normal comparison of enrichments), Figure SlJ (survival analysis of enrichments). We note,

however, that the two CYT calculations are nearly identical (Spearman correlation 0.96). Values

for (log-average) CYT and the ssGSEA enrichment scores can be found in Table SlA (tumor

samples) and Table S1B (normal samples).
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Relationships with tumor stage

To test for an overall association between CYT and tumor stage, the Pearson correlation was

calculated between log-CYT and stage (stage was converted to a numeric variable: "stage 1"=1,

"stage 2"=2, etc.) Z-scored ssGSEA enrichments of marker genes were also compared to stage in

this manner. Since gliomas are not staged, grade (G2 or G3) was analyzed in place of stage for

this tumor type.

Survival analysis

Patient samples grouped according to histological subtype (samples were excluded when

histological subtype was not available) and tumor stage. Groups with fewer than 8 samples

were excluded. To assess the survival effect of a continuous variable x, each group was split

equally into high-x and low-x patients. High-x patients were pooled pan-cancer and low-x

patients were pooled pan-cancer and analyzed as two distinct cohorts using Cox proportional

hazards modeling. Note that the two cohorts have identical admixtures of tumor type and

stage. In some analyses, the variable x represented the z-scored ssGSEA enrichment of a

metagene (e.g. macrophage marker genes); in other analyses it was the arithmetic difference

between the z-scored ssGSEA enrichments of two meta-genes (e.g. Treg marker gene

enrichment minus CTL marker gene enrichment). In contrast to most other analyses, CYT was

calculated according to the ssGSEA approach to enable the analysis of differential enrichment

with respect to the meta-genes.
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Transcriptomic assessment of viral infection

Association between CYT and viral infection status was characterized using Wilcoxon rank sum

tests for tumor types exhibiting at least five cases of infection with the given virus.

To further characterize viral transcription, representative variants (one for which a large

number of reads mapped and for which there exists good gene annotation) were selected for

each of virus that was detected, and remapped reads (pooled from all TCGA cancer samples) to

these variants. These read depths are presented in Figure S2A.

In order to assess the general gene expression correlates of viral infection in a given tumor

type, a Wilcoxon rank-sum test was performed for each gene to test differential expression

between infected and non-infected, and a score was assigned by multiplying the sign of the

association by the negative log p-value. Genes were ranked by this differential expression score

and submitted in forward and reverse order to "GOrilla" gene ontology enrichment analysis and

visualization tool (Eden et al., 2007; Eden et al., 2009), to assess for gene set enrichment

(results reported in Table S2B).

To assess whether extra-hepatic cases of HBV infection were metastases originating from the

liver, samples from tumor types with at least 1 HBV+ cases were plotted according to the first

two principal components of their global log-transformed gene expression. The clustering of

HBV+ samples (with liver or with the uninfected samples of the corresponding tumor type) was

assessed visually.
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Association between HLA type and cytolytic activity

HLA types (at two-digit granularity) were assessed for association for cytolytic activity in each

tumor type using Wilcoxon rank sum tests. The overall significance of an HLA type pan-cancer

was assessed using Fisher's method to combine the p-values of the individual tumor type

Wilcoxon rank sum test p-values. The overall significance of a tumor type for HLA-CYT

association was assessed using an F test of a linear regression modeling rank-scaled CYT in that

tumor type as a function of HLA type.

Characterization of mutational spectra

Using the general-analysis .maf (which contains only coding region mutations), single-

nucleotide variants were identified and characterized as C-A, C--G, C4T, A-C, A->G, or A->T

(if the reference allele was T or G, the event was analyzed from the perspective of the opposite

strand). In addition, the identities of the upstream and downstream reference bases were used

to further categorize the mutational events. Figure S2E depicts the rate of each mutation type,

per sample, for high-CYT tumors and low-CYT tumors as well the difference in the rates (high

minus low). High-CYT tumors were defined as those with CYT in the top quartile for the given

tumor type. Low-CYT tumors were defined as those with CYT in the bottom quartile for the

given tumor type.

To test whether the rate of Apobec-characteristic mutations (reference allele C with upstream

T) was differential between high-CYT and low-CYT tumors, the count of Apobec-characteristic

mutations in each tumor samples was divided by the count of all other mutations and this ratio

was assessed for Spearman rank correlation with CYT. The ratio was tested for association with
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viral infection status and with ERV expression using Wilcoxon rank-sum test and Spearman rank

correlation, respectively. For the ERV analysis, p-values were corrected by B-H method across

the 18-cancer x 66-ERV matrix of p-values. While several ERVs association with Apobec-

characteristic mutations narrowly reached significance (p adj.<.05) in stomach cancer (ERVH-2,

ERVE-2) and breast cancer (ERVI-1), the directions of association were not consistent amongst

tumor types leaving no definitive result.

Neo-antigen analysis

If the mutation was predicted to produce a "binder" neopeptide with affinity <500 nM and if

the corresponding gene was expressed greater than 10 TPM (evaluated based on median

expression in the given tumor type rather than the specific sample, as mutations may affect

transcript quantification), the mutation was designated as putatively antigenic. For each tumor

type, the count of total mutations and the count putatively antigenic mutations per sample was

compared to the CYT. Tumor types displaying a spearman rank correlation p-value less than 0.1

(only significant positive associations were observed) are presented in Figures 3A and 3B. For

each cancer type, a local regression curve (as calculated by the R lowess() implementation

(Cleveland, 1981), default parameters) is drawn over inner 90th percentile range of the

independent variable. The raw data for these curves can be found in Table S4A.

To determine whether the number of neo-antigens predicted for a tumor was more or less than

expected given its mutation rate, a null model for mutation was developed to control for the

differing rates of mutational "spectra" observed in different tumors (a result of differing

mutagenic processes). Indels and mutations in genes significantly mutated in cancer table b6A;

68



described in a later section) were excluded from the analysis. 192 mutational spectra were

defined based on the old base, the new base, and the identities of the nucleotides 1 base

upstream and 1 base downstream (from the perspective of the coding strand). For each

spectrum s, two rates were estimated empirically pan-cancer: the expected number of non-

silent mutations per silent mutation, NS, and the expected number of high-affinity neo-peptide

binders (not considering gene expression) per non-silent mutation, fl,. Using these rates, we

used the silent mutational events in each tumor sample to predict the number of non-silent

mutations, Npred, and the number of neo-peptide binders, Bpred, expected for that tumor

under null model in which there is no selection against mutations that yield HLA binders:

Silent SNVs

Npred = I s(m)

m

Silent SNVs

Bpred = I S(m)Bs(m)

where s(m) represents the spectrum of the given mutation. Having calculated Npred and Bpred

for a sample, these were compared to the actual counts in the sample, No, and Bobs, to define

the ratio between the observed and expected rate of neo-peptides, R:

R = Bobs/Nobs
Bpred/Npred

R was characterized for the samples corresponding to each tumor type, and Wilcoxon rank sum

tests were used to determine whether tumor types were significantly different from R=1. Note

that since NS, and I, were estimated empirically, they are under-estimates if strong selection

against binder-yielding mutations is occurring. However, since these values are estimated pan-

cancer, R can still be interpreted in a relative sense.
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As a control, we randomly scrambled HLA genotypes across patients and re-ran the analysis

using the resulting new set of predicted neo-epitopes (but still using NS and IRS as estimated

previously).

Smoking

For the lung cancers, clinical data included the smoking history of the patients. For lung

adenocarcinoma and lung squamous cell carcinoma, ever-smokers (excluding those reformed at

least 15 years prior and those with an unknown number of years of reform) were compared to

never-smokers in terms of CYT using the Wilcoxon rank sum test to assess significance.

Assessing ectopic transcription

In order to define a set of genes whose expression could be considered ectopic and thereby

potentially immunogenic, a candidate list was first created using the list of cancer testis (CT)

antigens maintained at CTdatabase (http://www.cta.Incc.br/) (Almeida et al., 2009). Using RNA-

Seq data from normal samples in GTEx, the 95th percentile expression value was calculated for

each tissue type, including blood, as an estimate of the upper bound of the expression of the

gene in that tissue type. If no tissue exceeded a threshold of 1 TPM, then the gene was included

in our ectopic gene set. This filtering step was applied in order to avoid CT antigens identified

genes that may be expressed stromally, which would confound association analyses. The

degree of ectopic expression in a given tumor sample was determined by counting the number

of ectopic genes expressed greater than 1 TPM. For each tumor type, association with CYT was

determined by binning samples by the count of ectopic genes expressed greater than 1 TPM

(bins: 0 genes, 1-5 genes, 6-10 genes, and >10 genes); for adjacent bins containing 10
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samples, CYT was compared by Wilcoxon rank-sum test. (We note that an alternative approach,

in which the association was assessed by Spearman rank correlation, did not show any

compelling cases of positive association.) Separately, the expression levels of individual ectopic

genes were assessed for association with CYT using Spearman rank correlation.

To explore the hypothesis that CT antigens might be chromosomally deleted as a mode of

immune evasion, we explored several properties of their copy number alteration status. First,

we determined whether deletion reduced the expression of each gene in each tumor type by

assessing for whether there was a significant negative Pearson correlation between the gene's

GISTIC deletion signal (0-censoring values in the direction of amplification) and its log

expression (using a log offset of +1 TPM). Second, we determined whether high CYT was

associated with deletion by looking for significant positive Pearson correlation between each

gene's GISTIC deletion signal (0-censoring values in the direction of amplification) and log-scale

CYT. Finally, for each tumor type, we calculated the count of instances in which each gene was

deleted (GISTIC score < 0), divided it by the count of total alterations (GISTIC score * 0), and

calculated the average across all genes. Using this deletion:alteration ratio, we calculated

whether each CT gene was significantly more frequently deleted than amplified in comparison

to genes in that tumor type in general (according to a binomial distribution). Even with loose

thresholds, there were no instances in which the three tests agreed for a given gene-cancer

combination (Figure S4C).
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Analysis of ERV expression

To define a set of tumor-specific ERVs (TSERVs), the 95th percentile expression value was

calculated for each ERV in each tumor tissue type and each normal tissue type. This value was

considered to represent a robust estimate of the upper limit of the expression range. If this

value did not exceed 10 RPM in any normal tissue type, did exceed 10 RPM in at least one

tumor tissue type, and if there existed at least one tumor tissue type with a value 5-fold greater

than any normal tissue type, then the corresponding ERV was considered to be a TSERV.

Functional motifs within ERV sequences were obtained by determining the consensus sequence

for each ERV (among aligning reads), translating all ORFs greater than length 75 and processing

using InterProScan (Jones et al., 2014).

For each TSERV, gene set enrichment analysis was performed for the tumor type demonstrating

maximum expression. This was done in the same fashion as for the viral gene set enrichment

analysis, but using Spearman rank correlation to determine sign and p-value rather than

Wilcoxon rank-sum test.

For all ERVs that exhibited overexpression in a given tumor type (as defined by expression

exceeding that observed in normal tissues), ERV-CYT expression was assessed using Spearman

rank correlation.

Correlates of necrosis

Association between percent necrosis (based on TCGA clinical data) and various meta-genes

(incluing CYT) wAs asedMCC1MI sing3 pr anr rOnk c rrre1CLaIHnJ.
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Identifying genes significantly point-mutated in high-/low-CYT tumor biopsies

A set of candidate genes was defined by running MutSigCV on each individual tumor type and

on the entire pan-cancer .maf. MutSigCV is a tool designed to identify genes that are mutated

in a non-random manner and considers variables such as the ratio of nonsynonymous to

synonymous events (Lawrence et al., 2013). As described previously, the .maf contains "point

mutations" (SNV, DNVs, indels and other variants that can be identified using whole exome

sequencing) but excludes larger chromosomal derangements. In line with previous application

of MutSigCV (Lawrence et al., 2014), genes significant at a 10% false discovery rate in any of

these MutSgCV runs were deemed to be significantly mutated. Genes that were not identified

in this analysis but were identified in previous pan-cancer MutSigCV application (Lawrence et

al., 2014), were added to the candidate list. Table S6A presents the full list of candidate genes

and the analysis(-es) supporting the inclusion of each (373 genes total).

To assess whether a gene's mutational status was significantly associated with CYT, rank-

transformed CYT was modeled (using linear regression) as a function of the gene's mutational

status (ignoring synonymous events), cancer type (encoded as dummy variables), and the rank-

transformed count of total non-synonymous mutations. The latter two variables were included

to diminish confounding effects. Cancer type was defined based on the histological subtype of

the tumor (indicated in the clinical data; 40 types total), and samples were excluded when the

histological subtype was not defined (Table SlA lists the histological subtype and missingness

status for each sample). The p-value of the mutation status coefficient ("beta") and its sign

were used a measure of enrichment for the given gene. As previously described, rank-scaling

transformed data such that values were uniformly distributed between 0 and 100. It was
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employed as a conservative measure to avoid results driven by outliers. Thus, beta values

(reported in Table S6B) should be interpreted as the expected change in CYT percentile given

nonsynonymous mutation, and a positive beta value implies a positive relationship between

CYT and mutational status. The p-values across the 373 genes tested were corrected for

multiple hypothesis testing using "method=BH" (Benjamini & Hochberg) in R's p.adjust()

function. A set of "hits" was defined by setting an adjusted p-value cutoff of 0.1. (The pan-

cancer association analysis was also conducted using synonymous mutations only and ignoring

nonsynonymous events. This was to determine whether any "hits" would be discovered in a

scenario in which none were expected.)

Since HLA mutations were called through a separate pipeline that could be applied to all

available CGHub .bam files, the calls were available for a much larger number of samples than

appeared in our pan-can .maf. Analyzed on the larger set, HLA mutation reached an adjusted p-

value of 3.0e-13 for CYT association, with 5 tumor types (colorectal, head and neck, uterine,

stomach, and cervical cancer) independently showing this association; however, this analysis

could not apply the correction for background mutation rate given the absence of mutation

calls for other genes.

To further characterize each hit, the data was parsed into 18 subsets corresponding to each

tumor type, CYT was re-rank-transformed per subset, and the linear regression (using the same

covariates, excluding cancer type) was repeated on each subset (no control for histological

subtype). An uncorrected p-value less than 0.05 for the (nonsynonymous) mutation status
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variable was considered evidence for association. The beta values can be interpreted as the

expected change in CYT percentile (for the given tumor type) given mutation.

In exploring the relationship between CASP8 mutation and FASL and TRAIL expression (Figure

5B), tumor types were analyzed if they had at least 5 instances of CASP8 mutation. For those

that did, association p-values were assigned using the Wilcoxon rank sum test.

Associations between the hits and viral infection status were characterized using Fisher's exact

test. For testing a given virus, uninfected samples were excluded if demonstrating non-zero

transcriptional titer for any virus.

In order to visualize the mutations affecting each significantly CYT-associated gene, a

representation was modeled after a popular cancer genomics tool (Gao et al., 2013) (Figure

S5C). To define the functional subdomains of each gene, the amino acid sequence was

processed by InterProScan (Jones et al., 2014) which identified known motifs. When enriched

domains overlapped, the smallest was selected for visual representation. In order to depict

clusters of mutation, the local density of mutations was depicted using the densityO function in

R, specifying a smoothing bandwidth of 30 nucleotides.

Though CYT was the primary focus, we also explored whether other cell type signatures

(quantified by ssGSEA) would have mutational associations. For this, we used the same "hit"

identification pipeline as described above for CYT.
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To identify genes specifically mutated in MSI-high vs. MSI-low/MSS tumors, Fisher's exact test

was used to test for enrichment of non-silent mutation status in each of the 373 candidate

genes. P-values were adjusted using the Benjamini Hochberg (BH) method.

A set of additional immune genes, which were frequently mutated in cancer but did not show

mutational associations with CYT or the cell type expression markers, were assessed in terms of

their gene expression correlates using an unbiased approach. These genes included CARD11,

CD1D, CLEC4E, CXCL9, IFITM1, 1L32, IL7R, IRF4, MYD88, PRDM1, TAP1, TNF, and TNFRSF14. To

characterize the gene expression correlates of a given gene's mutation, Wilcoxon rank-sum

tests were applied to all genes' expression profiles within the tumor type exhibiting the

strongest MutSigCV p-value for the gene in question. Association scores were defined by

multiplying the association sign by the negative log p-value, and genes were sorted by score

and submitted to GOrilla (in forward and reverse order).

Identifying copy number alterations (CNAs) significantly enriched in high-/low-CYT tumor

biopsies

To test for CNA association, a regression approach was utilized similar to that used for the point

mutation analysis. To test a given gene, rank-scaled CYT across all TCGA tumor samples was

modeled as a function of the gene's copy number, cancer type (at the histological subtype level,

as described previously), and three variables representing the overall copy number disruption

of each tumor. These latter three variables were meant as additional controls for stromal

biopsy fraction (which may negatively impact the ability to make focal amplification/deletion

calls) and included 1) a rank-scaled count of genes with positive copy number signal 2) a rank-

scaled count of genes with negative copy number signal and 3) a rank-scaled estimate of the
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number of chromosomal "events" (obtained by placing the genes in genomic order and

counting the number of times the copy number signal switched between

positive/zero/negative). This linear regression approach was applied twice. The first run was

amplification-centric, so the copy number variable was adjusted such that negative values were

set to zero (such that neutral and deleted regions are zero, and amplified regions are positive).

The second run was deletion-centric, so the copy number variable was adjusted such that

positive values were set to zero and the sign flipped (such that neutral and amplified regions

are zero and deleted regions are positive). Thus, in both regressions, a positive copy number

coefficient represented a positive association between CYT and lesion, and a negative copy

number coefficient represented a negative association between copy number and lesion. The p-

value of the coefficient was considered a measure of the strength of the evidence for

association.

Because copy number alterations rarely affect a single gene, association signals were highly

auto-correlated, meaning that genomic neighbors likely had a similar enrichment score.

Because gene scores do not truly represent independent tests, standard multiple hypothesis

correction procedures could not be employed at the per-gene level. Instead, an alternative

approach based on permutation testing was used to assign adjusted p-values to each "peak." A

"peak" was defined as a continuous stretch of genes (arranged in genomic order) with a

nominal p-value less than 0.01, and the peak score was defined as the minimum p-value in the

peak. To obtain the null distribution of peak scores, the CYT variable was randomly re-

permuted and the entire process repeated (testing individual genes, defining peaks, and

obtaining peak scores). This was repeated 500 times each for the amplification analysis and the
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deletion analysis yielding a peak score null distribution. The quantile of each true peak score

within the peak score null distribution was taken as a peak p-value. The set of peak p-values

were then subjected to standard B-H correction.

For each amplification hit, the copy number of the peak gene was then tested for association

with CYT in each individual cancer type (following the same approach taken in the point

mutation analysis). Cancer-specific association was defined when the uncorrected p-value was

less than 0.05.

As in the point mutation analysis, the pipeline was repeated exploring for CNA associations with

other cell type signatures.

Necrosis and ALOX amplifications

The amplification of ALOX15B was tested for association with necrosis in each tumor type by

using a linear regression that modeled percent necrosis as a function of ALOX15B amplification

and three additional background mutation rate variables added to avoid confounding (rank-

transformed count of amplified genes, rank-transformed count of deleted genes, and rank-

transformed count of events, as described previously).
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Supplemental Figures

Figure SI. Cytolytic activity and its expression correlates, related to Figure 1
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(a) GZMA vs. PRF1 expression across TCGA tumor biopsies. Points are colored according to cancer type using the

same color-coding employed in Figure 1. Pan-cancer, a spearman rank correlation (r) of 0.88 was observed.
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Figure S1, continued
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(d) Fantom5 CAGE expression (parts per million) of GZMA and PRF1 in 12 immune cell types.
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(e) CYT in normal colon and in colorectal cancer by microsatellite instability status (stable, low MSI, high MIS).
Quantiles are represented as in part b. P-values correspond to comparison to stable tumors by Wilcoxon rank-sum
test.
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Figure Si, continued
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(f) Cell type marker enrichments vs. Cytolytic Activity (all calculated by ssGSEA). Each panel represents a scatter
plot of z-scored enrichment scores with CYT on the x-axis and the relevant cell type on the y-axis. Background color
of each scatter corresponds to the Spearman rank correlation, the color mapping indicated in the legend. We note
that there are limitations to the precision of our markers genes; for example, we could not identify markers for NK
cells that are not expressed (to some level) in activated CTLs.
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Figure S1, continued
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(g) Tumor-normal expression differences of z-scored cell type marker enrichments (all by ssGSEA, including CYT).

Thin lines span the 5th to 9 5th percentile range and thick lines span the interquartile range. Colors correspond to

cell type as indicated in the figure; gray bars represent the enrichment of the adjacent cell type in normal control

tissues (from TCGA and GTEx).
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Figure S1, continued
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(h) CYT (geometric mean) by tumor stage. Stages are shown with at least 30 corresponding samples. Each gray dot
represents a sample, and black lines mark the medians. P-values (upper right of each plot) correspond to Pearson
correlation between log CYT and rank stage (i.e.. "stage 1A"=1, "stage 1B"=2, etc.).

86



Figure S1, continued
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(i) Heatmap indicating the association between rank stage and z-scored marker gene enrichment in each tumor
type. Colors represent the magnitude and direction of the correlation as indicated in the legend. Cell borders
indicate significance levels (thin black lines, p<0.05; thick black lines, p<0.0005).
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(j) Survival curves based on cytolytic activity and other cell type markers. In each survival analysis, patients were
segregated into "high" (black line) and "low" (gray line) cohorts, each with an identical admixture of tumor
histological type and stage (Methods). In the leftmost column, "high" and "low" were based on metagene
expression. In other panels, "high" and "low" were based on expression ratios, as indicated. P-values were
assigned based on Cox proportional hazards models. Panels are highlighted in green when the "high" group had a
advantage and in orange when the "low" group had a survival advantage (using a nominal significance cutoff of
p<0.05). Darker orange and green correspond to stronger unadjusted p-values (p<0.0005).
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Figure S2. Viral gene expression and cell type correlates, related to Figure 2
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(a) Part 1 of 7. Read depths are presented on log-scale for viruses with depths exceeding 100 and on linear scale
otherwise. GenBank annotations of known viral elements are presented above.
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Figure S2, continued
HBV
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(a) Part 2 of 7. Read depths are presented on log-scale for viruses with depths exceeding 100 and on linear scale
otherwise. GenBank annotations of known viral elements are presented above.
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Figure S2, continued
HCV
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(a) Part 3 of 7. Read depths are presented on log-scale for viruses with depths exceeding 100 and on linear scale
otherwise. GenBank annotations of known viral elements are presented above.
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Figure S2, continued
HPV
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(a) Part 4 of 7. Read depths are presented on log-scale for viruses with depths exceeding
otherwise. GenBank annotations of known viral elements are presented above.
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Figure S2, continued

Kaposi Sarcoma Virus
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Figure S2, continued

BK polyoma virus
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(a) Part 6 of 7. Read depths are presented on log-scale for viruses with depths exceeding 100 and on linear scale
otherwise. GenBank annotations of known viral elements are presented above.
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Figure S2, continued

Merkel cell polyoma virus
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(a) Part 7 of 7. Read depths are presented on log-scale for viruses with depths exceeding 100 and on linear scale
otherwise. GenBank annotations of known viral elements are presented above.
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Figure S2, continued
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(b) Tumor samples plotted according to the first two principal components log-transformed gene expression (for
tumor types with 1 HBV+ case). Color coding corresponds to that used in Figure 1. HBV-infected samples are
represented by larger, black-outlined points.
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Figure S2, continued
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(c) Heatmap showing association between viral infection status and the enrichment of cell type markers. Colors
correspond to the difference in z-scored enrichment between infected and non-infected samples. Cell borders
indicate the unadjusted significance of the association according to Wilcoxon rank-sum test.
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Figure S2, continued
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Figure S2, continued
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nucleotide variant
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low-CYT tumors.
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(counting mutations in

Slate coding sequence only)
is represented in an
8x12 grid according to
the provided legends.
The first plot in each
row represents
mutation rate averages
for high-CYT tumors

e K (top 25% for that
tumor type). The
middle plot represents
mutation rate averages
for low-CYT tumors
(bottom 25% for that
tumor type). The third
plot represents the

P= arithmetic difference.
In each plot, the back
left row of bars
corresponds to
Apobec-characteristic
tCx-)tXx mutations. To

assess Apobec
enrichment for a
tumor type, the
Spearman rank
correlation between
CYTand the
Apobec/non-Apobec
mutation ratio was
calculated across all

samples.
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Figure S2, continued
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(e) Part 2 of 4. Single-
nucleotide variant
spectra for high- vs.
low-CYT tumors.
Mutational spectra are
defined by the base
change and the
sequence context one
base upstream and one

1 base downstream. T-->X
and G+X mutations are
considered from the
perspective of the
opposite strand such
that all mutations are
A-X or C-X. The
average rate of each
mutation per sample
(counting mutations in
coding sequence only)
is represented in an
8x12 grid according to
the provided legends.
The first plot in each
row represents
mutation rate averages
for high-CYT tumors
(top 25% for that tumor
type). The middle plot
represents mutation
rate averages for low-
CYT tumors (bottom
25% for that tumor
type). The third plot
represents the
arithmetic difference.
In each plot, the back
left row of bars
corresponds to Apobec-
characteristic tCx-tXx
mutations. To assess
Apobec enrichment for
a tumor type, the
Spearman rank
correlation between
CYTand the
Apobec/non-Apobec
mutation ratio was
calculated across all
samples.
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(e) Part 3 of 4. Single-
nucleotide variant

ference spectra for high- vs.
low-CYT tumors.
Mutational spectra are
defined by the base
change and the
sequence context one
base upstream and one
base downstream. T--X
and G4X mutations are
considered from the
perspective of the
opposite strand such
that all mutations are
A->X or C-X. The
average rate of each
mutation per sample
(counting mutations in
coding sequence only)
is represented in an
8x12 grid according to
the provided legends.
The first plot in each
row represents
mutation rate averages
for high-CYT tumors
(top 25% for that tumor
type). The middle plot
represents mutation
rate averages for low-
CYT tumors (bottom
25% for that tumor

type). The third plot

apbe'represents the
arithmetic difference.
In each plot, the back
left row of bars
corresponds to Apobec-
characteristic tCx-tXx
mutations. To assess
Apobec enrichment for
a tumor type, the
Spearman rank
correlation between
CYT and the
Apobec/non-Apobec
mutation ratio was
calculated across all
samples.
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Figure S2, continued

High-CYT Samples (top 25%) Low-CYT Samples (bottom 25%) Arithmetic Difference
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(e) Part 4 of 4. Single-nucleotide variant spectra for high- vs. low-CYT tumors.
Mutational spectra are defined by the base change and the sequence context one base
upstream and one base downstream. T4X and G4X mutations are considered from the
perspective of the opposite strand such that all mutations are A4X or C4X. The
average rate of each mutation per sample (counting mutations in coding sequence only)
is represented in an 8x12 grid according to the provided legends. The first plot in each
row represents mutation rate averages for high-CYT tumors (top 25% for that tumor
type). The middle plot represents mutation rate averages for low-CYT tumors (bottom
25% for that tumor type). The third plot represents the arithmetic difference. In each
plot, the back left row of bars corresponds to Apobec-characteristic tCx-tXx mutations.
To assess Apobec enrichment for a tumor type, the Spearman rank correlation between
CYT and the Apobec/non-Apobec mutation ratio was calculated across all samples.
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Figure S3. Mutations, Neo-epitopes and their correlates, related to Figure 3

Percent > 200

Thyroid (n=319) 0%

Breast (n=760) 2%

Glioma (n=202) 1%

Prostate (n=261) 1%

Ovarian (n=315) -U- 0%

Kidney Clear (n=404) -- 0%

Glioblastoma (n=281) 1%

Uterine (n=245) 36%

Head & Neck, HPV+ (n=39) 21%

Kidney Pap. (n=167) 5%

Colorectal (n=21 1) - - 16%

Cervical, HPV+ (n=165) 21%

Head & Neck, HPV- (n=256) 23%

Stomach, EBV- (n=306) 40%

Liver, HBV-, HCV- (n=143) 48%

Bladder (n=131) 53%

Liver, HBV+ (n=50) A - 54%

Lung Adeno. (n=227) 63%

Lung Squam. (n=175) - 1%

Melanoma (n=99) 7%

I I I I I I I I
LO 110 00 00 0

Ln CI) 0 0
'-- to0

Total CDS Mutations

(a) Boxplots indicate typical rates of non-silent mutation (coding sequence events only) in each tumor type. Solid
bodies represent interquartile ranges and are notched by the median; lines demarcate the 5 th to 9 5th percentile
range. The right axis indicates the fraction of samples with >200.
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Figure S3, continued

Percent > 20

Thyroid (n=317) 0%

Prostate (n=261) 3%

Glioma (n=200) 3%

Breast (n=735) 10%

Ovarian (n=245) 7%

Colorectal (n=152) 18%

Kidney Clear (n=398) 9%

Glioblastoma (n=281) 3%

Uterine (n=244) 39%

Head & Neck, HPV+ (n=33) 27%

Cervical, HPV+ (n=164) 36%

Kidney Pap. (n=167) 29%

Head & Neck, HPV- (n=246) 45%

Liver, HBV+ (n=49) 49%

Stomach, EBV- (n=269) 63%

Liver, HBV-, HCV- (n=141) 58%

Bladder (n=131) 70%

Lung Adeno. (n=219) 77%

Lung Squam. (n=174) 88%

Melanoma (n=99) 75%

I I I I I I I I

Mutations Yielding Predicted HLA Binders

(b) Analogous to (a) but presenting the rate of mutations expected to yield an epitope with strong predicted
binding to patient-matched HLA and moderate-to-high expression (median expression 10 TPM within the given
tumor type). The right axis indicates the fraction of samples with >20.
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(c) Relationship between smoking and cytolytic activity in
lung and head and neck tumors. Cytolytic activity for smokers

and those reformed for less than 15 years verses never-

smokers in lung squamous cell carcinoma, lung
adenocarcinoma, and head and neck cancer. Solid bodies

represent interquartile ranges and are notched by the

median; vertical lines demarcate the 5th to 9 5th percentile
range. P-values reflect Wilcoxon rank-sum tests.
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Figure S3, continued
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(d) Heatmap showing association between total count of mutations and cell type marker gene enrichment. Colors
correspond to Spearman correlation, and borders indicate unadjusted p-value.
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Figure S3, continued
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(e) Analogous to (c) but presenting association for neo-epitope counts shown in (b)
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Figure S3, continued

10

(f) Scatter plot showing correlation of total mutations and the count of predicted expressed neo-epitopes.
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Figure S3, continued

Head & Neck, HPV+ (n=33) p = 0.014

Liver, HBV+ (n=47) p = 0.028

Bladder (n=128) p = 0.012

Thyroid (n=302) p = 0.045

Prostate (n=257) p = O.016

Liver, HBV-, HCV- (n=139) p = 0.03

Glioma (n=195)

Cervical, HPV+ (n=158) p = 0.084

Head & Neck, HPV- (n=245)

Lung Squam. (n=1 70)

Kidney Clear (n=399)

Breast (n=728)

Ovarian (n=245)

Glioblastoma (n=278)

Kidney Pap. (n=167)

Stomach, EBV- (n=258)

Melanoma (n=95)

Lung Adeno. (n=219)

Uterine (n=242)

Colorectal (n=149) p = 008

o to 0 LO 0 LO 0

Observed/Expected Neo-Epitopes
per non-Silent Mutation

(g) Analogous to Figure 3C, but using neo-epitope prediction based on randomly re-permuted HLA genotype

assignments (across patients).
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Figure S4, continued
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(b) Distributions of cytolytic activity in according to the count of CT antigens (CTAs) expressed >1 TPM (only bins
with >10 samples are shown). Solid bodies represent interquartile ranges and are notched by the median; vertical
lines demarcate the 5 t' to 9 5th percentile range. Asterisks denote p<0.05 for comparison of adjacent distributions
(Wilcoxon rank-sum test).
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Figure S4, continued
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(c) Heatmap exploring chromosomal
deletions targeting cancer testis genes.
The color of each box indicates
whether the given gene had lower
expression when its locus was deleted.
The outline indicates whether high CYT
was positively associated with deletion
status. The text (blank / "D" / "DD")
indicates whether the locus was more
likely to be deleted than amplified
(with respect to average rate across
genes in the tumor type). Thresholds
reflect liberal nominal p-values, p<0.1
and p<0.01.

Deletion associated with lower cis expression, p < 0.1

Deletion associated with lower cis expression, p < 0.01

Deletion associated with higher CYT, p < 0.1

Deletion associated with higher CYT, p < 0.01

o More often deleted than amplified, p < 0.1

Do More often deleted than amplified, p < 0.01

112



Figure S4, continued
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(d) Part 1 of 6. Coverage depth of ERV of reference sequence with reads from TCGA tumor samples. Each plot
represents the depth of reads mapping to a given ERV reference sequence. Some ERVs are represented by multiple
sequences. ORFs of length greater than 75nt that scored for InterProScan motifs are highlighted in green along
with the name of the motif for which they scored.
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Figure S4, continued
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(d) Part 2 of 6. Coverage depth of ERV of reference sequence with reads from TCGA tumor samples. Each plot
represents the depth of reads mapping to a given ERV reference sequence. Some ERVs are represented by multiple
sequences. ORFs of length greater than 75nt that scored for InterProScan motifs are highlighted in green along
with the name of the motif for which they scored.
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Figure S4, continued
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(d) Part 3 of 6. Coverage depth of ERV of reference sequence with reads from TCGA tumor samples. Each plot
represents the depth of reads mapping to a given ERV reference sequence. Some ERVs are represented by multiple
sequences. ORFs of length greater than 75nt that scored for InterProScan motifs are highlighted in green along
with the name of the motif for which they scored.
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Figure S4, continued
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(d) Part 4 of 6. Coverage depth of ERV of reference sequence with reads from TCGA tumor samples. Each plot
represents the depth of reads mapping to a given ERV reference sequence. Some ERVs are represented by multiple
sequences. ORFs of length greater than 75nt that scored for InterProScan motifs are highlighted in green along
with the name of the motif for which they scored.
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(d) Part 5 of 6. Coverage depth of ERV of reference sequence with reads from TCGA tumor samples. Each plot
represents the depth of reads mapping to a given ERV reference sequence. Some ERVs are represented by multiple
sequences. ORFs of length greater than 75nt that scored for InterProScan motifs are highlighted in green along
with the name of the motif for which they scored.
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Figure S4, continued
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(d) Part 6 of 6. Coverage depth of ERV of reference sequence with reads from TCGA tumor samples. Each plot
represents the depth of reads mapping to a given ERV reference sequence. Some ERVs are represented by multiple
sequences. ORFs of length greater than 75nt that scored for InterProScan motifs are highlighted in green along
with the name of the motif for which they scored.
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Figure S4, continued
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(e) Part 1 of 11. ERV expression ranges for tumor vs. normal samples, all ERVs. Semi-transparent left-right jittered

points represent the expression values observed in a compendium of tissues. The 5 th to 9 5th percentile range is

highlighted in orange for tumor tissues and in green for normal tissues. The maximum 9 5th percentile value

observed in tumors is marked with an orange horizontal line, and the corresponding maximum for normal tissues

is marked with a green horizontal line. These values (marked on the right axis) were the basis for determining

tumor-specific expression. ERVs designated as TSERVs are marked as such. Many ERVs, while not specific to

tumors, were elevated in tumors.
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Figure S4, continued
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(e) Part 2 of 11. ERV expression ranges for tumor vs. normal samples, all ERVs. Semi-transparent left-right jittered
points represent the expression values observed in a compendium of tissues. The 5 th to 9 5 th percentile range is
highlighted in orange for tumor tissues and in green for normal tissues. The maximum 9 5th percentile value
observed in tumors is marked with an orange horizontal line, and the corresponding maximum for normal tissues
is marked with a green horizontal line. These values (marked on the right axis) were the basis for determining
tumor-specific expression. ERVs designated as TSERVs are marked as such. Many ERVs, while not specific to
tumors, were elevated in tumors.
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Figure S4, continued
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(e) Part 3 of 11. ERV expression ranges for tumor vs. normnal samples, all ERVs. Semi-transparent left-right jittered
points represent the expression values observed in a compendium of tissues. The 5 th to 95 th percentile range is
highlighted in orange for tumor tissues and in green for normal tissues. The maximum 9 5th percentile value
observed in tumors is marked with an orange horizontal line, and the corresponding maximum for normal tissues
is marked with a green horizontal line. These values (marked on the right axis) were the basis for determining
tumor-specific expression. ERVs designated as TSERVs are marked as such. Many ERVs, while not specific to
tumors, were elevated in tumors.

121



Figure S4, continued
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(e) Part 4 of 11. ERV expression ranges for tumor vs. normal samples, all ERVs. Semi-transparent left-right jittered
points represent the expression values observed in a compendium of tissues. The 5th to 9 5th percentile range is
highlighted in orange for tumor tissues and in green for normal tissues. The maximum 9 5 th percentile value
observed in tumors is marked with an orange horizontal line, and the corresponding maximum for normal tissues
is marked with a green horizontal line. These values (marked on the right axis) were the basis for determining
tumor-specific expression. ERVs designated as TSERVs are marked as such. Many ERVs, while not specific to
tumors, were elevated in tumors.
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Figure S4, continued
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(e) Part 5 of 11. ERV expression ranges for tumor vs. normal samples, all ERVs. Semi-transparent left-right jittered

points represent the expression values observed in a compendium of tissues. The 5th to 9 5th percentile range is

highlighted in orange for tumor tissues and in green for normal tissues. The maximum 9 5 th percentile value

observed in tumors is marked with an orange horizontal line, and the corresponding maximum for normal tissues

is marked with a green horizontal line. These values (marked on the right axis) were the basis for determining

tumor-specific expression. ERVs designated as TSERVs are marked as such. Many ERVs, while not specific to

tumors, were elevated in tumors.
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Figure S4, continued
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(e) Part 6 of 11. ERV expression ranges for tumor vs. normal samples, all ERVs. Semi-transparent left-right jittered
points represent the expression values observed in a compendium of tissues. The 5 th to 9 5th percentile range is
highlighted in orange for tumor tissues and in green for normal tissues. The maximum 9 5 th percentile value
observed in tumors is marked with an orange horizontal line, and the corresponding maximum for normal tissues
is marked with a green horizontal line. These values (marked on the right axis) were the basis for determining
tumor-specific expression. ERVs designated as TSERVs are marked as such. Many ERVs, while not specific to
tumors, were elevated in tumors.
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Figure S4, continued
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(e) Part 7 of 11. ERV expression ranges for tumor vs. normal samples, all ERVs. Semi-transparent left-right jittered

points represent the expression values observed in a compendium of tissues. The 5th to 9 5th percentile range is

highlighted in orange for tumor tissues and in green for normal tissues. The maximum 9 5 th percentile value

observed in tumors is marked with an orange horizontal line, and the corresponding maximum for normal tissues

is marked with a green horizontal line. These values (marked on the right axis) were the basis for determining

tumor-specific expression. ERVs designated as TSERVs are marked as such. Many ERVs, while not specific to

tumors, were elevated in tumors.
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Figure S4, continued
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(e) Part 8 of 11. ERV expression ranges for tumor vs. normal samples, all ERVs. Semi-transparent left-right jittered
points represent the expression values observed in a compendium of tissues. The 5th to 95 th percentile range is
highlighted in orange for tumor tissues and in green for normal tissues. The maximum 95th percentile value
observed in tumors is marked with an orange horizontal line, and the corresponding maximum for normal tissues
is marked with a green horizontal line. These values (marked on the right axis) were the basis for determining
tumor-specific expression. ERVs designated as TSERVs are marked as such. Many ERVs, while not specific to
tumors, were elevated in tumors.
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Figure S4, continued
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(e) Part 9 of 11. ERV expression ranges for tumor vs. normal samples, all ERVs. Semi-transparent left-right jittered
points represent the expression values observed in a compendium of tissues. The 5th to 95t" percentile range is
highlighted in orange for tumor tissues and in green for normal tissues. The maximum 95th percentile value
observed in tumors is marked with an orange horizontal line, and the corresponding maximum for normal tissues
is marked with a green horizontal line. These values (marked on the right axis) were the basis for determining
tumor-specific expression. ERVs designated as TSERVs are marked as such. Many ERVs, while not specific to
tumors, were elevated in tumors.
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Figure S4, continued
.2 J_

E'VS?' h

ERV3-2

ERVW-S

ERVK-2C

C4

(e) Part 10 of 11. ERV expression ranges for tumor vs. normal samples, all ERVs. Semi-transparent left-right jittered
points represent the expression values observed in a compendium of tissues. The 5th to 9 5 th percentile range is
highlighted in orange for tumor tissues and in green for normal tissues. The maximum 9 5 th percentile value
observed in tumors is marked with an orange horizontal line, and the corresponding maximum for normal tissues
is marked with a green horizontal line. These values (marked on the right axis) were the basis for determining
tumor-specific expression. ERVs designated as TSERVs are marked as such. Many ERVs, while not specific to
tumors, were elevated in tumors.
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Figure S4, continued
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(e) Part 11 of 11. ERV expression ranges for tumor vs. normal samples, all ERVs. Semi-transparent left-right jittered

points represent the expression values observed in a compendium of tissues. The 5 th to 9 5 th percentile range is

highlighted in orange for tumor tissues and in green for normal tissues. The maximum 9 5 th percentile value

observed in tumors is marked with an orange horizontal line, and the corresponding maximum for normal tissues

is marked with a green horizontal line. These values (marked on the right axis) were the basis for determining

tumor-specific expression. ERVs designated as TSERVs are marked as such. Many ERVs, while not specific to

tumors, were elevated in tumors.
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Figure S4, continued
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(g) Heatmap indicating association between percent necrosis and ssGSEA enrichments for markers for various
immune cell types, by cancer. Colors correspond to Spearman correlations, and cell borders correspond to
association p-values, as indicated in the legend.
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Figure S5. Genes with enriched point mutation in high- or low-CYT tumors, related to Figure 5
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(a) Non-silent mutation counts for significant
genes in high- and low-CYT tumors. High-
and low-CYT tumors were defined as the top
and bottom CYT quartile, respectively, per
tumor type. Mutation counts in high-CYT
samples point upward from the x-axis,
mutation counts in low-CYT samples point
downward from the x-axis. Bars are color-
coded according to tumor type using the
color code indicated in the legend and used
elsewhere. For a given gene, tumor types
exhibiting no mutations among the high-CYT
or low-CYT samples are not depicted. Gene
names and pan-cancer adjusted p-values (BH
method) appear at the top of the figure.
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Figure S5, continued
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(b) Heatmap representing pan-cancer
enrichments identified for other cell type
signatures. Color corresponds to the effect
size of non-silent mutation on rank-
transformed signature expression; cell
borders represent the adjusted p-value for
association.
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Figure S5, continued
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(c) Part 1 of 5. Positions of point mutation in CYT-associated genes. Mutated positions and their functional
classifications are reported for each gene. Colors indicate mutation severity (synonymous, nonsynonymous, or
probable loss of function), and vertical height represents event frequency. Total counts of each class of mutation
appear in the upper left corner. Light blue peaks represent the relative local density of events as estimated using a
smoothing bandwidth of 30 nucleotides. Sequence domains, as scored by Interpro, are represented by widened
regions. Distinct exons are demarcated by alternating domains of gray and light gray.
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Figure S5, continued

(c) Part 2 of 5. Positions of point mutation in CYT-associated genes. Mutated positions and their functional

classifications are reported for each gene. Colors indicate mutation severity (synonymous, nonsynonymous, or

probable loss of function), and vertical height represents event frequency. Total counts of each class of mutation

appear in the upper left corner. Light blue peaks represent the relative local density of events as estimated using a

smoothing bandwidth of 30 nucleotides. Sequence domains, as scored by Interpro, are represented by widened

regions. Distinct exons are demarcated by alternating domains of gray and light gray.

135

W U11 in "'J-I4 ,11

P"--d.N W AI-WW. 3;

I f UIL 111 1



Figure S5, continued

Ii

(c) Part 3 of 5. Positions of point mutation in CYT-associated genes. Mutated positions and their functional
classifications are reported for each gene. Colors indicate mutation severity (synonymous, nonsynonymous, or
probable loss of function), and vertical height represents event frequency. Total counts of each class of mutation
appear in the upper left corner. Light blue peaks represent the relative local density of events as estimated using a
smoothing bandwidth of 30 nucleotides. Sequence domains, as scored by Interpro, are represented by widened
regions. Distinct exons are demarcated by alternating domains of gray and light gray.
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Figure S5, continued
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(c) Part 4 of 5. Positions of point mutation in CYT-associated genes. Mutated positions and their functional

classifications are reported for each gene. Colors indicate mutation severity (synonymous, nonsynonymous, or

probable loss of function), and vertical height represents event frequency. Total counts of each class of mutation

appear in the upper left corner. Light blue peaks represent the relative local density of events as estimated using a

smoothing bandwidth of 30 nucleotides. Sequence domains, as scored by Interpro, are represented by widened

regions. Distinct exons are demarcated by alternating domains of gray and light gray.
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Figure S5, continued

I
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(c) Part 5 of 5. Positions of point mutation in CYT-associated genes. Mutated positions and their functional
classifications are reported for each gene. Colors indicate mutation severity (synonymous, nonsynonymous, or
probable loss of function), and vertical height represents event frequency. Total counts of each class of mutation
appear in the upper left corner. Light blue peaks represent the relative local density of events as estimated using a
smoothing bandwidth of 30 nucleotides. Sequence domains, as scored by Interpro, are represented by widened
regions. Distinct exons are demarcated by alternating domains of gray and light gray.
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Figure 56. Significant copy number alterations, related to Figure 6
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FDRs are established.
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Figure S6, continued
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(a) Part 2 of 2. Locus
zooms for copy number
alterations with
uncorrected p<0.05.
Plots indicate CYT
association for
amplifications (orange)
and deletions (green) in
significant and near-
significant regions.
Upward/downward
direction indicates
positive/negative
association of lesion with
CYT. One bar is
presented for each gene
in the region. Dotted
lines indicate the
uncorrected p-values at
which a 1% and 10%
FDRs are established.



Figure S6, continued
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(b) CNA associations with enrichments of other cell type markers. Significant regions are highlighted according to

the class of lesion (amplification or deletion) and the direction of the association. Many loci were significantly

associated with multiple cell type markers. For the analysis yielding the strongest signal for a locus, the unbiased

peak gene is labeled.
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Figure S7. Classifying tumors by their immunological properties, related to Figure 7

(A) Proposed mechanisms
that induce local cytolytic
activity in the tumor
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A more elaborate version of Figure 7 showing the specific tumor types and mechanisms implicated in (a) immune
provocation (b) intrinsic immune escape and (c) extrinsic immune escape. Red cells represent cytolytic effectors
(with spears) and blue cells represent other immune infiltrates. Large green cell represents tissue pre-
transformation, and brown cells represent the tumor in various stages of immune interaction. In (b), "ricochet"
lines indicate resistance to cytolytic action; whereas in (c), flat-capped arrows indicate
suppression/removal/exclusion of cytolytic effector cells. Relates to main Figure 7.
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Supplemental Tables

Since many of the supplemental tables are large, they are available online only:

http://www.sciencedirect.com/science/article/pii/S0092867414016390
(DOI:10. 1016/j.cell.2014.12.033)

Table S1. Data inventory and cell type gene expression markers, related to Figure 1

(a) Inventory of TCGA tumor samples. Columns indicate patient ID, available data types, tumor

type (at the TCGA project level), histological subtype, and a flag indicating whether histological

subtype was considered to be known or unknown. Additional columns present the CYT

calculations (log-average GZMA and PRF1 expression in TPM) and cell type/process enrichment

scores (z-scored ssGSEA) for the samples. (b) Inventory of TCGA and GTEX samples used as

normal controls. Columns indicate the patient ID, study origin, tissue of origin, and the available

data (gene expression, viral expression, and ERV expression) for each sample. Additional

columns present CYT and enrichment calculations, as in (a). Note that z-scoring was applied to a

joint data set of tumor and normal samples, so values in (a) and (b) can be directly compared.

Data availability discrepancies reflect lags between the holdings of GDAC Firehose (gene

expression data) and CGHub (viral and ERV quantification) and the different dates on which

CGHub was accessed. (c) Gene symbols for best transcriptomic cell type markers according to

analysis of Fantom5 CAGE data.

Table S2. Viral expression and gene set enrichment, related to Figure 2

(a) Viral titers quantified in viral reads per million mapped to the human genome (RPM). Viral

titers are quantified in samples from TCGA and GTEx. Non-zero calls required at least 300nt of

the viral reference genome to be covered at a read depth of at least 1. (b) Gene sets enriched

and depleted in virally infected tumors. Gene sets enrichments are presented for tumor types

exhibiting at least five cases of infection with the given virus. Enrichments are GOrilla

interpretation of ranked lists of differentially expressed genes.

Table S3. Neopeptide binding predictions, related to Figure 3

Mutation-introduced novel peptides predicted to load imputed HLA alleles (tab-delimited text;

HLA allele calls are masked for patient privacy). Data includes mutated genes, the

corresponding wild type and mutant peptides, and affinity scores for the alleles they were

predicted to bind.
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Table S4. Mutation/Neopeptide counts and gene set enrichment, related to Figure 3

(a) Table presents counts of total mutations, counts of mutations predicted to yield HLA-

binding neopeptides, the ratios of observed vs. expected binders per non-silent mutation, and

viral infection statuses for all samples. Adjacent scatter plots show the raw data used to

generate Figure 3A and Figure 3B. (b) Gene sets up-regulated given lower than expected rate of

neo-epitopes per non-silent mutation in colorectal cancer.

Table S5. Ectopic gene expression, related to Figure 4

(a) Genes with testis-specific expression and their respective re-expressing tumor types. Genes

with testis-specific expression, including both SEREX-identified and novel genes, are presented

along with the rates at which they were observed at >1 TPM in each tumor type, omitting

tumor types in which they were never expressed >1 TPM. Spearman correlations with CYT are

also presented. (b) Expression values for 66 ERVs in samples from TCGA and GTEx. Expression

values are expressed in reads per million mapped to the human genome (RPM). (c) Genes sets

significantly up or down-regulated in TSERV-high tumors. For each TSERV, gene set enrichment

analysis was conducted on the genes most significantly correlated and anti-correlated with the

expression of the element in the tissue that demonstrated maximal expression.

Table 56. Analysis of significantly point-mutated genes, related to Figure 5

(a) Candidate genes significantly mutated in cancer. Genes identified in previous pan-cancer

MutSigCV analysis at an FDR of 10% or in the current study at an FDR of 10% were included and

listed noting the analyses supporting them. (b) Enrichment statistics for pan-cancer significant

genes. Statistics are presented for the overall pan-cancer analysis and for tumor type-specific

sub-analyses. Beta values reflect that the dependent variable (CYT) was transformed to rank

values scaled from 0 to 100. The table also presents counts of mutated and total samples per

tumor type / gene. Note that HLA mutations were called for a larger number of samples than

general mutations. (c) HLA mutational status for available TCGA tumor samples. Coding

mutations for HLA-A, B, and C are presented. These were called through application of the

POLYSOLVER algorithm rather than by the Firehose/Synapse mutation calling pipelines. (d)

Mutations associated with viral infection. Table indicates odds ratios, Fisher exact test p-values

and counts for virally infected vs. mutant samples. (e) Mutations associated with microsatellite

instability (MSI) in colorectal cancer (MSI-high vs. MSI-low and microsatellite stable) at 10%

FDR. Table indicates odds ratios, Fisher exact test p-values and counts for virally infected vs.

mutant samples, and BH-correctef p-values. (f) Gene set enrichments associated with other

significantly mutated immune genes. Some with definitive roles in immunity were identified as

significantly mutated in cancer but did not show mutational association with CYT. For each of

these genes, the gene expression correlates of its mutation were analyzed in the tumor type

exhibiting the strongest MutSigCV p-value. G(rnlla results retu 1-1-g11 I=L

enrichments are presented.
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Table S7. CYT association statistics for significant copy number alterations (CNAs), related to

Figure 6

Statistics are presented for the overall pancancer analysis and for tumor type-specific sub-

analyses. Beta values reflect that the dependent variable (CYT) was transformed to rank values

scaled from 0 to 100 and the scaling of the CNA events per sample to have a median amplitude

of 1. The table also presents counts of mutated and total samples per tumor type / gene;

mutant condition was based on nonzero GISTIC score.

Table 58. A summary of immunological properties per tumor type, related to Figure 7

Immune attributes and associations (rows) and the corresponding tumor types in which they

manifest (columns) with a "1" (highlighted in red) to mark positive instances of the trend or

attribute and a "-1" (highlighted in blue) to mark cases in which the opposite trend was

observed.
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Introduction

With greater than 55,000 expression profiling studies hosted on the Gene Expression Omnibus

(GEO) web server (http://www.ncbi.nlm.nih.gov/geo), it is clear that expression profiling of

mRNA has become a ubiquitous scientific tool for understanding the multidimensional

processes of health and disease. Using mRNA levels as a readout on cellular state, these studies

have presumed that mRNA levels highly correlate with protein abundance - the actual effector

molecules that drive cellular processes. However, for greater than a decade, a series of

scientific reports have argued that transcriptional data is in fact highly insufficient for inferring

protein levels and that the post-transcriptional processes of protein translation and

degradation determine a larger share of the variance in protein levels. If this is true, it argues

for greatly expanding research on post-transcriptional rather than transcriptional processes

that influence protein expression.

Post-transcriptional regulation mainly operates at the level of changing per-mRNA translation

rates or changing the rates at which proteins are degraded. Part of my graduate thesis work

was devoted to quantifying the role of transcription versus post-transcriptional processes in

determining the abundance of proteins. A rigorous solution to this problem would address a

basic cell biology question and have implications for how researchers should interpret mRNA

levels as reflecting protein abundance.
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Mechanisms of protein synthesis

In eukaryotes, the process of translation begins with the ribosome recognizing the 5' cap

structure (a prepended, 5'-to-5' linked guanine) of the incipient mRNA. The first form of

regulation that occurs is the recognition of the first AUG, which is enhanced if it falls within a

Kozak motif (aAaAaAATGTCt in yeast, gcc[a/g]ccATGG in vertebrates) (Hamilton et al., 1987;

Kozak, 1987). Transcripts with stronger Kozak motifs are more rapidly translated (Kozak, 1986).

Interestingly, initiation from the first AUG is not a firm requirement, with some translation

beginning at CUGs (Ingolia et al., 2011) or at internal downstream ribosomal entry cites (IRESs)

(Filbin and Kieft, 2009; Graber and Holcik, 2007). Additionally, the main open reading frame of

the transcript may come after one or more short upstream open reading frames (uORFs), which

appear to compete with the main open reading frame (Calvo et al., 2009). These alternative

forms of translation initiation are thought to contribute additional regulation to the rate at

which translation occurs. As the ribosome elongates the nascent polypeptide, additional forms

of regulation come into play. For one, tRNAs species are not all equally abundant meaning that

codon usage in the transcript can affect the rate at which cognate tRNAs are recruited. This

appears to be an especially important constraint in yeast, in which highly expressed genes have

evolved to have a much higher level of codon usage "efficiency" (Bennetzen and Hall, 1982).

RNA secondary structures and protein chaperone elongation factors (notably, eEF1A, eEF1B

and eEF2) contribute to elongation rates by causing and resolving translational stalls,

respectively (Browne and Proud, 2002). The total length of the polyA tail as well as the

presence of RNA-binding proteins known to interact with the polyA tail (possibly by promoting

more optimal secondary structure) are also known to affect translation rate (Lackner et al.,
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2007; Preiss and Hentze, 1998; Schwartz and Parker, 1999). One especially well-studied

mechanism of post-transcriptional control is microRNAs. These small RNAs bind the 3' UTRs of

mRNAs hosting cognate seed sites, resulting in a moderate decrease in the translation of the

target mRNA. However, it is not known how much of this effect is mediated by reduced stability

of the mRNA target (an effect present in measured mRNA levels) or by direct interaction with

the translational machinery (an effect measured RNA levels would not account for) (Huntzinger

and Izaurralde, 2011).

Mechanisms of protein degradation

The degradation of proteins is mediated by two major systems: lysosomal degradation and

ubiquitin mediated proteolysis. Lysosomal degradation involves proteins being engulfed into a

lysosomal vacuole where they are exposed to degradative enzymes. Cytosolic proteins assist in

guiding proteins to the lysosome and may recognize specific protein motifs (e.g. KFERQ; (Dice,

1990)). Ubiquitination is a process by which a ubiquitin molecule (a 76AA protein) is bound to a

lysine residue on a substrate protein through the action of one of three ubiquitin ligases (El, E2,

and E3) (Joazeiro and Weissman, 2000). Ubiquitins can form chains, with each new ubiquitin

binding to one of 7 possible lysines in the previous ubiquitin. Depending on which lysine is

chained on, the protein may be targeted for degradation in the proteosome (as with chaining

on K48; (Hicke, 2001)) or re-routed to some other process (as with chaining on K63; (Miranda

and Sorkin, 2007)). In addition to lysosomal degradation and ubiquitination, several other

mechanisms are known to affect protein degradation rates. A special class of proteins called N-
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recognins recognize N-terminal patterns on proteins (in mammals, for instance, arginylated N-

terminal Asn and Glu residues) and tag them for degradation, a process which appears to be

largely dependent on whether the N-end is buried or solute exposed (Tasaki et al., 2012). In

addition, PEST sequences (proline-glutamic acid-serine-threonine) have been found to be

enriched in proteins with a rapid half-life (Rogers et al., 1986), though it is unclear whether the

effect is mediated through the proteasome or the non-lysosomal cysteine protease calpain

(Reverte et al., 2001; Shumway et al., 1999). Finally, proteins with large unstructured domains

are also known to exhibit reduced half-lives (Gsponer et al., 2008), though the exact mechanism

of this is not fully understood either.

Quantifying contributions of transcriptional and post-transcriptional processes in determining

protein abundance

Given all these mechanisms, it is prudent to systematically assess their overall contribution to

homeostatic protein levels as well as to protein level fold changes induced by stimulus or

differentiation. The answers to these questions bear heavily on both the appropriateness of

RNA expression profiling as a window into biological state and on the relative effort future

research should invest in understanding transcriptional regulation vs. the many post-

transcriptional processes listed above. While many groups have tackled this question and

declared a major contribution from post-transcriptional regulation, the specific estimates have

varied widely by methodology and experimental platform leading to a level of uncertainty

(Maier et al., 2009),
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For the most part, quantification of post-transcriptional contribution has been approached

using coefficients of determination, i.e. R 2 . R2 measures the fraction of the variance in a

dependent variable (in this case, protein levels across the genome) that can be explained using

a model based on one or more predictor variables. Alternatively, it can be thought of the

square of the correlation (r) between the dependent variable and the model predictions. Those

arguing for the importance of post-transcriptional processes have pointed to the low R2 of

models in which RNA level is the only predictor variable or to the increase in R2 that can be

achieved by adding per-gene translation and degradation rates into such models (Gygi et al.,

1999; Schwanhausser et al., 2011). (Others have also used this framework for determining the

respective contributions of RNA transcription and degradation rates to total RNA levels (Rabani

et al., 2014), but this is not discussed here.) Though this formulation seems reasonably concise,

there are certain operating assumptions that are important to consider from the outset. First of

all, the consensus of the field has settled on log-protein expression (rather than absolute

protein expression) as the dependent variable of interest, probably motivated by the desire to

have a result that is broadly representative of the genome and not driven by several abundantly

expressed genes (Futcher et al., 1999). Second, analyses have limited their scope to genes with

non-zero protein expression. Naturally, including transcriptionally silent genes (necessarily

absent from the proteome) would greatly increase the variance explained by mRNA levels (Li et

al., 2014); however, the field has generally adopted the former approach, which is probably

more representative of the entire RNA-to-protein life cycle. Third, there is the question of

generalizability across organisms. Many authors in this field have framed their results as being

broadly extendable across eukaryotes; however, in actuality, the results in the most studied

153



system, yeast, have been variable enough that organism-level granularity is likely not yet within

reach (Futcher et al., 1999; Gygi et al., 1999; Lee et al., 2011; Vogel et al., 2011). Finally and

most importantly, there is role of error. The measure of interest relates true RNA levels, true

translation rates, and true degradation rates to true protein levels. Once stochastic error (error

that varies across replicates) or systematic error (platform-dependent error) is introduced into

the estimation of these variables, the derived R2 will necessarily be lower unless addition

statistical corrections are made (Li et al., 2014). Conversely, if model predictions and measured

protein levels share correlated errors (as might occur if translation rates and protein levels are

measured using the same experimental platform), the derived R2 may be inflated (Schrimpf et

al., 2009).

Efforts to derive R2 statistics for post-transcriptional processes have been developed for both

homeostatic (or "resting", or "baseline") protein levels as well as for protein level changes (or

"dynamics") in the course of changes in cellular state. Both are described here with an initial

focus on baseline protein levels.

The determinants of homeostatic protein levels

In 1998, Gygi et al. published the first large-scale analysis addressing baseline protein

expression, measuring over 150 yeast proteins by 2D radio-labeled gel electrophoresis and

corresponding mRNAs by serial analysis of gene expression (SAGE) lookup tables (Gygi et al.,

1999). The research group reported an R 2 of just 0.36 (data not log-transformed). They

interpreted this to mean that post-transcriptional processes were more important in

determining protein levels (explaining the remaining 64% of protein variance), declaring that
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there was "no predictive correlation" between steady-state mRNA levels and protein levels.

Shortly thereafter, Futcher et a/., published a study using a nearly identical experimental

approach but arriving at a much higher R2 (0.57) and a dramatically different conclusion

(Futcher et al., 1999). This second group pointed out that much of the discrepancy derived from

differences in statistical approaches. First of all, Futcher et a. used improved mRNA data by

integrating SAGE data and microarray data and adjusting for systematic errors. Second, they

log-transformed before computing the correlation (the first group to do so), reducing sensitivity

to outliers (in fact, Gygi's figure of 0.36 resulted only after dropping the top 30% (!) of proteins;

with these genes included, a drastically different R2 of 0.87 was obtained). Finally, they

interpreted the missing variance more carefully, acknowledging that much of it may relate to

measurement error in the either the mRNA or protein levels rather than post-transcriptional

processes. Even though the study by Futcher et al. was more carefully conducted, Gygi's work

became the standard of the field, with four times the number of citations during the following

decade (2270 vs. 567 (scholar.google.com)).

In 2009, a new generation of studies were published that capitalized on improvements in non-

targeted "shotgun" proteomics (Nesvizhskii et al., 2007). First, Schrimpf et a. explored the

relationship between mRNA levels and protein levels in higher order eukaryotes employing

liquid chromatography-electrospray ionization-tandem mass spectrometry (on a tryptic digest)

to measure protein levels for >5000 genes (and relying on previously published microarray and

SAGE estimates for mRNA levels) (Schrimpf et al., 2009). Results yielded poor correspondence

between measured transcriptomic and proteomic values, R2 =0.35 and R2 =0.44 for worm and

fly, respectively. Meanwhile, there was a reasonably strong correlation between the measured
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protein levels of the two species (r=0.79) and a comparatively weaker correlation in the inter-

species mRNA levels (r=0.47, as measured by microarray). Schrimpf et al. interpreted this to

mean that protein levels are more tightly conserved between species with post-transcriptional

processes compensating for drift in transcript levels. However, the intra-species correlations of

the microarray data and SAGE data were quite poor (r=0.53 and r=0.46 for worm and fly,

respectively), hinting at a high level of measurement error in one or both of the platforms.

Unfortunately, this paper did not clarify how much of the unexplained variance in the mRNA-

protein relationships could be attributed to experimental error. Thus, it fell in the footsteps of

Gygi, reaching bold conclusions regarding the role of post-transcriptional processes without

firm evidence the finding was more than the result of measurement error.

Shortly thereafter, Vogel et al. tackled the same question in a human meduloblastoma cell line,

observing an even weaker mRNA-protein relationship, R2 =0.29 (Vogel et al., 2010). Improving

on previous work, Vogel attempted to account for measurement error using a method known

as Spearman correction (not related to Spearman rank correlation). Spearman correction is a

statistical technique to measure the true correlation between two variables x and y that are

measured with error as xe and Ye (Spearman, 1904). Given replicate measurements of Xe and Ye,

the true correlation of x and y is estimated as:

G(Corr(xei,ye1) - Corr(xei,ye2 )- Corr(xe2 , yel) - Corr(xe2 , ye 2 ))

G(Corr(xei,xe2 )- Corr(yye2 ))

where Xei, Xe2, Yei, and Ye2 represent replicate measurements and where Go is the geometric

mean function. Thus, the denominator reflects a correction for data reliability. The approach
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only slightly increased Vogel's estimate, revised from R2=0.29 to R2=0.32, from which Vogel

concluded that the role of experimental error was small. However, the Spearman correction

assumes that errors between replicates measures are statistically independent (Spearman,

1904). Therefore, Vogel's approach helped clarify the contribution of stochastic error but left

the role of systematic error unaddressed. This represented a significant omission given the

known biases of microarray estimates (Yang and Speed, 2002) and the wide variance in the

ionization and detection efficiencies of tryptic peptides in mass spectrometers (Steen and

Mann, 2004).

A recurring problem with these analyses was the difficulty of obtaining direct measurements of

post-transcriptional processes, which had forced authors to draw inference from the variance

unexplained by the transcriptome. In lieu of direct measurements, some researchers sought to

leverage sequence features for additional insight into post-transcriptional processes. Drawing

on the established relationship between gene expression level and codon usage in yeast, Wu et

at. hypothesized that codon efficiency would be associated with higher protein levels even after

correction for mRNA expression (Wu et al., 2008). Indeed, codon bias could explain an

additional 9% of protein level variance (though Wu did not rule out residual confounding with

true mRNA levels as a possible explanation of this result). Soon thereafter, Vogel adopted a

similar approach in analyzing the human meduloblastoma cell line (Vogel et al., 2010).

Controlling for microarray-derived mRNA levels (using a technique called partial Spearman

correlation), she tested ~200 mRNA sequence feature variables for their association with

157



protein level and found that they could collectively explain over 67% percent of protein level

variance. It was unclear how much of this might reflect over-fitting (just 1000 genes were

analyzed, and the explanatory power dropped to "30-60%" upon cross-validation). Another

unaddressed concern was whether this approach might inadvertently mine for systematic

errors in microarray expression estimates, which are also likely to be related to sequence

features.

Ultimately, the field was interested in making the analyses more direct. A significant step

forward was Selbach and colleagues' 2011 study of mouse fibroblasts (Schwanhausser et al.,

2011). This study employed a relatively new quantitation technique called SILAC (stable isotope

labeling by amino acids in cell culture (Ong et al., 2002)), which could be employed in a pulse-

chase strategy, wherein cells were grown in Light-isotope (L) media and switched to Heavy-

isotope (H) at t=0. At subsequent time points, absolute protein level (as estimate by the sum of

peptide intensities divided by the count of theoretically observable peptides, known as

intensity based absolute quantification, or iBAQ), in conjunction with the ratio of H- to L-

isotope peptides from each protein, allowed estimation of the amount of pre-existing protein

(produced before t=0) and newly produced protein (produced after t=0) for each gene at each

time point. By assuming steady state d = 0 = ktra - R - kdeg - P, Selbach and colleagues

could experimentally estimate the production term ktra - R, RNA level R, and protein level P,

thereby yielding both ktra and kdeg. Improving upon Vogel, Selbach took steps to directly

estimate stochastic and systematic (platform-dependent) error in RNA expression data by

measuring the correlation between RNA-Seq and Nanostring expression estimates for 79 genes

(the latter platform considered a "gold standard" for RNA level). This yielded a correlation of
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0.79, which was described as "high" but not further considered in the analysis (as through

Spearman correction). Likewise, observed discrepancies between mass spectrometry-based

quantitations and the levels of protein spike-ins were not mathematically included in the

analysis approach. Most crucially, Selbach and colleagues did not address the fact that their

translation rate estimates and total protein abundance estimates were obtained from the same

experimental platform and thus subject to correlated errors. Ultimately, Selbach ascribed 40%,

55%, and 5% to RNA levels, per-mRNA translation rates, and protein degradation rates,

respectively, for their percent contribution to protein level, declaring translational control to be

the dominant regulatory factor.

In response to this analysis, Biggin and colleagues wrote a paper charging that Selbach had

significantly underestimated the contribution of RNA to protein levels because of deficient

statistical techniques (Li et al., 2014). In many ways this mirrored the earlier squabble between

Gygi and Futcher. Biggin first pointed out that Selbach and colleagues had not incorporated the

results of the RNA-Seq vs. Nanostring comparison into his estimates. By making this addition,

Biggin was able to boost the explanatory contribution of RNA from 40% to 56%. While this left

44% to potentially be explained by translation and degradation, Biggin predicted that the

derived contribution of RNA would be much higher if systematic errors in the protein

measurements could also be accounted for (though he ultimately decided that the data from

Selbach's protein standards was not sufficient for making such a correction). Therefore, he

attempted to make direct measurements of translation rate using "ribosomal profiling."

Developed by Ingola et al., this modified form of RNA-Seq uses a nuclease to digest RNA that is

not shielded by ribosome engagement, yielding a reduced library of ~28mer protected
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fragments (Ingolia et al., 2009). Dividing ribosomal profiling gene expression estimates by

standard RNA-Seq expression values yields per-gene "translational efficiencies" predicted to

scale with per-mRNA translation rates. Incorporating these values produced a drastically

different result from Selbach and colleagues, ascribing just 8% to translation rates, another 8%

to degradation rates and a whopping 84% to RNA levels. Given the 10-years of publications

suggesting dominance for translation rates, these results put the field into a state of confusion.

This was exacerbated by the relatively complex statistical approach Biggin employed as well as

disagreement about how faithfully the new ribosomal profiling method actually captured per-

mRNA translation rates.

The determinants of protein level dynamics

With the question of protein regulation at baseline not resolved, another pressing question is

how much each of these mechanisms (RNA level, translation rate, and degradation rate)

contributes to changes in protein level when cells transition to a new cellular state. This is

important because transcriptomics has become a preferred descriptor of cellular state as it

relates to differentiation, response to stress, and health vs. disease. If RNA levels only play a

minor role in determining protein levels, say -35% as some have argued for the baseline

condition, then the transcriptome is a poor proxy for cellular state and transcriptomic analysis

is missing important post-transcriptional processes that regulate a larger share that state.

One of the first groups to tackle this question systematically was Mann and colleagues (de

Godoy et al., 2008), who compared haploid vs. diploid yeast, measuring transcript level ratios

using microarrays and protein level ratios using SILAC (rather than pulse-chase set un. as
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employed by Selbach (Schwanhausser et al., 2011), L-labeled and H-labeled yeast were raised in

parallel and their proteins mixed just before quantitation). This analysis produced a shockingly

low concordance between the RNA and protein fold changes -just R2 =0.05. Though, notably,

when the authors filtered out low expression genes, this jumped to 0.21, and when they

focused on just one highly induced pathway comprising 18 genes, the number further climbed

to 0.46. The authors acknowledged that stochastic and/or systematic errors in the microarray

data may be driving these results though they did not attempt to quantify this statistically. A

good statistical adjustment was within reach because fold changes should largely normalize out

platform-dependent errors and application of Spearman correction to replicates could have

adjusted for stochastic errors.

The next year, Lu et al. asked the RNA dependence question again, this time in the context of

mouse embryonic stem cells (ESCs) differentiating over a five-day period (Lu et al., 2009). While

they did not employ an R2 approach, the authors noted that of the genes with significant

changes in protein levels, only 43-52% showed concordant changes in RNA levels, concluding

that translational and post-translational regulatory mechanisms have important roles in ESC

fate decisions. However, shortly thereafter, Munoz et al. explored a similar model system, the

transition of human fibroblasts into induced pluripotent stem cells (iPSCs), and derived a much

higher coefficient of variation, R2 =0.49 (Munoz et al., 2011). These discrepancies were mirrored

in a series of papers analyzing dynamic processes in yeast. The first, by Fournier et al., profiled

the yeast response to rapamycin over a 6-hour time course (Fournier et al., 2010). Considering

the fold change (vs. baseline) at different time points, Fournier et al. found the best

correspondence between the 2-hour mRNA change and the 6-hour protein change, R2 =0.36.
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Later, Vogel et al. explored the yeast response to oxidative stress over a 2-hour time course

(Vogel et al., 2011). Though Vogel did not formalize the explanatory capacity of mRNA fold

change in terms of a coefficient of variation, she showed recurrent qualitative differences in the

protein and mRNA expression level trajectories for many genes.

The third paper in the series (Lee et al., 2011), which considered the yeast response to osmotic

stress, improved upon previous work significantly by making the important realization that a

mere fold change vs. fold change analysis was not sufficient for understanding the contribution

of mRNA to the system. For steady-state systems, such as the two resting yeast populations

studied by Mann and colleagues, a comparison of fold changes is sufficient: translation rate

and degradation rate remaining constant, a doubling of mRNA level should drive a doubling of

protein level (Psteady - R ktra). However, this is not the case in a system with changing protein
kdeg

levels, for which constant translation and degradation rates do not guarantee identical RNA and

protein level time course trajectories (for instance, if an mRNA drops precipitously, a very

stable protein may not decrease appreciably during the monitoring period, and this discrepancy

does not implicate a change in protein translation or degradation rate). Realizing this, Lee et al.

developed a dynamic model for protein production and degradation using their observed RNA

level changes and previously published (stationary) translation and degradation rates (Belle et

al., 2006; Ghaemmaghami et al., 2003). Using this approach, they were able to explain 77% of

the variance in protein up-regulation with mRNA changes - much greater than the previous

studies reported. This allowed the authors to focus on a more narrow range of proteins for
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which the data suggested additional, non-transcriptional forms of regulation, though they did

not directly quantify the contribution of transcriptional regulation overall.

The need for a more systematic experimental and analytic approach

In considering these studies of baseline and dynamic, it is clear that the results have varied

widely without the emergence of a clear consensus. One possible explanation is diversity in

how difference states are regulated in different organisms. While this certainly contributes

some variation in the results, we feel that most of the variation results from inconsistencies in

the experimental and analytical procedures, particularly as these relate to error handling. The

biggest recurrent problem has been the difficulty of obtaining direct measurements for post-

transcriptional processes. As a result, an explanation-by-subtraction approach was used again

and again, in which transcript levels were shown to explain a surprisingly small share of the

total variance in protein levels. While fine in principle, these explanation-by-subtraction

strategies require careful treatment of error - both stochastic and systematic. For the analysis

of baseline protein levels, control for stochastic error was occasionally implemented and

systematic errors were addressed only by Biggin (Li et al., 2014). For the analysis of protein

dynamics, no studies have yet accounted for experimental error (though we do believe that the

role of systematic errors may be more minor in this context since values are normalized against

baseline). Thus, we believed that a project plan with more direct experimental measurements

and improved computational treatment could provide significant clarity in what had become a

rather murky field.
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Using the response of primary mouse monocyte-derived dendritic cells to the immune

stimulant lipopolysaccharide (LPS) as a model system, we built on the previous SILAC

approaches by using a triple label (also used recently (Kristensen et al., 2013)) that provided

separate channels for measuring protein production and degradation processes. The cells were

raised in Medium (M) SILAC media such that all proteins had incorporated the M-labeled amino

acids. At t=0, cells were stimulated with LPS (or mock stimulus) with concurrent media switch to

Heavy (H), such that newly translated proteins would be H-labeled. Before mass spectrometry

quantitation, each aliquot was finally spiked with an equal volume of "master mix" cells grown

in Light (L) SILAC media (providing the basis for cross-sample normalization). Thus, the M:L ratio

was indicative of protein degradation and the H:L ration was indicative of protein production

(i.e. ktra - R). Importantly, we addressed the matter of systematic errors in baseline protein

expression by collecting several orthogonal peptide libraries (via different enzymatic

digestions). This enabled a quantitative assessment of the reliability of the protein level

estimates and provided the opportunity to correlate imputed translation rates with protein

levels without the worry that hidden error terms would inflate the estimate (as previously

(Schwanhsusser et al., 2011)). Also critical, we additionally acquired ribosomal profiling data to

provide an independent estimate of translation rates. This enabled a head-to-head comparison

of what proteomics vs. ribosomal profiling imply regarding the importance of translation rates

to protein levels.

Computationally, we used a system of differential equations to model protein levels. While

similar in concept to Lee (Lee et al., 2011), we added in additional complexity by permitting

dynamic changes in protein translation and degradation rates. Furthermore, we augmented the
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analytic approach to account for label cross-talk, namely the incorporation of M-labeled amino

acids (released from newly degraded M-labeled proteins) into new proteins and the

degradation of new H-labeled proteins (affecting the perceived rate of production). We fit

these dynamic models with a statistical approach that accounted for the signal-to-noise ratio in

each protein's measurements and avoided over-fitting by applying Empirical Bayes (software

packaged as "DogmaQuant" and available online

http://www.sciencemag.org/content/supp/2015/02/11/science.1259038.DC1/Jovanovic Rpac

kage.zip). Most importantly, we accounted for all known sources of error (stochastic and

systematic), adjusting for them in our calculations using the Spearman correction.

As we demonstrate, this approach significantly upwardly revises the contribution of RNA to the

protein levels at baseline, amounting to roughly twice translation rates and degradation rates

combined (published (Jovanovic et al., 2015) and discussed (Li and Biggin, 2015)). Importantly,

we show that ribosomal profiling yields a numerical result nearly identical to that obtained

from the proteomic modeling. In the dynamic response, we show that RNA is fully dominant,

explaining 90% of protein level changes. That being said, while RNA levels drive most of the

change, protein degradation rates and baseline protein levels play a considerable role in

determining the ultimate trajectories of these responses by tempering the amplitude of change

and/or modulating the rate of return to baseline. Furthermore we identify specific, highly-

expressed metabolic processes that appear to rely substantially on post-transcriptional

regulation. Nonetheless, these results suggest RNA levels and their fold changes contain most

of the information necessary to understand dynamics at the protein level (consistent with the
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large number of transcription factors and their combinatorial interactions) and reinforce the

importance of further deciphering the regulatory code that determines gene transcription.
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Results

A pulsed-SILAC strategy to measure protein dynamics

We assessed how protein levels are maintained in the context of the model response of mouse

immune bone marrow-derived dendritic cells (DCs) (Steinman and Banchereau, 2007) to

stimulation with lipopolysaccharide (LPS) (Amit et al., 2009; Chevrier et al., 2011; Garber et al.,

2012; Mellman and Steinman, 2001; Rabani et al., 2011). This is a compelling system, as DCs are

mostly post-mitotic, and LPS synchronizes them (Shalek et al., 2013) and causes dramatic

regulatory changes from the expression of thousands of transcripts (Amit et al., 2009; Garber et

al., 2012; Rabani et al., 2011) to protein phosphorylation (Chevrier et al., 2011). To monitor

protein production and degradation during a dynamic response, we used a modified pulsed-

SILAC approach (Boisvert et al., 2012) (Figure 1, Methods) to track newly synthesized and

previously labeled proteins over time.

We cultured DCs for 9 days in medium-heavy labeled (M) SILAC medium, then substituted the

M SILAC medium with heavy-labeled (H) SILAC medium and immediately stimulated them with

LPS or medium (MOCK). Newly-synthesized proteins were thus labeled with heavy (H) amino

acids, serving as a proxy for protein synthesis, while proteins with medium-heavy (M) amino

acids decayed over time, reflecting cellular half-lives. For normalization, we spiked in a

reference sample, extracted from a mix of unstimulated and stimulated DCs grown in light (L)

SILAC media. We collected biological replicate samples at 10 time points over 12 hours (Oh,

0.5h, 1h, 2h, 3h, 4h, 5h, 6h, 9h, 12h) after LPS or mock stimulation. We quantified 6,079

proteins by LC-MS/MS in at least one sample and 2,288 proteins in all samples (time points,
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conditions and replicates; Figure 2A, Table Si). We independently measured replicate RNA-Seq

profiles under the same conditions (Figure 2A, Table S2, Methods).

A model-based estimation of protein synthesis and degradation rates

We devised a computational strategy to infer per-mRNA translation rates (T(t)) and protein

degradation rates (D(t)) at each time point from the temporal transcriptional profiles (R(t)) and

H/L and M/L protein ratios (H(t) and M(t), respectively) (Figures 1B, S1, Methods). We defined

a model that describes the relevant processes and associated rates (e.g., translation rate,

protein degradation rate), and then fitted the parameters (e.g. rates) in the model with our

mRNA and protein data. Specifically, we used an ordinary differential equations model

describing, for each gene i, the changes in Mi(t) and Hi(t) (dMi(t)/dt and dHi(t)/dt, respectively)

as a function of (1) a production term, governed by mRNA abundance Ri(t) and a per-mRNA

molecule translation rate constant, Ti(t); and (2) a degradation term, modeled as an exponential

decay function, governed by a protein degradation rate constant, Di(t). Both terms are also

affected by y(t), the global M SILAC label recycling rate constant (Figures 1B, S1, S2, Methods).

All rate constants are dynamic, and the mRNA levels, per-mRNA translation rate constant and

protein degradation rate constant are also gene-specific. We modeled the change over time in

the per-mRNA translation rate constant (Ti(t)) and in the degradation rate constant (Di(t)) as

linear functions. This assumption reduces the number of free parameters, thus providing

robustness while retaining the capacity to detect the effect of sustained changes, even if these

changes do not manifest linearly in vivo (as in the case of step functions).
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We fitted the different parameters in the model (Figure Si) with the RNA-Seq and mass

spectrometry (MS) data, using an empirical Bayes strategy, which prevents over-fitting of noisy

MS data by sharing information across genes (Methods). In this approach, our most differential

and reliable parameter estimates correspond to the well-quantified genes, whereas proteins

with less reliable measurements are not associated with reliable changes. This ensures a low

rate of false positives (calling a change where none exists), but may result in false negatives,

and hence in some underestimation of the contribution of protein synthesis and degradation.

Fitting the parameters for 3,147 genes that passed our filtering criteria, separately for each of

our replicates (Figures 2B, S3, Table S3), we found good reproducibility of the LPS/MOCK ratios

of key fitted values (Figures 2B, S4) and of the relative differences in per-mRNA translation

rates (e.g., ATi(12h) = Ti(12h)Lps/Ti(12h)MocK, Pearson r = 0.68, Figure S5A) or degradation rates

(e.g., ADi(12h) = Di(12h)LPs/D(12h)MOCK, r = 0.62, Figure S5B). The robustness of these results

was further supported by: (1) the fair correlation of our translation and protein degradation

rate estimates in resting cells (Table 53, Figure S6) with previous estimates in mouse fibroblasts

(NIH3T3) based on a similar pulsed-SILAC approach (Schwanhausser et al., 2011) (r(Ti(0))= 0.35;

r(D(0)) = 0.58; Figure S7A, S7B) or on estimates of translation rate efficiency (TE) values based

on ribosome profiling in mouse fibroblasts (NIH3T3) (Subtelny et al., 2014) (r(Ti(0)) = 0.37;

Figure S7C); (2) a good correlation between our per-mRNA translation rates and our

independent measurement of TE values in DCs using ribosome profiling at t=Oh (r = 0.5, Table

S4, Figure S8A), comparable to the correlation between TE values in mouse DCs and mouse

fibroblasts (r = 0.54, Figure S8B); (3) the fact that strong early changes are all in immune

response proteins (Figure S4A); (4) the global increase upon LPS stimulation in protein
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production rates (Ti(12h)LPs Vs. Ti(12h)MOCK, P < 10-10, Wilcoxon rank-sum Test, Figure S9A) and

protein degradation rates (Di(12h)LPS Vs. Di(12h)MOCK, P < 1010, Wilcoxon rank-sum Test, Figure

S9B), consistent with other reports (Lelouard et al., 2007; Schmidt et al., 2009); and (5) the

increase in the calculated 'degradation rate' - likely reflecting depletion by secretion, or

"decreased cellular half life" - of proteins from the recently-characterized secretome of LPS

stimulated mouse macrophages (Eichelbaum et al., 2012) (P < 10-10, LPS vs. MOCK; Wilcoxon

rank-sum Test, Figure S9C).

mRNA levels contribute the most to protein expression levels before stimulation

To determine the relative contribution of each step to steady state protein levels in

unstimulated, post-mitotic DCs, we first estimated absolute protein levels from four additional

MS data sets in resting DCs (Oh) that rely on distinct peptides (Methods): two biological

replicate samples, which were each digested in two technical replicates with LysN and AspN,

respectively, rather than by trypsin, used for the pulsed SILAC samples.

Next, we assessed the contribution of each regulatory step to gene-to-gene differences in

overall protein levels by comparing (with Spearman-corrected coefficients of determination)

the independently-measured absolute protein levels to steady state protein levels predicted by

our model when setting one or more of the three regulatory steps (mRNA level, per-mRNA

translation rate constant, or protein degradation rate constant) to its per-gene inferred value

(at time Oh) and setting the remaining steps to their pan-genome median value (Methods). By

sequentially adding to the model further per-gene values rather than pan-genome medians
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(say: mRNA level, translation rate, and finally degradation rate) and assessing the

corresponding change in the correlation measure, we can assign additive regulatory

contributions to the three steps. Because these three steps are not statistically independent

from each other and may interact in a nonlinear manner, we explored every possible ordering

of consideration.

Considering all 3 variables together, we account for nearly 79% of the variance of the

independently measured protein levels (Figures SlO, S11A). Of these 79%, mRNA levels

explained 59-68%, per-mRNA translation rates 18-26%, and degradation rates 8-22%. (Figures

3A, S11A). We believe the unexplained variance is due to systematic errors in the

measurements and modeling that could not be accounted for. In addition, we have separately

estimated the variance in translation rates in the same cells under identical conditions using

ribosome profiling to measure TE values. Using TE values instead of our pulsed-SILAC derived

translation rates, we estimate a comparable contribution of protein synthesis (Figures 3B, S10).

Thus, in postmitotic DCs, mRNA levels are contributing more to protein-to-protein variation in

total protein levels than the protein life cycle (synthesis and degradation rates) combined.

mRNA abundance dynamics dominate protein changes post stimulation

Next, we determined the contribution of each regulatory step to protein fold changes at 12

hours. We used the model fit from a given replicate to predict the protein fold change at 12h,

when using either MOCK-estimated parameters or one or more LPS-estimated parameters for

mRNA level, translation rate, and degradation rate. We then compared these predictions to the
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fitted fold changes from the other replicate. Starting with all parameters set to MOCK-

estimated rates, we sequentially used LPS-estimated parameters for mRNA, translation rate,

and degradation rate (in every possible order), and thus assessed the contribution of each step

as the increase in the Spearman-corrected coefficients of determination (Methods).

We found that mRNA levels explain -87-92%, per-mRNA translation rates -4-7%, and

degradation rates ~3-6% of protein fold changes after 12 hours (Figures 3C, SUB). mRNA fold

changes contributed at least eight times as much as the protein life cycle combined for both

induced and repressed proteins (Figure 512, Table S5). However, changes in per-mRNA

translation rates contributed more substantially to protein level induction, whereas changes in

protein degradation rates mostly contributed to protein level repression (Figure S12, Table S5).

Fold changes in induced immune response proteins were particularly dominated by mRNA level

changes (Figures 2B, 3E, Table 56). For example, transient up-regulation of the mRNA encoding

the negative immune regulator Trafdl (Sanada et al., 2008) (Figure 3F) is the main cause of a

strong increase in its protein. In Trafdl and hundreds of other genes, a transient, strong, spiked

change in mRNA, combined with a time-constant protein half life, much longer than the 12h

time course, result in a monotonous increase in protein levels, such that global protein fold

changes at 12h post LPS correlate best to mRNA changes at 5h (Figure S13). Only a handful of

proteins (e.g., Tnfaip2 (Burton et al., 2007; Chevrier et al., 2011; Kuan et al., 1999)), show

peaked, transient protein expression within our time scale; all have very high basal degradation

rates, which typically do not increase further. Finally, a few key regulators of DCs and the LPS

response (e.g., Cebpb, a pioneer transcription factor whose mRNA is already very highly
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expressed pre-stimulation, and Rela, Figure 3F) are considerably dynamically regulated at the

protein level, such that increased protein degradation rates (Rela) and/or increased per-mRNA

translation rates (Rela and Cebpb) are main drivers for protein change. These dynamic changes

cannot be observed solely from total protein and transcript levels, but the corresponding rate

changes are readily apparent (Figure 3F).

Notably, although our global model incorporates the data of only 3,147 genes, several lines of

evidence suggest that this did not bias our global conclusions. First, while the 3,147 modeled

genes are somewhat enriched for higher expressed genes (Figure 514), we do model a

substantial number of lowly expressed mRNAs (Figure S14). Second, computationally correcting

for this bias by recalculating the contributions of mRNA, per-mRNA translation and protein

degradation rates while proportionally up-weighting the impact of under-represented

expression bins (Methods), does not significantly affect our conclusions (Figure S15). Third, the

correlation between our protein translation at baseline (t=Oh), as estimated by pulsed-SILAC

data or by TE values, is comparable when considering only the lowest expressed 25% (Pearson

r-0.52), the highest expressed 25% (r~0.58), or all modeled proteins (r - 0.5) (Figures S16A,

S16B). Finally, there is no significant difference in the distribution of TE values in the (under-

represented) lowly expressed mRNA bins between those proteins we detect (in the 3,147

proteins) versus those we could not include in our model (P=0.069, t-test, Figures S16C); thus, it

is unlikely that the lowly expressed genes that we could not model have unique regulatory

modes.
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Protein life cycle changes primarily affect proteins performing basic cellular functions

While mRNA fold changes contributed most to relative changes in protein expression (ratios of

LPS to MOCK-simulated protein levels), protein synthesis and degradation rates do change

significantly for 357 proteins (~11% of consistently detected proteins, Tables S7, S8), and in

particular for proteins performing essential cellular functions ('housekeeping proteins', Figures

2B, 3E, Table S6), including cytoskeletal, metabolic, ribosomal (Figure 4A) and mitochondrial

proteins (Figure 4B). Since these are among the most abundant in the cell (Geiger et al., 2013;

Kim et al., 2014; Schwanhausser et al., 2011; Wilhelm et al., 2014), we reasoned that while

mRNA changes may dominate the relative (fold) changes in protein levels following LPS

stimulation, changes in the protein life cycle could contribute substantially more to differences

in absolute cellular protein abundance than to relative changes. For example, consider two

genes: gene 1 is induced 10-fold from 10,000 to 100,000 proteins (a substantial change in

relative protein abundance), while gene 2 is induced 1.2-fold from 1,000,000 to 1,200,000

proteins (a substantial change in absolute protein abundance). We asked whether relative and

absolute changes are associated with different regulatory mechanisms. Indeed, we found that

changes in translation and degradation rates together explain more of absolute protein changes

than changes in mRNA levels (mRNA: -32% to 43% of the fit value; per-mRNA protein

production rate: -22-41%; degradation rates: ~19-36%, Figures 3D, S11C). Thus, post-

transcriptional regulation contributes substantially more to absolute protein level changes than

to relative protein level changes.
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An increase in degradation rates of mitochondrial proteins is associated with mitophagy

Upon LPS stimulation, a substantial decrease in the level of mitochondrial proteins is associated

with increased degradation rates, although these proteins are among the most stable in

unstimulated DCs (Figures 2B, 3E, 4B, Table S6). This increase in protein degradation is

accompanied by a significant decrease in mRNA levels (Figure 3E, Table S6, P<10-10,Wilcoxon

Rank Sum Test) and in per-mRNA translation rates (Figure 3E, Table S6, P<10-7, Wilcoxon Rank

Sum Test), suggesting decreased production of new mitochondrial proteins and increased

destruction of old ones. Both structural mitochondrial proteins and enzymes in key

mitochondrial metabolic pathways have increased degradation. The increased degradation of

key enzymes, such as SUCLA2, ALDH2 and ACO2, is consistent with a reported shift in LPS-

stimulated DCs from oxidative phosphorylation and oxygen consumption to glycolysis, glucose

consumption and lactate production (Everts et al., 2014; Everts et al., 2012; Krawczyk et al.,

2010; Pearce and Pearce, 2013).

The increased loss of structural proteins and enzymes in the mitochondria may be due to either

a targeted metabolic shift in carbon and energy metabolism through a reduction of a specific

subset of the mitochondrial proteome, or a more global loss of entire mitochondria through

mitophagy. To experimentally distinguish between the two hypotheses, we measured the

mitochondrial-to-nuclear DNA ratio in unstimulated DCs at 12h and 24h post LPS stimulation

(the latter time point was chosen to account for any delay in complete mitochondrial DNA

degradation) (Figure 4C). There was no significant change in the ratio of mitochondrial-to-

nuclear DNA at 12h post LPS stimulation, but a significant (-25%; P=0.016, t-test) reduction at
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24h post stimulation (Figure 4C). Indeed, analyzing pulsed SILAC data collected at 24h post LPS

and mock stimulation, we saw a decrease in the M/L ratios (a proxy for increased degradation)

of ~80% of annotated mitochondrial proteins in LPS vs. MOCK samples (Figure 4D), and in

nearly all mitochondrial proteins with a higher mitochondrial localization prediction score (from

MitoCarta (Pagliarini et al., 2008) - over 95% of the 156 proteins with a score > 20 of the 472

measured mitochondrial proteins) (Figure S17). These results suggest that mitophagy is a driver

of LPS induced mitochondrial protein degradation in DCs, consistent with previous observations

of mitophagy in virus- or bacteria-infected DCs (Lupfer et al., 2013) and might also contribute to

epitope presentation, as previously proposed (Bell et al., 2013).
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Discussion

We determined the contribution of changes in mRNA levels, protein synthesis and protein

degradation rates during a dynamic response and found that changes in mRNA levels dominate

relative fold changes. When considering also absolute changes in protein molecules

(abundance), our data suggests a model where the cellular proteome is dynamically regulated

through two strategies.

In the first strategy, mRNA regulation acts primarily to ensure that specific functions - here,

immune response proteins - are only expressed when needed and thus explains most of the

fold-change differences in protein levels, contributing to LPS induced protein fold changes at

least 8 times as much as the combined protein life cycle within the 12h time scale of our

measurements. It is possible that protein life cycle changes are important to turn over key

regulatory and signaling proteins at later phases of the response. While our study does not

directly address which steps in mRNA regulation account for this, our related work on the RNA

life cycle during the first 3 hours in LPS stimulated DCs suggests that transcriptional changes

may in turn dominate differential mRNA expression, whereas dynamic changes in RNA

processing or degradation affect only a minority of genes, albeit with important functions

(Rabani et al., 2014). Furthermore, in contrast to previous reports where degradation rates

contributed only marginally (Kristensen et al., 2013; Schwanhausser et al., 2011), but consistent

with Li et al. (Li et al., 2014), we see that within the protein life cycle, changes in protein

degradation rates play an equal role to changes in per-mRNA translation rates. Although some

of this is due to turnover from increased secretion of some proteins (Figures S9C, S18),
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excluding the secretome (Eichelbaum et al., 2012) from our analysis did not strongly alter this

global trend (Figure S18). Finally, while mRNA changes dominate changes in protein levels, it

may be difficult to discern this relationship in the absence of a model-driven analysis. Thus,

while mRNA induction is readily reflected in protein level induction, albeit somewhat

dampened, few of the 912 repressed mRNAs (>2 fold), show matching protein changes (Figure

S19, Table 59). This could be naively interpreted as substantial posttranscriptional control, but

pre-existing proteins, the long protein half-life and the delay of protein changes relative to

mRNA changes (Figure S13) complicate such an intuitive interpretation, and our analysis shows

that mRNA changes drive protein down-regulation as well (Figure 512, Table S5).

In the second strategy, regulation at the protein level primarily readjusts the pre-existing

proteome, especially 'housekeeping' proteins, in order to meet the requirements of a new

cellular state, such as change in shape, metabolism, etc. Thus, when we consider the

contribution of a change in each rate to the change in the number of proteins (rather than the

relative fold change), the contribution of changes in the protein life cycle is substantially

increased (Figure 3D). We find similar patterns of contributions when we use the Spearman

rank correlation rather than Pearson correlation (Figure S20), suggesting that our conclusions

are robust to outliers with particularly strong changes.

The extent to which this two-part strategy applies in other dynamic settings remains to be

determined. Interestingly, recent studies comparing protein and translation rate differences

between different states (e.g., differentiated vs. non-differentiated cells or between different

yeast strains) su-gested that translation rate differpnces affect diffPrPntial nrntpin Pnressinn
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only modestly (Albert et al., 2014; Baek et al., 2008; Hsieh et al., 2012; Ingolia et al., 2011;

Kristensen et al., 2013; Selbach et al., 2008), but do impact some highly expressed proteins,

including ribosomal proteins (Hsieh et al., 2012; Ingolia et al., 2011), also translationally

regulated in our system.

Our analysis of unstimulated (resting) postmitotic DCs refines and extends previous models of

protein level regulation in steady state. In our cells, nearly two thirds of the gene-to-gene

variation in total protein levels is explained by regulation of mRNA levels, a higher contribution

than previously reported in dividing mammalian cells (Schwanhsusser et al., 2011), possibly due

to the regulatory mechanisms active in primary post-mitotic, homeostatic resting cells. For

example, the increased role we observed for protein degradation, in contrast to prior studies

(Kristensen et al., 2013; Schwanhsusser et al., 2011), may be needed by postmitotic cells that

cannot simply renew their protein pool by division-coupled passive dilution. Furthermore, our

analysis corrected for RNA-Seq expression reproducibility, intra-library protein expression

reproducibility, and library-dependent protein expression biases (Figure S21), all essential to

avoid inadvertent attribution of measurement errors to modeled translation and protein

degradation rates. Indeed, whereas from raw data mRNA explains 27% of the gene-to-gene

variation in protein levels at baseline (t=0), using modeled expression values it explains 42%,

and, once correcting for data reproducibility (Methods), it explains 52%. This compares well to

a recent study (Li et al., 2014) that found that mRNA levels explain at least 56% of the

differences in protein abundance (when estimating the variances of errors with control

measurements (Schwanhausser et al., 2011)), and possibly as much as ~84% (using TE values to

estimate the systematic error in translation rates in (Schwanhausser et al., 2011). Each of these
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strategies highlights the importance of determining and correcting for stochastic and

systematic errors in the data. Notably, even with our conservative estimates, the protein life

cycle is estimated to contribute, at minimum, about a third of the final steady state protein

expression level. Since protein expression levels span around 4 to 5 orders of magnitude

(Geiger et al., 2013; Kim et al., 2014; Schwanhsusser et al., 2011; Wilhelm et al., 2014),

differences between genes in the protein life cycle can easily cause a ten to a hundred fold

change in protein expression.

Our experimental and analytical design should be broadly applicable to study similar events in

diverse dynamical cell systems. Our analytical model distinguishes per-mRNA protein

production and protein degradation rates that were confounded in previous, model-free

analyses of raw H/L and M/L ratios from dynamic pulsed-SILAC data (Kristensen et al., 2013),

due to e.g., the contribution of mRNA and protein degradation to the H/L signal and of recycled

labeled amino acids to the M/L signal (Methods). Our empirical Bayes strategy also handles

noise in proteomics data in a principled and conservative way. Nevertheless, we make some

simplifying assumptions in our model (e.g., linear changes in per-mRNA translation rates and

degradation rates) that may be refined in the future (e.g., with sigmoidal functions (Chechik et

al., 2008; Rabani et al., 2011; Yosef and Regev, 2011)), allowing us to estimate additional

valuable parameters (e.g., time point of rate change). This would require finer-resolution data,

such as from ribosome profiling (Ingolia et al., 2009; Ingolia et al., 2011; Stern-Ginossar et al.,

2012), puromycin-associated nascent chain proteomics (Aviner et al., 2013), or combining

pulsed-SILAC labeling with pulse-labeling using the methionine analogue azidohomoalanine

(Eichelbaum and Krijgsveld, 2014; Eichelbaum et al., 2012). Such enhanced methods will
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provide a framework to study the contributions of the protein life cycle in diverse dynamic

systems and help identify new key regulators of these responses.
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Methods

Bone marrow derived dendritic cells (BMDCs) growth conditions

All animal protocols were reviewed and approved by the MIT / Whitehead Institute / Broad

Institute Committee on Animal Care (CAC protocol 0609-058-12). To obtain sufficient number

of cells, we implemented a modified version of the DCs isolation protocol as described

previously (Amit et al., 2009; Chevrier et al., 2011; Garber et al., 2012; Lutz et al., 1999; Rabani

et al., 2011). Briefly, 6-8 week old female C57BL/6J mice were obtained from the Jackson

Laboratories. RPMI medium (Invitrogen) supplemented with 10% heat inactivated FBS

(Invitrogen), f -mercaptoethanol (50uM, Invitrogen), L-glutamine (2mM, VWR),

penicillin/streptomycin (100U/ml, VWR), MEM non-essential amino acids (lX, VWR), HEPES

(10mM, VWR), sodium pyruvate (1mM, VWR), and GM-CSF (20 ng/ml; Peprotech) was used

throughout the study. At day 0, bone marrow-derived dendritic cells (BMDCs) were collected

from femora and tibiae and plated on twenty (per mouse), 100mm non tissue culture treated

plastic dishes using 10ml medium per plate. At day 2, cells were fed with another 10ml medium

per dish. At day 5, cells were harvested from 15ml of the supernatant by spinning at 1,400 rpm

for 5 minutes; pellets were resuspended with 5ml medium and added back to the original dish.

Cells were fed with another 5ml medium at day 7. At day 8, all non-adherent and loosely bound

cells were collected and harvested by centrifugation. Cells were then resuspended with

medium, plated at a concentration of 10x106 cells in 10ml medium per 100mm dish. At day 9,

cells were stimulated for various time points with LPS (100ng/ml, rough, ultrapure E. coli K12

strain, Invitrogen) or MOCK (= no stimulation).
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For SILAC experiments, GM-CSF-derived BMDCs were grown and selected as described above,

but in media containing medium-heavy L-arginine 13C6 (Arg6) and L-lysine 2H4 (Lys4) (Sigma).

Just prior to LPS or MOCK stimulation, all cells were pooled, pelleted and re-suspended in

media containing heavy L-arginine 13C6-15N4 (Arg10) and heavy L-lysine 13C6-15N2 (Lys8)

(Sigma) and plated at 106 cells/ml on non-tissue culture treated Petri dishes. In parallel, GM-CSF

derived BMDCs were grown in light L-arginine (Arg) and L-lysine (Lys) (Sigma) containing media.

Concentrations for L-arginine and L-lysine were 42 mg/I and 40 mg/, respectively. The cell

culture media, RPMI-1640 deficient in L-arginine and L-lysine, was a custom media preparation

from Caisson Laboratories (North Logan, UT) and dialyzed serum was obtained from SAFC-

Sigma. We followed all standard SILAC media preparation and labeling steps as previously

described (Ong and Mann, 2006).

DC sample collection

Two independent replicates were acquired for both RNA-seq and pulsed SILAC experiment time

courses. Another two independent replicates were obtained for measuring protein levels at

time Oh (see also below). MOCK and LPS stimulated DCs per replicate were always collected in

parallel and started from the same cells (= time point Oh), which were split upon stimulation.

For RNA-seq the following time points were collected: Oh (LPS/MOCK together), 1h, 2h, 4h, 6h,

9h, 12h. For the pulsed SILAC experiment the following time points were collected: Oh

(LPS/MOCK together - right after medium-heavy to heavy SILAC media switch), 0.5h, 1h, 2h, 3h,

4h, 5h, 6h, 9h, 12h and also 24h (not used for the time course analysis, but only in Figures 4D,
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S17B). For the light SILAC labeled standard spike-in, DCs were collected at three time points

(Oh, 6h, 24h), pooled and further processed as a pooled sample.

RNA isolation, library preparation and sequencing

RNA was extracted from cells using RNeasy Mini Kit (Quiagen), according to the manufacturer's

protocol. Enrichment of polyadenylated RNA (polyA+ RNA) from total RNA was performed using

Oligo(dT) dynabeads (Invitrogen) according to the manufacturer's protocol. The mRNA was

chemically fragmented into ~80-nt-long fragments using RNA fragmentation reagent (Ambion),

followed by Turbo DNAse treatment (Ambion). Strand-specific RNA-seq libraries were

generated as previously described (Engreitz et al., 2013). Briefly, RNA was first subjected to

FastAP Thermosensitive Alkaline Phosphatase (Thermo Scientific), followed by a 3' ligation of an

RNA adapter using T4 ligase (New England Biolabs). Ligated RNA was reverse transcribed using

AffinityScript Multiple Temperature Reverse Transcriptase (Agilent), and the cDNA was

subjected to a 3' ligation with a second adapter using T4 ligase. The single-stranded cDNA

product was then amplified for 9 to 14 cycles in a PCR reaction. Libraries were sequenced on an

Illumina HiSeq 2500 generating 30bp paired-end reads.

DC protein isolation and processing for subsequent mass spectrometry

After stimulation (LPS or MOCK) and the appropriate time points, cells were washed twice with

PBS and lysed for 30 min in ice-cold lysis urea buffer (8 M urea; 75 mM NaCl, 50 mM Tris HCI pH

8.0, 1 mM EDTA, 2 p g/mL aprotinin (Sigma, A6103), 10 u g/mL leupeptin (Roche,

#11017101001), 1 mM PMSF (Sigma, 78830)). Lysates were centrifuged at 20,000g for 10 min,

and protein concentrations of the clarified lysates were measured via BCA assay (Pierce). From
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this procedure, DC lysates produced ~100 p g of protein per 1 million cells. Light- standard and

heavy/medium-labeled sample lysates were then combined in a 1:1 protein ratio (20 p g each

and therefore 40 y g total). Protein disulfide bonds of the combined lysates were reduced for

45 min with 5 mM dithiothreitol (Thermo Scientific, 20291) and alkylated for 45 min with 10

mM iodoacetamide. Samples were then diluted 1:4 with 50 mM Tris HCI, pH 8.0, to reduce the

urea concentration to <2 M. Lysates were digested overnight at room temperature with trypsin

in a 1:50 enzyme-to-substrate ratio (Promega, V511X) on a shaker. Peptide mixtures were

acidified to a final volumetric concentration of 1% formic acid (Fluka, 56302) and centrifuged at

10,000g for 5 min to pellet urea that had precipitated out of solution. The peptide mixtures

were fractionated by Strong Cation Exchange (SCX) using StageTips as previously described

(Rappsilber et al., 2007) with slight modifications. Briefly, one StageTip was prepared per

sample by 3 SCX discs (3M, #2251) topped with 2 C18 discs (3M, #2215). The packed StageTips

were first washed with 100 g I methanol and then with 100 y I 80% acetonitrile and 0.5% acetic

acid. Afterwards they were equilibrated by 100Vl 0.5% acetic acid and the sample was loaded

onto the discs. The sample was transeluted from the C18 discs to the SCX discs by applying 100

g I 80% acetonitrile; 0.5% acetic acid, which was followed by 6 stepwise elutions and

collections of the peptide mix from the SCX discs. The first fraction was eluted with 50 p I

50mM NH 4AcO; 20% MeCN (pH 4.1, adjusted with acetic acid), the second with 50 p I 50mM

NH 4AcO; 20% MeCN (pH 4.8, adjusted with acetic acid), the third with 50 [ I 50mM NH 4AcO;

20% MeCN (pH 6.2, adjusted with acetic acid), the fourth with 50 P 1 50mM NH 4AcO; 20% MeCN

(pH 7.2), the fifth with 50 p I 50mM NH4HCO 3; 20% MeCN (pH 8.5) and the sixth with 50 p I
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0.1% NH 40H; 20% MeCN (pH 9.5). 200pl of 0.5% acetic acid was added to each of the 6

fractions and they were subsequently desalted on C18 StageTips as previously described

(Rappsilber et al., 2007) and evaporated to dryness in a vacuum concentrator. Peptides were

reconstituted in 7 I 3% MeCN/0.1% formic acid (at an estimated concentration of 1p1g/pl).

LC-MS/MS measurements

All peptide samples were separated on an online nanoflow EASY-nLC 1000 UHPLC system

(Thermo Fisher Scientific) and analyzed on a benchtop Orbitrap Q Exactive mass spectrometer

(Thermo Fisher Scientific) as previously described (Mertins et al., 2013). Briefly, approximately

1lig of peptides per sample was injected onto a capillary column (Picofrit with 10pm tip

opening / 75pm diameter, New Objective, PF360-75-10-N-5) packed in-house with 20cm C18

silica material (1.9pam ReproSil-Pur C18-AQ medium, Dr. Maisch GmbH, r119.aq). The UHPLC

setup was connected with a custom-fit microadapting tee (360pm, IDEX Health & Science, UH-

753), and capillary columns were heated to 500C in column heater sleeves (Phoenix-ST) to

reduce backpressure during UHPLC separation. Injected peptides were separated at a flow rate

of 200 nL/min with a linear 80 min gradient from 100% solvent A (3% acetonitrile, 0.1% formic

acid) to 30% solvent B (90% acetonitrile, 0.1% formic acid), followed by a linear 6 min gradient

from 30% solvent B to 90% solvent B. Each sample was run for 150 min, including sample

loading and column equilibration times. Data-dependent acquisition was performed using

Xcalibur 2.2 software in positive ion mode at a spray voltage of 2.00 kV. MS1 Spectra were

measured with a resolution of 70,000, an AGC target of 3e6 and a mass range from 300 to 1800

m/z. Up to 12 MS2 spectra per duty cycle were triggered at a resolution of 17,500, an AGC
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target of 5e 4, an isolation window of 2.5 m/z and a normalized collision energy of 25. Peptides

that triggered MS2 scans were dynamically excluded from further MS2 scans for 20 s.

Preparation of alternatively digested peptide libraries

BMDCs were grown in conventional medium and under conditions as described above. Two

independent replicates were grown and BMDCs were collected as described above at day 9

with no LPS stimulation (i.e., corresponds to time point Oh). Protein isolation and processing for

subsequent mass spectrometry was performed as described above, but instead of trypsin, the

replicates were digested at a ratio of 1:50 with either LysN (cleaves peptide bonds N-terminal

to Lysine residues; U-Protein Express BV) or AspN (cleaves peptide bonds N-terminal to aspartic

acid residues; Roche), generating 4 samples (2 replicates and 2 different digests each) from

time point Oh with a peptide composition that is entirely different than the time course

samples, which have been digested with trypsin (see above). Unfractionated peptide samples

were analyzed by LC-MS/MS as described above and identified and quantified by MaxQuant

(Cox and Mann, 2008) with the IBAQ feature enabled as described below, with the exception

that either LysN or AspN was selected as the digestion enzyme. IBAQ enables relative protein

quantification and IBAQ values are proportional to absolute protein values (Schwanhausser et

al., 2011). However, IBAQ values have been reported to estimate protein levels with an

accuracy of 2 to 5 fold of the real value (Ahrne et al., 2013) and it has also been reported that

this estimation depends partly on the peptide composition of the sample (Peng et al., 2012).

Using these 4 independent samples to quantify the relative protein levels at baseline (time

point Oh) avoids systematic errors, which otherwise could lead to an overestimation of the
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contribution of per-mRNA translation rates to baseline protein levels (for details see below:

"Determining contributions to total protein expression at baseline").

Identification and quantification of proteins

All mass spectra were analyzed with MaxQuant software version 1.3.5 (Cox and Mann, 2008)

using the mouse UniProt database (March 2013). MS/MS searches for the proteome data sets

were performed with the following parameters: Oxidation of methionine and protein N-

terminal acetylation as variable modifications; carbamidomethylation as fixed modification.

Trypsin/P was selected as the digestion enzyme for the pulsed-SILAC experiments and either

LysN or AspN was selected as the digestion enzyme for the additional protein quantification

experiments for time Oh, and a maximum of 3 labeled amino acids and 2 missed cleavages per

peptide were allowed. The mass tolerance for precursor ions was set to 20 p.p.m. for the first

search (used for nonlinear mass re-calibration) and 6 p.p.m. for the main search. Fragment ion

mass tolerance was set to 20 p.p.m. The IBAQ feature was enabled in order to estimate relative

proteins levels (Schwanhausser et al., 2011). For identification we applied a maximum FDR of

1% separately on the protein and peptide level. We required 2 or more unique/razor peptides

for protein identification and a ratio count of 2 or more for protein quantification per replicate

measurement.

Integration of proteomic and transcriptomic data

Several transcripts may be encoded by the same locus (as alternative isoforms) but encode the

same (or highly similar) proteins. Furthermore, several distinct proteins may not be confidently

distinguished by mass spectrometry data. Since our analysis relies on combining information
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from the RNA and protein measurements within one model, we first had to map proteins and

transcripts despite these possible many-to-many relationships. To this end, we constructed

"analysis groups" using the following rules:

1. All transcripts in the same transcript group are in the same analysis group where transcript

groups are defined by the UCSC Table Browser (query settings: assembly="July 2007

(NCBl37/mm9)", group="Gene and Gene Predictions", track="UCSC Genes",

table="knownIsoforms"; see the fields "clusterlD" and "transcript") and represent groups of

transcripts (isoforms) that are derived from the same genic locus and cannot easily be resolved.

2. All proteins in the same MaxQuant protein group are in the same analysis group where

MaxQuant determines protein groups on the basis of the peptide library supplied. The groups

represent the level of ambiguity MaxQuant can confidently resolve.

3. If a protein and a transcript are associated with one another, then they are in the same

analysis group, where we associate (one or more) Uniprot protein ID with (one or more) UCSC

transcript ID based on

ftp://ftp.uniprot.org/pub/databases/uniprot/current-release/knowledgebase/idmapping/by_o

rganism/MOUSE_10090_idmapping.dat

These grouping rules were executed using the clusters() function in the R package igraph. All

analysis groups had at least one associated transcript. Some analysis groups had no associated

proteins (non-coding RNAs).

194



RNA-seq read mapping of LPS and MOCK time course

We created a Bowtie15 index based on annotated transcripts from UCSC mm9 and aligned

paired-end reads directly to this index using Bowtie v 0.12.7 with command line options: -q --

phred33-quals -n 2 -e 99999999 -1 25 -11 -X 1000 -a -m 200. Next, we ran RSEM v1.1117 (with

default parameters) and used the analysis groups (described above) to define which isoforms

belong to the same gene. Analysis groups with no associated proteins (i.e. noncoding RNAs)

were still used as input to avoid incorrect mappings. Expression quantifications were made for

each analysis group, replicate, and condition.

Processing of protein dynamics data

Expression estimates were based on MaxQuant's un-normalized M/L and H/L ratios per protein

group. We did not use normalized ratios because at early time points the H/L ratio is expected

to be very low and normalized MaxQuant ratios would not represent this low ratio, as it

assumes the global median H/L ratio (or M/L) to be 1. This is the case for classical SILAC

experiments, but not for pulsed SILAC approaches. For each protein and replicate, we scaled

the ratio by the mean IBAQ L channel intensity observed for that protein across all conditions

and time points (treating missing values as zeroes). These scaled ratios represent M channel

and H channel intensities and are the basis of all downstream quantitative analysis.

Data were merged (by addition) to the analysis group level. Analysis groups were named

according to the concatenation of all unique gene symbols associated with the UCSC transcripts

in the analysis group. For the vast majority (3,270, 88%) of analysis groups, this was only a

single gene symbol.
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Merging and filtering of RNA and protein data

Analysis groups (henceforth referred to as "genes" for simplicity) were excluded if they were

not MS2-identified in at least 6 of the 10 time points in all conditions (time courses for LPS and

MOCK stimulation), channels, and replicates (2,609 genes (45%) excluded). After applying this

filter, we also excluded 24 genes (0.8%) that did not have positive RNA-Seq values for at least 6

out of the 10 time points in all conditions and channels. 5/24 were histones, whose transcripts

are not polyadenylated and hence cannot be analyzed with our data.

These procedures reduced the dataset to 3,147 genes, each linked to an RNA expression time

course and protein expression time course. We renormalized such that at each condition/time

point the RNA-Seq expression values added up to exactly 1,000,000. Meanwhile, we normalized

the protein data such that at each condition/time point protein (M+H) IBAQ values added up to

exactly 1,000,000 (missing values were treated as zeroes). We refer to these as transcripts per

million (TPM) and IBAQ microshares (IMS), respectively. Except where otherwise noted all

analyses and modeling used these units. Figures and tables presenting protein abundances,

RNA abundances, or translation rates apply linear scaling factors (derived in a later section

"Rescaling to molecules per cell") such that these values can be interpreted, approximately, in

terms of protein and RNA molecules.

RNA smoothing

To address zero-values in the RNA-Seq time-series, we estimated a detection limit for the

experiment, and added this detection limit to every RNA-Seq measurement. To estimate the

detection limit, we identified all genes with a mix of zero and positive expression values, and for
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each of these genes we identified the smallest non-zero expression value. The detection limit

was estimated as the median of all these values, which was 0.1. After the addition of the

detection limit, the RNA data was again rescaled such that it summed to 1,000,000 at each

condition/time point.

Each gene's time course profile was fit with a 3-point spline (defined using the R function

spline), method "natural"). This was necessary so that subsequent optimizations would not

encounter numerous local minima. The spline was fit by minimizing squared errors in linear

space (not log space). The first and third spline points were constrained to have zero slope and

to occur at t=0 and t=12 respectively. The second spline point could occur anywhere between

t=0 and t=12. For a given gene, the value of the first spline point was constrained to be the

same for LPS and MOCK.

Estimating label switch purity

Ideally, all newly-synthesized proteins would incorporate H label; however, due to incomplete

label switch and the degradation of M-labeled proteins there is always a nonzero

contamination of M-labeled amino acids in the free amino acid (AA) pool.

We estimated this contamination at each time point by considering the ratio of doubly labeled

MH to HH peptides (e.g. peptides with one missed cleavage site) among the MaxQuant

identifications. Since H label is only present at t>0, all MH and HH peptides can be assumed to

have been produced at t>0. In addition, it was assumed that the impurity rate among the

newly-synthesized proteins at time t would approximate the impurity rate in the free amino

acid pool at time t.
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From the MH/HH ratio we derived the contamination rate as follows:

MH/HH=2- y-(1-y)/(1-y) 2 = 2- y/h = 2-y/(1-y)

where y is the fraction of M-labeled AAs (so that 1- y is the fraction of H-labeled AAs), MH is the

count of doubly labeled MH peptides, and HH is the count of doubly labeled HH peptides

We derive:

y=(MH/HH)/(MH/HH + 2)

We empirically chose a functional form for y(t) that fit the data with few parameters:

yt = eClt+C2r.

We optimized C1 and C2 by maximizing the likelihood of a binomial model of the MH and HH

counts:

F P(MHt = x I x - Binom(n = MHt + HHt, p = 2 -Yt/(l -Yt)))
t=O...12

Because MH/HH is derived from the set of newly translated proteins rather than the free AA

pool, our estimates probably lag (and therefore slightly overestimate) the true impurity rates in

the free AA pool.

Dynamic model

We formulate the dynamic model per gene as a system of differential equations:

d ti, = R -;(t) - Tij (t) -y; (t) - Dij (t) - Mi; (t)
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dH -
L'= R ij-(t) - Tij (t) - (1 - yj (t)) - Dij (t) - Hij (t)

Where:

Mij(t) is the M channel signal for gene iin condition j at time t

Hij(t) is the H channel signal for gene i in condition j at time t

Rij(t) is the RNA expression for gene i in condition j at time t

Tij(t) is the translation rate of gene i in condition j at time t

Dij (t) is the degradation rate of gene i in condition j at time t

y1(t) is the contamination in the free AA pool in condition j at time t defined above

The system can be solved as

(MO + fR(x) - yj(x) -Tij(x) -eb(x)
-dx)

dx)

where

D(x) = fD(z) -dz

and where

Moi is the initial M channel signal from protein i (same in both conditions)
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Hoi is the initial H channel signal from protein i (always assumed to equal zero)

However, background signal in MS1 leads to positive estimates of isotope abundance even

when the particular isotope is absent (one effect of this is the presence of positive H channel

readings at t=O), because the MaxQuant algorithm integrates the random background signal

that happens to fall within the expected m/z interval. Accordingly, we also account for a

background term Bi for each gene:

MA (t) - (Mo + JRi(x) - yj(x) - Ti1 e5( ) -dx) + Bi

Hij(t) = e-(t) ( Hoi + Rij x - (I - yj(x)) - Tije'5( x) - dx) + Bi

T(t) is defined by three parameters

To is the translation rate at baseline [IMS/(TPM-hr)] and is constrained to be the same for both

LPS and MOCK

Tc is the fold change in translation rate at 12h in the MOCK ( gontrol) condition

TL is the fold change in translation rate at 12h in the LPS condition

In a given experimental condition (LPS or MOCK), it is assumed that T(t) changes linearly over

time from To to its 12h value.

D(t) is likewise defined by three parameters

Do is the degradation rate at baseline [1/hr] and is constrained to be the same for both LPS and

MOCK
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DC is the fold change in degradation rate at 12h in the MOCK (control) condition

DL is the fold change in degradation rate at 12h in the LPS condition

In a given experimental condition (LPS or MOCK), it is assumed the D(t) changes linearly over

time from Do to its 12-hour value.

Fitting of parameters by empirical Bayes

All 8 free parameters (To, Tc, TL, Do, Dc, DL, Mo, and B) were determined through iterative

empirical Bayes fitting. During fitting, all parameters (and their uncertainty distributions) were

handled in log-space (i.e. we modeled the log of the degradation rate rather than the

degradation rate itself) because the log transformation aids optimization and because all the

parameters appeared to be approximately log-normally distributed across genes. Meanwhile,

model error terms were always considered on a linear scale.

In a given round of fitting, a maximum a posteriori (MAP) estimate was determined for the

parameters describing each gene. Posterior estimates combine information from the prior and

the likelihood density curves.

Posterior(p1 ) = Prior(pi) - L(p<)

The MAP estimate is the set of values pi for a gene that maximizes the above expression.

The likelihood L(pg) is defined by the error in the model fits and the estimated noise in the

data:
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L(pi) 17 11 (P(Mi,j,t = x I x-N(I = Piit U2 = Ei,m)) - P(Hijt x x~N(y
j=LPS,MOCK t=0...12

=ljt, .2 = Eih)))

where

pi is the vector of model parameters describing gene i

Mi,j,t is the observed medium channel intensity of gene i in condition j at time t

Mi,j,t is the medium channel intensity predicted given the model parameters

Ei,j,m is the variance in the M channel signal due to experimental noise

Hi,j,t is the observed heavy channel intensity of gene i in condition ] at time t

Hi,j,t is the heavy channel intensity predicted given the model parameters

Eijh is the variance in the H channel signal due to experimental noise

The noise term Eim is determined by fitting quadratic functions to the LPS and MOCK M

channel time series (via linear regression) and averaging the mean squared error (MSE) of the

two fits. The noise term EI,h is determined analogously from the H channel.

Missing values were dropped and did not contribute to the likelihood calculations.

The prior for a given gene's parameter set pi is obtained by multiplying the probabilities of

each parameter (Toi, Tc, TLi, Doi, Dci, DU, Moi, and B,) as defined by their respective prior

distributions:
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Prior(p)= J7 P(pi = x I x-N(p = mean(p_ 1), 2 = var(p_1 )))

pi=Toi ... Bi

where

p-1 is the vector of MAP values (across all genes) for the given parameter in the previous fitting

iteration.

Thus, the prior represents our expectations (in the form of a parameterized Normal

distribution) for a given gene's parameters considering what has been observed for all other

genes. This is the "empirical Bayes" component.

Since we wanted to be able to draw inference on TL vs. Tc and on DL vs. Dc, we shared priors for

these parameters, such that there was a single prior for translation rate fold change and a

single prior for degradation rate fold changes. For example, the prior for Tc was:

mean(T,_1 ) + mean(TL-1 ) 2 =var(T ) + var(TL-,)

2 2

which was also used as the prior for TL.

In the first fitting iteration, the prior for each parameter was based on a distribution of heuristic

estimates for the parameter values. Three fitting iterations were applied, which was sufficient

for near-convergence. All posterior maximizations were conducted using the optimo function in

R using method BFGS.
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Posterior distributions were characterized through inversion of the Hessian of the posterior

probability function at its MAP value. This approach was used for establishing credible intervals

for individual parameters and for determining P(DL>Dc) and P(TL>Tc) for individual genes.

Rescaling to molecules per cell

To aid interpretation, we calculate scaling factors so that model estimates could be interpreted

in terms of protein and mRNA molecules rather than microshares and TPM. Comparing the

model estimates for Moi to previously curated (14) absolute per-cell abundances of 37

overlapping genes, we estimated a scaling factor that minimized the mean log fold discrepancy

between our estimates and the curated values. Based on this approach, we determined that

replicate 1 and replicate 2 protein microshares should be multiplied by 8,641 and 8,391,

respectively, to express protein levels in terms of molecules. For RNA, we used the previous

estimate of 2.6x10-s moles nucleotides per cell (mouse fibroblasts; (11)), and an average

transcript length of 1,500-2,000 nucleotides, to determine that each cell should contain

approximately 0.75-1.1 million mRNA transcripts. Therefore, we consider 1 TPM as roughly

equivalent to 1 transcript per cell. We emphasize that these are rough estimates only, and rely

on general assessments in the literature.

Determining contributions to total protein expression at baseline

Estimates of percent contribution to baseline protein expression were derived by comparing

different model-based estimates of protein level to independent proteomic measurements,

measured in separate experiments (not those used to fit the model) and with two distinct

digestions (see below). Overall, to generate a predicted protein level, we used our model where
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the parameters for one or more of the three regulatory step - RNA levels, translation rate, and

degradation rate - were set based on their per-gene fit and the others were set for their

median value across the fits for all genes. In each case we calculated the correlation between

the model's prediction and the measurements (see below on how correlation is calculated). By

considering the improvement in this correlation as more parameters are set to their per-gene

fit, we can estimate their contribution to protein level. For example, comparing the model's

ability to predict using only per-gene fits of RNA level (but with translation and degradation

rates set to their pan-genome median) vs. its quality of prediction based on per-gene fits of

RNA and translation rates (with degradation set at pan-genome median), we can determine the

contribution of translation rates.

Because RNA levels, translation rates, and degradation rates are not fully orthogonal to each

other and because these variables interact in a non-linear manner, explanatory contribution is

dependent on the order in which per-gene parameters are allowed into the model. The order

we present in Figure 3 (RNA, translation, degradation) was chosen because it follows the

temporal ordering of the protein life cycle and, roughly, accessibility to measurement. It is also

consistent with previous computational approaches to this question (Li et al., 2014;

Schwanhausser et al., 2011). Nonetheless, we have explored the results in the context of the

other five possible orderings and present these in Figure S11. Below we provide full details on

this analysis.
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To quantify the explanatory capacity of each process we relied on the framework of squared

Pearson correlation coefficient, which we treat analogously to the "percent variance explained"

or "R 2" term commonly used in the context of linear regression.

Because of stochastic and protocol-dependent errors, we would not expect a perfect

correlation between RNA and protein measurements even within the context of a system in

which protein level is 100% RNA-dependent. To correct for this, we employed a statistical

adjustment, known as Spearman correction (not related to "Spearman" rank correlation), which

can estimate the true correlation of two variables X and Ythat are observed as error-prone (but

independently distributed) replicate estimates X1, X 2, and 1, Y2 . To achieve this estimate, the

nominal correlation between X and Y is estimated as the geometric mean of the pairwise

correlations cor(X 1 , fi), cor(. 1, f2), cor(X 2 , f 1), and cor(X 2 , P2) corrected by the geometric

mean of the estimated reliabilities of the X and Y measurements, which are cor(X 1 ,X 2 ) and

cor(Y1 , Y2 ), respectively. The Spearman-corrected Pearson correlation may be expressed as:

g (r (kl, fl), r (k1, f2z), r (k2, f,1), r(k2, f2)

g (r (k, k2), r(?,, f2))

where r(-) represents the Pearson correlation of the (log-transformed) input variables and

where g(-) represents a geometric mean function. Squaring this correlation expression yields

an error-corrected measure of fraction variance explained.

In our case, the underlying variables are model-estimated protein level (based on RNA alone,

based on RNA and translation, or based on all three channels) and actual protein level.

Estimates of actual protein level were made from independent experiments that used LysN or
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AspN peptide library preparation protocol (otherwise experimental procedures were identical

to those described above for the trypsin-prepared data used to fit the original model). This

approach is necessary to satisfy the requirement that error terms be independent. Using trypsin

estimates as the measure of actual protein level would be inappropriate because the model-

based translation rates are also based on trypsin preparation, which would cause library

protocol-dependent errors to artificially inflate the contribution of translation (as both

translation rate estimates and total protein level estimates would contain the same trypsin-

dependent error per gene). As a quality control measure, we also compared the protein levels

estimated by the different digestions and our model for 61 previously determined 'standards'

(Li et al., 2014) and show a good correspondence in all cases (Figure S21). Note that

transcription rates and degradation rates are not sensitive to this issue as RNA is quantitated by

an orthogonal system and degradation is inherently on a relative scale (so library-dependent

degradation rate error terms should be small). A limitation of this approach is that it does not

address systematic errors in RNA-Seq quantitation, e.g. biases toward highly sequenceable

genes. This may result in an underestimation of the transcriptional contribution to total protein

level.

More formally, we define the following variables:

R 1 , R 2 : Smoothed estimates for baseline (to) RNA abundance (two replicates)

T1 , T2: Model-based estimates of baseline (to) translation rates (two replicates)

D1, D 2 : Model-based estimates of baseline (to) degradation rates (two replicates)
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L 1 , L 2 : Measured IBAQ values from baseline sample prepared with LysN digest (two replicates)

A 1 , A 2 : Measured IBAQ values from baseline sample prepared with AspN digest (two replicates)

At steady state, baseline protein expression can be estimated as the product of RNA abundance

and per-mRNA translation rate divided by degradation rate. (Of the different possible order of

consideration, we describe the case where RNA is considered first, then RNA and translation

and then all three steps. We assessed contributions in all other possible orderings in an

analogous manner.) We defined three model-based estimates of protein abundance for

replicate 1. The first (PRi) utilized per-gene RNA abundance estimates but substituted in pan-

genome medians for translation and degradation. The second (PRT1) utilized per-gene RNA

abundances and translation rates but held degradation at its median value. The third

(PRTD1) used per-gene estimates for all three variables.

PR1 = R 1 -median(T1)/median(D1 )

PRT1 = R1 - T1/median(D1 )

PRTD1= R1 - T1D1.

Analogous formulas were used to generate PR2, PRT2, and PRTD2 for replicate 2.

To obtain the fraction of protein level variance explained by RNA, we calculated a Spearman-

corrected correlation and squared it:

g(r(PR1,L 1), r(PR1, L 2 ), r(PR1,A1), r(PR,,A2), r(PR2, L 1 ), r(PR2, L 2 ), r(PR2, A 1 , r(PR2 ) 2

xR g(r(P 1,PR 2),g(r(L, A 1),r(1 ,A 2), r(L2, A 1),r(L 2,A 2)))
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Correlations were assessed based on the set of overlapping genes between the two

experiments, which was ~75% of genes when data originated from different peptide libraries.

To obtain the additional contribution of translation to protein level variance, we calculated:

Tg(r(PRT1, L 1 ), r(PRTI, L 2 ), r(PRTI, A 1 ), r(PRT1, A 2 ), r(PRT2, L1 , r(PRT2, L 2 ), r(PRT2, A,), r(PRT 2 ,A2)) 2
XT = g(r(PRT1, PRT2), g(r(L1 , A1 ), r(L 1 , A 2 ), r(L 2, A,), r(L2, A 2 ))) -XR

To obtain the additional contribution of degradation to protein level variance, we calculated:

_D gtr(PRTD1, L1),?T RTD1, L2),r(RTD1,A1),T PRTDI,A2),(RTD2, L1),T (RTD2, L2),T r RTD2,A1%T r(RTD2,A2)) )2 -XR -XTX(D(PRTD 1, PRTD2), g(r(Ll, A ), r(LI, A 2 ), r(L
2 , A 1 ), r(L 2, A 2 )))

In our analysis, XR, XT, and XD summed to less than 1. This is due to under-estimation of

correlations in the numerators (a possible result of model misspecification) and/or over-

estimation of reliabilities in the denominators (a possible result of correlated error terms -

these may persist due to aforementioned biases in the RNA-Seq).

In addition to estimating the contribution of each regulatory step across all genes, we also

estimated the contribution of RNA level, translation rate, and degradation rate to protein levels

on a per-gene basis (Table S5). These were defined as PRTD = R/median(R), PRTD

TD RD

T/median(T), and PRTD= median(D)/D, respectively, which may be interpreted as the
PRT

relative expression difference due to the non-centrality of the given regulatory step.
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Determining contributions to dynamic fold changes in protein expression

We used an analogous approach to calculate the contribution of changes in RNA level,

translation rate, and degradation rate to LPS-induced changes in total protein level. As before,

we considered this in all possible orderings, and present below the ordering of (RNA,

translation, degradation).

The following variables were calculated based on data from replicate i (i=1,2):

PRj: fold change between two model-based estimates of the 12-hour protein level: the first

estimate uses the RNA level trajectory fit for LPS conditions and translation/degradation rates

estimated under MOCK conditions; the second estimate uses only MOCK-derived parameters.

PRTi: fold change between two model-based estimates of 12-hour protein level: the first

estimate uses LPS-derived RNA levels and translation rates but control-derived degradation

rates; the second estimate uses only control-derived parameters.

PRTDi: fold change between two model-based estimates of 12-hour protein level: the first

estimate uses LPS-derived parameters exclusively; the second estimate uses only control-

derived parameters.

Since the dynamic response is quantified on the basis of ratios (between LPS and control at 12

hours), there is less concern that correlated error terms will arise from systematic biases.

Therefore, we dispensed with collecting non-trypsin fold change estimates and simply

calculated correlations and reliabilities by comparing (sub-)model estimates from one replicate i

full model estimates from the other replicate j:
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XR g(r(PR, PRTDj r), Rj P RTDi) 2

,g(r(PR, PRJ r(PRTDi, PRTDJ))

XT = (r(RTi RTDj )(RTJRTDi) 2 -XRT 

g(r(PT PRTJ r(PRTDi, PRTDJ))

S(r(PRTD PRTDj),r(PRTDP PRTDi)) 
2 - XR - XT = 1 - XR - XT

X (g( RTDP RTDj),r(PRTDL, PRTDJ))

Note that a side effect of this approach is that explanatory contributions will necessarily add to

100%.

We also estimated the contribution of changes in RNA level, translation rate, and degradation

____ PRTD ~T
rate on a per-gene basis (Table S5). These were defined as _ ., and PRTD (dropping

PTD' PRD PRT

replicate subscripts), where variables are defined as above with the addition of:

PTD: fold change between two model-based estimates of 12-hour protein level: the first

estimate uses LPS-derived fits of translation rates and degradation rates but MOCK-derived

RNA levels; the second estimate uses MOCK-derived parameters exclusively.

PRD: fold change between two model-based estimates of 12-hour protein level: the first

estimate uses LPS-derived fits of RNA levels and degradation rates but MOCK-derived

translation rates; the second uses MOCK-derived parameters exclusively.

To determine whether there was a relationship between the magnitude of a gene's fold change

and the regulatory process driving it, genes were divided into 10 equally sized bins according to

their total fitted 12-hour protein fold change (M+H), and the median contribution of each

regulatory channel was calculated per bin (Figure S12).
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Determining contributions to absolute changes in protein expression

To estimate the contributions of changes in RNA levels, translation rates, and degradation rates

to absolute changes in protein expression (ie. as measured in terms of IBAQ units rather than

relative fold change), we re-defined PR1, CR2, PRT1, PRT2, PRTD1, andPRTD2 in terms of

subtraction rather than division, and XR, XT, and XD were re-calculated using the formulas

above. Given that PR1, PR2, PRT1, PRT2, PRTD1, and RTD2 could be positive or negative, they

were not log-transformed prior to the correlation calculation (as in the previous analyses). Per

gene contributions were defined as PRTD - PTD, PRTD - PRD, and PRTD - ERT (dropping the

replicate subscripts; Table 55).

Assessing for robustness to outliers

The above contributions were all calculated based on Pearson correlations. To examine

whether any of our conclusions might be substantially influenced by outliers, we repeated the

analyses using Spearman rank correlation and observed comparable results (Figure S20).

Assessing the impact of ascertainment bias

Since our proteomic measurements are biased toward highly expressed proteins (Figure 514),

we asked whether our derived explanatory contributions were representative of the full

proteome. Since our RNA-seq data is comparatively much more sensitive (Figure 514), we

defined an "expected proteome" at baseline based on all protein coding genes expressed

greater than 2 TPM at t=Oh. Logarithmically spaced RNA expression bins were defined (5 per

order of magnitude; see Figure S14), and the number of modeled proteins was compared to the
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number of expressed transcripts in each bin. We then repeated the explanatory contribution

analyses using the observed protein vs. observed RNA count ratios as weights in the correlation

calculations using the weighted correlation formula:

corr(x,y; w) = COi(xY; w)
jcov(xx; w)col2(yy; w)

where,

COV(xY;w) Ei Wi(Xi - n(x; W))(yi - mr(y; w))

E i wi

where,

M(X;~ ~ W Zi wixi

m(x; w) =~WXZ i wi

For example, there were 1,500 distinct genes in the 5-8 TPM RNA expression bin, but only 250

of the corresponding proteins modeled in our analysis. Thus, the correlation calculation (which

considers modeled genes only) would give each of these 250 proteins a weight of 1500/250=6.

In this manner, low-expression proteins were more highly weighted such that all RNA

expression bins contributed equally to the calculations of contributions. It is indeed possible

that all, or nearly all, bins will receive a weight >=1. But this is not a problem because the

weighted correlation formula automatically normalizes by the sum of the weights, ie the

weights only matter in proportion to each other (Pozzi et al., 2012). The result of the weighting

is that correlation will now reflect the full expression distribution (in so far as it can be

estimated from RNA levels) equally.
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Ribosome profiling for baseline translation efficiency estimates in mouse DCs

Unstimulated BMDCs were incubated with 100ltg/mL Cycloheximide for 1 minute at 37"C. Cells

were collected by centrifugation at 300 xg for 5 minutes at 4"C and washed twice with

Cycloheximide (100lig/mL) in ice-cold PBS. Cell pellets were covered with 400ptL of lysis buffer

(4.75 mL polysome buffer + 250 pL 20% Triton X-100 (Sigma-Aldrich) + 60 units Turbo DNAse

(Ambion)). Polysome buffer is 20mM Tris-HCI pH 7.56, 150mM NaCl, 5mM MgCI2, 100pg/mL

CHX, 1mM DTT, and 8% glycerol. Lysis was carried out by triturating 10 times. Whole-cell lysates

were clarified by centrifuging at 20,000 xg for 10 minutes at 40C. Clarified lysate was collected

and flash frozen in liquid nitrogen.

Ribosome-protected fragments were isolated and cloned from lysates via RNAse I (Ambion)

treatment as described previously (Ingolia et al., 2012). Samples were depleted of rRNA

contamination with the Ribo-Zero rRNA Removal Kit (Epicentre) and sequenced on the Illumina

HiSeq2500.

Sequencing reads were stripped of linker sequences using fastxclipper from the FASTX-Toolkit

with the following settings: -a CTGTAGGCACCATCAAT -n -Q 33. Reads mapping to miRNAs,

rRNAs, snRNAs, snoRNAs, and tRNAs were filtered using Bowtie2 in --local mode (Langmead

and Salzberg, 2012). Remaining reads were aligned using Tophat2 to the UCSC mm9 Known

Gene transcriptome. Tophat2 (Kim et al., 2013) was run with the following settings --b2-very-

sensitive --transcriptome-only --no-novel-juncs -max-multihits=64.

Footprints were filtered for read lengths 26-33 (inclusive). Footprints were mapped to their

approximate P-site position by applying a 12 nucleotide offset from the 5' end. Footprint counts
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were averaged over the union of genomic positions corresponding to coding sequences of the

genes in each "analysis group" (defined previously in the "Integration of proteomic and

transcriptomic data" section), excluding positions within 3 nucleotides upstream or 15

nucleotides downstream of start codons or within 9 nucleotides upstream of stop codons.

To estimate translational efficiency (TE) for each gene, the count of aligning nucleotides was

divided by the length of the included region. This measure of ribosomal occupancy was

renormalized to sum to 1 million across all genes. It was then divided by the RNA-seq-derived

abundance (expressed in TPM; Table S4).

We then revisited our model for baseline contributions for protein levels, replacing our

modeled per-mRNA translation rates with the footprinting-derived translational efficiencies and

proceeding as previously (Figures 3B, S10).

Generation of heatmaps

Unless otherwise noted, all heatmaps display the 2,288 genes for which we had measurements

at all time points in both replicates of the pulsed-SILAC and RNA-Seq experiment. Color

intensities are determined by calculating robust z-scores ((x - median of x)/(median absolute

deviation of x)) on the data in each map. The order of the genes was determined by hierarchical

clustering of robust z-scored fold changes in RNA level, translation rate, and degradation (as

estimated LPS/MOCK at 12 hours) using the seriateo function in the R package "seriation"

(Buchta et al., 2008; Hahsler et al.).
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Secretome enrichment analyses

The "Secretome" was defined as the set of genes appearing in Table S4 "Compendium of

Human Secreted Proteins" in (Eichelbaum et al., 2012). The enrichment score with respect to

degradation rate fold change was calculated using a Wilcoxon rank sum test.

Identification of functional gene sets with significantly high or low rates

We tested individual functional gene sets for significantly high or low values of RNA baseline,

baseline translation, baseline degradation, fold change in RNA, fold change in translation, or

fold change in degradation by comparing the rates for the measured genes in the gene set with

those of all other measured genes using a Wilcoxon rank sum test. Enrichment level was

presented using the absolute logio(p-value) multiplied by the sign of the association.

The gene sets queried were the collection of "Gene Ontology Annotations" from Mouse

Genome Informatics (ftp://ftp.informatics.jax.org/pub/reports/gene association.mgi) (Blake et

al., 2013). Baseline RNA was assessed from the fitted values at t=O. Fold change in RNA was

assessed as the average RNA expression during the 12-hour LPS experiment divided by the

average RNA expression in the 12-hour MOCK experiment.

We used the following definitions for the genes in the "ribosomal," "mitochondrial," and

"immune" genes in Figure 2B and elsewhere. Ribosomal proteins were defined strictly as the

small and large subunits (gene names starting in Rps and and Rpl, excluding several kinases).

Mitochondrial genes were defined as all genes appearing in Table S5 of cited (Pagliarini et al.,

2008). "Immune genes" were defined as all genes appearing in any of the following gene sets:
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innate immune response in mucosa
activation of immune response
myeloid dendritic cell activation involved in immune response
macrophage activation involved in immune response
leukocyte activation involved in immune response
cytokine production involved in immune response
cytokine secretion involved in immune response
leukocyte migration involved in immune response
regulation of cytokine production involved in immune response

regulation of cytokine secretion involved in immune response

negative regulation of cytokine secretion involved in immune response

positive regulation of cytokine secretion involved in immune response
innate immune response-activating signal transduction

immune response-regulating signaling pathway
immune response-inhibiting signal transduction

immune response-inhibiting cell surface receptor signaling pathway

immune response-regulating cell surface receptor signaling pathway

immune response
innate immune response
regulation of innate immune response
positive regulation of innate immune response

negative regulation of innate immune response
regulation of immune response
negative regulation of immune response
positive regulation of immune response
positive regulation of myeloid leukocyte cytokine production involved in immune
response

Mitochondrial to nuclear DNA ratio

We determined the mitochondrial DNA (mtDNA) / nuclear DNA (nDNA) ratio as previously

described (Guo et al., 2009). Briefly, genomic DNA was extracted using the phenol-chloroform

method. Primers for COI (forward: 5'-TGCTAGCCGCAGGCATTAC-3' and reverse: 5'-

GGGTGCCCAAAGAATCAGAAC-3') and NDUFV1 (forward: 5'-CTTCCCCACTGGCCTCAAG-3' and

reverse: 5'-CCAAAACCCAGTGATCCAGC-3') were used to quantify mtDNA and nDNA,

respectively. Real-time PCR was performed based on SYBR Green (Roche) using a Roche

LightCycler 480 sequence detection system.
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Figure S2. The recycling rate, y(t)
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Figure S3. Fitted Data
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Shown are heat maps for 2,288 genes (rows) at each time point (columns) of (left to right) (A) fitted R(t), H(t) and

M(t) values and (B) corresponding residuals (fitted/raw) for each of two replicates from MOCK- and LPS-stimulated

DCs. Gene order is the same across all heatmaps, and determined by hierarchical clustering of fitted fold changes

in RNA level, translation rate, and degradation rate. In (A) values are median-normalized by row, logged, and

subjected to robust z-transformation per map; in (B) values are logged, converted to absolute value, and subjected

to z-transformation per map (red: high, white: moderate; blue: low; see color scale).
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Figure S4. Using empirical Bayes to robustly distinguish signal and noise
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Pearson r = 0.05 IPearson r =0.91

0b
.2

04

05 10 20 50

Replicate 1 - H/L ratios
100

on S7*

01 02 05 10 20 50 100

Replicate 1 - H(t) ratios

B LPS/MOCK - 12h post stimulation

+ Pearson r = 0.55 tPearson r = 0.91

U)a

1#-01 10+00 10+01

Replicate 1 - H/L ratios
1e+02 19-02 1-01 10+00 10+01
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Scatter plots comparing the two replicates by either the raw H/L ratios (left) or the fitted H(t) values (right) of LPS
vs. MOCK at (A) 2 hours and (B) 12 hours. The Pearson correlation coefficient (r) of log fold change is depicted in
the top left corner of each plot. Proteins annotated with immune response-related GO terms are depicted in red.
At the 2h time point, when the amount of newly produced protein is typically very low, protein production (H/L)
has a low signal-to-noise ratio and reproducibility is much lower than at 12h. The reproducibility of fitted values is
substantially better than the raw ones, due to the empirical Bayes approach, which "shrinks" unreliable estimates
based on noisy data toward the population mean (while assigning them wide credible intervals). Genes with >2
fold change (in at least one replicate) at 2h post stimulation are named in (A). All of these genes have been
implicated in immune function.
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Figure 55. Reproducibility of estimated changes in production or degradation rates
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Shown are scatter plots comparing the two replicates for (A) per-mRNA translation rate differences (ATi =

Ti(12h)LPs/Ti(12h)MOCK) and (B) degradation rate differences (ADi = Di(12h)LPs/Di(12h)MocK) . The Pearson correlation

coefficient (r) of log fold change is depicted in the top left corner of each plot. Red and blue dots: rates significantly

up- or down-regulated upon LPS stimulation (as defined by the posterior odds of a rate increase vs. a rate decrease

being greater than 100 or less than 0.01, respectively). Reproducibility is particularly good for significantly changing

rates due to our Empirical Bayes approach.
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Figure 56. Basal per-mRNA translation rates and protein degradation rates in OCs

A B

Translation Rate
(Protein Mol. / RNA Mol. / Hr)
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Degradation rate (1/Hr)
Median 0.011

Distributions of (A) basal per-mRNA translation rates (Ti(Oh)) and (B) basal degradation rates (Di(Oh)) in
unstimulated (t=Oh) DCs. The per-mRNA translation rate is represented as protein molecules / mRNA transcript /
hour (hr).
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Figure S7. Fair agreement between estimates of rates in the protein life cycle rates at steady

state in mouse DCs and in previous studies in proliferating mouse cells
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10000

Scatter plots comparing our model-based rate estimates in resting DCs (X axis) to previous measurements in
mammalian cells (Y axis). Each plot indicates the Pearson correlation (r) of the log-transformed rates in the upper
left corner. Each gene is represented with a semi-transparent gray point. Blue shading in the background reflects
local point densities (darker = more points), and the red curve represents a local regression fit spanning from the

5 th to 9 5th percentile. In (A) and (B), per-mRNA translation rates (Ti(Oh)) and degradation rates (Di(Oh)) (X axis),
respectively, are compared to previously published rates for cycling mouse fibroblasts (NIH3T3 cells, Y axis), which
were also based on a pulsed-SILAC approach (Schwanhausser et al., 2011). In (C), per-mRNA translation rates
(Ti(Oh), X axis) are compared to translational efficiency (TE, Y axis) estimates obtained by ribosome profiling from
mouse NIH 3T3 fibroblasts (Subtelny et al., 2014).
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Figure 58. Fair agreement between estimates of translation rates obtained by two alternative

approaches at steady state in mouse DC
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Scatter plots comparing our TE based translation rate estimates based on ribosome profiling in our resting DCs (X
axis) to translation rate estimates obtained by us with pulsed-SILAC based in resting DCs (A, Y axis) or to TE values
measured by others (Subtelny et al., 2014) using ribosome profiling in cycling mouse fibroblasts (NIH3T3 cells) (B, Y
axis). Each plot indicates the Pearson correlation (r) of the log-transformed rates in the upper left corner. Each
gene is represented with a semi-transparent gray point. Blue shading in the background reflects local point
densities (darker = more points), and the red curve represents a local regression fit spanning from the 5 th to 9 5th

percentile.
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Figure 59. Increased protein turnover and increased "degradation" of the secretome upon LPS

stimulation
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Shown are cumulative distribution functions (CDF) plots of (A) per-mRNA translation rates in LPS (TD(LPS)i =

Ti(12h)LPs/Ti(Oh); orange) and MOCK (TD(Mock)i = Ti(12h)Mock/Ti(Oh); black) conditions; (B) degradation rates in LPS

(DD(LPS)i = Di(12h)LPs/Di(Oh); orange) and MOCK (DD(Mock)i = Di(12h)Mock/Dj(0h); black) conditions; and (C) changes in

degradation rates ( A Di = Di(12h)LPs/Di(12h)MoCK) for all modeled proteins (grey) and for the secretome (as

annotated in (Eichelbaum et al., 2012); black). Both translation and degradation rates are overall increased upon

LPS stimulation and "degradation" is increased (here: decreased cellular half life) for the secretome. In all three

cases: P < 1*10-10, Wilcoxon rank sum test.
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Figure S10. Contributions of RNA levels and the protein life cycle to steady state protein
levels.
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As in Figure 3A and 3B, but the unexplained component of the variance is included (grey). Global contributions to
steady state protein level of RNA (orange), protein degradation rates (blue), and either per-mRNA translation rates
(A, from pulsed SILAC) or translation efficiency (B, TE, from ribosome profiling) (tan).
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Figure S11. Contributions of RNA levels and the protein life cycle to steady state protein levels

and to protein expression changes following LPS

A
Baseline (with residual)

Order of parameter addition RNA % Translation % Degradation % Residual %

RNA - Translation - Degradation 52.3 20.2 6.3 21.2

RNA - Degradation - Translation 52.3 15.4 11.1 21.2

Translation - RNA - Degradation 53.8 18.8 6.3 21.2

Translation - Degradation - RNA 48.2 188 11.9 21,2

Degradation - RNA - Translation 46.7 15.4 16.7 21.2

Degradation - Translation - RNA 48.2 13.9 16.7 21.2

Baseline (% total variance explained)
Order of parameter addition RNA % Translation % Degradation %

RNA - Translation - Degradation 66.3 25.7 8.0

RNA - Degradation - Translation 66.3 19,6 14.1

Translation - RNA - Degradation 68.2 23.8 8.0

Translation - Degradation - RNA 61.2 23.8 15.0

Degradation - RNA - Translation 59.3 19.6 21.2

Degradation - Translation - RNA 61.2 17.7 21.2

B
Relative Fold Change
Order of parameter addition RNA % Translation % Degradation %

RNA - Translation - Degradation 89.9 4.5 5.7

RNA - Degradation - Translation 89.9 3.8 6.4

Translation - RNA - Degradation 87.4 6.9 5.7

Translation - Degradation - RNA 90.0 6.9 3.0

Degradation - RNA - Translation 91.7 3.8 4.5

Degradation - Translation - RNA 90.0 5.5 4.5

C
Absolute Change
Order of parameter addition RNA % Translation % Degradation %

RNA - Translation - Degradation 42.7 30.8 26.5

RNA - Degradation - Translation 42.7 21.7 35.6

Translation - RNA - Degradation 32.2 41.3 26.5

Translation - Degradation - RNA 39.8 41.3 18 8

Degradation - RNA - Translation 42.8 21.7 35.5

Degradation - Translation - RNA 39.8 24.6 35.5

Each table shows the contributions of (left to right) RNA, per-mRNA translation rates, and protein degradation

rates to (A) steady state protein levels, (B) fit fold change in protein expression in LPS vs. MOCK and (C) fit absolute

difference in protein molecules in LPS vs. MOCK. Contributions are calculated by the Spearman-corrected Pearson

correlation coefficient between model-predicted values and either independently measured protein levels (A) or

the full models' fit from the other replicate (B, C). In (A), values were obtained by either including the unexplained

component (top table), or by ignoring the unexplained component and rescaling the contributions to sum to 1

(lower table). For each analysis, values are shown for each possible ordering of information (per-gene parameter)

addition to the model.
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Figure S12. Regulatory contributions per protein expression decile
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Shown is the proportion of contribution of each process to 12-hour total protein fold change (median log2
contribution to fold change; Y-axis) for genes in each decile of 12-hour total protein fold change (X-axis), ordered
from largest increase (leftmost bin) to largest decrease (rightmost bin). These values are available in tabular form
per-gene in Table S5.
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Figure S13. Protein fold changes at 12h post LPS correlate best to mRNA changes at 5h
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Shown is the Spearman rank correlation coefficient (p, Y axis) between the raw protein fold changes in LPS vs.

MOCK at 12h and the corresponding raw RNA fold changes at each measured time point (X axis). The time point

with the strongest correlation (RNA at 5h) is marked in red.
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Figure S14. Proteomic and ribosome profiling detection rate as a function of RNA abundance
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Shown are the distribution of number of distinct gene transcripts (black, from RNA-Seq), ribosome-associated
transcripts (light grey, from ribosome profiling), and modeled proteins (grey, from proteomics) detected (Y axis) at
each of 21 logarithmically-spaced bins (X axis) of RNA expression, for those genes whose mean expression across
the two replicate MOCK series is greater than 2 TPM. At lower expression bins, while RNA-Seq detects the most
expressed genes, only a portion of those are detectable as ribosome associated (for TE calculations) from ribosome
profiling, and only some of those are further possible to model for translation and degradation rates from our
proteomics data.
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Figure S15. Protein level contributions corrected for detection bias

A
Baseline (with residual)
Order of parameter addition RNA % Translation % Degradation % Residual %

RNA - Translation - Degradation 51.8 20.6 5.2 22.3

RNA - Degradation - Translation 51.8 15.6 10.2 22.3

Translation - RNA - Degradation 53.8 18.6 5.2 22.3

Translation - Degradation - RNA 50.6 18.6 8.5 22.3

Degradation - RNA - Translation 49.4 15.6 12.6 22.3

Degradation - Translation - RNA 50.6 14.5 12.6 22.3

Baseline (% total variance explained)
Order of parameter addition RNA % Translation % Degradation %

RNA - Translation - Degradation 66.7 26.5 6.7

RNA - Degradation - Translation 66.7 20.1 13.1

Translation - RNA - Degradation 69.3 23.9 6.7

Translation - Degradation - RNA 65.1 23.9 10.9

Degradation - RNA - Translation 63.7 20.1 16.2

Degradation - Translation - RNA 65.1 18.7 16.2

B
Relative Fold Change
Order of parameter addition RNA % Translation % Degradation %

RNA - Translation - Degradation 88.3 4.7 7.0

RNA - Degradation - Translation 88.3 3.7 8.0

Translation - RNA - Degradation 84.4 8.6 7.0

Translation - Degradation - RNA 87.9 8,6 3,5

Degradation - RNA - Translation 90.6 3.7 5.8

Degradation - Translation - RNA 87.9 6.3 5.8

C
Absolute Change

Order of parameter addition RNA % Translation % Degradation %

RNA - Translation - Degradation 43.3 30.6 26.0

RNA - Degradation - Translation 43.3 21.8 34.8

Translation - RNA - Degradation 32.1 41.9 26.0

Translation - Degradation - RNA 40.2 41.9 17.9

Degradation - RNA - Translation 44.1 21.8 34.1

Degradation - Translation - RNA 40.2 25.7 34.1

Explanatory contributions were calculated for (A) baseline proteins levels, (B) LPS-induced protein fold changes,

and (C) absolute changes in protein abundance, as in fig. S11, but after applying weighting each gene

proportionally to the sampling bias observed in fig. 514.
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Figure S16. Correlation of pSILAC based translation rates and DC translational efficiencies at
different expression levels
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(A, B) Scatter plots comparing our model-based translation rate estimates from pulsed SILAC data (Y axis) to
translational efficiencies (TE) from ribosome profiling (X axis) both in resting DCs but when considering only genes
in the bottom (A) or top (B) quartile of protein expression (as assessed from modeled Mo values, mean of
replicates). The Pearson correlation (r) of the log-transformed rates appears in the upper left corner. (C) density
distributions for logio TE for low expression genes (mean expression 2-20 TPM in raw, MOCK-stimulated time
series data) whose encoded proteins were either included in proteomic modeling (blue) or not (grey). P-value of a
t-test on the log-TE values is shown in the upper left corner.
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Figure S17. The vast majority of high confidence mitochondrial proteins have decreased half-

lives upon LPS stimulation
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(A) Box plot of the fold change in degradation rate (ADi, Y axis) in LPS vs. MOCK for mitochondrial proteins

annotated in Mitocarta (Pagliarini et al., 2008) binned by their Maestro scores (reflecting confidence that the

protein is indeed localized to the mitochondria). (B) Distribution of log2 LPS/MOCK raw M/L ratios (a proxy for

protein decay) for Mitocarta's "high confidence" mitochondrial proteins (Mitocarta Maestro score > 20 (Pagliarini

et al., 2008)) measured in our dataset at 12h (black) and 24h (grey) post stimulation.
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Figure 518. The strong contribution of protein degradation to the protein life cycle in DCs is

independent of the secretome

A
Relative Fold Change - All modeled
Order of parameter addition RNA % Translation % Degradation %

RNA - Translation - Degradation 89.9 4.5 5.7
RNA - Degradation - Translation 89.9 3.8 6.4

Translation - RNA - Degradation 87.4 6.9 5.7

Translation - Degradation - RNA 90.0 6.9 3.0
Degradation - RNA - Translation 91.7 3,8 4.5

Degradation - Translation - RNA 90.0 5.5 4.5

Relative Fold Change - No Secretome

Order of parameter addition RNA % Translation % Degradation %

RNA - Translation - Degradation 92.4 3.2 4.4
RNA - Degradation - Translation 92.4 2.3 5.3
Translation - RNA - Degradation 86.4 9.3 4.4

Translation - Degradation - RNA 88.9 9.3 1.8
Degradation - RNA - Translation 92.6 2.3 5.1
Degradation - Translation - RNA 88.9 6.0 5.1

Absolute Change - All modeled
Order of parameter addition RNA % Translation % Degradation %

RNA - Translation - Degradation 42.7 30.8 26.5
RNA - Degradation - Translation 42.7 21.7 35.6
Translation - RNA - Degradation 32.2 41.3 26.5
Translation - Degradation - RNA 39.8 41.3 18.8
Degradation - RNA - Translation 42,8 21.7 35.5

Degradation - Translation - RNA 39.8 24.6 35.5

Absolute Change - No Secretome

Order of parameter addition RNA % Translation % Degradation %

RNA - Translation - Degradation 54.4 34.1 11.5
RNA - Degradation - Translation 544 23.7 21.9
Translation - RNA - Degradation 42.6 45.9 11.5
Translation - Degradation - RNA 42.6 45.9 11.5
Degradation - RNA - Translation 42.4 23.7 33.9
Degradation - Translation - RNA 42.6 23.5 33.9

Each table shows the contributions of (left to right) RNA, per-mRNA translation rates, and protein degradation
rates to the (A) fit fold change in protein expression in LPS vs. MOCK and (B) fit absolute difference in protein
molecules in LPS vs. MOCK. Contributions are calculated by the Spearman-corrected Pearson correlation
coefficient between model-predicted for one replicate and the full models' fit from the other replicate. Values are
shown for each possible ordering of per-gene parameters addition to the model. Results are shown when proteins
reported to belong to the secretome (Blake et al., 2013) were removed from the analysis (top table) or for all
proteins (lower table, identical to the tables in Figs. S111, S11C).
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Figure 519. Comparison of relative magnitude of RNA and protein fold changes induced by LPS
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Shown is the comparison between the maximum fold change for each gene (based on absolute log fold change

between modeled LPS and MOCK values, averaged between replicates, over the time course) of RNA (x-axis) and

protein (y-axis). Each gene is represented with a semi-transparent gray point. Blue shading in the background

reflects local point densities (darker = more points), and the red curve represents a local regression fit spanning

from the 5 th to 9 5th percentile. Protein level changes were considered in terms of total protein (M+H).
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Figure S20. Contributions, based on Spearman rank, of RNA levels and the protein life cycle to

steady state protein levels and to protein expression changes following LPS

A
Baseline (with residual)
Order of parameter addition RNA % Translation % Degradation % Residual %

RNA - Translation - Degradation 49.2 21.4 7.1 22.3
RNA - Degradation - Translation 49.2 14.7 13.8 22.3
Translation - RNA - Degradation 511 19.5 7.1 22.3
Translation - Degradation - RNA 44.9 19.5 13.4 22.3
Degradation -RNA -Translation 42.0 14.7 21.1 22.3
Degradation - Translation - RNA 44.9 11.8 21.1 22.3

Baseline (% total variance explained)
Order of parameter addition RNA %e Translation % Degradation %

RNA -Translation -Degradation 63.3 27.5 9.2
RNA - Degradation - Translation 63.3 18.9 17.8
Translation - RNA - Degradation 65.7 25.1 9.2
Translation - Degradation - RNA 57.7 25.1 17,2
Degradation - RNA - Translation 54.0 18.9 27.1
Degradation - Translation - RNA 57.7 15.2 27.1

Relative Fold Change
Order of parameter addition RNA % Translation % Degradation %

RNA - Translation - Degradation 71.4 10.9 17.6
RNA - Degradation -Translation 71.4 8.0 20.5
Translation - RNA - Degradation 65.1 17.3 17.6
Translation - Degradation - RNA 71.1 17.3 11.6
Degradation -RNA -Translation 76.3 8.0 157
Degradation -Translation -RNA 71.1 13.2 15.7

Absolute Change
Order of parameter addition RNA % Translation % Degradation %

RNA -Translation - Degradation 51.7 26.6 21.7
RNA - Degradation - Translation 51.7 20.9 274

Translation - RNA - Degradation 57.2 21.1 21.7
Translation - Degradation - RNA 55.4 21.1 23.5
Degradation - RNA - Translation 48.1 20.9 31.0
Degradation - Translation - RNA 55.4 13.5 31.0

Each table shows the contributions of (left to right) RNA, per-mRNA translation rates, and protein degradation

rates to (A) steady state protein levels, (B) fit fold change in protein expression in LPS vs. MOCK and (C) fit absolute
difference in protein molecules in LPS vs. MOCK. Contributions are calculated by the Spearman-corrected
Spearman rank correlation coefficient between model-predicted values and either independently measured
protein levels (A) or the full models' fit from the other replicate (B, C). Values are shown for each possible ordering
of information (per-gene parameter) addition to the model. In (A), values were obtained by either including the
unexplained component (top table), or by ignoring the unexplained component and rescaling the contributions to
sum to 1 (lower table). For each analysis, values are shown for each possible ordering of information (per-gene
parameter) addition to the model.

238



Figure 521. Comparison of estimated baseline protein levels from different protein digestions

and our model to the expression level of previously determined 'standards'
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Supplemental Tables

Since many of the supplemental tables are large, they are available online only:

http:/www.sciencemag.org/content/347/6226/1259038.short

(DOI: 10.1126/science.1259038)

Table S1. Protein expression data

Normalized raw protein expression data (IBAQ shares per million (IMS)) for the 3,147 modeled

genes by channel (M/L or H/L), experimental condition (LPS or MOCK), replicate (R1 or R2), and

time point.

Table S2. RNA expression data

Normalized mRNA expression data (TPM) for the 3,147 modeled genes by experimental

condition (LPS or MOCK), replicate (R1 or R2), and time point.

Table S3. Per-gene parameter estimates.

(A) Parameter estimates with the original modeled units IMS and TPM. Listed are parameter

estimates for DO: baseline degradation rate [1/hr]; D(MOCK): fold change in degradation rate at

12 hours under MOCK conditions; D(LPS): fold change in degradation rate at 12 hours under LPS

conditions; TO: baseline per-mRNA translation rate [IMS / TPM / hour]; T(MOCK): fold change in

per-mRNA translation rate at 12 hours under MOCK conditions; T(LPS): fold change in per-

mRNA translation rate at 12 hours under LPS conditions; MO: protein expression at baseline

[IMS]; grass: background signal [IMS]. Values are presented for each replicate (R1 or R2) in

addition to the low and high boundaries of their respective 95% credible intervals (Cl.HI and

CL.LO). (B) Parameter estimates with the units protein and RNA molecules. As in A, but after

scaling our model estimates so that they could be interpreted in terms of protein and mRNA

molecules rather than microshares. Listed are parameter estimates for DO: baseline

degradation rate [1/hr]; D(MOCK): fold change in degradation rate at 12 hours under MOCK

conditions; D(LPS): fold change in degradation rate at 12 hours under LPS conditions; TO:

baseline per-mRNA translation rate [Protein molecules / RNA transcript / hour]; T(MOCK): fold

change in per-mRNA translation rate at 12 hours under MOCK conditions; T(LPS): fold change in

per-mRNA translation rate at 12 hours under LPS conditions; MO: protein expression at baseline

[Protein molecules]; grass: background signal [Protein molecule equivalents]. Values are

presented for each replicate (R1 or R2) in addition to the low and high boundaries of their

respective 95% credible intervals (CL.HI and CILO).
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Table S4. Ribosome profiling and translational efficiencies

Ribosomal footprinting (FP) density was calculated in two replicates (R1 and R2) with transcript

length corrections and global normalization applied. These FP values were divided by

corresponding mRNA abundances of the MOCK-stimulated time series (averaged, per replicate,
across the 10 time points) to obtain translational efficiencies (TE.R1, TE.R2) at time point Oh.

Table 55. Per-gene contributions of RNA, per-mRNA translation rate and protein degradation

rate to the final protein level (change)

Per-gene, per-replicate (R1 or R2) estimates of the contribution of each regulatory channel to

baseline protein level (sheet: contributions.BASE.csv), 12-hour LPS-induced fold change in

protein level (sheet: contributions.FC.csv), and 12-hour LPS-induced absolute changes in

protein level (sheet: contributions.ABS.csv). The first two sheets present fold-change data (FC

due RNA: contribution of RNA; FC due Translation: contribution of translation; FC due

Degradation: contribution of degradation), whereas the third presents expression units [Protein

Molecules] (Diff due RNA: contribution of RNA; Diff due Translation: contribution of translation;

Diff due Degradation: contribution of degradation).

Table 56. GO term analysis of RNA level, per-mRNA translation rate and protein degradation

rate (baseline and fold changes)

GO term logio p-values (Wilcoxon Rank Sum test, signed such that positive values indicate

enrichment and negative values indicated depletion) calculated for baseline mRNA level,
translation rate, and degradation rate (RO, TO, and DO, respectively) and 12-hour LPS-induced

fold changes in mRNA level, translation rate, and degradation rate (RD, TD, and DD,

respectively) along with the count of modeled genes in the gene set.

Table S7. Proteins with significantly increased synthesis rates and/or degradation rates upon

LPS stimulation

Gene names and estimated rate fold changes for genes that had significantly higher translation

or degradation (posterior odds off rate change increase greater than 100) upon LPS stimulation.

Table 58. Proteins with significantly decreased synthesis rates and/or degradation rates upon

LPS stimulation

Gene names and estimated rate fold changes for genes that had significantly slower translation

or degradation (posterior odds off rate change decrease greater than 100) upon LPS

stimulation.

Table 59. LPS-induced fold changes in RNA and protein

The maximum fold change for each gene (based on absolute log fold change between modeled

LPS and MOCK values, averaged between replicates, over the time course) was determined for

RNA (A) and protein (B). Protein level changes were considered in terms of total protein (M+H).
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