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Abstract

The structure of a material can be tuned reversibly or irreversibly by imposing elas-

tic or inelastic strain, leading to change of properties. This defines the concept of

strain engineering, which includes both elastic strain engineering (ESE) and inelastic

strain engineering (ISE). In this thesis, we study ESE and ISE by deviatoric (non-

hydrostatic) strain.

For ESE, we model how imposition of slowly-varying inhomogeneous elastic strain

can induce the electronic structure changes of semiconductor crystals. The strain-

dependent shift of valence and conduction band energy levels leads to the formation

of electronic and hole bound states in inhomogeneously strained crystals, whose en-

ergy levels can be dynamically tuned by the strain field. We developed a new enve-

lope function method with strain-parametrized basis set that can solve the electronic

structure of such inhomogeneously strained crystals by incorporating the local elec-

tronic structure information obtained from unit-cell level first-principles calculation

of homogeneously strained crystals.

For ISE, we study the deviatoric strain induced phase transformation and internal

structure evolution in soft matter systems. Using largescale molecular dynamics sim-

ulation, we demonstrate that controlled sintering of the nanocrystals in self-assembled

superlattices of alkanethiol-passivated gold nanoparticles can happen at room tem-

perature through deviatoric stress-induced displacement of the organic ligands. We

find that combining a hydrostatic pressure of order several hundred megapascal and

a critical deviatoric stress along the nearest-neighbor direction of gold nanoparticle

superlattices leads to ordered sintering of gold nanocrystals and the formation of

gold nanowire arrays. Similar phenomena can happen in binary superlattices of gold

and silver nanoparticles, and we predict the formation of gold-silver multijunction

nanowire arrays through deviatoric-stress driven sintering of nanoparticles. We also

simulate the plastic flow of two dimensional amorphous granular pillars subjected

to athermal, uniaxial and quasistatic deformation. We find that for the athermal

granular pillars under inhomogeneous load, the cumulative local deviatoric strains of

particles with respect to their neighbors play the role of time in thermal systems,
and drive the crossover of non-affine particle displacements from ballistic motion to
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diffusion. The result suggests that in disordered solids, deviatoric strain alone can
drive particle diffusion even at zero vibrational temperature.

Thesis Supervisor: Ju Li
Title: Battelle Energy Alliance Professor of Nuclear Science and Engineering, and
Professor of Materials Science and Engineering
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Chapter 1

Introduction

1.1 Elastic Strain Engineering

A crystal lattice is not infinitely strong even if it is in a defect-free state at zero tem-

perature: it cannot be elastically deformed beyond its ideal strain limit [1, 2, 3, 4, 5,

6, 7, 8, 9, 10] without losing homogeneity of the lattice or undergoing phase trans-

formation. The ideal elastic strain Eideal is an intrinsic property of an ideal atomic

structure that contains absolutely no defects, and can be calculated from first prin-

ciples for a periodic perfect lattice under periodic boundary condition at T = OK.

Because strain in three-dimensions (3D) is a 3 x 3 symmetrical tensor with six inde-

pendent components, Cideal is a five-dimensional bounding surface in a six-dimensional

strain space. Corresponding to Eideal is the ideal stress (strength) d-ideal. For most

crystalline materials, the ideal strength for tension and shear is approximately > - of

the elastic modulus [11]. Since for an elastically strained crystal, the deviation from

linear elasticity is not significant even when stress is high, the ideal elastic tensile

or shear strain is roughly of order 10% [11]. Most conventional materials, however,

cannot sustain tensile or shear strain more than 0.2 - 0.3% before inelastic relax-

ations such as plasticity or fracture set in. The large discrepancy between ideal and

practical elastic strain is because there are usually preexisting defects in conventional

materials, such as dislocations or cracks, which activate plastic flow or fracture of

the material well below its ideal strain limit. For example [12], steels have a Young's
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modulus E ~ 200 GPa. Imposing 1% of elastic strain means the sample-wide stress

in the steel would be around 2 GPa. From experience we know that this exceeds the

practical yield strength of most steels, which is usually on the order of a few hundred

MPa. Assuming the measured yield strength of a steel is 600 MPa, the preexisting

dislocations in the steel would start to move around and multiply around 0.3% of

elastic strain, and the elastic strain cannot increase further. For a brittle material

such as a bulk ingot of silicon or a silicon wafer (E ~ 150 GPa), a preexisting crack

would probably start to grow at tensile strain around 0.1%, leading to the fracture of

the material.

In recent years, however, a new class of ultra-strength materials [11], defined as

being able to sustain sample-wide shear or tensile elastic strain exceeding 1% over

a extended period of time at finite temperature, has emerged. At 1% elastic strain,

the sample-wide stress in a material reaches a significant fraction (- 10%) of their

ideal strength. Most ultra-strength materials discovered so far are nanostructured,

with one or more characteristic dimensions in the nano-size regime, such as nanopar-

ticles, nanowires, thin films, atomic sheets and bulk nanocomposites. The reason

that ultra-strength can be achieved in nanostructured materials is because the popu-

lation dynamics of dislocation/crack nucleation, propagation and multiplication/an-

nihilation are fundamentally altered in size-confined low dimensional materials [11],

driving the "smaller is stronger" trend. The experimentally measured biaxial tensile

elastic strain limit of graphene, a representative ultra-strength material, can be as

high as 20% [13]. A monolayer of MoS 2 can be stretched to 11% of elastic strain

experimentally [14]. Nowadays, large elastic strain can be imposed on ultra-strength

materials by direct dynamic loading [13, 12], epitaxy [151, phase transformation [16],

or thermomechanical processing [16].

The significantly enlarged elastic strain space in ultra-strength materials leads

to new possibilities for tuning the physical and chemical properties of materials, by

varying the six-dimensional elastic strain Ee as continuous variables. This idea of

elastic strain engineering (ESE) [12] has existed in various communities for many years

and is rather straightforward, because a material's physical and chemical properties
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are functions of the lattice parameters of the underlying crystal lattice, or the elastic

strain Ee with respect to the stress-free reference state [11]. Fundamentally, this is

because the electronic structure of materials changes with elastic strain [17]. Hence,

almost all functional properties of a material can be tuned by elastic strain, for

cxamples electronic [18, 19, 20, 21, 22, 23, 24, 25], magAetic [26, 27, 28, 29], optical

[23, 30, 31, 15], thermoelectric [32] and catalytic [33] properties. It is, however, only

after human control of materials reaches nanoscale, which gives rise to ultra-strength

materials, that the elastic strain space accessible to ESE becomes significantly larger.

The concept of ESE is very powerful because the individual components of the

elastic strain tensor ee are continuous variables. Like traditional chemical alloying,

where the chemical composition X = [X1, ... , X,,] is the continuously tunable variable,

in ESE the independent components of the elastic strain tensor ce can be continu-

ously tuned to optimize material properties. Generally speaking, take any physical

or chemical property A that one wants to optimize, for example the bandgap of a

semiconductor, the gradient g = &A/&eela is non-zero at the equilibrium lattice con-

stant ao (unless A is the bulk Helmholtz free energy which is by definition minimized

at ao) [11, 12]. This means that we can achieve desired changes in A by altering the

elastic strain tensor ee along g. Namely, if we want to increase A, we can tweak Ee

along +g. Conversely, if we want to decrease A, we can take e, along the direction

of -g. This optimization process in strain space can be carried out until we hit the

elastic strain limit. Hence, by controlling the elastic strain, we add six continuous new

dimensions (six independent components of strain tensor in three-dimensions) that

can be tuned to optimize the properties we want. By ESE, we may not only change

the values of properties, but also push chemical and physical behavior toward singu-

larities [12] by inducing electronic phase transition, such as electronic band inversion

that results in the transition of a normal insulator to a topological insulator [34]. Fur-

thermore, in ultra-strength materials, inhomogeneous elastic strain field ee(X) with

large local elastic strain difference can be imposed, where x is a position vector in the

material. Position-dependent properties can therefore be created in a material. This

also introduces additional degrees of freedom - strain gradient Vee(x), that can also
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be tuned to optimize local physical properties. This is because in an inhomogeneously

strained crystal, the local properties A(x) would not only depend on the local strain

Ee(x), but also on the local strain gradient VEe(x), as well as possible non-local,

long-range effects due to the applied strain field.

1.2 Inelastic Strain Engineering

When a material is deformed beyond its elastic limit, most of the additional applied

strain will be carried by inelastic strain ei. The total strain e(x) at a given point

x in the material can be decomposed into the sum of elastic strain and inelastic

strain: e(x) ee(X) + ei(x) [11, 12]. The elastic strain ee(x) describes reversible

distortion of the Bravais lattice vectors of "good crystals" away from defect cores,

while the inelastic strain ei(x) corresponds to irreversible bonding topology or phase

transformation changes. The local elastic strain can be directly measured by selected-

area electron or x-ray diffractions, but the local inelastic strain will be harder to

quantify experimentally. To a good approximation, the local stress a(x) is a function

of only the local elastic strain, namely, (x) ~ 0(E-x))

In ESE, one aims to achieve the desired change of property A(x) by imposing

an unconventionally large amplitude of elastic strain Ee(x). One can however also

engineer the inelastic strain ei(x) to control properties, for example, by controlling

the the spatial patterns of defects such as dislocations, grain boundaries and and de-

formation twins, or by inducing phase transformations. The control of microstructure

and properties of materials by generating appropriate ei(x) is the domain of inelastic

strain engineering (ISE). Compared to ESE, ISE is more concerned with engineering

the microstructure of materials at the lengthscale larger than unit cell. In certain cir-

cumstances such as phase transformation, ESE and ISE can be used in conjunction

to achieve optimum results, and the entire approach is called strain engineering (SE)

[12].
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1.3 Overview of the Thesis

This thesis is a study on the engineering of the microstructure and properties of ma-

terials by high deviatoric strain, using the approaches of both ESE and ISE. By high

deviatoric strain, we mean the magnitude of the non-hydrostatic components of the

imposed strain tensor reaches or surpasses a significant fraction (-10%) of the ideal

elastic strain limit. ESE with large-deviatoric strain is a relatively unexplored field,

because, as we have mentioned earlier, materials that can sustain large deviatoric

elastic strain become widely available only after the emergence of ultra-strength ma-

terials. In this sense, ESE with large deviatoric strain is to be distinguished from

the traditional high-pressure physics, which is concerned with the behavior of ma-

terials under large isotropic compressive stress. The focus of this thesis on ESE

is on how inhomogeneous strain changes the electronic structure of semiconductor

crystals. For ISE, our study mainly focuses on the structural transformation of soft

matter [35, 36] under large deviatoric strain. Soft matter are defined by the relatively

weak interaction between their constituent molecules (units). Typical soft matter

include polymers, colloids, granular materials and some biological materials. Due to

the relatively weak interaction between the constituents (interaction energy compa-

rable to thermal energy kBT), the structure of soft matter is sensitive to external

stimuli, and entropy usually plays an important role in determining the equilibrium

phase behavior and non-equilibrium dynamics of soft matter. Once driven out of equi-

librium, the timescale of structural relaxation in soft materials can be significantly

larger than hard materials (e.g. metals, ceramics, etc), which usually results in vis-

coelastic mechanical response. The interplay between enthalpy and entropy in soft

materials can lead to very rich phase behavior, and many ordered structures can form

through the process of self-assembly. We will study in this thesis an example of such

self-assembled structure - supercrystals of ligand-passivated metal nanoparticles, and

investigate their deviatoric stress (strain) induced mesoscale phase transformation.

The organization of this thesis is as follows. In Chapter 2, we review the funda-

mental concepts relevant to the studies presented in this thesis, in particular strain,
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stress and their determination in atomistic simulations. We also review the basic

principles of molecular dynamics simulation, which is a key technique used to carry

out our research on ISE.

Chapter 3 of the thesis focuses on ESE. In this chapter, we show that, due to the

strain-induced shift of valence band anh conduction band energy levels in semicon-

ductor crystals, imposition of appropriate slowly-varying inhomogeneous strain can

generate semiclassical confining potentials in a pristine semiconductor crystal, much

like a continuous version of the confining potential in a semiconductor quantum well.

The confining potential in inhomogeneously strained crystal leads to the creation of

electron or hole bound states, whose discrete energy levels can be dynamically tuned

by the imposed elastic strain field. We develop in Chapter 3 a new envelope func-

tion method that has the potential to efficiently solve the electronic structure of such

inhomogeneously strained semiconductor crystals.

Chapter 4 and Chapter 5 focus on ISE. In Chapter 4, we study the deviatoric

stress-driven sintering and phase transformation of self-assembled superlattices (su-

percrystals) of alkanethiol-passivated metal nanoparticles. Using largescale molecular

dynamics simulation, we show that, due to the important role of soft organic ligands

in the mechanical response, superlattices of ligand-passivated gold nanoparticles ex-

hibit entropic viscoelasticity during compressive deformation at ambient pressure. If

we apply a hydrostatic pressure of several hundred megapascals on the superlattice,

combined with a critical deviatoric stress along the nearest-neighbor direction of the

face-centered-cubic supercrystal, the deviatoric stress can lead to the diffusion and

selective displacement of ligands on the surface of gold nanocrystals, resulting in the

controlled sintering of the gold nanocrystals along the direction of deviatoric stress

and the formation of ordered gold nanowire arrays. We also mapped out a non-

equilibrium stress-driven processing diagram for the deviatoric-stress driven sintering

of gold nanoparticle superlattices, which reveals that such deviatoric stress-driven

sintering of nanoparticle superlattices into ordered nanowire arrays can occur in a re-

gion in the stress space. Insights into the phenomenon allow us to demonstrate that,

for silver-gold (Ag-Au) binary nanoparticle superlattices in sodium chloride-type su-

20



perstructure, stress-driven sintering along the nearest-neighbor direction leads to the

formation of ordered Ag-Au multijunction nanowire arrays.

In Chapter 5, we carry out combined experiment and simulation to demonstrate

that deviatoric stress can drive the diffusive motion of particles in disordered solids

even at zerd temperature. Using two-dimensional amorphous granilar pillars as a

model system, we study the internal structure evolution of the granular pillars under

uniaxial and quasistatic deformation. Because the granular pillars are consisted of

macroscopic discrete particles, thermal motion plays a negligible role in the dynamics

of the system, meaning that the system is effectively at zero vibrational tempera-

ture. This allows us to rigorously study the effects of strain on particle dynamics

by excluding the influence of thermal motion. By computing the local best-fit affine

transformation strain and non-affine displacement associated with each particle in

the granular pillars between two stages of deformation, we demonstrate that the non-

affine particle displacements exhibit exponential crossover from ballistic motion to

diffusion with respect to the cumulative local deviatoric strain. This indicates that in

the athermal granular packings, the cumulative local deviatoric strain plays the role of

time in thermal systems and drives effective particle diffusion. The result could have

important implications for internal structural evolution of amorphous solids under

mechanical deformation.

At the time this thesis was written, the results presented in Chapter 3 and Chapter

4 have been published [37, 38], and the results described in Chapter 5 have been

submitted for publication.
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Chapter 2

Fundamental Concepts and

Simulation Methods

2.1 Strain and Stress

2.1.1 Lagrangian Strain Tensor

Under the action of external forces, solids usually exhibit deformation by changing

its shape and/or volume. Treating a solid as a continuous media, its deformation

can be described mathematically using the concept of displacement field and strain

[39]. Denote by x the position vector of a material element in the solid in certain

coordinate system, after deformation the position of the material element becomes x'.

A displacement vector u connects the material element before and after deformation,

u = x'-x. In Cartesian coordinates, the displacement vector has several components,

each will denoted by ui, uj, etc. The displacement gradients can then be defined as

Uij = aui/axj. (2.1)

Deformation changes the distance between the points in the solids. For two points

x and x + dx very close together in the undeformed body, their original distance

squared is d1 2 = Ei(dxi)2 . It can be shown [39] that after deformation, the squared
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distance between the two points becomes

d1 2 = d1 2 + (Uij + fji + UkfiUkj)dxidxj, (2.2)

where Einstein summation applies for repeated indeges. The Lagrangian strain tensor

7qij is defined by

77ij = (Uij + Uji + Ukinkj). (2.3)

dl'2 is then related to d1 2 as

dl'2 = d1 2 + 2ri1jdxidxj. (2.4)

Hence, the distances between material elements in the deformed body is completely

specified if their original distances and the Lagrangian strain tensor Tij is determined

for every point in the undeformed body. Because the free energy of a solid is deter-

mined by the distances between the material elements inside, Lagrangian strain plays

an important role in the theory of strained solids.

By definition, Lagrangian strain tensor is symmetric, namely Tij = 7ji. For small

deformation, the higher order terms in Lagrangian strain can be neglected, giving

rij = I(Uij + Uji). (2.5)

If a solid is deformed homogeneously, the deformation gradients uij are constant

throughout the solid. Removing rigid translation, a material element at position x'

in the deformed body is related to the corresponding position in the undeformed solid

x via the following relationship

',= (u 1 + 6xy, (2.6)

where 6ij is the Kronecker delta. Hence, we can define an affine transformation matrix

Jij = 9ui + 6i that relates the coordinates of homogeneously deformed and undeformed
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solids as

X' = Ji23x. (2.7)

It is straightforward to show that J is related to the Lagrangian strain matrix defined

in Eq. 2.3 as

In the language of matrix operation, this is equivalent to

- (JT J-(2.9)

where I is an identity matrix whose dimensions are same as J. Therefore, for a

homogeneously deformed solid, the Lagrangian strain 1, which is uniform throughout

the solid, can be calculated from the affine transformation matrix J using Eq. 2.9.

The transformation matrix J is not necessarily symmetric as it may include the

effect of rigid rotation. The Polar Decomposition Theorem [40] of mathematics states

that a non-singular square matrix can be uniquely expressed as the left or right

product of a symmetric matrix matrix and a rotational matrix,

J = RM = ML, (2.10)

where M is a symmetric matrix satisfying MT = M. R and L are rotational matrices,

with the property RTR = LT L = 1. Therefore,

I (JTJ - I) = -1 (M2 - I) (2.11)

The symmetric transformation matrix M has one-to-one correspondence with 17 via

12
M = 1+27=1 + 1- q -2 ... (2.12)

2
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2.1.2 External and Thermodynamic Stress Tensor

Like strain, stress is also a tensor. There are two definitions of stress. The first

definition is the external stress oaj, which relates the traction force on a surface in

the deformed solid with the surface normal unit vector,

dT = c-ijnjdS, (2.13)

where dT are the components of the external traction force, nj are the components

of the outward surface normal unit vector and dS is the surface area. The tensorial

nature of stress reflects the fact that in general, the traction force on a surface is not

parallel to the surface normal. To prevent rotation, stress tensor must be symmetric,

namely, o-ij = -ij.

In three-dimensional Cartesian coordinates, stress tensor can be represented as a

3 x 3 matrix,

0- = XY o-Y O~y . (2.14)

-xz Oyz -zzJ

- can be decomposed into hydrostatic and deviatoric stress components,

O = 0-hyd I + 0~dev, (2.15)

where the hydrostatic stress invariant 0-hyd = 3 + -- - oz) = r(a-).

A scalar quantity frequently used in engineering to measure the magnitude of

deviatoric stress is the von Mises deviatoric stress o-VM, which is defined as

(7VM Tr(rdev - 07dev)

[1 1 21

( c - O~ + 2 (c0 - u7X) + ~ 3 Y +3& + 3 o 7 Z 2Q z

(2.16)

The second definition of stress is the internal (thermodynamic) stress tUj, which
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relates the free energy change of a system to strain tensor. Equilibrium condition

requires that internal stress is equal to the external stress, namely tij = cij. It can

be proved that [41], for a homogeneously deformed solid, the differential work done

by external stress oai on the system is

dW = Vai dij, (2.17)

where V is the volume of the system. It is important to emphasize that the reference

configuration for the calculation of Lagrangian strain tensor in the above equation is

the current configuration, for which the system can either be deformed already or still

in undeformed state. Consider the deformation process is quasistatic, the external

stress crij in the above equation can replaced by internal stress ti and written as

dW = Vtijdqij. The combined first and second law of thermodynamics for a deformed

solid can then be written down as

dU = TdS + Vtjjdoi7j. (2.18)

The full differential of the Helmholtz free energy, F = U - TS, can be written as

dF = -SdT + Vtijdij. (2.19)

Therefore, tij are related to thermodynamic potentials U and F through

ti OU (2.20)
V Oqij s

t 1 = -F (2.21)
V O rij T

In Eq. 2.20, the entropy S of the system is fixed, which is suitable for the case of

adiabatic deformation. Eq. 2.21 is suitable for isothermal deformation. The two

equations shall be regarded as the definition of thermodynamics stress.
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2.2 Strain and Stress in Atomistic Simulation

2.2.1 Strain from Simulation Supercell Variation

In atomistic simulations, the system is usually enclosed within a parallelepiped-shape

supercell, with periodic boundary conditions imposed. The shape of the supercell is

determined by three independent supercell vectors ao, bo and co. If the shape of the

supercell is allowed to change, a strain tensor can be defined between an initial and

a final configuration. Let the supercell basis vectors after deformation be a, b and c

respectively. We can define an affine transformation matrix J that maps (ao, bo, co)

to (a, b, c), namely, a = JaO, b = JbO, and c = JcO. Here the basis vectors are

considered to be column vectors, and they form two matrices ho and h given by

ho = (ao, bo, co) and h = (a, b, c). The mapping relationship between the original

and deformed supercell can be written as

h = JhO, (2.22)

which gives J = hho 1 . Based on Eq. 2.9, the Lagrangian strain matrix can be

calculated as

'r = (JTJ - I)

I (h-1') ThT h(h-') - I] . (2.23)

Using index notation, i = [(hU- )T henhnp(h--)pj - 6i].

2.2.2 Least Square Atomic Local Strain

Atomic local strain [42, 43, 44] is a useful measure of atomic-level deformation in

a solid when the solid is deformed inhomogeneously, and especially if the reference

configuration for strain calculation has no apparent symmetry, which is the case for

disordered solids.

Since strain is always relative, to calculate the full strain tensor, one needs two
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atomistic configuration, the reference and the current configuration respectively. For

atoms in the reference configuration, one defines a sampling radius R,. If the distance

of an atom to atom i falls within Rc, it is considered to be a neighbor of the atom .

The total number of neighbors for atom i is denoted by Ni. For each neighbor j of

atom i, the distance vector from i io j in the reference configuration is denoted as

do = ro - r (2.24)

After deformation, this distance vector becomes

dij = rj - ri (2.25)

for the current configuration. Here the vectors do and dij are considered to be column

vectors. One seeks to find the best affine transformation matrix Ji that maps all the

neighbor distance vectors centering on i in the reference configuration, namely d%1,

to the distance vectors dij after deformation. The error of mapping from do to dij,

denoted by sij, is defined as following:

dij = Jid + si1 . (2.26)

One seeks to find the best affine transformation matrix Ji that minimizes the sum of

mapping errors for all the distance vectors d9, which is denoted by D?,

sij 2 S di - Jid . (2.27)
jEN jEN
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The expression of D' can be further written as

= Z (d - - Jid%)
jNj

= Tr (d- Jid')(d - J d )T
jEN

= Tr (dij - Jd% )(d - d %J[).
jj eNi

jNj

Infinitesimal variation of Ji leads to change of D' given by

D2(Ji + 6Ji) - D (Ji)

(do d JT - d d T)
ij~~~. 

i iiI

+ Tr (Jid d O
I j 

i
- d df O)(6Ji) T

(2.29)

Let

(2.30)

(2.31)

A = V(do d TJ - d dT)
jE Ni

AT = Z(Jdo dT - dijd O) ( 6 j)T.

jEN,

since Tr(A) = Tr(AT), we have

D 2(j + 6J,) - D (J,) = 2Tr 6Jj (do d JT - d d T)
3 C N,

+ O((6J,) 2). (2.32)

For the Ji that minimize Di, the first order term in 6Ji must vanish, namely,

Tr Ji E(do d TJ - d d) = 0. (2.33)
jGNi

In order for the above to be true for any Ji, the matrix EjENj(d% d9TJT - dT)
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has to be zero, which leads to

jE(N
d / dE J = Ndo d .T

/j i jE i Ns j

Perform matiix transposition on the both sides of the above equatioi, we have

Jid ?N-7 (2.35)= d OTif.
= E jddTjEN

If we define

_ dOTV = d2E d ,
jENi

(2.36)_OTW = di di,
jE Nj

i = Wiv;-. (2.37)

The Lagrangian strain matrix can then be calculated from Ji as

7- 7 (JJI - I).
2

(2.38)

Hydrostatic and shear invariants can be computed from the Lagrangian strain matrix.

The hydrostatic invariant is defined as

1
7i =-Tr,D

(2.39)

where D is the dimension of the system. The local shear invariant is computed as

8 = V Tr(q., - ,ml)2, (2.40)

which is calibrated to the case of pure shear, namely when r1,, = 7y, = a, and all

other components of q is zero, if = a.
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2.2.3 Microscopic Expression of Stress Tensor

We have discussed, previously that for an isothermally and homogeneously deformed

system, the thermodynamic stress tij is related to the Helmholtz free energy of the

system as
1&BF

ti = - I T (2.41)
V 01i T

where the reference for the calculation of infinitesimally small strain tensor 7j is the

current configuration and V is the volume of current configuration. From statistical

mechanics, F = -kBT In Z, where Z is the canonical partition function of the system.

We use X and Y to denote the current and deformed configurations of the system

respectively. X and Y are related by the transformation matrix J, namely, Y = JX.

The Lagrangian strain tensor is given by y = 1(JTJ- 1). Since the Hamiltonian of the

system is usually rotationally invariant, we can choose J to be a symmetric matrix M

corresponding to 7. The partition function of the deformed system, ignoring constants

such as N!h3N, can be expressed as

Z(Xq) = Z(X, M) = f d4Nd N exp(_OW(4NpN)), (2.42)

where we assume the Hamiltonian of the system 7 4N,(pN ) has the following form

N ~T ~
n(4N, PN _ a ' (n1, q 2 , ,---N)- (2.43)

n=1

The deformed coordinates d, can be related to the the undeformed coordinates qn as

4n = Mqn. (2.44)

The generalized momenta pn corresponding to qn are [45]

Pn = (MT)-Ipn = M-1pn (2.45)
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Eq. 2.44 and Eq. 2.45 define change of variable

4, aMqn, Pn M-'pn, (2.46)

The Jacobian of the transformation between {q, P.} and {qn, p,} is one, which pre-

serves the phase space volume. Applying the coordinate transformation, the Hamil-

tonian can be written as

From Eq. 2.12, we have

Hence,

m- 2 - 1
1 + 2,q

- 217 + 4 72 + ...

The Hamiltonian of the system can then be approximated as

N

N(qpN pN1 
2  274  Pn + U((I -

n=1 2m,

(2.49)

172)qn)
2

(2.50)

The partition function can be written as

Z(X,) = dqN Nexp [3O(4NN)

(2.51)dq NdPNexp [/3W( N pN)]

The thermodynamic stress ti can be calculated as

1 1 OZ _

V(X) - Z 077ij

1
V(X)

dqNdpN Tij exp [- (qNp N)]

(2.52)
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2

(2.48)
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where

- 1R(qNpN)Ti = q , (2.53)ar/ij

V(X) is the volume of the system for the current configuration. The index notation

for p r7p. and p T2 p are given by

T n 
= P (2.54)

Pn T/Pn Pr 77rk k,

T 2 = (2.55)Pn7l Pn ,P7rs,7skP'k,

where we use pn to denote the r component of the vector pn. It is then straightforward

to show that

aRH (qN N -p P + 2pi r7jk~i + 2rkip+ 2 
',q ipj+ g nV nU ((l + r7 - -r )

N 1
2((N rp n + lkPq )V U(( +r/7 - 1 7 2 )qN). (2.56)

Because the above derivative is evaluated at r/ = 0, we have

N

Tii + qjVYi (qN). (2.57)
n=1

Since fin = -V'U(qN) is the i component of the force acting on the atom n, we arrive

at the following microscopic formula for the thermodynamic stress

tij = - +f "q) (2.58)

The notation () means canonical ensemble average in the original configuration. While

the above formula is derived for canonical ensemble, it can be applied to any ensemble

in the thermodynamic limit, where all ensembles are equivalent for the average of

intensive quantities [46, 44]. The symbol () then takes the meaning of ensemble

average in a particular ensemble.
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2.3 Fundamentals of Molecular Dynamics Simula-

tion

In this thesis, molecular dynamics (MD) simulation is one of the main methods em-

ployed to study the behavior of materials under stressed environment. In MD, the

trajectories of a system of N particles are generated by numerically integrating the

classical Newtonian equations of motion, with appropriately specified interparticle in-

teraction potentials, as well as suitable initial and boundary conditions. The system

of particles can either interact with each other in a closed system, or evolve under

a constant external driving force, which for example can be mechanical deformation

or temperature gradient. Physical properties of the system can be determined from

the microscopic information of the systems using the methods of equilibrium and

non-equilibrium statistical mechanics. In some sense, MD simulations are computer

experiments coupled with a "microscope" with atomic-level spatial resolution and

femtosecond-level temporal resolution, as well as "force gauges" on every individual

particles. Because of its capability to simulate the microscopic dynamic processes,

MD has become an important tool in a wide range of fields such as materials science,

physics, chemistry and biology. Nowadays, the number of particles in a typical clas-

sical MD simulation can be several hundreds up to several millions. With the rapid

development of parallel computing technologies, the size of systems that can be stud-

ied by MD is ever-expanding, as the trajectories of particles on different regions of a

system can be calculated in parallel on different processors. On the other hand, due

to the small discretized time step necessary to numerically integrate the equations of

motion of particles and the sequential nature of this process, the time span of system

evolution that can be covered by a typical MD simulation is limited, usually well

below a micro-second. The latter hampers the study of long-term processes and rare

events that occurs on much larger timescale by normal MD simulation. The devel-

opment of atomistic simulation methods that can overcome the timescale barrier of

MD is an active field of research, and many different accelerated MD methods have

been developed [47, 48, 49, 50, 51, 52].
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2.3.1 Classical Equations of Motion

Consider a classical system of N particles that evolve under the influence of the

internal forces between them. Denote by ri(t), r2 (t), ..., rN(t) the spatial positions

of the particles and v1 (t), v 2 t), ..., vN(t) the velocities, the motion of the particles

is determined by Newton's second law,

d 2 = Fi, (2.59)

where mi is the mass of particle i and Fj is the force on i. Fj is in principle a

function of the positions of all particles, namely Fj = Fj(ri, ... , rN). If the form of

F (ri, ... , rN) is known, then the particles in the system will evolve deterministically

according to the coupled second-order differential equation in Eq. 2.59. There are

in total dN independent equations, where d is the number of spatial dimensions. In

MD, Fi(ri, ... , rN) are usually calculated from the empirical potential energy function

U(ri,..., rN) of the system based on the relationship Fj = -ViU. Clearly, the quality

of potential energy function in representing the actual interaction between the parti-

cles has a major influence on the MD simulation results. Eq. 2.59 is solved numerically

in MD via time discretization, and the time step is denoted by At. The maximum

allowed value of At is determined by the frequency of the fastest relevant physical

processes in the system. For example, in solids, in order to resolve the vibrational

motion of the atoms, 1/At needs to be larger than the highest phonon frequency of

the solid, which is on the order of 1012 ~ 1013 Hz. At is hence often chosen from 0.5

to a few femtoseconds, depending on the specific problem.

Note that when we describe the evolution of a system in terms of Newtonian

equations of motion, we assume that, first, the motion of electrons and nuclei are

decoupled. This so-called Born-Oppenheimer approximation assumes that, due to

the orders of magnitude difference in the masses of electrons and ions, the motion

of electrons is much faster than ions, such that when the ions move, the electrons

are at instantaneous ground state. While this is usually a very good approximation,

it breaks down for certain ultrafast dynamics involving coupled electron-ion motion.
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Second, we ignore the quantum effects in dynamics. Below Debye temperature, the

equipartition theorem of classical statistical mechanics, which states that every degree

of freedom possess kBT/2 kinetic energy, breaks down. The occupation number of

the phonons, the vibrational modes of the systems, cannot be described correctly by

clissical Boltzmann distribution. In additions, the intrinsic quantum fluctuations in

the positions of the ions are not described, which is particularly an issue for light-mass

elements such as hydrogen.

Many algorithms have been developed to numerically integrate the Newtonian

equations of motion [45]. Some of the algorithms aim to generate the short or long

term trajectories of the particles more accurately, while others emphasize the preser-

vation of conserved quantities such as the total energy of the system. The most

commonly used algorithm is the velocity Verlet integrator:

ri(t + At) = ri(t) + vi(t)At + 2(t)At2 (2.60)
2mi 2.0

vi(t + At) = vi(t) + Fi(t +At) + Fi(t) At. (2.61)
2mi

The velocity Verlet algorithm has the feature that the velocities of the particles are

computed only after the new positions and therefore the new forces of the particles are

determined. The algorithm is fast and maintains good long-term energy conservation.

The latter is closely related to the fact that velocity Verlet is a symplectic integrator

[53], which preserves the phase space volume conservation property of Hamiltonian

dynamics and therefore the energy conservation error is bounded [54].

It is important to realize that no matter what numerical integrator one uses, given

a choice of initial condition, after certain amount of time that is typically much shorter

than the duration of a MD simulation, the trajectories of the particles will bear little

resemblance to the "true" trajectory rigorously given by Eq. 2.59. Fortunately, the

numerical trajectories generated in MD are statistically equivalent to the true solution

within bounded error [45]. This ensures the physical properties we calculate are on

average the same as those obtained from the true trajectories. In this sense, we shall

focus more on the statistical interpretation of the atomistic trajectories generated by
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MD simulation.

In MD simulation, a system of particles are typically placed in a parallelpiped

supercell specified by three edge vectors (a, b, c), which determine the shape and

volume of the supercell. As the number of particles in the supegcell is finite, in order

to simulate bulk properties one usually applies periodic boundary conditions. This

means that the supercell is surrounded by identical image cells. The total number

of such image cells are 26 in three dimensions. If a particle moves out from one

side of the simulation box, it will appear in an image cell and hence mapped back

to the supercell by entering from the opposite side of the simulation box. The total

number of particles is therefore constant. If the equations of motion of the particles

are those given by Eq. 2.59, the total energy of the system E will be a constant

of motion as well. The simulation is then said to sample the microcanonical or

(NVE) ensemble. The microcanonical ensemble is the most fundamental ensemble

in MD. Many dynamic properties, such as velocity autocorrelation function which

gives the diffusion coefficient of particles, are best calculated in the microcanonical

ensemble. On the other hand, many real experiments are carried out under constant

temperature, constant volume conditions, which corresponds to the canonical (NVT)

ensemble, or under constant temperature, constant pressure conditions, which corre-

spond to isothermal-isobaric (NPT) ensemble. In order to simulate systems under

these conditions, extended MD methods capable of generating trajectories of parti-

cles corresponding to NVT, NPT and other ensembles have been developed. We will

describe in some details the algorithms behind these extended MD methods. Because

these methods are typically formulated in the language of Lagrangian or Hamiltonian

mechanics, in stead of Newtonian mechanics, below we shall first review the basic

principles of Lagrangian or Hamiltonian mechanics.

The Lagrangian formulation of classical mechanics is based on the Hamilton's

principle [55], which states that, for a classical system whose configuration described

by a set of independent generalized coordinates q1, ..., q., the motion of the system

corresponds to a path in the multi-dimensional configuration space {qi, ... , qn} for
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which the classical action I is stationary. The action I from time ti to t2 is given by

I = ftI C (q, ... qn, 41, ... nd, t) dt, (2.62)

where the qugntity L is called the Lagrangian, which is defined as thq kinetic energy

K minus the potential energy U, namely,

IC(qj, 4j, t) = K(qj, 4i, t) - U(qj, 4, t). (2.63)

The Hamilton's principle says that the variation of action I to small perturbation in

the path {qj, 4j, t} is zero:

61 = (q i, 4,t)dt = 0. (2.64)

This leads to the Lagrange equations of motion

d OL ML = 0, Z = 1, 2, ... ,n. (2.65)
dt 04i aqi

There are n independent equations above, n being the total number of independent

generalized coordinates. The Lagrange equations of motion are second order in na-

ture. To completely determine the motion of the system one needs to specify 2n initial

values, which for example can be n values of qj and n values of 4i at a particular time

t. The connection of Lagrange equations of motion to Newtonian equations of motion

can be seen in the following. Consider the case that the generalized coordinates are

chosen to be the Cartesian coordinates ri, and the kinetic energy K and potential

energy U of the system given by K = - Z 2  r U U(ri, ... , r,) respectively, the

Lagrangian of the system is then simply C = 2 mit - U(ri,..., rn). In this case

. = ii, - -ViU(ri, ... , r.). (2.66)
ari ari
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The Lagrange equations of motion, the Eq. 2.64 then turns into

d2 r -
mi + V1 U(r1 , ... , r.) = 0 (2.67)

which is nothing bpt Newtonian equations of motion.

The Hamiltonian formulation of classical mechanics [55] seeks to describe the

motion of system in terms of first-order equations of motion by introducing the notion

of conjugate momentum pi, which is defined as

A O(qi, qi, t) (-8
p-= . (2.68)

The full differential of Lagrangian L(qi, cj, t) can be written as

dL =q dqi + .d4i+ dt
Oqi 04i at

= pidqi + pid~i + -dt, (2.69)
at

where Einstein summation convention is applied for the repeated index i. The Hamil-

tonian of the system 7 is defined through the following Legendre transformation of

the Lagrangian,

W (q, p, t) = 4ipi - L (q, 4, t). (2.70)

This gives the full differential of 7 as

d-L = idpi - Pidqi - dt. (2.71)
at

We then arrive at the Hamilton's equations of motion

qi = --- , (2.72)
ap2'

- =i -. (2.73)

Compared to the Lagrange equations, the Hamilton equations of motion are first-
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order differential equations. However is is done at the expense of introducing new

variables the conjugate momentum pi. The evolution of the system is now described

in 2n dimensional phase space whose coordinates are {qi,pi}.

For most of the cases considered in MD simulation, the Lagrangian of the system

does not depend on time explicitly, namely L = 0. From Eq. 2.71 we then have

d7- .dpi .dqi
-- = q, - pidt 'dt dt

OW2  (OR) Mqawp

=0 (2.74)

Therefore, the Hamiltonian of the system is a constant of motion if the Lagrangian

has no explicit dependence on time.

2.3.2 Constant Temperature Molecular Dynamics

Strictly speaking, temperature is only defined for a system at thermodynamic equi-

librium, although separation of time and length scales usually makes the concepts of

local thermodynamic equilibrium and local temperature useful. The thermodynamic

definition of temperature is
1 (&SN

T = )- (2.75)

where S is the entropy of the system. The microscopic expression for entropy is given

by the Gibbs formula:

S= -kB pi npi, (2.76)

where kB is the Boltzmann constant and pi is the probability of the system at a

microstate i. The summation is over all possible microstates of the system.

In MD simulation, it is impractical to calculate temperature using Eq. 2.75. In-

stead, the calculation of temperature in MD makes use of the equipartition theorem

of classical statistical mechanics, which states that each individual degree of free-

dom that enters quadratically in the Hamiltonian is associated with average energy
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kBT/2. Particularly, for the kinetic energy a particle, we have (mi(fV) 2 ) = !kBT,

where v' is the a component of the particle velocity vi. For a system of N particles

in d dimensions, the total number of freedom associated with kinetic energy will be

Nf = dN - Nc, where N, is the number of internal constraints. Hence, the total

kinetic energy of the system Aill be 1NfkBT, namely,

N

(K) = 2 (miv = Nf kBT. (2.77)
i=1

This gives a formula for calculating the temperature of the system T (T(t)) 2(KNfkB'

where the instantaneous temperature T(t) is given by

N 2

T (t) = rm'v . (2.78)

i=1 KBIVf

In a microcanonical ensemble, the total energy E of the system is conserved. As

the system explores different regions of the potential energy surface, the average ki-

netic energy of the system will change, meaning that the temperature of the system

will evolve with time as well. To simulate a system under constant temperature,

the most straightforward way would be using certain algorithms to keep the average

kinetic energy of the system constant. The simplest example to achieve constant aver-

age kinetic energy by rescaling the velocity of the particles. However, such algorithms

do not necessarily generate a canonical ensemble. A canonical ensemble is defined by

the distribution function in phase space. If the Hamiltonian of a system is l({p, q}),

the canonical distribution function is given by

fNVT({p, q})= eXp - 1T [ B ) (2.79)
ZNVVT I BT

where

Z(N, V, T) =q uP exp [ kBTq (2.80)

is the canonical partition function. The normalization condition for the distribution
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function is

N!3N dqdpNfNVT({p, q}) = 1. (2.81)

The canonical distribution is also called Boltzmann distribution.

The most widely used constant temperature MD method that generates canonical

distribution, commonly referred to as the Nos6-Hoover thermostat, was originally due

to Nos6 [56] and refined by Hoover [57]. Nos6's constant temperature MD algorithm

is based on the extended-Lagrangian formalism. The basic idea is to introduce a

new coordinate s that can exchange heat with the system by scaling the velocities of

particles. The extended Lagrangian is

12 = s 2i - U({ri}) + 2 - gkBTobj In s, (2.82)

where Q is the "effective mass" associated with s, g = dN + 1 is the total number

of degrees of freedom in the system (d is the number of dimensions), and Tobj is the

externally set temperature of the system.

The conjugate momenta corresponding to ri and s are calculated from the La-

grangian using Eq. 2.68:

pi 2 - = mis (2.83)

P - Qs. (2.84)

The Hamiltonian for the extended system of the N particles and the thermostat

coordinates s is then given by

= Zp - ii + PsS - L

2 + U({ri}) + - + g In s, (2.85)
2mis 2Q (

where 3 = 1/(kBTobj). The Hamiltonian R is a conserved quantity for the extended
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system. The Hamilton's equations of motion are

r O -- 2 (2.86)
api mis

ON O ( r) (2.87)
pi Or a -- r (.7

r1i PS
(2.88)

OS pQ

S = i ms (2.89)
as mis3 Os

Nos6 showed that [56], if the Hamiltonian W is the only conserved quantity, then

the coordinates ri and scaled momenta p' = pi/s generated by the equations of

motion sample the canonical ensemble. This means that, if we define a Hamiltonian

H in the phase space spanned by {ri, p'},

'2

H = _ + U({rs}), (2.90)

then the phase space distribution function f({ri, p'}) is proportional to the Boltz-

mann weight exp[-OH({rj,p'})]. Hence, the ensemble average for a quantity A

expressed in terms of {ri, p'} reduces to the canonical average

KA(r, P/s))Nose NTA(r, P)NV- (2.91)

The left hand side of the above equation is calculated in simulation based on the

equivalence between time average and ensemble average (assuming the dynamics is

ergodic)

(A(r, p/s))Nose lim - dtA [r(t), p(t)/s(t). (2.92)
7--+0 T

Nos6 stated that the variable s can be interpreted as a scaling factor for the

time step At in the simulation. The real time step At' is related to the simulation

time unit as At' = At/s. We can define two sets of variables, virtual variables in

simulation (coordinates ri, momenta pi and time t) and real variables (r', p', t') for
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the corresponding physical systems. The two sets of variables are related as follows

r' = ri (2.93)

P' = pj/s (2.94)

At' = At/s (2.95)

The real velocity drj/dt' can then be expressed in terms of virtual velocity dri/dt as

dr' dri dri
dt' dt/s dt

Hence, the scaling of velocity in the Nos6 algorithm is self-consistent with scaling of

time.

The difference between simulation time t and real time t', related to each other

via t' = f'dt/s, can be inconvenient when computing time-dependent quantities,

which are usually sampled using equal real time intervals. Nose showed that [58], we

can express the equations of motion (2.86)-(2.89) in terms of real variables, based on

r= ri, p' pj/s, LI ft dt/s, s' = s, and p' = P,/s:

dr' p'dr = -* (2.97)
dt' mi
dp' I U({r'}) s'p'

- = - Q p. (2.98)
dt' ar't Q Pil
ds' s'2PS-- = s(2.99)
dt' Q
dp' I? g2 1 sp2

L = S " (2.100)
dt' Mi s Q

The Hamiltonian 7 of Eq. 2.85 written in terms of the real variables,

t.2 s 2 P 2
2 + U({r'}) + + -Ins', (2.101)

2mi 2Q 3

is still a conserved quantity. Nose proved that for the equations of motion in real

variables, if we choose the number of degrees of freedom g to be dN instead of dN +1,
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then the real time average of quantities A(r', p') still converge to canonical average:

1 f

lim I I dt'A[r'(t'), p'(t')] = (A(r', P'))NVT (2.102)
T'-4 3 T Jo

Hoover [57] showed that Eqs. (2.97)-(2.100) derived by Nos6 can be further sim-

plified by introducing a new variable = s'p'Q. The real time equations of motion

can then be written as

dr' p'd- = - (2.103)
dt' Mi

dp' _U({r'_})_,

- = U B (p~i, (2.104)
dt' O'

<P 9 (2.105)
dt' Q mni 0)'

dIn s' (2.106)
dt'

From Eq. 2.104, we can see that can be interpreted as a thermodynamic friction coef-

ficient which couples to the velocities of particles. Eqs. (2.103)-(2.105) form a closed

set, therefore are sufficient to generate the trajectories of the particles. However,

Eq. 2.106 is still useful because the value of In s is needed to check the conservation of

R' in Eq. 2.101, which serves as an important self-consistency check for the numerical

program. In terms of the new variable , R' can be written as

-PL + U(r'J) + - ns' (2.107)
2mi 2 #

Eq. 2.105 can be interpreted as follows. From Eq. 2.78, the instantaneous tem-

perature of the system can be written as

2
- (2.108)Tinst = .)2.08

gkBmi'
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Since 3 1/(kBTobj), Eq. 2.104 can be rewritten as

d _ gkBTobj Tinst - Tobj (2.109)
dt' Q Tobj

This means that if the instantaneous temperature of the system Tit is higher than fhe

target temperature Tobj, the value of will increase. When becomes positive, viscous

drag forces opposite to the direction of velocity will act on the particles, gradually

bringing back the temperature of the system. Similar argument can be said when Tinst

is lower than Tbj. This feedback mechanism ensures that Tin.t fluctuates around the

target temperature Tobj. The time scale of temperature fluctuation is set by the effec-

tive thermal mass Q, which has the dimensions of energy - (time)2 . The characteristic

time for temperature fluctuation can be estimated as t, = VQ/(gkBTobj).

2.3.3 Constant Stress Molecular Dynamics

The basic idea of constant stress MD is allowing the size and shape of simulation

box to change in response to the difference between the internal stress of the system

and external applied stress tensor, such that the internal and external stress reach

balance. The size and shape of the simulation box are fully determined by the basis

vectors that span the edges of the supercell, which can be represented by the matrix

h = (hl, h2 , h3 ), where hl, h2 and h3 are the basis vectors. In constant stress MD, the

individual elements of the matrix h will become dynamic variables. These additional

degrees of freedom are considered to be new generalized coordinates and have their

own equations of motion based on the method of extended Lagrangian pioneered by

Anderson [59].

As the size and shape of the simulation box are constantly changing in constant

stress MD, in Cartesian coordinates the positions of the particles needed to be con-

stantly mapped to new ones via affine transformation. It then becomes more conve-

nient to express the atomic coordinates ri in terms of scaled coordinates si, which are
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related to each other via

ri = h - si, (2.110)

si = h-1 - ri.(21 )

The squared distance between two particle i and j can then be expressed as

2r -2
rij (ri - rj)

= (si - sj)Th'h(si - sj)

(si - sj) G(si - sj),

(2.112)

where G = hTh is the metric tensor.

The generalized coordinates for a system of N particles now include the 3N com-

ponents of scaled particle coordinates si and the nine components of the supercell

matrix h. To construct the Lagrangian of the extended system, one needs to specify

the potential and kinetic energy associated with the new degrees of freedom. In the

case that the externally applied stress tensor o is hydrostatic, namely (-ij = -Poij,

Parrinello and Rahman proposed the following extended Lagrangian [60, 61]

PR(si, h, si, ) Y= mi h (hs} 2 + 3 ) - PV
= 1

IN w T
i Gas - U({hsi}) + -Tr (hTh) - P det(h). (2.113)

where W is the mass associated with the supercell degrees of freedom, and V = det(h)

is the supercell volume. !Tr (hTh) and PV represent the fictitious kinetic energy

and potential energy of the supercell degrees of freedom, respectively. The equations
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of motion for si and h can then be derived from the above Lagrangian as

&hi

which gives

= - G- U({hsj)
mi Os

qr mihsi (9

(2.116)

(2.117)
OU({hsi})

Si- s

Above, E = &det(h)/Oh = det (h)(h 1 )T . Using the following relations

-hT&U({ri})
(9ri'
(U({ri})

ari

=j r0 fi (h-1 )T,

® ri) (h- 1 )T,

Eqs. (2.116)-(2.117) can be further simplified and written in terms real space coordi-

nates ri as

= 1 9U({ri})
in = -- ______ - (hT)- Oh- j,

mi Ori
-- 1

h = (oint + PI)E,
W

(2.121)

(2.122)

where 0 int is the microscopic stress tensor of the system

1 (U ({ ri
(int =1 -mii fi + &r

V or

o ri). (2.123)

The feedback mechanism of barostat is built into Eq. 2.122. The supercell expands

when the internal pressure of the system becomes larger than the external pressure,

and changes shape when the internal stress tensor contains non-zero elements.
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(2.115)

OU{hs}
&si

OU{hsi}

h 0

haj 0 j

(2.118)

(2.119)

(2.120)

d (aC)

d (aC)
dt ah

- P.S').



The Hamiltonian of the system can be obtained from the Lagrangian of Eq. 2.113

through Legendre transformation, which gives

1 N

'PR E- s n Ga + U({hsi}) + -Tr (hT h) + PV. (2.124)
z~1

'PR is the constant of motion for the extended system of particles and barostat.

According to equipartition theorem, in equilibrium and at temperature T, the third

term of the above Hamiltonian 4.Tr (hTh), which is the kinetic energy of the supercell

degrees of freedom, has an average value of 9/2kBT. In comparison, the first term,

which is the kinetic energy of the particles in the system, has an average of 3N/2kBT.

Therefore, in the limit of large N, the constant of motion is the enthalpy,

H = E + PV, (2.125)

where

E Mi Gaj + U({hsj}) = milij2 + U({r}). (2.126)

Therefore, the Lagrangian in Eq. 2.113 generates constant pressure and enthalpy

(NPH) ensemble [59, 60, 61].

In the case arbitrary external stress tensor o is applied on the system, the potential

energy of the supercell degrees of freedom in the Lagrangian of Eq. 2.113 needs to be

modified. Choosing a reference supercell ho, which is usually taken to be the supercell

h at the beginning of the simulation or the average value of h during the simulation,

the potential energy associated with the supercell can be written as [61, 62]

Ucei = P(V - V) + V Tr (a + PI)f. (2.127)

The first term on the right hand side of the above equation takes into account of the

effect of the hydrostatic component of stress tensor o-, which is defined as P - Tr o,

while the second term is due to the deviatoric stress components. The strain tensor
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c is calculated as

S (h-TThThho- - I) (h--T Gho 1 - I). (2.128)

Substituting tlge above expression for c into Eq. 2.127, we obtain

Ucei = P(V - V) + KO Tr [(o + PI)hoT Gho1 ] - 7 Tr (C + PI)

= P(V - V) + -O Tr [ho 1 (o + PI)hJ TG]2
V0= PV + -Tr (EG) - PV (2.129)
2

where E - h- 1(a+PI)h-T. The constant term PV in Ucel has no effect on the equa-

tions of motion and can be dropped out. Hence the Parrinello-Rahman Lagrangian

for arbitrary stress becomes

L'PR -PR - -Tr (EG)
2

ZmN 'TGa - U({hs}) + -Tr (hT) - Pdet(h) - -Tr (EG). (2.130)
2. 2 2

The equations of motion for si remain the same as Eq. 2.116, as the additional term

in the Lagrangian LTr (EG) has no dependence on si. The equations of motion for

h are modified to be

h = [(oint + PI)E + VohE] . (2.131)

The constant of motion is the generalized enthalpy

H' = E + PV + - Tr (EG). (2.132)
2

2.3.4 Constant Temperature and Stress Molecular Dynamics

Constant temperature and stress MD can be achieved be combining thermostat and

barostat together. The widely used equations of motion that generate constant tem-

perature and stress ensemble are those proposed by Martyna et al. [63], which were
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generalized by Shinoda et al. [64] to treat systems under arbitrary external stress

using the supercell strain energy formula of Parrinello and Rahman (Eq. 2.129) [61].

These equations of motions are

i = + g r(2.133)
mi W

F pg 1  Tr[pg] p 2.34Ini = F2 - 2 Pi - r[g i- p i, (2.134)
W9 Nf Wg Q

h= h, (2.135)
W9

Pg = V(Pint PetI) - VhEhT + 1I pg, (2.136)
Q

Q- (2.137)

N 2

= + rTr[pg - (Nf + d)kBIeext,

where {ri, pi} are the position and momentum of particle i, h is the matrix repre-

senting the generalized coordinates associate with the supercell degrees of freedom,

Pg is the modularly invariant [65, 66, 63] form of the supercell momenta, and {, p4}

are the thermostat variable and its conjugate momentum. W and Q are the mass

of barostat and thermostat respectively. Nf is the number of degrees of freedom in

the system, which is equal to dN if there is no constraint for the particle motion in a

system of N particles in d dimensions. Pxt = -1 Tra is the hydrostatic component3

of the externally applied stress tensor 0 ext. Txt is the target temperature of the ther-

mostat. V = det(ho) is the volume of the reference supercell, which is usually taken

to be the supercell h at the beginning of simulation or the average value of h dur-

ing simulation. E has the same definition as discussed earlier in Parrinello-Rahman

constant stress MD, namely E = ho 1 (Oext + PetI)ho T . The internal pressure Pilt is
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defined as

(Pit)ofl = [ E + (Fi)0 (ri)o - (u'hT)a] , (2.139)
V . mi

&U({rs}, h)
(U' = , (2.110)

(9(h).o

where U({ri}, h) is the potential energy of the particles. The above equations of

motions have the following conserved quantity,

N ? 1 PTg V0H' =2 + U({ri}, h) + -Tr + P,, det [h] + Tr (EG)
2mni 2Wg 2
2

+ (Nf + d2 )kBText (2.141)
2Q

In the equations of motion above, a single Nos6-Hoover thermostat was coupled to

the particles and supercell variables. The Nos6-Hoover algorithm only generates the

correct distribution if there is a single constant of motion [45], and in some cases the

system may not behave as expected[67]. To over come these difficulties, the Nose-

Hoover chain method has been developed [68]. In this method, the Nos6-Hoover

thermostat is coupled with other thermostats to form a chain of thermostats. If a

system of M Nose-Hoover chains are used together with the barostat, the equations

of motion for the thermostat variables and their conjugate momenta {{k, Pgk} become

[64]

PNk

Qk k = ,., M , (2.142)

+ Tr[p pg] - (Nf + 2)kBText - P. , (2.143)
W, Q2

Ikk - - p k = 2, ... , M-1 (2.144)
ej-1 Qk 1

p M - kTe (2.145)
QM-1
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The conserved quantity has additional terms due to the added thermostats

H" = H' ( k

k=2

+ kTextk ) .
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Cihapter 3

Envelope Function Method for

Electrons in Slowly-Varying

Inhomogeneously Strained Crystals

3.1 Introduction

It has long been recognized that elastic strain can be used to tune the properties of

materials. This idea of elastic strain engineering (ESE) is straightforward because the

derivative of a material property P with respect to applied elastic strain E, DP/&E, is

in-general non-zero [12]. However, ESE has traditionally been limited by the small

amount of elastic strain a material can accommodate, before plastic deformation or

fracture occurs. Recent experiments, however, reveal a class of ultra-strength mate-

rials [12] whose elastic strain limit can be significantly higher than conventional bulk

solids. Notable examples are two-dimensional (2D) atomic crystals such as graphene

and monolayer molybdenum disulfide (MoS 2 ) [69]. The experimentally measured elas-

tic strain limit of graphene can be as high as 25% [13, 70], while that of bulk graphite

seldom reaches 0.1%. Monolayer MoS 2 can also sustain effective in-plane strain up to

11% [14]. Such large elastic strain limit make it possible to induce significant material

property changes by imposing elastic strain. In particular, position-dependent prop-
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erties can be induced by applying inhomogeneous strain which is slowly varying at

atomic scale but has large sample-wide difference. For instance, Feng et al. demon-

strated that indenting a suspended MoS 2 monolayer can create a local electronic

bandgap profile in the monolayer with 1/r spatial variation, r being the distance to

the centei of indenter tip [71]. This creates an "artificial atom"' in which electrons

moves in a semiclassical potential resembling that of a two-dimensional hydrogenic

atom. In this article, we will develop a new envelope function formalism that could

be used to study the electronic structure of such slowly-varying inhomogeneously

strained crystals.

Ab initio electronic structure methods such as density functional theory (DFT)

are nowadays routinely used to calculate the properties of materials. However, the

steep scaling of computational cost with respect to system size limits their use to

periodic solids, surfaces and small clusters. An inhomogeneously strained structure

usually involves a large number of atoms and thus fall beyond the current capabilities

of these methods.

In the past, several semi-empirical electronic structure methods capable of treating

systems larger than ab initio methods have been developed to study the electrical and

optical properties of semiconductor nanostructures. Among those the most notable

are the empirical tight binding method [72, 73], empirical pseudopotential method

(EPM) [74, 75, 76] and multi-band k - p envelope function method [77, 78, 79, 80,

81, 82]. Both tight-binding and EPM are microscopic methods [73] that treat the

electronic structure at the level of atoms, while the multi-band k -p envelope function

method describes electronic structure at the level of the envelope of wavefunctions,

whose lengthscale is in general much larger than the lattice constant. Excellent

articles discussing the merits and shortcomings of these methods exist in the literature

[73, 74]. Below we shall briefly review the multi-band k -p envelope function method

and the EPM method, as these two methods have been demonstrated to treat vary

large nanostructures (up to a million atoms [83, 76]) and are most relevant to our

article.

The starting point of wavefunction based semi-empirical electronic structure meth-
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ods is usually the single-particle Schr6dinger equation:

[_IL + V(r) TI(r) = E T(r). (3.1)
2mI

Here V(r) is tpe crystal potential; I(r) is the electronic wavefunctipn. In k - p

envelope function method, T (r) is expanded in terms of a complete and orthonormal

basis set Xnko = e ik.r ,k(r) [77], where Onko (r) represent the Bloch functions of the

underlying periodic solid at a reference crystal momentum ko. Mathematically, the

expansion is written as

'(r) = Cnk {eikr nko (r)}. (3.2)
nk

The summation is over band index n and wave vector k, which is restricted to the

first Brillouin zone (BZ) of the crystal. This expansion can be re-written as

T(r) =( cnkeik.r V)nkF.,, = Fn(r) nka (r). (3.3)
k n

The functions Fn(r) = _k cnkeikr are called envelope functions because they are

smooth functions at the unit-cell level due to the restriction of wave vector k within

the first BZ. If all bands n are kept, the above expansion is complete. In practical

calculation, only a few bands close to Fermi energy are included. The reference crystal

momentum ko is normally chosen to be the wave vector corresponding to the valence

band maximum or conduction band minimum of a semiconductor.

Using this expansion, the Schr6dinger equation can be turned into coupled differ-

ential equations for the envelope functions in the following general form

H(r, V).nFn(r) = EFm(r). (3.4)

In k - p envelope function method, H(r, V) is assumed to have the same form as the

k-p Hamiltonian for bulk crystal [84], after replacing the momentum operators km, ky,

k, in k -p Hamiltonian by -i0/(x, --i/Oy, and -iD/Dz [77, 78, 79]. The empirical
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parameters in k-p Hamiltonian are fitted to the observed properties of bulk crystals or

nanostructures themselves. A Numerical solution of the coupled differential equations

gives energy eigenvalues and the associated envelope functions. This method has been

successfully applied to semiconductor superlattice [78, 80], quantum wires [85], and

quantum dots [23, 86].

The k - p envelope function method can treat the effect of homogeneous strain

by incorporating it as deformation potential [87, 88, 89, 80]. Deformation potential

theory assumes small applied strain, such that the strain-induced band edge shift of

bulk crystals can be expanded to first-order in terms of the applied strain tensor E,

AE = Y Eii, where Eij are deformation potentials. A detailed practical imple-

mentation of deformation potential in k - p envelope function method can be found

in literature [801. Exension of theI k- p nu~ niornmethod tO inhomnogeneous

strain was carried out by Zhang [90].

The EPM method [91, 74, 76] is another well-known approach to nanostructure

electronic structure calculation. EPM solves the single-particle Schr6dinger equa-

tion non-self-consistently through the use of empirical pseudopotential. In EPM, the

crystal potential V(r) is represented as a superposition of screened spherical atomic

pseudo-potentials [74]

V(r) = Vatom(r - Ratom). (3.5)
atom

The atomic pseudo-potentials can be extracted from DFT local density-approximation

(LDA) calculations on bulk systems, and then empirically adjusted to correct the LDA

band structure error [92]. As the laborious self-consistent potential determination

procedures in ab-initio calculation are avoided, EPM is computationally cheaper and

faster, enabling it to treat large nanostructures [75]. Zunger and collaborators showed

that EPM can be more advantageous to k - p method due to its non-perturbative

nature as well as preservation of atomic-level structural details [93, 94]. EPM treats

strain effects by weighting the atomic pseudopotentials with a scalar pre-factor fitted

to observed properties of strained crystals [76]. While EPM is appealing in many

ways, its wide use is limited by the complications involved in pseudopotential fitting
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and Hamiltonian diagonalization.

In this article, we develop a new envelope function formalism to solve the electronic

states in slowly-varying inhomogeneously strained semiconductor crystals. We aim to

develop a method that takes advantage of the numerical efficiency of multi-band k p

envelope function method, while at the same time incorporates certain microscopic

electronic structure information at the level of ab intio or EPM method. In speaking

of a slowly-varying inhomogeneously strained semiconductor crystal, we mean that

the variation of strain in the crystal is very small over the distance of a unit cell, but

can be quite large sample-wide (more than a few percent). Our method assumes, with

justification, that in such slowly-varying inhomogeneously strained semiconductors,

the local crystal potential at the unit-cell level can be well approximated by that of

a homogeneously strained crystal with the same strain magnitude. Hence, significant

amount of local electronic structure information can be obtained from unit-cell level

ab inito or EPM calculation of homogeneously strained crystals, which can then be

incorporated into the solution of global electronic structure using the framework of

envelop function method. To achieve such local to global electronic structure con-

nection, the global wavefunctions will be expanded in terms of a small set of Bloch

functions parametrized to the strain field e(x) in the deformed crystal, each of which is

multiplied by a slowly varying envelope function. The strain-parametrized Bloch func-

tions are constructed by smoothly connecting the Bloch functions of homogeneously

strained crystals, a process made possible by a coordinate transformation method that

maps the deformed crystal back to a undeformed one with deformed crystal potential.

This set of strain-parametrized Bloch functions, together with strain-parametrized en-

ergy eigenvalues associated with those Bloch functions, can then be used to eliminate

the unknown crystal potential term in the global Schr6inger equation for the inho-

mogeneously strained crystal. The electronic structure problem will subsequently be

turned into a set of coupled differential equations for the envelope functions, and

solved as a generalized matrix eigenvector problem. Due to the slowly-varying na-

ture of the envelope functions, coarse spatial or Fourier grid can be used to represent

them, therefore reduces the computational cost of the method compared to full-scale
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ab initio or (potentially) EPM calculation of the inhomogeneously strained crystals.

The structure of this chapter is as follows. In Sec. 3.2, we lay out. the general for-

malism of our envelope function method for slowly-varying inhomogeneously strain

crystals. To demonstrate its effectiveness, we will apply the method to a model one-

dimensional strained semiconduetor in Sec. 3.3. In Sec. 3.4, we will discuss the prac-

tical issues when applying the method to three-dimensional realistic solids. Finally,

we will derive in Sec. 3.5 a set of differential eigenvalue equations for the envelope

functions when our method is used as a purely empirical fitting scheme.

3.2 Formalism

3.2.1 Coordinate Transformation

To facilitate the formulation of our envelope function method for slowly-varying inho-

mogeneously strained crystal, we first elaborate a coordinate transformation method

which converts the electronic structure problem of a deformed crystal to a unde-

formed one with deformed crystal potential. This approach has been employed to

study electron-phonon interactions [95], and to prove extended Cauchy-Born rule for

smoothly deformed crystals [96, 97, 98]. The construction here partly follows E et al

[98].

In laboratory Cartesian coordinates, denote by Xi and X' the position vectors of

the i-th atom in a crystal before and after deformation, we can write

Xi = Xj + U. (3.6)

Above, Uj is the displacement of the i-th atom. U is assumed to follow a smooth

displacement field u(x) in the smoothly deformed crystal, i.e., there exists a smooth

displacement field u(x), which maps every atom in the crystal to a new position

X' = Xi + u(Xi). This assumption is closely related to the Cauchy-Born rule [99] in

solid mechanics.

Since the smooth displacement field u(x) is defined for every point in the space,
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it can be used to map a function as well. For example, if a function f(x) is originally

defined for an unstrained crystal, which for example can be the crystal potential V(x)

or wavefunction I(x), after mapping it becomes a new function h(x') given by

h(x +iu(x)) = f(x), (3.7)

since the value of function h(x') at point x' = x+ u(x) is mapped from function f (x)

at point x. This mapping of a known function defined in a undeformed crystal to a

deformed crystal can be done reversely. Suppose, for example, the crystal potential

of a deformed crystal is V(x'), it can be mapped back to a function V*(x) defined in

the "undeformed coordinates" x as

V*(x) = V(x + u(x)). (3.8)

Namely, the value of function V* (x) at position x is the same as the value of function

V(x') at x' = x+u(x). Hereafter, the appearance of the superscript "*" on a function

denotes that the function has been mapped back to undeformed coordinates x with

the following general mapping rule

f*(x) = f (x + u(x)), (3.9)

where f(x') is a function defined for a deformed crystal.

We can apply the above mapping, which is essentially a nonlinear coordinate

transformation, to differential operators as well, such as the Hamiltonian operator

in the Schr6dinger equation. In Hartree atomic units, the Schr6dinger equation for

deformed crystal reads

[--A + V(x') T (x') = ET(x'), (3.10)
w2 f

where A is the Laplacian. Applying the following deformation mapping (coordinate
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transformation) to the Schr6dinger equation,

x u(x), (3.11)

it will be transformed into the undeformed coordinates x as

A* + V*(X) q*(x) = EI*(x). (3.12)
.2 2

A*, V*(x) and I*(x) are the Laplacian, crystal potential and wavefunctions mapped

to undeformed coordinates, respectively. A* can be explicitly written out as

A* = ((I + VU)-TV) - ((I + Vu-TV)
,)2

-~j (-v) +
=- g ('x) +~-' b (x)0 , (313I" xiaxi Oxi,

where ai3 (x) and bi(x) are given by

aij (x) (I + Vu(x)) 1 (I + Vu(x))-, (3.14)

bi(x) (I + Vu(x))2 _ (I + Vu(x))-. (3.15)
axn

Above, Vu is the deformation gradient matrix (field) whose elements are given by

(VU)mn = OUm/OXn. I is identity matrix. The superscript -1 denotes matrix in-

version; -T denotes matrix inversion and transposition. Einstein summation applies

when an index is repeated. It can be checked that when u(x) = 0, i.e., the crystal is

undeformed, aij(x) = ijj, bi(x) = 0, leaving the Laplacian untransformed.

3.2.2 Strain-Parametrized Expansion Basis

To proceed with our envelope function expansion for inhomogeneously strained crys-

tals, we first imagine a series of homogeneously strained crystals with different strain

tensors E, all of which are then mapped back to undeformed coordinates following

the same coordinate transformation elaborated in the previous section. Fig. 5-1 il-

lustrates this procedure. For a homogeneously strained crystal, we can choose the
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Figure 3-1: Schematic of strained crystals mapped back to undeformed coordinates.
After mapping, the atomic coordinates of a strained crystal will be the same as those
of a undeformed crystal, but the crystal potential will be different. (a) Inhomoge-
neously strained crystal. The local strain en are labeled. (b) Unstrained crystal. (c-e)
Homogeneously strained crystals. The mapped Bloch functions *(x;.e) are written

alongside.

reference unstrained crystal such that the rotation component of the displacement

field is zero, which allow the displacement u(x) to be be written as u(x) = x

namely ui = Cik.. It then follows from Eq. 3.12 and Eq. 3.13 that the Schrdinger

equation for homogeneously strained crystals transforms into undeformed coordinates

as
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(Ix + -_ ( +..);-.+ U*(x;e)J * = E*, (3.16)

Here, to distinguish the crystal potential of homogeneously strained crystal from that

of inhomogeneously strained crystal, we have used the symbol U*(x;e) to represent

the mapped crystal potential of homogeneously strained crystal with strain tensor e.

From now on, U and V will be used to represent the crystal potentials of homoge-

neously strained crystals and inhomogeneously strained crystals respectively.

Given a reference crystal momentum k0 for unstrained crystal, for each of the
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homogeneously strained crystal with strain tensor E, their Bloch functions at the

corresponding strained crystal momentum k = (I + E)-Tko can be written as

7.k (X; E) = eik'unk(x'; E). (3.17)

ynk(x; E) can then be mapped back to undeformed coordinates and denoted by

*4ko (x; - e) = C U*koO(x; (3.18)

Without loss of generality, hereafter we chose the reference crystal momentum ko = 0,

in which case only the periodic part of the Bloch functions u*O(x; E) will be retained.

For any value of strain E, the mapped Bloch functions u*0 (x; s) are periodic fune-

tions of the original, undeformed lattice translation vectors. Therefore, each of them

can be expanded in undeformed coordinates in terms of a complete and orthonormal

basis set ,,(x), which for example can be plane waves:

Z*(E)j(X; E) = C m(X). (3.19)

The expansion coefficients C"(E) will be dependent of the strain value E. After this

expansion, the strain E dependence of the Bloch functions u*,O(x; E) is separated into

the expansion coefficients C"(E). In the absence of strain-induced phase transition,

and choosing the same gauge [100] for different strained Bloch functions, these ex-

pansion coefficients should be continuous functions of strain e. We then can define

a strain-parametrzed basis set u*O(x; e(x)) =u* 0 (x; E = e(x)), which means that at

position x, the values of the expansion coefficients Cn in Eq. 3.19 take the values of

C, (E = E(x)). Mathematically, this can be written out as

n o(X; _ (X)) = >C (E(X)) Pm(X), (3.20)

u*O(x; E(x)) are named "strain-parametrized Bloch functions", since they are parametrized

to the strain field E(x) in an inhomogeneous strained crystal. In analogy with the
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conventional envelope function method [77], we can use u*0 (x; e(x)) to expand the

mapped global wavefunctions 4j*(x) of inhomogeneously strained crystals,

*(x) = F(x) (x; (x)). (3.21)

The summation is over the band index n, but will normally be truncated to include

only bands within certain energy range of interest, as far-away bands have smaller

contributions to the electronic states under consideration. Here, Fn(x) are, as in

conventional envelope function method, considered to be smooth functions on unit-

cell scale. This envelope expansion is, in essence, a continuous generalization of

Bastard's envelope expansion method for semiconductor heterostructures [78], where

the wavefunctions in the barrier and well regions of heterostructures are expanded in

the Bloch functions of respective region.

3.2.3 Local Approximation of Strained Crystal Potential and

Envelope Function Equation

Our next natural step is to substitute T*(x) into the mapped Sch6dinger equation

for inhomogeneously strained crystal, the Eq. 3.12, which for convenience is rewritten

here as

[P* + V*(x)] V*(x) = ET*(x), (3.22)

where P* is an operator given by

*= aii (x)& + bi(x) . (3.23)
2 _ xj(9Xj Oxj

aij (x) and bi (x) have been defined earlier. Replacing * (x) by the strain-parametrized

envelope function expansion in Eq. 3.21, the above Schr6dinger equation becomes

ZP* [Fn(x)io(x; e(x))] +Z Fn(x) [V*(x)uo(x; g(x))] = E Fn(x)U*O(x; (x)).
n n n

(3.24)
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The potential energy operator V* (x) is the unknown term in the Hamiltonian, which

in ab initio calculation is determined self-consistently. As we have argued earlier,

such self-consistent calculation of V*(x) is usually impractical for an inhomogeneously

strained crystal due to the large system size. Hence, we introduce here an important

approximation in our method: f6r a slowly-varying inhomogeneously strained semi-

conductor, the crystal potential V*(x) at position x can be well approximated by

that of a homogeneously deformed crystal with same strain tensor E(x), if (a) the

applied elastic strain field E(x) is sufficiently slowly-varying at atomic scale and (b)

long-range electrostatic effects [101] are negligible. This locality principle for the elec-

tronic structure of insulators/semiconductors has been proved by E et al [96, 97, 98].

It is also implicitly implied in the treatment of strain in the EPM method [76].

Mathematically, the locality principle translates into

V*(x) = U*(x; E(x)) + O(b VE(x) ), (3.25)

where U*(x; E (x)) is the strain-parametrized crystal potential of homogeneously strained

crystals, b is the average magnitude of lattice constants, and VE(x) is the gradient

of strain field. b VE(x) is thus a measure of how fast strain varies at atomic scale.

Clearly, the smaller this measure, the better the locality approximation will be. In the

case E(x) goes to zero, the approximation becomes exact. Since we are concerned with

slowly-varying inhomogeneously strained crystals in this article, in what follows we

will only keep the term U*(x; E(x)), which is the zeroth-order term in strain gradient,

or the first-order term in displacement gradient.

Adopting this locality principle greatly facilitates the solution of the electronic

structure problem, as we can now use the local electronic structure information of

homogeneously deformed crystals, obtained from unit-cell level ab initio or semi-

empirical calculations, to eliminate the unknown crystal potential term V*(x) in

Eq. 3.24. Specifically, we can write down the local Schr6dinger equation for the
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strain-parametrized expansion basis

[PO* + U*(x; 6(x))] u*o (x;E (x)) = Cno( (x)) U*o(x; e(x)), (3.26)

with PO* being

1 02
*= (I + E(x))m(I + e(x))-' .(3.27)
P 2 i' n xiaxj

In Eq. 3.26, eno(E(x)) is the strain-parametrized energy eigenvalues for band n at the

reference crystal momentum, defined as cno(e(x)) = co(F = e(x)). The subscript p(x)

in PO denotes that, when the partial derivatives operate on the strain-parametrized

expansion u*O(x; E(x)) = E. Cfn (E(x)) pm(x), they act on the position dependence

coming from p(x), but not on the x dependence coming from C"(F(x)). To better

understand Eq. 3.26, one can look at the limit when the strain field e(x) is uniform

throughout the crystal. Eq. 3.26 then simply becomes a normal Schr6dinger equation

for homogeneously strained crystal mapped to undeformed coordinates.

We will now use the local Schr6dinger equation to eliminate the potential energy

operator V*(x) in global Schr6dinger equation. Rearranging Eq. 3.26, we have

U*(x; e(x))*o(x; E(x)) = [-P* + eno(E(X))] u*o(x; e(x)). (3.28)

We then replace V*(x) in Eq. 3.24 by U*(x; E(x)) based on the locality principle, and

replace U*(x; e(x))u*o(x; E(x)) by the right-hand side of Eq. 3.28. Finally, we reach

the following coupled differential equation for the envelope functions F,(x):

P* [Fn(x)U*to(x; e(x))] - Fn(x)Po* [U*o(x; -(x))]
(3.29)

= Fe(x) [E - Eno(E(x))] U*o(x; E(x)).

This coupled differential eigenvalue equation is the central equation we need to solve

in our envelope function method. The unknowns in the equations are the global

energy eigenvalues E and their associated envelope functions Fn(x). The strain-
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parametrized Bloch functions u*,O(x; e(x)) and their energy eigenvalues eaO(E(x)), can

be constructed using ab 'nito or semi-empirical calculation of homogeneously strained

crystals at unit-cell level, using the procedures described in Sec. 3.2.2. The coupled

differential equation can be solved numerically by expanding the envelope functions

in an appropriate basis, and then turned ihto a matrix eigenvalue equation. The

expansion basis can be judiciously chosen to reflect the symmetries that the envelope

functions could have. The most. general expansion basis, however, are plane waves:

Fn (x) =ZBnke-ikx (3.30)
k

Plugging the above equation into Eq. 3.29, it will turn into the following equation

B- r-* F ik.x * / - eik''T-* r * / / x .

n k (3.31)

B 1eik'x (E - X)o(e(x))) i4(X; E(X)).
n k

We then multiply the both sides of Eq. 3.31 by [eik''ximO(x; E(x))] (dagger denotes

complex conjugation), and then integrate both side over the whole crystal volume

V. This results in N x Mk independent linear equations, where N is the number of

bands included in the envelope function expansion in Eq. 3.21, Mk is the number of

plane waves used to expand the envelope functions F,(x) in Eq. 3.30. The system of

linear equations are written below as:

-nk knk

nk nk
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where

W k'=jdx [eik''x- "]'p* [e ikxU] ,

VRink' -jdx ei(k-k').x u )t-Pju*o

S'm _j dx ei(k-k')x U * )tu ,
nk f mo nom

Tk' j dx e(k-').x' (e(x)) ( ).

* is short for u*0 (x; E(x)). The system of linear equations can be solved numerically

as a generalized eigenvector problem to obtain the eigenvalues E and eigenvectors Bnk.

3.3 Application to One-Dimensional Models

3.3.1 General Framework

To demonstrate the effectiveness of our envelope function method, we will apply the

method to one-dimensional (ID) inhomogeneously strained crystals. We will first lay

out the general mathematical framework of the method in ID, followed by a specific

example in the next section. Most equations in this section are just iD special cases

of equations in the previous section.

Suppose a slowly varying inhomogeneous strain e(x) is imposed on a ID crystal.

The strain field corresponds to a displacement field u(x) = fc E(x')dx'. The operators

7P* and Po* defined in the previous section will have the following form

1 d2  e'(x) d
2[1 + E(X)1 2 dx 2  2 [1 + e(x)| 3 dx' (3.33)

1 02
P* = 0 (3.34)

= 2[1+ E(x)] 2 OX2 '

where E'(x) denotes the derivative of strain with respect to x. The partial derivative

in Po implies that., for a strain parametrized function f(x; E(x)), the derivative will

not act on the x dependence coming from E(x).
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The Schr6dinger equation mapped back to undeformed coordinates will be

[P* + V*(x)] I*(x) = Eq*(x), (3.35)

where V*(x) and 4t*(x) are mapped crystal potential and energy eigenfunction in

undeformed coordinates. E is energy eigenvalue. 'P*(x) will be expanded in terms of

envelope functions and strain-parametrized Bloch functions:

TW Fn (x)*o (x; E(x)) (3.36)

The strain parametrized Bloch functions u*,(x; E(x)) satisfies the local Schr6dinger

equation for homogeneously strained crystal

[PO* + U*(x; (x))] U*o(x; E(x)) = CnO(E (X))Un0o (X; E (X)). (3.37)

We then adopt the local approximation of crystal potential V*(x) U*(x; E(x)),

which allows us to use the above local Schr6dinger equation to transform Eq. 3.35

into the following envelope function equation

Z{P* [F(x)UnO(x;E (x))] - Fn(x)P* ['U*0(x; E(x))]}

(3.38)
= F (x) [E - EfnO(E(X))] * o(x; g(x)).

nn

Using the explicit forms of P* and P* in Eq. 3.33 and Eq. 3.34, the above equation

can be further written as

[p (x)F,' + qn(x)F' + gn(x)Fn] = E h (x)Fn, (3.39)
n n
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with pn(x), qn(x), gn(x) and hn(x) given by

Pn(x) =u*o(X;e(x))

qn(x) =2+ a*o(x;ev)) 1 (x)

gn d iux sx) -yUno (XxE + E(X)) X 'W ) dd 2 0 2 Er x) d
g )dX2 nO x;--2)) na1 + E(x) dx 'o(Xz.(x))

- 2[1 + e(X)]2Eno(e(X))u* 0 (X; E(x))

hn(X) = - 2[1 +

After constructing the strain parametrized Bloch functions u*O(x; E(x)) and Eno(E(X))

through unit-cell level calculations of homogeneously strained crystals and strain-

parametrization, described in Sec. 3.2.2, the coupled differential eigenvalue equation

Eq. 3.39 can be solved numerically using the method described in the previous section.

3.3.2 Example

Consider a ID crystal with lattice constant ao and the following model crystal poten-

tial

U(x) = -UO cos ( ). (3.41)
(ao)

This crystal potential has the following attractive features:

(1) A direct bandgap of magnitude E ~ Uo will open up between the second

and third energy band at crystal momentum k = 0, as shown in Fig. 3-2. Assuming

that the first and second band are completely filled by electrons while those bands

above are empty, the ID crystal corresponds to a direct bandgap semiconductor for

which the second band (n = 2) is the -"valence band" and the third band (n = 3) is

the "conduction band". We will use this designation from now on. The bandgap is

Eg = Ec - E, ~~ UO, where E, is the energy of the conduction band minimum, and

E, is the energy of the valence band maximum.

(2) If we fix UO, the value of bandgap Eg will almost have no change even when

the lattice constant ao is varied. The change of lattice constant ao is natural when we
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apply strain E to the system, namely ao becomes ao(1 +E). While E, = E, - E, ~ 0

does not change when lattice constant ao is changed, the absolute energy values of

the conduction band edge E, and valence band edge E., however, do shift, mainly

due to the change of kinetic energies for electrons in the system when enlarging or

shrinking the crystal. we can therefore model the strain-induced energy level shifting

without incurring bandgap change in this model crystal potential.

(3) If we want to model bandgap change when strain is applied, we can simply

write UO as a function of strain E. For example, to model the linear change of bandgap

as a function of strain, we can write Uo(E) = Uo + Ke, where K denotes the rate of

bandgap change as a function of strain.

Hence, the ID crystal potential is an excellent model system for ID semiconduc-

tor, whose band edge energy levels (Ec, E,) and bandgap E, can be independently

tuned. The crystal potential can therefore model deformation potential [87] while

being mathematically simple and transparent.

In the spirit of the above discussion, we now assume that, after applying homoge-

neous strain E to the model ID semiconductor, its crystal potential has the following

form:

U(x'; E) -(UO + Ke) cos 47 )' . (3.42)
lao(1 + e)xI

This implies that both the energy levels and bandgap of the ID crystal will change

after applying strain. Comparison of the band-structures of the ID crystal before and

after deformation for a specific set of parameters Uo = 0.2, K = -0.5, and e = 0.05

is shown in Fig. 3-2.

The crystal potential of homogeneously strained 1D crystal, U(x'; e), is up to now

defined in strained coordinates x'. As discussed earlier, we can map the strained

crystal potential back to undeformed coordinates x based the mapping relationship

' x + u(x) (1 + E)x. The mapped crystal potential becomes the following

U*(x; E) = -(Uo + KE) cos(47x/ao). (3.43)

Suppose now a continuous strain distribution E(x) is defined in the x coordinates.
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Figure 3-2: Calculated energy band structure of the model ID crystal before and

after applying homogeneous strain (see main text for details of the ID crystal). Only
the first three bands are presented. Solid and dashed line denote the first three

energy bands of unstrained crystal and homogeneously strained crystal with E = 0.05,
respectively. The axis label ka denotes the product of crystal momentum k and lattice

constant a = ao (1 + e).

We can define a strain-parametrized crystal potential U* (x; E(x)) such that at position

x, we first calculate the strain E(x) at x, then assign U*(x; E(x)) a value equal to

U*(x; E = e(x)). Namely,

U*(x; e(x)) -3U*(x; 6 = e(x))
(X; ( )) (X ( X))(3.44)

= -(Uo + KE(x)) cos(47x/ao).

With the above model set-up, we now apply a Gaussian-type inhomogeneous strain

on the ID crystal. The strain distribution is given by

E)(x - L/2)2-
E~x) ema e~p (L/4)2 ,

(3.45)

where 6 max is the maximum strain value in the strain field s(x), occurring at x = L/2.
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Figure 3-3: Potential of the model ID crystal after applying Gaussian-type inhomo-
geneous strain. V(x') = U*(x; E(x)) = - [Uo + Ke(x)] cos(47x/ao). x is related to x'

via x' x + iLkEmax erf (- 1 2 - erf(-2)]. The values of model parameters Uo,
K, L and Emax are given by UO = 0.2, K = -0.5, L = 25aO and Emax = 0.1.

L denotes the size of crystal. After applying the inhomogeneous strain, a position

x in the undeformed crystal will map to a new position x' in deformed coordinates

given by

x' =x+ e(v)dv (3.46)

= X + Emax erf - erf (-2) 1,8 L/4

where erf(x) denotes error function.

Denote by V(x') the crystal potential of the ID crystal after applying the Gaussian

inhomogeneous strain, we then adopt the local approximation of crystal potential as

described in Sec. 3.2.3, which says that the inhomogeneously strained crystal potential

at point x' can be well approximated by the crystal potential of a homogeneously

strained crystal with the same strain value. This can be mathematically written out

as

V(X') ~~ U*(X; E(X)), X' = X + IE(v)dv. (3.47)

The as-constructed strained crystal potential V(x') is visualized in Fig. 5-3.

We have thus, for demonstration purpose, explicitly constructed the strained crys-

tal potential V(x') using the local approximation of crystal potential. This allows us

to solve the energy eigenstates of an inhomogeneously strained crystal using two dis-
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tinct methods:

Method 1: direct numerical diagonalization of strained Hamiltonian. Since the

explicit expression for the inhomogeneously strained crystal potential V(x') has been

constructed, we can solve the Schr6dinger equation for the inhomogeneously strained

crystal in deformed coordinates,

I d2 + (x' ) ) =

2 dX'2 + V(X') ] z)=EW(',
(3.48)

by diagonalizing the Hamiltonian H 1d +2

2 x1 + V W) using plane wave basis set in

Fourier space. More straightforwardly, we can discretize the wavefunction ' (x') into

a N x 1 matrix vector in real space,

(3.49)

and then write the Hamiltonian as a matrix operator H acting on the wavefunction

H = -L/2 + V, where L and V are the matrix operators for the differential operator

d 2 and the potential operator V(x') respectively:

1
L =- )

( AX')2

-2 1

1 -2

1

1

1

1

1 -2

(3.50)

[V(X')

V(')
(3.51)

V(X'N

AX' = X4 - X' is the distance between two real space grid points. The Hamiltonian

matrix H can then be numerically diagonalized to obtain the energy eigenvalues E

and wavefunctions 4(x').

Method 2: solving the energy eigenstates of inhomogeneously strained crystal
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using our envelope function method. We can solve the Schr6dinger equation, Eq. 3.48,

by first mapping it back to undeformed coordinates, which becomes

[P* + U*(X; E(X))] 'If*(x) = ET*(x). (3.52)

The explicit expression for the differential operator P* is given by Eq. 3.33. The

mapped wavefunctions qf*(x) will then be expressed in terms of envelope functions

F,(x) and strain-parametrized Bloch functions u*0 (x; E(x)):

IW) F (X) Uo (X; EW)). (3.53)

We then follow the procedures described in Sec. 3.3.1 to eliminate the crystal potential

trU( .A )) i11 Eq. .J204 using strani-paramer BIUcU fuic'ions 'UeyL; E1C))

and the associated strain-parametrized energy eigenvalues E(x; e(x)). Eq. 3.52 can

then be turned into a coupled differential eigenvalue equation for the envelope func-

tions F,(x) given by Eq. 3.39, and solved as a generalized matrix eigenvector problem.

The solution of Eq. 3.39 requires the explicit construction of strain-parametrized

functions u*40 (x; s(x)) and the associated strain-parametrized energy eigenvalues c(r; e(x)).

The construction of these functions involves unit-cell level calculations of homoge-

neously strained ID crystals. Only the Bloch functions and energy eigenvalues of

the electronic states at the reference crystal momentum (k = 0 in this case) and

a few bands close to the valence/conduction band need to be calculated. The ho-

mogeneous strain values e are coarsely taken from the inhomogeneous strain field

(no more than one grid point per unit cell). The calculated periodic Bloch func-

tions of each homogeneously strained crystal are then expressed in plane wave basis

as u* 0(x; E) = Z C(E)e i2 mx/ao, where Cn,(E) are the expansion coefficients. The

strain-parametrized Bloch functions can then be constructed by letting e = e(x) at

position x, namely

*nO (X; E (X)) C. (E (X) )eim""/ao. (3.54)
'If

It is easy to see that, at position x, the value Of U*0 (X; E(X)) is the same as the value of
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periodic Bloch function u*iO(x; e) at x and e = e(x). It is in this sense u*0 (x; e(x)) are

named strain-parametrized functions. Since C (E) are smooth functions of e and E(x)

is a smooth function of x, we can use polynomial fitting to obtain smooth functions for

C, (e(x)). As only unit-cell level calculations of homogeneously strained crystals at a

referenice crystal momentum are involved, the construction of tie strain-parametrized

functions u*,(x; E(x)) and c(x; e(x)) do not require much computational power in this

ID example.

Of the two methods discussed above, Method 1, the direct diagonalization of

Hamiltonian, is a well established method, therefore it can be used to benchmark

Method 2, our envelope function method. To test the effectiveness of our envelope

function method, we have calculated the energy eigenvalues and eigenfunctions of the

ID inhomogeneously strained crystal using both methods. A special note is that we

are not testing here how good the local approximation of crystal potential for inho-

mogeneously strained crystal can be, but how accurate and fast our envelope function

method can achieve given the local approximation of crystal potential is a sufficiently

good approximation. Also note that, although for the sake of benchmarking our en-

velope function method, we have explicitly constructed the strained crystal potential

in this ID problem, in practical application of our envelope function method, such

explicit construction of crystal potential will not be performed. The information of

local strained crystal potential, at the level of approximation used in our method, is

reflected in the strain-parametrized Bloch functions u*,0 (x; E(x)) and the associated

strain-parametrized energy eigenvalues 'no (x; e (x)).

Choosing the following model parameters L = 100ao, Uo = 0.2, K = -0.5, and

Emax = 0.1 for the ID inhomogeneously strained crystal, we carry out numerical real

space diagonalization of the Hamiltonian by spatially discretizing the wavefunction

qI(x) into a N x 1 matrix. Periodic boundary condition T(0) = T(L) is adopted.

As the wavefunction oscillates rapidly even within a unit cell, very large N, around

50 times the number of unit cell L/ao, is needed to achieve convergence of energy

eigenvalues near valence or conduction band edge.

Fig. 3-4a shows the direct-diagonalization obtained energy eigenvalues near the
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Figure 3-4: (a) Energy eigenvalues of the unstrained (open circles) and inhomoge-

neously strained model ID crystal (filled circles) obtained by direct diagonalization.

The energy levels are shifted horizontally with respect to each other to resolve en-

ergy levels which are very close to each other. The energy range of hole and electron

bound states in strained crystals are labeled. (b) Wavefunction probability ampli-

tude for hole and electron bound states, which are labeled in the figure as VBM,
VBM-1, CBM, and CBM+1. VBM denotes valence band maximum; VBM-1 denotes

one energy level below VBM; CBM means conduction band minimum, while CBM+1

denotes one energy level above CBM. The wavefunctions have rapid oscillation.

band edges. A 5000 x 5000 Hamiltonian matrix is involved in the numerical calcula-

tion. For comparison, the energy eigenvalues of unstrained crystal are shown together

in the figure. The most distinct feature for the energy spectrum of inhomogeneously
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Figure 3-5: Valence and conduction band edge plotted as a function of position

in the inhomogeneously strained crystal. The local band edges are calculated from

homogeneously strained crystal with the same strain magnitude at position x.

strained crystal is the appearance of bound states near the conduction and valence

band edges. These bound states, whose wavefunctions are shown in Fig. 3-4b, can be

understood by plotting the local valence and conduction band edges as a function of

position in the strained crystal, which is shown in Fig. 3-5. The alignment of band

edges is reminiscent of semiconductor quantum well, except that in our case, the spa-

tial variation of band-edge is smooth and extended, while in semiconductor quantum

well, band edge usually jumps abruptly at the interface between the barrier and well

region of quantum well. Hence, the strain-confined bound states in inhomogeneously

strained crystal bear resemblance to bound states in quantum well. We want to em-

phasize that, the band edge alignment in our ID inhomogeneously strained crystal is

not unique to this model. Strain-induced band edge shift in semiconductor is a well-

known phenomenon [87]. In fact, the band-edge alignment in our ID model is similar

to those calculated by Feng et al for inhomogeneously strained MoS 2 monolayer [71].

We can therefore conclude that the existence of electron or hole bound states is a

general feature in an inhomogeneously strained crystal.

We have also calculated the energy eigenvalues using our envelope function method.
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Figure 3-6: Relative difference of energy eigenvalues obtained by direct diagonaliza-
tion and envelope function method. The energy eigenvalues from direct diagonaliza-
tion of a 5000 by 5000 Hamiltonian matrix are served as reference to calculate the
relative difference. In (a), zone-center Bloch functions of the lowest five bands are
used to carry out envelope function expansion. The envelope functions are represented
numerically using one mesh grid every unit cell. This leads to the diagonalization of
an approximately 500 by 500 matrix. In (b), only valence and conduction bands
zone-center Bloch functions are involved in envelope function expansion. The enve-
lope functions are represented using one mesh grid every four unit cells. The resulting
matrix for diagonalization is of order 50 by 50.

As shown in Fig. 3-6a, very high accuracy of eigenvalues is achieved for the whole

valence and conduction bands using only one mesh grid per unit cell representation
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of the envelope functions. The lowest five bands are included in the summation over

bands in the envelope function expansion (Eq. 3.53). Together, the envelope function

method involves the diagonalization of an approximately 500 by 500 matrix, which

is an order of magnitude smaller than direct diagonalization. As zone-center Bloch

functions are used to carry out envelope function 6pansion, naturally the error for

energy eigenvalues near the band edge is smaller, same as in conventional envelope

function method. Furthermore, if one is only concerned with energy levels near the

band edge, which in most practical application is true, the expense of envelope func-

tion method can be reduced by another order of magnitude by including only the most

relevant bands, and using coarser grids for numerical representation of the envelope

functions. In Fig. 3-6b, we show that more than 1/4 of energy levels in valence and

conduction bands can be calculated with very high accuracy by including only the

valence and conduction bands in wavefunction expansion, and using one mesh grid

every four unit cells to represent the envelope functions. In this case, one ends up

diagonalizing a 50 by 50 matrix, which is two order of magnitude smaller than direct

diagonalization. Indeed, for this ID model, our envelop function method is much

faster than the direct diagonalization method.

The success of the envelope function method is because the envelope functions

F(x) are indeed slowly varying as we conjectured. Fig. 5-7 shows the amplitude

square plot of envelope functions for a few electron and hole bound states. For

the electron bound states, the envelope function of conduction band is predominant,

while the valence band envelope function also contributes. The opposite is true for

the hole bound states. Other remote bands have negligible contribution and are

therefore not plotted. Comparing with the full wavefunctions calculated from direct

diagonalization in Fig. 3-4b, one can notice that the envelope functions are indeed

slowly-varying functions modulating the amplitude of fast-varying Bloch functions.
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Figure 3-7: Amplitude squared plot of envelope functions F,(x) for states near

valence and conduction band edges. The electronic states plotted are VBM, VBM+1,

CBM and CBM-1. For these band edge states, only valence band (n = 2) and

conduction band (n = 3) have significant envelope function amplitudes.

3.4 Toward Application to Three-Dimensional Real

Materials

We have demonstrated in the previous section that our envelope function method

can be successfully applied to a model ID slowly-varying inhomogeneously strained

semiconductor. A real semiconductor, however, is a three-dimensional (3D) object,

and its crystal potential and strain response will be more complicated than the ID

model. Therefore, in this section we discuss some of the issues that may arise when

applying our method to real 3D semiconductor crystals.

The procedures to carry out our envelope function method in 3D are essentially

the same as in ID, which we summarize in the flow chart of Fig. 3-8.

The first step in the flow chart is the determination of a smooth displacement field
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Figure 3-8: Flow chart to implement the envelope function method described in this

article. The first step is the determination of a smooth displacement field u(x) which

can map the unstrained crystal (and the associated vacuum space, if any) to the

strained crystal. The strain field e(x) can be calculated from the displacement field

u(x). The second and third steps are construction of strain-parametrized Bloch func-

tions and energy eigenvalues at the reference crystal momentum (usually Brillouin

zone center), through ab initio or semi-empirical electronic structure calculations of

a series of homogeneously strained crystal, using strain values taken from the inho-

mogeneously strained crystal. The last step is the solution of the coupled differential

equation for the envelope functions as a generalized matrix eigenvector problem.

u(x) which can map the unstrained crystal (and the associated vacuum space, if any)

to the strained crystal. The corresponding strain field E(x) needs to be calculated as

well. In D, displacement field u(x) is a one-dimensional function and contains no

rotational component. Thus u(x) is related to the strain field E(x) via a simple integral

relation u(x) = f" E(v)dv. In 3D, the displacement field u(x) is three-dimensional,

and the strain field e(x) is a tensor field with six independent components. Due to

the possible existence of rotational components, the components of the strain field

are related to the displacement field u(x) (in the small deformation limit) as:

Ei = - - + (3.55)
2 f a nxg axi c

Hence, for a generic 3D inhomogeneously strained crystal, finding and representing

83



the smooth displacement field u(x) and strain field e(x) becomes more difficult than

ID. Knowledge of solid mechanics will be helpful in this endeavor. The increased

complexity of the displacement field and strain field in 3D also complicates the calcu-

lation and representation of the differential operators P* and PO* defined in Eq. 3.23

and Eq. 3.27, which need to be determined in order to solve the envelope function

equation, Eq. 3.29.

The second and third step in the flow chart are the construction of strain-parametrized

Bloch functions and associated strain-parametrized energy eigenvalues at a reference

crystal momentum, usually at the Brillouin zone center, through ab initio or semi-

empirical electronic structure calculation of a series of homogeneously strained crystal.

The strain values are coarsely taken from the inhomogeneous strain field E, which in

principle is sufficient as the strain field is slowly-varying in space. Nevertheless, in

a generic 3D case this step will be challenging as the number of calculations for ho-

mogeneously strained crystal can become quite large if the strain field is complex,

as there are six independent components of strain tensor in 3D. The construction

of strain-parameterized Bloch functions, described in Sec. 3.2.2, might also become

non-trivial due to the complexity of electronic wavefunctions in 3D. Proper choice

of expansion basis om(x) for the Bloch functions in Eq. 3.19 and Eq. 3.20 will be

essential.

The fourth step in the flow chart is the solution of coupled differential equation for

the envelope functions, the Eq. 3.29. This step, having been discussed in Sec. 3.2.3,

should be straightforward once the differential operators P* and PO*, strain parame-

terized Bloch functions ui*O(x; e(x)) and the associated strain parameterized energy

eigenvalues Eco(E(x)) have all been determined in the previous steps. Nevertheless,

the computational cost of solving the differential eigenvalue equation will become

larger as the dimensionality of the problem increases, as more spatial or Fourier grids

will be needed to represent the envelope functions F(x), resulting in larger matrices

for numerical diagonalization.

In summary, the application of our envelope function method to a generic 3D

problem will be feasible but challenging. We therefore believe that our method will
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most likely find applications in cases where the 3D problem is quasi-ID or 2D, namely

when only one or very few components of the strain tensor is varying slowly in space.

We also comment here a few issues related to the central approximation adopted in

our method, the local approximation of crystal potential in strained crystal elaborated

in Sec. 3.2.3. The approximation states that in a slowly-varying inhomogeneously

strained semiconductor or insulator, the local crystal potential V(x') can be well

approximated by that of a homogeneously strained crystal with the same strain tensor

E(x'). This local approximation of strained crystal potential is likely to be a good

approximation only for non-polar semiconductors such as silicon and germanium. For

polar semiconductors such as gallium arsenide, strain could induce piezoelectric effect,

which generates long-range electric field in the deformed crystal and significantly

increases the error of this approximation. Furthermore, we note that for certain

materials with more than one atoms within a unit cell, strain can induce internal

relaxation of atoms relative to each other on top of the displacement described by

strain tensor, an effect not included in our present method and must be carefully

checked in realistic calculations.

3.5 Envelope Function Equation for Empirical Ap-

plications

In this section, we will cast the envelope function equation (Eq. 3.29) in a new form in

which the strain-parametrized Bloch functions u*O(x; e(x)) will not appear explicitly.

They will be replaced by a set of matrix elements involving their integrals. Doing so

allows the method to be used empirically, where the matrix elements can be fitted to

experimental data. The connection to traditional k -p envelope function method will

also become clearer. For convenience, we rewrite the relevant equations below

ZP* [Fn(x)'u,o(x; e(x))] - E Fn(x)Po* [U*O(x; e(x))]
(3.56)

E Fn (x) [E - ECo(E(X))] t4 (x; E(x)),
nl
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where

1 __ 2_ 1P* = aij(x)a0 - bi (x)a , (3.57)
2 OxiOxj 2 Oxi

* = (I + E(x))_ -(I + E(x))_ . (3.58)
PO 2 i' (iax(

ai(x) and bi(x) are given by

aij (x) = (I + Vu(x))- 1 (I + Vu(x))T, (3.59)

bi(x) = (I + V u(x))- a (I + Vu(x)),. (3.60)

P* [F(x)u*0o(x; e(x))] can be expanded out as

P*[F(x)u*o(x; E(x))] =[P*Fn(x)]*O(x; E(x)) + Fn(x)[P*no(x; E(x))]

OF, (x) (3.61)
- aj (x) u*O (x; e(x)).

axi OXj

In above expansion, we have used the symmetry property of aj (x), namely aij (x) =

a32(x).

When strain variation E(x) is varying slowly at atomic scale, which is the premise

of our envelope function method, the strain-parametrized basis functions u*(x; e(x))

for different bands n are approximately independent and orthogonal:

dx J(x) [ * 0 (x ( x))]I u* 0 (x; E(x)) ~mn. (3.62)

The integration is over the whole crystal, whose volume is V. The Jacobian of defor-

mation map J(x) = det(I + Vu) takes into account the change of volume elements

during coordinate transformation. We also note that, J(x) can be absorbed into the

basis functions by re-defining u*0 (x; F(x)) as J(x)n/ 2 n*0 (x; E(x)), and the whole for-

malism of our envelope function method will not change. This can be sometimes be

more convenient for constructing strain-parametrized basis set.

Using the above orthonormal relation, we can express P* [u*0 (x; E(x))], PO [u*i 0 (x; e(x))],
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and -2 *uO(x; E(x)) in terms of u* 0 (x; e(x)) as

p* [u*o(x; E(x))] = ZP nu *,o (x; e(x)),

PO* [u0 (x; E(x))] = Pnsl *'O (X; E X),

,o(x; e(x)) = ZQ,,*,o(x; E(x)),a9xi n

where Pnn', PFn, and Qn, are matrix elements given by

J=dx J(x) {P* [U*(x; e(x))]} ['*,(x; s(x))]t,

P,0s,~~ ~~ = dxJx P*E,(;X))) II[U*,,o(X; E X)

i, f dx J(x) { [u*0o (x; E(x)) [i,,(x; e(x))]t .

Eq. 3.56 can now be written in terms of u*io(x; e(x)) as

n * - au(x)Q "' + Z(Pin n -FPnn)Fn'} (3.63)

= ~ F,(x) [E - Eno(E(x))] Un*O.

Equating coefficients of u* on both side [81], we arrives at a new form of envelope

function equation

I 02F I OF OFn/
-- ai(x) - bi (x) n (Z ai(x)Q,,n + Y (P/ - Pn)Fn'2 I 2 xi , 3xj n/ (3.64)

+ Eno(E(x))Fn = E Fn

In the equation, aij(x) and b(x) are related to deformation mapping and can be

calculated once the displacement field u(x) is known. Q and (Pnn - P,,) can be

calculated either by constructing the strain-parametrized basis set or fit empirically

to experimental data. As a sanity check, when a crystal is undeformed, namely

u(x) = 0, we have aij(x) = 6ij, bi(x) = 0, J(x) = 1, Pnn, = Pt0,,, ECo(E(x)) = Eno, and
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the envelope function equation will become

12 _n / _ O + co Fn=EF (3.65)

with qi,, being
1 f t

i,, = - dx [uno(x)]t u. o(x) (3.66)qn V Oxi

Eq. 3.65 recovers the envelope function equation for bulk crystals [81].

3.6 Summary and Conclusion

To summarize, we have developed a new envelope function formalism for electrons

in slowly-varying inhomogeneously strained crystals. The method expands the elec-

tronic wavefunctions in a smoothly deformed crystal as the product of slowly varying

envelope functions and strain-parametrized Bloch functions. Assuming, with jus-

tifications, that the local crystal potential in a smoothly deformed crystal can be

well approximated by the potential of a homogeneously deformed crystal with the

same strain value, the unknown crystal potential in Schr6dinger equation can be

replaced by the a small set of strain-parametrized Bloch functions and the associ-

ated strain-parametrized energy eigenvalues at a chosen crystal momentum. Both

the strain-parametrized Bloch functions and strain-parametrized energy eigenvalues

can be constructed from ab irnitio or semi-empirical electronic structure calculation

of homogeneously strained crystals at unit-cell level. The Schr6dinger equation can

then be turned into eigenvalue differential equations for the envelope functions. Due

to the slowly-varying nature of the envelope functions, coarse spatial or fourier grids

can be used to represent the envelope functions, therefore enabling the method to deal

with relatively large systems. Compared to the traditional multi-band k - p envelope

function method, our envelope function method has the advantage of keeping unit-

cell level microstructure information since the local electronic structure information

is obtained from ab initio or EPM calculations. Compared to the conventional EPM

method, our method uses envelope function formalism to solve the global electronic
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structure, therefore has the potential to reduce the computational cost. The method

can also be used empirically by fitting the parameters in our derived envelope function

equations to experimental data. Our method thus provides a new route to calculate

the electronic structure of slowly-varying inhomogeneously strained crystals.
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Chapter 4 1

Deviatoric Stress-Driven Fusion of

Nanoparticle Superlattices

4.1 Introduction

Colloidal nanocrystals of metals and semiconductors are usually passivated with or-

ganic ligands to prevent aggregation in solution. Monodisperse ligand-passivated

nanocrystals can self-assemble into long-range ordered superstructures, often called

Nanoparticle Superlattice (NPSL), supercrystal or supracrystal. NPSLs have been

subject of intense research in recent years [102]. These soft-sphere colloidal super-

crystals have much richer inter-particle interactions than their hard-sphere counter-

parts, evidenced by the variety of crystal structures that can be formed in binary

NPSLs [103]. Study of collective phenomena in these "artificial solids" is a frontier

of materials research. Mechanical properties of NPSLs are emergent properties in

the sense that they derive from the collective interaction of the constituent nanopar-

ticles. The study of mechanical behavior of NPSLs has only begun, and several

pioneering experimental studies have appeared [104, 105, 106, 107, 108]. However,

detailed, molecular-level understanding of the mechanical behavior of NPSLs is still

very limited. An interesting possibility is room-temperature sintering ("fusion") of

passivated nanoparticles ("artificial atoms") under stress, akin to the nuclear fusion of

real atoms under ultra-high temperature and pressure. Recent experimental studies
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demonstrated that, mechanical deformations of gold and PbS nanoparticle assem-

blies in a pressurized environment lead to the formation of extended nanostructures,

such as gold nanowire array [109], 3D nanostructured gold architecture [110] and PbS

nano-sheet [111]. Yet the conditions under which such stress-driven transformations

happen in NPSLs, as well as the associated m6lecular-level mechanisms, are not well

understood.

In this chapter we use large-scale Molecular Dynamics (MD) simulations to study

the mechanical behavior of gold NPSLs under both ambient and elevated pressures.

We find that, due to the dominant roles of organic ligands in mechanical response

[106, 107, 112], the NPSLs exhibit entropic viscoelasticity during compressive defor-

mation at ambient pressure. At moderately elevated stresses, our simulation confirms

Wu et als experimental report [109] that gold NPSLs can be transformed into ordered

gold nanowire arrays via deviatoric stress driven sintering ("fusion") of gold nanopar-

ticles in the NPSLs. The following stress conditions are required to enable such

fusion: (a) the presence of a background hydrostatic pressure P of the order several

hundred megapascal (MPa); (b) the presence of a critical deviatoric stress (uniaxial)

T in addition to the aforementioned hydrostatic pressure (triaxial) background. The

direction of the deviatoric stress should be properly aligned with the crystallographic

direction of the superlattice. In face-centered cubic (fcc) structure, this is the [110]

nearest-neighbor (Burgers vector) direction of nanoparticles in the superlattice. On

the basis of these insights, we demonstrate that stress-driven fusion of silver-gold

(Ag-Au) binary NPSLs can lead to the formation of Ag-Au multi-junction nanowire

arrays with similar kind of stresses.

4.2 Molecular Model and Computational Details

4.2.1 Molecular Model

The structural units of the gold NPSLs in our simulation are alkanethiol-passivated

gold nanocrystals. To achieve a balance between computational cost and experi-
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mental relevance, each icosahedron-shaped gold nanocrystal in our simulation has

diameter d ~ 3 nm, containing 561 gold atoms and exhibiting only (111) surfaces.

The nanocrystals are capped by octanethiols (S(CH 2 )7CH3 ). The ligands are self-

assembled and absorbed onto the gold nanocrystal surfaces via gold-sulfur interaction

in MD simulation. The coverage density of ligand is 136 molecules per nanocrystal,

which corresponds to full ligand coverage density for the gold nanocrystal under con-

sideration [113]. Individual gold nanoparticles are subsequently arranged into NPSLs

with fcc superstructure. Our extensive Parrinello-Rahman MD simulation [60, 61]

with variable size and shape of simulation box confirms that fcc is indeed the most.

stable superstructure for the system considered here. After equilibration, different

mechanical loads are imposed on the superlattice. Periodic boundary conditions are

employed. The size of simulation system is chosen based on the mechanical behav-

ior under investigation. When plastic deformation is involved, the system typically

contains more than 2500 nanoparticles.

The assignment of interaction potential is a critical issue in MD simulation. In

our simulation, Morse potential was chosen to describe the interaction between gold

atoms [114, 115]. Although embedded-atom method (EAM) potential [116] is known

to be a more accurate potential model for metals, especially for metallic nanostruc-

tures, we found in our simulation that EAM potential has a few problems when used

together with pair potential description of gold-sulfur interaction. Sulfur atoms tend

to cause surface roughening of gold nanocrystals modeled with EAM potential. A

small portion of sulfur atoms can penetrate one atomic layer beneath the gold sur-

face, which no experimental evidence is available for support and is unphysical in our

belief. This motivates our choice of Morse potential to model gold-gold interaction

[114, 115]. While the simulations reported in this paper use Morse potential, we have

nevertheless performed extensive simulations using EAM potential. The conclusions

drawn in our study are not qualitatively affected. The critical hydrostatic pressure

and deviatoric stress needed for fusion of gold NPSL into gold nanowire array was

found to be higher (within a factor of two) for nanocrystals modeled with EAM po-

tential. The higher values can be explained by the aforementioned penetration of
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sulfur atoms beneath gold nanocrystal surface, which makes it more difficult for lig-

ands being displaced from the contact region between two neighboring nanoparticles

before fusion.

To describe the interaction of alkanethiol ligands, we use the united atom (UA)

potential by Paul et al [117]. Kushik et al's recent work [118] demonstrated that Paul

et al's UA potential can accurately reproduce the chain conformation and dynamics

of ligands modeled by very accurate, but computationally demanding all-atom MM3

potential [119]. The UA potential includes bond, angle, dihedral and non-bonded

interactions.

The interaction between thiol ligands and gold nanocrystals is subtle, due to the

quantum-mechanical nature of sulfur-gold bonding. The adsorption configuration of

thiol on gold surface is still under debate [120]. Most studies in the literature used

Morse potential to parameterize gold-sulfur interaction [121, 122, 123, 124]. Our

gold-sulfur interaction model follows Zhang et al [121], except that we use Lennard-

Jones potential instead of Morse potential to fit the adsorption energies of sulfur

atoms on gold surfaces, as Morse potential has a relatively soft core which induces

unphysical features at very high pressure. We note that Schapotschnikow et al [113]

also use Lennard-Jones potential to model gold-sulfur interaction in their simulation

of interactions between individual gold nanoparticles. We have selected Zhang et al's

gold-sulfur model [121] because the thiol diffusion barrier computed from Zhang et al's

model is very close to first-principles calculated thiol diffusion barrier on gold (111)

surface assuming direct adsorption geometry [125], as well as gold adatom diffusion

barrier on gold (111) surface [126]. The gold adatom model, namely thiol ligands

bind to gold surface via gold adatoms, has recently emerged as a strong candidate

for ligand adsorption on gold surface [120]. Due to the covalent bonding between

sulfur and gold, thiol diffusion on gold surface may involve diffusion of thiol-adatom

complex, in which case the thiol diffusion barrier should be close to that of gold

adatom. Indeed, fast diffusion of thiol ligands on gold surface was experimentally

observed [127], suggesting that the thiol diffusion barrier should be close to thermal

energy at room temperature.
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For silver-gold (Ag-Au) binary nanoparticle superlattice simulation, we use Morse

potential [114] to describe the interaction between the silver atoms. The cross-

interaction between gold and silver atoms are computed using Lorentz-Berthelot mix-

ing rules. As previous studies showed that the interaction strength and equilibrium

distance of Ag-S bond is very close to those of Au-S bond [128, 129], we use the Au-S

interaction parameters to approximate those of Ag-S interaction. The non-bonded

interactions between the alkyl group of thiol ligands and silver are relatively weak.

Small variation of these interaction parameters is unlikely to influence the simulation

results much. Hence, the parameters are taken to be same as those between ligands

and gold nanoparticles.

The force field parameters for the interaction models described above are listed in

details bellow.

Gold-Gold Interaction

E = Do [e-2a(r-ro) - 2-a(r-ro)] , r < rc (4.1)

where Do = 10.956 kcal/mol, a = 1.5830 A , ro = 3.0242 A. The interaction cut-off

distance r, = 10 A is the default value for non-bonded interactions in our simulations.

Interaction potentials are shifted to zero at re.

Ligand Intra- and Inter-Molecular Interactions

The thiol ligands (S(CH 2 ),CH3 ) are coarse-grained such that each CH2 or CH3 unit

is treated as a single atom. The total conformation energy of thiol molecules consists

of energy coming from bond-stretching, angle-bending, dihedral-torsion, and non-

bonded interactions.

E = Ebond + Eange + Etyrsion + Enownbonded (4.2)
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where

Ebond =k(r - ro) 2

Eange = k' [cos(0) - cos (00)]2

1 1 1
Edihedale =-K1 [1 + cos(d)j + -K 2 [1 - cos(2) + -K 3 [1 + cos(3#)]

Enon-bonded= 4E 12 (c)6] r < re

(4.3)

(4.4)

(4.5)

(4.6)

The interaction parameters for the alkyl groups of thiol ligands are the original

values of Paul et al [117, 118]. Interactions parameters involving sulfur atoms were

taken from literature [124, 130, 131, 132]. These interaction parameters are listed in

Table 4.1.

Table 4.1: Interaction Parameters for Ligand Molecules.

bond ro (A) k [kcal/(mol/A2 )]
S-CH 2  1.81 222

CH2-CH 2  1.53 317
CH2 -CH 3  1.53 317

angle 0 (degree) k' (kcal/mol)

S-CH2-CH 2  114.4 62.5
CH2-CH2-CH 2  110.01 60.0
CH2-CH2-CH 3  110.01 60.0

dihedral K1 (kcal/mol) K2 (kcal/mol) Kq (kcal/m
S-CH2-CH2-CH 2

CH2-CH2-CH 2-CH 2
CH2-CH2-CH 2-CH 3

1.6
1.6
1.6

-0.8670
-0.8670
-0.8670

ol)

3.24
3.24
3.24

non-bonded interaction o- (A) c (kcal/mol)
S 4.25 0.39743

CH2
CH3

4.009
4.009

0.09344
0.22644

For non-bonded interactions, the standard Lorentz-Berthelot mixing rules are used

to compute the cross-interaction terms.
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Ligand-Gold Interaction

The ligand-gold interaction consists of sulfur-gold interaction and alkyl group-gold

interaction. The interaction between gold and sulfur is modeled by Lennard-Jonnes

potential:

E = r<r (4.7)

where c = 3.182 kcal/mol, a = 2.586 A.

The interaction of alkyl units with gold is modeled by Lennard-Jones potential as

well. The interaction strength, however, is much weaker than sulfur-gold interaction.

The interaction parameters are taken from literature [124, 130]. For interaction be-

tween Au and CH2 units, c = 0.0678 kcal/mol, o = 3.42 A. For interaction between

Au and CH 3 unit, c = 0.0826 kcal/mol, a = 3.42 A.

Interaction Parameters for Silver-Gold Binary Nanoparticles Superlattices

For silver-gold binary NPSLs simulation, we also use Morse potential to describe the

interaction between the silver atoms:

E = Do [e-2a(-ro) - 2e- (r-ro)] , r < rc (4.8)

The interaction parameters, taken from literature [114], are Do = 7.499 kcal/mol,

a = 1.3535 AV, and ro = 3.1300 A. The cross-interaction between gold and silver

atoms are computed using Lorentz-Berthelot mixing rules, which gives Do = 9.2275

kcal/mol, a 1.4683 A, ro = 3.0771 A.

For the interaction between the sulfur atoms of thiol ligands and silver nanoparti-

cles, previous studies showed that the interaction strength and equilibrium distance

of Ag-S bond are very close to those of Au-S bond [128, 129]. Therefore, we use the

interaction parameter of Au-S to describe Ag-S interaction, namely

E = 4r<r (4.9)

where c = 3.182 kcal/mol, -= 2.586 A.
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The van der Waals interaction between the alkyl group of thiol and silver is rela-

tively weak. Small variation of this set of parameters will not influence the simulation

results much. Hence, the parameters are taken to be same as those of thiol-gold in-

teraction.

4.2.2 Simulation Procedure for Stress-Driven Fusion of Nanopar-

ticle Superlattices

We first build individual ligand-passivated gold nanoparticles through MD simula-

tion. An icosahedral gold nanocrystal is located at the center of a simulation box,

surrounded by thiol ligands. The number of ligands is larger than the number cor-

responding to the maximum ligand coverage on nanocrystal surface. The simulation

box is large enough so that periodic images do not interact with each other. Ini-

tially, the temperature of the system is set to be 450 K in the constant particle

number, constant volume and constant temperature (NVT) ensemble. Due to the

strong attractive interactions between gold and sulfur atoms, the thiol ligands start

to self-assemble on the nanocrystal surface. After running simulation for -1 ns, the

temperature of the system is decreased to 300 K over a period of 1 ns. The system

is then allowed to equilibrate at 300 K for more than 3 ns. At the end of simulation,

ligands not absorbed on the nanocrystal surface will be removed and the configuration

will be used for building nanoparticle superlattice.

To build NPSLs, the ligand-passivated gold nanoparticles are initially put at the

lattice sites corresponding to fcc superlattice. Previous simulation of gold NPSLs

using different potential models by Landman et al suggested that the favorable su-

perlattice structure is controlled by the ratio of between ligand length and nanocrystal

core size [112]. Our own extensive (more than 20 ns) Parrinello-Rahman MD sim-

ulation [60, 61] with variable size and shape of simulation box confirm that fcc is

indeed the most stable superstructure for the nanoparticle superlattice considered in

this work. If the length of ligand is increased or the size of gold core is decreased,

we are able to observe fcc to body-centered cubic (bcc) or body-centered tetragonal

98



(bct) structural transitions [112].

The nanoparticles put at the lattice sites of fec superstructure are initially far

away from each other, with the distance between two nearest-neighbor nanoparticles

about two times the diameter of a nanoparticle. We then put the system under

constant temperature, constant stress (thermodynamic tension), and particle number

(TtN) ensemble. Nos6-Hoover type thermostat and barostat [63, 61, 64, 133] are

used to control temperature and stress, and the simulation box are allowed to change

in both size and shape [60, 61]. The damping coefficients for thermostat and barostat

are both 0.01 fs- 1 . Barostat damping coefficients equal to 0.001 fs- 1 has also been

tested but no noticeable difference in simulation results was found. Subsequently,

we set the target pressure of the TtN ensemble to zero at constant temperature of

300 K, and run simulation for 1 ns. At this stage, the x, y and z dimensions of the

simulation box are allowed to shrink or expand independently, but not the xy, yz and

xz dimensions. As the barometer couples to the size and shape of simulation box, the

nanoparticles would approach each other and the supercrystal becomes compact. In

the next step, we allow all dimensions of the simulation box to relax, and equilibrate

the superlattice at 300 K and zero stresses in the TtN ensemble for 2 ns. At the end

of this step, the energy and volume of the system would typically have converged.

To study stress-driven fusion of nanoparticle superlattices under different pressure,

we first build gold NPSLs with one of the low-index superlattice direction, namely

the [100], [110] or [111] direction, orienting along, for example, the z direction of

the orthorhombic simulation box in Cartesian coordinates. We then equilibrate the

system in the TtN ensemble with zero stress components according to the procedures

described above. Afterward, the xx, yy and zz stress components of the ensemble

(oxx, cYr and czz) are elevated to the target pressure P over a 1 ns simulation,

while oxy, ayz and oaz are fixed at zero. Subsequently, we equilibrate the system

under stress components OXX = 7YY= = P and oxy = -Y= = OXz = 0 for 2 ns,

followed by uniaxial deformation of the NPSLs. We deform the z dimension of the

simulation box (corresponding to one of the low-index superlattice direction) with a

fixed engineering strain rate of -1.0 x 10- 4 per ps. The length of simulation box
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dimension along the z direction will be one half of the original length after 5 ns

simulation. During deformation, barostat controls the stress components to simulate

the uniaxial deformation of the NPSLs in the presence of fluid-generated pressure

background. For example, if we deform along the z direction of the simulation box,

c-xx and o-y will be fixed at P, while axy, O-yz and o-xz are all controllkd to be zero.

The simulation procedures for equilibration and stress-driven fusion of binary

NPSLs are similar to single component gold NPSLs.

4.2.3 Computing the Elastic Constants of Nanoparticle Su-

perlattices

We use strain-fluctuation method [134, 135] to compute the elastic constants of

NPSLs. Direct calculation of elastic constants from stress-strain curves of NPSLs

is challenging at finite temperature, due to the presence of thermal fluctuation which

necessitates careful statistical averaging. The benefit of strain-fluctuation method is

that full elastic tensor can be obtained in one simulation. However, strain-fluctuation

method is known to converge very slowly. In our simulation, convergence of elas-

tic constants computed via strain fluctuation method typically takes more than 10

nanoseconds after the simulation cell is fully equilibrated. We have confirmed that

the elastic constants calculated using strain-fluctuation method is the same as those

obtained via direct deformation in constant particle, constant volume and constant

temperature (NVT) ensemble in the small deformation strain limit.

Elastic Constants in Voigt Notation

In linear elasticity, stress and strain are related by Hooke's law

0-1j = E Cijklekl, (4.10)
k,l

where -ij and Ek, denote stress and strain tensor respectively. Cijkl is the fourth-rank

elastic stiffness tensor. Symmetry relations between the tensor elements allow the
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use of Voigt notation to simplify Hooke's law. The indices mapping scheme in Voigt

notation is shown in Table 4.2:

Table 4.2: Indices Mapping in Voigt Notation

Regular 11 22 13 23 or 32 13 or 31 12 or 21
Index
Voigt Index 1 2 3 4 5 6

It then follows C1111 = C11 , C11 22 = C 12 , C11 23 = C14, C23 23  C44 , etc. The

elements of stress tensor can be written in Voigt notation as r1 = o-1, 072 2 = -2,

-33= 0-3, 0-23 = 0-32 = 0-4, 013 = 0-31 = C-5, 0-12 = 021= o. Elements of strain tensor

can be written as 611 = C1, 622 = 62, 633 = 63, 2623 2C32 = 64, 2c13 = 2C31 = 65,

2C12 = 221 =6- With this index transformation, Hooke's law becomes

0-i = Cijes, (4.11)

where Cij is now a 6x6 matrix. Cij, the elastic constant matrix, is what we aim to

compute from simulation.

We can invert Hooke's law as

Ei = Sij O-. (4.12)

S 3 , the compliance matrix, is the matrix inverse of Cij. In Voigt notation, Sij is

related to Sijkl (full compliance tensor) as:

Smn = 2
Sijkl if one and only one of m or n is equal to 4, 5, or 6;

Smn = 4Si2 kl if both m and n are equal to 4, 5, or 6;

Srnn = Sijkl otherwise.

The full compliance tensor Sijkl is what we can obtain from strain-fluctuation

method, which we will describe below. Once Sijkl is known, the compliance matrix

can be constructed via the above rules. The elastic constant matrix is then obtained

by matrix inversion of Sij.
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Fluctuation and Elastic Constants in Molecular Dynamics Simulation

The fundamental equation employed in strain-fluctuation method is [134, 135]

ijEki) - (ij)Kkl) - kT Sijkl, (4.13)7VI

where kB is the Boltzmann constant, V is the volume of the system; () denotes

ensemble average in constant temperature, constant stress (thermodynamic tension),

and constant particle number (TtN) ensemble [136]. In practical molecular dynamics

simulation, the size and shape of simulation box are allowed to change according to

the method of Parrinello and Rahman [60, 61]. Let h = {a, b, c} represents matrix

constructed from the supercell vectors a, b and c. The instantaneous strain tensor e

is related to the h matrix as [135]

= [(ho-1 )ThTh(ho) - 1] (4.14)

where ho is a reference matrix. In our case, ho is taken to be the time average of h after

the system has equilibrated. The superscript -1 and T stand for matrix inversion

and transposition, respectively. I represents identity matrix. Running sufficiently

long simulation after equilibration, one can compute (ij~kl), (Eij Ckl) and average

volume V. The compliance tensor Sijkl is then calculated according to Eq. 4.13. The

elastic constant matrix Cij can be obtained following the procedures described in the

previous section.

The bulk modulus K can be calculated from volume fluctuations in molecular

dynamics simulation. The fluctuation formula for bulk modulus is [137]

=(V )kBT
K = ~ B (4.15)

(V 2 ) - (V) 2

Simulation Procedures for Calculation of Elastic Constants

A gold NPSL system consisting of 2x2x2 fcc supercell is created by placing 32 gold

nanoparticles Au 56 1 (SCs) 13 6 at the initial lattice positions, totaling 57120 (united)
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atoms. The configurations of individual gold nanoparticles are fully equilibrated at

300 K. In total, the superlattice contains 57120 (united) atoms. The relaxation pro-

cedures for superlattice are the same as those for single-component gold nanoparticle

superlattices. Enlarging the system from a 2x2x2 supercell to a 3x3x3 supercell

does not change th calculated elastic constants beyond the convergence erlor limit.

For calculation of elastic constants under different hydrostatic pressure, we first

raise the pressure of the system in the TtN ensemble to a target pressure P over a

simulation period of 1 ns. The system is then equilibrated at P for 2 ns. Both the

size and shape of the simulation box are allowed to change. The a,,, e,, and 7ZZ

components of the stress tensor in the TtN ensemble are independently controlled

at the target pressure, while the o, o-yz and o-zz components are independently

controlled at zero. The simulation system is then fully equilibrated until the potential

energy and total volume of the system reach equilibrium values. This step takes less

than 1 ns when P is around ambient pressure but could take more than 10 ns when P

is larger than 100 MPa, as we find higher pressure leads to slower relaxation dynamics

of the ligands. Production run for the computation of elastic constants takes 15 ns

to 20 ns for the elastic constants to converge.

4.3 Results and Discussion

4.3.1 Entropic Viscoelasticity of Gold Nanoparticle Super-

lattices

Figure 4-la shows a typical molecular configuration of the gold NPSLs. We compute

the full elastic tensor of the NPSL at 300 K using strain fluctuation method [112,'

135, 134]. The computed three independent elastic constants are C1= 1.18 GPa,

C12 = 1.15 GPa and C44 = 68 MPa at P = 0, and the bulk modulus B 1.16 GPa.

Compared to simple atomic elastic solids [116], the ratio of C4 4 /B is smaller by an

order of magnitude, which however is reminiscent of complex fluids. The computed

elastic moduli are in close agreement with Landman and Luedtke's simulation of
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Figure 4-1: (a) Equilibrium configuration of octanethiol passivated gold NPSL at

300 K and zero pressure. The atoms depicted are gold (yellow), sulfur (blue), and

carbon (gray). The system, which is primarily used for studies involving only hydro-

static pressure, contains 108 gold nanoparticles. (b) Internal energy change (AU) per

nanoparticle during an isothermal compression-decompression cycle of gold NPSL at

300 K. Inset shows the change of volume per nanoparticle during the cycle.

gold NPSLs [112], although in their study, the gold nanocrystals are modeled as

undeformable rigid bodies. The correspondence can be accounted by the much higher

mechanical rigidity of metallic gold compared to the organic ligands, resulting in the

dominance of ligands in the mechanical response of the NPSLs at ambient pressure

[106, 107].

Indeed, we find the NPSLs exhibit polymer-like entropic viscoelasticity during

compressive deformation at low pressure. Figure 4-1b shows the change of internal en-

ergy per nanoparticle of the NPSLs during an isothermal compression-decompression

cycle at 300 K, for hydrostatic pressure P varied between zero to 1 GPa. The initial

configuration is fully equilibrated at zero external stress in the constant temperature,

constant stress, and particle number (TtN) ensemble[61, 134, 64, 63] for 20 ns, before

cycling pressure in the ensemble over a 10 ns simulation period. When the pressure is

lower than 0.5 GPa, the internal energy U of the system decreases while the pressure

is increased. This behavior is contrary to that of enthalpy-dominated hard materials

like simple metals. While mechanical work W is continuously done to the system, the
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system dumps more heat to the environment (thermostat), AQ = AU - AW < 0.

If the compression is performed quasi-statically (without dissipation) and reversibly,

TAS = AQ , then the system entropy must decrease rapidly. Analysis of the loading-

unloading cycle indicates that the heat exchange is mainly due to entropy reduction

(dissipation is small), and T AS >> JAU1 , which is the defining characteristics

of entropy-dominated (instead of enthalpy-dominated) elasticity. As shown in Fig-

ure 4-1b, after loading and unloading, the potential energy and volume of the system

almost return to the initial values. The remaining differences of potential energy and

enthalpy between the initial and final configurations can be eliminated after equili-

brating the system at zero pressure for another 1 ns. The small hysteresis during

the loading-unloading cycle indicates that most of the mechanical work performed

on the system is not dissipated, and JAQJ ~ T AS >> AU1. Such entropic me-

chanical response is also observed in uniaxial compression of the NPSLs, albeit for

uniaxial compression, viscoelasticity [104, 107] and energy dissipation become more

pronounced. The entropy reduction of the NPSLs during compressive deformation

comes from the decrease of the configurational entropy of the ligands, which results

from the significant reduction of free volume accessible to the ligands under compres-

sion (inset of Figure 4-1b). The simultaneous decrease of potential energy comes from

stronger van der Waals attraction between the ligands [112]. The total free energy

change, given by AF = AU-TAS = AQ+AW-TAS ~A W = - f PdV , remains

positive.

4.3.2 Structural Stability of Gold Nanoparticles Superlat-

tices under High Pressure

The structural stability of NPSLs under high pressure has been subjected to exper-

imental studies recently [109, 138]. However, whether purely hydrostatic pressure

alone can induce fusion of NPSLs is still under debate. To help answer this question,

we carry out hydrostatic deformation of gold NCSLs under high pressure. Starting

with a fully equilibrated gold NPSL with the same configuration as in Figure 4-la,
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we increase the normal stress components of the TtN ensemble (o-, oy, and Uz)

from zero to 20 GPa over a simulation period of 20 ns, while setting the shear stress

components of the ensemble (o,.,, o-z and o-YZ) to fluctuate around zero. This aims

to simulate the hydrostatic compression of the NPSL in a fluid environment. The

normal stresses of the ensemble are then kept at 20 GPa for another 5 ns. The simu-

lation box is allowed to change in both size and shape. Over the entire course of the

simulation, the system maintains fcc superstructure. No first-order phase transfor-

mation, nor fusion of nanoparticles, is observed. This is consistent with Podsiadlo et

al's recent high pressure experiment, where they observed "nearly perfect structural

stability" of PbS NPSL with fee superlattice for pressure up to 12.5 GPa [138]. Our

simulation also indicates that purely hydrostatic high pressures result in the jamming

of ligands in gold NPSLs, reducing the ligands surface diffusivity and preventing the

gold nanoparticles from sintering with each other.

4.3.3 Deviatoric Stress-Driven Fusion of Nanoparticles Su-

perlattices into Ordered Nanowire Arrays

While high hydrostatic pressure alone does not induce the fusion of gold NPSLs in our

simulation, we find that a moderate level of pressure, combined with a deviatoric stress

T of hundreds of MPa along an appropriate direction of the superlattice, transform

the gold NPSLs into ordered gold nanowire arrays, which is consistent with previous

experimental observation [109]. Uniaxial stresses along one of the three low-index

directions of the fee superlattice, namely the [100], [111] and [110] directions, are

considered. We build gold NPSLs with one of the low-index directions orienting along,

for example, the z edge of the orthorhombic simulation box in Cartesian coordinates.

The system, which includes around 2500 gold nanoparticles, is initially equilibrated

in the TtN ensemble at zero stress. The pressure P of the system is then raised

from zero to 1 GPa in the TtN ensemble over a period of 1 ns. This is followed by

equilibration at 1 GPa for 2 ns, at the end of which large fluctuations in energy and

volume have ceased. Subsequently, the z dimension of the simulation box is deformed
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with a fixed engineering strain rate of 1.0 x 10-4 per ps. Meanwhile, the a,, and

orY of the ensemble are controlled by barostat at 1 GPa, while oaY, rzz and -yz are

controlled to be zero. This aims to simulate the uniaxial deformation of the NPSLs

in the backdrop of a fluid-generated triaxial pressure. The deviatoric stress along

the z direction is defined as -T uzz - P The engineering strain of deformation is

calculated as E = (Lz - Lzo)/Lzo , where Lzo and Lz are the lengths of the simulation

box along the z direction at the beginning and during deformation, respectively.

For deformation along the [100] or [111] direction of the gold NPSLs, we could not

observe ordered fusion of nanoparticles in the superlattices. Compressive stress along

these two directions induces significant variation in the size and shape of simulation

box, indicating plasticity and/or phase transformation of the supercrystal, but the

ordered fusion of nanoparticles does not occur. We note that Wu et al did not observe

ordered fusion of [111] oriented gold NPSLs in their high pressure experiment [110]

either.

For uniaxial compression along the [110] direction, however, we observe stress-

driven fusion of gold nanoparticles into ordered gold nanowire array. The [110] direc-

tion is the nearest-neighbor direction of nanoparticles in fec superlattice. Therefore,

uniaxial compression along the [110] direction drives neighboring nanoparticles along

this direction closer to each other. Uniaxial compression overcomes the entropic and

steric repulsion of the ligands between the neighboring nanoparticles, and eventu-

ally leads to the sintering of nanocrystal cores along the [110] direction. Ordered

nanowire array forms as a result. This process is illustrated in Figure 4-2. Figure 4-

2a shows the configuration of the gold NPSLs before deformation. The schematic

beneath illustrates the idealized configuration of the nanoparticles in the (001) plane

of the superlattice. In Figure 4-2b, the engineering strain of the deformation reaches

-0.2. The associated schematic shows the conformation change and reorganization

of ligands on the nanocrystal surfaces, a picture supported by our detailed analy-

sis (Figure 4-6). When strain reaches -0.4 (Figure 4-2c) neighboring nanoparticles

have overcome the passivation of ligands and attached to each other, forming ligand-

passivated gold nanowire array.
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(a-c): MD simulation snapshots and schematics showing

NPSL at different deformation stages. (a) Configuration

at 1 GPa. The superlattice directions are labeled. (b)

Configuration at engineering strain e equal to -0.2. After deformation, neighboring

nanoparticles become closer along the [110] direction. The process is accompanied

by ligand conformation change and relocation. (c) Configuration at E = -0.4. Most

of the gold nanoparticles have fused together along the [110] direction and ordered

nanowires are formed. (d) Lattice model of nanoparticle fusion along the [110] di-

rection of fcc superlattice. Neighboring nanoparticles fuse along the dashed orange

lines in the figure. (e) Evolution of SAXS patterns computed from simulation data.

The incident beam passes along the [110] direction. Diffraction peaks due to the fcc

superlattice (the bottom curve) and the nanowire array arranged in triangular lattice

(the top curve) are labeled. The X-ray wavelength used for diffraction calculation is

the same as in Wu et al's experiments [109]. (f) Deviatoric stress as a function of

compression fraction (absolute value of strain).

In Figure 4-2d, we illustrate the fusion of NPSL in a crystallographic model. The

fused nanoparticles form parallel nanowires along the [110] direction. Under com-

pression, these wires pack closely into triangular lattice, with P6mm symmetry. The

structural evolution is also captured by computing the small-angle X-ray scattering
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(SAXS) patterns during stress-driven fusion, which is shown in Figure 4-2e. The

evolution of the SAXS patterns agrees with Wu et al's experimental data[109]. The

critical deviatoric stress Tfusion fusion needed to drive fusion at P = 1 GPa pressure, as

determined from the deviatoric stress versus engineering strain curve in Figure 4-2f,

is around 330 MPa&'

In addition to the orientation of superlattices, the existence of a moderate pressure

background is found to be crucial for ordered fusion of NPSLs. We carry out uniaxial

deformation of [100], [111] and [110] oriented superlattices at P = 0. In all three cases,

ordered fusion could not be observed. This is because with C4 4 (P = 0) = 68 MPa, T

of hundreds of MPa would exceed the ideal shear strength [11] and thus the plastic

yield strength Ty (P = 0) of the supercrystal, which will trigger supercrystal plasticity

before fusion can happen. A moderate pressure P > 0 is needed so Ty (P > 0) is

enhanced, delaying the competing supercrystal plasticity processes.

This idea motivates us to map out the pressure-dependent fusion behavior of

[110] oriented gold NPSLs. We simulate the uniaxial deformation of [110] oriented

gold NPSLs under different pressures, and look at the configuration of the system at

the end of deformation. The system, which is initially equilibrated at a given pressure

P, is deformed along the z dimension of the simulation box corresponding the [110]

direction, during which the a,, and uc of the ensemble are fixed at P. The shear

stress components of the ensemble, auy, axz and ayZ, are controlled by barostat to

be zero. When P is small, uniaxial compression leads to twinning-like plastic defor-

mation of the superlattice along the [110] direction when the strain reaches around

E = -0.2. This triggers mechanical yielding of the system. Further deformation leads

to partial structural disordering of the superlattice. When P is increased to around

100 MPa, partial fusion of nanoparticles along the [110] direction starts to emerge.

If P is further increased, more and more nanoparticles are fused together along the

[110] direction before the system mechanically yields. Finally, when P reaches 350

MPa, all the nanoparticles are able to fuse together along the [110] direction. This

transition is shown in the simulation snapshots of Figure 4-3a-c. Such simulation over

a wide range of pressure P enables us to plot a non-equilibrium stress-driven "pro-
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Figure 4-3: (a-c): Configurations of gold NPSLs at strain equal to E = -0.4 after

uniaxial deformation along the [110] direction in the presence of different hydrostatic

pressure. (a), (b) and (c) correspond to pressure equal to 100 MPa, 300 MPa, and

500 MPa respectively. Gold nanoparticles are partially fused together along the [110]

direction in (a) and (b), while in (c), nanowire array is formed. (d) Non-equilibrium

stress-driven fusion processing diagram of the simulated [110] oriented gold NPSL.

The horizontal axis is the pressure applied on the system, while the vertical axis is

the maximum deviatoric stress applied along the [110] direction during deformation.

The green line represents the maximum deviatoric stress before fusion or mechanical

yielding of NPSL at different pressure. By observing the configurations of the systems

at the end of deformation, different regions in the stress space are determined and

labeled in the diagram. Nanowire array are formed when both applied pressure and

deviatoric stress exceed certain critical values. (e) Computed elastic moduli C1 1 , C12

and C 44 of the NPSL as a function of pressure

cessing diagram" of the [110] oriented gold NPSLs, which is presented in Figure 4-3d.

The processing diagram indicates the existence of three regions in stress space, cor-

responding to viscoelasticiy, partial fusion and formation of ordered nanowire arrays,

respectively. Formation of nanowire arrays only happens when both the pressure P

and the deviatoric stress T a,,, - P exceed certain critical values. The critical fusion

pressure is found to be Puj0 or, ~~ 350 MPa, and the critical fusion deviatoric stress is
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found to be Tfusion ~ 170 MPa.

We have also studied stress driven fusion of gold NPSLs consisting of larger-sized

gold nanoparticles, and found the same order of magnitude of critical pressure and

deviatoric stress values. For gold NPSLs consisting of dodecanethiol (S(CH 2)1 1 CH3 )

passivated gold nanocrystals wiih core diameter -4 nm in fcc type superstructure, the

critical pressure Psi.1 and deviatoric stress Tfusion needed for formation of nanowire

arrays are both found to be around 200 MPa.

While stress-driven fusion of single-component gold NPSLs have been demon-

strated in experiments [109, 110], stress-driven fusion of binary NPSLs [103] has not

been shown experimentally. We hence carried out MD simulation of a model binary

NPSL, Ag-Au binary NPSL in sodium-chloride (NaCl) type superstructure. Binary

NPSLs with this type of supercrystal structure have been created experimentally

[103, 139]. Previous studies demonstrated that the structure of binary NPSLs de-

pends on the size ratio of small and large nanoparticles, y Rsmani/Rarge [140, 141].

The icosahedron-shape gold nanocrystal in our Ag-Au binary NPSL has diameter

around 2 nm, containing 309 gold atoms. The silver nanocrystal has diameter around

5 nm and contains 3871 silver atoms. This gives - ~ 0.4, which is very close to

the most stable value for NaCl-type structure[139]. The gold and silver nanocrystals

are both fully passivated by octanethiol ligands. The simulation system, shown in

Figure 4-4a, is a 4 x 4 x 4 supercell, containing 256 silver nanoparticles and 256 gold

nanoparticles. The simulation set up and procedures for stress-driven fusion of the

binary NPSL are similar to those for gold NPSLs discussed earlier.

Figure 4-4a-d show that, if we deform the binary NPSL along the [100] direction of

the superlattice under P = 0, no ordered fusion of nanoparticles occurs. The system

mechanically yields at around Ty = 90 MPa before the gold and silver nanocrystal

cores were able to jam together to form contact. Accompanied with this yielding,

the smaller-sized gold nanoparticles are displaced from their lattice sites along the

[100] direction, which is the nearest-neighbor direction in NaCl-type superlattice.

In contrast, when the binary NPSL is deformed in the presence of P = 500 MPa,

the system is superstructurally stiffer and the nanoparticles remain jammed in their
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Figure 4-4: Stress-driven fusion of Ag-Au binary NPSL in NaCi-type superstructure.

(a)-(c): MD simulation snapshots showing the structural evolution of the system
deformed at zero external pressure along the [1001 direction. (a) The configuration
of the system before uniaxial deformation. The silver nanocrystals are colored in

silver and the gold nanocrystals are colored in gold. The black region between the

nanocrystals contains thiol molecules adsorbed on the nanocrystal surfaces. (b) and

(c): Configurations at strain equal to -0.15 and -0.3, respectively. (d) Stress-strain
curve associated with the deformation at zero external pressure. The yield stress is

around 90 MPa. (e)-(g): Structural evolution of the binary NPSL deformed along the

[1001 direction in the presence of 500 MPa pressure. Multi-junction nanowire array
consists of periodic domains of gold and silver nanocrystals are formed at the end

of deformation. (h) Stress-strain curve associated with the deformation at 500 MPa

pressure. The critical deviatoric stress to induce fusion is around 280 MPa.

lattice sites during deformation. This pressure-induced increase in yield strength

TY(P > 0) > TY(P = 0), so-called Mohr-Coulomb [142] or non-Schmid yield shown

in Figure 4-4d-f, allows the uniaxial stress to rise high enough to drive the fusion of

silver and gold nanoparticles along the [100] direction, forming Ag-Au multi-junction

nanowires arrays.

4.3.4 Mechanistic Understanding of Stress-Driven Fusion

Our simulations of gold NPSLs and Ag-Au binary NPSLs reveal that a few conditions

need to be met simultaneously for ordered fusion of nanoparticles in these NPSLs:

(a) the presence of a pressure background of more than several hundred MPa. The
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presence of a moderately high pressure P on the supercrystal, P > 0.2B, increases its

uniaxial yield strength Ty significantly (Figure 4-3d). The computed finite-pressure

elastic constants C11, C12 and C44 of the gold NPSLs also increase significantly (Fig-

ure 4-3e). When the mechanical strength of the system is increased such that the

yielding deviatoric stress becomes larger than the critical fusion deviatoric stress,

Ty(P) > Tfusion(P), ordered fusion of NPSL can happen. (b) The applied deviatoric

stress needs to be larger than the critical fusion deviatoric stress, T > Tfsion. It can be

seen from Figure 4-3d that if the deviatoric stress has not reached the critical value,

the system is still in the viscoelasticity regime. Physically, neighboring nanoparti-

cles have not come close enough to enable the contact formation of the nanocrystal

cores. (c) Right alignment of the deviatoric stress with respect to the crystallographic

direction of the superlattice. Our simulation indicates that proper alignment of de-

viatoric stress ensures ordered nanoparticle fusion. Formation of nanowire array is

found to occur when the deviatoric stress aligns with the nearest-neighbor direction

of nanoparticles in NPSLs.

If the fusion criterion is Ty(P) > r-f1 iflon(P), what then controls Tf1 1&,0 ? At molec-

ular level, the mechanism of nanoparticle fusion is deviatoric stress induced ligand

displacement on nanocrystal surface, which depassivates the gold nanocrystals lo-

cally and allows them to form direct metal-metal contact (grain boundary) and fuse

together. The ligands between neighboring nanocrystals along the deviatoric stress

direction sustain higher local pressure than ligands elsewhere on the surface, creating

chemical potential gradient for ligand surface diffusion. It has been shown recently

that surface diffusion on sub-10 nm metallic nanoparticles is so active at room tem-

perature that it can support Coble creep [143, 144]. The large surface curvature of

nanocrystal facilitates ligand surface diffusion, as the free volume per ligand is higher

on surfaces with higher curvature [145]. If the nanoparticles are continuously pushed

toward each other, ligands will eventually leave the contact region (ligand source) to

regions of less local pressure (ligand sink), followed by the fusion of gold nanocrys-

tal. This ligand source-to-ligand sink process by surface diffusion is shown in the

simulation snapshots of Figure 4-5a. The possibility of ligands being displaced by
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Figure 4-5: (a) Simulation snapshots of ligands being displaced from the contact

region between two nanoparticles during stress-driven fusion. Atoms belong to the

same ligand molecule are colored the same. (b) Surface configuration of the gold

nanocrystal in our model and calculated potential energy surface for moving a ligand

on the surface. In the left panel of (b), the top surface layer of the nanocrystal is

colored in orange, which is shown together with the two layers beneath (green and

blue). A thiol molecule is also depicted in the figure. The dashed box represents the

region for potential energy surface calculation, the result of which is shown in the

right panel of (b). (c) Calculated potential of mean force as a function of distance

between two nanoparticles. The potential of mean force reaches maximum shortly

before the fusion of two nanoparticles.

mechanical force on gold surfaces had been unequivocally demonstrated by Liu et

al [146], where they found the tip of AFM can displace self-assembled thiol layers

on gold surfaces above a critical contact pressure around 1 GPa.[147] Due to the

aforementioned curvature effects, the critical contact pressure for displacing ligands

on nanocrystal surface should be lower, which in our study was found to be several

hundred MPa. The calculated potential energy barrier Q for displacing of an single

ligand on gold (111) surface is around 50 meV in our simulation (Figure 4-5b), a

value that agrees with first-principles calculated thiol diffusion barrier on gold (111)

surface [125]. This low energy barrier at P = 0 means such surface migration can

indeed happen at room temperature [127].

The critical deviatoric stress for fusion of NPSL can be estimated by calculating

the free energy barrier of fusion between two individual nanoparticles. The Poten-

tial of Mean Force (PMF) between two nanoparticles can be calculated via steered
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molecular dynamics (SMD)[113]. Based on Jarzynski's equality [148], PMF reflects

the free energy difference between the initial and final states during a non-equilibrium

process. During our SMD calculation of PMF, two individual gold nanoparticles, ini-

tially separated over a distance of 150 A, are coupled together by a fictitious spring

and pulled toward each other with a constant pulling velocity equal to 0.1 A per

picosecond. This pulling speed, when translated into engineering strain rate of de-

formation, is close to the strain rate we used for stress-driven fusion simulation. The

nanoparticles are allowed to rotate freely about their centers of mass during the SMD

pulling process. The final PMF is the average of six independent trajectories along

the same pulling path. Figure 4-5c shows the calculated PMF. The PMF has a well-

defined potential minimum where entropic repulsion between the ligands balances the

van der Waals enthalpic attraction. The PMF also has a steep repulsive region, the

maximum of which corresponds to the "fusion distance" [113] between two nanopar-

ticles. Two nanoparticles will fuse together when their distance is smaller than the

fusion distance. From the computed PMF, the fusion free energy barrier between two

nanoparticles is determined to be AF = 3.5 eV. This number can be approximated

as the free energy barrier of fusion per nanoparticle in the gold NPSL. We can then

estimate the minimum deviatoric stress based on the thermodynamic principle that

work done on the system must be larger than the free energy change. Assuming lin-

ear stress-strain relation, the net work done on the NPSL per particle before fusion

is W = TfusionecQ/ 2 , where E, is the critical fusion strain, and Q is the volume per

nanoparticle in the NPSL. We then reach the following inequality:

1
-TfusionEcQ > AF (4.16)

2

Using the numbers from simulation, e, ~ 0.2 and Q ~ 4.5 x 04 A 3 (Figure 4-1b),

we calculate the critical deviatoric stress Tfusion > 120 MPa. This number is close to

the critical deviatoric stress obtained from the fusion processing diagram Figure 4-

3d (170 MPa). The success of this "independent particle" model suggests that at

critical fusion compression Tfusion, many-body effects on the fusion of nanoparticle in

115



the NPSL are still relatively minor.

We would like to point out that, while we conclude from our simulations that

stress-driven fusion of gold NPSLs require pressure and deviatoric stress of order

several hundred MPa, these critical values are obtained from simulations with very

high strain rate of deformation and very small simulation supercell, thereby may not

necessarily reflect the minimum critical stress values to achieve fusion in laboratory

experiments with much lower strain rate. Due to the time-scale limit of MD sim-

ulation, strain rate in MD simulation are typically very high, ranging from 10-1 to

105 per picosecond. The strain rate of deformation in our simulation (1.0 x 10- 4 per

picosecond) is a common value for MD simulation but still many orders of magnitude

higher than common experimental strain rate. We have carried out preliminary stud-

ies on the effects of strain rate on the critical fusion deviatoric stress, and found lower

stress value when strain rate is reduced. This is not surprising considering the NPSLs

are viscoelastic. Therefore, the experimental critical fusion pressure and deviatoric

stresses could be lower than the values obtained by our simulation, if the interatomic

potentials used in our simulation are sufficiently accurate. We also emphasize that,

the critical fusion deviatoric stress is not the stress to realize the sintering of bare,

unpassivated gold nanocrystals. Instead, the majority of the load in stress-driven fu-

sion was the flow stress to deform and replace the passivating ligands absorbed on the

nanocrystal surfaces. Once the ligands are displaced, sintering of gold nanocrystals

can happen with much lower applied load. Indeed, Lu et al demonstrated that cold

welding of gold nanowires can occur with contact pressure less than a few MPa at

room temperature [149].

A potentially important implication of our simulation is that stress-driven fusion

of NPSLs may only require pressure and deviatoric stress of order several hundred

MPa or even lower, in which case special pressure-generating devices such as diamond

anvil cell may not be necessary. In Wu et al's high pressure experiment[109], forma-

tion of gold nanowire arrays from gold NPSLs occurs at pressure above 10 GPa. This

is because the deviatoric stress in their experiment is generated only when the Pres-

sure Transmitting Medium (PTMV), namely silicone oil, is solidified in that range of
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pressure. Yet solidification of PTM is not the only way to generate deviatoric stress.

One can directly compress a NPSL sample immersed in a PTM to induce deviatoric

stress on top of a compressive pressure. Indeed, hydraulic compression machines,

capable of generating axial deviatoric stress while maintaining radial pressure up to

400 MPa, had been used to study the phase transformation of zirconia [150]. Such

instruments are clearly more suitable than diamond anvil cell should stress-driven

fusion of NPSLs become a viable route for large-scale synthesis of nanowire arrays.

4.3.5 Ligand Conformation Change and Displacement Dur-

ing Stress-Driven Fusion

We have studied the conformation change and displacement of ligands on nanocrystal

surface during stress-driven fusion along the [110] direction of gold NPSL at 1 GPa

pressure. To measure the ligand conformation change, we calculate the angle between

ligand end-to-end vector and the unit vector along the deformation direction, as

schematically shown in Figure 4-6(a). The end-to-end vector for the i-th ligand is

defined as hi = ri,CH3 - 'i,s, where ri,CH, and ri,s denote the coordinates of the outmost

CH3 structural unit and the sulfur atom, respectively. Defining i to be the unit

vector along the deformation direction, the angle between hi and S is then calculated

as 0 = arccos (i/hi - )i. The change of 0' during deformation would reflect the

rotation of the ligand with respect to the deformation direction. We calculate the

angle for all ligands in the system at strain zero and strain equal to -0.2, and plot their

distributions in Figure 4-6(b). It can be seen from the figure that the distribution,

centered at 90 degree, becomes narrower when strain goes from zero to -0.2. This

indicates that the ligands are being pushed away from the deformation direction.

In Figure 4-6(c), we illustrate the measure of ligand displacement on nanocrystal

surface. di is defined to be the vector going from the center of a nanoparticle, on

which the i-th ligands is adsorbed, to the sulfur atom of that ligand. The location of

sulfur atom is considered to be the binding site of the ligand. The projection of di

along the deformation direction i, written as df, can be calculated as d = d - . dH

117



a b
Oj 0.1

- 0.1 i strain = 0.0
hi | strain -0.21

0.08

U-

0.06

sa 0.04

0.02

00 20 40 60 80 100 120 140 160 180
Polar angle (degree)

C d
0.05

=strain = 0.2

001

I=strain = -0.0.04-

di -2 Z di 0.03-

0.02-

0.01

15 -10 -5 0 5 10 15.
Distance (Angstrom)

Figure 4-6: Conformation change and displacement of ligands on nanocrystal surface

during stress-driven fusion of gold NPSL along the [110] direction of fcc superlattice

at 1 GPa pressure. (a) Schematic of a ligand adsorbed on the surface of a gold

nanocrystal. z denotes the unit vector along the direction of uniaxial deformation.

hi is the end-to-end vector for the i-th ligand; 0" denotes the angle between i and

hi. Note the actual shape of the gold nanocrystals is icosahedral, not spherical as

we schematically draw here. (b) The distribution of angle 0 for all ligands at strain

E = 0 and E = -0.2. The red region belongs only to E = 0, while the blue region

belongs only to e = -0.2. The purple region is the overlap between two distributions.

(c) Illustration of quantities defined for studying ligand displacement on nanocrystal

surface. di is the vector from the center of a nanoparticle to the adsorption site of

a ligand adsorbed on it. The dot product between di and the unit vector i, written

as id .-, is a measure of the location of binding site with respect to the center

of nanocrystal along the deformation direction. (d) Distributions of dli calculated for

all ligands at E = 0 and E = -0.2.

gives information about the adsorption site of a ligand with respect to the center of

nanocrystal along the deformation direction. The distributions of d1l for all ligands

at strain zero and strain equal to -0.2 are shown in Figure 4-6(d). We can see that

from strain zero to strain equal to -0.2, fewer ligands have adsorption sites near the
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"south and north poles" of nanocrystals, where ligands are subjected to deformation

directly. Simultaneously, more ligands adopt adsorption sites near the "equators" of

nanocrystals. This clearly indicates that ligands are being displaced from the contact

regions between two nanoparticles along the deformation direction.

4.4 Summary and Conclusion

To summarize, we have studied the mechanical response and stress-driven fusion

of gold NPSLs and Ag-Au binary NPSLs. We study the conditions under which

ordered nanowire array can be formed via stress-driven fusion, and present molecular-

level understanding of the fusion process. First, deviatoric (uniaxial) stress Tfusion of

hundreds of MPa is needed to set up ligand source ligand sink mass action on the

surface of the same nanoparticle, with sufficient chemical potential gradient to drive

surface diffusion, which is certainly facile enough at room temperature (Q ~ 50

meV) if the pressure is not exceedingly high. Second, moderate hydrostatic (triaxial)

pressure P - 0.2B(P = 0) is necessary to elevate the supercrystal yield strength

Ty significantly. This is because the applied deviatoric stress can also be relaxed by

superstructural plasticity (dislocation, twinning, phase transformation, etc.) of the

supercrystal, and if these processes happen before fusion, it will be difficult to have

ordered fusion. These conditions are summarized in a single equation y(P) > T >

Tfusion(P), and we have given numerical estimates of both Ty(P) and Tf1usion(P) in this

paper, ry(P) by Mohr-Coulomb type of calculation, and Tfusion(P) by molecular level

energy estimates, and direct calculations. Based on these understandings we have

constructed a room-temperature processing diagram (Figure 4-3d) that is shown to

be effective for both Au and Ag-Au NPSLs. Our study suggests that stress-driven

fusion could potentially be employed to create novel nanostructures, such as multi-

junction nanowire arrays, in a scalable and cost-effective way. This is an exciting

opportunity considering the structural richness and compositional tunability that

can be achieved in binary and multi-component NPSLs [103, 151]. Because both

T and P required are rather low (several hundred MPa), it should then be entirely
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possible that stress-driven fusion of binary NPSLs could be used for industrial-scale

production of multi-junction nanowire arrays, for use in bulk-scale applications such

as photovoltaics [152, 153] and catalysis.
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Chapter 5

Deformation-Driven Diffusion and

Plastic Flow in Two-Dimensional

Amorphous Granular Pillars

5.1 Introduction

Disordered materials such as metallic glasses can exhibit highly localized deformation

and shear band formation[154, 155]. Most experiments on these systems, however,

use loading geometries in which there are free boundaries and inhomogeneous strains,

while simulations have typically focused on systems with periodic boundary conditions

under homogeneously-applied shear strain. To understand at a microscopic level the

effects of loading geometry on the macroscopic mechanical response, it is useful to

study a disordered system in which individual particles can be imaged and tracked

as they tearrange under an applied load. In this chapter we introduce a granular

packing-a packing of discrete macroscopic particles for which thermal agitation plays

a negligible role [156, 157]-in a pillar geometry commonly used for mechanical testing

of metallic glasses. We combine experiment and simulation to study the response

of these two-dimensional (2D) pillars to athermal, quasistatic, uniaxial compression

(the experiments were carried out by our experimental collaborators Jennifer Rieser
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and Douglas Durian at the University of Pennsylvania).

One question of interest is how the mechanical response of the pillar depends on

pillbr size. We find that the pillar shape evolves under load in a self-similar fashion,

so that the shape of the pillar at a given strain is independent of system size. We

also find that as the pillars deform, the strain rate localizes into transient lines of slip,

whose thickness of a few particle diameters is independent of system size. Thus, the

system is self-similar in shape at the macroscopic scale, but, surprisingly, its yielding

is not self-similar at the microscopic scale.

A second question concerns the random motions of particles as they rearrange un-

der inhomogeneous loading conditions. Because particles jostle each other, they dis-

play diffusive behavior in homogeneously sheared systems that are devoid of random

thermal fluctuations [158]. Recently, crystal nucleation and growth were observed in

situ in mechanically fatigued metallic glasses at low temperature [159]. Crystalliza-

tion is typically thought to require diffusion. Therefore, it was suggested that the

"shear transformation zones" (STZs) [155] should be generalized to "shear diffusion

transformation zones" (SDTZs) [159], to reflect the contributions of random motions

driven by loading, even under inhomogeneous conditions. Our amorphous granular

pillar is an athermal system as far as the macroscopic particles are concerned (effec-

tive vibrational temperature ~ 0), so our experiment and simulations can examine

how inhomogeneous loading affects particle motion. We find that the idea of load-

induced diffusion can be generalized to inhomogeneous loading by replacing time with

the cumulative deviatoric strain, and the mean-squared displacement with the mean-

squared displacement of a particle relative to the best-fit affine displacement of its

neighborhood (i.e. the mean-squared non-affine displacement [42]). With this gener-

alization, we observe that the mean-squared non-affine particle displacement crosses

over from ballistic to diffusive behavior as a function of the cumulative deviatoric

strain.
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5.2 Methods

The compacted 2D amorphous granular pillars in our study consist of 50-50 mixture

of bidisperse cylindrical particles (grains) standing upright on a substrate. A top-view

of the schematic setup is shown ip Fig. 5-1. The pillars have aspect ratio HO/Wo ~ 2,

where HO and WO are the original height and width of the pillars respectively. In our

experiment, the cylindrical granular particles are made of acetal plastic. The diameter

of the large grains in the pillars, denoted by D, is 1/4 inch (0.635 cm), while for the

small grains the diameter d has the value of 3/16 inch (0.47625 cm). The ratio of

diameter between large and small grains is therefore D/d = 4/3. Both types of grains

are 3/4 inch (1.905 cm) tall. The masses for the large and small grains are 0.80 gram

and 0.45 gram respectively. The pillars are confined between a pair of parallel bars.

The bottom bar is static while the top bar deforms the pillars uniaxially with a slow,

constant speed v, = 1/300 inch per second (0.0084667 cm/sec). The force sensors

connected to the bars measure the forces on the top and the bottom bars, and the

trajectory of each particle in a pillar is tracked by a high-speed camera mounted

above the pillar. The basic parameters in our simulation, including the size and mass

of the grains, as well as the velocity of the bars, are the same as in the experiment.

5.2.1 Packing Generation Protocol

Properly prepared initial configurations are crucial for the study of the mechanical

properties of amorphous solids. In our experiment, 50-50 random mixture of bidis-

perse grains are compacted to form a pillar with aspect ratio 2 to 1. To facilitate

direct comparison between experiment and simulation, for small-sized pillars (num-

ber of grains in the pillar N = 1000), the simulation initial conditions are taken from

the experimental data, which are then relaxed in simulation to avoid particle over-

lapping resulted from measurement error. For large-sized pillars, which can only be

studied by simulation, we generate compacted, amorphous granular pillars through

computer simulation, using the protocol described below. The particle area density

in the simulation-generated pillar is controlled to be at the onset of jamming tran-
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Figure 5-1: Top-view of the experimental/simulation setup. A two-dimensional pil-

lar of granular particles on a frictional substrate are deformed quasistatically and

uniaxially by a rigid bar from one side. The direction of gravity is perpendicular to

the substrate. The compacted, disordered granular packing consists of 50-50 mixture

of bidisperse cylindrical-shape grains. The ratio of radius between large and small

grains is 4:3. The aspect ratio of the pillar, defined as the initial height of the pillar

(Ho) divided by the initial width (Wo), is 2:1. The pillar is confined between two
rigid bars placed at the top and bottom end of the pillar respectively. The top bar

deforms the pillar with a constant speed v, while the bottom bar is kept static.

sition [1601. To generate the initial conditions, we assign the following truncated

Lennard-Jones potential with purely repulsive interaction to the large (L) and small

(S) grains

UE [(u7-oO/r)12 - 2 (07"/r)6]

-- C

for r < a,,,,3,

for r > or,

where the subscripts a, # denote L or S. The zero-force cut-off distances o-"3 are chosen

to be the sum of radii of two particles in contact, namely ULL = D, -LS = 7D/8, and

ass = 3D/4, where D is the diameter of a large grain. We note that this potential

will only be used to generate the initial conditions of the granular packings, and is

different from the particle interaction model we describe later for the deformation of

the granular pillars.
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To create a disordered granular packing with 50-50 mixture of N total number

of large and small grains, a rectangular simulation box with dimensions A x 2A is

initially created, where the width of the box A is chosen such that the initial particle

area density, p = N/2A2 , is slightly above the particle overlapping threshold. We

then randomly assign the positions of the iparticle within the simulation box, and

subsequently use conjugate-gradient (CG) method to minimize the total potential

energy of the system. Periodic boundary conditions are applied during this process.

The particle positions are adjusted iteratively until the relative change of energy per

particle between two successive CG steps is smaller than 10-12. When this stage is

reached, the pressure of the system is calculated using the following virial formula

1~ dU

P = E r , (5.2)2A i dri-

where A is the area of the simulation box, rij is the distance between particles i and

j. If the pressure is greater than zero, both dimensions of the simulation box will

be enlarged by a fraction of 10-5, and the particles in the box will be mapped to

the corresponding new positions in the enlarged box via affine transformation. CG

energy minimization will then be carried out on the new configuration. This iterative

process stops when the calculated pressure of the system at the end of a CG run

becomes smaller than 10- 0 /D 2 . The final configuration will be taken as the initial

conditions of close-packed 2D amorphous granular assembly. Vacuum space is then

added on the lateral sides of simulation box to create a pillar with 2:1 aspect ratio.

Calculation of radial distribution functions for different-sized pillars indicates that the

structure of the amorphous assemblies generated following the above procedures does

not show noticeable size dependence. Comparison of the radial distribution functions

computed for the experimental and simulation-generated initial conditions is shown

in Fig. 5-2.
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Figure 5-2: Comparison of the radial distribution functions g(r) for experiment-

derived and simulation-generated initial conditions computed using (a) small grains

as the central particles and (b) larger grains as the central particles are shown respec-

tively. The distance r is scaled by the diameter D of the large particles.

5.2.2 Simulation Methodology

We use the method of MD to simulate the quasistatic deformation of the 2D granular

pillars. The simulation force model includes three components: the grain-grain inter-

action, the grain-bar interaction and the grain-substrate interaction. Each of these

forces will be described in the following.

Grain-Grain Interaction

As illustrated in Fig. 5-3a, the interaction between two grains includes normal and

tangential contact force, which are denoted by F, and Ft respectively. Two grains
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Figure 5-3: (a) Illustrations of grain-grain interaction in the granular pillar. The

contact force between two grains consists of normal repulsive contact force F, and

tangential shear contact force Ft. (b) Illustration of grain-substrate interaction. If

the velocity of a grain i is non-zero, or the vector sum of the forces on the grain due

to other grains and the bars is non-zero, the substrate will exert a frictional force f on

the grain, the maximum value of which is migpi, where mi is the mass of the particle,

g is the gravity acceleration constant and [t denotes the friction coefficient between

the grain and the substrate. Likewise, if the angular velocity of the grain is non-zero

or the torque on the grain due to other interactions is non-zero, the substrate will

induce a frictional torque whose maximum magnitude is IT,,il =migp Ri, where Ri

is the radius of the particle.

experience a repulsive normal contact force if the distance between the particle centers

is smaller than the sum of their radii. For two smooth, elastic cylindrical particles

with parallel axes, the normal contact force as determined by the Hertzian theory of

contact mechanics is proportional to the indentation depth between the two particles

[161]. For our granular particles, denote by ri and rj the positions of particles i and

j, and denote by rij = ri - rj the distance vector between the two particles, the

indentation depth 6 ij is calculated as

6ij = Ri + Rj - rij, (5.3)

where rij = rij . Ri and Rj are the particle radius of i and j respectively. 6 ij will be

zero if the two particles are not in contact. The normal contact force acting on the
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particle i by particle j is then given by

Fn, = knogg nij, (5.4)

where nij = rij/rij, and kn is the normal contact stiffness. T e corresponding normal

contact force on particle j is given by Newton's third law, namely, Fj, = --F, .

In Hertzian theory of contact mechanics [161], the constant k, for two cylinders in

contact can be calculated as
7

k= -E*l, (5.5)
4

where I is the height of the cylinders. E* is the normalized contact elastic modulus,

which is computed from the respective elastic modulus of the two cylinders, El and

E2, and their Poisson's ratios, vi and v2 :

1 1 - V 2 5.2
-*- = 1. + E2 . (5.6)

The existence of a friction force between two particles in contact is a characteristic

feature of granular materials. Appropriate modeling of contact friction is crucial to

the study of granular dynamics. The tangential frictional force between two grains

in contact can be very complicated in reality [162]. We adopt the history-dependent

shear contact model initially developed by Cundall and Strack [163]. This well-tested

model has been used by many others to model the dynamics of granular assemblies

[162, 164, 165, 166, 167, 168, 169, 170, 171, 172]. The essence of this model is to keep

track of the elastic shear displacement of two particles throughout the lifetime of their

contact, and applying the Coulomb elastic yield criterion when the displacement

reaches a critical value. Our implementation of the Cundall-Strack model follows

Silbert et al. [162]. Specifically, the tangential contact force between particle i and j
is calculated as:

Ftij = -ktut, (5.7)

where the shear displacement utj is obtained by integrating the tangential relative

velocities of the two particles during the lifetime of their contact [162]. Here kt is
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the tangential contact elastic modulus. It is taken to be proportional to the normal

contact stiffness k,. Following Silbert et al., we choose kt = 2k Previous studies

showed that the dynamics of system is relatively insensitive to this parameter [162],

which is confirmed by our own simulation.

To model the elastic yield of Lhear contact, the magnitude of ut3 is truncated to

satisfy the Coulomb yield criterion Ft l < IgFan , where p-g is the friction coefficient

between the grains.

The tangential contact force will induce torques on the two grains in contact, as

given by
1

T 1 ~ rij x F . (5.8)

Here Tij is the torque exerted by grain j on grain i due to the tangential contact

force Ft j.

Grain-Bar Interaction

The grain-bar interaction is modeled in a similar way to the grain-grain interaction.

The bar is essentially treated as a rigid grain with infinitely large radius. When a

grain comes in contact with a bar, the grain can experience normal and shear contact

force induced by the bar, and the shear contact force is also calculated by tracking the

elastic shear displacement between the grain and the bar. The motion of the moving

bar is not affected by the grains. The static bar at the bottom side of the pillar is

always static, while the top bar deforms the pillar at a constant speed v,. Compared to

grain-grain interaction, the interaction parameters between the grains and the bar is

slightly modified. Since the bars are modeled as rigid bodies that cannot be elastically

deformed, it means that the elastic modulus of the bars is considered to be infinite.

Consequently, the effective interaction modulus E* between the bars and the grains,

based on Eq. 5.6, is twice as large as that between the grains. Therefore, from Eq. 5.5,

the normal interaction stiffness between the bars and the grains is twice as large

as that between the grains, i.e., ks(grain-bar) = 2k.(grain-grain). Since the shear

modulus of contact kt is proportional to ka, we have kt(grain-bar) = 2kt(grain-grain)
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as well.

Grain-Substrate Interaction

The effect of the substrate on the grains is determined after all the forces and torques

on each grain due to other grains and bars have been determined. The substrate can

induce both frictional force and torque on the grains, as illustrated in Fig. 5-3b. If a

grain is initially static, unless the magnitude of total force due to other grains/bars

is larger than the maximum frictional force that can be exerted by the substrate

fj = migu, the substrate frictional force will cancel out other forces on the grain

and the particle will continue to have zero velocity. Here mi is the mass of the grain

i, g is the gravitational acceleration and yt denotes the frictional coefficient between

the grains and the substrate. In another case, if the velocity of the grain is non-

zero, the substrate will induce a frictional force opposite to the direction of particle

motion, with magnitude f, = migyt. A similar algorithm applies to the rotational

motion of a particle. An initially static grain will not start to rotate unless the

torque due to other interactions surpasses the maximum substrate-induced frictional

torque T = .'migp Ri, where Ri is the radius of the cylindrical-shape particle. The

prefactor j is based on the assumption that frictional force is evenly distributed on3

the circular contact interface between a cylindrical-shape grain and the substrate. If

the angular velocity of the grain is non-zero, a frictional torque

2
T,,= -- migpRiL2', (5.9)

will slow down the rotational motion of the particles, where ij = wi/w~i and wi

denotes the angular velocity of particle i.

Equations of Motion

After all the forces and torques on an individual grain are determined, they are

summed up and the velocities and angular velocities of the grains are then updated
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according to Newtonian equations of motion:

d2r. dwi
= F, I Tj, (5.10)'M.dt2 1idt

where Fj and Tj are the total force and topque on the particle i respectively. Ii =

-mjR? is the moment of inertia for grain i. The standard velocity Verlet integrator

is used to update the positions and velocities of the particles, while a finite differ-

ence method is used to integrate the first-order differential equation for the angular

velocities.

There is a subtle numerical issue that must be addressed when modeling velocity

and angular velocity changes of the particles in the presence of the damping effects

of a frictional substrate. In numerical integration of equation of motion, time is

discretized into small timesteps with each timestep being a small increment 6t. To

complete the simulation within a reasonable time frame, 6t cannot be too small,

which means that the changes of velocity and angular velocity of the grains due to

the substrate induced force and torque within a timestep are not infinitesimal. Hence,

the motion of particles might not be able to be brought to a halt by the substrate

- the velocity and angular velocity of the particles could oscillate around the zero.

Consider, for example, a stand-alone cylindrical grain with initial velocity vi and

angular velocity wi. Without other interactions, the substrate will induce friction

fjl = migp and frictional torque IT,,jj = 2migp/3 on the grain, which slows down

the translational and rotational motion of the grain respectively. According to the

equations of motion in Eq. 5.10, the translational and rotational acceleration will be

av = gy and a, = 4gp/(3Ri), with Ri being the radius of particle i. Hence, within a

timestep 6t, the change of velocity or angular velocity is a finite number: 6v = gp&t

6S = 4gptot/(3Rj). If the velocity or angular velocity have been damped to values

below these two numbers, they cannot be damped further but instead oscillate around

zero, which is clearly a numerical artifact. To work around this issue, we introduce

two small parameters
4glp

1= gpot, = = t, (5.11)
3Rj
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such that when lvi < , and j F + Fba, < migy. are both satisfied, the velocity

and total force on the particle will be set to zero. Here Fij is the force of particle j on

particle i, and F ba is the force of the bars on particle i. Similarly, for the rotational

motion, if wjl < , and z 1g Tij + T "a < migp , the angular velocity and total

torque of the particle is set to zero.

5.2.3 Choice of Simulation Model Parameters

The independent parameters in the interaction model of our simulation include the

grain-grain stiffness k., grain-grain friction coefficient pg, grain-substrate friction co-

efficient p, and the timestep for integration of equations of motion UL. Among these

parameters, p has been experimentally measured to be around 0.23. Hence P = 0.23

will be adopted in our simulations. The grain-grain friction coefficient pg is unknown.

We have carried out simulation using multiple values of pg, and the results indicate

that choosing pg = 0.2 can achieve good match between the experiment and simula-

tion. Due to the quasistatic nature of deformation by the moving bar on the pillars,

the increment of force on a grain by the bar within one timestep 6t must be much

smaller than the maximum static friction by the substrate on a grain, namely

2kav,6t < migp, (5.12)

where v, is the speed of the top moving bar. Hence, the smaller the value of 6t,

the higher the value of k. that can be adopted in simulation. While there is no

physical reason for a lower bound of t, smaller Ut results in an increased time span

to complete simulation. Realistic consideration leads to our choice of U = 10 5

second. The upper bound of allowed kn calculated from Eq. 5.12 is considered to

be smaller than the real contact stiffness of two particles in experiment. For this

reason, we have systematically studied the influence of k, on the simulation results

in a small-sized pillar containing 1000 grains. The relatively small sized pillar allows

us to use t = 10-6 second and thus access a wider range of k., from k= 1 N/mm

to k, = 100 N/mi. The results indicate that the statistical behaviors of deformation
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dynamics, such as flow stress and particle-level deformation characteristics, are not

significantly influenced by the value of the k,. We therefore choose k. = 10 N/mm

and Ut 10-5 in our simulation.

The results of our study will be expressed in terms of several characteristic units.

tength will be expressed in the diameter of the large grains D or the radius R = D/2.

The unit of velocity will be the bar speed v, and the unit of time will be R/ve, which

is the time it takes for top bar to move over a distance equal to R. The units for

force and stress will be mgy, mgp/D respectively, where for convenience, we will use

the symbol m to denote the mass of a large grain. mgu is thus the minimum force

to induce the translational motion of a stand-alone large grain and ngP/D is the

corresponding averaged stress of the bar on the grain.

5.3 Combined Experiment and Simulation on De-

formation of Small-Sized Pillars

Deformation of an N = 1000 pillar has been studied by both experiment and simula-

tion. The experimental initial particle arrangement in the pillar is the same as those

depicted in Fig. 5-1. To facilitate comparison between experiment and simulation,

our parallel simulation of pillar deformation uses the experimentally measured initial

conditions, which were further relaxed in simulation to avoid particle overlapping re-

sulted from measurement error. When the pillar is deformed by the moving bar, the

strain of deformation e is defined as the change of pillar height AH divided by the

original height of the pillar HO, namely, E = AH/Ho. The deformation stress o- is

calculated as the normal force on the top moving bar Fbar divided by the maximum

width of the pillar near the top edge W, namely -a Fbar/W.

Fig. 5-4 shows the experimental and simulation stress-strain curve of the N = 1000

pillar. The measured stress shows yielding behavior when the deformation strain

exceeds a very small value EY. From our simulation, we find that the yield strain eY in

general becomes smaller as the grain-grain stiffness k, or the packing density of the
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Figure 5-4: Comparison between the (a) experimental and (b) simulation stress-strain

curves for the deformation of a N = 1000 granular pillar. The compressing stress is

measured in units of mgp/D, while the strain is computed as the change of pillar

height (AH) divided by the original height of the pillar HO. The special labels (1-6)

indicate the stress strain values at which deformation characteristics in the pillar will

be compared side to side between experiment and simulation.

pillar is increased. The yield stress o however shows little dependence on k,. The

parameter that affects o-, most was found to be the grain-grain friction coefficient pg.

In the range of pg we have studied (pg from 0 to 0.3), o increases monotonically with

the increase of pg. The simulation results presented in this paper use pg = 0.2, which

was found to achieve overall good match between the experiment and simulation.

In Fig. 5-4, we label several stress/strain values and calibrate the corresponding

particle-level structural changes in the pillar. The experimental and simulation results
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are then compared side-to-side in Fig. 5-5. Fig. 5-5a shows the mean particle velocity

field in the pillar at six different stages of deformation. The mean velocity of a particle

i, denoted by vi(t, At), is calculated as the average displacement magnitude of the

particle from current time t to a later time t + At,

vi(t, At) = ri(t + At) - ri(t) /At, (5.13)

where the value of time interval At is chosen to be 2/15 R/ve for the present purpose.

vi(t, At) contains information of the absolute amount of displacement of the particle

i within At. As shown in Fig. 5-5a, the mean velocities of the particles near the

moving bar are close to v,, which is expected as the pillar is deformed quasistatically

by the bar. The mean velocity of a particle in general becomes smaller as the particle

is further away from the moving bar. At the early stages of deformation, particles

at the bottom part of the pillar have not moved and therefore have zero values of

v. A sharp boundary between the moving and non-moving regions of the pillar often

forms along the the direction that is roughly 45 degree to the direction of uniaxial

deformation.

In the simulations we have access to detailed information on the inter-particle

interactions. In Fig. 5-6 we plot the grain-grain normal force F, tangential force

Ft and substrate-induced force frictional force f on the particles at six stages of

deformation corresponding to the special labels in Fig. 5-4. Comparing Fig. 5-6a

with Fig. 5-6b and Fig. 5-6c, we find that F is in general much larger than F, which

is further larger than f, namely F, > Ft > f. In particular, Fig. 5-6a shows that

particles with large F, are connected with force chains. The magnitude of forces

in these force chains is higher for particles residing in the interior the pillar. This

indicates that the stress in the pillar is rather inhomogeneous, with larger stresses in

the interior region of the pillars than close to the surface.

We further look at the rearrangement of particles in the pillar by defining a neigh-

bor sampling distance Re, and calculate the affine transformation strains and non-

affine displacements of the particles with respect to their neighbors within R,. The
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Figure 5-5: Comparison between experiment and simulation of the particle velocity

v, deviatoric strain rate J2 and non-affine displacement D2 during deformation of

a N = 1000 granular pillar. The six stages of deformation (1-6) correspond to the

stress and strain values labeled in Fig. 5-4. Within each subplot (a), (b) and (c), the

top panel corresponds to the experimental result, while the bottom panel corresponds

to the simulation result. (a) Velocities of the particles in the pillar. The magnitude

of the displacement of a particle from the current position after time interval At =

(2/15)R/ve is divided by At to obtain the average velocity across the time interval.

(b) Deviatoric strain rate J2 for each particle. J2 is computed by comparing the

current configuration of a particle and its neighbors with the configuration after At,

using neighbor sampling distance R, = 1.25D. J2 is measured in the unit of ve/R.

(c) Non-affine displacement D2mi" for each particle in the pillar. The procedures for

calculating D2 in are discussed in the main text.
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Figure 5-6: Forces in the granular pillar during deformation as obtained from sim-

ulation. The special labels (1-6) correspond to the deformation stages labeled in

Fig. 5-4b. (a) Grain-grain normal force F,; (b) grain-grain tangential force F and (c)

grain-substrate friction force f. The forces are measured in the unit of mgyt, which

is the largest possible value of substrate induced friction on a large grain.

value of Re is chosen to be 1.25D, which roughly corresponds to the average first

nearest-neighbor distance of the particles in the pillar, as can be seen from the com-

puted radial distribution functions in Fig. 5-2. A particle j is considered to be the

neighbor of a particle i if their distance is smaller than Re, which is illustrated in

Fig. 5-7. The configurations of the particle i and its neighbors at a given time t

and a subsequent time t At will then be used to compute the best-fit local affine

transformation matrix J and the non-affine displacement D~mi associated with parti-

cle i, using the method introduced by Falk and Langer [42, 43]. Specifically, D212 is

obtained by calculating the best affine transformation matrix Ji that minimizes the

error of deformation mapping:

1 .1.2

D2,123(t, At) = -min2 [r3e(t At) - Jir3 i(t)]2, (5.14)
Ej E4

where r(t) = rc(t) - r(t) is the distance vector between particles j and i at time
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t. rji(t + At) is the distance vector at a later time t + At. The summation is over

the neighbors of particle i at time t, whose total number is given by Ni. The best-fit

affine transformation matrix Ji(t, At) is usually non-symmetric due to the presence

of rotational component. A symmetric Lagrangian strain matrix mq can be calculated

from Ji as

7 = (JJi, - I) (5.15)

where I is an identity matrix. The hydrostatic invariant is then computed from 7i as

1
-Trqi. (5.16)
2

The shear (deviatoric) invariant is then given by

= T r ( ,q - _i , I) 2 . (5.17)

Hereafter we will refer to 7jj (t, At) as the deviatoric strain associated with the particle

i from t to t + At. The deviatoric strain rate, denoted by J2, is the normalization of

71'(t, At) with respect to At:

J2 (t, At) = S(t, At)/At (5.18)

Fig. 5-5b-c shows the computed deviatoric strain rate J2 and D2in for each par-

ticle in the pillar at six different stages of deformation, where the experimental and

simulation results are compared side to side. J2 (t, At) and D 2 ,(t,,At) are computed

using At = (2/15)R/ve, which is the same as the value of At used for computing

the mean velocities of the particles in Fig. 5-5a. Comparing Fig. 5-5b with Fig. 5-5a,

it can be seen that large values of deviatoric strain rate occur at places where the

gradient of mean velocity, and hence the gradient of particle displacement, is large,

which is understandable as strain is a measure of displacement gradient. One can also

notice from Fig. 5-5b the presence of thin shear lines in the pillars, where particles

with large deviatoric strain rate reside. The width of these shear lines is about twice
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Figure 5-7: (a) Illustration of a particle (colored in green) and its neighbors (colored

in black) within a cut-off distance R, = 1.25D at an initial reference configuration.

(b) The same set of particles at a later stage of deformation. We seek to find the best-

affine transformation matrix J that maps the coordinates of the particles illustrated in

(a) to those in (b). This optimization procedure also gives the non-affine displacement

Din associated with the central (green) particle, and the deviatoric strain q' in the

neighborhood, as discussed in the main text.

the diameter of the particles. These shear lines largely correspond to the moving

boundary between the deformed and undeformed regions in the pillar. The presence

of such shear lines will appear clearer as pillar size increases, which will be discussed

in the later part of the article.

Comparing the D2i profile in Fig. 5-5c with deviatoric strain rate J2 in Fig. 5-

5b, it is clear that particles with larger values of D2. are correlated with larger

values of J2 , and hence also deviatoric strain 77' (Eq. 5.18). The deviatoric strain 77

reflects the local shear component of affine deformation (shape change), while Dmi

measures additional particle displacement with respect to its neighbors that cannot

be described by mere shape change. The positive correlation between D2. and q'

is understandable because the larger the value of 77 (which usually drives plastic

deformation), the error of describing local particle rearrangement in terms of purely

shape change, which is the definition of D 1., will more likely to be larger.
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Figure 5-8: Fitting of D 2 /R 2 with respect to deviatoric strain S for both (a) ex-

periment and (b) simulation. The data are fitted to an exponential crossover equation

from quadratic to linear scaling (see the main text for details). In (a), the green curve

is the best-fitting curve for the experimental data. For (b), as the fitting results is

nearly identical to (a), we plot the same fitting curve as in (a) to demonstrate the

closeness in the fitting result.

5.4 Local Deviatoric Strain Driven Particle Diffu-

sion

The positive interdependence between D21 ,, and 77 motivates us to map out their

correlation quantitatively. Starting with an initial configuration of the pillar at time

t that corresponds to deformation strain E = vet/Ho, we fix the neighbor sampling

distance R, = 1.25D and calculate 77(t, At) and D2,%(t, At) for each particle in the
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pillar using a logarithmic series of time interval At E [2, 4,8, ... , 128]/15 R/ve. This

procedure is then repeated for at least eight values of initial times t equally spaced

by 2R/ve. We then plot all the calculated values of D2 jnjt, At) with respect to

,s(t, At) on a single plot, using logarithmic axes for both D2.% and 77'. The results

of experimeht and simulation are shown together in Fig. 5-8. Froni Fig. 5-8, it can

be seen that while for a given specific value of 77, the possible values of D2,, are

scattered, the existence of statistical correlation between D2i and is apparent.

We find that in the range of small values of 77', D2m11 scales quadratically with 'q,

which gradually transits to linear scaling at larger values of 77'. This is reminiscent

of the scaling relationship between the growth of mean squared displacement (MSD)

for a thermally diffusive particle and time t, which is often explained pedagogically

by an unbiased random walker. Indeed, we find that, by considering D2,5, as MSD,

and deviatoric strain 77 as time, the data in Fig. 5-8 can be fit very well using the

following equation that describes the exponential crossover of a thermal particle from

ballistic to diffusive motion, expected for a Langevin particle with no memory [173]:

D2n(q')/R2 - 4877 - 40 1 [1 - exp(r7_s/ij)], (5.19)

where on the left hand side of the above equation, the calculated D21,i is scaled by

R2 to render it dimensionless. E is the dimensionless effective diffusivity while 7c'

takes meaning of "crossover deviatoric strain". Our fitting of the data gives E = 0.3,

1= 0.049 for the experiment, and E = 0.3, 17' = 0.05 for the simulation.

The analogy between D2j, and MSD, and between 77 and time t, may have deep

implications. D2ir describes the mean-squared non-affine displacement of a particle

with respect to its neighbors and can be naturally identified as an analogy to MSD.

The analogy between deviatoric strain i7 and time t implies that, for the granular

packings, where there is no thermal agitation and the system is deformed heteroge-

neously, the cumulative deviatoric strain plays the role of time and drives effective

particle diffusion. Argon had originally used bubble raft deformation to illustrate the

concept of shear transformation zone (STZ) [174, 175], which emphasizes the affine
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part of localized stress-driven processes. Recently, Wang et al. found that cyclic

mechanical loading can induce the nano-crystallization of metallic glasses well below

the glass transition temperature [159], resulting from stress-driven accumulation of

non-affine displacement of the atoms in the sample. The concept of shear diffusion

transformation zdnes (SDTZs) was proposed by the authors to explain the lxperimen-

tal results and to emphasize the diffusive character of STZs. Our results lend support

to the concept of SDTZ by showing that, even in amorphous granular packings, where

there is no thermal-driven diffusion at all, if the accumulated local deviatoric strain

is large enough (above a few percent strain), the non-affine displacement of a particle

with respect to its neighbors crosses over to the diffusive limit. This suggests that

SDTZ may be a key concept for a broad range of amorphous solids.

The analogy between local cumulative shiear transformation strain in athermal

amorphous solids and time in thermal systems for particle diffusion may be ratio-

nalized by a "space-time equivalence" argument, as follows. A finite temperature

kBT means temporally random momentum fluctuations, for crystals and non-crystals

alike. Even in crystals, such random momentum fluctuations (due to collision of mul-

tiple phonons) can drive the random walker behavior of a particle, if these temporal

fluctuations can be significant compared to the potential energy barrier. But in amor-

phous solids without spontaneous temporal fluctuations, there will be nonetheless still

another source of randomness, which is the local spatial structure and structural re-

sponse of the amorphous solid. This is indeed what motivated the "heterogeneously

randomized STZ model" [176, 177]. In other words, even if two "Eshelby inclusions"

at different locations of an amorphous solid transform by exactly the same transforma-

tion strain y, one reasonably would still expect drastically different internal particles

arrangements and rearrangements inside these zones. This ultimately is because the

local strain q is just a coarse-graining variable, that represents a key aspect of the

structural transformations of a kinetically frozen random cluster, but not all of its

structural information. (This may not be true in simple crystals, where 1) may en-

tirely capture the entire structure.) Such structural mutations beyond transformation

strain are reflected in D The fact that D will accumulate linearly with strain at
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steady state means the structural mutations from generation to generation [176, 177]

are largely non-repeating and essentially unpredictable, if starting from a spatially

random configuration at the beginning, even when the stress condition driving these

transformations remains largely the same. Our experiment and simulation on com-

pressing amorphous grAnular pillars can thus be seen as a "spatial random nuinber

generator" with the initial configuration as the "random number seed", in contrast to

more well-known "temporal random number generator" algorithms; but both types

of algorithms tend to give long-term uncorrelated increments for the random walker.

5.5 Simulation of Size-Dependent Pillar Deforma-

tion

Having achieved good agreement between experiment and simulation for the N =

1000 pillar, we now take advantage of the fact that our simulation can treat much

larger systems than experiment, to study the size-dependent deformation behavior

of the granular pillars by simulation. Three large-sized pillars, denoted by N =

4000, N = 16000 and N = 64000, are deformed by the top bar moving at the same

deformation speed v,. The aspect ratio of the pillars (2 to 1) is fixed to be the same

value of the N = 1000 pillar. As the initial packing density of the particles in the

pillar is also the same, the initial width of the pillars Wo scales as VNH.

We find the macroscopic shape evolution of the different-sized pillars is self-similar

during deformation. At the same values of deformation strain e AH/Ho, we extract

the boundaries of the pillars, rescale them by the respective initial pillar width Wo,

and plot them together in Fig. 5-9. The rescaled boundaries of the pillars are nearly

identical to each other. This also implies that, the width of the top edge of a pillars

W divided by its original width Wo, is to a good approximation only a function of

strain e but not the pillar size, namely W/Wo = X(E), where the scaling function X

does not depend on the pillar width Wo.

We also find that, the average flow stress of the pillars increases linearly with
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Figure 5-9: Self-similar evolution of pillar shapes during deformation of different-

sized pillars. The boundaries of three pillars (N = 4000, N = 16000 and N = 64000)

are rescaled and plotted together at the same strain value.

the initial pillar width WO, as shown in Fig. 5-10(a-b). Mathematically, this can be

expressed as (u-) oc Wo, where we define (o) to be the average flow stress for strain e

between 0.05 and 0.2. This scaling behavior for the flow stress indicates that, for the

2D disordered granular pillars, the behavior of "smaller is weaker" is exhibited. This

is quite different from the deformation of free-standing metallic glass pillars, where

"smaller is stronger" is the general trend [178, 179].

To understand the surprising size dependence of flow stress, we first look at the

stress distribution in the pillars. In Fig. 5-5 we have shown that the grains in the

interior region of the pillar experience larger inter-particle contact forces, resulting in

larger local stress in the interior region of the pillar. The rate of increase for local

stress as a function of distance to the lateral edges of the pillars is found to be very

close for different-sized pillars. Such stress non-uniformity should also be reflected in

the local contact pressure between the moving bar and the pillar. Indeed, we find that

the contact pressure is also spatially rather non-uniform. Fig. 5-10c shows that, the

local contact pressure increases almost linearly from near zero at the edge of pillar to

saturated values around the center of contact interface. The maximum values of local
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Figure 5-10: Size-dependent flow stress and dissipation of input power. (a) Stress

strain curves for different sized pillars. (b) Linear scaling of average flow stress with

respect to pillar width WO. The average flow stress is computed for the range of strain

between 0.05 and 0.2. (c) Local contact pressure p between the moving bar and the

pillars as a function of position x along the contact interface, computed for different

sized pillars at a representative value of deformation strain in the plastic flow regime.

The position x is scaled by the width of the pillar W at the contact interface. (d)

Fraction of input power dissipated by the grain-substrate friction as a function of

deformation strain for different-sized pillars.

contact pressure scale roughly linearly with pillar width, consistent with the linear

scaling of pillar flow stress.

Since the pillars are deformed quasistatically, most of the deformation work on

the pillars will be dissipated during plastic flow. The flow stress is therefore closely

related to the dissipation of energy in the systems. We hence study how the energy

dissipation in the pillars changes with pillar size. As the granular particles in the

pillars stand on a substrate, two major mechanisms of energy dissipation during
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plastic flow can be identified: one is due to the grain-substrate friction and the other

can be attributed to the grain-grain friction. The total external power input by the

moving bar into the pillar, denoted by Pi, can be calculated as

Pin = Far'Vc = 1Vtc. (5.20)

We have shown that, compared at the same deformation strain E, both the flow stress

a and pillar width W are proportional to the initial pillar width WO. Hence, the in-

put power by the external force scales quadratically with W0 , namely Pi" OC W2. As

most of the input power will be dissipated in the plastic flow regime, the dissipated

power should also scale with W. To study how the dissipated power is distributed

between the substrate-induced friction and grain-grain friction, we compute the frac-

tion of input power dissipated by the grain-substrate frictional force and study its size

dependence. The amount of power dissipated by the grain-substrate friction force,

denoted by Pgs, can be calculated as

Pgs = migpi, (5.21)

where the particle mean velocity vi has the same definition as in Eq. 5.13, namely the

average displacement of the particle i within a small time interval At. The fraction

of power dissipated by the substrate-induced friction, denoted by r', is then given by

N = Pgs/Pin. We calculate the values of s for different sized pillars and plot them as a

function of deformation strain in Fig. 5-10d. The result indicates that r, is statistically

independent of pillar size. This allows us to conclude that the amount of input power

dissipated by grain-substrate friction, Pg-, = NPi, also scales quadratically with pillar

size WO, and hence scales linearly with the number of particles in the pillar N. This

effectively means that the number of particles participating in the plastic flow scales

linearly with the total number of particles in the pillar, which is consistent with the

self-similar shape evolution of the pillars.

The calculated values of N in Fig. 5-10d indicate that the majority of deformation
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work is dissipated by the friction between the particles in the pillar and the substrate.

Substrate friction therefore must play an important role in the linear increase of flow

stress with respect to pillar width and the self-similar evolution of pillar shape, which

have been shown to be consistent with each other. The granular pillars in our study

are not truly two-dimensional due to the presence of grain-substratl friction. This

setup is however necessary for stable plastic flow of the uniaxially deformed gran-

ular pillars without cohesive interparticle interaction. Without the grain-substrate

friction, the deformation behavior of the granular pillars are expected to be quite

different, and the size-dependent deformation behavior observed in this study (i.e.

"smaller is weaker") may no longer hold.

If the macroscopic shape evolution of the pillars in our systems is self-similar,

then how does the local yielding behavior vary with pillar size? We characterize the

deformation-induced local structural change of the pillar by computing the deviatoric

strain rate J2 associated with each particle between two stages of deformation, using

the same methodology described earlier in the article. We find that, within a small

amount of pillar strain, particles with large values of J2 organize into thin shear lines,

which becomes more evident as pillar size increases, as shown in Fig. 5-11. These shear

lines orient along the direction about 45 degree to the direction of uniaxial compres-

sion. Clearly, such shear lines form along the direction of maximum shear stress.

The sharpest shear lines appear predominantly at the moving boundary between the

deformed and undeformed region in the pillars, as we have mentioned earlier when

discussing the combined experimental and simulation study of small-sized pillars. A

close-up view of these shear lines in Fig. 5-11 indicates that the width of the shear

lines does not change as pillar size increases, maintaining a value about twice the

diameter of a grain. We emphasize that these shear lines are transient in time. As

deformation goes on, new shear lines will form elsewhere in the pillar, while the parti-

cles in the shear lines formed earlier may not accumulate significant amount of shear

strain continuously. Evidence of such transient shear bands in granular materials

was previously reported in the discrete element simulations by Aharonov and Sparts

[180] and Kuhn [181, 182]. Maloney and Lemaitre [183], and Tanguy et al. [184]
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Figure 5-11: Deviatoric strain rate J2 associated with each particle and zoom-in views

of the transient shear lines in different-sized pillars. Four different-sized pillars are

compared with each other, which contain 1000, 4000, 16000, 64000 grains respectively

(from left to right). The regions in the pillars for zoom-in views are indicated by

squares. For each pillar, the two configurations of pillars used for J2 calculation are

separated by time difference At = 8/15 R/ve.

observed transient lines of slip in their athermal, quasistatic simulation of 2D glasses

of frictionless particles, and explained their formation in terms of elastic coupling and

cascading of shear transformation zones. The results of our combined experiment

(Fig. 5-5) and simulation of uniaxial, quasistatic deformation of 2D granular pillars

clearly demonstrate the existence of such transient shear lines, which carry localized

deformation in the granular pillars.

The size-independent width of the transient shear lines is surprising since the

overall macroscopic shape of the pillar is self-similar in systems of different sizes.

Despite the self-similarity at the macroscopic scale, the system is not self-similar in

how it yields at the microscopic scale. Since the slip lines are independent of system

size, there must be more of them in larger systems, which is indeed observed in our

simulation. Why the system chooses to be self-similar at the macroscopic scale but

not at the microscopic scale is an interesting point for future study.
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5.6 Concluding Remarks

We have carried out combined experiments and simulations of the quasistatic, uniaxial

deformation of 2D amorphous granular pillars on a substrate. The simulation model

developed in this article achieves excellent quantitative match to the experiment. In

particular, we find that, for the granular packings, the non-affine displacements of the

particles exhibit exponential crossover from ballistic motion to diffusion-like growth

behavior with respect to local deviatoric strains. This result is a generalization to

inhomogeneous loading of earlier observations of stress-driven diffusion of particles

in simulated 2D molecular glasses under simple shear or pure shear in the thermal,

quasistatic limit [158, 184, 185, 186, 187, 188]. Because in our study the "time" vari-

able for diffusion, the best-fit deviatoric strain in a neighborhood, is a local measure

of deformation and shear transformation, we expect that the non-affine displacement

should cross over from ballistic to diffusive behavior in amorphous solids under any

loading conditions.

In metallic glass pillars, the apparent strength of the pillar and strain localization

behavior depends on pillar diameter, manifesting so-called "size-dependent plasticity"

behavior [177]. Often, "smaller is stronger" holds for metallic glasses [178, 179]. We

have shown that for 2D granular pillars on a substrate, the frictional interaction

between the granular particles and the substrate leads to the opposite size-dependent

response, namely "smaller is weaker".

Finally, our combined experiment and simulation study clearly demonstrate that

transient lines of slip form in quasistatically deformed amorphous granular pillars

under uniaxial loading condition. These system-spanning shear lines carry localized

shear transformations in 2D granular pillars, and their width shows no size depen-

dence. Altogether, these results could have important implications for the plasticity

and internal structural evolution of amorphous solids.
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Chapter 6

Summary and Future Work

In this thesis, we have studied the engineering of the structure and properties of

materials by high deviatoric strain or stress. The applied strain can be both elastic

and inelastic, therefore two different approaches, elastic strain engineering (ESE) and

inelastic strain engineering (ISE) can be distinguished. The focus of ESE is on tuning

the functional properties of materials by elastic strain, while the focus of ISE is on

controlling the microstructure of materials by generating inelastic strain via plastic

deformation or strain-induced structural phase transformations.

For ESE, we have theoretically studied in Chapter 3 the electronic structure change

of semiconductor crystals under slowly-varying inhomogeneous strain, and showed

that bound states of electrons and holes can form in inhomogeneously strained semi-

conductors due to strain-dependent shift of valence and conduction band energy levels.

We developed a new envelope function formalism with strain-parametrized expansion

basis functions that has the potential to efficiently solve the electronic structure of

slowly-varying inhomogeneously strained semiconductor crystals, which was demon-

strated numerically using a one-dimensional model. Our results indicate that, if the

locality principle of electronic structure [96, 97, 98] holds well in strain-deformed

semiconductor crystals, then the envelope function formalism developed in Chapter

3 is an powerful approach that can be used to connect the local and global electronic

structure of inhomogeneously strained crystals. This method provides hope that the

phase-coherent electronic structure of inhomogeneously strained crystals, which at
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present is very difficult to study using ab initio approaches due to the large number

of atoms typically involved in an inhomogeneously deformed system, can be solved

in a "divide and conquer" manner. Namely, the problems is broken down into the

solution of the electronic structure of homogeneously strained crystals by unit-cell

level first-principles electronic structure calculations, and the solution of a set of cou-

pled differential equations for the envelope functions. The second step, the solution

of envelope function equations, will incorporate the relevant local electronic structure

information obtained from the first step, and is a computationally easier problem due

to the slowly-varying nature of the envelope functions.

While the work presented in Chapter 3 lays down the foundation of employing

envelope function formalism with a strained-parametrized basis set to solve the elec-

tronic structure of slowly-varying inhomogeneously strained crystals, we acknowledge

that, at present, the demonstration of the method remains at the level of a one-

dimensional, simplified theoretical model. Therefore, an important part of future

work is to apply the method to real material systems. This could be a challenging

task due to the enlarged strain space and the more complicated electronic wavefunc-

tions in higher dimensions. In Chapter 3, we have provided a flow chart to illustrate

the implementation of our method in generic higher-dimension problems. Future

work will demonstrate that the framework can be executed efficiently for realistic

inhomogeneously-strained crystals. Benchmark of the method against current state-

of-the-art electronic structure methods also needs to be carried out, to convincingly

demonstrate the advantage or the unique capability of our method over other existing

methods.

We emphasize that, ESE is a rich and vastly unexplored field [12], and many

fundamental research problems remain. While there has been systematic theoretical

work on the effects of elastic strain on the electronic properties of semiconductors

[89], for many other properties, in particular the non-linear response properties of

materials, the effects of strain have only been scarcely or phenomenologically ex-

plored. In particular, we note that higher order response of materials to external

field could be more sensitive to applied strain than linear properties. This will be an
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important future research direction in ESE. Another important issue for ESE is that,

while computing the strain-dependent properties of materials is relatively straight-

forward once an appropriate calculation tool is available, identifying the fundamental

physics responsible for the strain-induced property change and expressing it as a low-

dimensional descriptor ("material genome") [189] is considerably hairder. This will

be another important future direction for research in ESE.

Chapter 4 and Chapter 5 of the thesis focus on ISE, with an emphasis on the

effect of inelastic deviatoric structure on the structure and dynamics of soft ma-

terials. Due to the relatively weak interaction between the constituent units, the

microstructure of soft matter is in general more susceptible to mechanical loads than

their hard materials counterparts. In Chapter 4 of this thesis, we have studied the

mechanical response and deviatoric stress-driven sintering of self-assembled superlat-

tices (supercrystals) of alkanethiol-passivated metallic nanocrystals. The alkanethiol

molecules, which chemically adsorb on the surface of the nanocrystals, protect the

metallic cores of the nanoparticles from sintering with each other. Our large-scale

molecular dynamics simulations demonstrate, however, that the alkanethiol ligands

can be purposely displaced if chemical potential gradient is set up in nanoparticle su-

perlattices by external deviatoric stress, leading to controlled and ordered sintering of

the nanocrystals. This process is fast and can occur at room temperature. Specifically,

we found that, if the hydrostatic component of the external stress is above several

hundred MPa, then applying a critical deviatoric stress along the nearest-neighbor di-

rection of the superlattice the can convert gold nanoparticle superlattices into ordered

thiol-passivated gold nanowire arrays. A moderate hydrostatic stress component is

found to be necessary to elevate the yield stress of the nanoparticle superlattice to

be higher than the critical deviatoric stress required for nanoparticle fusion. We have

applied these insights to binary nanoparticle superlattices and demonstrate that for

gold-silver (Au-Ag) binary nanoparticle superlattices, a hydrostatic stress component

of order several hundred MPa combined with a critical deviatoric stress of the same

order along the nearest-neighbor direction of the superlattice can induce the sintering

of nanocrystals in the superlattices into ordered gold-silver multi-junction nanowire
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arrays. These results are important for possible future industrial-scale production of

nanowire arrays and multi-junction nanowire arrays from nanoparticle superlattices.

In Chapter 5, we use two-dimensional amorphous granular pillars as model systems

to study the uniaxial and quasi-static deformation induced plastic flow and internal

structure evolution in disordered solids. Because the particles in the granular pillars

are of macroscopic size, thermal motion is negligible for the granular particles and the

system is effectively at zero vibrational temperature. The cylindrical granular parti-

cles stand upright on a substrate, which dissipates the kinetic energies in the granular

pillars through frictional interaction between the particles and substrate. Our study

thus probes the strain-response of a model disordered solid in the athermal (zero tem-

perature) limit. We developed a simulation model that achieves excellent quantitative

match with the parallel experimental study by our experimental collaborators. The

combined experimental and simulation work demonstrates that, for the amorphous

granular pillars under inhomogeneous load, the cumulative local deviatoric strains of

the particles play the role of time in thermal systems, and drive the ballistic to dif-

fusive motion crossover of the particle non-affine displacements with respect to their

neighbors. Our result is consistent with a previous experimental study which showed

that cyclic loading can induce the crystallization of a metallic glass at room temper-

ature [159], which is well below the glass transition temperature of the metallic glass.

At such temperature, thermal motion induced diffusion is extremely slow. However,

diffusion is typically required for the crystallization of glasses. Hence, a concept of

shear diffusion transformation zone (SDTZ) was proposed [159], which claims that

in metallic glasses, cyclic loading induces local shear transformations that are ac-

companied with certain amount of particle diffusion. The temperature at which the

study was carried out, while well-below the glass transition temperature the metallic

glasses, was still non-zero. In contrast, in our combined experiment and simulation

on the deformation of granular pillars, the system is strictly at the zero vibrational

temperature. Therefore, our study provides a rigorous test of the concept of SDTZ,

and convincingly demonstrates that, in disordered solids, deviatoric strain alone can

induce the diffusive motion of particles without thermal motion. The results could
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have important implications for the deformation induced internal structure evolution

of disordered solids.

For hard materials, such as metals and inorganic semiconductors, future work on

ISE will focus on the strain induced phase transformation in nano-sized crystals, such

as nanoparticles, nanowlres and atomic layers. For soft materials, we envision ihat

future work on ISE could occur in the direction of deviatoric strain induced phase

transformation of complex-liquid mesophases that can sustain static shear stress, and

in general the non-equilibrium behavior of soft matter under driven conditions.
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